summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/geometry.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/base/geometry.asy')
-rw-r--r--Build/source/utils/asymptote/base/geometry.asy1518
1 files changed, 772 insertions, 746 deletions
diff --git a/Build/source/utils/asymptote/base/geometry.asy b/Build/source/utils/asymptote/base/geometry.asy
index e87dc00550c..bbbc823fc54 100644
--- a/Build/source/utils/asymptote/base/geometry.asy
+++ b/Build/source/utils/asymptote/base/geometry.asy
@@ -30,12 +30,22 @@
import math;
import markers;
+
+// A rotation in the direction dir limited to [-90,90]
+// This is useful for rotating text along a line in the direction dir.
+private transform rotate(explicit pair dir)
+{
+ real angle=degrees(dir);
+ if(angle > 90 && angle < 270) angle -= 180;
+ return rotate(angle);
+}
+
// *=======================================================*
// *........................HEADER.........................*
-/*<asyxml><variable type = "real" signature = "epsgeo"><code></asyxml>*/
+/*<asyxml><variable type="real" signature="epsgeo"><code></asyxml>*/
real epsgeo = 10 * sqrt(realEpsilon);/*<asyxml></code><documentation>Variable used in the approximate calculations.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "void" signature = "addMargins(picture, real, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="addMargins(picture,real,real,real,real)"><code></asyxml>*/
void addMargins(picture pic = currentpicture,
real lmargin = 0, real bmargin = 0,
real rmargin = lmargin, real tmargin = bmargin,
@@ -67,13 +77,13 @@ real[] approximate(real[] T)
return map(approximate, T);
}
-/*<asyxml><function type = "real" signature = "binomial(real, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="binomial(real,real)"><code></asyxml>*/
real binomial(real n, real k)
{/*<asyxml></code><documentation>Return n!/((n - k)!*k!)</documentation></function></asyxml>*/
return gamma(n + 1)/(gamma(n - k + 1) * gamma(k + 1));
}
-/*<asyxml><function type = "real" signature = "rf(real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="rf(real,real,real)"><code></asyxml>*/
real rf(real x, real y, real z)
{/*<asyxml></code><documentation>Computes Carlson's elliptic integral of the first kind.
x, y, and z must be non negative, and at most one can be zero.</documentation></function></asyxml>*/
@@ -109,7 +119,7 @@ real rf(real x, real y, real z)
return (1.0 + (C1 * e2 - C2 - C3 * e3) * e2 + C4 * e3)/sqrt(ave);
}
-/*<asyxml><function type = "real" signature = "rd(real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="rd(real,real,real)"><code></asyxml>*/
real rd(real x, real y, real z)
{/*<asyxml></code><documentation>Computes Carlson's elliptic integral of the second kind.
x and y must be positive, and at most one can be zero.
@@ -156,7 +166,7 @@ real rd(real x, real y, real z)
+delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave));
}
-/*<asyxml><function type = "real" signature = "elle(real, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="elle(real,real)"><code></asyxml>*/
real elle(real phi, real k)
{/*<asyxml></code><documentation>Legendre elliptic integral of the 2nd kind,
evaluated using Carlson's functions RD and RF.
@@ -185,7 +195,7 @@ real elle(real phi, real k)
return result;
}
-/*<asyxml><function type = "pair[]" signature = "intersectionpoints(pair, pair, real, real, real, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="pair[]" signature="intersectionpoints(pair,pair,real,real,real,real,real,real)"><code></asyxml>*/
pair[] intersectionpoints(pair A, pair B,
real a, real b, real c, real d, real f, real g)
{/*<asyxml></code><documentation>Intersection points with the line (AB) and the quadric curve
@@ -215,7 +225,7 @@ pair[] intersectionpoints(pair A, pair B,
return op;
}
-/*<asyxml><function type = "pair[]" signature = "intersectionpoints(pair, pair, real[])"><code></asyxml>*/
+/*<asyxml><function type="pair[]" signature="intersectionpoints(pair,pair,real[])"><code></asyxml>*/
pair[] intersectionpoints(pair A, pair B, real[] equation)
{/*<asyxml></code><documentation>Return the intersection points of the line AB with
the conic whose an equation is
@@ -241,24 +251,24 @@ typedef real dot(pair, pair);/*<asyxml></code><documentation>Function type to ca
/*<asyxml><typedef type = "polar" return = "pair" params = "real, real"><code></asyxml>*/
typedef pair polar(real, real);/*<asyxml></code><documentation>Function type to calculate the coordinates from the polar coordinates.</documentation></typedef></asyxml>*/
-/*<asyxml><struct signature = "coordsys"><code></asyxml>*/
+/*<asyxml><struct signature="coordsys"><code></asyxml>*/
struct coordsys
{/*<asyxml></code><documentation>This structure represents a coordinate system in the plane.</documentation></asyxml>*/
- /*<asyxml><method type = "pair" signature = "relativetodefault(pair)"><code></asyxml>*/
+ /*<asyxml><method type = "pair" signature="relativetodefault(pair)"><code></asyxml>*/
restricted convert relativetodefault = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to this coordinate system to
the pair relatively to the default coordinate system.</documentation></method></asyxml>*/
- /*<asyxml><method type = "pair" signature = "defaulttorelativet(pair)"><code></asyxml>*/
+ /*<asyxml><method type = "pair" signature="defaulttorelativet(pair)"><code></asyxml>*/
restricted convert defaulttorelative = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to the default coordinate system to
the pair relatively to this coordinate system.</documentation></method></asyxml>*/
- /*<asyxml><method type = "real" signature = "dot(pair, pair)"><code></asyxml>*/
+ /*<asyxml><method type = "real" signature="dot(pair,pair)"><code></asyxml>*/
restricted dot dot = new real(pair m, pair n){return dot(m, n);};/*<asyxml></code><documentation>Return the dot product of this coordinate system.</documentation></method></asyxml>*/
- /*<asyxml><method type = "real" signature = "abs(pair)"><code></asyxml>*/
+ /*<asyxml><method type = "real" signature="abs(pair)"><code></asyxml>*/
restricted abs abs = new real(pair m){return abs(m);};/*<asyxml></code><documentation>Return the modulus of a pair in this coordinate system.</documentation></method></asyxml>*/
- /*<asyxml><method type = "pair" signature = "polar(real, real)"><code></asyxml>*/
+ /*<asyxml><method type = "pair" signature="polar(real,real)"><code></asyxml>*/
restricted polar polar = new pair(real r, real a){return (r * cos(a), r * sin(a));};/*<asyxml></code><documentation>Polar coordinates routine of this coordinate system.</documentation></method></asyxml>*/
- /*<asyxml><property type = "pair" signature = "O, i, j"><code></asyxml>*/
+ /*<asyxml><property type = "pair" signature="O,i,j"><code></asyxml>*/
restricted pair O = (0, 0), i = (1, 0), j = (0, 1);/*<asyxml></code><documentation>Origin and units vector.</documentation></property></asyxml>*/
- /*<asyxml><method type = "void" signature = "init(convert, convert, polar, dot)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(convert,convert,polar,dot)"><code></asyxml>*/
void init(convert rtd, convert dtr,
polar polar, dot dot)
{/*<asyxml></code><documentation>The default constructor of the coordinate system.</documentation></method></asyxml>*/
@@ -273,13 +283,13 @@ struct coordsys
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><operator type = "bool" signature = "==(coordsys, coordsys)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="==(coordsys,coordsys)"><code></asyxml>*/
bool operator ==(coordsys c1, coordsys c2)
{/*<asyxml></code><documentation>Return true iff the coordinate system have the same origin and units vector.</documentation></operator></asyxml>*/
return c1.O == c2.O && c1.i == c2.i && c1.j == c2.j;
}
-/*<asyxml><function type = "coordsys" signature = "cartesiansystem(pair, pair, pair)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="cartesiansystem(pair,pair,pair)"><code></asyxml>*/
coordsys cartesiansystem(pair O = (0, 0), pair i, pair j)
{/*<asyxml></code><documentation>Return the Cartesian coordinate system (O, i, j).</documentation></function></asyxml>*/
coordsys R;
@@ -322,7 +332,7 @@ coordsys cartesiansystem(pair O = (0, 0), pair i, pair j)
}
-/*<asyxml><function type = "void" signature = "show(picture, Label, Label, Label, coordsys, pen, pen, pen, pen, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="show(picture,Label,Label,Label,coordsys,pen,pen,pen,pen,pen)"><code></asyxml>*/
void show(picture pic = currentpicture, Label lo = "$O$",
Label li = "$\vec{\imath}$",
Label lj = "$\vec{\jmath}$",
@@ -347,7 +357,7 @@ void show(picture pic = currentpicture, Label lo = "$O$",
label(pic, lo, O);
}
-/*<asyxml><operator type = "pair" signature = "/(pair, coordsys)"><code></asyxml>*/
+/*<asyxml><operator type = "pair" signature="/(pair,coordsys)"><code></asyxml>*/
pair operator /(pair p, coordsys R)
{/*<asyxml></code><documentation>Return the xy - coordinates of 'p' relatively to
the coordinate system 'R'.
@@ -355,7 +365,7 @@ pair operator /(pair p, coordsys R)
return R.defaulttorelative(p);
}
-/*<asyxml><operator type = "pair" signature = "*(coordsys, pair)"><code></asyxml>*/
+/*<asyxml><operator type = "pair" signature="*(coordsys,pair)"><code></asyxml>*/
pair operator *(coordsys R, pair p)
{/*<asyxml></code><documentation>Return the coordinates of 'p' given in the
xy - coordinates 'R'.
@@ -363,7 +373,7 @@ pair operator *(coordsys R, pair p)
return R.relativetodefault(p);
}
-/*<asyxml><operator type = "path" signature = "*(coordsys, path)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="*(coordsys,path)"><code></asyxml>*/
path operator *(coordsys R, path g)
{/*<asyxml></code><documentation>Return the reconstructed path applying R * pair to each node, pre and post control point of 'g'.</documentation></operator></asyxml>*/
guide og = R * point(g, 0);
@@ -381,8 +391,8 @@ path operator *(coordsys R, path g)
return og;
}
-/*<asyxml><operator type = "coordsys" signature = "*(transform, coordsys)"><code></asyxml>*/
-coordsys operator *(transform t, coordsys R)
+/*<asyxml><operator type = "coordsys" signature="*(transform,coordsys)"><code></asyxml>*/
+coordsys operator *(transform t,coordsys R)
{/*<asyxml></code><documentation>Provide transform * coordsys.
Note that shiftless(t) is applied to R.i and R.j.</documentation></operator></asyxml>*/
coordsys oc;
@@ -390,21 +400,21 @@ coordsys operator *(transform t, coordsys R)
return oc;
}
-/*<asyxml><constant type = "coordsys" signature = "defaultcoordsys"><code></asyxml>*/
+/*<asyxml><constant type = "coordsys" signature="defaultcoordsys"><code></asyxml>*/
restricted coordsys defaultcoordsys = cartesiansystem(0, (1, 0), (0, 1));/*<asyxml></code><documentation>One can always refer to the default coordinate system using this constant.</documentation></constant></asyxml>*/
-/*<asyxml><variable type = "coordsys" signature = "currentcoordsys"><code></asyxml>*/
+/*<asyxml><variable type="coordsys" signature="currentcoordsys"><code></asyxml>*/
coordsys currentcoordsys = defaultcoordsys;/*<asyxml></code><documentation>The coordinate system used by default.</documentation></variable></asyxml>*/
-/*<asyxml><struct signature = "point"><code></asyxml>*/
+/*<asyxml><struct signature="point"><code></asyxml>*/
struct point
{/*<asyxml></code><documentation>This structure replaces the pair to embed its coordinate system.
For example, if 'P = point(cartesiansystem((1, 2), i, j), (0, 0))',
P is equal to the pair (1, 2).</documentation></asyxml>*/
- /*<asyxml><property type = "coordsys" signature = "coordsys"><code></asyxml>*/
- coordsys coordsys;/*<asyxml></code><documentation>The coordinate system of this point.</documentation></property><property type = "pair" signature = "coordinates"><code></asyxml>*/
- restricted pair coordinates;/*<asyxml></code><documentation>The coordinates of this point relatively to the coordinate system 'coordsys'.</documentation></property><property type = "real" signature = "x, y"><code></asyxml>*/
+ /*<asyxml><property type = "coordsys" signature="coordsys"><code></asyxml>*/
+ coordsys coordsys;/*<asyxml></code><documentation>The coordinate system of this point.</documentation></property><property type = "pair" signature="coordinates"><code></asyxml>*/
+ restricted pair coordinates;/*<asyxml></code><documentation>The coordinates of this point relatively to the coordinate system 'coordsys'.</documentation></property><property type = "real" signature="x, y"><code></asyxml>*/
restricted real x, y;/*<asyxml></code><documentation>The xpart and the ypart of 'coordinates'.</documentation></property></asyxml>*/
- /*<asyxml><method type = "" signature = "init(coordsys, pair)"><code><property type = "real" signature = "m"><code></asyxml>*/
+ /*<asyxml><method type = "" signature="init(coordsys,pair)"><code><property type = "real" signature="m"><code></asyxml>*/
real m = 1;/*<asyxml></code><documentation>Used to cast mass<->point.</documentation></property></asyxml>*/
void init(coordsys R, pair coordinates, real mass)
{/*<asyxml></code><documentation>The constructor.</documentation></method></asyxml>*/
@@ -416,7 +426,7 @@ struct point
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "point" signature = "point(coordsys, pair, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(coordsys,pair,real)"><code></asyxml>*/
point point(coordsys R, pair p, real m = 1)
{/*<asyxml></code><documentation>Return the point which has the coodinates 'p' in the
coordinate system 'R' and the mass 'm'.</documentation></function></asyxml>*/
@@ -425,7 +435,7 @@ point point(coordsys R, pair p, real m = 1)
return op;
}
-/*<asyxml><function type = "point" signature = "point(explicit pair, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit pair,real)"><code></asyxml>*/
point point(explicit pair p, real m)
{/*<asyxml></code><documentation>Return the point which has the coodinates 'p' in the current
coordinate system and the mass 'm'.</documentation></function></asyxml>*/
@@ -434,7 +444,7 @@ point point(explicit pair p, real m)
return op;
}
-/*<asyxml><function type = "point" signature = "point(coordsys, explicit point, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(coordsys,explicit point,real)"><code></asyxml>*/
point point(coordsys R, explicit point M, real m = M.m)
{/*<asyxml></code><documentation>Return the point of 'R' which has the coordinates of 'M' and the mass 'm'.
Do not confuse this routine with the further routine 'changecoordsys'.</documentation></function></asyxml>*/
@@ -443,7 +453,7 @@ point point(coordsys R, explicit point M, real m = M.m)
return op;
}
-/*<asyxml><function type = "point" signature = "changecoordsys(coordsys, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="changecoordsys(coordsys,point)"><code></asyxml>*/
point changecoordsys(coordsys R, point M)
{/*<asyxml></code><documentation>Return the point 'M' in the coordinate system 'coordsys'.
In other words, the returned point marks the same plot as 'M' does.</documentation></function></asyxml>*/
@@ -453,13 +463,13 @@ point changecoordsys(coordsys R, point M)
return op;
}
-/*<asyxml><function type = "pair" signature = "pair coordinates(point)"><code></asyxml>*/
+/*<asyxml><function type="pair" signature="pair coordinates(point)"><code></asyxml>*/
pair coordinates(point M)
{/*<asyxml></code><documentation>Return the coordinates of 'M' in its coordinate system.</documentation></function></asyxml>*/
return M.coordinates;
}
-/*<asyxml><function type = "bool" signature = "bool samecoordsys(bool...point[])"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="bool samecoordsys(bool...point[])"><code></asyxml>*/
bool samecoordsys(bool warn = true ... point[] M)
{/*<asyxml></code><documentation>Return true iff all the points have the same coordinate system.
If 'warn' is true and the coordinate systems are different, a warning is sent.</documentation></function></asyxml>*/
@@ -477,7 +487,7 @@ The operation will be done relative to the default coordinate system.");
return ret;
}
-/*<asyxml><function type = "point[]" signature = "standardizecoordsys(coordsys, bool...point[])"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="standardizecoordsys(coordsys,bool...point[])"><code></asyxml>*/
point[] standardizecoordsys(coordsys R = currentcoordsys,
bool warn = true ... point[] M)
{/*<asyxml></code><documentation>Return the points with the same coordinate system 'R'.
@@ -490,13 +500,13 @@ point[] standardizecoordsys(coordsys R = currentcoordsys,
return op;
}
-/*<asyxml><operator type = "pair" signature = "cast(point)"><code></asyxml>*/
+/*<asyxml><operator type = "pair" signature="cast(point)"><code></asyxml>*/
pair operator cast(point P)
{/*<asyxml></code><documentation>Cast point to pair.</documentation></operator></asyxml>*/
return P.coordsys.relativetodefault(P.coordinates);
}
-/*<asyxml><operator type = "pair[]" signature = "cast(point[])"><code></asyxml>*/
+/*<asyxml><operator type = "pair[]" signature="cast(point[])"><code></asyxml>*/
pair[] operator cast(point[] P)
{/*<asyxml></code><documentation>Cast point[] to pair[].</documentation></operator></asyxml>*/
pair[] op;
@@ -506,14 +516,14 @@ pair[] operator cast(point[] P)
return op;
}
-/*<asyxml><operator type = "point" signature = "cast(pair)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="cast(pair)"><code></asyxml>*/
point operator cast(pair p)
{/*<asyxml></code><documentation>Cast pair to point relatively to the current coordinate
system 'currentcoordsys'.</documentation></operator></asyxml>*/
return point(currentcoordsys, p);
}
-/*<asyxml><operator type = "point[]" signature = "cast(pair[])"><code></asyxml>*/
+/*<asyxml><operator type = "point[]" signature="cast(pair[])"><code></asyxml>*/
point[] operator cast(pair[] p)
{/*<asyxml></code><documentation>Cast pair[] to point[] relatively to the current coordinate
system 'currentcoordsys'.</documentation></operator></asyxml>*/
@@ -524,43 +534,43 @@ point[] operator cast(pair[] p)
return op;
}
-/*<asyxml><function type = "pair" signature = "locate(point)"><code></asyxml>*/
+/*<asyxml><function type="pair" signature="locate(point)"><code></asyxml>*/
pair locate(point P)
{/*<asyxml></code><documentation>Return the coordinates of 'P' in the default coordinate system.</documentation></function></asyxml>*/
return P.coordsys * P.coordinates;
}
-/*<asyxml><function type = "point" signature = "locate(pair)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="locate(pair)"><code></asyxml>*/
point locate(pair p)
{/*<asyxml></code><documentation>Return the point in the current coordinate system 'currentcoordsys'.</documentation></function></asyxml>*/
return p; //automatic casting 'pair to point'.
}
-/*<asyxml><operator type = "point" signature = "*(real, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="*(real,explicit point)"><code></asyxml>*/
point operator *(real x, explicit point P)
{/*<asyxml></code><documentation>Multiply the coordinates (not the mass) of 'P' by 'x'.</documentation></operator></asyxml>*/
return point(P.coordsys, x * P.coordinates, P.m);
}
-/*<asyxml><operator type = "point" signature = "/(explicit point, real)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="/(explicit point,real)"><code></asyxml>*/
point operator /(explicit point P, real x)
{/*<asyxml></code><documentation>Divide the coordinates (not the mass) of 'P' by 'x'.</documentation></operator></asyxml>*/
return point(P.coordsys, P.coordinates/x, P.m);
}
-/*<asyxml><operator type = "point" signature = "/(real, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="/(real,explicit point)"><code></asyxml>*/
point operator /(real x, explicit point P)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return point(P.coordsys, x/P.coordinates, P.m);
}
-/*<asyxml><operator type = "point" signature = "-(explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="-(explicit point)"><code></asyxml>*/
point operator -(explicit point P)
{/*<asyxml></code><documentation>-P. The mass is inchanged.</documentation></operator></asyxml>*/
return point(P.coordsys, -P.coordinates, P.m);
}
-/*<asyxml><operator type = "point" signature = "+(explicit point, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit point)"><code></asyxml>*/
point operator +(explicit point P1, explicit point P2)
{/*<asyxml></code><documentation>Provide 'point + point'.
If the two points haven't the same coordinate system, a warning is sent and the
@@ -571,7 +581,7 @@ point operator +(explicit point P1, explicit point P2)
return point(R, P[0].coordinates + P[1].coordinates, P1.m + P2.m);
}
-/*<asyxml><operator type = "point" signature = "+(explicit point, explicit pair)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit pair)"><code></asyxml>*/
point operator +(explicit point P1, explicit pair p2)
{/*<asyxml></code><documentation>Provide 'point + pair'.
The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.
@@ -584,13 +594,13 @@ point operator +(explicit pair p1, explicit point p2)
return p2 + p1;
}
-/*<asyxml><operator type = "point" signature = "-(explicit point, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit point)"><code></asyxml>*/
point operator -(explicit point P1, explicit point P2)
{/*<asyxml></code><documentation>Provide 'point - point'.</documentation></operator></asyxml>*/
return P1 + (-P2);
}
-/*<asyxml><operator type = "point" signature = "-(explicit point, explicit pair)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit pair)"><code></asyxml>*/
point operator -(explicit point P1, explicit pair p2)
{/*<asyxml></code><documentation>Provide 'point - pair'.
The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.</documentation></operator></asyxml>*/
@@ -601,7 +611,7 @@ point operator -(explicit pair p1, explicit point P2)
return p1 + (-P2);
}
-/*<asyxml><operator type = "point" signature = "*(transform, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="*(transform,explicit point)"><code></asyxml>*/
point operator *(transform t, explicit point P)
{/*<asyxml></code><documentation>Provide 'transform * point'.
Note that the transforms scale, xscale, yscale and rotate are carried out relatively
@@ -614,7 +624,7 @@ point operator *(transform t, explicit point P)
return point(R, (t * locate(P))/R, P.m);
}
-/*<asyxml><operator type = "point" signature = "*(explicit point, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="*(explicit point,explicit point)"><code></asyxml>*/
point operator *(explicit point P1, explicit point P2)
{/*<asyxml></code><documentation>Provide 'point * point'.
The resulted mass is the mass of P2</documentation></operator></asyxml>*/
@@ -623,7 +633,7 @@ point operator *(explicit point P1, explicit point P2)
return point(R, P[0].coordinates * P[1].coordinates, P2.m);
}
-/*<asyxml><operator type = "point" signature = "*(explicit point, explicit pair)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="*(explicit point,explicit pair)"><code></asyxml>*/
point operator *(explicit point P1, explicit pair p2)
{/*<asyxml></code><documentation>Provide 'point * pair'.
The pair 'p2' is supposed to be the coordinates of
@@ -637,31 +647,31 @@ point operator *(explicit pair p1, explicit point p2)
return p2 * p1;
}
-/*<asyxml><operator type = "bool" signature = "==(explicit point, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="==(explicit point,explicit point)"><code></asyxml>*/
bool operator ==(explicit point M, explicit point N)
{/*<asyxml></code><documentation>Provide the test 'M == N' wish returns true iff MN < EPS</documentation></operator></asyxml>*/
return abs(locate(M) - locate(N)) < EPS;
}
-/*<asyxml><operator type = "bool" signature = "!=(explicit point, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="!=(explicit point,explicit point)"><code></asyxml>*/
bool operator !=(explicit point M, explicit point N)
{/*<asyxml></code><documentation>Provide the test 'M != N' wish return true iff MN >= EPS</documentation></operator></asyxml>*/
return !(M == N);
}
-/*<asyxml><operator type = "guide" signature = "cast(point)"><code></asyxml>*/
+/*<asyxml><operator type = "guide" signature="cast(point)"><code></asyxml>*/
guide operator cast(point p)
{/*<asyxml></code><documentation>Cast point to guide.</documentation></operator></asyxml>*/
return locate(p);
}
-/*<asyxml><operator type = "path" signature = "cast(point)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(point)"><code></asyxml>*/
path operator cast(point p)
{/*<asyxml></code><documentation>Cast point to path.</documentation></operator></asyxml>*/
return locate(p);
}
-/*<asyxml><function type = "void" signature = "dot(picture, Label, explicit point, align, string, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="dot(picture,Label,explicit point,align,string,pen)"><code></asyxml>*/
void dot(picture pic = currentpicture, Label L, explicit point Z,
align align = NoAlign,
string format = defaultformat, pen p = currentpen)
@@ -678,56 +688,56 @@ void dot(picture pic = currentpicture, Label L, explicit point Z,
add(pic, L);
}
-/*<asyxml><function type = "real" signature = "abs(coordsys, pair)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="abs(coordsys,pair)"><code></asyxml>*/
real abs(coordsys R, pair m)
{/*<asyxml></code><documentation>Return the modulus |m| in the coordinate system 'R'.</documentation></function></asyxml>*/
return R.abs(m);
}
-/*<asyxml><function type = "real" signature = "abs(explicit point)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="abs(explicit point)"><code></asyxml>*/
real abs(explicit point M)
{/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system.</documentation></function></asyxml>*/
return M.coordsys.abs(M.coordinates);
}
-/*<asyxml><function type = "real" signature = "length(explicit point)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="length(explicit point)"><code></asyxml>*/
real length(explicit point M)
{/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system (same as 'abs').</documentation></function></asyxml>*/
return M.coordsys.abs(M.coordinates);
}
-/*<asyxml><function type = "point" signature = "conj(explicit point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="conj(explicit point)"><code></asyxml>*/
point conj(explicit point M)
{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
return point(M.coordsys, conj(M.coordinates), M.m);
}
-/*<asyxml><function type = "real" signature = "degrees(explicit point, coordsys, bool)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="degrees(explicit point,coordsys,bool)"><code></asyxml>*/
real degrees(explicit point M, coordsys R = M.coordsys, bool warn = true)
{/*<asyxml></code><documentation>Return the angle of M (in degrees) relatively to 'R'.</documentation></function></asyxml>*/
return (degrees(locate(M) - R.O, warn) - degrees(R.i))%360;
}
-/*<asyxml><function type = "real" signature = "angle(explicit point, coordsys, bool)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="angle(explicit point,coordsys,bool)"><code></asyxml>*/
real angle(explicit point M, coordsys R = M.coordsys, bool warn = true)
{/*<asyxml></code><documentation>Return the angle of M (in radians) relatively to 'R'.</documentation></function></asyxml>*/
return radians(degrees(M, R, warn));
}
-/*<asyxml><function type = "bool" signature = "finite(explicit point)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="finite(explicit point)"><code></asyxml>*/
bool finite(explicit point p)
{/*<asyxml></code><documentation>Avoid to compute 'finite((pair)(infinite_point))'.</documentation></function></asyxml>*/
return finite(p.coordinates);
}
-/*<asyxml><function type = "real" signature = "dot(point, point)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="dot(point,point)"><code></asyxml>*/
real dot(point A, point B)
{/*<asyxml></code><documentation>Return the dot product in the coordinate system of 'A'.</documentation></function></asyxml>*/
point[] P = standardizecoordsys(A.coordsys, A, B);
return P[0].coordsys.dot(P[0].coordinates, P[1].coordinates);
}
-/*<asyxml><function type = "real" signature = "dot(point, explicit pair)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="dot(point,explicit pair)"><code></asyxml>*/
real dot(point A, explicit pair B)
{/*<asyxml></code><documentation>Return the dot product in the default coordinate system.
dot(explicit pair, point) is also defined.</documentation></function></asyxml>*/
@@ -738,13 +748,13 @@ real dot(explicit pair A, point B)
return dot(A, locate(B));
}
-/*<asyxml><function type = "transforms" signature = "rotateO(real)"><code></asyxml>*/
+/*<asyxml><function type="transforms" signature="rotateO(real)"><code></asyxml>*/
transform rotateO(real a)
{/*<asyxml></code><documentation>Rotation around the origin of the current coordinate system.</documentation></function></asyxml>*/
return rotate(a, currentcoordsys.O);
};
-/*<asyxml><function type = "transform" signature = "projection(point, point)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="projection(point,point)"><code></asyxml>*/
transform projection(point A, point B)
{/*<asyxml></code><documentation>Return the orthogonal projection on the line (AB).</documentation></function></asyxml>*/
pair dir = unit(locate(A) - locate(B));
@@ -760,7 +770,7 @@ transform projection(point A, point B)
return t;
}
-/*<asyxml><function type = "transform" signature = "projection(point, point, point, point, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="projection(point,point,point,point,bool)"><code></asyxml>*/
transform projection(point A, point B, point C, point D, bool safe = false)
{/*<asyxml></code><documentation>Return the (CD) parallel projection on (AB).
If 'safe = true' and (AB)//(CD) return the identity.
@@ -783,14 +793,14 @@ transform projection(point A, point B, point C, point D, bool safe = false)
return t;
}
-/*<asyxml><function type = "transform" signature = "scale(real, point)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="scale(real,point)"><code></asyxml>*/
transform scale(real k, point M)
{/*<asyxml></code><documentation>Homothety.</documentation></function></asyxml>*/
pair P = locate(M);
return shift(P) * scale(k) * shift(-P);
}
-/*<asyxml><function type = "transform" signature = "xscale(real, point)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="xscale(real,point)"><code></asyxml>*/
transform xscale(real k, point M)
{/*<asyxml></code><documentation>xscale from 'M' relatively to the x - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/
pair P = locate(M);
@@ -798,7 +808,7 @@ transform xscale(real k, point M)
return (shift(P) * rotate(a)) * xscale(k) * (rotate(-a) * shift(-P));
}
-/*<asyxml><function type = "transform" signature = "yscale(real, point)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="yscale(real,point)"><code></asyxml>*/
transform yscale(real k, point M)
{/*<asyxml></code><documentation>yscale from 'M' relatively to the y - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/
pair P = locate(M);
@@ -806,7 +816,7 @@ transform yscale(real k, point M)
return (shift(P) * rotate(a)) * yscale(k) * (rotate(-a) * shift(-P));
}
-/*<asyxml><function type = "transform" signature = "scale(real, point, point, point, point, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="scale(real,point,point,point,point,bool)"><code></asyxml>*/
transform scale(real k, point A, point B, point C, point D, bool safe = false)
{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Affinit%C3%A9_%28math%C3%A9matiques%29"/>
(help me for English translation...)
@@ -831,38 +841,38 @@ transform scale(real k, point A, point B, point C, point D, bool safe = false)
return t;
}
-/*<asyxml><function type = "transform" signature = "scaleO(real)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="scaleO(real)"><code></asyxml>*/
transform scaleO(real x)
{/*<asyxml></code><documentation>Homothety from the origin of the current coordinate system.</documentation></function></asyxml>*/
return scale(x, (0, 0));
}
-/*<asyxml><function type = "transform" signature = "xscaleO(real)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="xscaleO(real)"><code></asyxml>*/
transform xscaleO(real x)
{/*<asyxml></code><documentation>xscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/
return scale(x, (0, 0), (0, 1), (0, 0), (1, 0));
}
-/*<asyxml><function type = "transform" signature = "yscaleO(real)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="yscaleO(real)"><code></asyxml>*/
transform yscaleO(real x)
{/*<asyxml></code><documentation>yscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/
return scale(x, (0, 0), (1, 0), (0, 0), (0, 1));
}
-/*<asyxml><struct signature = "vector"><code></asyxml>*/
+/*<asyxml><struct signature="vector"><code></asyxml>*/
struct vector
{/*<asyxml></code><documentation>Like a point but casting to pair, adding etc does not take account
- of the origin of the coordinate system.</documentation><property type = "point" signature = "v"><code></asyxml>*/
+ of the origin of the coordinate system.</documentation><property type = "point" signature="v"><code></asyxml>*/
point v;/*<asyxml></code><documentation>Coordinates as a point (embed coordinate system and pair).</documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><operator type = "point" signature = "cast(vector)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="cast(vector)"><code></asyxml>*/
point operator cast(vector v)
{/*<asyxml></code><documentation>Cast vector 'v' to point 'M' so that OM = v.</documentation></operator></asyxml>*/
return v.v;
}
-/*<asyxml><operator type = "vector" signature = "cast(pair)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="cast(pair)"><code></asyxml>*/
vector operator cast(pair v)
{/*<asyxml></code><documentation>Cast pair to vector relatively to the current coordinate
system 'currentcoordsys'.</documentation></operator></asyxml>*/
@@ -871,7 +881,7 @@ vector operator cast(pair v)
return ov;
}
-/*<asyxml><operator type = "vector" signature = "cast(explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="cast(explicit point)"><code></asyxml>*/
vector operator cast(explicit point v)
{/*<asyxml></code><documentation>A point can be interpreted like a vector using the code
'(vector)a_point'.</documentation></operator></asyxml>*/
@@ -880,19 +890,19 @@ vector operator cast(explicit point v)
return ov;
}
-/*<asyxml><operator type = "pair" signature = "cast(explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "pair" signature="cast(explicit vector)"><code></asyxml>*/
pair operator cast(explicit vector v)
{/*<asyxml></code><documentation>Cast vector to pair (the coordinates of 'v' in the default coordinate system).</documentation></operator></asyxml>*/
return locate(v.v) - v.v.coordsys.O;
}
-/*<asyxml><operator type = "align" signature = "cast(vector)"><code></asyxml>*/
+/*<asyxml><operator type = "align" signature="cast(vector)"><code></asyxml>*/
align operator cast(vector v)
{/*<asyxml></code><documentation>Cast vector to align.</documentation></operator></asyxml>*/
return (pair)v;
}
-/*<asyxml><function type = "vector" signature = "vector(coordsys, pair)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="vector(coordsys, pair)"><code></asyxml>*/
vector vector(coordsys R = currentcoordsys, pair v)
{/*<asyxml></code><documentation>Return the vector of 'R' which has the coordinates 'v'.</documentation></function></asyxml>*/
vector ov;
@@ -900,33 +910,33 @@ vector vector(coordsys R = currentcoordsys, pair v)
return ov;
}
-/*<asyxml><function type = "vector" signature = "vector(point)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="vector(point)"><code></asyxml>*/
vector vector(point M)
{/*<asyxml></code><documentation>Return the vector OM, where O is the origin of the coordinate system of 'M'.
