summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/three_surface.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/base/three_surface.asy')
-rw-r--r--Build/source/utils/asymptote/base/three_surface.asy1343
1 files changed, 1343 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/base/three_surface.asy b/Build/source/utils/asymptote/base/three_surface.asy
new file mode 100644
index 00000000000..6e540c416ff
--- /dev/null
+++ b/Build/source/utils/asymptote/base/three_surface.asy
@@ -0,0 +1,1343 @@
+import bezulate;
+
+int nslice=12;
+real camerafactor=1.2;
+
+private real Fuzz=10.0*realEpsilon;
+private real nineth=1/9;
+
+struct patch {
+ triple[][] P=new triple[4][4];
+ triple[] normals; // Optionally specify 4 normal vectors at the corners.
+ pen[] colors; // Optionally specify 4 corner colors.
+ bool straight; // Patch is based on a piecewise straight external path.
+ bool3 planar; // Patch is planar.
+
+ path3 external() {
+ return
+ P[0][0]..controls P[0][1] and P[0][2]..
+ P[0][3]..controls P[1][3] and P[2][3]..
+ P[3][3]..controls P[3][2] and P[3][1]..
+ P[3][0]..controls P[2][0] and P[1][0]..cycle;
+ }
+
+ triple[] internal() {
+ return new triple[] {P[1][1],P[1][2],P[2][2],P[2][1]};
+ }
+
+ triple cornermean() {
+ return 0.25*(P[0][0]+P[0][3]+P[3][3]+P[3][0]);
+ }
+
+ triple[] corners() {return new triple[] {P[0][0],P[0][3],P[3][3],P[3][0]};}
+
+ real[] map(real f(triple)) {
+ return new real[] {f(P[0][0]),f(P[0][3]),f(P[3][3]),f(P[3][0])};
+ }
+
+ triple[] controlpoints() {
+ return new triple[] {
+ P[0][0],P[0][1],P[0][2],P[0][3],
+ P[1][0],P[1][1],P[1][2],P[1][3],
+ P[2][0],P[2][1],P[2][2],P[2][3],
+ P[3][0],P[3][1],P[3][2],P[3][3]};
+ }
+
+ triple Bu(int j, real u) {return bezier(P[0][j],P[1][j],P[2][j],P[3][j],u);}
+ triple BuP(int j, real u) {return bezierP(P[0][j],P[1][j],P[2][j],P[3][j],u);}
+ triple BuPP(int j, real u) {
+ return bezierPP(P[0][j],P[1][j],P[2][j],P[3][j],u);
+ }
+ triple BuPPP(int j) {return bezierPPP(P[0][j],P[1][j],P[2][j],P[3][j]);}
+
+ path3 uequals(real u) {
+ return straight ? Bu(0,u)--Bu(3,u) :
+ Bu(0,u)..controls Bu(1,u) and Bu(2,u)..Bu(3,u);
+ }
+
+ triple Bv(int i, real v) {return bezier(P[i][0],P[i][1],P[i][2],P[i][3],v);}
+ triple BvP(int i, real v) {return bezierP(P[i][0],P[i][1],P[i][2],P[i][3],v);}
+ triple BvPP(int i, real v) {
+ return bezierPP(P[i][0],P[i][1],P[i][2],P[i][3],v);
+ }
+ triple BvPPP(int i) {return bezierPPP(P[i][0],P[i][1],P[i][2],P[i][3]);}
+
+ path3 vequals(real v) {
+ return straight ? Bv(0,v)--Bv(3,v) :
+ Bv(0,v)..controls Bv(1,v) and Bv(2,v)..Bv(3,v);
+ }
+
+ triple point(real u, real v) {
+ return bezier(Bu(0,u),Bu(1,u),Bu(2,u),Bu(3,u),v);
+ }
+
+ // compute normal vectors for degenerate cases
+ private triple normal0(real u, real v, real epsilon) {
+ triple n=0.5*(cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
+ bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v))+
+ cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
+ bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v)));
+ return abs(n) > epsilon ? n :
+ 0.25*cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
+ bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v))+
+ 1/6*(cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
+ bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v))+
+ cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
+ bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v)))+
+ 1/12*(cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
+ bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v))+
+ cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
+ bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v)))+
+ 1/36*cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
+ bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v));
+ }
+
+ static real fuzz=1000*realEpsilon;
+
+ triple normal(real u, real v) {
+ triple n=cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
+ bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v));
+ real epsilon=fuzz*change2(P);
+ return (abs(n) > epsilon) ? n : normal0(u,v,epsilon);
+ }
+
+ triple normal00() {
+ triple n=9*cross(P[0][1]-P[0][0],P[1][0]-P[0][0]);
+ real epsilon=fuzz*change2(P);
+ return abs(n) > epsilon ? n : normal0(0,0,epsilon);
+ }
+
+ triple normal01() {
+ triple n=9*cross(P[0][3]-P[0][2],P[1][3]-P[0][3]);
+ real epsilon=fuzz*change2(P);
+ return abs(n) > epsilon ? n : normal0(0,1,epsilon);
+ }
+
+ triple normal11() {
+ triple n=9*cross(P[3][3]-P[3][2],P[3][3]-P[2][3]);
+ real epsilon=fuzz*change2(P);
+ return abs(n) > epsilon ? n : normal0(1,1,epsilon);
+ }
+
+ triple normal10() {
+ triple n=9*cross(P[3][1]-P[3][0],P[3][0]-P[2][0]);
+ real epsilon=fuzz*change2(P);
+ return abs(n) > epsilon ? n : normal0(1,0,epsilon);
+ }
+
+ pen[] colors(material m, light light=currentlight) {
