diff options
Diffstat (limited to 'Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex')
-rw-r--r-- | Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex | 1009 |
1 files changed, 1009 insertions, 0 deletions
diff --git a/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex b/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex new file mode 100644 index 00000000000..2853bd550e2 --- /dev/null +++ b/Build/source/texk/web2c/synctexdir/tests/LM-Volume-manuscript.tex @@ -0,0 +1,1009 @@ +\documentclass[ a4paper, oneside]{amsart} + +%\listfiles + + +\RequirePackage{amsmath} +\RequirePackage{bm} +\RequirePackage{amssymb} +\RequirePackage{upref} +\RequirePackage{amsthm} +\RequirePackage{enumerate} +%\RequirePackage{pb-diagram} +\RequirePackage{amsfonts} +\RequirePackage[mathscr]{eucal} +\RequirePackage{verbatim} +\RequirePackage{xr} + + +\def\@thm#1#2#3{% + \ifhmode\unskip\unskip\par\fi + \normalfont + \trivlist + \let\thmheadnl\relax + \let\thm@swap\@gobble + \let\thm@indent\indent % no indent + \thm@headfont{\scshape}% heading font bold + %\thm@notefont{\fontseries\mddefault\upshape}% + \thm@notefont{}% + \thm@headpunct{.}% add period after heading + \thm@headsep 5\p@ plus\p@ minus\p@\relax + \thm@preskip\topsep + \thm@postskip\thm@preskip + #1% style overrides + \@topsep \thm@preskip % used by thm head + \@topsepadd \thm@postskip % used by \@endparenv + \def\@tempa{#2}\ifx\@empty\@tempa + \def\@tempa{\@oparg{\@begintheorem{#3}{}}[]}% + \else + \refstepcounter{#2}% + \def\@tempa{\@oparg{\@begintheorem{#3}{\csname the#2\endcsname}}[]}% + \fi + \@tempa +} + + + + +%Redefined commands + + +%Greek Letters + +\newcommand{\al}{\alpha} +\newcommand{\bet}{\beta} +\newcommand{\ga}{\gamma} +\newcommand{\de}{\delta } +\newcommand{\e}{\epsilon} +\newcommand{\ve}{\varepsilon} +\newcommand{\f}{\varphi} +\newcommand{\h}{\eta} +\newcommand{\io}{\iota} +\newcommand{\tht}{\theta} +\newcommand{\ka}{\kappa} +\newcommand{\lam}{\lambda} +\newcommand{\m}{\mu} +\newcommand{\n}{\nu} +\newcommand{\om}{\omega} +\newcommand{\p}{\pi} +\newcommand{\vt}{\vartheta} +\newcommand{\vr}{\varrho} +\newcommand{\s}{\sigma} +\newcommand{\x}{\xi} +\newcommand{\z}{\zeta} + +\newcommand{\C}{\varGamma} +\newcommand{\D}{\varDelta} +\newcommand{\F}{\varPhi} +\newcommand{\Lam}{\varLambda} +\newcommand{\Om}{\varOmega} +\newcommand{\vPsi}{\varPsi} +\newcommand{\Si}{\varSigma} + +%New Commands + +\newcommand{\di}[1]{#1\nobreakdash-\hspace{0pt}dimensional}%\di n +\newcommand{\nbdd}{\nobreakdash--} +\newcommand{\nbd}{\nobreakdash-\hspace{0pt}} +\newcommand{\ce}[1]{$C^#1$\nbd{estimate}} +\newcommand{\ces}[1]{$C^#1$\nbd{estimates}} + + +\newcommand{\fm}[1]{F_{|_{M_#1}}} +\newcommand{\fmo}[1]{F_{|_{#1}}}%\fmo M +\newcommand{\fu}[3]{#1\hspace{0pt}_{|_{#2_#3}}} +\newcommand{\fv}[2]{#1\hspace{0pt}_{|_{#2}}} +\newcommand{\cchi}[1]{\chi\hspace{0pt}_{_{#1}}} +\newcommand{\so}{{\mc S_0}} +%\newcommand\sql[1][u]{\sqrt{1-|D#1|^2}} + + +\newcommand{\const}{\tup{const}} + + +\newcommand{\slim}[2]{\lim_{\substack{#1\ra #2\\#1\ne #2}}} + + +\newcommand{\pih}{\frac{\pi}{2}} + + +\newcommand{\msp[1]}[1]{\mspace{#1mu}} +\newcommand{\low}[1]{{\hbox{}_{#1}}} + + + +%Special Symbols + +\newcommand{\R}[1][n+1]{{\protect\mathbb R}^{#1}} +\newcommand{\Cc}{{\protect\mathbb C}} +\newcommand{\K}{{\protect\mathbb K}} +\newcommand{\N}{{\protect\mathbb N}} +\newcommand{\Q}{{\protect\mathbb