diff options
Diffstat (limited to 'Build/source/utils/asymptote/base/three_tube.asy')
-rw-r--r-- | Build/source/utils/asymptote/base/three_tube.asy | 373 |
1 files changed, 373 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/base/three_tube.asy b/Build/source/utils/asymptote/base/three_tube.asy new file mode 100644 index 00000000000..c79ae3f619f --- /dev/null +++ b/Build/source/utils/asymptote/base/three_tube.asy @@ -0,0 +1,373 @@ +void render(path3 s, real granularity=linegranularity, void f(path3, real)) +{ + void Split(triple z0, triple c0, triple c1, triple z1, real t0=0, real t1=1, + real depth=mantissaBits) { + if(depth > 0) { + real S=straightness(z0,c0,c1,z1); + if(S > 0) { + --depth; + if(S > max(granularity*max(abs(z0),abs(c0),abs(c1),abs(z1)))) { + triple m0=0.5*(z0+c0); + triple m1=0.5*(c0+c1); + triple m2=0.5*(c1+z1); + triple m3=0.5*(m0+m1); + triple m4=0.5*(m1+m2); + triple m5=0.5*(m3+m4); + real tm=0.5*(t0+t1); + Split(z0,m0,m3,m5,t0,tm,depth); + Split(m5,m4,m2,z1,tm,t1,depth); + return; + } + } + } + f(z0..controls c0 and c1..z1,t0); + } + Split(point(s,0),postcontrol(s,0),precontrol(s,1),point(s,1)); +} + +struct rmf +{ + triple p,r,t,s; + void operator init(triple p, triple r, triple t) + { + this.p=p; + this.r=r; + this.t=t; + s=cross(t,r); + } +} + +// Rotation minimizing frame +// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf +rmf[] rmf(path3 g, real[] t) +{ + rmf[] R=new rmf[t.length]; + triple d=dir(g,0); + R[0]=rmf(point(g,0),perp(d),d); + for(int i=1; i < t.length; ++i) { + rmf Ri=R[i-1]; + real t=t[i]; + triple p=point(g,t); + triple v1=p-Ri.p; + if(v1 != O) { + triple r=Ri.r; + triple u1=unit(v1); + triple ti=Ri.t; + triple tp=ti-2*dot(u1,ti)*u1; + ti=dir(g,t); + triple rp=r-2*dot(u1,r)*u1; + triple u2=unit(ti-tp); + rp=rp-2*dot(u2,rp)*u2; + R[i]=rmf(p,unit(rp),unit(ti)); + } else + R[i]=R[i-1]; + } + return R; +} + +surface bispline(real[][] z, real[][] p, real[][] q, real[][] r, + real[] x, real[] y, bool[][] cond={}) +{ // z[i][j] is the value at (x[i],y[j]) + // p and q are the first derivatives with respect to x and y, respectively + // r is the second derivative ddu/dxdy + int n=x.length-1; + int m=y.length-1; + + bool all=cond.length == 0; + + int count; + if(all) + count=n*m; + else { + count=0; + for(int i=0; i < n; ++i) { + bool[] condi=cond[i]; + for(int j=0; j < m; ++j) + if(condi[j]) ++count; + } + } + + surface s=surface(count); + s.index=new int[n][m]; + int k=-1; + for(int i=0; i < n; ++i) { + bool[] condi=all ? null : cond[i]; + real xi=x[i]; + real[] zi=z[i]; + real[] zp=z[i+1]; + real[] ri=r[i]; + real[] rp=r[i+1]; + real[] pi=p[i]; + real[] pp=p[i+1]; + real[] qi=q[i]; + real[] qp=q[i+1]; + real xp=x[i+1]; + real hx=(xp-xi)/3; + int[] indexi=s.index[i]; + for(int j=0; j < m; ++j) { + real yj=y[j]; + real yp=y[j+1]; + if(all || condi[j]) { + triple[][] P=array(4,array(4,O)); + real hy=(yp-yj)/3; + real hxy=hx*hy; + // x and y directions + for(int k=0; k < 4; ++k) { + P[0][k] += xi*X; + P[k][0] += yj*Y; + P[1][k] += (xp+2*xi)/3*X; + P[k][1] += (yp+2*yj)/3*Y; + P[2][k] += (2*xp+xi)/3*X; + P[k][2] += (2*yp+yj)/3*Y; + P[3][k] += xp*X; + P[k][3] += yp*Y; + } + // z: value + P[0][0] += zi[j]*Z; + P[3][0] += zp[j]*Z; + P[0][3] += zi[j+1]*Z; + P[3][3] += zp[j+1]*Z; + // z: first derivative + P[1][0] += (P[0][0].z+hx*pi[j])*Z; + P[1][3] += (P[0][3].z+hx*pi[j+1])*Z; + P[2][0] += (P[3][0].z-hx*pp[j])*Z; + P[2][3] += (P[3][3].z-hx*pp[j+1])*Z; + P[0][1] += (P[0][0].z+hy*qi[j])*Z; + P[3][1] += (P[3][0].z+hy*qp[j])*Z; + P[0][2] += (P[0][3].z-hy*qi[j+1])*Z; + P[3][2] += (P[3][3].z-hy*qp[j+1])*Z; + // z: second derivative + P[1][1] += (P[0][1].z+P[1][0].z-P[0][0].z+hxy*ri[j])*Z; + P[1][2] += (P[0][2].z+P[1][3].z-P[0][3].z-hxy*ri[j+1])*Z; + P[2][1] += (P[2][0].z+P[3][1].z-P[3][0].z-hxy*rp[j])*Z; + P[2][2] += (P[2][3].z+P[3][2].z-P[3][3].z+hxy*rp[j+1])*Z; + s.s[++k]=patch(P); + indexi[j]=k; + } + } + } + + return s; +} + +// return the surface described by a real matrix f, interpolated with +// xsplinetype and ysplinetype. +surface surface(real[][] f, real[] x, real[] y, + splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype, + bool[][] cond={}) +{ + real epsilon=sqrtEpsilon*norm(y); + if(xsplinetype == null) + xsplinetype=(abs(x[0]-x[x.length-1]) <= epsilon) ? periodic : notaknot; + if(ysplinetype == null) + ysplinetype=(abs(y[0]-y[y.length-1]) <= epsilon) ? periodic : notaknot; + int n=x.length; int m=y.length; + real[][] ft=transpose(f); + real[][] tp=new real[m][]; + for(int j=0; j < m; ++j) + tp[j]=xsplinetype(x,ft[j]); + real[][] q=new real[n][]; + for(int i=0; i < n; ++i) + q[i]=ysplinetype(y,f[i]); + real[][] qt=transpose(q); + real[] d1=xsplinetype(x,qt[0]); + real[] d2=xsplinetype(x,qt[m-1]); + real[][] r=new real[n][]; + real[][] p=transpose(tp); + for(int i=0; i < n; ++i) + r[i]=clamped(d1[i],d2[i])(y,p[i]); + surface s=bispline(f,p,q,r,x,y,cond); + if(xsplinetype == periodic) s.ucyclic(true); + if(ysplinetype == periodic) s.vcyclic(true); + return s; +} + +bool uperiodic(real[][] a) { + int n=a.length; + if(n == 0) return false; + int m=a[0].length; + real[] a0=a[0]; + real[] a1=a[n-1]; + real epsilon=sqrtEpsilon*norm(a); + for(int j=0; j < m; ++j) + if(abs(a0[j]-a1[j]) > epsilon) return false; + return true; +} +bool vperiodic(real[][] a) { + int n=a.length; + if(n == 0) return false; + int m=a[0].length-1; + real epsilon=sqrtEpsilon*norm(a); + for(int i=0; i < n; ++i) + if(abs(a[i][0]-a[i][m]) > epsilon) return false; + return true; +} + +// return the surface described by a parametric function f evaluated at u and v +// and interpolated with usplinetype and vsplinetype. +surface surface(triple f(pair z), real[] u, real[] v, + splinetype[] usplinetype, splinetype[] vsplinetype=Spline, + bool cond(pair z)=null) +{ + int nu=u.length-1; + int nv=v.length-1; + real[] ipt=sequence(u.length); + real[] jpt=sequence(v.length); + real[][] fx=new real[u.length][v.length]; + real[][] fy=new real[u.length][v.length]; + real[][] fz=new real[u.length][v.length]; + + bool[][] active; + bool all=cond == null; + if(!all) active=new bool[u.length][v.length]; + + for(int i=0; i <= nu; ++i) { + real ui=u[i]; + real[] fxi=fx[i]; + real[] fyi=fy[i]; + real[] fzi=fz[i]; + bool[] activei=all ? null : active[i]; + for(int j=0; j <= nv; ++j) { + pair z=(ui,v[j]); + triple f=(all || (activei[j]=cond(z))) ? f(z) : O; + fxi[j]=f.x; + fyi[j]=f.y; + fzi[j]=f.z; + } + } + + if(usplinetype.length == 0) { + usplinetype=new splinetype[] {uperiodic(fx) ? periodic : notaknot, + uperiodic(fy) ? periodic : notaknot, + uperiodic(fz) ? periodic : notaknot}; + } else if(usplinetype.length != 3) abort("usplinetype must have length 3"); + + if(vsplinetype.length == 0) { + vsplinetype=new splinetype[] {vperiodic(fx) ? periodic : notaknot, + vperiodic(fy) ? periodic : notaknot, + vperiodic(fz) ? periodic : notaknot}; + } else