+ bool nocolors=colors.length == 0;
+ if(normals.length > 0)
+ return new pen[] {light.color(normals[0],nocolors ? m : colors[0]),
+ light.color(normals[1],nocolors ? m : colors[1]),
+ light.color(normals[2],nocolors ? m : colors[2]),
+ light.color(normals[3],nocolors ? m : colors[3])};
+ if(planar) {
+ triple normal=normal(0.5,0.5);
+ return new pen[] {light.color(normal,nocolors ? m : colors[0]),
+ light.color(normal,nocolors ? m : colors[1]),
+ light.color(normal,nocolors ? m : colors[2]),
+ light.color(normal,nocolors ? m : colors[3])};
+ }
+ return new pen[] {light.color(normal00(),nocolors ? m : colors[0]),
+ light.color(normal01(),nocolors ? m : colors[1]),
+ light.color(normal11(),nocolors ? m : colors[2]),
+ light.color(normal10(),nocolors ? m : colors[3])};
+ }
+
+ triple bound(real m(real[], real), triple b) {
+ real x=m(new real[] {P[0][0].x,P[0][1].x,P[0][2].x,P[0][3].x,
+ P[1][0].x,P[1][1].x,P[1][2].x,P[1][3].x,
+ P[2][0].x,P[2][1].x,P[2][2].x,P[2][3].x,
+ P[3][0].x,P[3][1].x,P[3][2].x,P[3][3].x},b.x);
+ real y=m(new real[] {P[0][0].y,P[0][1].y,P[0][2].y,P[0][3].y,
+ P[1][0].y,P[1][1].y,P[1][2].y,P[1][3].y,
+ P[2][0].y,P[2][1].y,P[2][2].y,P[2][3].y,
+ P[3][0].y,P[3][1].y,P[3][2].y,P[3][3].y},b.y);
+ real z=m(new real[] {P[0][0].z,P[0][1].z,P[0][2].z,P[0][3].z,
+ P[1][0].z,P[1][1].z,P[1][2].z,P[1][3].z,
+ P[2][0].z,P[2][1].z,P[2][2].z,P[2][3].z,
+ P[3][0].z,P[3][1].z,P[3][2].z,P[3][3].z},b.z);
+ return (x,y,z);
+ }
+
+ triple min3,max3;
+ bool havemin3,havemax3;
+
+ void init() {
+ havemin3=false;
+ havemax3=false;
+ }
+
+ triple min(triple bound=P[0][0]) {
+ if(havemin3) return minbound(min3,bound);
+ havemin3=true;
+ return min3=bound(minbound,bound);
+ }
+
+ triple max(triple bound=P[0][0]) {
+ if(havemax3) return maxbound(max3,bound);
+ havemax3=true;
+ return max3=bound(maxbound,bound);
+ }
+
+ triple center() {
+ return 0.5*(this.min()+this.max());
+ }
+
+ pair min(projection P, pair bound=project(this.P[0][0],P.t)) {
+ return minbound(controlpoints(),P.t,bound);
+ }
+
+ pair max(projection P, pair bound=project(this.P[0][0],P.t)) {
+ return maxbound(controlpoints(),P.t,bound);
+ }
+
+ void operator init(triple[][] P, triple[] normals=new triple[],
+ pen[] colors=new pen[], bool straight=false,
+ bool3 planar=default) {
+ init();
+ this.P=copy(P);
+ if(normals.length != 0)
+ this.normals=copy(normals);
+ if(colors.length != 0)
+ this.colors=copy(colors);
+ this.planar=planar;
+ this.straight=straight;
+ }
+
+ void operator init(pair[][] P, triple plane(pair)=XYplane,
+ bool straight=false) {
+ triple[][] Q=new triple[4][];
+ for(int i=0; i < 4; ++i) {
+ pair[] Pi=P[i];
+ Q[i]=sequence(new triple(int j) {return plane(Pi[j]);},4);
+ }
+ operator init(Q,straight);
+ planar=true;
+ }
+
+ void operator init(patch s) {
+ operator init(s.P,s.normals,s.colors,s.straight);
+ }
+
+ // A constructor for a convex cyclic path3 of length <= 4 with optional
+ // arrays of 4 internal points, corner normals, and pens.
+ void operator init(path3 external, triple[] internal=new triple[],
+ triple[] normals=new triple[], pen[] colors=new pen[],
+ bool3 planar=default) {
+ init();
+
+ if(internal.length == 0 && planar == default)
+ this.planar=normal(external) != O;
+ else this.planar=planar;
+
+ int L=length(external);
+ if(L > 4 || !cyclic(external))
+ abort("cyclic path3 of length <= 4 expected");
+ if(L == 1) {
+ external=external--cycle--cycle--cycle;
+ if(colors.length > 0) colors.append(array(3,colors[0]));
+ if(normals.length > 0) normals.append(array(3,normals[0]));
+ } else if(L == 2) {
+ external=external--cycle--cycle;
+ if(colors.length > 0) colors.append(array(2,colors[0]));
+ if(normals.length > 0) normals.append(array(2,normals[0]));
+ } else if(L == 3) {
+ external=external--cycle;
+ if(colors.length > 0) colors.push(colors[0]);
+ if(normals.length > 0) normals.push(normals[0]);
+ }
+ if(normals.length != 0)
+ this.normals=copy(normals);
+ if(colors.length != 0)
+ this.colors=copy(colors);
+
+ if(internal.length == 0) {
+ straight=piecewisestraight(external);
+ internal=new triple[4];
+ for(int j=0; j < 4; ++j)
+ internal[j]=nineth*(-4*point(external,j)
+ +6*(precontrol(external,j)+postcontrol(external,j))
+ -2*(point(external,j-1)+point(external,j+1))
+ +3*(precontrol(external,j-1)+
+ postcontrol(external,j+1))
+ -point(external,j+2));
+ } else straight=false;
+
+ P=new triple[][] {
+ {point(external,0),postcontrol(external,0),precontrol(external,1),
+ point(external,1)},
+ {precontrol(external,0),internal[0],internal[1],postcontrol(external,1)},
+ {postcontrol(external,3),internal[3],internal[2],precontrol(external,2)},
+ {point(external,3),precontrol(external,3),postcontrol(external,2),
+ point(external,2)}
+ };
+ }
+
+ // A constructor for a convex quadrilateral.