Q}} +\newcommand{\Z}{{\protect\mathbb Z}} +\newcommand{\eR}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[3]\R[]}} +\newcommand{\eN}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[1]\N}} +\newcommand{\eO}{\stackrel{\lower1ex +\hbox{\rule{6pt}{0.5pt}}}{\msc O}} + + + + +%Special math symbols + +\DeclareMathOperator{\arccot}{arccot} +\DeclareMathOperator{\diam}{diam} +\DeclareMathOperator{\Grad}{Grad} +\DeclareMathOperator*{\es}{ess\,sup} +\DeclareMathOperator{\graph}{graph} +\DeclareMathOperator{\sub}{sub} +\DeclareMathOperator{\supp}{supp} +\DeclareMathOperator{\id}{id} +\DeclareMathOperator{\lc}{lc} +\DeclareMathOperator{\osc}{osc} +\DeclareMathOperator{\pr}{pr} +\DeclareMathOperator{\rec}{Re} +\DeclareMathOperator{\imc}{Im} +\DeclareMathOperator{\sign}{sign} +\DeclareMathOperator{\proj}{proj} +\DeclareMathOperator{\grad}{grad} +\DeclareMathOperator{\Diff}{Diff} +\DeclareMathOperator{\rg}{rg} + + +\newcommand\im{\implies} +\newcommand\ra{\rightarrow} +\newcommand\xra{\xrightarrow} +\newcommand\rra{\rightrightarrows} +\newcommand\hra{\hookrightarrow} +\newcommand{\nea}{\nearrow} +\newcommand{\sea}{\searrow} +\newcommand{\ua}{\uparrow} +\newcommand{\da}{\downarrow} +\newcommand{\rha}{\rightharpoondown} +\newcommand{\wha}{\underset{w^*}\rightharpoondown} + +%PDE commands + +\newcommand\pa{\partial} +\newcommand\pde[2]{\frac {\partial#1}{\partial#2}} +\newcommand\pd[3]{\frac {\partial#1}{\partial#2^#3}} %e.g. \pd fxi +\newcommand\pdc[3]{\frac {\partial#1}{\partial#2_#3}} %contravariant +\newcommand\pdm[4]{\frac {\partial#1}{\partial#2_#3^#4}} %mixed +\newcommand\pdd[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2^ +#3}\,\partial{#2^#4}}} %e.g. \pdd fxij, Abl. zweiter Ordnung +\newcommand\pddc[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2_ +#3}\,\partial{#2_#4}}} +\newcommand\PD[3]{\frac {{\partial\hskip0.15em}^2#1}{\partial +#2\,\partial#3}} %e.g \PD fxy + +\newcommand\df[2]{\frac {d#1}{d#2}} + + +\newcommand\sd{\vartriangle} +\newcommand\sq[1][u]{\sqrt{1+|D#1|^2}} +\newcommand\sql[1][u]{\sqrt{1-|D#1|^2}} +\newcommand{\un}{\infty} +\newcommand{\A}{\forall} +\newcommand{\E}{\exists} + +%Set commands + +\newcommand{\set}[2]{\{\,#1\colon #2\,\}} +\newcommand{\uu}{\cup} +\newcommand{\ii}{\cap} +\newcommand{\uuu}{\bigcup} +\newcommand{\iii}{\bigcap} +\newcommand{\uud}{ \stackrel{\lower 1ex \hbox {.}}{\uu}} +\newcommand{\uuud}[1]{ \stackrel{\lower 1ex \hbox {.}}{\uuu_{#1}}} +\newcommand\su{\subset} +\newcommand\Su{\Subset} +\newcommand\nsu{\nsubset} +\newcommand\eS{\emptyset} +\newcommand{\sminus}[1][28]{\raise 0.#1ex\hbox{$\scriptstyle\setminus$}} +\newcommand{\cpl}{\complement} + +\newcommand\inn[1]{{\stackrel{\msp[9]\circ}{#1}}} + + + +%Embellishments + +\newcommand{\ol}{\overline} +\newcommand{\pri}[1]{#1^\prime} +\newcommand{\whn}[1]{\widehat{(#1_n)}} +\newcommand{\wh}{\widehat} + + +%Logical commands + +\newcommand{\wed}{\wedge} +\newcommand{\eqv}{\Longleftrightarrow} +\newcommand{\lla}{\Longleftarrow} +\newcommand{\lra}{\Longrightarrow} +\newcommand{\bv}{\bigvee} +\newcommand{\bw}{\bigwedge} + +\newcommand{\nim}{{\hskip2.2ex\not\hskip-1.5ex\im}} + +\DeclareMathOperator*{\Au}{\A} +\DeclareMathOperator*{\Eu}{\E} + +\newcommand\ti{\times } + + +%Norms +\newcommand{\abs}[1]{\lvert#1\rvert} +\newcommand{\absb}[1]{\Bigl|#1\Bigr|} +\newcommand{\norm}[1]{\lVert#1\rVert} +\newcommand{\normb}[1]{\Big\lVert#1\Big\rVert} +\newcommand{\nnorm}[1]{| \mspace{-2mu} |\mspace{-2mu}|#1| \mspace{-2mu} +|\mspace{-2mu}|} +\newcommand{\spd}[2]{\protect\langle #1,#2\protect\rangle} + +%Geometry +\newcommand\ch[3]{\varGamma_{#1#2}^#3} +\newcommand\cha[3]{{\bar\varGamma}_{#1#2}^#3} +\newcommand{\riem}[4]{R_{#1#2#3#4}} +\newcommand{\riema}[4]{{\bar R}_{#1#2#3#4}} +\newcommand{\cod}{h_{ij;k}-h_{ik;j}=\riema\al\bet\ga\de\n^\al x_i^\bet x_j^\ga x_k^\de} +\newcommand{\gau}[1][\s]{\riem ijkl=#1 \{h_{ik}h_{jl}-h_{il}h_{jk}\} + \riema +\al\bet\ga\de x_i^\al x_j^\bet x_k^\ga x_l^\de} +\newcommand{\ric}{\h_{i;jk}=\h_{i;kj}+\riem lijk\msp \h^l} + +%Font commands + +\newcommand{\tbf}{\textbf} +\newcommand{\tit}{\textit} +\newcommand{\tsl}{\textsl} + +\newcommand{\tsc}{\textsc} +\newcommand{\trm}{\textrm} +\newcommand{\tup}{\textup}% text upright + +\newcommand{\mbf}{\protect\mathbf} +\newcommand{\mitc}{\protect\mathit} +\newcommand{\mrm}{\protect\mathrm} + + +\newcommand{\bs}{\protect\boldsymbol} +\newcommand{\mc}{\protect\mathcal} +\newcommand{\msc}{\protect\mathscr} + + + +%Miscellaneous + +\providecommand{\bysame}{\makeboc[3em]{\hrulefill}\thinspace} +\newcommand{\la}{\label} +\newcommand{\ci}{\cite} +\newcommand{\bib}{\bibitem} + +\newcommand{\cq}[1]{\glqq{#1}\grqq\,} +\newcommand{\cqr}{\glqq{$\lra$}\grqq\,} +\newcommand{\cql}{\glqq{$\lla$}\grqq\,} + +\newcommand{\bt}{\begin{thm}} +\newcommand{\bl}{\begin{lem}} +\newcommand{\bc}{\begin{cor}} +\newcommand{\bd}{\begin{definition}} +\newcommand{\bpp}{\begin{prop}} +\newcommand{\br}{\begin{rem}} +\newcommand{\bn}{\begin{note}} +\newcommand{\be}{\begin{ex}} +\newcommand{\bes}{\begin{exs}} +\newcommand{\bb}{\begin{example}} +\newcommand{\bbs}{\begin{examples}} +\newcommand{\ba}{\begin{axiom}} + + + +\newcommand{\et}{\end{thm}} +\newcommand{\el}{\end{lem}} +\newcommand{\ec}{\end{cor}} +\newcommand{\ed}{\end{definition}} +\newcommand{\epp}{\end{prop}} +\newcommand{\er}{\end{rem}} +\newcommand{\en}{\end{note}} +\newcommand{\ee}{\end{ex}} +\newcommand{\ees}{\end{exs}} +\newcommand{\eb}{\end{example}} +\newcommand{\ebs}{\end{examples}} +\newcommand{\ea}{\end{axiom}} + + +\newcommand{\bp}{\begin{proof}} +\newcommand{\ep}{\end{proof}} +\newcommand{\eps}{\renewcommand{\qed}{}\end{proof}} + +\newcommand{\bal}{\begin{align}} +%\newcommand{\eal}{\end{align}} + + +\newcommand{\bi}[1][1.]{\begin{enumerate}[\upshape #1]} +\newcommand{\bia}[1][(1)]{\begin{enumerate}[\upshape #1]} +\newcommand{\bin}[1][1]{\begin{enumerate}[\upshape\bfseries #1]} +\newcommand{\bir}[1][(i)]{\begin{enumerate}[\upshape #1]} +\newcommand{\bic}[1][(i)]{\begin{enumerate}[\upshape\hspace{2\cma}#1]} +\newcommand{\bis}[2][1.]{\begin{enumerate}[\upshape\hspace{#2\parindent}#1]} +\newcommand{\ei}{\end{enumerate}} + + + +% comma is raised when components are quotients + +\newcommand\ndots{\raise 0.47ex \hbox {,}\hskip0.06em\cdots % + \raise 0.47ex \hbox {,}\hskip0.06em} + +%Layout commands + + +\newcommand{\clearemptydoublepage}{\newpage{\pagestyle{empty}\cleardoublepage}} +\newcommand{\q}{\quad} +\newcommand{\qq}{\qquad} + +\newcommand{\vs}[1][3]{\vskip#1pt} +\newcommand{\hs}[1][12]{\hskip#1pt} + +\newcommand{\hp}{\hphantom} +\newcommand{\vp}{\vphantom} + +\newcommand\cl{\centerline} + +\newcommand\nl{\newline} + +\newcommand\nd{\noindent} + +\newcommand{\nt}{\notag} + +% %my private skips; set to 0 to restore default + +\newskip\Csmallskipamount +\Csmallskipamount=\smallskipamount +\newskip\Cmedskipamount +\Cmedskipamount=\medskipamount +\newskip\Cbigskipamount +\Cbigskipamount=\bigskipamount + +\newcommand\cvs{\vspace\Csmallskipamount} +\newcommand\cvm{\vspace\Cmedskipamount} +\newcommand\cvb{\vspace\Cbigskipamount} + + +\newskip\csa +\csa=\smallskipamount + +\newskip\cma +\cma=\medskipamount + +\newskip\cba +\cba=\bigskipamount + +\newdimen\spt +\spt=0.5pt + + +%%special roster macro + +\newcommand\citem{\cvs\advance\itemno by +1{(\romannumeral\the\itemno})\hskip3pt} +\newcommand{\bitem}{\cvm\nd\advance\itemno by +1{\bf\the\itemno}\hspace{\cma}} +\newcommand\cendroster{\cvm\itemno=0} + + +%New counts + +\newcount\itemno +\itemno=0 + +%Labels + +\newcommand{\las}[1]{\label{S:#1}} +\newcommand{\lass}[1]{\label{SS:#1}} +\newcommand{\lae}[1]{\label{E:#1}} +\newcommand{\lat}[1]{\label{T:#1}} +\newcommand{\lal}[1]{\label{L:#1}} +\newcommand{\lad}[1]{\label{D:#1}} +\newcommand{\lac}[1]{\label{C:#1}} +\newcommand{\lan}[1]{\label{N:#1}} +\newcommand{\lap}[1]{\label{P:#1}} +\newcommand{\lar}[1]{\label{R:#1}} +\newcommand{\laa}[1]{\label{A:#1}} + +%Referencing + +\newcommand{\rs}[1]{Section~\ref{S:#1}} +\newcommand{\rss}[1]{Section~\ref{SS:#1}} +\newcommand{\rt}[1]{Theorem~\ref{T:#1}} +\newcommand{\rl}[1]{Lemma~\ref{L:#1}} +\newcommand{\rd}[1]{Definition~\ref{D:#1}} +\newcommand{\rc}[1]{Corollary~\ref{C:#1}} +\newcommand{\rn}[1]{Number~\ref{N:#1}} +\newcommand{\rp}[1]{Proposition~\ref{P:#1}} +\newcommand{\rr}[1]{Remark~\ref{R:#1}} +\newcommand{\raa}[1]{Axiom~\ref{A:#1}} +\newcommand{\re}[1]{\eqref{E:#1}} + + +%Index +\newcommand{\ind}[1]{#1\index{#1}} + + + + + + +\RequirePackage{upref} +\RequirePackage{amsthm} +%\usepackage{amsfonts} +%\usepackage{amsintx} +\RequirePackage{enumerate}%\begin{enumerate}[(i)] + +%%\usepackage{showkeys} +\setlength{\textwidth}{4.7in}%JDG +\setlength{\textheight}{7.5in} + +\usepackage{germanquotes} + +\theoremstyle{plain} +\newtheorem{thm}{Theorem}[section] +\newtheorem{lem}[thm]{Lemma} +\newtheorem{prop}[thm]{Proposition} +\newtheorem{cor}[thm]{Corollary} + +\theoremstyle{definition} +\newtheorem{rem}[thm]{Remark} +\newtheorem{definition}[thm]{Definition} +\newtheorem{example}[thm]{Example} +\newtheorem{ex}[thm]{Exercise} + +\swapnumbers +\theoremstyle{remark} +\newtheorem{case}{Case} + +\numberwithin{equation}{section} + +%\renewcommand{\qed}{q.e.d.} + +\usepackage{xr-hyper} +\usepackage{url} +\usepackage[hyperindex=true, pdfauthor= Claus\ Gerhardt, pdftitle= LM-Volume, bookmarks=true, extension= pdf, colorlinks=true, plainpages=false,hyperfootnotes=true, debug=false, pagebackref]{hyperref} + +\newcommand{\anl}{\htmladdnormallink} + +%\listfiles +\begin{document} +%\larger[1] +\title{Estimates for the volume of a Lorentzian manifold} + +% author one information +\author{Claus Gerhardt} +\address{Ruprecht-Karls-Universit\"at, Institut f\"ur Angewandte Mathematik, +Im Neuenheimer Feld 294, 69120 Heidelberg, Germany} +%\curraddr{} +\email{gerhardt@math.uni-heidelberg.de} +\urladdr{\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/}} +%\thanks{} + +% author two information +%\author{} +%\address{} +%\curraddr{} +%\email{} +%\thanks{} +% +\subjclass[2000]{35J60, 53C21, 53C44, 53C50, 58J05} +\keywords{Lorentzian manifold, volume estimates, cosmological spacetime, general relativity, constant mean curvature, CMC hypersurface} +\date{April 18, 