if(vsplinetype.length != 3) abort("vsplinetype must have length 3"); + + surface sx=surface(fx,ipt,jpt,usplinetype[0],vsplinetype[0],active); + surface sy=surface(fy,ipt,jpt,usplinetype[1],vsplinetype[1],active); + surface sz=surface(fz,ipt,jpt,usplinetype[2],vsplinetype[2],active); + + surface s=surface(sx.s.length); + s.index=new int[nu][nv]; + int k=-1; + for(int i=0; i < nu; ++i) { + int[] indexi=s.index[i]; + for(int j=0; j < nv; ++j) + indexi[j]=++k; + } + + for(int k=0; k < sx.s.length; ++k) { + triple[][] Q=new triple[4][]; + for(int i=0; i < 4 ; ++i) + Q[i]=sequence(new triple(int j) { + return (sx.s[k].P[i][j].z,sy.s[k].P[i][j].z,sz.s[k].P[i][j].z); + },4); + s.s[k]=patch(Q); + } + + if(usplinetype[0] == periodic && usplinetype[1] == periodic && + usplinetype[1] == periodic) s.ucyclic(true); + + if(vsplinetype[0] == periodic && vsplinetype[1] == periodic && + vsplinetype[1] == periodic) s.vcyclic(true); + + return s; +} + +path3 interp(path3 a, path3 b, real t) +{ + int n=size(a); + return path3(sequence(new triple(int i) {return interp(precontrol(a,i), + precontrol(b,i),t);},n), + sequence(new triple(int i) {return interp(point(a,i),point(b,i),t);},n), + sequence(new triple(int i) {return interp(postcontrol(a,i), + postcontrol(b,i),t);},n), + sequence(new bool(int i) {return straight(a,i) && straight(b,i);},n), + cyclic(a) && cyclic(b)); +} + +struct tube +{ + surface s; + path3 center; + + void operator init(path3 p, real width, int sectors=4, + real granularity=linegranularity) { + sectors += sectors % 2; // Must be even. + int h=quotient(sectors,2); + real r=0.5*width; + + void generate(path3 p) { + int n=length(p); + if(piecewisestraight(p)) { + for(int i=0; i < n; ++i) { + triple v=point(p,i); + triple u=point(p,i+1)-v; + s.append(shift(v)*align(unit(u))*scale(r,r,abs(u))*unitcylinder); + } + center=center&p; + } else { + real[] T; + path3 G; + for(int i=0; i < n; ++i) + render(subpath(p,i,i+1),granularity, + new void(path3 g, real s) { + G=G&g; + T.push(i+s); + }); + T.push(n); + T.cyclic=cyclic(p); + rmf[] rmf=rmf(p,T); + triple f(pair t) { + rmf R=rmf[round(t.x)]; + return point(G,t.x)+r*(R.r*cos(t.y)-R.s*sin(t.y)); + } + + real[] v=uniform(0,2pi,sectors); + static splinetype[] Monotonic={monotonic,monotonic,monotonic}; + static splinetype[] Periodic={periodic,periodic,periodic}; + if(T.length > 0) { + surface S=surface(f,sequence(T.length),v,Monotonic,Periodic); + s.append(S); + + // Compute center of tube: + int n=S.index.length; + if(T.cyclic) --n; + triple[] pre=new triple[n+1]; + triple[] point=new triple[n+1]; + triple[] post=new triple[n+1]; + int[] index=S.index[0]; + pre[0]=point[0]=0.5*(S.s[index[0]].P[0][0]+S.s[index[h]].P[0][0]); + for(int i=0; i < n; ++i) { + index=S.index[i]; + triple [][] P=S.s[index[0]].P; + triple [][] Q=S.s[index[h]].P; + post[i]=0.5*(P[1][0]+Q[1][0]); + pre[i+1]=0.5*(P[2][0]+Q[2][0]); + point[i+1]=0.5*(P[3][0]+Q[3][0]); + } + index=S.index[n-1]; + post[n]=0.5*(S.s[index[0]].P[3][0]+S.s[index[h]].P[3][0]); + center=center&path3(pre,point,post,array(n+1,false),T.cyclic); + } + } + } + + transform3 t=scale3(r); + bool cyclic=cyclic(p); + int begin=0; + int n=length(p); + for(int i=cyclic ? 0 : 1; i < n; ++i) + if(abs(dir(p,i,1)-dir(p,i,-1)) > sqrtEpsilon) { + generate(subpath(p,begin,i)); + s.append(shift(point(p,i))*t*align(dir(p,i,-1))*unithemisphere); + begin=i; + } + generate(subpath(p,begin,n)); + } +} |