+ void operator init(triple[] external, triple[] internal=new triple[],
+ triple[] normals=new triple[], pen[] colors=new pen[],
+ bool3 planar=default) {
+ init();
+
+ if(internal.length == 0 && planar == default)
+ this.planar=normal(external) != O;
+ else this.planar=planar;
+
+ if(normals.length != 0)
+ this.normals=copy(normals);
+ if(colors.length != 0)
+ this.colors=copy(colors);
+
+ if(internal.length == 0) {
+ internal=new triple[4];
+ for(int j=0; j < 4; ++j)
+ internal[j]=nineth*(4*external[j]+2*external[(j+1)%4]+
+ external[(j+2)%4]+2*external[(j+3)%4]);
+ }
+
+ straight=true;
+
+ triple delta[]=new triple[4];
+ for(int j=0; j < 4; ++j)
+ delta[j]=(external[(j+1)% 4]-external[j])/3;
+
+ P=new triple[][] {
+ {external[0],external[0]+delta[0],external[1]-delta[0],external[1]},
+ {external[0]-delta[3],internal[0],internal[1],external[1]+delta[1]},
+ {external[3]+delta[3],internal[3],internal[2],external[2]-delta[1]},
+ {external[3],external[3]-delta[2],external[2]+delta[2],external[2]}
+ };
+ }
+}
+
+patch operator * (transform3 t, patch s)
+{
+ patch S;
+ for(int i=0; i < 4; ++i) {
+ triple[] si=s.P[i];
+ triple[] Si=S.P[i];
+ for(int j=0; j < 4; ++j)
+ Si[j]=t*si[j];
+ }
+
+ transform3 t0=shiftless(t);
+ for(int i=0; i < s.normals.length; ++i)
+ S.normals[i]=t0*s.normals[i];
+
+ S.colors=copy(s.colors);
+ S.planar=s.planar;
+ S.straight=s.straight;
+ return S;
+}
+
+patch reverse(patch s)
+{
+ patch S;
+ S.P=transpose(s.P);
+ if(s.normals.length > 0)
+ S.normals=
+ new triple[] {s.normals[0],s.normals[3],s.normals[2],s.normals[1]};
+ if(s.colors.length > 0)
+ S.colors=new pen[] {s.colors[0],s.colors[3],s.colors[2],s.colors[1]};
+ S.planar=s.planar;
+ S.straight=s.straight;
+ return S;
+}
+
+struct surface {
+ patch[] s;
+
+ bool empty() {
+ return s.length == 0;
+ }
+
+ void operator init(int n) {
+ s=new patch[n];
+ }
+
+ void operator init(... patch[] s) {
+ this.s=s;
+ }
+
+ void operator init(surface s) {
+ this.s=new patch[s.s.length];
+ for(int i=0; i < s.s.length; ++i)
+ this.s[i]=patch(s.s[i]);
+ }
+
+ void operator init(triple[][][] P, triple[][] normals=new triple[][],
+ pen[][] colors=new pen[][], bool3 planar=default) {
+ s=sequence(new patch(int i) {
+ return patch(P[i],normals.length == 0 ? new triple[] : normals[i],
+ colors.length == 0 ? new pen[] : colors[i],planar);
+ },P.length);
+ }
+
+ void colors(pen[][] palette) {
+ for(int i=0; i < s.length; ++i) {
+ pen[] palettei=palette[i];
+ s[i].colors=new pen[] {palettei[0],palettei[1],palettei[2],palettei[3]};
+ }
+ }
+
+ triple[][] corners() {
+ triple[][] a=new triple[s.length][];
+ for(int i=0; i < s.length; ++i)
+ a[i]=s[i].corners();
+ return a;
+ }
+
+ real[][] map(real f(triple)) {
+ real[][] a=new real[s.length][];
+ for(int i=0; i < s.length; ++i)
+ a[i]=s[i].map(f);
+ return a;
+ }
+
+ triple[] cornermean() {
+ return sequence(new triple(int i) {return s[i].cornermean();},s.length);
+ }
+
+ // A constructor for a possibly nonconvex cyclic path in a given plane.
+ void operator init (path p, triple plane(pair)=XYplane,
+ bool checkboundary=true) {
+ if(!cyclic(p))
+ abort("cyclic path expected");
+
+ int L=length(p);
+
+ if(L > 4) {
+ for(path g : bezulate(p))
+ s.append(surface(g,plane,checkboundary).s);
+ return;
+ }
+
+ pair[][] P(path p) {
+ if(L == 1)
+ p=p--cycle--cycle--cycle;
+ else if(L == 2)
+ p=p--cycle--cycle;
+ else if(L == 3)
+ p=p--cycle;
+
+ pair[] internal=new pair[4];
+ for(int j=0; j < 4; ++j) {
+ internal[j]=nineth*(-4*point(p,j)
+ +6*(precontrol(p,j)+postcontrol(p,j))
+ -2*(point(p,j-1)+point(p,j+1))
+ +3*(precontrol(p,j-1)+postcontrol(p,j+1))
+ -point(p,j+2));
+ }
+
+ return new pair[][] {
+ {point(p,0),postcontrol(p,0),precontrol(p,1),point(p,1)},
+ {precontrol(p,0),internal[0],internal[1],postcontrol(p,1)},
+ {postcontrol(p,3),internal[3],internal[2],precontrol(p,2)},
+ {point(p,3),precontrol(p,3),postcontrol(p,2),point(p,2)}
+ };
+ }
+
+ bool straight=piecewisestraight(p);
+ if(L <= 3 && straight) {
+ s=new patch[] {patch(P(p),plane,straight)};
+ return;
+ }
+
+ // Split p along the angle bisector at t.
+ bool split(path p, real t) {
+ pair dir=dir(p,t);
+ if(dir != 0) {
+ path g=subpath(p,t,t+length(p));
+ int L=length(g);
+ pair z=point(g,0);
+ real[] T=intersections(g,z,z+I*dir);
+ for(int i=0; i < T.length; ++i) {
+ real cut=T[i];
+ if(cut > sqrtEpsilon && cut < L-sqrtEpsilon) {
+ pair w=point(g,cut);
+ if(!inside(p,0.5*(z+w),zerowinding)) continue;
+ pair delta=sqrtEpsilon*(w-z);
+ if(intersections(g,z-delta--w+delta).length != 2) continue;
+ s=surface(subpath(g,0,cut)--cycle,plane,checkboundary).s;
+ s.append(surface(subpath(g,cut,L)--cycle,plane,checkboundary).s);
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ // Ensure that all interior angles are less than 180 degrees.
+ real fuzz=1e-4;
+ int sign=sgn(windingnumber(p,inside(p,zerowinding)));
+ for(int i=0; i < L; ++i) {
+ if(sign*(conj(dir(p,i,-1))*dir(p,i,1)).y < -fuzz) {
+ if(split(p,i)) return;
+ }
+ }
+
+ pair[][] P=P(p);
+
+ if(straight) {
+ s=new patch[] {patch(P,plane,straight)};
+ return;
+ }
+
+ // Check for degeneracy.