Useful to write 'vector(P - M);' instead of '(vector)(P - M)'.</documentation></function></asyxml>*/
return M;
}
-/*<asyxml><function type = "point" signature = "point(explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit vector)"><code></asyxml>*/
point point(explicit vector u)
{/*<asyxml></code><documentation>Return the point M so that OM = u, where O is the origin of the coordinate system of 'u'.</documentation></function></asyxml>*/
return u.v;
}
-/*<asyxml><function type = "pair" signature = "locate(explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="pair" signature="locate(explicit vector)"><code></asyxml>*/
pair locate(explicit vector v)
{/*<asyxml></code><documentation>Return the coordinates of 'v' in the default coordinate system (like casting vector to pair).</documentation></function></asyxml>*/
return (pair)v;
}
-/*<asyxml><function type = "void" signature = "show(Label, pen, arrowbar)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="show(Label,pen,arrowbar)"><code></asyxml>*/
void show(Label L, vector v, pen p = currentpen, arrowbar arrow = Arrow)
{/*<asyxml></code><documentation>Draw the vector v (from the origin of its coordinate system).</documentation></function></asyxml>*/
coordsys R = v.v.coordsys;
draw(L, R.O--v.v, p, arrow);
}
-/*<asyxml><function type = "vector" signature = "changecoordsys(coordsys, vector)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="changecoordsys(coordsys,vector)"><code></asyxml>*/
vector changecoordsys(coordsys R, vector v)
{/*<asyxml></code><documentation>Return the vector 'v' relatively to coordinate system 'R'.</documentation></function></asyxml>*/
vector ov;
@@ -934,49 +944,49 @@ vector changecoordsys(coordsys R, vector v)
return ov;
}
-/*<asyxml><operator type = "vector" signature = "*(real, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="*(real,explicit vector)"><code></asyxml>*/
vector operator *(real x, explicit vector v)
{/*<asyxml></code><documentation>Provide real * vector.</documentation></operator></asyxml>*/
return x * v.v;
}
-/*<asyxml><operator type = "vector" signature = "/(explicit vector, real)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="/(explicit vector,real)"><code></asyxml>*/
vector operator /(explicit vector v, real x)
{/*<asyxml></code><documentation>Provide vector/real</documentation></operator></asyxml>*/
return v.v/x;
}
-/*<asyxml><operator type = "vector" signature = "*(transform t, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="*(transform t,explicit vector)"><code></asyxml>*/
vector operator *(transform t, explicit vector v)
{/*<asyxml></code><documentation>Provide transform * vector.</documentation></operator></asyxml>*/
return t * v.v;
}
-/*<asyxml><operator type = "vector" signature = "*(explicit point, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="*(explicit point,explicit vector)"><code></asyxml>*/
vector operator *(explicit point M, explicit vector v)
{/*<asyxml></code><documentation>Provide point * vector</documentation></operator></asyxml>*/
return M * v.v;
}
-/*<asyxml><operator type = "point" signature = "+(explicit point, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit vector)"><code></asyxml>*/
point operator +(point M, explicit vector v)
{/*<asyxml></code><documentation>Return 'M' shifted by 'v'.</documentation></operator></asyxml>*/
return shift(locate(v)) * M;
}
-/*<asyxml><operator type = "point" signature = "-(explicit point, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit vector)"><code></asyxml>*/
point operator -(point M, explicit vector v)
{/*<asyxml></code><documentation>Return 'M' shifted by '-v'.</documentation></operator></asyxml>*/
return shift(-locate(v)) * M;
}
-/*<asyxml><operator type = "vector" signature = "-(explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="-(explicit vector)"><code></asyxml>*/
vector operator -(explicit vector v)
{/*<asyxml></code><documentation>Provide -v.</documentation></operator></asyxml>*/
return -v.v;
}
-/*<asyxml><operator type = "point" signature = "+(explicit pair, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="+(explicit pair,explicit vector)"><code></asyxml>*/
point operator +(explicit pair m, explicit vector v)
{/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of
a point in the current coordinates system 'currentcoordsys'.
@@ -984,7 +994,7 @@ point operator +(explicit pair m, explicit vector v)
return locate(m) + v;
}
-/*<asyxml><operator type = "point" signature = "-(explicit pair, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="-(explicit pair,explicit vector)"><code></asyxml>*/
point operator -(explicit pair m, explicit vector v)
{/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of
a point in the current coordinates system 'currentcoordsys'.
@@ -992,7 +1002,7 @@ point operator -(explicit pair m, explicit vector v)
return m + (-v);
}
-/*<asyxml><operator type = "vector" signature = "+(explicit vector, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="+(explicit vector,explicit vector)"><code></asyxml>*/
vector operator +(explicit vector v1, explicit vector v2)
{/*<asyxml></code><documentation>Provide vector + vector.
If the two vector haven't the same coordinate system, the returned
@@ -1002,7 +1012,7 @@ vector operator +(explicit vector v1, explicit vector v2)
return vector(R, (locate(v1) + locate(v2))/R);
}
-/*<asyxml><operator type = "vector" signature = "-(explicit vector, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "vector" signature="-(explicit vector, explicit vector)"><code></asyxml>*/
vector operator -(explicit vector v1, explicit vector v2)
{/*<asyxml></code><documentation>Provide vector - vector.
If the two vector haven't the same coordinate system, the returned
@@ -1010,31 +1020,31 @@ vector operator -(explicit vector v1, explicit vector v2)
return v1 + (-v2);
}
-/*<asyxml><operator type = "bool" signature = "==(explicit vector, explicit vector)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="==(explicit vector,explicit vector)"><code></asyxml>*/
bool operator ==(explicit vector u, explicit vector v)
{/*<asyxml></code><documentation>Return true iff |u - v|<EPS.</documentation></operator></asyxml>*/
return abs(u - v) < EPS;
}
-/*<asyxml><function type = "bool" signature = "collinear(vector, vector)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="collinear(vector,vector)"><code></asyxml>*/
bool collinear(vector u, vector v)
{/*<asyxml></code><documentation>Return 'true' iff the vectors 'u' and 'v' are collinear.</documentation></function></asyxml>*/
return abs(ypart((conj((pair)u) * (pair)v))) < EPS;
}
-/*<asyxml><function type = "vector" signature = "unit(point)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="unit(point)"><code></asyxml>*/
vector unit(point M)
{/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/
return M/abs(M);
}
-/*<asyxml><function type = "vector" signature = "unit(vector)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="unit(vector)"><code></asyxml>*/
vector unit(vector u)
{/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/
return u.v/abs(u.v);
}
-/*<asyxml><function type = "real" signature = "degrees(vector, coordsys, bool)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="degrees(vector,coordsys,bool)"><code></asyxml>*/
real degrees(vector v,
coordsys R = v.v.coordsys,
bool warn = true)
@@ -1042,7 +1052,7 @@ real degrees(vector v,
return (degrees(locate(v), warn) - degrees(R.i))%360;
}
-/*<asyxml><function type = "real" signature = "angle(vector, coordsys, bool)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="angle(vector,coordsys,bool)"><code></asyxml>*/
real angle(explicit vector v,
coordsys R = v.v.coordsys,
bool warn = true)
@@ -1050,13 +1060,13 @@ real angle(explicit vector v,
return radians(degrees(v, R, warn));
}
-/*<asyxml><function type = "vector" signature = "conj(explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="conj(explicit vector)"><code></asyxml>*/
vector conj(explicit vector u)
{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
return conj(u.v);
}
-/*<asyxml><function type = "transform" signature = "rotate(explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="rotate(explicit vector)"><code></asyxml>*/
transform rotate(explicit vector dir)
{/*<asyxml></code><documentation>A rotation in the direction 'dir' limited to [-90, 90]
This is useful for rotating text along a line in the direction dir.
@@ -1070,37 +1080,37 @@ transform rotate(explicit point dir){return rotate(locate(vector(dir)));}
// *=======================================================*
// *.........................BASES.........................*
-/*<asyxml><variable type = "point" signature = "origin"><code></asyxml>*/
+/*<asyxml><variable type="point" signature="origin"><code></asyxml>*/
point origin = point(defaultcoordsys, (0, 0));/*<asyxml></code><documentation>The origin of the current coordinate system.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "point" signature = "origin(coordsys)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="origin(coordsys)"><code></asyxml>*/
point origin(coordsys R = currentcoordsys)
{/*<asyxml></code><documentation>Return the origin of the coordinate system 'R'.</documentation></function></asyxml>*/
return point(R, (0, 0)); //use automatic casting;
}
-/*<asyxml><variable type = "real" signature = "linemargin"><code></asyxml>*/
+/*<asyxml><variable type="real" signature="linemargin"><code></asyxml>*/
real linemargin = 0;/*<asyxml></code><documentation>Margin used to draw lines.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "real" signature = "linemargin()"><code></asyxml>*/
+/*<asyxml><function type="real" signature="linemargin()"><code></asyxml>*/
real linemargin()
{/*<asyxml></code><documentation>Return the margin used to draw lines.</documentation></function></asyxml>*/
return linemargin;
}
-/*<asyxml><variable type = "pen" signature = "addpenline"><code></asyxml>*/
+/*<asyxml><variable type="pen" signature="addpenline"><code></asyxml>*/
pen addpenline = squarecap;/*<asyxml></code><documentation>Add this property to the drawing pen of "finish" lines.</documentation></variable></asyxml>*/
pen addpenline(pen p) {
return addpenline + p;
}
-/*<asyxml><variable type = "pen" signature = "addpenarc"><code></asyxml>*/
+/*<asyxml><variable type="pen" signature="addpenarc"><code></asyxml>*/
pen addpenarc = squarecap;/*<asyxml></code><documentation>Add this property to the drawing pen of arcs.</documentation></variable></asyxml>*/
pen addpenarc(pen p) {return addpenarc + p;}
-/*<asyxml><variable type = "string" signature = "defaultmassformat"><code></asyxml>*/
-string defaultmassformat = "$\left(%L;%.4g \ right)$";/*<asyxml></code><documentation>Format used to construct the default label of masses.</documentation></variable></asyxml>*/
+/*<asyxml><variable type="string" signature="defaultmassformat"><code></asyxml>*/
+string defaultmassformat = "$\left(%L;%.4g\right)$";/*<asyxml></code><documentation>Format used to construct the default label of masses.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "int" signature = "sgnd(real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="sgnd(real)"><code></asyxml>*/
int sgnd(real x)
{/*<asyxml></code><documentation>Return the -1 if x < 0, 1 if x >= 0.</documentation></function></asyxml>*/
return (x == 0) ? 1 : sgn(x);
@@ -1110,27 +1120,27 @@ int sgnd(int x)
return (x == 0) ? 1 : sgn(x);
}
-/*<asyxml><function type = "bool" signature = "defined(pair)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="defined(pair)"><code></asyxml>*/
bool defined(point P)
{/*<asyxml></code><documentation>Return true iff the coordinates of 'P' are finite.</documentation></function></asyxml>*/
return finite(P.coordinates);
}
-/*<asyxml><function type = "bool" signature = "onpath(picture, path, point, pen)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="onpath(picture,path,point,pen)"><code></asyxml>*/
bool onpath(picture pic = currentpicture, path g, point M, pen p = currentpen)
{/*<asyxml></code><documentation>Return true iff 'M' is on the path drawn with the pen 'p' in 'pic'.</documentation></function></asyxml>*/
transform t = inverse(pic.calculateTransform());
return intersect(g, shift(locate(M)) * scale(linewidth(p)/2) * t * unitcircle).length > 0;
}
-/*<asyxml><function type = "bool" signature = "sameside(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="sameside(point,point,point)"><code></asyxml>*/
bool sameside(point M, point N, point O)
{/*<asyxml></code><documentation>Return 'true' iff 'M' and 'N' are same side of the point 'O'.</documentation></function></asyxml>*/
pair m = M, n = N, o = O;
return dot(m - o, n - o) >= -epsgeo;
}
-/*<asyxml><function type = "bool" signature = "between(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="between(point,point,point)"><code></asyxml>*/
bool between(point M, point O, point N)
{/*<asyxml></code><documentation>Return 'true' iff 'O' is between 'M' and 'N'.</documentation></function></asyxml>*/
return (!sameside(N, M, O) || M == O || N == O);
@@ -1224,7 +1234,7 @@ private void Drawline(picture pic = currentpicture, Label L = "", pair P, bool d
});
}
-/*<asyxml><function type = "void" signature = "clipdraw(picture, Label, path, align, pen, arrowbar, arrowbar, real, real, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="clipdraw(picture,Label,path,align,pen,arrowbar,arrowbar,real,real,Label,marker)"><code></asyxml>*/
void clipdraw(picture pic = currentpicture, Label L = "", path g,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -1247,7 +1257,7 @@ void clipdraw(picture pic = currentpicture, Label L = "", path g,
});
}
-/*<asyxml><function type = "void" signature = "distance(picture pic, Label, point, point, bool, real, pen, pen, arrow)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="distance(picture pic,Label,point,point,bool,real,pen,pen,arrow)"><code></asyxml>*/
void distance(picture pic = currentpicture, Label L = "", point A, point B,
bool rotated = true, real offset = 3mm,
pen p = currentpen, pen joinpen = invisible,
@@ -1273,9 +1283,9 @@ void distance(picture pic = currentpicture, Label L = "", point A, point B,
pic.addBox(min(g), max(g), Tp * min(p), Tp * max(p));
}
-/*<asyxml><variable type = "real" signature = "perpfactor"><code></asyxml>*/
+/*<asyxml><variable type="real" signature="perpfactor"><code></asyxml>*/
real perpfactor = 1;/*<asyxml></code><documentation>Factor for drawing perpendicular symbol.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "void" signature = "perpendicularmark(picture, point, explicit pair, explicit pair, real, pen, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,explicit pair,explicit pair,real,pen,margin,filltype)"><code></asyxml>*/
void perpendicularmark(picture pic = currentpicture, point z,
explicit pair align,
explicit pair dir = E, real size = 0,
@@ -1298,7 +1308,7 @@ void perpendicularmark(picture pic = currentpicture, point z,
add(pic, apic, locate(z));
}
-/*<asyxml><function type = "void" signature = "perpendicularmark(picture, point, vector, vector, real, pen, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,vector,vector,real,pen,margin,filltype)"><code></asyxml>*/
void perpendicularmark(picture pic = currentpicture, point z,
vector align,
vector dir = E, real size = 0,
@@ -1312,7 +1322,7 @@ void perpendicularmark(picture pic = currentpicture, point z,
p, margin, filltype);
}
-/*<asyxml><function type = "void" signature = "perpendicularmark(picture, point, explicit pair, path, real, pen, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,explicit pair,path,real,pen,margin,filltype)"><code></asyxml>*/
void perpendicularmark(picture pic = currentpicture, point z, explicit pair align, path g,
real size = 0, pen p = currentpen,
margin margin = NoMargin,
@@ -1323,7 +1333,7 @@ void perpendicularmark(picture pic = currentpicture, point z, explicit pair alig
perpendicularmark(pic, z, align, dir(g, 0), size, p, margin, filltype);
}
-/*<asyxml><function type = "void" signature = "perpendicularmark(picture, point, vector, path, real, pen, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,vector,path,real,pen,margin,filltype)"><code></asyxml>*/
void perpendicularmark(picture pic = currentpicture, point z, vector align, path g,
real size = 0, pen p = currentpen,
margin margin = NoMargin,
@@ -1334,7 +1344,7 @@ void perpendicularmark(picture pic = currentpicture, point z, vector align, path
perpendicularmark(pic, z, (pair)align, dir(g, 0), size, p, margin, filltype);
}
-/*<asyxml><function type = "void" signature = "markrightangle(picture, point, point, point, real, pen, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="markrightangle(picture,point,point,point,real,pen,margin,filltype)"><code></asyxml>*/
void markrightangle(picture pic = currentpicture, point A, point O,
point B, real size = 0, pen p = currentpen,
margin margin = NoMargin,
@@ -1351,7 +1361,7 @@ void markrightangle(picture pic = currentpicture, point A, point O,
margin = margin, filltype = filltype);
}
-/*<asyxml><function type = "bool" signature = "simeq(point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="simeq(point,point,real)"><code></asyxml>*/
bool simeq(point A, point B, real fuzz = epsgeo)
{/*<asyxml></code><documentation>Return true iff abs(A - B) < fuzz.
This routine is used internally to know if two points are equal, in particular by the operator == in 'point == point'.</documentation></function></asyxml>*/
@@ -1363,7 +1373,7 @@ bool simeq(point a, real b, real fuzz = epsgeo)
return (abs(a - point(R, ((pair)b)/R)) < fuzz);
}
-/*<asyxml><function type = "pair" signature = "attract(pair, path, real)"><code></asyxml>*/
+/*<asyxml><function type="pair" signature="attract(pair,path,real)"><code></asyxml>*/
pair attract(pair m, path g, real fuzz = 0)
{/*<asyxml></code><documentation>Return the nearest point (A PAIR) of 'm' which is on the path g.
'fuzz' is the argument 'fuzz' of 'intersect'.</documentation></function></asyxml>*/
@@ -1391,14 +1401,14 @@ pair attract(pair m, path g, real fuzz = 0)
return p;
}
-/*<asyxml><function type = "point" signature = "attract(point, path, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="attract(point,path,real)"><code></asyxml>*/
point attract(point M, path g, real fuzz = 0)
{/*<asyxml></code><documentation>Return the nearest point (A POINT) of 'M' which is on the path g.
'fuzz' is the argument 'fuzz' of 'intersect'.</documentation></function></asyxml>*/
return point(M.coordsys, attract(locate(M), g)/M.coordsys);
}
-/*<asyxml><function type = "real[]" signature = "intersect(path, explicit pair)"><code></asyxml>*/
+/*<asyxml><function type="real[]" signature="intersect(path,explicit pair)"><code></asyxml>*/
real[] intersect(path g, explicit pair p, real fuzz = 0)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
fuzz = fuzz <= 0 ? sqrt(realEpsilon) : fuzz;
@@ -1411,7 +1421,7 @@ real[] intersect(path g, explicit pair p, real fuzz = 0)
return or;
}
-/*<asyxml><function type = "real[]" signature = "intersect(path, explicit point)"><code></asyxml>*/
+/*<asyxml><function type="real[]" signature="intersect(path,explicit point)"><code></asyxml>*/
real[] intersect(path g, explicit point P, real fuzz = epsgeo)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersect(g, locate(P), fuzz);
@@ -1421,18 +1431,18 @@ real[] intersect(path g, explicit point P, real fuzz = epsgeo)
// *=======================================================*
// *.........................LINES.........................*
-/*<asyxml><struct signature = "line"><code></asyxml>*/
+/*<asyxml><struct signature="line"><code></asyxml>*/
struct line
{/*<asyxml></code><documentation>This structure provides the objects line, semi - line and segment oriented from A to B.
All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'line' to 'path' excepted for drawing routines.</documentation></asyxml>*/
- /*<asyxml><property type = "point" signature = "A, B"><code></asyxml>*/
- restricted point A, B;/*<asyxml></code><documentation>Two line's points with same coordinate system.</documentation></property><property type = "bool" signature = "extendA, extendB"><code></asyxml>*/
- bool extendA, extendB;/*<asyxml></code><documentation>If true, extend 'l' in direction of A (resp. B).</documentation></property><property type = "vector" signature = "u, v"><code></asyxml>*/
- restricted vector u, v;/*<asyxml></code><documentation>u = unit(AB) = direction vector, v = normal vector.</documentation></property><property type = "real" signature = "a, b, c"><code></asyxml>*/
- restricted real a, b, c;/*<asyxml></code><documentation>Coefficients of the equation ax + by + c = 0 in the coordinate system of 'A'.</documentation></property><property type = "real" signature = "slope, origin"><code></asyxml>*/
+ /*<asyxml><property type = "point" signature="A,B"><code></asyxml>*/
+ restricted point A,B;/*<asyxml></code><documentation>Two line's points with same coordinate system.</documentation></property><property type = "bool" signature="extendA,extendB"><code></asyxml>*/
+ bool extendA,extendB;/*<asyxml></code><documentation>If true,extend 'l' in direction of A (resp. B).</documentation></property><property type = "vector" signature="u,v"><code></asyxml>*/
+ restricted vector u,v;/*<asyxml></code><documentation>u = unit(AB) = direction vector,v = normal vector.</documentation></property><property type = "real" signature="a,b,c"><code></asyxml>*/
+ restricted real a,b,c;/*<asyxml></code><documentation>Coefficients of the equation ax + by + c = 0 in the coordinate system of 'A'.</documentation></property><property type = "real" signature="slope,origin"><code></asyxml>*/
restricted real slope, origin;/*<asyxml></code><documentation>Slope and ordinate at the origin.</documentation></property></asyxml>*/
- /*<asyxml><method type = "line" signature = "copy()"><code></asyxml>*/
+ /*<asyxml><method type = "line" signature="copy()"><code></asyxml>*/
line copy()
{/*<asyxml></code><documentation>Copy a line in a new instance.</documentation></method></asyxml>*/
line l = new line;
@@ -1450,7 +1460,7 @@ struct line
return l;
}
- /*<asyxml><method type = "void" signature = "init(point, bool, point, bool)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,bool,point,bool)"><code></asyxml>*/
void init(point A, bool extendA = true, point B, bool extendB = true)
{/*<asyxml></code><documentation>Initialize line.
If 'extendA' is true, the "line" is infinite in the direction of A.</documentation></method></asyxml>*/
@@ -1471,7 +1481,7 @@ struct line
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "line" signature = "line(point, bool, point, bool)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(point,bool,point,bool)"><code></asyxml>*/
line line(point A, bool extendA = true, point B, bool extendB = true)
{/*<asyxml></code><documentation>Return the line passing through 'A' and 'B'.
If 'extendA' is true, the "line" is infinite in the direction of A.
@@ -1482,7 +1492,7 @@ line line(point A, bool extendA = true, point B, bool extendB = true)
return l;
}
-/*<asyxml><struct signature = "segment"><code></asyxml>*/
+/*<asyxml><struct signature="segment"><code></asyxml>*/
struct segment
{/*<asyxml></code><documentation><look href = "struct line"/>.</documentation></asyxml>*/
restricted point A, B;// Extremity.
@@ -1515,7 +1525,7 @@ struct segment
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "segment" signature = "segment(point, point)"><code></asyxml>*/
+/*<asyxml><function type="segment" signature="segment(point,point)"><code></asyxml>*/
segment segment(point A, point B)
{/*<asyxml></code><documentation>Return the segment whose the extremities are A and B.</documentation></function></asyxml>*/
segment s;
@@ -1523,37 +1533,37 @@ segment segment(point A, point B)
return s;
}
-/*<asyxml><function type = "real" signature = "length(segment)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="length(segment)"><code></asyxml>*/
real length(segment s)
{/*<asyxml></code><documentation>Return the length of 's'.</documentation></function></asyxml>*/
return abs(s.A - s.B);
}
-/*<asyxml><operator type = "line" signature = "cast(segment)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="cast(segment)"><code></asyxml>*/
line operator cast(segment s)
{/*<asyxml></code><documentation>A segment is casted to a "finite line".</documentation></operator></asyxml>*/
return line(s.A, false, s.B, false);
}
-/*<asyxml><operator type = "segment" signature = "cast(line)"><code></asyxml>*/
+/*<asyxml><operator type = "segment" signature="cast(line)"><code></asyxml>*/
segment operator cast(line l)
{/*<asyxml></code><documentation>Cast line 'l' to segment [l.A l.B].</documentation></operator></asyxml>*/
return segment(l.A, l.B);
}
-/*<asyxml><operator type = "line" signature = "*(transform, line)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="*(transform,line)"><code></asyxml>*/
line operator *(transform t, line l)
{/*<asyxml></code><documentation>Provide transform * line</documentation></operator></asyxml>*/
return line(t * l.A, l.extendA, t * l.B, l.extendB);
}
-/*<asyxml><operator type = "line" signature = "/(line, real)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="/(line,real)"><code></asyxml>*/
line operator /(line l, real x)
{/*<asyxml></code><documentation>Provide l/x.
Return the line passing through l.A/x and l.B/x.</documentation></operator></asyxml>*/
return line(l.A/x, l.extendA, l.B/x, l.extendB);
}
line operator /(line l, int x){return line(l.A/x, l.B/x);}
-/*<asyxml><operator type = "line" signature = "*(real, line)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="*(real,line)"><code></asyxml>*/
line operator *(real x, line l)
{/*<asyxml></code><documentation>Provide x * l.
Return the line passing through x * l.A and x * l.B.</documentation></operator></asyxml>*/
@@ -1561,26 +1571,26 @@ line operator *(real x, line l)
}
line operator *(int x, line l){return line(x * l.A, l.extendA, x * l.B, l.extendB);}
-/*<asyxml><operator type = "line" signature = "*(point, line)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="*(point,line)"><code></asyxml>*/
line operator *(point M, line l)
{/*<asyxml></code><documentation>Provide point * line.
Return the line passing through unit(M) * l.A and unit(M) * l.B.</documentation></operator></asyxml>*/
return line(unit(M) * l.A, l.extendA, unit(M) * l.B, l.extendB);
}
-/*<asyxml><operator type = "line" signature = "+(line, point)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="+(line,point)"><code></asyxml>*/
line operator +(line l, vector u)
{/*<asyxml></code><documentation>Provide line + vector (and so line + point).
Return the line 'l' shifted by 'u'.</documentation></operator></asyxml>*/
return line(l.A + u, l.extendA, l.B + u, l.extendB);
}
-/*<asyxml><operator type = "line" signature = "-(line, vector)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="-(line,vector)"><code></asyxml>*/
line operator -(line l, vector u)
{/*<asyxml></code><documentation>Provide line - vector (and so line - point).
Return the line 'l' shifted by '-u'.</documentation></operator></asyxml>*/
return line(l.A - u, l.extendA, l.B - u, l.extendB);
}
-/*<asyxml><operator type = "line[]" signature = "^^(line, line)"><code></asyxml>*/
+/*<asyxml><operator type = "line[]" signature="^^(line,line)"><code></asyxml>*/
line[] operator ^^(line l1, line l2)
{/*<asyxml></code><documentation>Provide line^^line.
Return the line array {l1, l2}.</documentation></operator></asyxml>*/
@@ -1589,7 +1599,7 @@ line[] operator ^^(line l1, line l2)
return ol;
}
-/*<asyxml><operator type = "line[]" signature = "^^(line, line[])"><code></asyxml>*/
+/*<asyxml><operator type = "line[]" signature="^^(line,line[])"><code></asyxml>*/
line[] operator ^^(line l1, line[] l2)
{/*<asyxml></code><documentation>Provide line^^line[].
Return the line array {l1, l2[0], l2[1]...}.
@@ -1608,7 +1618,7 @@ line[] operator ^^(line[] l2, line l1)
return ol;
}
-/*<asyxml><operator type = "line[]" signature = "^^(line, line[])"><code></asyxml>*/
+/*<asyxml><operator type = "line[]" signature="^^(line,line[])"><code></asyxml>*/
line[] operator ^^(line l1[], line[] l2)
{/*<asyxml></code><documentation>Provide line[]^^line[].
Return the line array {l1[0], l1[1], ..., l2[0], l2[1], ...}.</documentation></operator></asyxml>*/
@@ -1619,7 +1629,7 @@ line[] operator ^^(line l1[], line[] l2)
return ol;
}
-/*<asyxml><function type = "bool" signature = "sameside(point, point, line)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="sameside(point,point,line)"><code></asyxml>*/
bool sameside(point M, point P, line l)
{/*<asyxml></code><documentation>Return 'true' iff 'M' and 'N' are same side of the line (or on the line) 'l'.</documentation></function></asyxml>*/
pair A = l.A, B = l.B, m = M, p = P;
@@ -1634,26 +1644,26 @@ bool sameside(point M, point P, line l)
// return dot(locate(Mp - M), locate(Pp - P)) >= 0;
}
-/*<asyxml><function type = "line" signature = "line(segment)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(segment)"><code></asyxml>*/
line line(segment s)
{/*<asyxml></code><documentation>Return the line passing through 's.A'
and 's.B'.</documentation></function></asyxml>*/
return line(s.A, s.B);
}
-/*<asyxml><function type = "segment" signature = "segment(line)"><code></asyxml>*/
+/*<asyxml><function type="segment" signature="segment(line)"><code></asyxml>*/
segment segment(line l)
{/*<asyxml></code><documentation>Return the segment whose extremities
are 'l.A' and 'l.B'.</documentation></function></asyxml>*/
return segment(l.A, l.B);
}
-/*<asyxml><function type = "point" signature = "midpoint(segment)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="midpoint(segment)"><code></asyxml>*/
point midpoint(segment s)
{/*<asyxml></code><documentation>Return the midpoint of 's'.</documentation></function></asyxml>*/
return 0.5 * (s.A + s.B);
}
-/*<asyxml><function type = "void" signature = "write(line)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="write(line)"><code></asyxml>*/
void write(explicit line l)
{/*<asyxml></code><documentation>Write some informations about 'l'.</documentation></function></asyxml>*/
write("A = "+(string)((pair)l.A));
@@ -1669,7 +1679,7 @@ void write(explicit line l)
write("origin = "+(string) l.origin);
}
-/*<asyxml><function type = "void" signature = "write(explicit segment)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="write(explicit segment)"><code></asyxml>*/
void write(explicit segment s)
{/*<asyxml></code><documentation>Write some informations about 's'.</documentation></function></asyxml>*/
write("A = "+(string)((pair)s.A));
@@ -1683,7 +1693,7 @@ void write(explicit segment s)
write("origin = "+(string) s.origin);
}
-/*<asyxml><operator type = "bool" signature = "==(line, line)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="==(line,line)"><code></asyxml>*/
bool operator ==(line l1, line l2)
{/*<asyxml></code><documentation>Provide the test 'line == line'.</documentation></operator></asyxml>*/
return (collinear(l1.u, l2.u) &&
@@ -1691,13 +1701,13 @@ bool operator ==(line l1, line l2)
l1.extendA == l2.extendA && l1.extendB == l2.extendB);
}
-/*<asyxml><operator type = "bool" signature = "!=(line, line)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="!=(line,line)"><code></asyxml>*/
bool operator !=(line l1, line l2)
{/*<asyxml></code><documentation>Provide the test 'line != line'.</documentation></operator></asyxml>*/
return !(l1 == l2);
}
-/*<asyxml><operator type = "bool" signature = "@(point, line)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="@(point,line)"><code></asyxml>*/
bool operator @(point m, line l)
{/*<asyxml></code><documentation>Provide the test 'point @ line'.
Return true iff 'm' is on the 'l'.</documentation></operator></asyxml>*/
@@ -1709,19 +1719,19 @@ bool operator @(point m, line l)
return sameside(M, l.B, l.A);
}
-/*<asyxml><function type = "coordsys" signature = "coordsys(line)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="coordsys(line)"><code></asyxml>*/
coordsys coordsys(line l)
{/*<asyxml></code><documentation>Return the coordinate system in which 'l' is defined.</documentation></function></asyxml>*/
return l.A.coordsys;
}
-/*<asyxml><function type = "line" signature = "reverse(line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="reverse(line)"><code></asyxml>*/
line reverse(line l)
{/*<asyxml></code><documentation>Permute the points 'A' and 'B' of 'l' and so its orientation.</documentation></function></asyxml>*/
return line(l.B, l.extendB, l.A, l.extendA);
}
-/*<asyxml><function type = "line" signature = "extend(line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="extend(line)"><code></asyxml>*/
line extend(line l)
{/*<asyxml></code><documentation>Return the infinite line passing through 'l.A' and 'l.B'.</documentation></function></asyxml>*/
line ol = l.copy();
@@ -1730,7 +1740,7 @@ line extend(line l)
return ol;
}
-/*<asyxml><function type = "line" signature = "complementary(explicit line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="complementary(explicit line)"><code></asyxml>*/
line complementary(explicit line l)
{/*<asyxml></code><documentation>Return the complementary of a half-line with respect of
the full line 'l'.</documentation></function></asyxml>*/
@@ -1742,7 +1752,7 @@ line complementary(explicit line l)
return line(origin, false, ptdir);
}
-/*<asyxml><function type = "line[]" signature = "complementary(explicit segment)"><code></asyxml>*/
+/*<asyxml><function type="line[]" signature="complementary(explicit segment)"><code></asyxml>*/
line[] complementary(explicit segment s)
{/*<asyxml></code><documentation>Return the two half-lines of origin 's.A' and 's.B' respectively.</documentation></function></asyxml>*/
line[] ol = new line[2];
@@ -1751,25 +1761,25 @@ line[] complementary(explicit segment s)
return ol;
}
-/*<asyxml><function type = "line" signature = "Ox(coordsys)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="Ox(coordsys)"><code></asyxml>*/
line Ox(coordsys R = currentcoordsys)
{/*<asyxml></code><documentation>Return the x-axis of 'R'.</documentation></function></asyxml>*/
return line(point(R, (0, 0)), point(R, E));
}
-/*<asyxml><constant type = "line" signature = "Ox"><code></asyxml>*/
+/*<asyxml><constant type = "line" signature="Ox"><code></asyxml>*/
restricted line Ox = Ox();/*<asyxml></code><documentation>the x-axis of
the default coordinate system.</documentation></constant></asyxml>*/
-/*<asyxml><function type = "line" signature = "Oy(coordsys)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="Oy(coordsys)"><code></asyxml>*/
line Oy(coordsys R = currentcoordsys)
{/*<asyxml></code><documentation>Return the y-axis of 'R'.</documentation></function></asyxml>*/
return line(point(R, (0, 0)), point(R, N));
}
-/*<asyxml><constant type = "line" signature = "Oy"><code></asyxml>*/
+/*<asyxml><constant type = "line" signature="Oy"><code></asyxml>*/
restricted line Oy = Oy();/*<asyxml></code><documentation>the y-axis of
the default coordinate system.</documentation></constant></asyxml>*/
-/*<asyxml><function type = "line" signature = "line(real, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(real,point)"><code></asyxml>*/
line line(real a, point A = point(currentcoordsys, (0, 0)))
{/*<asyxml></code><documentation>Return the line passing through 'A' with an
angle (in the coordinate system of A) 'a' in degrees.