2002} +% +% at present the "communicated by" line appears only in ERA and PROC +%\commby{} + +%\dedicatory{} + +\begin{abstract} We prove new estimates for the volume of a Lorentzian +mani\-fold and show especially that cosmological spacetimes with crushing +singularities have finite volume. +\end{abstract} +\maketitle +\thispagestyle{empty} + +\setcounter{section}{-1} +\section{Introduction} + +\cvb +Let $N$ be a $(n+1)$-dimensional Lorentzian manifold and suppose that $N$ can be +decomposed in the form + +\begin{equation}\lae{0.1} +N=N_0\uu N_-\uu N_+, +\end{equation} + +\cvm +\nd where $N_0$ has finite volume and $N_-$ resp. $N_+$ represent the critical +past resp. future Cauchy developments with not necessarily a priori bounded +volume. We assume that $N_+$ is the future Cauchy development of a Cauchy +hypersurface $M_1$, and $N_-$ the past Cauchy development of a hypersurface +$M_2$, or, more precisely, we assume the existence of a time function $x^0$, +such that + +\begin{equation} +\begin{aligned} +N_+&={x^0}^{-1}([t_1,T_+)),&\qq M_1=\{x^0=t_1\}&,\\ +N_-&={x^0}^{-1}((T_-,t_2]),&\qq M_2=\{x^0=t_2\}&, +\end{aligned} +\end{equation} + +\cvm +\nd and that the Lorentz metric can be expressed as + +\begin{equation}\lae{0.3} +d\bar s^2=e^{2\psi}\{-{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}, +\end{equation} + +\cvm +\nd where $x=(x^i)$ are local coordinates for the space-like hypersurface $M_1$ +if $N_+$ is considered resp. $M_2$ in case of $N_-$. + +The coordinate system $(x^\al)_{0\le\al\le n}$ is supposed to be future +directed, i.e. the \tit{past} directed unit normal $(\nu^\al)$ of the level sets + +\begin{equation} +M(t)=\{x^0=t\} +\end{equation} + +\cvm +\nd is of the form + +\begin{equation}\lae{0.5} +(\nu^\al)=-e^{-\psi}(1,0,\ldots,0). +\end{equation} + +\cvm +If we assume the mean curvature of the slices $M(t)$ with respect to the past +directed normal---cf. \ci[Section 2]{cg8} for a more detailed explanation of our +conventions---is strictly bounded away from zero, then, the following volume +estimates can be proved + +\bt\lat{0.1} +Suppose there exists a positive constant $\e_0$ such that + + +\begin{align} +H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\lae{0.6}\\ +\intertext{and} +H(t)&\le-\e_0&\A\,T_-<t\le t_2&,\lae{0.7} +\end{align} + +\cvm +\nd then + +\begin{align} +\abs{N_+}&\le \frac1{\e_0}\abs{M(t_1)},\\ +\intertext{and} +\abs{N_-}&\le \frac1{\e_0}\abs{M(t_2}. +\end{align} + +These estimates also hold locally, i.e. if $E_i\su M(t_i)$, $i=1,2$, are measurable +subsets and $E_1^+,E_2^-$ the corresponding future resp. past directed +cylinders, then, + +\begin{align} +\abs{E_1^+}&\le\frac1{\e_0}\abs{E_1},\lae{0.10}\\ +\intertext{and} +\abs{E_2^-}&\le\frac1{\e_0}\abs{E_2}. +\end{align} +\et + +\cvb +\section{Proof of \rt{0.1}}\las{1} + +\cvb +In the following we shall only prove the estimate for $N_+$, since the other case +$N_-$ can easily be considered as a future development by reversing the time +direction. + +\cvm +Let $x=x(\xi)$ be an embedding of a space-like hypersurface and $(\nu^\al)$ be +the past directed normal. Then, we have the Gau{\ss} formula + +\begin{equation} +x^\al_{ij}=h_{ij}\nu^\al. +\end{equation} + +\cvm +\nd where $(h_{ij})$ is the second fundamental form, and the Weingarten equation + +\begin{equation} +\nu^\al_i=h^k_ix^\al_k. +\end{equation} + + +\cvm +We emphasize