+ pair[][] U=new pair[3][4];
+ pair[][] V=new pair[4][3];
+
+ for(int i=0; i < 3; ++i) {
+ for(int j=0; j < 4; ++j)
+ U[i][j]=P[i+1][j]-P[i][j];
+ }
+
+ for(int i=0; i < 4; ++i) {
+ for(int j=0; j < 3; ++j)
+ V[i][j]=P[i][j+1]-P[i][j];
+ }
+
+ int[] choose2={1,2,1};
+ int[] choose3={1,3,3,1};
+
+ real T[][]=new real[6][6];
+ for(int p=0; p < 6; ++p) {
+ int kstart=max(p-2,0);
+ int kstop=min(p,3);
+ real[] Tp=T[p];
+ for(int q=0; q < 6; ++q) {
+ real Tpq;
+ int jstop=min(q,3);
+ int jstart=max(q-2,0);
+ for(int k=kstart; k <= kstop; ++k) {
+ int choose3k=choose3[k];
+ for(int j=jstart; j <= jstop; ++j) {
+ int i=p-k;
+ int l=q-j;
+ Tpq += (conj(U[i][j])*V[k][l]).y*
+ choose2[i]*choose3k*choose3[j]*choose2[l];
+ }
+ }
+ Tp[q]=Tpq;
+ }
+ }
+
+ bool3 aligned=default;
+ bool degenerate=false;
+
+ for(int p=0; p < 6; ++p) {
+ for(int q=0; q < 6; ++q) {
+ if(aligned == default) {
+ if(T[p][q] < -sqrtEpsilon) aligned=true;
+ if(T[p][q] > sqrtEpsilon) aligned=false;
+ } else {
+ if((T[p][q] < -sqrtEpsilon && aligned == false) ||
+ (T[p][q] > sqrtEpsilon && aligned == true)) degenerate=true;
+ }
+ }
+ }
+
+ if(!degenerate) {
+ if(aligned == (sign >= 0))
+ s=new patch[] {patch(P,plane)};
+ return;
+ }
+
+ if(checkboundary) {
+ // Polynomial coefficients of (B_i'' B_j + B_i' B_j')/3.
+ static real[][][] fpv0={
+ {{5, -20, 30, -20, 5},
+ {-3, 24, -54, 48, -15},
+ {0, -6, 27, -36, 15},
+ {0, 0, -3, 8, -5}},
+ {{-7, 36, -66, 52, -15},
+ {3, -36, 108, -120, 45},
+ {0, 6, -45, 84, -45},
+ {0, 0, 3, -16, 15}},
+ {{2, -18, 45, -44, 15},
+ {0, 12, -63, 96, -45},
+ {0, 0, 18, -60, 45},
+ {0, 0, 0, 8, -15}},
+ {{0, 2, -9, 12, -5},
+ {0, 0, 9, -24, 15},
+ {0, 0, 0, 12, -15},
+ {0, 0, 0, 0, 5}}
+ };
+
+ // Compute one-ninth of the derivative of the Jacobian along the boundary.
+ real[][] c=array(4,array(5,0.0));
+ for(int i=0; i < 4; ++i) {
+ real[][] fpv0i=fpv0[i];
+ for(int j=0; j < 4; ++j) {
+ real[] w=fpv0i[j];
+ c[0] += w*(conj(P[0][j]-P[1][j])*P[0][i]).y; // u=0
+ c[1] += w*(conj(P[i][3])*(P[j][3]-P[j][2])).y; // v=1
+ c[2] += w*(conj(P[3][j]-P[2][j])*P[3][i]).y; // u=1
+ c[3] += w*(conj(P[i][0])*(P[j][1]-P[j][0])).y; // v=0
+ }
+ }
+
+ pair BuP(int j, real u) {
+ return bezierP(P[0][j],P[1][j],P[2][j],P[3][j],u);
+ }
+ pair BvP(int i, real v) {
+ return bezierP(P[i][0],P[i][1],P[i][2],P[i][3],v);
+ }
+ real normal(real u, real v) {
+ return (conj(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u))*
+ bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v)).y;
+ }
+
+ // Use Rolle's theorem to check for degeneracy on the boundary.
+ real M=0;
+ real cut;
+ for(int i=0; i < 4; ++i) {
+ if(!straight(p,i)) {
+ real[] ci=c[i];
+ pair[] R=quarticroots(ci[4],ci[3],ci[2],ci[1],ci[0]);
+ for(pair r : R) {
+ if(fabs(r.y) < sqrtEpsilon) {
+ real t=r.x;
+ if(0 <= t && t <= 1) {
+ real[] U={0,t,1,t};
+ real[] V={t,1,t,0};
+ real[] T={t,t,1-t,1-t};
+ real N=sign*normal(U[i],V[i]);
+ if(N < M) {
+ M=N; cut=i+T[i];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Split at the worst boundary degeneracy.
+ if(M < 0 && split(p,cut)) return;
+ }
+
+ // Split arbitrarily to resolve any remaining (internal) degeneracy.
+ checkboundary=false;
+ for(int i=0; i < L; ++i)
+ if(!straight(p,i) && split(p,i+0.5)) return;
+
+ while(true)
+ for(int i=0; i < L; ++i)
+ if(!straight(p,i) && split(p,i+unitrand())) return;
+ }
+
+ void operator init(explicit path[] g, triple plane(pair)=XYplane) {
+ for(path p : bezulate(g))
+ s.append(surface(p,plane).s);
+ }
+
+ // A general surface constructor for both planar and nonplanar 3D paths.
+ void construct(path3 external, triple[] internal=new triple[],
+ triple[] normals=new triple[], pen[] colors=new pen[],
+ bool3 planar=default) {
+ int L=length(external);
+ if(!cyclic(external)) abort("cyclic path expected");
+
+ if(L <= 3 && piecewisestraight(external)) {
+ s.push(patch(external,internal,normals,colors,planar=true));
+ return;
+ }
+
+ // Construct a surface from a possibly nonconvex planar cyclic path3.
+ if(planar != false && internal.length == 0 && normals.length == 0 &&
+ colors.length == 0) {
+ triple n=normal(external);
+ if(n != O) {
+ transform3 T=align(n);
+ external=transpose(T)*external;
+ T *= shift(0,0,point(external,0).z);
+ for(patch p : surface(path(external)).s)
+ s.push(T*p);
+ return;
+ }
+ }
+
+ if(L <= 4 || internal.length > 0) {
+ s.push(patch(external,internal,normals,colors,planar));
+ return;
+ }
+
+ // Path is not planar; split into patches.