@@ -1785,7 +1795,7 @@ line line(int a, point A = point(currentcoordsys, (0, 0)))
return line((real)a, A);
}
-/*<asyxml><function type = "line" signature = "line(coordsys, real, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(coordsys,real,real)"><code></asyxml>*/
line line(coordsys R = currentcoordsys, real slope, real origin)
{/*<asyxml></code><documentation>Return the line defined by slope and y-intercept relative to 'R'.</documentation></function></asyxml>*/
if (slope == infinity || slope == -infinity)
@@ -1793,7 +1803,7 @@ line line(coordsys R = currentcoordsys, real slope, real origin)
return line(point(R, (0, origin)), point(R, (1, origin + slope)));
}
-/*<asyxml><function type = "line" signature = "line(coordsys, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(coordsys,real,real,real)"><code></asyxml>*/
line line(coordsys R = currentcoordsys, real a, real b, real c)
{/*<asyxml></code><documentation>Retrun the line defined by equation relative to 'R'.</documentation></function></asyxml>*/
if (a == 0 && b == 0) abort("line: inconsistent equation...");
@@ -1802,29 +1812,29 @@ line line(coordsys R = currentcoordsys, real a, real b, real c)
return line(point(R, M), point(R, M + (-b, a)));
}
-/*<asyxml><function type = "line" signature = "vline(coordsys)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="vline(coordsys)"><code></asyxml>*/
line vline(coordsys R = currentcoordsys)
{/*<asyxml></code><documentation>Return a vertical line in 'R' passing through the origin of 'R'.</documentation></function></asyxml>*/
point P = point(R, (0, 0));
point PP = point(R, (R.O + N)/R);
return line(P, PP);
}
-/*<asyxml><constant type = "line" signature = "vline"><code></asyxml>*/
+/*<asyxml><constant type = "line" signature="vline"><code></asyxml>*/
restricted line vline = vline();/*<asyxml></code><documentation>The vertical line in the current coordinate system passing
through the origin of this system.</documentation></constant></asyxml>*/
-/*<asyxml><function type = "line" signature = "hline(coordsys)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="hline(coordsys)"><code></asyxml>*/
line hline(coordsys R = currentcoordsys)
{/*<asyxml></code><documentation>Return a horizontal line in 'R' passing through the origin of 'R'.</documentation></function></asyxml>*/
point P = point(R, (0, 0));
point PP = point(R, (R.O + E)/R);
return line(P, PP);
}
-/*<asyxml><constant type = "line" signature = "hline"><code></asyxml>*/
+/*<asyxml><constant type = "line" signature="hline"><code></asyxml>*/
line hline = hline();/*<asyxml></code><documentation>The horizontal line in the current coordinate system passing
through the origin of this system.</documentation></constant></asyxml>*/
-/*<asyxml><function type = "line" signature = "changecoordsys(coordsys, line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="changecoordsys(coordsys,line)"><code></asyxml>*/
line changecoordsys(coordsys R, line l)
{/*<asyxml></code><documentation>Return the line 'l' in the coordinate system 'R'.</documentation></function></asyxml>*/
point A = changecoordsys(R, l.A);
@@ -1832,20 +1842,20 @@ line changecoordsys(coordsys R, line l)
return line(A, B);
}
-/*<asyxml><function type = "transform" signature = "scale(real, line, line, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="scale(real,line,line,bool)"><code></asyxml>*/
transform scale(real k, line l1, line l2, bool safe = false)
{/*<asyxml></code><documentation>Return the dilatation with respect to
'l1' in the direction of 'l2'.</documentation></function></asyxml>*/
return scale(k, l1.A, l1.B, l2.A, l2.B, safe);
}
-/*<asyxml><function type = "transform" signature = "reflect(line)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="reflect(line)"><code></asyxml>*/
transform reflect(line l)
{/*<asyxml></code><documentation>Return the reflect about the line 'l'.</documentation></function></asyxml>*/
return reflect((pair)l.A, (pair)l.B);
}
-/*<asyxml><function type = "transform" signature = "reflect(line, line)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="reflect(line,line)"><code></asyxml>*/
transform reflect(line l1, line l2, bool safe = false)
{/*<asyxml></code><documentation>Return the reflect about the line
'l1' in the direction of 'l2'.</documentation></function></asyxml>*/
@@ -1853,7 +1863,7 @@ transform reflect(line l1, line l2, bool safe = false)
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, path)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,path)"><code></asyxml>*/
point[] intersectionpoints(line l, path g)
{/*<asyxml></code><documentation>Return all points of intersection of the line 'l' with the path 'g'.</documentation></function></asyxml>*/
// TODO utiliser la version 1.44 de intersections(path g, pair p, pair q)
@@ -1905,7 +1915,7 @@ point[] intersectionpoints(line l, path g)
return opp;
}
-/*<asyxml><function type = "point" signature = "intersectionpoint(line, line)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="intersectionpoint(line,line)"><code></asyxml>*/
point intersectionpoint(line l1, line l2)
{/*<asyxml></code><documentation>Return the point of intersection of line 'l1' with 'l2'.
If 'l1' and 'l2' have an infinity or none point of intersection,
@@ -1920,7 +1930,7 @@ point intersectionpoint(line l1, line l2)
return point(R, (infinity, infinity));
}
-/*<asyxml><function type = "line" signature = "parallel(point, line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="parallel(point,line)"><code></asyxml>*/
line parallel(point M, line l)
{/*<asyxml></code><documentation>Return the line parallel to 'l' passing through 'M'.</documentation></function></asyxml>*/
point A, B;
@@ -1932,26 +1942,26 @@ line parallel(point M, line l)
return line(M, M - A + B);
}
-/*<asyxml><function type = "line" signature = "parallel(point, explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="parallel(point,explicit vector)"><code></asyxml>*/
line parallel(point M, explicit vector dir)
{/*<asyxml></code><documentation>Return the line of direction 'dir' and passing through 'M'.</documentation></function></asyxml>*/
return line(M, M + locate(dir));
}
-/*<asyxml><function type = "line" signature = "parallel(point, explicit pair)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="parallel(point,explicit pair)"><code></asyxml>*/
line parallel(point M, explicit pair dir)
{/*<asyxml></code><documentation>Return the line of direction 'dir' and passing through 'M'.</documentation></function></asyxml>*/
return line(M, M + vector(currentcoordsys, dir));
}
-/*<asyxml><function type = "bool" signature = "parallel(line, line)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="parallel(line,line)"><code></asyxml>*/
bool parallel(line l1, line l2, bool strictly = false)
{/*<asyxml></code><documentation>Return 'true' if 'l1' and 'l2' are (strictly ?) parallel.</documentation></function></asyxml>*/
bool coll = collinear(l1.u, l2.u);
return strictly ? coll && (l1 != l2) : coll;
}
-/*<asyxml><function type = "bool" signature = "concurrent(...line[])"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="concurrent(...line[])"><code></asyxml>*/
bool concurrent(... line[] l)
{/*<asyxml></code><documentation>Returns true if all the lines 'l' are concurrent.</documentation></function></asyxml>*/
if (l.length < 3) abort("'concurrent' needs at least for three lines ...");
@@ -1965,13 +1975,13 @@ bool concurrent(... line[] l)
return conc;
}
-/*<asyxml><function type = "transform" signature = "projection(line)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="projection(line)"><code></asyxml>*/
transform projection(line l)
{/*<asyxml></code><documentation>Return the orthogonal projection on 'l'.</documentation></function></asyxml>*/
return projection(l.A, l.B);
}
-/*<asyxml><function type = "transform" signature = "projection(line, line, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="projection(line,line,bool)"><code></asyxml>*/
transform projection(line l1, line l2, bool safe = false)
{/*<asyxml></code><documentation>Return the projection on (AB) in parallel of (CD).
If 'safe = true' and (l1)//(l2) return the identity.
@@ -1979,7 +1989,7 @@ transform projection(line l1, line l2, bool safe = false)
return projection(l1.A, l1.B, l2.A, l2.B, safe);
}
-/*<asyxml><function type = "transform" signature = "vprojection(line, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="vprojection(line,bool)"><code></asyxml>*/
transform vprojection(line l, bool safe = false)
{/*<asyxml></code><documentation>Return the projection on 'l' in parallel of N--S.
If 'safe' is 'true' the projected point keeps the same place if 'l'
@@ -1988,7 +1998,7 @@ transform vprojection(line l, bool safe = false)
return projection(l, line(point(R, N), point(R, S)), safe);
}
-/*<asyxml><function type = "transform" signature = "hprojection(line, bool)"><code></asyxml>*/
+/*<asyxml><function type="transform" signature="hprojection(line,bool)"><code></asyxml>*/
transform hprojection(line l, bool safe = false)
{/*<asyxml></code><documentation>Return the projection on 'l' in parallel of E--W.
If 'safe' is 'true' the projected point keeps the same place if 'l'
@@ -1997,7 +2007,7 @@ transform hprojection(line l, bool safe = false)
return projection(l, line(point(R, E), point(R, W)), safe);
}
-/*<asyxml><function type = "line" signature = "perpendicular(point, line)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="perpendicular(point,line)"><code></asyxml>*/
line perpendicular(point M, line l)
{/*<asyxml></code><documentation>Return the perpendicular line of 'l' passing through 'M'.</documentation></function></asyxml>*/
point Mp = projection(l) * M;
@@ -2005,41 +2015,41 @@ line perpendicular(point M, line l)
return line(Mp, rotate(90, Mp) * A);
}
-/*<asyxml><function type = "line" signature = "perpendicular(point, explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="perpendicular(point,explicit vector)"><code></asyxml>*/
line perpendicular(point M, explicit vector normal)
{/*<asyxml></code><documentation>Return the line passing through 'M'
whose normal is \param{normal}.</documentation></function></asyxml>*/
return perpendicular(M, line(M, M + locate(normal)));
}
-/*<asyxml><function type = "line" signature = "perpendicular(point, explicit pair)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="perpendicular(point,explicit pair)"><code></asyxml>*/
line perpendicular(point M, explicit pair normal)
{/*<asyxml></code><documentation>Return the line passing through 'M'
whose normal is \param{normal} (given in the currentcoordsys).</documentation></function></asyxml>*/
return perpendicular(M, line(M, M + vector(currentcoordsys, normal)));
}
-/*<asyxml><function type = "bool" signature = "perpendicular(line, line)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="perpendicular(line,line)"><code></asyxml>*/
bool perpendicular(line l1, line l2)
{/*<asyxml></code><documentation>Return 'true' if 'l1' and 'l2' are perpendicular.</documentation></function></asyxml>*/
return abs(dot(locate(l1.u), locate(l2.u))) < epsgeo ;
}
-/*<asyxml><function type = "real" signature = "angle(line, coordsys)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="angle(line,coordsys)"><code></asyxml>*/
real angle(line l, coordsys R = coordsys(l))
{/*<asyxml></code><documentation>Return the angle of the oriented line 'l',
in radian, in the interval ]-pi, pi] and relatively to 'R'.</documentation></function></asyxml>*/
return angle(l.u, R, false);
}
-/*<asyxml><function type = "real" signature = "degrees(line, coordsys, bool)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="degrees(line,coordsys,bool)"><code></asyxml>*/
real degrees(line l, coordsys R = coordsys(l))
{/*<asyxml></code><documentation>Returns the angle of the oriented line 'l' in degrees,
in the interval [0, 360[ and relatively to 'R'.</documentation></function></asyxml>*/
return degrees(angle(l, R));
}
-/*<asyxml><function type = "real" signature = "sharpangle(line, line)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="sharpangle(line,line)"><code></asyxml>*/
real sharpangle(line l1, line l2)
{/*<asyxml></code><documentation>Return the measure in radians of the sharp angle formed by 'l1' and 'l2'.</documentation></function></asyxml>*/
vector u1 = l1.u;
@@ -2054,26 +2064,26 @@ real sharpangle(line l1, line l2)
return a12;
}
-/*<asyxml><function type = "real" signature = "angle(line, line)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="angle(line,line)"><code></asyxml>*/
real angle(line l1, line l2)
{/*<asyxml></code><documentation>Return the measure in radians of oriented angle (l1.u, l2.u).</documentation></function></asyxml>*/
return angle(locate(l2.u)) - angle(locate(l1.u));
}
-/*<asyxml><function type = "real" signature = "degrees(line, line)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="degrees(line,line)"><code></asyxml>*/
real degrees(line l1, line l2)
{/*<asyxml></code><documentation>Return the measure in degrees of the
angle formed by the oriented lines 'l1' and 'l2'.</documentation></function></asyxml>*/
return degrees(angle(l1, l2));
}
-/*<asyxml><function type = "real" signature = "sharpdegrees(line, line)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="sharpdegrees(line,line)"><code></asyxml>*/
real sharpdegrees(line l1, line l2)
{/*<asyxml></code><documentation>Return the measure in degrees of the sharp angle formed by 'l1' and 'l2'.</documentation></function></asyxml>*/
return degrees(sharpangle(l1, l2));
}
-/*<asyxml><function type = "line" signature = "bisector(line, line, real, bool)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(line,line,real,bool)"><code></asyxml>*/
line bisector(line l1, line l2, real angle = 0, bool sharp = true)
{/*<asyxml></code><documentation>Return the bisector of the angle formed by 'l1' and 'l2'
rotated by the angle 'angle' (in degrees) around intersection point of 'l1' with 'l2'.
@@ -2096,7 +2106,7 @@ line bisector(line l1, line l2, real angle = 0, bool sharp = true)
return ol;
}
-/*<asyxml><function type = "line" signature = "sector(int, int, line, line, real, bool)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="sector(int,int,line,line,real,bool)"><code></asyxml>*/
line sector(int n = 2, int p = 1, line l1, line l2, real angle = 0, bool sharp = true)
{/*<asyxml></code><documentation>Return the p-th nth-sector of the angle
formed by the oriented line 'l1' and 'l2'
@@ -2117,7 +2127,7 @@ line sector(int n = 2, int p = 1, line l1, line l2, real angle = 0, bool sharp =
return ol;
}
-/*<asyxml><function type = "line" signature = "bisector(point, point, point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(point,point,point,point,real)"><code></asyxml>*/
line bisector(point A, point B, point C, point D, real angle = 0, bool sharp = true)
{/*<asyxml></code><documentation>Return the bisector of the angle formed by the lines (AB) and (CD).
<look href = "#bisector(line, line, real, bool)"/>.</documentation></function></asyxml>*/
@@ -2125,7 +2135,7 @@ line bisector(point A, point B, point C, point D, real angle = 0, bool sharp = t
return bisector(line(P[0], P[1]), line(P[2], P[3]), angle, sharp);
}
-/*<asyxml><function type = "line" signature = "bisector(segment, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(segment,real)"><code></asyxml>*/
line bisector(segment s, real angle = 0)
{/*<asyxml></code><documentation>Return the bisector of the segment line 's' rotated by 'angle' (in degrees) around the
midpoint of 's'.</documentation></function></asyxml>*/
@@ -2135,7 +2145,7 @@ line bisector(segment s, real angle = 0)
return rotate(angle, m) * line(m + dir, m - dir);
}
-/*<asyxml><function type = "line" signature = "bisector(point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(point,point,real)"><code></asyxml>*/
line bisector(point A, point B, real angle = 0)
{/*<asyxml></code><documentation>Return the bisector of the segment line [AB] rotated by 'angle' (in degrees) around the
midpoint of [AB].</documentation></function></asyxml>*/
@@ -2143,7 +2153,7 @@ line bisector(point A, point B, real angle = 0)
return bisector(segment(P[0], P[1]), angle);
}
-/*<asyxml><function type = "real" signature = "distance(point, line)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="distance(point,line)"><code></asyxml>*/
real distance(point M, line l)
{/*<asyxml></code><documentation>Return the distance from 'M' to 'l'.
distance(line, point) is also defined.</documentation></function></asyxml>*/
@@ -2159,7 +2169,7 @@ real distance(line l, point M)
return distance(M, l);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, line, bool, bool, align, pen, arrowbar, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,line,bool,bool,align,pen,arrowbar,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "",
line l, bool dirA = l.extendA, bool dirB = l.extendB,
align align = NoAlign, pen p = currentpen,
@@ -2176,7 +2186,7 @@ void draw(picture pic = currentpicture, Label L = "",
legend, marker, pathModifier);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label[], line[], align, pen[], arrowbar, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label[], line[], align,pen[], arrowbar,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
align align = NoAlign, pen[] p = new pen[],
arrowbar arrow = None,
@@ -2191,7 +2201,7 @@ void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
}
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label[], line[], align, pen, arrowbar, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label[], line[], align,pen,arrowbar,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
align align = NoAlign, pen p,
arrowbar arrow = None,
@@ -2202,7 +2212,7 @@ void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
draw(pic, L, l, align, tp, arrow, legend, marker, pathModifier);
}
-/*<asyxml><function type = "void" signature = "show(picture, line, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="show(picture,line,pen)"><code></asyxml>*/
void show(picture pic = currentpicture, line l, pen p = red)
{/*<asyxml></code><documentation>Draw some informations of 'l'.</documentation></function></asyxml>*/
dot("$A$", (pair)l.A, align = -locate(l.v), p);
@@ -2212,7 +2222,7 @@ void show(picture pic = currentpicture, line l, pen p = red)
draw("$\vec{v}$", locate(l.A)--locate(l.A + l.v), p, Arrow);
}
-/*<asyxml><function type = "point[]" signature = "sameside(point, line, line)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="sameside(point,line,line)"><code></asyxml>*/
point[] sameside(point M, line l1, line l2)
{/*<asyxml></code><documentation>Return two points on 'l1' and 'l2' respectively.
The first point is from the same side of M relatively to 'l2',
@@ -2233,77 +2243,77 @@ point[] sameside(point M, line l1, line l2)
return op;
}
-// /*<asyxml><function type = "void" signature = "markangle(picture, Label, int, real, real, line, line, explicit pair, arrowbar, pen, filltype, margin, marker)"><code></asyxml>*/
-// void markangle(picture pic = currentpicture,
-// Label L = "", int n = 1, real radius = 0, real space = 0,
-// line l1, line l2, explicit pair align = dir(1),
-// arrowbar arrow = None, pen p = currentpen,
-// filltype filltype = NoFill,
-// margin margin = NoMargin, marker marker = nomarker)
-// {/*<asyxml></code><documentation>Mark the angle (l1, l2) aligned in the direction 'align' relative to 'l1'.
-// Commune values for 'align' are dir(real).</documentation></function></asyxml>*/
-// if (parallel(l1, l2, true)) return;
-// real al = degrees(l1, defaultcoordsys);
-// pair O, A, B;
-// if (radius == 0) radius = markangleradius(p);
-// real d = degrees(locate(l1.u));
-// align = rotate(d) * align;
-// if (l1 == l2) {
-// O = midpoint(segment(l1.A, l1.B));
-// A = l1.A;B = l1.B;
-// if (sameside(rotate(sgn(angle(B-A)) * 45, O) * A, O + align, l1)) {radius = -radius;}
-// } else {
-// O = intersectionpoint(extend(l1), extend(l2));
-// pair R = O + align;
-// point [] ss = sameside(point(coordsys(l1), R/coordsys(l1)), l1, l2);
-// A = ss[0];
-// B = ss[1];
-// }
-// markangle(pic = pic, L = L, n = n, radius = radius, space = space,
-// O = O, A = A, B = B,
-// arrow = arrow, p = p, filltype = filltype,
-// margin = margin, marker = marker);
-// }
-
-// /*<asyxml><function type = "void" signature = "markangle(picture, Label, int, real, real, line, line, explicit vector, arrowbar, pen, filltype, margin, marker)"><code></asyxml>*/
-// void markangle(picture pic = currentpicture,
-// Label L = "", int n = 1, real radius = 0, real space = 0,
-// line l1, line l2, explicit vector align,
-// arrowbar arrow = None, pen p = currentpen,
-// filltype filltype = NoFill,
-// margin margin = NoMargin, marker marker = nomarker)
-// {/*<asyxml></code><documentation>Mark the angle (l1, l2) in the direction 'dir' given relatively to 'l1'.</documentation></function></asyxml>*/
-// markangle(pic, L, n, radius, space, l1, l2, (pair)align, arrow,
-// p, filltype, margin, marker);
-// }
-
-/*<asyxml><function type = "void" signature = "markangle(picture, Label, int, real, real, line, line, arrowbar, pen, filltype, margin, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,explicit line,explicit line,explicit pair,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
void markangle(picture pic = currentpicture,
Label L = "", int n = 1, real radius = 0, real space = 0,
- line l1, line l2,
+ explicit line l1, explicit line l2, explicit pair align = dir(1),
arrowbar arrow = None, pen p = currentpen,
filltype filltype = NoFill,
margin margin = NoMargin, marker marker = nomarker)
-{/*<asyxml></code><documentation>Mark the oriented angle (l1, l2).</documentation></function></asyxml>*/
+{/*<asyxml></code><documentation>Mark the angle (l1, l2) aligned in the direction 'align' relative to 'l1'.
+ Commune values for 'align' are dir(real).</documentation></function></asyxml>*/
if (parallel(l1, l2, true)) return;
real al = degrees(l1, defaultcoordsys);
pair O, A, B;
if (radius == 0) radius = markangleradius(p);
real d = degrees(locate(l1.u));
+ align = rotate(d) * align;
if (l1 == l2) {
O = midpoint(segment(l1.A, l1.B));
+ A = l1.A;B = l1.B;
+ if (sameside(rotate(sgn(angle(B-A)) * 45, O) * A, O + align, l1)) {radius = -radius;}
} else {
O = intersectionpoint(extend(l1), extend(l2));
+ pair R = O + align;
+ point [] ss = sameside(point(coordsys(l1), R/coordsys(l1)), l1, l2);
+ A = ss[0];
+ B = ss[1];
}
- A = O + locate(l1.u);
- B = O + locate(l2.u);
markangle(pic = pic, L = L, n = n, radius = radius, space = space,
O = O, A = A, B = B,
arrow = arrow, p = p, filltype = filltype,
margin = margin, marker = marker);
}
-/*<asyxml><function type = "void" signature = "perpendicularmark(picture, line, line, real, pen, int, margin, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,explicit line,explicit line,explicit vector,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
+void markangle(picture pic = currentpicture,
+ Label L = "", int n = 1, real radius = 0, real space = 0,
+ explicit line l1, explicit line l2, explicit vector align,
+ arrowbar arrow = None, pen p = currentpen,
+ filltype filltype = NoFill,
+ margin margin = NoMargin, marker marker = nomarker)
+{/*<asyxml></code><documentation>Mark the angle (l1, l2) in the direction 'dir' given relatively to 'l1'.</documentation></function></asyxml>*/
+ markangle(pic, L, n, radius, space, l1, l2, (pair)align, arrow,
+ p, filltype, margin, marker);
+}
+
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,line,line,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
+// void markangle(picture pic = currentpicture,
+// Label L = "", int n = 1, real radius = 0, real space = 0,
+// explicit line l1, explicit line l2,
+// arrowbar arrow = None, pen p = currentpen,
+// filltype filltype = NoFill,
+// margin margin = NoMargin, marker marker = nomarker)
+// {/*<asyxml></code><documentation>Mark the oriented angle (l1, l2).</documentation></function></asyxml>*/
+// if (parallel(l1, l2, true)) return;
+// real al = degrees(l1, defaultcoordsys);
+// pair O, A, B;
+// if (radius == 0) radius = markangleradius(p);
+// real d = degrees(locate(l1.u));
+// if (l1 == l2) {
+// O = midpoint(segment(l1.A, l1.B));
+// } else {
+// O = intersectionpoint(extend(l1), extend(l2));
+// }
+// A = O + locate(l1.u);
+// B = O + locate(l2.u);
+// markangle(pic = pic, L = L, n = n, radius = radius, space = space,
+// O = O, A = A, B = B,
+// arrow = arrow, p = p, filltype = filltype,
+// margin = margin, marker = marker);
+// }
+
+/*<asyxml><function type="void" signature="perpendicularmark(picture,line,line,real,pen,int,margin,filltype)"><code></asyxml>*/
void perpendicularmark(picture pic = currentpicture, line l1, line l2,
real size = 0, pen p = currentpen, int quarter = 1,
margin margin = NoMargin, filltype filltype = NoFill)
@@ -2319,15 +2329,15 @@ void perpendicularmark(picture pic = currentpicture, line l1, line l2,
// *=======================================================*
// *........................CONICS.........................*
-/*<asyxml><struct signature = "bqe"><code></asyxml>*/
+/*<asyxml><struct signature="bqe"><code></asyxml>*/
struct bqe
{/*<asyxml></code><documentation>Bivariate Quadratic Equation.</documentation></asyxml>*/
- /*<asyxml><property type = "real[]" signature = "a"><code></asyxml>*/
- real[] a;/*<asyxml></code><documentation>a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0</documentation></property><property type = "coordsys" signature = "coordsys"><code></asyxml>*/
+ /*<asyxml><property type = "real[]" signature="a"><code></asyxml>*/
+ real[] a;/*<asyxml></code><documentation>a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0</documentation></property><property type = "coordsys" signature="coordsys"><code></asyxml>*/
coordsys coordsys;/*<asyxml></code></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "bqe" signature = "bqe(coordsys, real, real, real, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="bqe(coordsys,real,real,real,real,real,real)"><code></asyxml>*/
bqe bqe(coordsys R = currentcoordsys,
real a, real b, real c, real d, real e, real f)
{/*<asyxml></code><documentation>Return the bivariate quadratic equation
@@ -2339,7 +2349,7 @@ bqe bqe(coordsys R = currentcoordsys,
return obqe;
}
-/*<asyxml><function type = "bqe" signature = "changecoordsys(coordsys, bqe)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="changecoordsys(coordsys,bqe)"><code></asyxml>*/
bqe changecoordsys(coordsys R, bqe bqe)
{/*<asyxml></code><documentation>Returns the bivariate quadratic equation relatively to 'R'.</documentation></function></asyxml>*/
pair i = coordinates(changecoordsys(R, vector(defaultcoordsys,
@@ -2372,7 +2382,7 @@ bqe changecoordsys(coordsys R, bqe bqe)
return obqe;
}
-/*<asyxml><function type = "bqe" signature = "bqe(point, point, point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="bqe(point,point,point,point,point)"><code></asyxml>*/
bqe bqe(point M1, point M2, point M3, point M4, point M5)
{/*<asyxml></code><documentation>Return the bqe of conic passing through the five points (if possible).</documentation></function></asyxml>*/
coordsys R;
@@ -2407,7 +2417,7 @@ bqe bqe(point M1, point M2, point M3, point M4, point M5)
return bqe;
}
-/*<asyxml><function type = "bool" signature = "samecoordsys(bool...bqe[])"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="samecoordsys(bool...bqe[])"><code></asyxml>*/
bool samecoordsys(bool warn = true ... bqe[] bqes)
{/*<asyxml></code><documentation>Return true if all the bivariate quadratic equations have the same coordinate system.</documentation></function></asyxml>*/
bool ret = true;
@@ -2425,7 +2435,7 @@ system.");
return ret;
}
-/*<asyxml><function type = "real[]" signature = "realquarticroots(real, real, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="real[]" signature="realquarticroots(real,real,real,real,real)"><code></asyxml>*/
real[] realquarticroots(real a, real b, real c, real d, real e)
{/*<asyxml></code><documentation>Return the real roots of the quartic equation ax^4 + b^x3 + cx^2 + dx = 0.</documentation></function></asyxml>*/
static real Fuzz = sqrt(realEpsilon);
@@ -2469,7 +2479,7 @@ real[] realquarticroots(real a, real b, real c, real d, real e)
return roots;
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(bqe, bqe)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(bqe,bqe)"><code></asyxml>*/
point[] intersectionpoints(bqe bqe1, bqe bqe2)
{/*<asyxml></code><documentation>Return the interscetion of the two conic sections whose equations are 'bqe1' and 'bqe2'.</documentation></function></asyxml>*/
coordsys R = bqe1.coordsys;
@@ -2544,13 +2554,13 @@ point[] intersectionpoints(bqe bqe1, bqe bqe2)
return P;
}
-/*<asyxml><struct signature = "conic"><code></asyxml>*/
+/*<asyxml><struct signature="conic"><code></asyxml>*/
struct conic
-{/*<asyxml></code><documentation></documentation><property type = "real" signature = "e, p, h"><code></asyxml>*/
+{/*<asyxml></code><documentation></documentation><property type = "real" signature="e,p,h"><code></asyxml>*/
real e, p, h;/*<asyxml></code><documentation>BE CAREFUL: h = distance(F, D) and p = h * e (http://en.wikipedia.org/wiki/Ellipse)
- While http://mathworld.wolfram.com/ takes p = distance(F, D).</documentation></property><property type = "point" signature = "F"><code></asyxml>*/
- point F;/*<asyxml></code><documentation>Focus.</documentation></property><property type = "line" signature = "D"><code></asyxml>*/
- line D;/*<asyxml></code><documentation>Directrix.</documentation></property><property type = "line" signature = "l"><code></asyxml>*/
+ While http://mathworld.wolfram.com/ takes p = distance(F,D).</documentation></property><property type = "point" signature="F"><code></asyxml>*/
+ point F;/*<asyxml></code><documentation>Focus.</documentation></property><property type = "line" signature="D"><code></asyxml>*/
+ line D;/*<asyxml></code><documentation>Directrix.</documentation></property><property type = "line" signature="l"><code></asyxml>*/
line[] l;/*<asyxml></code><documentation>Case of degenerated conic (not yet implemented !).</documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
@@ -2582,11 +2592,11 @@ conic conic(point F, line l, real e)
return oc;
}
-/*<asyxml><struct signature = "circle"><code></asyxml>*/
+/*<asyxml><struct signature="circle"><code></asyxml>*/
struct circle
{/*<asyxml></code><documentation>All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'circle' to 'path' excepted for drawing routines.</documentation></asyxml>*/
- /*<asyxml><property type = "point" signature = "C"><code></asyxml>*/
+ /*<asyxml><property type = "point" signature="C"><code></asyxml>*/
point C;/*<asyxml></code><documentation>Center</documentation></property><property><code></asyxml>*/
real r;/*<asyxml></code><documentation>Radius</documentation></property><property><code></asyxml>*/
line l;/*<asyxml></code><documentation>If the radius is infinite, this line is used instead of circle.</documentation></property></asyxml>*/
@@ -2602,16 +2612,16 @@ line line(circle c){
return c.l;
}
-/*<asyxml><struct signature = "ellipse"><code></asyxml>*/
+/*<asyxml><struct signature="ellipse"><code></asyxml>*/
struct ellipse
{/*<asyxml></code><documentation>Look at <html><a href = "http://mathworld.wolfram.com/Ellipse.html">http://mathworld.wolfram.com/Ellipse.html</a></html></documentation></asyxml>*/
- /*<asyxml><property type = "point" signature = "F1, F2, C"><code></asyxml>*/
- restricted point F1, F2, C;/*<asyxml></code><documentation>Foci and center.</documentation></property><property type = "real" signature = "a, b, c, e, p"><code></asyxml>*/
- restricted real a, b, c, e, p;/*<asyxml></code></property><property type = "real" signature = "angle"><code></asyxml>*/
- restricted real angle;/*<asyxml></code><documentation>Value is degrees(F1 - F2).</documentation></property><property type = "line" signature = "D1, D2"><code></asyxml>*/
- restricted line D1, D2;/*<asyxml></code><documentation>Directrices.</documentation></property><property type = "line" signature = "l"><code></asyxml>*/
+ /*<asyxml><property type = "point" signature="F1,F2,C"><code></asyxml>*/
+ restricted point F1,F2,C;/*<asyxml></code><documentation>Foci and center.</documentation></property><property type = "real" signature="a,b,c,e,p"><code></asyxml>*/
+ restricted real a,b,c,e,p;/*<asyxml></code></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Value is degrees(F1 - F2).</documentation></property><property type = "line" signature="D1,D2"><code></asyxml>*/
+ restricted line D1,D2;/*<asyxml></code><documentation>Directrices.</documentation></property><property type = "line" signature="l"><code></asyxml>*/
line l;/*<asyxml></code><documentation>If one axis is infinite, this line is used instead of ellipse.</documentation></property></asyxml>*/
- /*<asyxml><method type = "void" signature = "init(point, point, real)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,point,real)"><code></asyxml>*/
void init(point f1, point f2, real a)
{/*<asyxml></code><documentation>Ellipse given by foci and semimajor axis</documentation></method></asyxml>*/
point[] P = standardizecoordsys(f1, f2);
@@ -2645,17 +2655,17 @@ bool degenerate(ellipse el)
return (!finite(el.a) || !finite(el.b));
}
-/*<asyxml><struct signature = "parabola"><code></asyxml>*/
+/*<asyxml><struct signature="parabola"><code></asyxml>*/
struct parabola
-{/*<asyxml></code><documentation>Look at <html><a href = "http://mathworld.wolfram.com/Parabola.html">http://mathworld.wolfram.com/Parabola.html</a></html></documentation><property type = "point" signature = "F, V"><code></asyxml>*/
- restricted point F, V;/*<asyxml></code><documentation>Focus and vertex</documentation></property><property type = "real" signature = "a, p, e = 1"><code></asyxml>*/
- restricted real a, p, e = 1;/*<asyxml></code></property><property type = "real" signature = "angle"><code></asyxml>*/
- restricted real angle;/*<asyxml></code><documentation>Angle, in degrees, of the line (FV).</documentation></property><property type = "line" signature = "D"><code></asyxml>*/
- restricted line D;/*<asyxml></code><documentation>Directrix</documentation></property><property type = "pair" signature = "bmin, bmax"><code></asyxml>*/
+{/*<asyxml></code><documentation>Look at <html><a href = "http://mathworld.wolfram.com/Parabola.html">http://mathworld.wolfram.com/Parabola.html</a></html></documentation><property type = "point" signature="F,V"><code></asyxml>*/
+ restricted point F,V;/*<asyxml></code><documentation>Focus and vertex</documentation></property><property type = "real" signature="a,p,e = 1"><code></asyxml>*/
+ restricted real a,p,e = 1;/*<asyxml></code></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Angle, in degrees, of the line (FV).</documentation></property><property type = "line" signature="D"><code></asyxml>*/
+ restricted line D;/*<asyxml></code><documentation>Directrix</documentation></property><property type = "pair" signature="bmin,bmax"><code></asyxml>*/
pair bmin, bmax;/*<asyxml></code><documentation>The (left, bottom) and (right, top) coordinates of region bounding box for drawing the parabola.