that covariant derivatives, indicated simply by indices, are +always \tit{full} tensors. + +\cvm +The slices $M(t)$ can be viewed as special embeddings of the form + +\begin{equation} +x(t)=(t,x^i), +\end{equation} + +\cvm +\nd where $(x^i)$ are coordinates of the \tit{initial} slice $M(t_1)$. Hence, the +slices $M(t)$ can be considered as the solution of the evolution problem + +\begin{equation}\lae{1.4} +\dot x=-e^\psi \nu, \qq t_1\le t<T_+, +\end{equation} + +\cvm +\nd with initial hypersurface $M(t_1)$, in view of \re{0.5}. + +\cvm From the equation \re{1.4} we can immediately derive evolution equations +for the geometric quantities $g_{ij}, h_{ij}, \nu$, and $H=g^{ij}h_{ij}$ of $M(t)$, cf. +e.g. +\ci[Section 4]{cg4}, where the corresponding evolution equations are derived in +Riemannian space. + +\cvm +For our purpose, we are only interested in the evolution equation for the metric, +and we deduce + +\begin{equation} +\dot g_{ij}=\spd{\dot x_i}{x_j}+\spd{x_i}{\dot x_j}=- 2e^\psi h_{ij}, +\end{equation} + +\cvm +\nd in view of the Weingarten equation. + +\cvm +Let $g=\det(g_{ij})$, then, + +\begin{equation}\lae{1.6} +\dot g= g g^{ij}\dot g_{ij}=-2e^\psi H g, +\end{equation} + +\cvm +\nd and thus, the volume of $M(t), \abs{M(t)}$, evolves according to + +\begin{equation}\lae{1.7} +\frac d{dt} \abs{M(t)}=\int_{M(t_1)}\frac d{dt}\sqrt g=-\int_{M(t)}e^\psi H, +\end{equation} + +\cvm +\nd where we shall assume without loss of generality that $\abs{M(t_1}$ is finite, +otherwise, we replace $M(t_1)$ by an arbitrary measurable subset of $M(t_1)$ +with finite volume. + +\cvm +Now, let $T\in [t_1, T_+)$ be arbitrary and denote by $Q(t_1,T)$ the +cylinder + +\begin{equation}\lae{1.8} +Q(t_1,T)=\set{(x^0,x)}{t_1\le x^0\le T}, +\end{equation} + +\cvm +\nd then, + +\begin{equation}\lae{1.9} +\abs{Q(t_1,T)}=\int_{t_1}^T\int_Me^\psi, +\end{equation} + +\cvm +\nd where we omit the volume elements, and where, $M=M(x^0)$. + +\cvm +By assumption, the mean curvature $H$ of the slices is bounded from below by +$\e_0$, and we conclude further, with the help of \re{1.7}, + +\begin{equation} +\begin{aligned} +\abs{Q(t_1,T)}&\le\frac 1{\e_0} \int_{t_1}^T\int_Me^\psi H\\ +&=\frac1{\e_0}\{\abs{M(t_1)}-\abs{M(T)}\}\\ +&\le \frac1{\e_0}\abs{M(t_1)}. +\end{aligned} +\end{equation} + + +\cvm +Letting $T$ tend to $T_+$ gives the estimate for $\abs {N_+}$. + +\cvm +To prove the estimate \re{0.10}, we simply replace $M(t_1)$ by $E_1$. + +\cvb +If we relax the conditions \re{0.6} and \re{0.7} to include the case $\e_0=0$, a +volume estimate is still possible. + +\cvm +\bt +If the assumptions of \rt{0.1} are valid with $\e_0=0$, and if in addition the +length of any future directed curve starting from $M(t_1)$ is bounded by a +constant $\ga_1$ and the length of any past directed curve starting from $M(t_2)$ +is bounded by a constant $\ga_2$, then, +\begin{align} +\abs{N_+}&\le \ga_1\abs{M(t_1)}\\ +\intertext{and} +\abs{N_-}&\le \ga_2\abs{M(t_2)}. +\end{align} +\et + +\cvm +\bp +As before, we only consider the estimate for $N_+$. + +\cvm +From \re{1.6} we infer that the volume element of the slices $M(t)$ is decreasing +in $t$, and hence, +\begin{equation}\lae{1.13} +\sqrt{g(t)}\le \sqrt{g(t_1)}\qq\A\,t_1\le t. +\end{equation} + +\cvm +Furthermore, for fixed $x\in M(t_1)$ and $t>t_1$ +\begin{equation}\lae{1.14} +\int_{t_1}^te^\psi\le \ga_1 +\end{equation} +because the left-hand side is the length of the future directed curve +\begin{equation} +\ga(\tau)=(\tau,x)\qq t_1\le\tau\le t. +\end{equation} + +\cvm +Let us now look at the cylinder $Q(t_1,T)$ as in \re{1.8} and \re{1.9}. We have +\begin{equation} +\begin{aligned} +\abs{Q(t_1,T)}&=\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t,x)}\le +\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t_1,x)}\\[\cma] +&\le \ga_1\int_{M(t_1)}\sqrt{g(t_1,x)}=\ga_1\abs{M(t_1)} +\end{aligned} +\end{equation} +by applying Fubini's theorem and the estimates \re{1.13} and \re{1.14}. +\ep + +\cvb +\section{Cosmological spacetimes}\las{2} + +\cvb +A cosmological spacetime is a globally hyperbolic Lorentzian manifold $N$ with +compact Cauchy hypersurface $\so$, that satisfies the timelike convergence +condition, i.e. + +\begin{equation} +\bar R_{\al\bet}\nu^\al\nu^\bet\ge 0 \qq \A\,\spd\nu\nu=-1. +\end{equation} + +\cvm +If there exist crushing singularities, see \ci{es} or \ci{cg1} for a definition, then, +we proved in +\ci{cg1} that +$N$ can be foliated by spacelike hypersurfaces $M(\tau)$ of constant mean +curvature $\tau$, $-\un<\tau<\un$, + +\begin{equation} +N=\uuu_{0\ne\tau\in \R[]}M(\tau)\uu{\msc C}_0, +\end{equation} + + +\cvm +\nd where $\msc C_0$ consists either of a single maximal slice or of a whole +continuum of maximal slices in which case the metric is stationary in $\msc +C_0$. But in any case $\msc C_0$ is a compact subset of $N$. + +\cvm +In the complement of $\msc C_0$ the mean curvature function $\tau$ is a regular +function with non-vanishing gradient that can be used as a new time function, cf. +\ci{cg6} for a simple proof. + +\cvm +Thus, the Lorentz metric can be expressed in Gaussian coordinates $(x^\al)$ with +$x^0=\tau$ as in \re{0.3}. We choose arbitrary $\tau_2<0<\tau_1$ and de\-fine + +\begin{equation} +\begin{aligned} +N_0&=\set{(\tau,x)}{\tau_2\le\tau \le \tau_1},\\ +N_-&=\set{(\tau,x)}{-\un<\tau \le \tau_2},\\ +N_+&=\set{(\tau,x)}{\tau_1\le \tau<\un}. +\end{aligned} +\end{equation} + +\cvm +Then, $N_0$ is compact, and the volumes of $N_-, N_+$ can be estimated by + +\begin{align} +\abs{N_+}&\le \frac1{\tau_1}\abs{M(\tau_1)},\\ +\intertext{and} +\abs{N_-}&\le \frac1{\abs{\tau_2}}\abs{M(\tau_2)}. +\end{align} + +\cvm +Hence, we have proved + +\bt +A cosmological spacetime $N$ with crushing singularities has finite volume. +\et + +\cvb +\br +Let $N$ be a spacetime with compact Cauchy hypersurface and suppose that a +subset +$N_-\su N$ is foliated by constant mean curvature slices $M(\tau)$ such that + +\begin{equation} +N_-=\uuu_{0<\tau\le \tau_2}M(\tau) +\end{equation} + +\cvm +\nd and suppose furthermore, that $x^0=\tau$ is a time function---which will be +the case if the timelike convergence condition is satisfied---so that the metric +can be represented in Gaussian coordinates $(x^\al)$ with $x^0=\tau$. + +\cvm +Consider the cylinder $Q(\tau,\tau_2)=\{\tau\le x^0\le \tau_2\}$ for some +fixed $\tau$. Then, + +\begin{equation} +\abs{Q(\tau,\tau_2)}=\int_\tau^{\tau_2}\int_Me^\psi=\int_\tau +^{\tau_2}H^{-1}\int_MH e^\psi, +\end{equation} + +\cvm +\nd and we obtain in view of \re{1.7} + +\begin{equation} +\tau^{-1}_2\{\abs {M(\tau)}-\abs{M(\tau_2)}\}\le\abs{Q(\tau,\tau_2)}, +\end{equation} + +\cvm +\nd and conclude further + +\begin{equation} +\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}\le \tau_2\abs{N_-}+\abs{M(\tau_2)}, +\end{equation} + +\nd i.e. + +\begin{equation} +\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}=\un\im \abs{N_-}=\un. +\end{equation} +\er + +\cvb +\section{The Riemannian case} + +\cvb +Suppose that $N$ is a Riemannian manifold that is decomposed as in \re{0.1} with +metric + + +\begin{equation} +d\bar s^2=e^{2\psi}\{{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}. +\end{equation} + +\cvm +The Gau{\ss} formula and the Weingarten equation for a hypersurface now have +the form + +\begin{align} +x^\al_{ij}&=-h_{ij}\nu^\al,\\ +\intertext{and} +\nu^\al_i&=h^k_ix^\al_k. +\end{align} + + +\cvm +As default normal vector---if such a choice is possible---we choose the outward +normal, which, in case of the coordinate slices $M(t)=\{x^0=t\}$ is given by + +\begin{equation} +(\nu^\al)=e^{-\psi}(1,0,\ldots,0). +\end{equation} + + +\cvm +Thus, the coordinate slices are solutions of the evolution problem + +\begin{equation} +\dot x=e^\psi \nu, +\end{equation} + +\cvm +\nd and, therefore, + +\begin{equation} +\dot g_{ij}=2e^\psi h_{ij}, +\end{equation} + +\cvm +\nd i.e. we have the opposite sign compared to the Lorentzian case leading to + +\begin{equation} +\frac d{dt}\abs{M(t)}=\int_Me^\psi H. +\end{equation} + +\cvm +The arguments in \rs{1} now yield + +\bt +\tup{(i)} Suppose there exists a positive constant $\e_0$ such that the mean +curvature $H(t)$ of the slices $M(t)$ is estimated by + +\begin{align} +H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\\ +\intertext{and} +H(t)&\le-\e_0&\A\,T_-<t\le t_2&, +\end{align} + +\cvm +\nd then + +\begin{align} +\abs{N_+}&\le \frac1{\e_0}\lim_{t\ra T_+}\abs{M(t)},\\ +\intertext{and} +\abs{N_-}&\le \frac1{\e_0}\lim_{t\ra T_-}\abs{M(t}. +\end{align} + +\cvm +\tup{(ii)} On the other hand, if the mean curvature $H$ is negative in $N_+$ and +positive in $N_-$, then, we obtain the same estimates as \rt{0.1}, namely, + +\begin{align} +\abs{N_+}&\le \frac1{\e_0}\abs{M(t_1)},\\ +\intertext{and} +\abs{N_-}&\le \frac1{\e_0}\abs{M(t_2)}. +\end{align} +\et + +\cvb + +\begin{thebibliography}{99} +\bib{es} +D. Eardley \& L. Smarr, \emph{Time functions in numerical relativity: marginally +bound dust collapse}, Phys. Rev. D \tbf{19} (1979) 2239\nbdd2259. + + +\bib{cg1} +C. Gerhardt, \emph{H-surfaces in Lorentzian manifolds}, Commun. Math. Phys. +\tbf{89} (1983) 523\nbdd{553}. + + + +\bib{cg4} +\bysame, \emph{Hypersurfaces of prescribed Weingarten curvature}, Math. Z. +\tbf{224} (1997) 167\nbdd{194}. +\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/MZ224,97.pdf} + + + +\bib{cg6} +\bysame, \emph{On the foliation of space-time by constant mean curvature +hypersurfaces}, preprint, +\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/Foliation.pdf} + + +\bib{cg8} +\bysame, \emph{Hypersurfaces of +prescribed curvature in Lorentzian manifolds}, Indiana Univ. Math. J. \tbf{49} +(2000) 1125\nbdd1153. +\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/GaussLorentz.pdf}] + + + + + +\bib{HE} +S. W. Hawking \& G. F. R. Ellis, \emph{The large scale structure of space-time}, +Cambridge University Press, Cambridge, 1973. + + + +\end{thebibliography} +\end{document} + + +%------------------------------------------------------------------------------ +% End of journal.top +%------------------------------------------------------------------------------ |