+ real factor=1/L;
+ pen[] p;
+ triple[] n;
+ bool nocolors=colors.length == 0;
+ bool nonormals=normals.length == 0;
+ triple center;
+ for(int i=0; i < L; ++i)
+ center += point(external,i);
+ center *= factor;
+ if(!nocolors)
+ p=new pen[] {mean(colors)};
+ if(!nonormals)
+ n=new triple[] {factor*sum(normals)};
+ // Use triangles for nonplanar surfaces.
+ int step=normal(external) == O ? 1 : 2;
+ int i=0;
+ int end;
+ while((end=i+step) < L) {
+ s.push(patch(subpath(external,i,end)--center--cycle,
+ nonormals ? n : concat(normals[i:end+1],n),
+ nocolors ? p : concat(colors[i:end+1],p),planar));
+ i=end;
+ }
+ s.push(patch(subpath(external,i,L)--center--cycle,
+ nonormals ? n : concat(normals[i:],normals[0:1],n),
+ nocolors ? p : concat(colors[i:],colors[0:1],p),planar));
+ }
+
+ void operator init(path3 external, triple[] internal=new triple[],
+ triple[] normals=new triple[], pen[] colors=new pen[],
+ bool3 planar=default) {
+ s=new patch[];
+ construct(external,internal,normals,colors,planar);
+ }
+
+ void operator init(explicit path3[] external,
+ triple[][] internal=new triple[][],
+ triple[][] normals=new triple[][],
+ pen[][] colors=new pen[][], bool3 planar=default) {
+ s=new patch[];
+ for(int i=0; i < external.length; ++i)
+ construct(external[i],
+ internal.length == 0 ? new triple[] : internal[i],
+ normals.length == 0 ? new triple[] : normals[i],
+ colors.length == 0 ? new pen[] : colors[i],planar);
+ }
+
+ void push(path3 external, triple[] internal=new triple[],
+ triple[] normals=new triple[] ,pen[] colors=new pen[],
+ bool3 planar=default) {
+ s.push(patch(external,internal,normals,colors,planar));
+ }
+
+ // Construct the surface of rotation generated by rotating g
+ // from angle1 to angle2 sampled n times about the line c--c+axis.
+ // An optional surface pen color(int i, real j) may be specified
+ // to override the color at vertex(i,j).
+ void operator init(triple c, path3 g, triple axis, int n=nslice,
+ real angle1=0, real angle2= 360,
+ pen color(int i, real j)=null) {
+ axis=unit(axis);
+ real w=(angle2-angle1)/n;
+ int L=length(g);
+ s=new patch[L*n];
+ int m=-1;
+ transform3[] T=new transform3[n+1];
+ transform3 t=rotate(w,c,c+axis);
+ T[0]=rotate(angle1,c,c+axis);
+ for(int k=1; k <= n; ++k)
+ T[k]=T[k-1]*t;
+
+ for(int i=0; i < L; ++i) {
+ path3 h=subpath(g,i,i+1);
+ path3 r=reverse(h);
+ triple max=max(h);
+ triple min=min(h);
+ triple perp=perp(max-c,axis);
+ real fuzz=epsilon*max(abs(max),abs(min));
+ if(abs(perp) < fuzz)
+ perp=perp(min-c,axis);
+ perp=unit(perp);
+ triple normal=cross(axis,perp);
+ triple dir(real j) {return Cos(j)*normal-Sin(j)*perp;}
+ real j=angle1;
+ transform3 Tk=T[0];
+ triple dirj=dir(j);
+ for(int k=0; k < n; ++k, j += w) {
+ transform3 Tp=T[k+1];
+ triple dirp=dir(j+w);
+ path3 G=Tk*h{dirj}..{dirp}Tp*r{-dirp}..{-dirj}cycle;
+ Tk=Tp;
+ dirj=dirp;
+ s[++m]=color == null ? patch(G) :
+ patch(G,new pen[] {color(i,j),color(i+1,j),color(i+1,j+w),
+ color(i,j+w)});
+ }
+ }
+ }
+
+ void push(patch s) {
+ this.s.push(s);
+ }
+
+ void append(surface s) {
+ this.s.append(s.s);
+ }
+
+ void operator init(... surface[] s) {
+ for(surface S : s)
+ this.s.append(S.s);
+ }
+}
+
+surface operator * (transform3 t, surface s)
+{
+ surface S;
+ S.s=new patch[s.s.length];
+ for(int i=0; i < s.s.length; ++i)
+ S.s[i]=t*s.s[i];
+ return S;
+}
+
+private string nullsurface="null surface";
+
+triple min(surface s)
+{
+ if(s.s.length == 0)
+ abort(nullsurface);
+ triple bound=s.s[0].min();
+ for(int i=1; i < s.s.length; ++i)
+ bound=s.s[i].min(bound);
+ return bound;
+}
+
+triple max(surface s)
+{
+ if(s.s.length == 0)
+ abort(nullsurface);
+ triple bound=s.s[0].max();
+ for(int i=1; i < s.s.length; ++i)
+ bound=s.s[i].max(bound);
+ return bound;
+}
+
+pair min(surface s, projection P)
+{
+ if(s.s.length == 0)
+ abort(nullsurface);
+ pair bound=s.s[0].min(P);
+ for(int i=1; i < s.s.length; ++i)
+ bound=s.s[i].min(P,bound);
+ return bound;
+}
+
+pair max(surface s, projection P)
+{
+ if(s.s.length == 0)
+ abort(nullsurface);
+ pair bound=s.s[0].max(P);
+ for(int i=1; i < s.s.length; ++i)
+ bound=s.s[i].max(P,bound);
+ return bound;
+}
+
+private triple[] split(triple z0, triple c0, triple c1, triple z1, real t=0.5)
+{
+ triple m0=interp(z0,c0,t);
+ triple m1=interp(c0,c1,t);
+ triple m2=interp(c1,z1,t);
+ triple m3=interp(m0,m1,t);
+ triple m4=interp(m1,m2,t);
+ triple m5=interp(m3,m4,t);
+
+ return new triple[] {m0,m3,m5,m4,m2};
+}
+
+// Return the control points for a subpatch of P on [u,1] x [v,1].