If unset the current picture bounding box is used instead.</documentation></property></asyxml>*/
- /*<asyxml><method type = "void" signature = "init(point, line)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,line)"><code></asyxml>*/
void init(point F, line directrix)
{/*<asyxml></code><documentation>Parabola given by focus and directrix.</documentation></method></asyxml>*/
point[] P = standardizecoordsys(F, directrix.A, directrix.B);
@@ -2669,18 +2679,18 @@ struct parabola
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><struct signature = "hyperbola"><code></asyxml>*/
+/*<asyxml><struct signature="hyperbola"><code></asyxml>*/
struct hyperbola
-{/*<asyxml></code><documentation><html>Look at <a href = "http://mathworld.wolfram.com/Hyperbola.html">http://mathworld.wolfram.com/Hyperbola.html</a></html></documentation><property type = "point" signature = "F1, F2"><code></asyxml>*/
- restricted point F1, F2;/*<asyxml></code><documentation>Foci.</documentation></property><property type = "point" signature = "C, V1, V2"><code></asyxml>*/
- restricted point C, V1, V2;/*<asyxml></code><documentation>Center and vertices.</documentation></property><property type = "real" signature = "a, b, c, e, p"><code></asyxml>*/
- restricted real a, b, c, e, p;/*<asyxml></code><documentation></documentation></property><property type = "real" signature = "angle"><code></asyxml>*/
- restricted real angle;/*<asyxml></code><documentation>Angle, in degrees, of the line (F1F2).</documentation></property><property type = "line" signature = "D1, D2, A1, A2"><code></asyxml>*/
- restricted line D1, D2, A1, A2;/*<asyxml></code><documentation>Directrices and asymptotes.</documentation></property><property type = "pair" signature = "bmin, bmax"><code></asyxml>*/
+{/*<asyxml></code><documentation><html>Look at <a href = "http://mathworld.wolfram.com/Hyperbola.html">http://mathworld.wolfram.com/Hyperbola.html</a></html></documentation><property type = "point" signature="F1,F2"><code></asyxml>*/
+ restricted point F1,F2;/*<asyxml></code><documentation>Foci.</documentation></property><property type = "point" signature="C,V1,V2"><code></asyxml>*/
+ restricted point C,V1,V2;/*<asyxml></code><documentation>Center and vertices.</documentation></property><property type = "real" signature="a,b,c,e,p"><code></asyxml>*/
+ restricted real a,b,c,e,p;/*<asyxml></code><documentation></documentation></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Angle,in degrees,of the line (F1F2).</documentation></property><property type = "line" signature="D1,D2,A1,A2"><code></asyxml>*/
+ restricted line D1,D2,A1,A2;/*<asyxml></code><documentation>Directrices and asymptotes.</documentation></property><property type = "pair" signature="bmin,bmax"><code></asyxml>*/
pair bmin, bmax; /*<asyxml></code><documentation>The (left, bottom) and (right, top) coordinates of region bounding box for drawing the hyperbola.
If unset the current picture bounding box is used instead.</documentation></property></asyxml>*/
- /*<asyxml><method type = "void" signature = "init(point, point, real)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,point,real)"><code></asyxml>*/
void init(point f1, point f2, real a)
{/*<asyxml></code><documentation>Hyperbola given by foci and semimajor axis.</documentation></method></asyxml>*/
point[] P = standardizecoordsys(f1, f2);
@@ -2704,12 +2714,12 @@ struct hyperbola
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><variable type = "int" signature = "conicnodesfactor"><code></asyxml>*/
+/*<asyxml><variable type="int" signature="conicnodesfactor"><code></asyxml>*/
int conicnodesfactor = 1;/*<asyxml></code><documentation>Factor for the node number of all conics.</documentation></variable></asyxml>*/
-/*<asyxml><variable type = "int" signature = "circlenodesnumberfactor"><code></asyxml>*/
+/*<asyxml><variable type="int" signature="circlenodesnumberfactor"><code></asyxml>*/
int circlenodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the node number of circles.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "int" signature = "circlenodesnumber(real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="circlenodesnumber(real)"><code></asyxml>*/
int circlenodesnumber(real r)
{/*<asyxml></code><documentation>Return the number of nodes for drawing a circle of radius 'r'.</documentation></function></asyxml>*/
if (circlenodesnumberfactor < 100)
@@ -2720,7 +2730,7 @@ int circlenodesnumber(real r)
return oi == 0 ? 4 : conicnodesfactor * oi;
}
-/*<asyxml><function type = "int" signature = "circlenodesnumber(real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="circlenodesnumber(real,real,real)"><code></asyxml>*/
int circlenodesnumber(real r, real angle1, real angle2)
{/*<asyxml></code><documentation>Return the number of nodes to draw a circle arc.</documentation></function></asyxml>*/
return (r > 0) ?
@@ -2728,9 +2738,9 @@ int circlenodesnumber(real r, real angle1, real angle2)
ceil(circlenodesnumber(r) * abs((1 - abs(angle1 - angle2)/360)));
}
-/*<asyxml><variable type = "int" signature = "ellispenodesnumberfactor"><code></asyxml>*/
+/*<asyxml><variable type="int" signature="ellispenodesnumberfactor"><code></asyxml>*/
int ellipsenodesnumberfactor = 250;/*<asyxml></code><documentation>Factor for the node number of ellispe (non-circle).</documentation></variable></asyxml>*/
-/*<asyxml><function type = "int" signature = "ellipsenodesnumber(real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="ellipsenodesnumber(real,real)"><code></asyxml>*/
int ellipsenodesnumber(real a, real b)
{/*<asyxml></code><documentation>Return the number of nodes to draw a ellipse of axis 'a' and 'b'.</documentation></function></asyxml>*/
if (ellipsenodesnumberfactor < 250)
@@ -2743,7 +2753,7 @@ int ellipsenodesnumber(real a, real b)
return conicnodesfactor * oi;
}
-/*<asyxml><function type = "int" signature = "ellipsenodesnumber(real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="ellipsenodesnumber(real,real,real)"><code></asyxml>*/
int ellipsenodesnumber(real a, real b, real angle1, real angle2, bool dir)
{/*<asyxml></code><documentation>Return the number of nodes to draw an ellipse arc.</documentation></function></asyxml>*/
real d;
@@ -2757,62 +2767,62 @@ int ellipsenodesnumber(real a, real b, real angle1, real angle2, bool dir)
return n < 5 ? 5 : n;
}
-/*<asyxml><variable type = "int" signature = "parabolanodesnumberfactor"><code></asyxml>*/
+/*<asyxml><variable type="int" signature="parabolanodesnumberfactor"><code></asyxml>*/
int parabolanodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the number of nodes of parabolas.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "int" signature = "parabolanodesnumber(parabola, real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="parabolanodesnumber(parabola,real,real)"><code></asyxml>*/
int parabolanodesnumber(parabola p, real angle1, real angle2)
{/*<asyxml></code><documentation>Return the number of nodes for drawing a parabola.</documentation></function></asyxml>*/
return conicnodesfactor * floor(0.01 * parabolanodesnumberfactor * abs(angle1 - angle2));
}
-/*<asyxml><variable type = "int" signature = "hyperbolanodesnumberfactor"><code></asyxml>*/
+/*<asyxml><variable type="int" signature="hyperbolanodesnumberfactor"><code></asyxml>*/
int hyperbolanodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the number of nodes of hyperbolas.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "int" signature = "hyperbolanodesnumber(hyperbola, real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="hyperbolanodesnumber(hyperbola,real,real)"><code></asyxml>*/
int hyperbolanodesnumber(hyperbola h, real angle1, real angle2)
{/*<asyxml></code><documentation>Return the number of nodes for drawing an hyperbola.</documentation></function></asyxml>*/
return conicnodesfactor * floor(0.01 * hyperbolanodesnumberfactor * abs(angle1 - angle2)/h.e);
}
-/*<asyxml><operator type = "conic" signature = "+(conic, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="+(conic,explicit point)"><code></asyxml>*/
conic operator +(conic c, explicit point M)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return conic(c.F + M, c.D + M, c.e);
}
-/*<asyxml><operator type = "conic" signature = "-(conic, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="-(conic,explicit point)"><code></asyxml>*/
conic operator -(conic c, explicit point M)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return conic(c.F - M, c.D - M, c.e);
}
-/*<asyxml><operator type = "conic" signature = "+(conic, explicit pair)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="+(conic,explicit pair)"><code></asyxml>*/
conic operator +(conic c, explicit pair m)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
point M = point(c.F.coordsys, m);
return conic(c.F + M, c.D + M, c.e);
}
-/*<asyxml><operator type = "conic" signature = "-(conic, explicit pair)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="-(conic,explicit pair)"><code></asyxml>*/
conic operator -(conic c, explicit pair m)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
point M = point(c.F.coordsys, m);
return conic(c.F - M, c.D - M, c.e);
}
-/*<asyxml><operator type = "conic" signature = "+(conic, vector)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="+(conic,vector)"><code></asyxml>*/
conic operator +(conic c, vector v)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return conic(c.F + v, c.D + v, c.e);
}
-/*<asyxml><operator type = "conic" signature = "-(conic, vector)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="-(conic,vector)"><code></asyxml>*/
conic operator -(conic c, vector v)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return conic(c.F - v, c.D - v, c.e);
}
-/*<asyxml><function type = "coordsys" signature = "coordsys(conic)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="coordsys(conic)"><code></asyxml>*/
coordsys coordsys(conic co)
{/*<asyxml></code><documentation>Return the coordinate system of 'co'.</documentation></function></asyxml>*/
return co.F.coordsys;
}
-/*<asyxml><function type = "conic" signature = "changecoordsys(coordsys, conic)"><code></asyxml>*/
+/*<asyxml><function type="conic" signature="changecoordsys(coordsys,conic)"><code></asyxml>*/
conic changecoordsys(coordsys R, conic co)
{/*<asyxml></code><documentation>Change the coordinate system of 'co' to 'R'</documentation></function></asyxml>*/
line l = changecoordsys(R, co.D);
@@ -2823,7 +2833,7 @@ conic changecoordsys(coordsys R, conic co)
/*<asyxml><typedef type = "polarconicroutine" return = "path" params = "conic, real, real, int, bool"><code></asyxml>*/
typedef path polarconicroutine(conic co, real angle1, real angle2, int n, bool direction);/*<asyxml></code><documentation>Routine type used to draw conics from 'angle1' to 'angle2'</documentation></typedef></asyxml>*/
-/*<asyxml><function type = "path" signature = "arcfromfocus(conic, real, real, int, bool)"><code></asyxml>*/
+/*<asyxml><function type="path" signature="arcfromfocus(conic,real,real,int,bool)"><code></asyxml>*/
path arcfromfocus(conic co, real angle1, real angle2, int n = 400, bool direction = CCW)
{/*<asyxml></code><documentation>Return the path of the conic section 'co' from angle1 to angle2 in degrees,
drawing in the given direction, with n nodes.</documentation></function></asyxml>*/
@@ -2859,10 +2869,10 @@ path arcfromfocus(conic co, real angle1, real angle2, int n = 400, bool directio
return (direction ? op : op == nullpath ? op :reverse(op));
}
-/*<asyxml><variable type = "polarconicroutine" signature = "currentpolarconicroutine"><code></asyxml>*/
+/*<asyxml><variable type="polarconicroutine" signature="currentpolarconicroutine"><code></asyxml>*/
polarconicroutine currentpolarconicroutine = arcfromfocus;/*<asyxml></code><documentation>Default routine used to cast conic section to path.</documentation></variable></asyxml>*/
-/*<asyxml><function type = "point" signature = "angpoint(conic, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(conic,real)"><code></asyxml>*/
point angpoint(conic co, real angle)
{/*<asyxml></code><documentation>Return the point of 'co' whose the angular (in degrees)
coordinate is 'angle' (mesured from the focus of 'co', relatively
@@ -2871,20 +2881,20 @@ point angpoint(conic co, real angle)
return point(R, point(arcfromfocus(co, angle, angle, 1, CCW), 0)/R);
}
-/*<asyxml><operator type = "bool" signature = "@(point, conic)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="@(point,conic)"><code></asyxml>*/
bool operator @(point M, conic co)
{/*<asyxml></code><documentation>Return true iff 'M' on 'co'.</documentation></operator></asyxml>*/
if(co.e == 0) return abs(abs(co.F - M) - co.p) < 10 * epsgeo;
return abs(co.e * distance(M, co.D) - abs(co.F - M)) < 10 * epsgeo;
}
-/*<asyxml><function type = "coordsys" signature = "coordsys(ellipse)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="coordsys(ellipse)"><code></asyxml>*/
coordsys coordsys(ellipse el)
{/*<asyxml></code><documentation>Return the coordinate system of 'el'.</documentation></function></asyxml>*/
return el.F1.coordsys;
}
-/*<asyxml><function type = "coordsys" signature = "canonicalcartesiansystem(ellipse)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(ellipse)"><code></asyxml>*/
coordsys canonicalcartesiansystem(ellipse el)
{/*<asyxml></code><documentation>Return the canonical cartesian system of the ellipse 'el'.</documentation></function></asyxml>*/
if(degenerate(el)) return cartesiansystem(el.l.A, el.l.u, el.l.v);
@@ -2894,7 +2904,7 @@ coordsys canonicalcartesiansystem(ellipse el)
return cartesiansystem(O, i, j);
}
-/*<asyxml><function type = "coordsys" signature = "canonicalcartesiansystem(parabola)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(parabola)"><code></asyxml>*/
coordsys canonicalcartesiansystem(parabola p)
{/*<asyxml></code><documentation>Return the canonical cartesian system of a parabola,
so that Origin = vertex of 'p' and directrix: x = -a.</documentation></function></asyxml>*/
@@ -2905,7 +2915,7 @@ coordsys canonicalcartesiansystem(parabola p)
return cartesiansystem(O, i, j);
}
-/*<asyxml><function type = "coordsys" signature = "canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
coordsys canonicalcartesiansystem(hyperbola h)
{/*<asyxml></code><documentation>Return the canonical cartesian system of an hyperbola.</documentation></function></asyxml>*/
pair O = locate(h.C);
@@ -2914,7 +2924,7 @@ coordsys canonicalcartesiansystem(hyperbola h)
return cartesiansystem(O, i, j);
}
-/*<asyxml><function type = "ellipse" signature = "ellipse(point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,real)"><code></asyxml>*/
ellipse ellipse(point F1, point F2, real a)
{/*<asyxml></code><documentation>Return the ellipse whose the foci are 'F1' and 'F2'
and the semimajor axis is 'a'.</documentation></function></asyxml>*/
@@ -2923,10 +2933,10 @@ ellipse ellipse(point F1, point F2, real a)
return oe;
}
-/*<asyxml><constant type = "bool" signature = "byfoci, byvertices"><code></asyxml>*/
+/*<asyxml><constant type = "bool" signature="byfoci,byvertices"><code></asyxml>*/
restricted bool byfoci = true, byvertices = false;/*<asyxml></code><documentation>Constants useful for the routine 'hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)'</documentation></constant></asyxml>*/
-/*<asyxml><function type = "hyperbola" signature = "hyperbola(point, point, real, bool)"><code></asyxml>*/
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,point,real,bool)"><code></asyxml>*/
hyperbola hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)
{/*<asyxml></code><documentation>if 'byfoci = true':
return the hyperbola whose the foci are 'P1' and 'P2'
@@ -2946,7 +2956,7 @@ hyperbola hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)
return oh;
}
-/*<asyxml><function type = "ellipse" signature = "ellipse(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,point)"><code></asyxml>*/
ellipse ellipse(point F1, point F2, point M)
{/*<asyxml></code><documentation>Return the ellipse passing through 'M' whose the foci are 'F1' and 'F2'.</documentation></function></asyxml>*/
point P[] = standardizecoordsys(false, F1, F2, M);
@@ -2954,7 +2964,7 @@ ellipse ellipse(point F1, point F2, point M)
return ellipse(F1, F2, finite(a) ? a/2 : a);
}
-/*<asyxml><function type = "ellipse" signature = "ellipse(point, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="ellipse" signature="ellipse(point,real,real,real)"><code></asyxml>*/
ellipse ellipse(point C, real a, real b, real angle = 0)
{/*<asyxml></code><documentation>Return the ellipse centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
semiminor axis 'b' along the perpendicular.</documentation></function></asyxml>*/
@@ -2979,7 +2989,7 @@ ellipse ellipse(point C, real a, real b, real angle = 0)
return oe;
}
-/*<asyxml><function type = "ellipse" signature = "ellipse(bqe)"><code></asyxml>*/
+/*<asyxml><function type="ellipse" signature="ellipse(bqe)"><code></asyxml>*/
ellipse ellipse(bqe bqe)
{/*<asyxml></code><documentation>Return the ellipse a[0] * x^2 + a[1] * xy + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
given in the coordinate system of 'bqe' with a[i] = bque.a[i].
@@ -3019,25 +3029,25 @@ ellipse ellipse(bqe bqe)
a, b, degrees(pi/2 - dir - angle(R.i)));
}
-/*<asyxml><function type = "ellipse" signature = "ellipse(point, point, point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,point,point,point)"><code></asyxml>*/
ellipse ellipse(point M1, point M2, point M3, point M4, point M5)
{/*<asyxml></code><documentation>Return the ellipse passing through the five points (if possible)</documentation></function></asyxml>*/
return ellipse(bqe(M1, M2, M3, M4, M5));
}
-/*<asyxml><function type = "bool" signature = "inside(ellipse, point)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="inside(ellipse,point)"><code></asyxml>*/
bool inside(ellipse el, point M)
{/*<asyxml></code><documentation>Return 'true' iff 'M' is inside 'el'.</documentation></function></asyxml>*/
return abs(el.F1 - M) + abs(el.F2 - M) - 2 * el.a < -epsgeo;
}
-/*<asyxml><function type = "bool" signature = "inside(parabola, point)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="inside(parabola,point)"><code></asyxml>*/
bool inside(parabola p, point M)
{/*<asyxml></code><documentation>Return 'true' if 'M' is inside 'p'.</documentation></function></asyxml>*/
return distance(p.D, M) - abs(p.F - M) > epsgeo;
}
-/*<asyxml><function type = "parabola" signature = "parabola(point, line)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(point,line)"><code></asyxml>*/
parabola parabola(point F, line l)
{/*<asyxml></code><documentation>Return the parabola whose focus is 'F' and directrix is 'l'.</documentation></function></asyxml>*/
parabola op;
@@ -3045,7 +3055,7 @@ parabola parabola(point F, line l)
return op;
}
-/*<asyxml><function type = "parabola" signature = "parabola(point, point)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(point,point)"><code></asyxml>*/
parabola parabola(point F, point vertex)
{/*<asyxml></code><documentation>Return the parabola whose focus is 'F' and vertex is 'vertex'.</documentation></function></asyxml>*/
parabola op;
@@ -3056,7 +3066,7 @@ parabola parabola(point F, point vertex)
return op;
}
-/*<asyxml><function type = "parabola" signature = "parabola(point, real, real)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(point,real,real)"><code></asyxml>*/
parabola parabola(point F, real a, real angle)
{/*<asyxml></code><documentation>Return the parabola whose focus is F, latus rectum is 4a and
the angle of the axis of symmetry (in the coordinate system of F) is 'angle'.</documentation></function></asyxml>*/
@@ -3068,7 +3078,7 @@ parabola parabola(point F, real a, real angle)
return op;
}
-/*<asyxml><function type = "bool" signature = "isparabola(bqe)"><code></asyxml>*/
+/*<asyxml><function type="bool" signature="isparabola(bqe)"><code></asyxml>*/
bool isparabola(bqe bqe)
{/*<asyxml></code><documentation>Return true iff 'bqe' is the equation of a parabola.</documentation></function></asyxml>*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
@@ -3077,7 +3087,7 @@ bool isparabola(bqe bqe)
return (abs(delta) > epsgeo && abs(b^2 - a * c) < epsgeo);
}
-/*<asyxml><function type = "parabola" signature = "parabola(bqe)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(bqe)"><code></asyxml>*/
parabola parabola(bqe bqe)
{/*<asyxml></code><documentation>Return the parabola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
<url href = "http://mathworld.wolfram.com/QuadraticCurve.html"/>
@@ -3119,7 +3129,7 @@ parabola parabola(bqe bqe)
return op;
}
-/*<asyxml><function type = "parabola" signature = "parabola(point, point, point, line)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(point,point,point,line)"><code></asyxml>*/
parabola parabola(point M1, point M2, point M3, line l)
{/*<asyxml></code><documentation>Return the parabola passing through the three points with its directix
parallel to the line 'l'.</documentation></function></asyxml>*/
@@ -3145,13 +3155,13 @@ parabola parabola(point M1, point M2, point M3, line l)
return parabola(changecoordsys(R, bqe(Rp, 1, 0, 0, coef[0], coef[1], coef[2])));
}
-/*<asyxml><function type = "parabola" signature = "parabola(point, point, point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="parabola" signature="parabola(point,point,point,point,point)"><code></asyxml>*/
parabola parabola(point M1, point M2, point M3, point M4, point M5)
{/*<asyxml></code><documentation>Return the parabola passing through the five points.</documentation></function></asyxml>*/
return parabola(bqe(M1, M2, M3, M4, M5));
}
-/*<asyxml><function type = "hyperbola" signature = "hyperbola(point, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,real,real,real)"><code></asyxml>*/
hyperbola hyperbola(point C, real a, real b, real angle = 0)
{/*<asyxml></code><documentation>Return the hyperbola centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
semiminor axis 'b' along the perpendicular.</documentation></function></asyxml>*/
@@ -3165,7 +3175,7 @@ hyperbola hyperbola(point C, real a, real b, real angle = 0)
return oh;
}
-/*<asyxml><function type = "hyperbola" signature = "hyperbola(bqe)"><code></asyxml>*/
+/*<asyxml><function type="hyperbola" signature="hyperbola(bqe)"><code></asyxml>*/
hyperbola hyperbola(bqe bqe)
{/*<asyxml></code><documentation>Return the hyperbola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
<url href = "http://mathworld.wolfram.com/QuadraticCurve.html"/>
@@ -3192,19 +3202,19 @@ hyperbola hyperbola(bqe bqe)
return hyperbola(C, a, b, degrees(-dir - angle(R.i)));
}
-/*<asyxml><function type = "hyperbola" signature = "hyperbola(point, point, point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,point,point,point,point)"><code></asyxml>*/
hyperbola hyperbola(point M1, point M2, point M3, point M4, point M5)
{/*<asyxml></code><documentation>Return the hyperbola passing through the five points (if possible).</documentation></function></asyxml>*/
return hyperbola(bqe(M1, M2, M3, M4, M5));
}
-/*<asyxml><function type = "hyperbola" signature = "conj(hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="hyperbola" signature="conj(hyperbola)"><code></asyxml>*/
hyperbola conj(hyperbola h)
{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
return hyperbola(h.C, h.b, h.a, 90 + h.angle);
}
-/*<asyxml><function type = "circle" signature = "circle(explicit point, real)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(explicit point,real)"><code></asyxml>*/
circle circle(explicit point C, real r)
{/*<asyxml></code><documentation>Circle given by center and radius.</documentation></function></asyxml>*/
circle oc = new circle;
@@ -3214,7 +3224,7 @@ circle circle(explicit point C, real r)
return oc;
}
-/*<asyxml><function type = "circle" signature = "circle(point, point)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(point,point)"><code></asyxml>*/
circle circle(point A, point B)
{/*<asyxml></code><documentation>Return the circle of diameter AB.</documentation></function></asyxml>*/
real r;
@@ -3234,13 +3244,13 @@ circle circle(point A, point B)
return oc;
}
-/*<asyxml><function type = "circle" signature = "circle(segment)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(segment)"><code></asyxml>*/
circle circle(segment s)
{/*<asyxml></code><documentation>Return the circle of diameter 's'.</documentation></function></asyxml>*/
return circle(s.A, s.B);
}
-/*<asyxml><function type = "point" signature = "circumcenter(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="circumcenter(point,point,point)"><code></asyxml>*/
point circumcenter(point A, point B, point C)
{/*<asyxml></code><documentation>Return the circumcenter of triangle ABC.</documentation></function></asyxml>*/
point[] P = standardizecoordsys(A, B, C);
@@ -3252,7 +3262,7 @@ point circumcenter(point A, point B, point C)
return point(R, pp/R);
}
-/*<asyxml><function type = "circle" signature = "circle(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(point,point,point)"><code></asyxml>*/
circle circle(point A, point B, point C)
{/*<asyxml></code><documentation>Return the circumcircle of the triangle ABC.</documentation></function></asyxml>*/
if(collinear(A - B, A - C)) {
@@ -3266,13 +3276,13 @@ circle circle(point A, point B, point C)
return circle(c, abs(c - A));
}
-/*<asyxml><function type = "circle" signature = "circumcircle(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circumcircle(point,point,point)"><code></asyxml>*/
circle circumcircle(point A, point B, point C)
{/*<asyxml></code><documentation>Return the circumcircle of the triangle ABC.</documentation></function></asyxml>*/
return circle(A, B, C);
}
-/*<asyxml><operator type = "circle" signature = "*(real, explicit circle)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="*(real,explicit circle)"><code></asyxml>*/
circle operator *(real x, explicit circle c)
{/*<asyxml></code><documentation>Multiply the radius of 'c'.</documentation></operator></asyxml>*/
return finite(c.r) ? circle(c.C, x * c.r) : c;
@@ -3281,7 +3291,7 @@ circle operator *(int x, explicit circle c)
{
return finite(c.r) ? circle(c.C, x * c.r) : c;
}
-/*<asyxml><operator type = "circle" signature = "/(explicit circle, real)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="/(explicit circle,real)"><code></asyxml>*/
circle operator /(explicit circle c, real x)
{/*<asyxml></code><documentation>Divide the radius of 'c'</documentation></operator></asyxml>*/
return finite(c.r) ? circle(c.C, c.r/x) : c;
@@ -3290,44 +3300,44 @@ circle operator /(explicit circle c, int x)
{
return finite(c.r) ? circle(c.C, c.r/x) : c;
}
-/*<asyxml><operator type = "circle" signature = "+(explicit circle, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="+(explicit circle,explicit point)"><code></asyxml>*/
circle operator +(explicit circle c, explicit point M)
{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
return circle(c.C + M, c.r);
}
-/*<asyxml><operator type = "circle" signature = "-(explicit circle, explicit point)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="-(explicit circle,explicit point)"><code></asyxml>*/
circle operator -(explicit circle c, explicit point M)
{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
return circle(c.C - M, c.r);
}
-/*<asyxml><operator type = "circle" signature = "+(explicit circle, pair)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="+(explicit circle,pair)"><code></asyxml>*/
circle operator +(explicit circle c, pair m)
{/*<asyxml></code><documentation>Translation of 'c'.
'm' represent coordinates in the coordinate system where 'c' is defined.</documentation></operator></asyxml>*/
return circle(c.C + m, c.r);
}
-/*<asyxml><operator type = "circle" signature = "-(explicit circle, pair)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="-(explicit circle,pair)"><code></asyxml>*/
circle operator -(explicit circle c, pair m)
{/*<asyxml></code><documentation>Translation of 'c'.
'm' represent coordinates in the coordinate system where 'c' is defined.</documentation></operator></asyxml>*/
return circle(c.C - m, c.r);
}
-/*<asyxml><operator type = "circle" signature = "+(explicit circle, vector)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="+(explicit circle,vector)"><code></asyxml>*/
circle operator +(explicit circle c, vector m)
{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
return circle(c.C + m, c.r);
}
-/*<asyxml><operator type = "circle" signature = "-(explicit circle, vector)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="-(explicit circle,vector)"><code></asyxml>*/
circle operator -(explicit circle c, vector m)
{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
return circle(c.C - m, c.r);
}
-/*<asyxml><operator type = "real" signature = "^(point, explicit circle)"><code></asyxml>*/
+/*<asyxml><operator type = "real" signature="^(point,explicit circle)"><code></asyxml>*/
real operator ^(point M, explicit circle c)
{/*<asyxml></code><documentation>The power of 'M' with respect to the circle 'c'</documentation></operator></asyxml>*/
return xpart((abs(locate(M) - locate(c.C)), c.r)^2);
}
-/*<asyxml><operator type = "bool" signature = "@(point, explicit circle)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="@(point,explicit circle)"><code></asyxml>*/
bool operator @(point M, explicit circle c)
{/*<asyxml></code><documentation>Return true iff 'M' is on the circle 'c'.</documentation></operator></asyxml>*/
return finite(c.r) ?
@@ -3335,13 +3345,13 @@ bool operator @(point M, explicit circle c)
M @ c.l;
}
-/*<asyxml><operator type = "ellipse" signature = "cast(circle)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="cast(circle)"><code></asyxml>*/
ellipse operator cast(circle c)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
return finite(c.r) ? ellipse(c.C, c.r, c.r, 0) : ellipse(c.l.A, c.l.B, infinity);
}
-/*<asyxml><operator type = "circle" signature = "cast(ellipse)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="cast(ellipse)"><code></asyxml>*/
circle operator cast(ellipse el)
{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
circle oc;
@@ -3353,7 +3363,7 @@ circle operator cast(ellipse el)
return oc;
}
-/*<asyxml><operator type = "ellipse" signature = "cast(conic)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="cast(conic)"><code></asyxml>*/
ellipse operator cast(conic co)
{/*<asyxml></code><documentation>Cast a conic to an ellipse (can be a circle).</documentation></operator></asyxml>*/
if(degenerate(co) && co.e < 1) return ellipse(co.l[0].A, co.l[0].B, infinity);
@@ -3371,7 +3381,7 @@ ellipse operator cast(conic co)
return oe;
}
-/*<asyxml><operator type = "parabola" signature = "cast(conic)"><code></asyxml>*/
+/*<asyxml><operator type = "parabola" signature="cast(conic)"><code></asyxml>*/
parabola operator cast(conic co)
{/*<asyxml></code><documentation>Cast a conic to a parabola.</documentation></operator></asyxml>*/
parabola op;
@@ -3380,13 +3390,13 @@ parabola operator cast(conic co)
return op;
}
-/*<asyxml><operator type = "conic" signature = "cast(parabola)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="cast(parabola)"><code></asyxml>*/
conic operator cast(parabola p)
{/*<asyxml></code><documentation>Cast a parabola to a conic section.</documentation></operator></asyxml>*/
return conic(p.F, p.D, 1);
}
-/*<asyxml><operator type = "hyperbola" signature = "cast(conic)"><code></asyxml>*/
+/*<asyxml><operator type = "hyperbola" signature="cast(conic)"><code></asyxml>*/
hyperbola operator cast(conic co)
{/*<asyxml></code><documentation>Cast a conic section to an hyperbola.</documentation></operator></asyxml>*/
hyperbola oh;
@@ -3403,13 +3413,13 @@ hyperbola operator cast(conic co)
return oh;
}
-/*<asyxml><operator type = "conic" signature = "cast(hyperbola)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="cast(hyperbola)"><code></asyxml>*/
conic operator cast(hyperbola h)
{/*<asyxml></code><documentation>Hyperbola to conic section.</documentation></operator></asyxml>*/
return conic(h.F1, h.D1, h.e);
}
-/*<asyxml><operator type = "conic" signature = "cast(ellipse)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="cast(ellipse)"><code></asyxml>*/
conic operator cast(ellipse el)
{/*<asyxml></code><documentation>Ellipse to conic section.</documentation></operator></asyxml>*/
conic oc;
@@ -3432,13 +3442,13 @@ conic operator cast(ellipse el)
return oc;
}
-/*<asyxml><operator type = "conic" signature = "cast(circle)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="cast(circle)"><code></asyxml>*/
conic operator cast(circle c)
{/*<asyxml></code><documentation>Circle to conic section.</documentation></operator></asyxml>*/
return (conic)((ellipse)c);
}
-/*<asyxml><operator type = "circle" signature = "cast(conic)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="cast(conic)"><code></asyxml>*/
circle operator cast(conic c)
{/*<asyxml></code><documentation>Conic section to circle.</documentation></operator></asyxml>*/
ellipse el = (ellipse)c;
@@ -3451,7 +3461,7 @@ circle operator cast(conic c)
return oc;
}
-/*<asyxml><operator type = "ellipse" signature = "*(transform, ellipse)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="*(transform,ellipse)"><code></asyxml>*/
ellipse operator *(transform t, ellipse el)
{/*<asyxml></code><documentation>Provide transform * ellipse.</documentation></operator></asyxml>*/
if(!degenerate(el)) {
@@ -3466,7 +3476,7 @@ ellipse operator *(transform t, ellipse el)
return ellipse(t * el.l.A, t * el.l.B, infinity);
}
-/*<asyxml><operator type = "parabola" signature = "*(transform, parabola)"><code></asyxml>*/
+/*<asyxml><operator type = "parabola" signature="*(transform,parabola)"><code></asyxml>*/
parabola operator *(transform t, parabola p)
{/*<asyxml></code><documentation>Provide transform * parabola.</documentation></operator></asyxml>*/
point[] P;
@@ -3480,7 +3490,7 @@ parabola operator *(transform t, parabola p)
return op;
}
-/*<asyxml><operator type = "ellipse" signature = "*(transform, circle)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="*(transform,circle)"><code></asyxml>*/
ellipse operator *(transform t, circle c)
{/*<asyxml></code><documentation>Provide transform * circle.