+triple[][] subpatchbegin(triple[][] P, real u, real v)
+{
+ triple[] P0=P[0];
+ triple[] P1=P[1];
+ triple[] P2=P[2];
+ triple[] P3=P[3];
+
+ triple[] c0=split(P0[0],P0[1],P0[2],P0[3],v);
+ triple[] c1=split(P1[0],P1[1],P1[2],P1[3],v);
+ triple[] c2=split(P2[0],P2[1],P2[2],P2[3],v);
+ triple[] c3=split(P3[0],P3[1],P3[2],P3[3],v);
+
+ u=1.0-u;
+
+ triple[] c7=split(c3[2],c2[2],c1[2],c0[2],u);
+ triple[] c8=split(c3[3],c2[3],c1[3],c0[3],u);
+ triple[] c9=split(c3[4],c2[4],c1[4],c0[4],u);
+ triple[] c10=split(P3[3],P2[3],P1[3],P0[3],u);
+
+ return new triple[][] {{c7[2],c8[2],c9[2],c10[2]},
+ {c7[1],c8[1],c9[1],c10[1]},
+ {c7[0],c8[0],c9[0],c10[0]},
+ {c3[2],c3[3],c3[4],P3[3]}};
+}
+
+// Return the control points for a subpatch of P on [0,u] x [0,v].
+triple[][] subpatchend(triple[][] P, real u, real v)
+{
+ triple[] P0=P[0];
+ triple[] P1=P[1];
+ triple[] P2=P[2];
+ triple[] P3=P[3];
+
+ triple[] c0=split(P0[0],P0[1],P0[2],P0[3],v);
+ triple[] c1=split(P1[0],P1[1],P1[2],P1[3],v);
+ triple[] c2=split(P2[0],P2[1],P2[2],P2[3],v);
+ triple[] c3=split(P3[0],P3[1],P3[2],P3[3],v);
+
+ u=1.0-u;
+
+ triple[] c4=split(P3[0],P2[0],P1[0],P0[0],u);
+ triple[] c5=split(c3[0],c2[0],c1[0],c0[0],u);
+ triple[] c6=split(c3[1],c2[1],c1[1],c0[1],u);
+ triple[] c7=split(c3[2],c2[2],c1[2],c0[2],u);
+
+ return new triple[][] {
+ {P0[0],c0[0],c0[1],c0[2]},
+ {c4[4],c5[4],c6[4],c7[4]},
+ {c4[3],c5[3],c6[3],c7[3]},
+ {c4[2],c5[2],c6[2],c7[2]}};
+}
+
+patch subpatch(patch s, real ua, real va, real ub, real vb)
+{
+ assert(ua >= 0 && va >= 0 && ub <= 1 && vb <= 1 && ua < ub && va < vb);
+ return patch(subpatchbegin(subpatchend(s.P,ub,vb),ua/ub,va/vb),
+ s.straight,s.planar);
+}
+
+triple point(patch s, real u, real v)
+{
+ return s.point(u,v);
+}
+
+void draw3D(frame f, patch s, material m, light light=currentlight)
+{
+ if(s.colors.length > 0)
+ m=mean(s.colors);
+ bool lighton=light.on();
+ if(!lighton && !invisible((pen) m))
+ m=emissive(m);
+ real granularity=m.granularity >= 0 ? m.granularity : defaultgranularity;
+ draw(f,s.P,s.straight,m.p,m.opacity,m.shininess,granularity,
+ s.planar ? s.normal(0.5,0.5) : O,lighton,s.colors);
+}
+
+void tensorshade(transform t=identity(), frame f, patch s,
+ material m, light light=currentlight, projection P)
+{
+ tensorshade(f,box(t*s.min(P),t*s.max(P)),m.diffuse(),
+ s.colors(m,light),t*project(s.external(),P,1),
+ t*project(s.internal(),P));
+}
+
+restricted pen[] nullpens={nullpen};
+nullpens.cyclic(true);
+
+void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
+ material[] surfacepen, pen[] meshpen=nullpens,
+ light light=currentlight, light meshlight=light,
+ projection P=currentprojection)
+{
+ if(is3D()) {
+ for(int i=0; i < s.s.length; ++i)
+ draw3D(f,s.s[i],surfacepen[i],light);
+ pen modifiers=thin()+squarecap;
+ for(int k=0; k < s.s.length; ++k) {
+ pen meshpen=meshpen[k];
+ if(!invisible(meshpen)) {
+ meshpen=modifiers+meshpen;
+ real step=nu == 0 ? 0 : 1/nu;
+ for(int i=0; i <= nu; ++i)
+ draw(f,s.s[k].uequals(i*step),meshpen,meshlight);
+ step=nv == 0 ? 0 : 1/nv;
+ for(int j=0; j <= nv; ++j)
+ draw(f,s.s[k].vequals(j*step),meshpen,meshlight);
+ }
+ }
+ } else {
+ begingroup(f);
+ // Sort patches by mean distance from camera
+ triple camera=P.camera;
+ if(P.infinity) {
+ triple m=min(s);
+ triple M=max(s);
+ camera=P.target+camerafactor*(abs(M-m)+abs(m-P.target))*unit(P.vector());
+ }
+
+ real[][] depth=new real[s.s.length][];
+ for(int i=0; i < depth.length; ++i)
+ depth[i]=new real[] {abs(camera-s.s[i].cornermean()),i};
+
+ depth=sort(depth);
+
+ light.T=shiftless(P.modelview());
+
+ // Draw from farthest to nearest
+ while(depth.length > 0) {
+ real[] a=depth.pop();
+ int i=round(a[1]);
+ tensorshade(t,f,s.s[i],surfacepen[i],light,P);
+ pen meshpen=meshpen[i];
+ if(!invisible(meshpen))
+ draw(f,t*project(s.s[i].external(),P),meshpen);
+ }
+ endgroup(f);
+ }
+}
+
+void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
+ material surfacepen=currentpen, pen meshpen=nullpen,
+ light light=currentlight, light meshlight=light,
+ projection P=currentprojection)
+{
+ material[] surfacepen={surfacepen};
+ pen[] meshpen={meshpen};
+ surfacepen.cyclic(true);
+ meshpen.cyclic(true);
+ draw(t,f,s,nu,nv,surfacepen,meshpen,light,meshlight,P);
+}
+
+void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
+ material[] surfacepen, pen[] meshpen=nullpens,
+ light light=currentlight, light meshlight=light)
+{
+ if(s.empty()) return;
+
+ pic.add(new void(frame f, transform3 t, picture pic, projection P) {
+ surface S=t*s;
+ if(is3D()) {
+ draw(f,S,nu,nv,surfacepen,meshpen,light,meshlight);
+ } else if(pic != null)
+ pic.add(new void(frame f, transform T) {
+ draw(T,f,S,nu,nv,surfacepen,meshpen,light,meshlight,P);
+ },true);
+ if(pic != null) {
+ pic.addPoint(min(S,P));
+ pic.addPoint(max(S,P));
+ }
+ },true);
+ pic.addPoint(min(s));
+ pic.addPoint(max(s));
+