For example, 'circle C = scale(2) * circle' and 'ellipse E = xscale(2) * circle' are valid
@@ -3488,7 +3498,7 @@ ellipse operator *(transform t, circle c)
return t * ((ellipse)c);
}
-/*<asyxml><operator type = "hyperbola" signature = "*(transform, hyperbola)"><code></asyxml>*/
+/*<asyxml><operator type = "hyperbola" signature="*(transform,hyperbola)"><code></asyxml>*/
hyperbola operator *(transform t, hyperbola h)
{/*<asyxml></code><documentation>Provide transform * hyperbola.</documentation></operator></asyxml>*/
if (t == identity()) {
@@ -3511,7 +3521,7 @@ hyperbola operator *(transform t, hyperbola h)
return oe;
}
-/*<asyxml><operator type = "conic" signature = "*(transform, conic)"><code></asyxml>*/
+/*<asyxml><operator type = "conic" signature="*(transform,conic)"><code></asyxml>*/
conic operator *(transform t, conic co)
{/*<asyxml></code><documentation>Provide transform * conic.</documentation></operator></asyxml>*/
if(co.e < 1) return (t * ((ellipse)co));
@@ -3519,58 +3529,58 @@ conic operator *(transform t, conic co)
return (t * ((hyperbola)co));
}
-/*<asyxml><operator type = "ellipse" signature = "*(real, ellipse)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="*(real,ellipse)"><code></asyxml>*/
ellipse operator *(real x, ellipse el)
{/*<asyxml></code><documentation>Identical but more efficient (rapid) than 'scale(x, el.C) * el'.</documentation></operator></asyxml>*/
return degenerate(el) ? el : ellipse(el.C, x * el.a, x * el.b, el.angle);
}
-/*<asyxml><operator type = "ellipse" signature = "/(ellipse, real)"><code></asyxml>*/
+/*<asyxml><operator type = "ellipse" signature="/(ellipse,real)"><code></asyxml>*/
ellipse operator /(ellipse el, real x)
{/*<asyxml></code><documentation>Identical but more efficient (rapid) than 'scale(1/x, el.C) * el'.</documentation></operator></asyxml>*/
return degenerate(el) ? el : ellipse(el.C, el.a/x, el.b/x, el.angle);
}
-/*<asyxml><function type = "path" signature = "arcfromcenter(ellipse, real, real, int, bool)"><code></asyxml>*/
+/*<asyxml><function type="path" signature="arcfromcenter(ellipse,real,real,int,bool)"><code></asyxml>*/
path arcfromcenter(ellipse el, real angle1, real angle2,
- bool direction = CCW,
- int n = ellipsenodesnumber(el.a, el.b, angle1, angle2, direction))
+ bool direction=CCW,
+ int n=ellipsenodesnumber(el.a,el.b,angle1,angle2,direction))
{/*<asyxml></code><documentation>Return the path of the ellipse 'el' from angle1 to angle2 in degrees,
drawing in the given direction, with n nodes.
- The angles are mesured relatively to the axis (C, x-axis) where C is
+ The angles are mesured relatively to the axis (C,x-axis) where C is
the center of the ellipse.</documentation></function></asyxml>*/
if(degenerate(el)) abort("arcfromcenter: can not convert degenerated ellipse to path.");
if (angle1 > angle2)
return reverse(arcfromcenter(el, angle2, angle1, !direction, n));
- path op;
- coordsys Rp = coordsys(el);
+
+ guide op;
+ coordsys Rp=coordsys(el);
if (n < 1) return op;
+
interpolate join = operator ..;
real stretch = max(el.a/el.b, el.b/el.a);
+
if (stretch > 10) {
n *= floor(stretch/5);
join = operator --;
}
+
real a1 = direction ? radians(angle1) : radians(angle2);
real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
- real step = (a2 - a1)/(n != 1 ? n - 1 : 1);
+ real step=(a2 - a1)/(n != 1 ? n-1 : 1);
real a, r;
real da = radians(el.angle);
- real a3 = angle((cos(a1)/el.a, sin(a1)/el.b));
- real a3 = (a3>=0) ? a3 : a3 + 2pi;
- real a4 = angle((cos(a2)/el.a, sin(a2)/el.b));
- real a4 = (a4>=0) ? a4 : a4 + 2pi;
- real step = (a4 - a3)/(n != 1 ? n - 1 : 1);
- for (int i = 0; i < n; ++i) {
- a = a3 + i * step;
- a = angle((el.a * cos(a), el.b * sin(a)));
+
+ for (int i=0; i < n; ++i) {
+ a = a1 + i * step;
r = el.b/sqrt(1 - (el.e * cos(a))^2);
- op = op..Rp * Rp.polar(r, a + da);
+ op = join(op, Rp*Rp.polar(r, da + a));
}
- return shift(el.C.x * Rp.i + el.C.y * Rp.j) * (direction ? op : reverse(op));
+
+ return shift(el.C.x*Rp.i + el.C.y*Rp.j) * (direction ? op : reverse(op));
}
-/*<asyxml><function type = "path" signature = "arcfromcenter(hyperbola, real, real, int, bool)"><code></asyxml>*/
+/*<asyxml><function type="path" signature="arcfromcenter(hyperbola,real,real,int,bool)"><code></asyxml>*/
path arcfromcenter(hyperbola h, real angle1, real angle2,
int n = hyperbolanodesnumber(h, angle1, angle2),
bool direction = CCW)
@@ -3605,7 +3615,7 @@ path arcfromcenter(hyperbola h, real angle1, real angle2,
(direction ? op : op == nullpath ? op : reverse(op));
}
-/*<asyxml><function type = "path" signature = "arcfromcenter(explicit conic, real, real, int, bool)"><code></asyxml>*/
+/*<asyxml><function type="path" signature="arcfromcenter(explicit conic,real,real,int,bool)"><code></asyxml>*/
path arcfromcenter(explicit conic co, real angle1, real angle2,
int n, bool direction = CCW)
{/*<asyxml></code><documentation>Use arcfromcenter(ellipse, ...) or arcfromcenter(hyperbola, ...) depending of
@@ -3621,12 +3631,12 @@ path arcfromcenter(explicit conic co, real angle1, real angle2,
return g;
}
-/*<asyxml><constant type = "polarconicroutine" signature = "fromCenter"><code></asyxml>*/
+/*<asyxml><constant type = "polarconicroutine" signature="fromCenter"><code></asyxml>*/
restricted polarconicroutine fromCenter = arcfromcenter;/*<asyxml></code><documentation></documentation></constant></asyxml>*/
-/*<asyxml><constant type = "polarconicroutine" signature = "fromFocus"><code></asyxml>*/
+/*<asyxml><constant type = "polarconicroutine" signature="fromFocus"><code></asyxml>*/
restricted polarconicroutine fromFocus = arcfromfocus;/*<asyxml></code><documentation></documentation></constant></asyxml>*/
-/*<asyxml><function type = "bqe" signature = "equation(ellipse)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="equation(ellipse)"><code></asyxml>*/
bqe equation(ellipse el)
{/*<asyxml></code><documentation>Return the coefficients of the equation of the ellipse in its coordinate system:
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
@@ -3649,7 +3659,7 @@ bqe equation(ellipse el)
return bqe;
}
-/*<asyxml><function type = "bqe" signature = "equation(parabola)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="equation(parabola)"><code></asyxml>*/
bqe equation(parabola p)
{/*<asyxml></code><documentation>Return the coefficients of the equation of the parabola in its coordinate system.
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
@@ -3662,7 +3672,7 @@ bqe equation(parabola p)
bqe(R, 0, 0, 1, -4 * a, 0, 0));
}
-/*<asyxml><function type = "bqe" signature = "equation(hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="equation(hyperbola)"><code></asyxml>*/
bqe equation(hyperbola h)
{/*<asyxml></code><documentation>Return the coefficients of the equation of the hyperbola in its coordinate system.
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
@@ -3672,7 +3682,7 @@ bqe equation(hyperbola h)
bqe(R, 1/h.a^2, 0, -1/h.b^2, 0, 0, -1));
}
-/*<asyxml><operator type = "path" signature = "cast(ellipse)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(ellipse)"><code></asyxml>*/
path operator cast(ellipse el)
{/*<asyxml></code><documentation>Cast ellipse to path.</documentation></operator></asyxml>*/
if(degenerate(el))
@@ -3681,13 +3691,13 @@ path operator cast(ellipse el)
return arcfromcenter(el, 0.0, 360, CCW, n)&cycle;
}
-/*<asyxml><operator type = "path" signature = "cast(circle)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(circle)"><code></asyxml>*/
path operator cast(circle c)
{/*<asyxml></code><documentation>Cast circle to path.</documentation></operator></asyxml>*/
return (path)((ellipse)c);
}
-/*<asyxml><function type = "real[]" signature = "bangles(picture, parabola)"><code></asyxml>*/
+/*<asyxml><function type="real[]" signature="bangles(picture,parabola)"><code></asyxml>*/
real[] bangles(picture pic = currentpicture, parabola p)
{/*<asyxml></code><documentation>Return the array {ma, Ma} where 'ma' and 'Ma' are respectively
the smaller and the larger angles for which the parabola 'p' is included
@@ -3724,7 +3734,7 @@ real[] bangles(picture pic = currentpicture, parabola p)
return new real[] {ma, Ma};
}
-/*<asyxml><function type = "real[][]" signature = "bangles(picture, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="real[][]" signature="bangles(picture,hyperbola)"><code></asyxml>*/
real[][] bangles(picture pic = currentpicture, hyperbola h)
{/*<asyxml></code><documentation>Return the array {{ma1, Ma1}, {ma2, Ma2}} where 'maX' and 'MaX' are respectively
the smaller and the bigger angles (from h.FX) for which the hyperbola 'h' is included
@@ -3764,12 +3774,12 @@ real[][] bangles(picture pic = currentpicture, hyperbola h)
return (360 - d + degrees(inter[i][n]-F1))%360;
}, inter[i].length);
ma[i] = a.length != 0 ? min(a) : 0;
- Ma[i] = a.length != 0 ? max(a) : 0;
+ Ma[i] = a.length != 0 ? max(a) : 0;
}
return new real[][] {{ma[0], Ma[0]}, {ma[1], Ma[1]}};
}
-/*<asyxml><operator type = "path" signature = "cast(parabola)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(parabola)"><code></asyxml>*/
path operator cast(parabola p)
{/*<asyxml></code><documentation>Cast parabola to path.
If possible, the returned path is restricted to the actual bounding box
@@ -3781,7 +3791,7 @@ path operator cast(parabola p)
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, circle, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,circle,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", circle c,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -3791,7 +3801,7 @@ void draw(picture pic = currentpicture, Label L = "", circle c,
else draw(pic, L, (path)c, align, p, arrow, bar, margin, legend, marker);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, ellipse, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,ellipse,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", ellipse el,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -3801,7 +3811,7 @@ void draw(picture pic = currentpicture, Label L = "", ellipse el,
else draw(pic, L, (path)el, align, p, arrow, bar, margin, legend, marker);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, parabola, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,parabola,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", parabola parabola,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -3814,8 +3824,12 @@ void draw(picture pic = currentpicture, Label L = "", parabola parabola,
parabola.bmin = inverse(t) * m;
parabola.bmax = inverse(t) * M;
picture tmp;
- draw(tmp, L, t * ((path) (T * parabola)), align, p, arrow, bar, NoMargin, legend, marker);
- add(f, tmp.fit());
+ path pp = t * ((path) (T * parabola));
+
+ if (pp != nullpath) {
+ draw(tmp, L, pp, align, p, arrow, bar, NoMargin, legend, marker);
+ add(f, tmp.fit());
+ }
}, true);
pair m = pic.userMin(), M = pic.userMax();
@@ -3824,7 +3838,7 @@ void draw(picture pic = currentpicture, Label L = "", parabola parabola,
}
}
-/*<asyxml><operator type = "path" signature = "cast(hyperbola)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(hyperbola)"><code></asyxml>*/
path operator cast(hyperbola h)
{/*<asyxml></code><documentation>Cast hyperbola to path.
If possible, the returned path is restricted to the actual bounding box
@@ -3836,7 +3850,7 @@ path operator cast(hyperbola h)
return arcfromfocus(h, bangles[0][0], bangles[0][1], n, CCW);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, hyperbola, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,hyperbola,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", hyperbola h,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -3848,15 +3862,22 @@ void draw(picture pic = currentpicture, Label L = "", hyperbola h,
m -= min(p); M -= max(p);
h.bmin = inverse(t) * m;
h.bmax = inverse(t) * M;
+ path hp;
picture tmp;
- draw(tmp, L, t * ((path) (T * h)), align, p, arrow, bar, NoMargin, legend, marker);
+ hp = t * ((path) (T * h));
+ if (hp != nullpath) {
+ draw(tmp, L, hp, align, p, arrow, bar, NoMargin, legend, marker);
+ }
hyperbola ht = hyperbola(h.F2, h.F1, h.a);
ht.bmin = h.bmin;
ht.bmax = h.bmax;
- draw(tmp, "", t * ((path) (T * ht)), align, p, arrow, bar, NoMargin, marker);
+ hp = t * ((path) (T * ht));
+ if (hp != nullpath) {
+ draw(tmp, "", hp, align, p, arrow, bar, NoMargin, marker);
+ }
add(f, tmp.fit());
}, true);
@@ -3866,7 +3887,7 @@ void draw(picture pic = currentpicture, Label L = "", hyperbola h,
pic.addBox(truepoint(SW), truepoint(NE));
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, explicit conic, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,explicit conic,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", explicit conic co,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
@@ -3884,7 +3905,7 @@ void draw(picture pic = currentpicture, Label L = "", explicit conic co,
else abort("draw: unknown conic.");
}
-/*<asyxml><function type = "int" signature = "conicnodesnumber(conic, real, real)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="conicnodesnumber(conic,real,real)"><code></asyxml>*/
int conicnodesnumber(conic co, real angle1, real angle2, bool dir = CCW)
{/*<asyxml></code><documentation>Return the number of node to draw a conic arc.</documentation></function></asyxml>*/
int oi;
@@ -3904,7 +3925,7 @@ int conicnodesnumber(conic co, real angle1, real angle2, bool dir = CCW)
return oi;
}
-/*<asyxml><operator type = "path" signature = "cast(conic)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(conic)"><code></asyxml>*/
path operator cast(conic co)
{/*<asyxml></code><documentation>Cast conic section to path.</documentation></operator></asyxml>*/
if(co.e < 1) return (path)((ellipse)co);
@@ -3912,7 +3933,7 @@ path operator cast(conic co)
return (path)((hyperbola)co);
}
-/*<asyxml><function type = "bqe" signature = "equation(explicit conic)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="equation(explicit conic)"><code></asyxml>*/
bqe equation(explicit conic co)
{/*<asyxml></code><documentation>Return the coefficients of the equation of conic section in its coordinate system:
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
@@ -3930,7 +3951,7 @@ bqe equation(explicit conic co)
return obqe;
}
-/*<asyxml><function type = "string" signature = "conictype(bqe)"><code></asyxml>*/
+/*<asyxml><function type="string" signature="conictype(bqe)"><code></asyxml>*/
string conictype(bqe bqe)
{/*<asyxml></code><documentation>Returned values are "ellipse" or "parabola" or "hyperbola"
depending of the conic section represented by 'bqe'.</documentation></function></asyxml>*/
@@ -3950,7 +3971,7 @@ string conictype(bqe bqe)
return os;
}
-/*<asyxml><function type = "conic" signature = "conic(point, point, point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="conic" signature="conic(point,point,point,point,point)"><code></asyxml>*/
conic conic(point M1, point M2, point M3, point M4, point M5)
{/*<asyxml></code><documentation>Return the conic passing through 'M1', 'M2', 'M3', 'M4' and 'M5' if the conic is not degenerated.</documentation></function></asyxml>*/
bqe bqe = bqe(M1, M2, M3, M4, M5);
@@ -3961,7 +3982,7 @@ conic conic(point M1, point M2, point M3, point M4, point M5)
return hyperbola(bqe);
}
-/*<asyxml><function type = "coordsys" signature = "canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
coordsys canonicalcartesiansystem(explicit conic co)
{/*<asyxml></code><documentation>Return the canonical cartesian system of the conic 'co'.</documentation></function></asyxml>*/
if(co.e < 1) return canonicalcartesiansystem((ellipse)co);
@@ -3969,7 +3990,7 @@ coordsys canonicalcartesiansystem(explicit conic co)
return canonicalcartesiansystem((hyperbola)co);
}
-/*<asyxml><function type = "bqe" signature = "canonical(bqe)"><code></asyxml>*/
+/*<asyxml><function type="bqe" signature="canonical(bqe)"><code></asyxml>*/
bqe canonical(bqe bqe)
{/*<asyxml></code><documentation>Return the bivariate quadratic equation relative to the
canonical coordinate system of the conic section represented by 'bqe'.</documentation></function></asyxml>*/
@@ -3991,7 +4012,7 @@ bqe canonical(bqe bqe)
return obqe;
}
-/*<asyxml><function type = "conic" signature = "conic(bqe)"><code></asyxml>*/
+/*<asyxml><function type="conic" signature="conic(bqe)"><code></asyxml>*/
conic conic(bqe bqe)
{/*<asyxml></code><documentation>Return the conic section represented by the bivariate quartic equation 'bqe'.</documentation></function></asyxml>*/
string type = conictype(bqe);
@@ -4005,13 +4026,13 @@ conic conic(bqe bqe)
return oc;
}
-/*<asyxml><function type = "real" signature = "arclength(circle)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(circle)"><code></asyxml>*/
real arclength(circle c)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return c.r * 2 * pi;
}
-/*<asyxml><function type = "real" signature = "focusToCenter(ellipse, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="focusToCenter(ellipse,real)"><code></asyxml>*/
real focusToCenter(ellipse el, real a)
{/*<asyxml></code><documentation>Return the angle relatively to the center of 'el' for the angle 'a'
given relatively to the focus of 'el'.</documentation></function></asyxml>*/
@@ -4022,7 +4043,7 @@ real focusToCenter(ellipse el, real a)
return d%(sgnd(a) * 360);
}
-/*<asyxml><function type = "real" signature = "centerToFocus(ellipse, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="centerToFocus(ellipse,real)"><code></asyxml>*/
real centerToFocus(ellipse el, real a)
{/*<asyxml></code><documentation>Return the angle relatively to the focus of 'el' for the angle 'a'
given relatively to the center of 'el'.</documentation></function></asyxml>*/
@@ -4034,13 +4055,13 @@ real centerToFocus(ellipse el, real a)
return d%(sgnd(a) * 360);
}
-/*<asyxml><function type = "real" signature = "arclength(ellipse)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(ellipse)"><code></asyxml>*/
real arclength(ellipse el)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return degenerate(el) ? infinity : 4 * el.a * elle(pi/2, el.e);
}
-/*<asyxml><function type = "real" signature = "arclength(ellipse, real, real, bool, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(ellipse,real,real,bool,polarconicroutine)"><code></asyxml>*/
real arclength(ellipse el, real angle1, real angle2,
bool direction = CCW,
polarconicroutine polarconicroutine = currentpolarconicroutine)
@@ -4113,7 +4134,7 @@ real arclength(ellipse el, real angle1, real angle2,
return S(a2) - S(a1);
}
-/*<asyxml><function type = "real" signature = "arclength(parabola, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(parabola,real)"><code></asyxml>*/
real arclength(parabola p, real angle)
{/*<asyxml></code><documentation>Return the arclength from 180 to 'angle' given from focus in the
canonical coordinate system of 'p'.</documentation></function></asyxml>*/
@@ -4126,14 +4147,14 @@ real arclength(parabola p, real angle)
return S(t);
}
-/*<asyxml><function type = "real" signature = "arclength(parabola, real, real)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(parabola,real,real)"><code></asyxml>*/
real arclength(parabola p, real angle1, real angle2)
{/*<asyxml></code><documentation>Return the arclength from 'angle1' to 'angle2' given from
focus in the canonical coordinate system of 'p'</documentation></function></asyxml>*/
return arclength(p, angle1) - arclength(p, angle2);
}
-/*<asyxml><function type = "real" signature = "arclength(parabola p)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(parabola p)"><code></asyxml>*/
real arclength(parabola p)
{/*<asyxml></code><documentation>Return the length of the arc of the parabola bounded to the bounding
box of the current picture.</documentation></function></asyxml>*/
@@ -4145,15 +4166,15 @@ real arclength(parabola p)
// *=======================================================*
// *.......................ABSCISSA........................*
-/*<asyxml><struct signature = "abscissa"><code></asyxml>*/
+/*<asyxml><struct signature="abscissa"><code></asyxml>*/
struct abscissa
{/*<asyxml></code><documentation>Provide abscissa structure on a curve used in the routine-like 'point(object, abscissa)'
- where object can be 'line', 'segment', 'ellipse', 'circle', 'conic'...</documentation><property type = "real" signature = "x"><code></asyxml>*/
- real x;/*<asyxml></code><documentation>The abscissa value.</documentation></property><property type = "int" signature = "system"><code></asyxml>*/
- int system;/*<asyxml></code><documentation>0 = relativesystem; 1 = curvilinearsystem; 2 = angularsystem; 3 = nodesystem</documentation></property><property type = "polarconicroutine" signature = "polarconicroutine"><code></asyxml>*/
+ where object can be 'line','segment','ellipse','circle','conic'...</documentation><property type = "real" signature="x"><code></asyxml>*/
+ real x;/*<asyxml></code><documentation>The abscissa value.</documentation></property><property type = "int" signature="system"><code></asyxml>*/
+ int system;/*<asyxml></code><documentation>0 = relativesystem; 1 = curvilinearsystem; 2 = angularsystem; 3 = nodesystem</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/
polarconicroutine polarconicroutine = fromCenter;/*<asyxml></code><documentation>The routine used with angular system and two foci conic section.
Possible values are 'formCenter' and 'formFocus'.</documentation></property></asyxml>*/
- /*<asyxml><method type = "abscissa" signature = "copy()"><code></asyxml>*/
+ /*<asyxml><method type = "abscissa" signature="copy()"><code></asyxml>*/
abscissa copy()
{/*<asyxml></code><documentation>Return a copy of this abscissa.</documentation></method></asyxml>*/
abscissa oa = new abscissa;
@@ -4164,10 +4185,10 @@ struct abscissa
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><constant type = "int" signature = "relativesystem, curvilinearsystem, angularsystem, nodesystem"><code></asyxml>*/
+/*<asyxml><constant type = "int" signature="relativesystem,curvilinearsystem,angularsystem,nodesystem"><code></asyxml>*/
restricted int relativesystem = 0, curvilinearsystem = 1, angularsystem = 2, nodesystem = 3;/*<asyxml></code><documentation>Constant used to set the abscissa system.</documentation></constant></asyxml>*/
-/*<asyxml><operator type = "abscissa" signature = "cast(explicit position)"><code></asyxml>*/
+/*<asyxml><operator type = "abscissa" signature="cast(explicit position)"><code></asyxml>*/
abscissa operator cast(explicit position position)
{/*<asyxml></code><documentation>Cast position to abscissa.
If 'position' is relative, the abscissa is relative else it's a curvilinear abscissa.</documentation></operator></asyxml>*/
@@ -4177,7 +4198,7 @@ abscissa operator cast(explicit position position)
return oarcc;
}
-/*<asyxml><operator type = "abscissa" signature = "+(real, explicit abscissa)"><code></asyxml>*/
+/*<asyxml><operator type = "abscissa" signature="+(real,explicit abscissa)"><code></asyxml>*/
abscissa operator +(real x, explicit abscissa a)
{/*<asyxml></code><documentation>Provide 'real + abscissa'.
Return abscissa b so that b.x = a.x + x.
@@ -4186,6 +4207,7 @@ abscissa operator +(real x, explicit abscissa a)
oa.x = a.x + x;
return oa;
}
+
abscissa operator +(explicit abscissa a, real x)
{
return x + a;
@@ -4195,7 +4217,7 @@ abscissa operator +(int x, explicit abscissa a)
return ((real)x) + a;
}
-/*<asyxml><operator type = "abscissa" signature = "-(explicit abscissa a)"><code></asyxml>*/
+/*<asyxml><operator type = "abscissa" signature="-(explicit abscissa a)"><code></asyxml>*/
abscissa operator -(explicit abscissa a)
{/*<asyxml></code><documentation>Return the abscissa b so that b.x = -a.x.</documentation></operator></asyxml>*/
abscissa oa;
@@ -4223,7 +4245,7 @@ abscissa operator -(int x, explicit abscissa a)
return ((real)x) - a;
}
-/*<asyxml><operator type = "abscissa" signature = "*(real, abscissa)"><code></asyxml>*/
+/*<asyxml><operator type = "abscissa" signature="*(real,abscissa)"><code></asyxml>*/
abscissa operator *(real x, explicit abscissa a)
{/*<asyxml></code><documentation>Provide 'real * abscissa'.
Return abscissa b so that b.x = x * a.x.
@@ -4258,7 +4280,7 @@ abscissa operator /(int x, explicit abscissa a)
return ((real)x)/a;
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(real)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(real)"><code></asyxml>*/
abscissa relabscissa(real x)
{/*<asyxml></code><documentation>Return a relative abscissa.</documentation></function></asyxml>*/
return (abscissa)(Relative(x));
@@ -4268,7 +4290,7 @@ abscissa relabscissa(int x)
return (abscissa)(Relative(x));
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(real)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(real)"><code></asyxml>*/
abscissa curabscissa(real x)
{/*<asyxml></code><documentation>Return a curvilinear abscissa.</documentation></function></asyxml>*/
return (abscissa)((position)x);
@@ -4278,7 +4300,7 @@ abscissa curabscissa(int x)
return (abscissa)((position)x);
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(real, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(real,polarconicroutine)"><code></asyxml>*/
abscissa angabscissa(real x, polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*<asyxml></code><documentation>Return a angular abscissa.</documentation></function></asyxml>*/
abscissa oarcc;
@@ -4292,7 +4314,7 @@ abscissa angabscissa(int x, polarconicroutine polarconicroutine = currentpolarco
return angabscissa((real)x, polarconicroutine);
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(real)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(real)"><code></asyxml>*/
abscissa nodabscissa(real x)
{/*<asyxml></code><documentation>Return an abscissa as time on the path.</documentation></function></asyxml>*/
abscissa oarcc;
@@ -4305,7 +4327,7 @@ abscissa nodabscissa(int x)
return nodabscissa((real)x);
}
-/*<asyxml><operator type = "abscissa" signature = "cast(real)"><code></asyxml>*/
+/*<asyxml><operator type = "abscissa" signature="cast(real)"><code></asyxml>*/
abscissa operator cast(real x)
{/*<asyxml></code><documentation>Cast real to abscissa, precisely 'nodabscissa'.</documentation></operator></asyxml>*/
return nodabscissa(x);
@@ -4315,7 +4337,7 @@ abscissa operator cast(int x)
return nodabscissa((real)x);
}
-/*<asyxml><function type = "point" signature = "point(circle, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(circle,abscissa)"><code></asyxml>*/
point point(circle c, abscissa l)
{/*<asyxml></code><documentation>Return the point of 'c' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
@@ -4332,7 +4354,7 @@ point point(circle c, abscissa l)
return (0, 0);
}
-/*<asyxml><function type = "point" signature = "point(ellipse, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(ellipse,abscissa)"><code></asyxml>*/
point point(ellipse el, abscissa l)
{/*<asyxml></code><documentation>Return the point of 'el' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
@@ -4362,7 +4384,7 @@ point point(ellipse el, abscissa l)
return (0, 0);
}
-/*<asyxml><function type = "point" signature = "point(parabola, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(parabola,abscissa)"><code></asyxml>*/
point point(parabola p, abscissa l)
{/*<asyxml></code><documentation>Return the point of 'p' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
@@ -4390,7 +4412,7 @@ point point(parabola p, abscissa l)
return (0, 0);
}
-/*<asyxml><function type = "point" signature = "point(hyperbola, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(hyperbola,abscissa)"><code></asyxml>*/
point point(hyperbola h, abscissa l)
{/*<asyxml></code><documentation>Return the point of 'h' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
@@ -4411,7 +4433,7 @@ Try relpoint((path)your_hyperbola, x);");
return (0, 0);
}
-/*<asyxml><function type = "abscissa" signature = "point(conic, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="point(conic,point)"><code></asyxml>*/
point point(explicit conic co, abscissa l)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
if(co.e == 0) return point((circle)co, l);
@@ -4421,7 +4443,7 @@ point point(explicit conic co, abscissa l)
}
-/*<asyxml><function type = "point" signature = "point(line, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(line,abscissa)"><code></asyxml>*/
point point(line l, abscissa x)
{/*<asyxml></code><documentation>Return the point of 'l' which has the abscissa 'l.x' according to the abscissa system 'l.system'.
Note that the origin is l.A, and point(l, relabscissa(x)) returns l.A + x.x * vector(l.B - l.A).</documentation></function></asyxml>*/
@@ -4438,7 +4460,7 @@ point point(line l, abscissa x)
return (0, 0);
}
-/*<asyxml><function type = "point" signature = "point(line, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(line,real)"><code></asyxml>*/
point point(line l, explicit real x)
{/*<asyxml></code><documentation>Return the point between node l.A and l.B (x <= 0 means l.A, x >=1 means l.B).</documentation></function></asyxml>*/
return point(l, nodabscissa(x));
@@ -4448,7 +4470,7 @@ point point(line l, explicit int x)
return point(l, nodabscissa(x));
}
-/*<asyxml><function type = "circle" signature = "point(explicit circle, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="point(explicit circle,explicit real)"><code></asyxml>*/
point point(explicit circle c, explicit real x)
{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
return point(c, nodabscissa(x));
@@ -4458,7 +4480,7 @@ point point(explicit circle c, explicit int x)
return point(c, nodabscissa(x));
}
-/*<asyxml><function type = "point" signature = "point(explicit ellipse, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit ellipse,explicit real)"><code></asyxml>*/
point point(explicit ellipse el, explicit real x)
{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
return point(el, nodabscissa(x));
@@ -4468,7 +4490,7 @@ point point(explicit ellipse el, explicit int x)
return point(el, nodabscissa(x));
}
-/*<asyxml><function type = "point" signature = "point(explicit parabola, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit parabola,explicit real)"><code></asyxml>*/
point point(explicit parabola p, explicit real x)
{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
return point(p, nodabscissa(x));
@@ -4478,7 +4500,7 @@ point point(explicit parabola p, explicit int x)
return point(p, nodabscissa(x));
}
-/*<asyxml><function type = "point" signature = "point(explicit hyperbola, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit hyperbola,explicit real)"><code></asyxml>*/
point point(explicit hyperbola h, explicit real x)
{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
return point(h, nodabscissa(x));
@@ -4488,7 +4510,7 @@ point point(explicit hyperbola h, explicit int x)
return point(h, nodabscissa(x));
}
-/*<asyxml><function type = "point" signature = "point(explicit conic, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit conic,explicit real)"><code></asyxml>*/
point point(explicit conic co, explicit real x)
{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
point op;
@@ -4503,27 +4525,27 @@ point point(explicit conic co, explicit int x)
return point(co, (real)x);
}
-/*<asyxml><function type = "point" signature = "relpoint(line, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(line,real)"><code></asyxml>*/
point relpoint(line l, real x)
{/*<asyxml></code><documentation>Return the relative point of 'l' (0 means l.A,
1 means l.B, x means l.A + x * vector(l.B - l.A) ).</documentation></function></asyxml>*/
return point(l, Relative(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(explicit circle, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(explicit circle,real)"><code></asyxml>*/
point relpoint(explicit circle c, real x)
{/*<asyxml></code><documentation>Return the relative point of 'c' (0 means origin, 1 means end).
Origin is c.center + c.r * (1, 0).</documentation></function></asyxml>*/
return point(c, Relative(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(explicit ellipse, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(explicit ellipse,real)"><code></asyxml>*/
point relpoint(explicit ellipse el, real x)
{/*<asyxml></code><documentation>Return the relative point of 'el' (0 means origin, 1 means end).</documentation></function></asyxml>*/
return point(el, Relative(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(explicit parabola, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(explicit parabola,real)"><code></asyxml>*/
point relpoint(explicit parabola p, real x)
{/*<asyxml></code><documentation>Return the relative point of the path of the parabola
bounded by the bounding box of the current picture.
@@ -4531,13 +4553,13 @@ point relpoint(explicit parabola p, real x)
return point(p, Relative(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(explicit hyperbola, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(explicit hyperbola,real)"><code></asyxml>*/
point relpoint(explicit hyperbola h, real x)
{/*<asyxml></code><documentation>Not yet implemented... <look href = "point(hyperbola, abscissa)"/></documentation></function></asyxml>*/
return point(h, Relative(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(explicit conic, explicit real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(explicit conic,explicit real)"><code></asyxml>*/
point relpoint(explicit conic co, explicit real x)
{/*<asyxml></code><documentation>Return the relative point of 'co' (0 means origin, 1 means end).</documentation></function></asyxml>*/
point op;
@@ -4552,13 +4574,13 @@ point relpoint(explicit conic co, explicit int x)
return relpoint(co, (real)x);
}
-/*<asyxml><function type = "point" signature = "angpoint(explicit circle, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(explicit circle,real)"><code></asyxml>*/
point angpoint(explicit circle c, real x)
{/*<asyxml></code><documentation>Return the point of 'c' in the direction 'x' measured in degrees.</documentation></function></asyxml>*/
return point(c, angabscissa(x));
}
-/*<asyxml><function type = "point" signature = "angpoint(explicit ellipse, real, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(explicit ellipse,real,polarconicroutine)"><code></asyxml>*/
point angpoint(explicit ellipse el, real x,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*<asyxml></code><documentation>Return the point of 'el' in the direction 'x'
@@ -4566,13 +4588,13 @@ point angpoint(explicit ellipse el, real x,
return el.e == 0 ? angpoint((circle) el, x) : point(el, angabscissa(x, polarconicroutine));
}
-/*<asyxml><function type = "point" signature = "angpoint(explicit parabola, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(explicit parabola,real)"><code></asyxml>*/
point angpoint(explicit parabola p, real x)
{/*<asyxml></code><documentation>Return the point of 'p' in the direction 'x' measured in degrees.</documentation></function></asyxml>*/
return point(p, angabscissa(x));
}
-/*<asyxml><function type = "point" signature = "angpoint(explicit hyperbola, real, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(explicit hyperbola,real,polarconicroutine)"><code></asyxml>*/
point angpoint(explicit hyperbola h, real x,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*<asyxml></code><documentation>Return the point of 'h' in the direction 'x'
@@ -4580,34 +4602,34 @@ point angpoint(explicit hyperbola h, real x,
return point(h, angabscissa(x, polarconicroutine));
}
-/*<asyxml><function type = "point" signature = "curpoint(line, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(line,real)"><code></asyxml>*/
point curpoint(line l, real x)
{/*<asyxml></code><documentation>Return the point of 'l' which has the curvilinear abscissa 'x'.
Origin is l.A.</documentation></function></asyxml>*/
return point(l, curabscissa(x));
}
-/*<asyxml><function type = "point" signature = "curpoint(explicit circle, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(explicit circle,real)"><code></asyxml>*/
point curpoint(explicit circle c, real x)
{/*<asyxml></code><documentation>Return the point of 'c' which has the curvilinear abscissa 'x'.
Origin is c.center + c.r * (1, 0).</documentation></function></asyxml>*/
return point(c, curabscissa(x));
}
-/*<asyxml><function type = "point" signature = "curpoint(explicit ellipse, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(explicit ellipse,real)"><code></asyxml>*/
point curpoint(explicit ellipse el, real x)
{/*<asyxml></code><documentation>Return the point of 'el' which has the curvilinear abscissa 'el'.</documentation></function></asyxml>*/
return point(el, curabscissa(x));
}
-/*<asyxml><function type = "point" signature = "curpoint(explicit parabola, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(explicit parabola,real)"><code></asyxml>*/
point curpoint(explicit parabola p, real x)
{/*<asyxml></code><documentation>Return the point of 'p' which has the curvilinear abscissa 'x'.
Origin is the vertex of 'p'.</documentation></function></asyxml>*/
return point(p, curabscissa(x));
}
-/*<asyxml><function type = "point" signature = "curpoint(conic, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(conic,real)"><code></asyxml>*/
point curpoint(conic co, real x)
{/*<asyxml></code><documentation>Return the point of 'co' which has the curvilinear abscissa 'x'.</documentation></function></asyxml>*/
point op;
@@ -4618,7 +4640,7 @@ point curpoint(conic co, real x)
return op;
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(circle,point)"><code></asyxml>*/
abscissa angabscissa(circle c, point M)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
if(!(M @ c)) abort("angabscissa: the point is not on the circle.");
@@ -4629,7 +4651,7 @@ abscissa angabscissa(circle c, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(ellipse, point, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(ellipse,point,polarconicroutine)"><code></asyxml>*/
abscissa angabscissa(ellipse el, point M,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the ellipse 'el' according to 'polarconicroutine'.</documentation></function></asyxml>*/
@@ -4643,7 +4665,7 @@ abscissa angabscissa(ellipse el, point M,
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(hyperbola, point, polarconicroutine)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(hyperbola,point,polarconicroutine)"><code></asyxml>*/
abscissa angabscissa(hyperbola h, point M,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the hyperbola 'h' according to 'polarconicroutine'.</documentation></function></asyxml>*/
@@ -4657,7 +4679,7 @@ abscissa angabscissa(hyperbola h, point M,
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(parabola, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(parabola,point)"><code></asyxml>*/
abscissa angabscissa(parabola p, point M)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the parabola 'p'.</documentation></function></asyxml>*/
if(!(M @ p)) abort("angabscissa: the point is not on the parabola.");
@@ -4670,7 +4692,7 @@ abscissa angabscissa(parabola p, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(conic, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(conic,point)"><code></asyxml>*/
abscissa angabscissa(explicit conic co, point M)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
if(co.e == 0) return angabscissa((circle)co, M);
@@ -4679,7 +4701,7 @@ abscissa angabscissa(explicit conic co, point M)
return angabscissa((hyperbola)co, M);
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(line, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(line,point)"><code></asyxml>*/
abscissa curabscissa(line l, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
if(!(M @ extend(l))) abort("curabscissa: the point is not on the line.");
@@ -4689,7 +4711,7 @@ abscissa curabscissa(line l, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(circle,point)"><code></asyxml>*/
abscissa curabscissa(circle c, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
if(!(M @ c)) abort("curabscissa: the point is not on the circle.");
@@ -4699,7 +4721,7 @@ abscissa curabscissa(circle c, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(ellipse, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(ellipse,point)"><code></asyxml>*/
abscissa curabscissa(ellipse el, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
if(!(M @ el)) abort("curabscissa: the point is not on the ellipse.");
@@ -4711,7 +4733,7 @@ abscissa curabscissa(ellipse el, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(parabola, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(parabola,point)"><code></asyxml>*/
abscissa curabscissa(parabola p, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the parabola 'p'.</documentation></function></asyxml>*/
if(!(M @ p)) abort("curabscissa: the point is not on the parabola.");
@@ -4723,7 +4745,7 @@ abscissa curabscissa(parabola p, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(conic, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(conic,point)"><code></asyxml>*/
abscissa curabscissa(conic co, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
if(co.e > 1) abort("curabscissa: not implemented for this hyperbola.");
@@ -4732,7 +4754,7 @@ abscissa curabscissa(conic co, point M)
return curabscissa((parabola)co, M);
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(line, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(line,point)"><code></asyxml>*/
abscissa nodabscissa(line l, point M)
{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
if(!(M @ (segment)l)) abort("nodabscissa: the point is not on the segment.");
@@ -4742,7 +4764,7 @@ abscissa nodabscissa(line l, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(circle,point)"><code></asyxml>*/
abscissa nodabscissa(circle c, point M)
{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
if(!(M @ c)) abort("nodabscissa: the point is not on the circle.");
@@ -4752,7 +4774,7 @@ abscissa nodabscissa(circle c, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(ellipse, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(ellipse,point)"><code></asyxml>*/
abscissa nodabscissa(ellipse el, point M)
{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
if(!(M @ el)) abort("nodabscissa: the point is not on the ellipse.");
@@ -4762,7 +4784,7 @@ abscissa nodabscissa(ellipse el, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(parabola, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(parabola,point)"><code></asyxml>*/
abscissa nodabscissa(parabola p, point M)
{/*<asyxml></code><documentation>Return the node abscissa OF 'M' on the parabola 'p'.</documentation></function></asyxml>*/
if(!(M @ p)) abort("nodabscissa: the point is not on the parabola.");
@@ -4775,7 +4797,7 @@ abscissa nodabscissa(parabola p, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(conic, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(conic,point)"><code></asyxml>*/
abscissa nodabscissa(conic co, point M)
{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
if(co.e > 1) abort("nodabscissa: not implemented for hyperbola.");
@@ -4785,7 +4807,7 @@ abscissa nodabscissa(conic co, point M)
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(line, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(line,point)"><code></asyxml>*/
abscissa relabscissa(line l, point M)
{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
if(!(M @ extend(l))) abort("relabscissa: the point is not on the line.");
@@ -4795,7 +4817,7 @@ abscissa relabscissa(line l, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(circle,point)"><code></asyxml>*/
abscissa relabscissa(circle c, point M)
{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
if(!(M @ c)) abort("relabscissa: the point is not on the circle.");
@@ -4805,7 +4827,7 @@ abscissa relabscissa(circle c, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(ellipse, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(ellipse,point)"><code></asyxml>*/
abscissa relabscissa(ellipse el, point M)
{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
if(!(M @ el)) abort("relabscissa: the point is not on the ellipse.");
@@ -4816,11 +4838,10 @@ abscissa relabscissa(ellipse el, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(conic, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(conic,point)"><code></asyxml>*/
abscissa relabscissa(conic co, point M)
{/*<asyxml></code><documentation>Return the relative abscissa of 'M'
on the conic 'co'.</documentation></function></asyxml>*/
- write("PASS");
if(co.e > 1) abort("relabscissa: not implemented for hyperbola and parabola.");
if(co.e == 1) return relabscissa((parabola)co, M);
if(co.e == 0) return relabscissa((circle)co, M);
@@ -4831,20 +4852,20 @@ abscissa relabscissa(conic co, point M)
// *=======================================================*
// *.........................ARCS..........................*
-/*<asyxml><struct signature = "arc"><code></asyxml>*/
+/*<asyxml><struct signature="arc"><code></asyxml>*/
struct arc {
/*<asyxml></code><documentation>Implement oriented ellipse (included circle) arcs.
All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'arc' to 'path' excepted for drawing routines.
- </documentation><property type = "ellipse" signature = "el"><code></asyxml>*/
- ellipse el;/*<asyxml></code><documentation>The support of the arc.</documentation></property><property type = "real" signature = "angle0"><code></asyxml>*/
- restricted real angle0 = 0;/*<asyxml></code><documentation>Internal use: rotating a circle does not modify the origin point, this variable stocks the eventual angle rotation. This value is not used for ellipses which are not circles.</documentation></property><property type = "real" signature = "angle1, angle2"><code></asyxml>*/
- restricted real angle1, angle2;/*<asyxml></code><documentation>Values (in degrees) in ]-360, 360[.</documentation></property><property type = "bool" signature = "direction"><code></asyxml>*/
- bool direction = CCW;/*<asyxml></code><documentation>The arc will be drawn from 'angle1' to 'angle2' rotating in the direction 'direction'.</documentation></property><property type = "polarconicroutine" signature = "polarconicroutine"><code></asyxml>*/
+ </documentation><property type = "ellipse" signature="el"><code></asyxml>*/
+ ellipse el;/*<asyxml></code><documentation>The support of the arc.</documentation></property><property type = "real" signature="angle0"><code></asyxml>*/
+ restricted real angle0 = 0;/*<asyxml></code><documentation>Internal use: rotating a circle does not modify the origin point,this variable stocks the eventual angle rotation. This value is not used for ellipses which are not circles.</documentation></property><property type = "real" signature="angle1,angle2"><code></asyxml>*/
+ restricted real angle1, angle2;/*<asyxml></code><documentation>Values (in degrees) in ]-360, 360[.</documentation></property><property type = "bool" signature="direction"><code></asyxml>*/
+ bool direction = CCW;/*<asyxml></code><documentation>The arc will be drawn from 'angle1' to 'angle2' rotating in the direction 'direction'.</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/
polarconicroutine polarconicroutine = currentpolarconicroutine;/*<asyxml></code><documentation>The routine to which the angles refer.
If 'el' is a circle 'fromCenter' is always used.</documentation></property></asyxml>*/
- /*<asyxml><method type = "void" signature = "setangles(real, real, real)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="setangles(real,real,real)"><code></asyxml>*/
void setangles(real a0, real a1, real a2)
{/*<asyxml></code><documentation>Set the angles.</documentation></method></asyxml>*/
if (a1 < 0 && a2 < 0) {
@@ -4856,7 +4877,7 @@ struct arc {
this.angle2 = a2%(sgnd(2) * 360);
}
- /*<asyxml><method type = "void" signature = "init(ellipse, real, real, real, polarconicroutine, bool)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(ellipse,real,real,real,polarconicroutine,bool)"><code></asyxml>*/
void init(ellipse el, real angle0 = 0, real angle1, real angle2,
polarconicroutine polarconicroutine,
bool direction = CCW)
@@ -4868,7 +4889,7 @@ struct arc {
this.direction = direction;
}
- /*<asyxml><method type = "arc" signature = "copy()"><code></asyxml>*/
+ /*<asyxml><method type = "arc" signature="copy()"><code></asyxml>*/
arc copy()
{/*<asyxml></code><documentation>Copy the arc.</documentation></method></asyxml>*/
arc oa = new arc;
@@ -4882,7 +4903,7 @@ struct arc {
}
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "polarconicroutine" signature = "polarconicroutine(ellipse)"><code></asyxml>*/
+/*<asyxml><function type="polarconicroutine" signature="polarconicroutine(ellipse)"><code></asyxml>*/
polarconicroutine polarconicroutine(conic co)
{/*<asyxml></code><documentation>Return the default routine used to draw a conic.</documentation></function></asyxml>*/
if(co.e == 0) return fromCenter;
@@ -4890,7 +4911,7 @@ polarconicroutine polarconicroutine(conic co)
return currentpolarconicroutine;
}
-/*<asyxml><function type = "arc" signature = "arc(ellipse, real, real, polarconicroutine, bool)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arc(ellipse,real,real,polarconicroutine,bool)"><code></asyxml>*/
arc arc(ellipse el, real angle1, real angle2,
polarconicroutine polarconicroutine = polarconicroutine(el),
bool direction = CCW)
@@ -4900,7 +4921,7 @@ arc arc(ellipse el, real angle1, real angle2,
return oa;
}
-/*<asyxml><function type = "arc" signature = "complementary(arc)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="complementary(arc)"><code></asyxml>*/
arc complementary(arc a)
{/*<asyxml></code><documentation>Return the complementary of 'a'.</documentation></function></asyxml>*/
arc oa;
@@ -4908,7 +4929,7 @@ arc complementary(arc a)
return oa;
}
-/*<asyxml><function type = "arc" signature = "reverse(arc)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="reverse(arc)"><code></asyxml>*/
arc reverse(arc a)
{/*<asyxml></code><documentation>Return arc 'a' oriented in reverse direction.</documentation></function></asyxml>*/
arc oa;
@@ -4916,7 +4937,7 @@ arc reverse(arc a)
return oa;
}
-/*<asyxml><function type = "real" signature = "degrees(arc)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="degrees(arc)"><code></asyxml>*/
real degrees(arc a)
{/*<asyxml></code><documentation>Return the measure in degrees of the oriented arc 'a'.</documentation></function></asyxml>*/
real or;
@@ -4929,13 +4950,13 @@ real degrees(arc a)
return or;
}
-/*<asyxml><function type = "real" signature = "angle(a)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="angle(a)"><code></asyxml>*/
real angle(arc a)
{/*<asyxml></code><documentation>Return the measure in radians of the oriented arc 'a'.</documentation></function></asyxml>*/
return radians(degrees(a));
}
-/*<asyxml><function type = "int" signature = "arcnodesnumber(explicit arc)"><code></asyxml>*/
+/*<asyxml><function type="int" signature="arcnodesnumber(explicit arc)"><code></asyxml>*/
int arcnodesnumber(explicit arc a)
{/*<asyxml></code><documentation>Return the number of nodes to draw the arc 'a'.</documentation></function></asyxml>*/
return ellipsenodesnumber(a.el.a, a.el.b, a.angle1, a.angle2, a.direction);
@@ -4948,7 +4969,7 @@ private path arctopath(arc a, int n)
return arcfromfocus(a.el, a.angle1, a.angle2, n, a.direction);
}
-/*<asyxml><function type = "point" signature = "angpoint(arc, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="angpoint(arc,real)"><code></asyxml>*/
point angpoint(arc a, real angle)
{/*<asyxml></code><documentation>Return the point given by its angular position (in degrees) relative to the arc 'a'.
If 'angle > degrees(a)' or 'angle < 0' the returned point is on the extended arc.</documentation></function></asyxml>*/
@@ -4964,19 +4985,19 @@ point angpoint(arc a, real angle)
return point(coordsys(a.el), p/coordsys(a.el));
}
-/*<asyxml><operator type = "path" signature = "cast(explicit arc)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(explicit arc)"><code></asyxml>*/
path operator cast(explicit arc a)
{/*<asyxml></code><documentation>Cast arc to path.</documentation></operator></asyxml>*/
return arctopath(a, arcnodesnumber(a));
}
-/*<asyxml><operator type = "guide" signature = "cast(explicit arc)"><code></asyxml>*/
+/*<asyxml><operator type = "guide" signature="cast(explicit arc)"><code></asyxml>*/
guide operator cast(explicit arc a)
{/*<asyxml></code><documentation>Cast arc to guide.</documentation></operator></asyxml>*/
return arctopath(a, arcnodesnumber(a));
}
-/*<asyxml><operator type = "arc" signature = "*(transform, explicit arc)"><code></asyxml>*/
+/*<asyxml><operator type = "arc" signature="*(transform,explicit arc)"><code></asyxml>*/
arc operator *(transform t, explicit arc a)
{/*<asyxml></code><documentation>Provide transform * arc.</documentation></operator></asyxml>*/
pair[] P, PP;
@@ -5005,7 +5026,7 @@ arc operator *(transform t, explicit arc a)
return oa;
}
-/*<asyxml><operator type = "arc" signature = "*(real, explicit arc)"><code></asyxml>*/
+/*<asyxml><operator type = "arc" signature="*(real,explicit arc)"><code></asyxml>*/
arc operator *(real x, explicit arc a)
{/*<asyxml></code><documentation>Provide real * arc.
Return the arc subtracting and adding '(x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.</documentation></operator></asyxml>*/
@@ -5018,13 +5039,13 @@ arc operator *(real x, explicit arc a)
return oa;
}
arc operator *(int x, explicit arc a){return (real)x * a;}
-/*<asyxml><operator type = "arc" signature = "/(real, explicit arc)"><code></asyxml>*/
+/*<asyxml><operator type = "arc" signature="/(real,explicit arc)"><code></asyxml>*/
arc operator /(explicit arc a, real x)
{/*<asyxml></code><documentation>Provide arc/real.
Return the arc subtracting and adding '(1/x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.</documentation></operator></asyxml>*/
return (1/x) * a;
}
-/*<asyxml><operator type = "arc" signature = "+(explicit arc, point)"><code></asyxml>*/
+/*<asyxml><operator type = "arc" signature="+(explicit arc,point)"><code></asyxml>*/
arc operator +(explicit arc a, point M)
{/*<asyxml></code><documentation>Provide arc + point.
Return shifted arc.
@@ -5036,7 +5057,7 @@ arc operator +(explicit arc a, vector v){return shift(locate(v)) * a;}
arc operator -(explicit arc a, vector v){return a + (-v);}
-/*<asyxml><operator type = "bool" signature = "@(point, arc)"><code></asyxml>*/
+/*<asyxml><operator type = "bool" signature="@(point,arc)"><code></asyxml>*/
bool operator @(point M, arc a)
{/*<asyxml></code><documentation>Return true iff 'M' is on the arc 'a'.</documentation></operator></asyxml>*/
if (!(M @ a.el)) return false;
@@ -5046,7 +5067,7 @@ bool operator @(point M, arc a)
return sameside(M, point(R, point(ap, 1)), l);
}
-/*<asyxml><function type = "void" signature = "draw(picture, Label, arc, align, pen, arrowbar, arrowbar, margin, Label, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,Label,arc,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, Label L = "", arc a,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None, margin margin = NoMargin,
@@ -5056,7 +5077,7 @@ void draw(picture pic = currentpicture, Label L = "", arc a,
draw(pic, L, (path)a, align, addpenarc(p), arrow, bar, margin, legend, marker);
}
-/*<asyxml><function type = "real" signature = "arclength(arc)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="arclength(arc)"><code></asyxml>*/
real arclength(arc a)
{/*<asyxml></code><documentation>The arc length of 'a'.</documentation></function></asyxml>*/
return arclength(a.el, a.angle1, a.angle2, a.direction, a.polarconicroutine);
@@ -5125,7 +5146,7 @@ private point ppoint(arc a, real x)
return oP;
}
-/*<asyxml><function type = "point" signature = "point(arc, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(arc,abscissa)"><code></asyxml>*/
point point(arc a, abscissa l)
{/*<asyxml></code><documentation>Return the point of 'a' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.
@@ -5158,7 +5179,7 @@ point point(arc a, abscissa l)
}
-/*<asyxml><function type = "point" signature = "point(arc, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(arc,real)"><code></asyxml>*/
point point(arc a, real x)
{/*<asyxml></code><documentation>Return the point between node floor(t) and floor(t) + 1.</documentation></function></asyxml>*/
return point(a, nodabscissa(x));
@@ -5168,21 +5189,21 @@ pair point(explicit arc a, int x)
return point(a, nodabscissa(x));
}
-/*<asyxml><function type = "point" signature = "relpoint(arc, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="relpoint(arc,real)"><code></asyxml>*/
point relpoint(arc a, real x)
{/*<asyxml></code><documentation>Return the relative point of 'a'.
If x > 1 or x < 0, the returned point is on the extended arc.</documentation></function></asyxml>*/
return point(a, relabscissa(x));
}
-/*<asyxml><function type = "point" signature = "curpoint(arc, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="curpoint(arc,real)"><code></asyxml>*/
point curpoint(arc a, real x)
{/*<asyxml></code><documentation>Return the point of 'a' which has the curvilinear abscissa 'x'.
If x < 0 or x > arclength(a), the returned point is on the extended arc.</documentation></function></asyxml>*/
return point(a, curabscissa(x));
}
-/*<asyxml><function type = "abscissa" signature = "angabscissa(arc, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="angabscissa(arc,point)"><code></asyxml>*/
abscissa angabscissa(arc a, point M)
{/*<asyxml></code><documentation>Return the angular abscissa of 'M' according to the arc 'a'.</documentation></function></asyxml>*/
if(!(M @ a.el))
@@ -5196,7 +5217,7 @@ abscissa angabscissa(arc a, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "curabscissa(arc, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="curabscissa(arc,point)"><code></asyxml>*/
abscissa curabscissa(arc a, point M)
{/*<asyxml></code><documentation>Return the curvilinear abscissa according to the arc 'a'.</documentation></function></asyxml>*/
ellipse el = a.el;
@@ -5213,7 +5234,7 @@ abscissa curabscissa(arc a, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "nodabscissa(arc, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="nodabscissa(arc,point)"><code></asyxml>*/
abscissa nodabscissa(arc a, point M)
{/*<asyxml></code><documentation>Return the node abscissa according to the arc 'a'.</documentation></function></asyxml>*/
if(!(M @ a))
@@ -5224,7 +5245,7 @@ abscissa nodabscissa(arc a, point M)
return oa;
}
-/*<asyxml><function type = "abscissa" signature = "relabscissa(arc, point)"><code></asyxml>*/
+/*<asyxml><function type="abscissa" signature="relabscissa(arc,point)"><code></asyxml>*/
abscissa relabscissa(arc a, point M)
{/*<asyxml></code><documentation>Return the relative abscissa according to the arc 'a'.</documentation></function></asyxml>*/
ellipse el = a.el;
@@ -5236,7 +5257,7 @@ abscissa relabscissa(arc a, point M)
return oa;
}
-/*<asyxml><function type = "void" signature = "markarc(picture, Label, int, real, real, arc, arrowbar, pen, pen, margin, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="markarc(picture,Label,int,real,real,arc,arrowbar,pen,pen,margin,marker)"><code></asyxml>*/
void markarc(picture pic = currentpicture,
Label L = "",
int n = 1, real radius = 0, real space = 0,
@@ -5265,13 +5286,13 @@ void markarc(picture pic = currentpicture,
// *=======================================================*
// *........................MASSES.........................*
-/*<asyxml><struct signature = "mass"><code></asyxml>*/
-struct mass {/*<asyxml></code><documentation></documentation><property type = "point" signature = "M"><code></asyxml>*/
- point M;/*<asyxml></code><documentation></documentation></property><property type = "real" signature = "m"><code></asyxml>*/
+/*<asyxml><struct signature="mass"><code></asyxml>*/
+struct mass {/*<asyxml></code><documentation></documentation><property type = "point" signature="M"><code></asyxml>*/
+ point M;/*<asyxml></code><documentation></documentation></property><property type = "real" signature="m"><code></asyxml>*/
real m;/*<asyxml></code><documentation></documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "mass" signature = "mass(point, real)"><code></asyxml>*/
+/*<asyxml><function type="mass" signature="mass(point,real)"><code></asyxml>*/
mass mass(point M, real m)
{/*<asyxml></code><documentation>Constructor of mass point.</documentation></function></asyxml>*/
mass om;
@@ -5280,7 +5301,7 @@ mass mass(point M, real m)
return om;
}
-/*<asyxml><operator type = "point" signature = "cast(mass)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="cast(mass)"><code></asyxml>*/
point operator cast(mass m)
{/*<asyxml></code><documentation>Cast mass point to point.</documentation></operator></asyxml>*/
point op;
@@ -5288,11 +5309,11 @@ point operator cast(mass m)
op.m = m.m;
return op;
}
-/*<asyxml><function type = "point" signature = "point(explicit mass)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit mass)"><code></asyxml>*/
point point(explicit mass m){return m;}/*<asyxml></code><documentation>Cast
'm' to point</documentation></function></asyxml>*/
-/*<asyxml><operator type = "mass" signature = "cast(point)"><code></asyxml>*/
+/*<asyxml><operator type = "mass" signature="cast(point)"><code></asyxml>*/
mass operator cast(point M)
{/*<asyxml></code><documentation>Cast point to mass point.</documentation></operator></asyxml>*/
mass om;
@@ -5300,13 +5321,13 @@ mass operator cast(point M)
om.m = M.m;
return om;
}
-/*<asyxml><function type = "mass" signature = "mass(explicit point)"><code></asyxml>*/
+/*<asyxml><function type="mass" signature="mass(explicit point)"><code></asyxml>*/
mass mass(explicit point P)
{/*<asyxml></code><documentation>Cast 'P' to mass.</documentation></function></asyxml>*/
return mass(P, P.m);
}
-/*<asyxml><operator type = "point[]" signature = "cast(mass[])"><code></asyxml>*/
+/*<asyxml><operator type = "point[]" signature="cast(mass[])"><code></asyxml>*/
point[] operator cast(mass[] m)
{/*<asyxml></code><documentation>Cast mass[] to point[].</documentation></operator></asyxml>*/
point[] op;
@@ -5314,7 +5335,7 @@ point[] operator cast(mass[] m)
return op;
}
-/*<asyxml><operator type = "mass[]" signature = "cast(point[])"><code></asyxml>*/
+/*<asyxml><operator type = "mass[]" signature="cast(point[])"><code></asyxml>*/
mass[] operator cast(point[] P)
{/*<asyxml></code><documentation>Cast point[] to mass[].</documentation></operator></asyxml>*/
mass[] om;
@@ -5322,21 +5343,21 @@ mass[] operator cast(point[] P)
return om;
}
-/*<asyxml><function type = "mass" signature = "mass(coordsys, explicit pair, real)"><code></asyxml>*/
+/*<asyxml><function type="mass" signature="mass(coordsys,explicit pair,real)"><code></asyxml>*/
mass mass(coordsys R, explicit pair p, real m)
{/*<asyxml></code><documentation>Return the mass which has coordinates
'p' with respect to 'R' and weight 'm'.</documentation></function></asyxml>*/
return point(R, p, m);// Using casting.
}
-/*<asyxml><operator type = "mass" signature = "cast(pair)"><code></asyxml>*/
+/*<asyxml><operator type = "mass" signature="cast(pair)"><code></asyxml>*/
mass operator cast(pair m){return mass((point)m, 1);}/*<asyxml></code><documentation>Cast pair to mass point.</documentation></operator></asyxml>*/
-/*<asyxml><operator type = "path" signature = "cast(mass)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(mass)"><code></asyxml>*/
path operator cast(mass M){return M.M;}/*<asyxml></code><documentation>Cast mass point to path.</documentation></operator></asyxml>*/
-/*<asyxml><operator type = "guide" signature = "cast(mass)"><code></asyxml>*/
+/*<asyxml><operator type = "guide" signature="cast(mass)"><code></asyxml>*/
guide operator cast(mass M){return M.M;}/*<asyxml></code><documentation>Cast mass to guide.</documentation></operator></asyxml>*/
-/*<asyxml><operator type = "mass" signature = "+(mass, mass)"><code></asyxml>*/
+/*<asyxml><operator type = "mass" signature="+(mass,mass)"><code></asyxml>*/
mass operator +(mass M1, mass M2)
{/*<asyxml></code><documentation>Provide mass + mass.
mass - mass is also defined.</documentation></operator></asyxml>*/
@@ -5347,7 +5368,7 @@ mass operator -(mass M1, mass M2)
return mass(M1.M - M2.M, M1.m - M2.m);
}
-/*<asyxml><operator type = "mass" signature = "*(real, mass)"><code></asyxml>*/
+/*<asyxml><operator type = "mass" signature="*(real,mass)"><code></asyxml>*/
mass operator *(real x, explicit mass M)
{/*<asyxml></code><documentation>Provide real * mass.
The resulted mass is the mass of 'M' multiplied by 'x' .
@@ -5361,13 +5382,13 @@ mass operator +(explicit mass M, real x){return mass(M.M, M.m + x);}
mass operator +(explicit mass M, int x){return mass(M.M, M.m + x);}
mass operator -(explicit mass M, real x){return mass(M.M, M.m - x);}
mass operator -(explicit mass M, int x){return mass(M.M, M.m - x);}
-/*<asyxml><operator type = "mass" signature = "*(transform, mass)"><code></asyxml>*/
+/*<asyxml><operator type = "mass" signature="*(transform,mass)"><code></asyxml>*/
mass operator *(transform t, mass M)
{/*<asyxml></code><documentation>Provide transform * mass.</documentation></operator></asyxml>*/
return mass(t * M.M, M.m);
}
-/*<asyxml><function type = "mass" signature = "masscenter(... mass[])"><code></asyxml>*/
+/*<asyxml><function type="mass" signature="masscenter(... mass[])"><code></asyxml>*/
mass masscenter(... mass[] M)
{/*<asyxml></code><documentation>Return the center of the masses 'M'.</documentation></function></asyxml>*/
point[] P;
@@ -5384,7 +5405,7 @@ mass masscenter(... mass[] M)
return mass(oM/m, m);
}
-/*<asyxml><function type = "string" signature = "massformat(string, string, mass)"><code></asyxml>*/
+/*<asyxml><function type="string" signature="massformat(string,string,mass)"><code></asyxml>*/
string massformat(string format = defaultmassformat,
string s, mass M)
{/*<asyxml></code><documentation>Return the string formated by 'format' with the mass value.