+ pen modifiers;
+ if(is3D()) modifiers=thin()+squarecap;
+ for(int k=0; k < s.s.length; ++k) {
+ pen meshpen=meshpen[k];
+ if(!invisible(meshpen)) {
+ meshpen=modifiers+meshpen;
+ real step=nu == 0 ? 0 : 1/nu;
+ for(int i=0; i <= nu; ++i)
+ addPath(pic,s.s[k].uequals(i*step),meshpen);
+ step=nv == 0 ? 0 : 1/nv;
+ for(int j=0; j <= nv; ++j)
+ addPath(pic,s.s[k].vequals(j*step),meshpen);
+ }
+ }
+}
+
+void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
+ material surfacepen=currentpen, pen meshpen=nullpen,
+ light light=currentlight, light meshlight=light)
+{
+ material[] surfacepen={surfacepen};
+ pen[] meshpen={meshpen};
+ surfacepen.cyclic(true);
+ meshpen.cyclic(true);
+ draw(pic,s,nu,nv,surfacepen,meshpen,light,meshlight);
+}
+
+void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
+ material[] surfacepen, pen meshpen,
+ light light=currentlight, light meshlight=light)
+{
+ pen[] meshpen={meshpen};
+ meshpen.cyclic(true);
+ draw(pic,s,nu,nv,surfacepen,meshpen,light,meshlight);
+}
+
+surface extrude(path p, triple axis=Z)
+{
+ static patch[] allocate;
+ path3 G=path3(p);
+ path3 G2=shift(axis)*G;
+ return surface(...sequence(new patch(int i) {
+ return patch(subpath(G,i,i+1)--subpath(G2,i+1,i)--cycle);
+ },length(G)));
+}
+
+surface extrude(explicit path[] p, triple axis=Z)
+{
+ surface s;
+ for(path g:p)
+ s.append(extrude(g,axis));
+ return s;
+}
+
+triple rectify(triple dir)
+{
+ real scale=max(abs(dir.x),abs(dir.y),abs(dir.z));
+ if(scale != 0) dir *= 0.5/scale;
+ dir += (0.5,0.5,0.5);
+ return dir;
+}
+
+path3[] align(path3[] g, transform3 t=identity4, triple position,
+ triple align, pen p=currentpen)
+{
+ if(determinant(t) == 0) return g;
+ triple m=min(g);
+ triple dir=rectify(inverse(t)*-align);
+ triple a=m+realmult(dir,max(g)-m);
+ return shift(position+align*labelmargin(p))*t*shift(-a)*g;
+}
+
+surface align(surface s, transform3 t=identity4, triple position,
+ triple align, pen p=currentpen)
+{
+ if(determinant(t) == 0) return s;
+ triple m=min(s);
+ triple dir=rectify(inverse(t)*-align);
+ triple a=m+realmult(dir,max(s)-m);
+ return shift(position+align*labelmargin(p))*t*shift(-a)*s;
+}
+
+surface surface(Label L, triple position=O)
+{
+ surface s=surface(texpath(L));
+ return L.align.is3D ? align(s,L.T3,position,L.align.dir3,L.p) :
+ shift(position)*L.T3*s;
+}
+
+path[] path(Label L, pair z=0, projection P)
+{
+ path[] g=texpath(L);
+ if(L.defaulttransform3) {
+ return L.align.is3D ? align(g,z,project(L.align.dir3,P)-project(O,P),L.p) :
+ shift(z)*g;
+ } else {
+ path3[] G=path3(g);
+ return L.align.is3D ? shift(z)*project(align(G,L.T3,O,L.align.dir3,L.p),P) :
+ shift(z)*project(L.T3*G,P);
+ }
+}
+
+void label(frame f, Label L, triple position, align align=NoAlign,
+ pen p=currentpen, light light=nolight,
+ projection P=currentprojection)
+{
+ Label L=L.copy();
+ L.align(align);
+ L.p(p);
+ if(L.defaulttransform3)
+ L.T3=transform3(P);
+ if(is3D()) {
+ for(patch S : surface(L,position).s)
+ draw3D(f,S,L.p,light);
+ } else {
+ if(L.filltype == NoFill)
+ fill(f,path(L,project(position,P.t),P),
+ light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ else {
+ frame d;
+ fill(d,path(L,project(position,P.t),P),
+ light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ add(f,d,L.filltype);
+ }
+ }
+}
+
+void label(picture pic=currentpicture, Label L, triple position,
+ align align=NoAlign, pen p=currentpen, light light=nolight)
+{
+ Label L=L.copy();
+ L.align(align);
+ L.p(p);
+ L.position(0);
+ path[] g=texpath(L);
+ if(g.length == 0 || (g.length == 1 && size(g[0]) == 0)) return;
+ pic.add(new void(frame f, transform3 t, picture pic, projection P) {
+ triple v=t*position;
+ if(L.defaulttransform3)
+ L.T3=transform3(P);
+ if(is3D())
+ for(patch S : surface(L,v).s)
+ draw3D(f,S,L.p,light);
+ if(pic != null) {
+ if(L.filltype == NoFill)
+ fill(project(v,P.t),pic,path(L,P),
+ light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ else {
+ picture d;
+ fill(project(v,P.t),d,path(L,P),
+ light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ add(pic,d,L.filltype);
+ }
+ }
+ },!L.defaulttransform3);
+
+ if(L.defaulttransform3)
+ L.T3=transform3(currentprojection);
+ path3[] G=path3(g);
+ G=L.align.is3D ? align(G,L.T3,O,L.align.dir3,L.p) : L.T3*G;
+ pic.addBox(position,position,min(G),max(G));
+}
+
+void label(picture pic=currentpicture, Label L, path3 g, align align=NoAlign,
+ pen p=currentpen)
+{
+ Label L=Label(L,align,p);
+ bool relative=L.position.relative;
+ real position=L.position.position.x;
+ pair Align=L.align.dir;
+ bool alignrelative=L.align.relative;
+ if(L.defaultposition) {relative=true; position=0.5;}
+ if(relative) position=reltime(g,position);
+ if(L.align.default) {
+ alignrelative=true;
+ Align=position <= 0 ? S : position >= length(g) ? N : E;
+ }
+ label(pic,L,point(g,position),
+ alignrelative && determinant(currentprojection.t) != 0 ?