@@ -5394,7 +5415,7 @@ string massformat(string format = defaultmassformat,
format(replace(format, "%L", replace(s, "$", "")), M.m);
}
-/*<asyxml><function type = "void" signature = "label(picture, Label, explicit mass, align, string, pen, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="label(picture,Label,explicit mass,align,string,pen,filltype)"><code></asyxml>*/
void label(picture pic = currentpicture, Label L, explicit mass M,
align align = NoAlign, string format = defaultmassformat,
pen p = nullpen, filltype filltype = NoFill)
@@ -5406,7 +5427,7 @@ void label(picture pic = currentpicture, Label L, explicit mass M,
add(pic, L);
}
-/*<asyxml><function type = "void" signature = "dot(picture, Label, explicit mass, align, string, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="dot(picture,Label,explicit mass,align,string,pen)"><code></asyxml>*/
void dot(picture pic = currentpicture, Label L, explicit mass M, align align = NoAlign,
string format = defaultmassformat, pen p = currentpen)
{/*<asyxml></code><documentation>Draw a dot with label 'L' as
@@ -5425,7 +5446,7 @@ void dot(picture pic = currentpicture, Label L, explicit mass M, align align = N
// *=======================================================*
// *.......................TRIANGLES.......................*
-/*<asyxml><function type = "point" signature = "orthocentercenter(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="orthocentercenter(point,point,point)"><code></asyxml>*/
point orthocentercenter(point A, point B, point C)
{/*<asyxml></code><documentation>Return the orthocenter of the triangle ABC.</documentation></function></asyxml>*/
point[] P = standardizecoordsys(A, B, C);
@@ -5434,13 +5455,13 @@ point orthocentercenter(point A, point B, point C)
return point(R, pp/R);
}
-/*<asyxml><function type = "point" signature = "centroid(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="centroid(point,point,point)"><code></asyxml>*/
point centroid(point A, point B, point C)
{/*<asyxml></code><documentation>Return the centroid of the triangle ABC.</documentation></function></asyxml>*/
return (A + B + C)/3;
}
-/*<asyxml><function type = "point" signature = "incenter(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="incenter(point,point,point)"><code></asyxml>*/
point incenter(point A, point B, point C)
{/*<asyxml></code><documentation>Return the center of the incircle of the triangle ABC.</documentation></function></asyxml>*/
point[] P = standardizecoordsys(A, B, C);
@@ -5450,21 +5471,21 @@ point incenter(point A, point B, point C)
return point(R, pp/R);
}
-/*<asyxml><function type = "real" signature = "inradius(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="inradius(point,point,point)"><code></asyxml>*/
real inradius(point A, point B, point C)
{/*<asyxml></code><documentation>Return the radius of the incircle of the triangle ABC.</documentation></function></asyxml>*/
point IC = incenter(A, B, C);
return abs(IC - projection(A, B) * IC);
}
-/*<asyxml><function type = "circle" signature = "incircle(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="incircle(point,point,point)"><code></asyxml>*/
circle incircle(point A, point B, point C)
{/*<asyxml></code><documentation>Return the incircle of the triangle ABC.</documentation></function></asyxml>*/
point IC = incenter(A, B, C);
return circle(IC, abs(IC - projection(A, B) * IC));
}
-/*<asyxml><function type = "point" signature = "excenter(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="excenter(point,point,point)"><code></asyxml>*/
point excenter(point A, point B, point C)
{/*<asyxml></code><documentation>Return the center of the excircle of the triangle tangent with (AB).</documentation></function></asyxml>*/
point[] P = standardizecoordsys(A, B, C);
@@ -5474,14 +5495,14 @@ point excenter(point A, point B, point C)
return point(R, pp/R);
}
-/*<asyxml><function type = "real" signature = "exradius(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="exradius(point,point,point)"><code></asyxml>*/
real exradius(point A, point B, point C)
{/*<asyxml></code><documentation>Return the radius of the excircle of the triangle ABC with (AB).</documentation></function></asyxml>*/
point EC = excenter(A, B, C);
return abs(EC - projection(A, B) * EC);
}
-/*<asyxml><function type = "circle" signature = "excircle(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="excircle(point,point,point)"><code></asyxml>*/
circle excircle(point A, point B, point C)
{/*<asyxml></code><documentation>Return the excircle of the triangle ABC tangent with (AB).</documentation></function></asyxml>*/
point center = excenter(A, B, C);
@@ -5492,22 +5513,22 @@ circle excircle(point A, point B, point C)
private int[] numarray = {1, 2, 3};
numarray.cyclic = true;
-/*<asyxml><struct signature = "triangle"><code></asyxml>*/
+/*<asyxml><struct signature="triangle"><code></asyxml>*/
struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
- /*<asyxml><struct signature = "vertex"><code></asyxml>*/
- struct vertex {/*<asyxml></code><documentation>Structure used to communicate the vertex of a triangle.</documentation><property type = "int" signature = "n"><code></asyxml>*/
- int n;/*<asyxml></code><documentation>1 means VA, 2 means VB, 3 means VC, 4 means VA etc...</documentation></property><property type = "triangle" signature = "triangle"><code></asyxml>*/
+ /*<asyxml><struct signature="vertex"><code></asyxml>*/
+ struct vertex {/*<asyxml></code><documentation>Structure used to communicate the vertex of a triangle.</documentation><property type = "int" signature="n"><code></asyxml>*/
+ int n;/*<asyxml></code><documentation>1 means VA,2 means VB,3 means VC,4 means VA etc...</documentation></property><property type = "triangle" signature="triangle"><code></asyxml>*/
triangle t;/*<asyxml></code><documentation>The triangle to which the vertex refers.</documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
- /*<asyxml><property type = "point" signature = "A, B, C"><code></asyxml>*/
- restricted point A, B, C;/*<asyxml></code><documentation>The vertices of the triangle (as point).</documentation></property><property type = "vertex" signature = "VA, VB, VC"><code></asyxml>*/
+ /*<asyxml><property type = "point" signature="A,B,C"><code></asyxml>*/
+ restricted point A, B, C;/*<asyxml></code><documentation>The vertices of the triangle (as point).</documentation></property><property type = "vertex" signature="VA, VB, VC"><code></asyxml>*/
restricted vertex VA, VB, VC;/*<asyxml></code><documentation>The vertices of the triangle (as vertex).
Note that the vertex structure contains the triangle to wish it refers.</documentation></property></asyxml>*/
VA.n = 1;VB.n = 2;VC.n = 3;
- /*<asyxml><method type = "vertex" signature = "vertex(int)"><code></asyxml>*/
+ /*<asyxml><method type = "vertex" signature="vertex(int)"><code></asyxml>*/
vertex vertex(int n)
{/*<asyxml></code><documentation>Return numbered vertex.
'n' is 1 means VA, 2 means VB, 3 means VC, 4 means VA etc...</documentation></method></asyxml>*/
@@ -5517,7 +5538,7 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
return VC;
}
- /*<asyxml><method type = "point" signature = "point(int)"><code></asyxml>*/
+ /*<asyxml><method type = "point" signature="point(int)"><code></asyxml>*/
point point(int n)
{/*<asyxml></code><documentation>Return numbered point.
n is 1 means A, 2 means B, 3 means C, 4 means A etc...</documentation></method></asyxml>*/
@@ -5527,7 +5548,7 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
return C;
}
- /*<asyxml><method type = "void" signature = "init(point, point, point)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,point,point)"><code></asyxml>*/
void init(point A, point B, point C)
{/*<asyxml></code><documentation>Constructor.</documentation></method></asyxml>*/
point[] P = standardizecoordsys(A, B, C);
@@ -5537,14 +5558,14 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
VA.t = this; VB.t = this; VC.t = this;
}
- /*<asyxml><method type = "void" signature = "operator init(point, point, point)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="operator init(point,point,point)"><code></asyxml>*/
void operator init(point A, point B, point C)
{/*<asyxml></code><documentation>For backward compatibility.
Provide the routine 'triangle(point A, point B, point C)'.</documentation></method></asyxml>*/
this.init(A, B, C);
}
- /*<asyxml><method type = "void" signature = "init(real, real, real, real, point)"><code></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(real,real,real,real,point)"><code></asyxml>*/
void operator init(real b, real alpha, real c, real angle = 0, point A = (0, 0))
{/*<asyxml></code><documentation>For backward compatibility.
Provide the routine 'triangle(real b, real alpha, real c, real angle = 0, point A = (0, 0))
@@ -5553,7 +5574,7 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
this.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle + alpha)));
}
- /*<asyxml><method type = "real" signature = "a(), b(), c()"><code></asyxml>*/
+ /*<asyxml><method type = "real" signature="a(),b(),c()"><code></asyxml>*/
real a()
{/*<asyxml></code><documentation>Return the length BC.
b() and c() are also defined and return the length AC and AB respectively.</documentation></method></asyxml>*/
@@ -5564,14 +5585,14 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
private real det(pair a, pair b) {return a.x * b.y - a.y * b.x;}
- /*<asyxml><method type = "real" signature = "area()"><code></asyxml>*/
+ /*<asyxml><method type = "real" signature="area()"><code></asyxml>*/
real area()
{/*<asyxml></code><documentation></documentation></method></asyxml>*/
pair a = locate(A), b = locate(B), c = locate(C);
return 0.5 * abs(det(a, b) + det(b, c) + det(c, a));
}
- /*<asyxml><method type = "real" signature = "alpha(), beta(), gamma()"><code></asyxml>*/
+ /*<asyxml><method type = "real" signature="alpha(),beta(),gamma()"><code></asyxml>*/
real alpha()
{/*<asyxml></code><documentation>Return the measure (in degrees) of the angle A.
beta() and gamma() are also defined and return the measure of the angles B and C respectively.</documentation></method></asyxml>*/
@@ -5580,20 +5601,20 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
real beta() {return degrees(acos((c()^2 + a()^2 - b()^2)/(2c() * a())));}
real gamma() {return degrees(acos((a()^2 + b()^2 - c()^2)/(2a() * b())));}
- /*<asyxml><method type = "path" signature = "Path()"><code></asyxml>*/
+ /*<asyxml><method type = "path" signature="Path()"><code></asyxml>*/
path Path()
{/*<asyxml></code><documentation>The path of the triangle.</documentation></method></asyxml>*/
return A--C--B--cycle;
}
- /*<asyxml><struct signature = "side"><code></asyxml>*/
+ /*<asyxml><struct signature="side"><code></asyxml>*/
struct side
- {/*<asyxml></code><documentation>Structure used to communicate the side of a triangle.</documentation><property type = "int" signature = "n"><code></asyxml>*/
- int n;/*<asyxml></code><documentation>1 or 0 means [AB], -1 means [BA], 2 means [BC], -2 means [CB] etc.</documentation></property><property type = "triangle" signature = "triangle"><code></asyxml>*/
+ {/*<asyxml></code><documentation>Structure used to communicate the side of a triangle.</documentation><property type = "int" signature="n"><code></asyxml>*/
+ int n;/*<asyxml></code><documentation>1 or 0 means [AB],-1 means [BA],2 means [BC],-2 means [CB] etc.</documentation></property><property type = "triangle" signature="triangle"><code></asyxml>*/
triangle t;/*<asyxml></code><documentation>The triangle to which the side refers.</documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
- /*<asyxml><property type = "side" signature = "AB"><code></asyxml>*/
+ /*<asyxml><property type = "side" signature="AB"><code></asyxml>*/
side AB;/*<asyxml></code><documentation>For the routines using the structure 'side', triangle.AB means 'side AB'.
BA, AC, CA etc are also defined.</documentation></property></asyxml>*/
AB.n = 1; AB.t = this;
@@ -5603,7 +5624,7 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
side CA; CA.n = 3; CA.t = this;
side AC; AC.n = -3; AC.t = this;
- /*<asyxml><method type = "side" signature = "side(int)"><code></asyxml>*/
+ /*<asyxml><method type = "side" signature="side(int)"><code></asyxml>*/
side side(int n)
{/*<asyxml></code><documentation>Return numbered side.
n is 1 means AB, -1 means BA, 2 means BC, -2 means CB, etc.</documentation></method></asyxml>*/
@@ -5614,7 +5635,7 @@ struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
return n > 0 ? CA : AC;
}
- /*<asyxml><method type = "line" signature = "line(int)"><code></asyxml>*/
+ /*<asyxml><method type = "line" signature="line(int)"><code></asyxml>*/
line line(int n)
{/*<asyxml></code><documentation>Return the numbered line.</documentation></method></asyxml>*/
if(n == 0) abort('Invalid line number.');
@@ -5646,7 +5667,7 @@ triangle[] operator ^^(... triangle[] t)
return T;
}
-/*<asyxml><operator type = "line" signature = "cast(side)"><code></asyxml>*/
+/*<asyxml><operator type = "line" signature="cast(side)"><code></asyxml>*/
line operator cast(side side)
{/*<asyxml></code><documentation>Cast side to (infinite) line.
Most routine with line parameters works with side parameters.
@@ -5655,56 +5676,56 @@ line operator cast(side side)
return t.line(side.n);
}
-/*<asyxml><function type = "line" signature = "line(explicit side)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="line(explicit side)"><code></asyxml>*/
line line(explicit side side)
{/*<asyxml></code><documentation>Return 'side' as line.</documentation></function></asyxml>*/
return (line)side;
}
-/*<asyxml><function type = "segment" signature = "segment(explicit side)"><code></asyxml>*/
+/*<asyxml><function type="segment" signature="segment(explicit side)"><code></asyxml>*/
segment segment(explicit side side)
{/*<asyxml></code><documentation>Return 'side' as segment.</documentation></function></asyxml>*/
return (segment)(line)side;
}
-/*<asyxml><operator type = "point" signature = "cast(vertex)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="cast(vertex)"><code></asyxml>*/
point operator cast(vertex V)
{/*<asyxml></code><documentation>Cast vertex to point.
Most routine with point parameters works with vertex parameters.</documentation></operator></asyxml>*/
return V.t.point(V.n);
}
-/*<asyxml><function type = "point" signature = "point(explicit vertex)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(explicit vertex)"><code></asyxml>*/
point point(explicit vertex V)
{/*<asyxml></code><documentation>Return the point corresponding to the vertex 'V'.</documentation></function></asyxml>*/
return (point)V;
}
-/*<asyxml><function type = "side" signature = "opposite(vertex)"><code></asyxml>*/
+/*<asyxml><function type="side" signature="opposite(vertex)"><code></asyxml>*/
side opposite(vertex V)
{/*<asyxml></code><documentation>Return the opposite side of vertex 'V'.</documentation></function></asyxml>*/
return V.t.side(numarray[abs(V.n)]);
}
-/*<asyxml><function type = "vertex" signature = "opposite(side)"><code></asyxml>*/
+/*<asyxml><function type="vertex" signature="opposite(side)"><code></asyxml>*/
vertex opposite(side side)
{/*<asyxml></code><documentation>Return the opposite vertex of side 'side'.</documentation></function></asyxml>*/
return side.t.vertex(numarray[abs(side.n) + 1]);
}
-/*<asyxml><function type = "point" signature = "midpoint(side)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="midpoint(side)"><code></asyxml>*/
point midpoint(side side)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return midpoint(segment(side));
}
-/*<asyxml><operator type = "triangle" signature = "*(transform, triangle)"><code></asyxml>*/
+/*<asyxml><operator type = "triangle" signature="*(transform,triangle)"><code></asyxml>*/
triangle operator *(transform T, triangle t)
{/*<asyxml></code><documentation>Provide transform * triangle.</documentation></operator></asyxml>*/
return triangle(T * t.A, T * t.B, T * t.C);
}
-/*<asyxml><function type = "triangle" signature = "triangleAbc(real, real, real, real, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="triangleAbc(real,real,real,real,point)"><code></asyxml>*/
triangle triangleAbc(real alpha, real b, real c, real angle = 0, point A = (0, 0))
{/*<asyxml></code><documentation>Return the triangle ABC rotated by 'angle' with BAC = alpha, AC = b and AB = c.</documentation></function></asyxml>*/
triangle T;
@@ -5713,7 +5734,7 @@ triangle triangleAbc(real alpha, real b, real c, real angle = 0, point A = (0, 0
return T;
}
-/*<asyxml><function type = "triangle" signature = "triangleabc(real, real, real, real, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="triangleabc(real,real,real,real,point)"><code></asyxml>*/
triangle triangleabc(real a, real b, real c, real angle = 0, point A = (0, 0))
{/*<asyxml></code><documentation>Return the triangle ABC rotated by 'angle' with BC = a, AC = b and AB = c.</documentation></function></asyxml>*/
triangle T;
@@ -5722,7 +5743,7 @@ triangle triangleabc(real a, real b, real c, real angle = 0, point A = (0, 0))
return T;
}
-/*<asyxml><function type = "triangle" signature = "triangle(line, line, line)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="triangle(line,line,line)"><code></asyxml>*/
triangle triangle(line l1, line l2, line l3)
{/*<asyxml></code><documentation>Return the triangle defined by three line.</documentation></function></asyxml>*/
point P1, P2, P3;
@@ -5733,79 +5754,79 @@ triangle triangle(line l1, line l2, line l3)
return triangle(P1, P2, P3);
}
-/*<asyxml><function type = "point" signature = "foot(vertex)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="foot(vertex)"><code></asyxml>*/
point foot(vertex V)
{/*<asyxml></code><documentation>Return the endpoint of the altitude from V.</documentation></function></asyxml>*/
return projection((line)opposite(V)) * ((point)V);
}
-/*<asyxml><function type = "point" signature = "foot(side)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="foot(side)"><code></asyxml>*/
point foot(side side)
{/*<asyxml></code><documentation>Return the endpoint of the altitude on 'side'.</documentation></function></asyxml>*/
return projection((line)side) * point(opposite(side));
}
-/*<asyxml><function type = "line" signature = "altitude(vertex)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="altitude(vertex)"><code></asyxml>*/
line altitude(vertex V)
{/*<asyxml></code><documentation>Return the altitude passing through 'V'.</documentation></function></asyxml>*/
return line(point(V), foot(V));
}
-/*<asyxml><function type = "line" signature = "altitude(vertex)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="altitude(vertex)"><code></asyxml>*/
line altitude(side side)
{/*<asyxml></code><documentation>Return the altitude cutting 'side'.</documentation></function></asyxml>*/
return altitude(opposite(side));
}
-/*<asyxml><function type = "point" signature = "orthocentercenter(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="orthocentercenter(triangle)"><code></asyxml>*/
point orthocentercenter(triangle t)
{/*<asyxml></code><documentation>Return the orthocenter of the triangle t.</documentation></function></asyxml>*/
return orthocentercenter(t.A, t.B, t.C);
}
-/*<asyxml><function type = "point" signature = "centroid(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="centroid(triangle)"><code></asyxml>*/
point centroid(triangle t)
{/*<asyxml></code><documentation>Return the centroid of the triangle 't'.</documentation></function></asyxml>*/
return (t.A + t.B + t.C)/3;
}
-/*<asyxml><function type = "point" signature = "circumcenter(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="circumcenter(triangle)"><code></asyxml>*/
point circumcenter(triangle t)
{/*<asyxml></code><documentation>Return the circumcenter of the triangle 't'.</documentation></function></asyxml>*/
return circumcenter(t.A, t.B, t.C);
}
-/*<asyxml><function type = "circle" signature = "circle(triangle)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(triangle)"><code></asyxml>*/
circle circle(triangle t)
{/*<asyxml></code><documentation>Return the circumcircle of the triangle 't'.</documentation></function></asyxml>*/
return circle(t.A, t.B, t.C);
}
-/*<asyxml><function type = "circle" signature = "circumcircle(triangle)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circumcircle(triangle)"><code></asyxml>*/
circle circumcircle(triangle t)
{/*<asyxml></code><documentation>Return the circumcircle of the triangle 't'.</documentation></function></asyxml>*/
return circle(t.A, t.B, t.C);
}
-/*<asyxml><function type = "point" signature = "incenter(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="incenter(triangle)"><code></asyxml>*/
point incenter(triangle t)
{/*<asyxml></code><documentation>Return the center of the incircle of the triangle 't'.</documentation></function></asyxml>*/
return incenter(t.A, t.B, t.C);
}
-/*<asyxml><function type = "real" signature = "inradius(triangle)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="inradius(triangle)"><code></asyxml>*/
real inradius(triangle t)
{/*<asyxml></code><documentation>Return the radius of the incircle of the triangle 't'.</documentation></function></asyxml>*/
return inradius(t.A, t.B, t.C);
}
-/*<asyxml><function type = "circle" signature = "incircle(triangle)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="incircle(triangle)"><code></asyxml>*/
circle incircle(triangle t)
{/*<asyxml></code><documentation>Return the the incircle of the triangle 't'.</documentation></function></asyxml>*/
return incircle(t.A, t.B, t.C);
}
-/*<asyxml><function type = "point" signature = "excenter(side, triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="excenter(side,triangle)"><code></asyxml>*/
point excenter(side side)
{/*<asyxml></code><documentation>Return the center of the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means AC, other means BC.
@@ -5819,7 +5840,7 @@ point excenter(side side)
return op;
}
-/*<asyxml><function type = "real" signature = "exradius(side, triangle)"><code></asyxml>*/
+/*<asyxml><function type="real" signature="exradius(side,triangle)"><code></asyxml>*/
real exradius(side side)
{/*<asyxml></code><documentation>Return radius of the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means BC, other means CA.
@@ -5833,7 +5854,7 @@ real exradius(side side)
return or;
}
-/*<asyxml><function type = "circle" signature = "excircle(side, triangle)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="excircle(side,triangle)"><code></asyxml>*/
circle excircle(side side)
{/*<asyxml></code><documentation>Return the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means AC, other means BC.
@@ -5847,15 +5868,15 @@ circle excircle(side side)
return oc;
}
-/*<asyxml><struct signature = "trilinear"><code></asyxml>*/
+/*<asyxml><struct signature="trilinear"><code></asyxml>*/
struct trilinear
{/*<asyxml></code><documentation>Trilinear coordinates 'a:b:c' relative to triangle 't'.
- <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation><property type = "real" signature = "a, b, c"><code></asyxml>*/
- real a, b, c;/*<asyxml></code><documentation>The trilinear coordinates.</documentation></property><property type = "triangle" signature = "t"><code></asyxml>*/
+ <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation><property type = "real" signature="a,b,c"><code></asyxml>*/
+ real a,b,c;/*<asyxml></code><documentation>The trilinear coordinates.</documentation></property><property type = "triangle" signature="t"><code></asyxml>*/
triangle t;/*<asyxml></code><documentation>The reference triangle.</documentation></property></asyxml>*/
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "trilinear" signature = "trilinear(triangle, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,real,real,real)"><code></asyxml>*/
trilinear trilinear(triangle t, real a, real b, real c)
{/*<asyxml></code><documentation>Return the trilinear coordinates relative to 't'.
<url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
@@ -5865,7 +5886,7 @@ trilinear trilinear(triangle t, real a, real b, real c)
return ot;
}
-/*<asyxml><function type = "trilinear" signature = "trilinear(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,point)"><code></asyxml>*/
trilinear trilinear(triangle t, point M)
{/*<asyxml></code><documentation>Return the trilinear coordinates of 'M' relative to 't'.
<url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
@@ -5889,13 +5910,13 @@ trilinear trilinear(triangle t, point M)
return ot;
}
-/*<asyxml><function type = "void" signature = "write(trilinear)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="write(trilinear)"><code></asyxml>*/
void write(trilinear tri)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
write(format("%f : ", tri.a) + format("%f : ", tri.b) + format("%f", tri.c));
}
-/*<asyxml><function type = "point" signature = "trilinear(triangle, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="trilinear(triangle,real,real,real)"><code></asyxml>*/
point point(trilinear tri)
{/*<asyxml></code><documentation>Return the trilinear coordinates relative to 't'.
<url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
@@ -5905,7 +5926,7 @@ point point(trilinear tri)
0.5 * t.c() * mass(t.C, tri.c));
}
-/*<asyxml><function type = "int[]" signature = "tricoef(side)"><code></asyxml>*/
+/*<asyxml><function type="int[]" signature="tricoef(side)"><code></asyxml>*/
int[] tricoef(side side)
{/*<asyxml></code><documentation>Return an array of integer (values are 0 or 1) which represents 'side'.
For example, side = t.BC will be represented by {0, 1, 1}.</documentation></function></asyxml>*/
@@ -5917,7 +5938,7 @@ int[] tricoef(side side)
return oi;
}
-/*<asyxml><operator type = "point" signature = "cast(trilinear)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="cast(trilinear)"><code></asyxml>*/
point operator cast(trilinear tri)
{/*<asyxml></code><documentation>Cast trilinear to point.
One may use the routine 'point(trilinear)' to force the casting.</documentation></operator></asyxml>*/
@@ -5927,13 +5948,13 @@ point operator cast(trilinear tri)
/*<asyxml><typedef type = "centerfunction" return = "real" params = "real, real, real"><code></asyxml>*/
typedef real centerfunction(real, real, real);/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/TriangleCenterFunction.html"/></documentation></typedef></asyxml>*/
-/*<asyxml><function type = "trilinear" signature = "trilinear(triangle, centerfunction, real, real, real)"><code></asyxml>*/
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,centerfunction,real,real,real)"><code></asyxml>*/
trilinear trilinear(triangle t, centerfunction f, real a = t.a(), real b = t.b(), real c = t.c())
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/TriangleCenterFunction.html"/></documentation></function></asyxml>*/
return trilinear(t, f(a, b, c), f(b, c, a), f(c, a, b));
}
-/*<asyxml><function type = "point" signature = "symmedian(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="symmedian(triangle)"><code></asyxml>*/
point symmedian(triangle t)
{/*<asyxml></code><documentation>Return the symmedian point of 't'.</documentation></function></asyxml>*/
point A, B, C;
@@ -5943,7 +5964,7 @@ point symmedian(triangle t)
return intersectionpoint(line(t.A, A), line(t.B, B));
}
-/*<asyxml><function type = "point" signature = "symmedian(side)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="symmedian(side)"><code></asyxml>*/
point symmedian(side side)
{/*<asyxml></code><documentation>The symmedian point on the side 'side'.</documentation></function></asyxml>*/
triangle t = side.t;
@@ -5953,13 +5974,13 @@ point symmedian(side side)
return trilinear(t, t.a(), 0, t.c());
}
-/*<asyxml><function type = "line" signature = "symmedian(vertex)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="symmedian(vertex)"><code></asyxml>*/
line symmedian(vertex V)
{/*<asyxml></code><documentation>Return the symmedian passing through 'V'.</documentation></function></asyxml>*/
return line(point(V), symmedian(V.t));
}
-/*<asyxml><function type = "triangle" signature = "cevian(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="cevian(triangle,point)"><code></asyxml>*/
triangle cevian(triangle t, point P)
{/*<asyxml></code><documentation>Return the Cevian triangle with respect of 'P'
<url href = "http://mathworld.wolfram.com/CevianTriangle.html"/>.</documentation></function></asyxml>*/
@@ -5970,7 +5991,7 @@ triangle cevian(triangle t, point P)
return triangle(A, B, C);
}
-/*<asyxml><function type = "point" signature = "cevian(side, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="cevian(side,point)"><code></asyxml>*/
point cevian(side side, point P)
{/*<asyxml></code><documentation>Return the Cevian point on 'side' with respect of 'P'.</documentation></function></asyxml>*/
triangle t = side.t;
@@ -5979,20 +6000,20 @@ point cevian(side side, point P)
return point(trilinear(t, s[0] * tri.a, s[1] * tri.b, s[2] * tri.c));
}
-/*<asyxml><function type = "line" signature = "cevian(vertex, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="cevian(vertex,point)"><code></asyxml>*/
line cevian(vertex V, point P)
{/*<asyxml></code><documentation>Return line passing through 'V' and its Cevian image with respect of 'P'.</documentation></function></asyxml>*/
return line(point(V), cevian(opposite(V), P));
}
-/*<asyxml><function type = "point" signature = "gergonne(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="gergonne(triangle)"><code></asyxml>*/
point gergonne(triangle t)
{/*<asyxml></code><documentation>Return the Gergonne point of 't'.</documentation></function></asyxml>*/
real f(real a, real b, real c){return 1/(a * (b + c - a));}
return point(trilinear(t, f));
}
-/*<asyxml><function type = "point[]" signature = "fermat(triangle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="fermat(triangle)"><code></asyxml>*/
point[] fermat(triangle t)
{/*<asyxml></code><documentation>Return the Fermat points of 't'.</documentation></function></asyxml>*/
point[] P;
@@ -6002,7 +6023,7 @@ point[] fermat(triangle t)
return P;
}
-/*<asyxml><function type = "point" signature = "isotomicconjugate(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="isotomicconjugate(triangle,point)"><code></asyxml>*/
point isotomicconjugate(triangle t, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
if(!inside(t.Path(), locate(M))) abort("isotomic: the point must be inside the triangle.");
@@ -6010,65 +6031,65 @@ point isotomicconjugate(triangle t, point M)
return point(trilinear(t, 1/(t.a()^2 * tr.a), 1/(t.b()^2 * tr.b), 1/(t.c()^2 * tr.c)));
}
-/*<asyxml><function type = "line" signature = "isotomic(vertex, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="isotomic(vertex,point)"><code></asyxml>*/
line isotomic(vertex V, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/>.</documentation></function></asyxml>*/
side op = opposite(V);
return line(V, rotate(180, midpoint(op)) * cevian(op, M));
}
-/*<asyxml><function type = "point" signature = "isotomic(side, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="isotomic(side,point)"><code></asyxml>*/
point isotomic(side side, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
return intersectionpoint(isotomic(opposite(side), M), side);
}
-/*<asyxml><function type = "triangle" signature = "isotomic(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="isotomic(triangle,point)"><code></asyxml>*/
triangle isotomic(triangle t, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
return triangle(isotomic(t.BC, M), isotomic(t.CA, M), isotomic(t.AB, M));
}
-/*<asyxml><function type = "point" signature = "isogonalconjugate(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="isogonalconjugate(triangle,point)"><code></asyxml>*/
point isogonalconjugate(triangle t, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
trilinear tr = trilinear(t, M);
return point(trilinear(t, 1/tr.a, 1/tr.b, 1/tr.c));
}
-/*<asyxml><function type = "point" signature = "isogonal(side, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="isogonal(side,point)"><code></asyxml>*/
point isogonal(side side, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
return cevian(side, isogonalconjugate(side.t, M));
}
-/*<asyxml><function type = "line" signature = "isogonal(vertex, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="isogonal(vertex,point)"><code></asyxml>*/
line isogonal(vertex V, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
return line(V, isogonal(opposite(V), M));
}
-/*<asyxml><function type = "triangle" signature = "isogonal(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="isogonal(triangle,point)"><code></asyxml>*/
triangle isogonal(triangle t, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
return triangle(isogonal(t.BC, M), isogonal(t.CA, M), isogonal(t.AB, M));
}
-/*<asyxml><function type = "triangle" signature = "pedal(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="pedal(triangle,point)"><code></asyxml>*/
triangle pedal(triangle t, point M)
{/*<asyxml></code><documentation>Return the pedal triangle of 'M' in 't'.
<url href = "http://mathworld.wolfram.com/PedalTriangle.html"/></documentation></function></asyxml>*/
return triangle(projection(t.BC) * M, projection(t.AC) * M, projection(t.AB) * M);
}
-/*<asyxml><function type = "triangle" signature = "pedal(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="pedal(triangle,point)"><code></asyxml>*/
line pedal(side side, point M)
{/*<asyxml></code><documentation>Return the pedal line of 'M' cutting 'side'.
<url href = "http://mathworld.wolfram.com/PedalTriangle.html"/></documentation></function></asyxml>*/
return line(M, projection(side) * M);
}
-/*<asyxml><function type = "triangle" signature = "antipedal(triangle, point)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="antipedal(triangle,point)"><code></asyxml>*/
triangle antipedal(triangle t, point M)
{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/AntipedalTriangle.html"/></documentation></function></asyxml>*/
trilinear Tm = trilinear(t, M);
@@ -6080,7 +6101,7 @@ triangle antipedal(triangle t, point M)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "extouch(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="extouch(triangle)"><code></asyxml>*/
triangle extouch(triangle t)
{/*<asyxml></code><documentation>Return the extouch triangle of the triangle 't'.
The extouch triangle of 't' is the triangle formed by the points
@@ -6093,7 +6114,7 @@ triangle extouch(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "extouch(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="extouch(triangle)"><code></asyxml>*/
triangle incentral(triangle t)
{/*<asyxml></code><documentation>Return the incentral triangle of the triangle 't'.
It is the triangle whose vertices are determined by the intersections of the
@@ -6106,7 +6127,7 @@ triangle incentral(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "extouch(side)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="extouch(side)"><code></asyxml>*/
triangle extouch(side side)
{/*<asyxml></code><documentation>Return the triangle formed by the points of tangency of the triangle referenced by 'side' with its excircles.
One vertex of the returned triangle is on the segment 'side'.</documentation></function></asyxml>*/
@@ -6118,7 +6139,7 @@ triangle extouch(side side)
return triangle(p3 * EP, p2 * EP, p1 * EP);
}
-/*<asyxml><function type = "point" signature = "bisectorpoint(side)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="bisectorpoint(side)"><code></asyxml>*/
point bisectorpoint(side side)
{/*<asyxml></code><documentation>The intersection point of the angle bisector from the
opposite point of 'side' with the side 'side'.</documentation></function></asyxml>*/
@@ -6129,20 +6150,20 @@ point bisectorpoint(side side)
return trilinear(t, 1, 0, 1);
}
-/*<asyxml><function type = "line" signature = "bisector(vertex, real)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(vertex,real)"><code></asyxml>*/
line bisector(vertex V, real angle = 0)
{/*<asyxml></code><documentation>Return the interior bisector passing through 'V' rotated by angle (in degrees)
around 'V'.</documentation></function></asyxml>*/
return rotate(angle, point(V)) * line(point(V), incenter(V.t));
}
-/*<asyxml><function type = "line" signature = "bisector(side)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="bisector(side)"><code></asyxml>*/
line bisector(side side)
{/*<asyxml></code><documentation>Return the bisector of the line segment 'side'.</documentation></function></asyxml>*/
return bisector(segment(side));
}
-/*<asyxml><function type = "point" signature = "intouch(side)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="intouch(side)"><code></asyxml>*/
point intouch(side side)
{/*<asyxml></code><documentation>The point of tangency on the side 'side' of its incircle.</documentation></function></asyxml>*/
triangle t = side.t;
@@ -6153,7 +6174,7 @@ point intouch(side side)
return trilinear(t, b * c/(-a + b + c), 0, a * b/(a + b - c));
}
-/*<asyxml><function type = "triangle" signature = "intouch(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="intouch(triangle)"><code></asyxml>*/
triangle intouch(triangle t)
{/*<asyxml></code><documentation>Return the intouch triangle of the triangle 't'.
The intouch triangle of 't' is the triangle formed by the points
@@ -6166,7 +6187,7 @@ triangle intouch(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "tangential(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="tangential(triangle)"><code></asyxml>*/
triangle tangential(triangle t)
{/*<asyxml></code><documentation>Return the tangential triangle of the triangle 't'.
The tangential triangle of 't' is the triangle formed by the lines
@@ -6179,31 +6200,31 @@ triangle tangential(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "medial(triangle t)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="medial(triangle t)"><code></asyxml>*/
triangle medial(triangle t)
{/*<asyxml></code><documentation>Return the triangle whose vertices are midpoints of the sides of 't'.</documentation></function></asyxml>*/
return triangle(midpoint(t.BC), midpoint(t.AC), midpoint(t.AB));
}
-/*<asyxml><function type = "line" signature = "median(vertex)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="median(vertex)"><code></asyxml>*/
line median(vertex V)
{/*<asyxml></code><documentation>Return median from 'V'.</documentation></function></asyxml>*/
return line(point(V), midpoint(segment(opposite(V))));
}
-/*<asyxml><function type = "line" signature = "median(side)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="median(side)"><code></asyxml>*/
line median(side side)
{/*<asyxml></code><documentation>Return median from the opposite vertex of 'side'.</documentation></function></asyxml>*/
return median(opposite(side));
}
-/*<asyxml><function type = "triangle" signature = "orthic(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="orthic(triangle)"><code></asyxml>*/
triangle orthic(triangle t)
{/*<asyxml></code><documentation>Return the triangle whose vertices are endpoints of the altitudes from each of the vertices of 't'.</documentation></function></asyxml>*/
return triangle(foot(t.BC), foot(t.AC), foot(t.AB));
}
-/*<asyxml><function type = "triangle" signature = "symmedial(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="symmedial(triangle)"><code></asyxml>*/
triangle symmedial(triangle t)
{/*<asyxml></code><documentation>Return the symmedial triangle of 't'.</documentation></function></asyxml>*/
point A, B, C;
@@ -6214,7 +6235,7 @@ triangle symmedial(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "triangle" signature = "anticomplementary(triangle)"><code></asyxml>*/
+/*<asyxml><function type="triangle" signature="anticomplementary(triangle)"><code></asyxml>*/
triangle anticomplementary(triangle t)
{/*<asyxml></code><documentation>Return the triangle which has the given triangle 't' as its medial triangle.</documentation></function></asyxml>*/
real a = t.a(), b = t.b(), c = t.c();
@@ -6225,7 +6246,7 @@ triangle anticomplementary(triangle t)
return triangle(A, B, C);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(triangle, line, bool)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(triangle,line,bool)"><code></asyxml>*/
point[] intersectionpoints(triangle t, line l, bool extended = false)
{/*<asyxml></code><documentation>Return the intersection points.
If 'extended' is true, the sides are lines else the sides are segments.
@@ -6258,7 +6279,7 @@ point[] intersectionpoints(line l, triangle t, bool extended = false)
return intersectionpoints(t, l, extended);
}
-/*<asyxml><function type = "vector" signature = "dir(vertex)"><code></asyxml>*/
+/*<asyxml><function type="vector" signature="dir(vertex)"><code></asyxml>*/
vector dir(vertex V)
{/*<asyxml></code><documentation>The direction (towards the outside of the triangle) of the interior angle bisector of 'V'.</documentation></function></asyxml>*/
triangle t = V.t;
@@ -6267,7 +6288,7 @@ vector dir(vertex V)
return vector(defaultcoordsys, (-dir(t.C--t.A, t.C--t.B)));
}
-/*<asyxml><function type = "void" signature = "lvoid label(picture, Label, vertex, pair, real, pen, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="lvoid label(picture,Label,vertex,pair,real,pen,filltype)"><code></asyxml>*/
void label(picture pic = currentpicture, Label L, vertex V,
pair align = dir(V),
real alignFactor = 1,
@@ -6276,7 +6297,7 @@ void label(picture pic = currentpicture, Label L, vertex V,
label(pic, L, locate(point(V)), alignFactor * align, p, filltype);
}
-/*<asyxml><function type = "void" signature = "label(picture, Label, Label, Label, triangle, real, real, pen, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="label(picture,Label,Label,Label,triangle,real,real,pen,filltype)"><code></asyxml>*/
void label(picture pic = currentpicture, Label LA = "$A$",
Label LB = "$B$", Label LC = "$C$",
triangle t,
@@ -6297,7 +6318,7 @@ void label(picture pic = currentpicture, Label LA = "$A$",
label(pic, llc, t.VC, align = llc.align.dir, alignFactor = alignFactor, p, filltype);
}
-/*<asyxml><function type = "void" signature = "show(picture, Label, Label, Label, Label, Label, Label, triangle, pen, filltype)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="show(picture,Label,Label,Label,Label,Label,Label,triangle,pen,filltype)"><code></asyxml>*/
void show(picture pic = currentpicture,
Label LA = "$A$", Label LB = "$B$", Label LC = "$C$",
Label La = "$a$", Label Lb = "$b$", Label Lc = "$c$",
@@ -6310,24 +6331,24 @@ void show(picture pic = currentpicture,
label(pic, LC, c, -dir(c--a, c--b), p, filltype);
pair aligna = I * unit(c - b), alignb = I * unit(c - a), alignc = I * unit(b - a);
pair mAB = locate(midpoint(t.AB)), mAC = locate(midpoint(t.AC)), mBC = locate(midpoint(t.BC));
- draw(pic, La, b--c, align = rotate(dot(a - mBC, aligna) > 0 ? 180 :0) * aligna, p);
- draw(pic, Lb, a--c, align = rotate(dot(b - mAC, alignb) > 0 ? 180 :0) * alignb, p);
- draw(pic, Lc, a--b, align = rotate(dot(c - mAB, alignc) > 0 ? 180 :0) * alignc, p);
+ label(pic, La, b--c, align = rotate(dot(a - mBC, aligna) > 0 ? 180 :0) * aligna, p);
+ label(pic, Lb, a--c, align = rotate(dot(b - mAC, alignb) > 0 ? 180 :0) * alignb, p);
+ label(pic, Lc, a--b, align = rotate(dot(c - mAB, alignc) > 0 ? 180 :0) * alignc, p);
}
-/*<asyxml><function type = "void" signature = "draw(picture, triangle, pen, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,triangle,pen,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, triangle t, pen p = currentpen, marker marker = nomarker)
{/*<asyxml></code><documentation>Draw sides of the triangle 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
draw(pic, t.Path(), p, marker);
}
-/*<asyxml><function type = "void" signature = "draw(picture, triangle[], pen, marker)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="draw(picture,triangle[],pen,marker)"><code></asyxml>*/
void draw(picture pic = currentpicture, triangle[] t, pen p = currentpen, marker marker = nomarker)
{/*<asyxml></code><documentation>Draw sides of the triangles 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
for(int i = 0; i < t.length; ++i) draw(pic, t[i], p, marker);
}
-/*<asyxml><function type = "void" signature = "drawline(picture, triangle, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="drawline(picture,triangle,pen)"><code></asyxml>*/
void drawline(picture pic = currentpicture, triangle t, pen p = currentpen)
{/*<asyxml></code><documentation>Draw lines of the triangle 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
draw(t, p);
@@ -6336,7 +6357,7 @@ void drawline(picture pic = currentpicture, triangle t, pen p = currentpen)
draw(pic, line(t.B, t.C), p);
}
-/*<asyxml><function type = "void" signature = "dot(picture, triangle, pen)"><code></asyxml>*/
+/*<asyxml><function type="void" signature="dot(picture,triangle,pen)"><code></asyxml>*/
void dot(picture pic = currentpicture, triangle t, pen p = currentpen)
{/*<asyxml></code><documentation>Draw a dot at each vertex of 't'.</documentation></function></asyxml>*/
dot(pic, t.A^^t.B^^t.C, p);
@@ -6346,13 +6367,13 @@ void dot(picture pic = currentpicture, triangle t, pen p = currentpen)
// *=======================================================*
// *.......................INVERSIONS......................*
-/*<asyxml><function type = "point" signature = "inverse(real k, point, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="inverse(real k,point,point)"><code></asyxml>*/
point inverse(real k, point A, point M)
{/*<asyxml></code><documentation>Return the inverse point of 'M' with respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
return A + k/conj(M - A);
}
-/*<asyxml><function type = "point" signature = "radicalcenter(circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="radicalcenter(circle,circle)"><code></asyxml>*/
point radicalcenter(circle c1, circle c2)
{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
point[] P = standardizecoordsys(c1.C, c2.C);
@@ -6366,27 +6387,27 @@ point radicalcenter(circle c1, circle c2)
return point(P[0].coordsys, K/P[0].coordsys);
}
-/*<asyxml><function type = "line" signature = "radicalline(circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="radicalline(circle,circle)"><code></asyxml>*/
line radicalline(circle c1, circle c2)
{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
if (c1.C == c2.C) abort("radicalline: the centers must be distinct");
return perpendicular(radicalcenter(c1, c2), line(c1.C, c2.C));
}
-/*<asyxml><function type = "point" signature = "radicalcenter(circle, circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="radicalcenter(circle,circle,circle)"><code></asyxml>*/
point radicalcenter(circle c1, circle c2, circle c3)
{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
return intersectionpoint(radicalline(c1, c2), radicalline(c1, c3));
}
-/*<asyxml><struct signature = "inversion"><code></asyxml>*/
+/*<asyxml><struct signature="inversion"><code></asyxml>*/
struct inversion
{/*<asyxml></code><documentation>http://mathworld.wolfram.com/Inversion.html</documentation></asyxml>*/
point C;
real k;
}/*<asyxml></struct></asyxml>*/
-/*<asyxml><function type = "inversion" signature = "inversion(real, point)"><code></asyxml>*/
+/*<asyxml><function type="inversion" signature="inversion(real,point)"><code></asyxml>*/
inversion inversion(real k, point C)
{/*<asyxml></code><documentation>Return the inversion with respect to 'C' having inversion radius 'k'.</documentation></function></asyxml>*/
inversion oi;
@@ -6394,13 +6415,13 @@ inversion inversion(real k, point C)
oi.C = C;
return oi;
}
-/*<asyxml><function type = "inversion" signature = "inversion(real, point)"><code></asyxml>*/
+/*<asyxml><function type="inversion" signature="inversion(real,point)"><code></asyxml>*/
inversion inversion(point C, real k)
{/*<asyxml></code><documentation>Return the inversion with respect to 'C' having inversion radius 'k'.</documentation></function></asyxml>*/
return inversion(k, C);
}
-/*<asyxml><function type = "inversion" signature = "inversion(circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="inversion" signature="inversion(circle,circle)"><code></asyxml>*/
inversion inversion(circle c1, circle c2, real sgn = 1)
{/*<asyxml></code><documentation>Return the inversion which transforms 'c1' to
. 'c2' and positive inversion radius if 'sgn > 0';
@@ -6419,7 +6440,7 @@ inversion inversion(circle c1, circle c2, real sgn = 1)
return inversion(-a * abs(abs(O - c2.C)^2 - c2.r^2), O);
}
-/*<asyxml><function type = "inversion" signature = "inversion(circle, circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="inversion" signature="inversion(circle,circle,circle)"><code></asyxml>*/
inversion inversion(circle c1, circle c2, circle c3)
{/*<asyxml></code><documentation>Return the inversion which transform 'c1' to 'c1', 'c2' to 'c2' and 'c3' to 'c3'.</documentation></function></asyxml>*/
point Rc = radicalcenter(c1, c2, c3);
@@ -6427,7 +6448,7 @@ inversion inversion(circle c1, circle c2, circle c3)
}
circle operator cast(inversion i){return circle(i.C, sgn(i.k) * sqrt(abs(i.k)));}
-/*<asyxml><function type = "circle" signature = "circle(inversion)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="circle(inversion)"><code></asyxml>*/
circle circle(inversion i)
{/*<asyxml></code><documentation>Return the inversion circle of 'i'.</documentation></function></asyxml>*/
return i;
@@ -6437,13 +6458,13 @@ inversion operator cast(circle c)
{
return inversion(sgn(c.r) * c.r^2, c.C);
}
-/*<asyxml><function type = "inversion" signature = "inversion(circle)"><code></asyxml>*/
+/*<asyxml><function type="inversion" signature="inversion(circle)"><code></asyxml>*/
inversion inversion(circle c)
{/*<asyxml></code><documentation>Return the inversion represented by the circle of 'c'.</documentation></function></asyxml>*/
return c;
}
-/*<asyxml><operator type = "point" signature = "*(inversion, point)"><code></asyxml>*/
+/*<asyxml><operator type = "point" signature="*(inversion,point)"><code></asyxml>*/
point operator *(inversion i, point P)
{/*<asyxml></code><documentation>Provide inversion * point.</documentation></operator></asyxml>*/
return inverse(i.k, i.C, P);
@@ -6456,7 +6477,7 @@ The returned circle has an infinite radius, circle.l has been set.");
}
-/*<asyxml><function type = "circle" signature = "inverse(real, point, line)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="inverse(real,point,line)"><code></asyxml>*/
circle inverse(real k, point A, line l)
{/*<asyxml></code><documentation>Return the inverse circle of 'l' with
respect to point 'A' and inversion radius 'k'.</documentation></function></asyxml>*/
@@ -6470,13 +6491,13 @@ circle inverse(real k, point A, line l)
return circle(A, Ap, Bp);
}
-/*<asyxml><operator type = "circle" signature = "*(inversion, line)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="*(inversion,line)"><code></asyxml>*/
circle operator *(inversion i, line l)
{/*<asyxml></code><documentation>Provide inversion * line for lines that don't pass through the inversion center.</documentation></operator></asyxml>*/
return inverse(i.k, i.C, l);
}
-/*<asyxml><function type = "circle" signature = "inverse(real, point, circle)"><code></asyxml>*/
+/*<asyxml><function type="circle" signature="inverse(real,point,circle)"><code></asyxml>*/
circle inverse(real k, point A, circle c)
{/*<asyxml></code><documentation>Return the inverse circle of 'c' with
respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
@@ -6493,7 +6514,7 @@ circle inverse(real k, point A, circle c)
return circle(P[0] + s * (P[1]-P[0]), abs(s) * c.r);
}
-/*<asyxml><operator type = "circle" signature = "*(inversion, circle)"><code></asyxml>*/
+/*<asyxml><operator type = "circle" signature="*(inversion,circle)"><code></asyxml>*/
circle operator *(inversion i, circle c)
{/*<asyxml></code><documentation>Provide inversion * circle.</documentation></operator></asyxml>*/
return inverse(i.k, i.C, c);
@@ -6503,7 +6524,7 @@ circle operator *(inversion i, circle c)
// *=======================================================*
// *........................FOOTER.........................*
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, circle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,circle)"><code></asyxml>*/
point[] intersectionpoints(line l, circle c)
{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
intersectionpoints(circle, line) is also defined.</documentation></function></asyxml>*/
@@ -6534,7 +6555,7 @@ point[] intersectionpoints(circle c, line l)
return intersectionpoints(l, c);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, ellipse)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,ellipse)"><code></asyxml>*/
point[] intersectionpoints(line l, ellipse el)
{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
intersectionpoints(ellipse, line) is also defined.</documentation></function></asyxml>*/
@@ -6574,7 +6595,7 @@ point[] intersectionpoints(ellipse el, line l)
return intersectionpoints(l, el);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, parabola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,parabola)"><code></asyxml>*/
point[] intersectionpoints(line l, parabola p)
{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
intersectionpoints(parabola, line) is also defined.</documentation></function></asyxml>*/
@@ -6610,7 +6631,7 @@ point[] intersectionpoints(parabola p, line l)
return intersectionpoints(l, p);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,hyperbola)"><code></asyxml>*/
point[] intersectionpoints(line l, hyperbola h)
{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
intersectionpoints(hyperbola, line) is also defined.</documentation></function></asyxml>*/
@@ -6638,7 +6659,7 @@ point[] intersectionpoints(hyperbola h, line l)
return intersectionpoints(l, h);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, conic)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,conic)"><code></asyxml>*/
point[] intersectionpoints(line l, conic co)
{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
intersectionpoints(conic, line) is also defined.</documentation></function></asyxml>*/
@@ -6655,7 +6676,7 @@ point[] intersectionpoints(conic co, line l)
return intersectionpoints(l, co);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(conic, conic)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(conic,conic)"><code></asyxml>*/
point[] intersectionpoints(conic co1, conic co2)
{/*<asyxml></code><documentation>Return the intersection points of the two conics.</documentation></function></asyxml>*/
if(degenerate(co1)) return intersectionpoints(co1.l[0], co2);
@@ -6663,7 +6684,7 @@ point[] intersectionpoints(conic co1, conic co2)
return intersectionpoints(equation(co1), equation(co2));
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(triangle, conic, bool)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(triangle,conic,bool)"><code></asyxml>*/
point[] intersectionpoints(triangle t, conic co, bool extended = false)
{/*<asyxml></code><documentation>Return the intersection points.
If 'extended' is true, the sides are lines else the sides are segments.
@@ -6697,91 +6718,91 @@ point[] intersectionpoints(conic co, triangle t, bool extended = false)
return intersectionpoints(t, co, extended);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(ellipse, ellipse)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,ellipse)"><code></asyxml>*/
point[] intersectionpoints(ellipse a, ellipse b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
// if(degenerate(a)) return intersectionpoints(a.l, b);
// if(degenerate(b)) return intersectionpoints(a, b.l);;
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(ellipse, circle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,circle)"><code></asyxml>*/
point[] intersectionpoints(ellipse a, circle b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
// if(degenerate(a)) return intersectionpoints(a.l, b);
// if(degenerate(b)) return intersectionpoints(a, b.l);;
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(circle, ellipse)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,ellipse)"><code></asyxml>*/
point[] intersectionpoints(circle a, ellipse b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints(b, a);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(ellipse, parabola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,parabola)"><code></asyxml>*/
point[] intersectionpoints(ellipse a, parabola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
// if(degenerate(a)) return intersectionpoints(a.l, b);
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(parabola, ellipse)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,ellipse)"><code></asyxml>*/
point[] intersectionpoints(parabola a, ellipse b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints(b, a);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(ellipse, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,hyperbola)"><code></asyxml>*/
point[] intersectionpoints(ellipse a, hyperbola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
// if(degenerate(a)) return intersectionpoints(a.l, b);
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(hyperbola, ellipse)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,ellipse)"><code></asyxml>*/
point[] intersectionpoints(hyperbola a, ellipse b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints(b, a);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(circle, parabola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,parabola)"><code></asyxml>*/
point[] intersectionpoints(circle a, parabola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(parabola, circle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,circle)"><code></asyxml>*/
point[] intersectionpoints(parabola a, circle b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(circle, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,hyperbola)"><code></asyxml>*/
point[] intersectionpoints(circle a, hyperbola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(hyperbola, circle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,circle)"><code></asyxml>*/
point[] intersectionpoints(hyperbola a, circle b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(parabola, parabola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,parabola)"><code></asyxml>*/
point[] intersectionpoints(parabola a, parabola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(parabola, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,hyperbola)"><code></asyxml>*/
point[] intersectionpoints(parabola a, hyperbola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(hyperbola, parabola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,parabola)"><code></asyxml>*/
point[] intersectionpoints(hyperbola a, parabola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(hyperbola, hyperbola)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,hyperbola)"><code></asyxml>*/
point[] intersectionpoints(hyperbola a, hyperbola b)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
return intersectionpoints((conic)a, (conic)b);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(circle, circle)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,circle)"><code></asyxml>*/
point[] intersectionpoints(circle c1, circle c2)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
if(degenerate(c1))
@@ -6793,7 +6814,7 @@ point[] intersectionpoints(circle c1, circle c2)
intersectionpoints(radicalline(c1, c2), c1);
}
-/*<asyxml><function type = "line" signature = "tangent(circle, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(circle,abscissa)"><code></asyxml>*/
line tangent(circle c, abscissa x)
{/*<asyxml></code><documentation>Return the tangent of 'c' at 'point(c, x)'.</documentation></function></asyxml>*/
if(c.r == 0) abort("tangent: a circle with a radius equals zero has no tangent.");
@@ -6801,7 +6822,7 @@ line tangent(circle c, abscissa x)
return line(rotate(90, M) * c.C, M);
}
-/*<asyxml><function type = "line[]" signature = "tangents(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="line[]" signature="tangents(circle,point)"><code></asyxml>*/
line[] tangents(circle c, point M)
{/*<asyxml></code><documentation>Return the tangents of 'c' passing through 'M'.</documentation></function></asyxml>*/
line[] ol;
@@ -6817,28 +6838,28 @@ line[] tangents(circle c, point M)
return ol;
}
-/*<asyxml><function type = "point" signature = "point(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(circle,point)"><code></asyxml>*/
point point(circle c, point M)
{/*<asyxml></code><documentation>Return the intersection point of 'c'
with the half-line '[c.C M)'.</documentation></function></asyxml>*/
return intersectionpoints(c, line(c.C, false, M))[0];
}
-/*<asyxml><function type = "line" signature = "tangent(circle, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(circle,point)"><code></asyxml>*/
line tangent(circle c, point M)
{/*<asyxml></code><documentation>Return the tangent of 'c' at the
intersection point of the half-line'[c.C M)'.</documentation></function></asyxml>*/
return tangents(c, point(c, M))[0];
}
-/*<asyxml><function type = "point" signature = "point(circle, explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="point(circle,explicit vector)"><code></asyxml>*/
point point(circle c, explicit vector v)
{/*<asyxml></code><documentation>Return the intersection point of 'c'
with the half-line '[c.C v)'.</documentation></function></asyxml>*/
return point(c, c.C + v);
}
-/*<asyxml><function type = "line" signature = "tangent(circle, explicit vector)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(circle,explicit vector)"><code></asyxml>*/
line tangent(circle c, explicit vector v)
{/*<asyxml></code><documentation>Return the tangent of 'c' at the
point M so that vec(c.C M) is collinear to 'v' with the same sense.</documentation></function></asyxml>*/
@@ -6846,7 +6867,7 @@ line tangent(circle c, explicit vector v)
return dot(ol.v, v) > 0 ? ol : reverse(ol);
}
-/*<asyxml><function type = "line" signature = "tangent(ellipse, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(ellipse,abscissa)"><code></asyxml>*/
line tangent(ellipse el, abscissa x)
{/*<asyxml></code><documentation>Return the tangent of 'el' at 'point(el, x)'.</documentation></function></asyxml>*/
point M = point(el, x);
@@ -6856,7 +6877,7 @@ line tangent(ellipse el, abscissa x)
return ol;
}
-/*<asyxml><function type = "line[]" signature = "tangents(ellipse, point)"><code></asyxml>*/
+/*<asyxml><function type="line[]" signature="tangents(ellipse,point)"><code></asyxml>*/
line[] tangents(ellipse el, point M)
{/*<asyxml></code><documentation>Return the tangents of 'el' passing through 'M'.</documentation></function></asyxml>*/
line[] ol;
@@ -6878,7 +6899,7 @@ line[] tangents(ellipse el, point M)
return ol;
}
-/*<asyxml><function type = "line" signature = "tangent(parabola, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(parabola,abscissa)"><code></asyxml>*/
line tangent(parabola p, abscissa x)
{/*<asyxml></code><documentation>Return the tangent of 'p' at 'point(p, x)' (use the Wells method).</documentation></function></asyxml>*/
line lt = rotate(90, p.V) * line(p.V, p.F);
@@ -6889,7 +6910,7 @@ line tangent(parabola p, abscissa x)
return line(P, projection(lt) * M);
}
-/*<asyxml><function type = "line[]" signature = "tangents(parabola, point)"><code></asyxml>*/
+/*<asyxml><function type="line[]" signature="tangents(parabola,point)"><code></asyxml>*/
line[] tangents(parabola p, point M)
{/*<asyxml></code><documentation>Return the tangent of 'p' at 'M' (use the Wells method).</documentation></function></asyxml>*/
line[] ol;
@@ -6914,7 +6935,7 @@ line[] tangents(parabola p, point M)
return ol;
}
-/*<asyxml><function type = "line" signature = "tangent(hyperbola, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(hyperbola,abscissa)"><code></asyxml>*/
line tangent(hyperbola h, abscissa x)
{/*<asyxml></code><documentation>Return the tangent of 'h' at 'point(p, x)'.</documentation></function></asyxml>*/
point M = point(h, x);
@@ -6923,7 +6944,7 @@ line tangent(hyperbola h, abscissa x)
return ol;
}
-/*<asyxml><function type = "line[]" signature = "tangents(hyperbola, point)"><code></asyxml>*/
+/*<asyxml><function type="line[]" signature="tangents(hyperbola,point)"><code></asyxml>*/
line[] tangents(hyperbola h, point M)
{/*<asyxml></code><documentation>Return the tangent of 'h' at 'M'.</documentation></function></asyxml>*/
line[] ol;
@@ -6951,7 +6972,7 @@ line[] tangents(hyperbola h, point M)
return ol;
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(conic, arc)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(conic,arc)"><code></asyxml>*/
point[] intersectionpoints(conic co, arc a)
{/*<asyxml></code><documentation>intersectionpoints(arc, circle) is also defined.</documentation></function></asyxml>*/
point[] op;
@@ -6966,7 +6987,7 @@ point[] intersectionpoints(arc a, conic co)
return intersectionpoints(co, a);
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(arc, arc)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(arc,arc)"><code></asyxml>*/
point[] intersectionpoints(arc a1, arc a2)
{/*<asyxml></code><documentation></documentation></function></asyxml>*/
point[] op;
@@ -6977,7 +6998,7 @@ point[] intersectionpoints(arc a1, arc a2)
}
-/*<asyxml><function type = "point[]" signature = "intersectionpoints(line, arc)"><code></asyxml>*/
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,arc)"><code></asyxml>*/
point[] intersectionpoints(line l, arc a)
{/*<asyxml></code><documentation>intersectionpoints(arc, line) is also defined.</documentation></function></asyxml>*/
point[] op;
@@ -6992,7 +7013,7 @@ point[] intersectionpoints(arc a, line l)
return intersectionpoints(l, a);
}
-/*<asyxml><function type = "point" signature = "arcsubtendedcenter(point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="point" signature="arcsubtendedcenter(point,point,real)"><code></asyxml>*/
point arcsubtendedcenter(point A, point B, real angle)
{/*<asyxml></code><documentation>Return the center of the arc retuned
by the 'arcsubtended' routine.</documentation></function></asyxml>*/
@@ -7004,7 +7025,7 @@ point arcsubtendedcenter(point A, point B, real angle)
return intersectionpoint(bis, rotate(90 - angle, A) * AB);
}
-/*<asyxml><function type = "arc" signature = "arcsubtended(point, point, real)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arcsubtended(point,point,real)"><code></asyxml>*/
arc arcsubtended(point A, point B, real angle)
{/*<asyxml></code><documentation>Return the arc circle from which the segment AB is saw with
the angle 'angle'.
@@ -7019,18 +7040,24 @@ arc arcsubtended(point A, point B, real angle)
return arc(circle(C, abs(B - C)), BC, AC, angle > 0 ? CCW : CW);
}
-/*<asyxml><function type = "arc" signature = "arccircle(point, point, point)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arccircle(point,point,point)"><code></asyxml>*/
arc arccircle(point A, point M, point B)
{/*<asyxml></code><documentation>Return the CCW arc circle 'AB' passing through 'M'.</documentation></function></asyxml>*/
circle tc = circle(A, M, B);
real a = degrees(A - tc.C);
real b = degrees(B - tc.C);
+ real m = degrees(M - tc.C);
+
arc oa = arc(tc, a, b);
- if(!(M @ oa)) oa.direction=!oa.direction;
+ // TODO : use cross product to determine CWW or CW
+ if (!(M @ oa)) {
+ oa.direction = !oa.direction;
+ }
+
return oa;
}
-/*<asyxml><function type = "arc" signature = "arc(ellipse, abscissa, abscissa, bool)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arc(ellipse,abscissa,abscissa,bool)"><code></asyxml>*/
arc arc(ellipse el, explicit abscissa x1, explicit abscissa x2, bool direction = CCW)
{/*<asyxml></code><documentation>Return the arc from 'point(c, x1)' to 'point(c, x2)' in the direction 'direction'.</documentation></function></asyxml>*/
real a = degrees(point(el, x1) - el.C);
@@ -7039,14 +7066,14 @@ arc arc(ellipse el, explicit abscissa x1, explicit abscissa x2, bool direction =
return oa;
}
-/*<asyxml><function type = "arc" signature = "arc(ellipse, point, point, bool)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arc(ellipse,point,point,bool)"><code></asyxml>*/
arc arc(ellipse el, point M, point N, bool direction = CCW)
{/*<asyxml></code><documentation>Return the arc from 'M' to 'N' in the direction 'direction'.
The points 'M' and 'N' must belong to the ellipse 'el'.</documentation></function></asyxml>*/
return arc(el, relabscissa(el, M), relabscissa(el, N), direction);
}
-/*<asyxml><function type = "arc" signature = "arccircle(point, point, real, bool)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arccircle(point,point,real,bool)"><code></asyxml>*/
arc arccircle(point A, point B, real angle, bool direction = CCW)
{/*<asyxml></code><documentation>Return the arc circle centered on A
from B to rotate(angle, A) * B in the direction 'direction'.</documentation></function></asyxml>*/
@@ -7054,8 +7081,7 @@ arc arccircle(point A, point B, real angle, bool direction = CCW)
return arc(circle(A, abs(A - B)), B, M, direction);
}
-
-/*<asyxml><function type = "arc" signature = "arc(explicit arc, abscissa, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arc(explicit arc,abscissa,abscissa)"><code></asyxml>*/
arc arc(explicit arc a, abscissa x1, abscissa x2)
{/*<asyxml></code><documentation>Return the arc from 'point(a, x1)' to 'point(a, x2)' traversed in the direction of the arc direction.</documentation></function></asyxml>*/
real a1 = angabscissa(a.el, point(a, x1), a.polarconicroutine).x;
@@ -7063,14 +7089,14 @@ arc arc(explicit arc a, abscissa x1, abscissa x2)
return arc(a.el, a1, a2, a.polarconicroutine, a.direction);
}
-/*<asyxml><function type = "arc" signature = "arc(explicit arc, point, point)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="arc(explicit arc,point,point)"><code></asyxml>*/
arc arc(explicit arc a, point M, point N)
{/*<asyxml></code><documentation>Return the arc from 'M' to 'N'.
The points 'M' and 'N' must belong to the arc 'a'.</documentation></function></asyxml>*/
return arc(a, relabscissa(a, M), relabscissa(a, N));
}
-/*<asyxml><function type = "arc" signature = "inverse(real, point, segment)"><code></asyxml>*/
+/*<asyxml><function type="arc" signature="inverse(real,point,segment)"><code></asyxml>*/
arc inverse(real k, point A, segment s)
{/*<asyxml></code><documentation>Return the inverse arc circle of 's'
with respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
@@ -7079,22 +7105,22 @@ arc inverse(real k, point A, segment s)
return arccircle(Ap, M, Bp);
}
-/*<asyxml><operator type = "arc" signature = "*(inversion, segment)"><code></asyxml>*/
+/*<asyxml><operator type = "arc" signature="*(inversion,segment)"><code></asyxml>*/
arc operator *(inversion i, segment s)
{/*<asyxml></code><documentation>Provide
inversion * segment.</documentation></operator></asyxml>*/
return inverse(i.k, i.C, s);
}
-/*<asyxml><operator type = "path" signature = "*(inversion, triangle)"><code></asyxml>*/
+/*<asyxml><operator type = "path" signature="*(inversion,triangle)"><code></asyxml>*/
path operator *(inversion i, triangle t)
{/*<asyxml></code><documentation>Provide inversion * triangle.</documentation></operator></asyxml>*/
return (path)(i * segment(t.AB))--
(path)(i * segment(t.BC))--
- (path)(i * segment(t.CA))--cycle;
+ (path)(i * segment(t.CA))&cycle;
}
-/*<asyxml><function type = "path" signature = "compassmark(pair, pair, real, real)"><code></asyxml>*/
+/*<asyxml><function type="path" signature="compassmark(pair,pair,real,real)"><code></asyxml>*/
path compassmark(pair O, pair A, real position, real angle = 10)
{/*<asyxml></code><documentation>Return an arc centered on O with the angle 'angle' so that the position
of 'A' on this arc makes an angle 'position * angle'.</documentation></function></asyxml>*/
@@ -7108,14 +7134,14 @@ path compassmark(pair O, pair A, real position, real angle = 10)
return shift(O) * scale(abs(O - A)) * subpath(unitcircle, t1, t2);
}
-/*<asyxml><function type = "line" signature = "tangent(explicit arc, abscissa)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(explicit arc,abscissa)"><code></asyxml>*/
line tangent(explicit arc a, abscissa x)
{/*<asyxml></code><documentation>Return the tangent of 'a' at 'point(a, x)'.</documentation></function></asyxml>*/
abscissa ag = angabscissa(a, point(a, x));
return tangent(a.el, ag + a.angle1 + (a.el.e == 0 ? a.angle0 : 0));
}
-/*<asyxml><function type = "line" signature = "tangent(explicit arc, point)"><code></asyxml>*/
+/*<asyxml><function type="line" signature="tangent(explicit arc,point)"><code></asyxml>*/
line tangent(explicit arc a, point M)
{/*<asyxml></code><documentation>Return the tangent of 'a' at 'M'.
The points 'M' must belong to the arc 'a'.</documentation></function></asyxml>*/