+ -Align*project(dir(g,position),currentprojection.t)*I : L.align);
+}
+
+surface extrude(Label L, triple axis=Z)
+{
+ Label L=L.copy();
+ path[] g=texpath(L);
+ surface S=extrude(g,axis);
+ surface s=surface(g);
+ S.append(s);
+ S.append(shift(axis)*s);
+ return S;
+}
+
+restricted surface nullsurface;
+
+private real a=4/3*(sqrt(2)-1);
+private transform3 t=rotate(90,O,Z);
+private transform3 t2=t*t;
+private transform3 t3=t2*t;
+private transform3 i=xscale3(-1)*zscale3(-1);
+
+restricted patch octant1=patch(X{Z}..{-X}Z..Z{Y}..{-Z}Y{X}..{-Y}cycle,
+ new triple[] {(1,a,a),(a,a^2,1),(a^2,a,1),
+ (a,1,a)});
+
+restricted surface unithemisphere=surface(octant1,t*octant1,t2*octant1,
+ t3*octant1);
+restricted surface unitsphere=surface(octant1,t*octant1,t2*octant1,t3*octant1,
+ i*octant1,i*t*octant1,i*t2*octant1,
+ i*t3*octant1);
+
+restricted patch unitfrustum(real t1, real t2)
+{
+ real s1=interp(t1,t2,1/3);
+ real s2=interp(t1,t2,2/3);
+ return patch(interp(Z,X,t2)--interp(Z,X,t1){Y}..{-X}interp(Z,Y,t1)--
+ interp(Z,Y,t2){X}..{-Y}cycle,
+ new triple[] {(s2,s2*a,1-s2),(s1,s1*a,1-s1),(s1*a,s1,1-s1),
+ (s2*a,s2,1-s2)});
+}
+
+// Return a unitcone constructed from n frusta (the final one being degenerate)
+surface unitcone(int n=6)
+{
+ surface unitcone;
+ unitcone.s=new patch[4*n];
+ real r=1/3;
+ for(int i=0; i < n; ++i) {
+ patch s=unitfrustum(i < n-1 ? r^(i+1) : 0,r^i);
+ unitcone.s[i]=s;
+ unitcone.s[n+i]=t*s;
+ unitcone.s[2n+i]=t2*s;
+ unitcone.s[3n+i]=t3*s;
+ }
+ return unitcone;
+}
+
+restricted surface unitcone=unitcone();
+restricted surface unitsolidcone=surface(patch(unitcircle3)...unitcone.s);
+
+private patch unitcylinder1=patch(X--X+Z{Y}..{-X}Y+Z--Y{X}..{-Y}cycle);
+
+restricted surface unitcylinder=surface(unitcylinder1,t*unitcylinder1,
+ t2*unitcylinder1,t3*unitcylinder1);
+
+private patch unitplane=patch(new triple[] {O,X,X+Y,Y});
+restricted surface unitcube=surface(reverse(unitplane),
+ rotate(90,O,X)*unitplane,
+ rotate(-90,O,Y)*unitplane,
+ shift(Z)*unitplane,
+ rotate(90,X,X+Y)*unitplane,
+ rotate(-90,Y,X+Y)*unitplane);
+restricted surface unitplane=surface(unitplane);
+restricted surface unitdisk=surface(unitcircle3);
+
+void dot(frame f, triple v, material p=currentpen,
+ light light=nolight, projection P=currentprojection)
+{
+ pen q=(pen) p;
+ if(is3D()) {
+ material m=material(p,p.granularity >= 0 ? p.granularity : dotgranularity);
+ for(patch s : unitsphere.s)
+ draw3D(f,shift(v)*scale3(0.5*linewidth(dotsize(q)+q))*s,m,light);
+ } else dot(f,project(v,P.t),q);
+}
+
+void dot(frame f, path3 g, material p=currentpen,
+ projection P=currentprojection)
+{
+ for(int i=0; i <= length(g); ++i) dot(f,point(g,i),p,P);
+}
+
+void dot(frame f, path3[] g, material p=currentpen,
+ projection P=currentprojection)
+{
+ for(int i=0; i < g.length; ++i) dot(f,g[i],p,P);
+}
+
+void dot(picture pic=currentpicture, triple v, material p=currentpen,
+ light light=nolight)
+{
+ pen q=(pen) p;
+ real size=0.5*linewidth(dotsize(q)+q);
+ pic.add(new void(frame f, transform3 t, picture pic, projection P) {
+ if(is3D()) {
+ material m=material(p,p.granularity >= 0 ? p.granularity :
+ dotgranularity);
+ for(patch s : unitsphere.s)
+ draw3D(f,shift(t*v)*scale3(size)*s,m,light);
+ }
+ if(pic != null)
+ dot(pic,project(t*v,P.t),q);
+ },true);
+ triple R=size*(1,1,1);
+ pic.addBox(v,v,-R,R);
+}
+
+void dot(picture pic=currentpicture, triple[] v, material p=currentpen)
+{
+ for(int i=0; i < v.length; ++i) dot(pic,v[i],p);
+}
+
+void dot(picture pic=currentpicture, explicit path3 g, material p=currentpen)
+{
+ for(int i=0; i <= length(g); ++i) dot(pic,point(g,i),p);
+}
+
+void dot(picture pic=currentpicture, path3[] g, material p=currentpen)
+{
+ for(int i=0; i < g.length; ++i) dot(pic,g[i],p);
+}
+
+void dot(picture pic=currentpicture, Label L, triple v, align align=NoAlign,
+ string format=defaultformat, material p=currentpen)
+{
+ Label L=L.copy();
+ if(L.s == "") {
+ if(format == "") format=defaultformat;
+ L.s="("+format(format,v.x)+","+format(format,v.y)+","+
+ format(format,v.z)+")";
+ }
+ L.align(align,E);
+ L.p((pen) p);
+ dot(pic,v,p);
+ label(pic,L,v);
+}