diff options
Diffstat (limited to 'Build/source/texk/web2c/pdftexdir/randoms.ch')
-rw-r--r-- | Build/source/texk/web2c/pdftexdir/randoms.ch | 569 |
1 files changed, 569 insertions, 0 deletions
diff --git a/Build/source/texk/web2c/pdftexdir/randoms.ch b/Build/source/texk/web2c/pdftexdir/randoms.ch new file mode 100644 index 00000000000..2268143406d --- /dev/null +++ b/Build/source/texk/web2c/pdftexdir/randoms.ch @@ -0,0 +1,569 @@ +% randoms.ch +% Copyright (c) 2005 Han Th\^e\llap{\raise 0.5ex\hbox{\'{}}} Th\`anh, <thanh@pdftex.org> +% +% This file is part of pdfTeX. +% +% pdfTeX is free software; you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation; either version 2 of the License, or +% (at your option) any later version. +% +% pdfTeX is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with pdfTeX; if not, write to the Free Software +% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +% +% $Id: //depot/Build/source.development/TeX/texk/web2c/pdftexdir/pdftex.ch#163 $ +% +% This is a WEB change file for pseudo-random numbers in pdftex 1.30 and above. +% +% There are four new primitives: +% +% \pdfuniformdeviate <count> +% Generates a uniformly distributed random integer value +% between 0 (inclusive) and <count> (exclusive). +% This primitive expands to a list of tokens. +% +% \pdfnormaldeviate +% Expands to a random integer value with a mean of 0 and a +% unit of 65536. +% This primitive expands to a list of tokens. +% +% \pdfrandomseed +% You can use \the\pdfrandomseed to query the current seed value, +% so you can e.g. the value to the log file. +% +% The initial value of the seed is derived from the system time, +% and is not more than 1,000,999,999 (this ensures that the value +% can be used with commands like \count). +% +% \pdfsetrandomseed <count> +% This sets the random seed to a specific value, allowing you +% to re-play sequences of semi-randoms at a later moment. +% +% Most of the actual code is taken from metapost, and originally +% written by Knuth, for Metafont. Glue to make it work in TeX is +% by me. If you find an error, it is bound to be in my code, +% not Knuth's :-) +% +% Taco Hoekwater (taco@metatex.org), june 27, 2005. No restrictions. + +@x +@* \[8] Packed data. +@y +@* \[7b] Random numbers. + +\font\tenlogo=logo10 % font used for the METAFONT logo +\def\MP{{\tenlogo META}\-{\tenlogo POST}} + +This section is (almost) straight from MetaPost. I had to change +the types (use |integer| instead of |fraction|), but that should +not have any influence on the actual calculations (the original +comments refer to quantities like |fraction_four| ($2^{30}$), and +that is the same as the numeric representation of |maxdimen|). + +I've copied the low-level variables and routines that are needed, but +only those (e.g. |m_log|), not the accompanying ones like |m_exp|. Most +of the following low-level numeric routines are only needed within the +calculation of |norm_rand|. I've been forced to rename |make_fraction| +to |make_frac| because TeX already has a routine by that name with +a wholly different function (it creates a |fraction_noad| for math +typesetting) -- Taco + +And now let's complete our collection of numeric utility routines +by considering random number generation. +\MP\ generates pseudo-random numbers with the additive scheme recommended +in Section 3.6 of {\sl The Art of Computer Programming}; however, the +results are random fractions between 0 and |fraction_one-1|, inclusive. + +There's an auxiliary array |randoms| that contains 55 pseudo-random +fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$, +we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|. +The global variable |j_random| tells which element has most recently +been consumed. + +@<Glob...@>= +@!randoms:array[0..54] of integer; {the last 55 random values generated} +@!j_random:0..54; {the number of unused |randoms|} +@!random_seed:scaled; {the default random seed} + +@ A small bit of metafont is needed. + +@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000} +@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000} +@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000} +@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MP\ likes} +@d halfp(#)==(#) div 2 +@d double(#) == #:=#+# {multiply a variable by two} + +@ The |make_frac| routine produces the |fraction| equivalent of +|p/q|, given integers |p| and~|q|; it computes the integer +$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are +positive. If |p| and |q| are both of the same scaled type |t|, +the ``type relation'' |make_frac(t,t)=fraction| is valid; +and it's also possible to use the subroutine ``backwards,'' using +the relation |make_frac(t,fraction)=t| between scaled types. + +If the result would have magnitude $2^{31}$ or more, |make_frac| +sets |arith_error:=true|. Most of \MP's internal computations have +been designed to avoid this sort of error. + +If this subroutine were programmed in assembly language on a typical +machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a +double-precision product can often be input to a fixed-point division +instruction. But when we are restricted to \PASCAL\ arithmetic it +is necessary either to resort to multiple-precision maneuvering +or to use a simple but slow iteration. The multiple-precision technique +would be about three times faster than the code adopted here, but it +would be comparatively long and tricky, involving about sixteen +additional multiplications and divisions. + +This operation is part of \MP's ``inner loop''; indeed, it will +consume nearly 10\pct! of the running time (exclusive of input and output) +if the code below is left unchanged. A machine-dependent recoding +will therefore make \MP\ run faster. The present implementation +is highly portable, but slow; it avoids multiplication and division +except in the initial stage. System wizards should be careful to +replace it with a routine that is guaranteed to produce identical +results in all cases. +@^system dependencies@> + +As noted below, a few more routines should also be replaced by machine-dependent +code, for efficiency. But when a procedure is not part of the ``inner loop,'' +such changes aren't advisable; simplicity and robustness are +preferable to trickery, unless the cost is too high. +@^inner loop@> + +@p function make_frac(@!p,@!q:integer):integer; +var @!f:integer; {the fraction bits, with a leading 1 bit} +@!n:integer; {the integer part of $\vert p/q\vert$} +@!negative:boolean; {should the result be negated?} +@!be_careful:integer; {disables certain compiler optimizations} +begin if p>=0 then negative:=false +else begin negate(p); negative:=true; + end; +if q<=0 then + begin debug if q=0 then confusion("/");@;@+gubed@;@/ +@:this can't happen /}{\quad \./@> + negate(q); negative:=not negative; + end; +n:=p div q; p:=p mod q; +if n>=8 then + begin arith_error:=true; + if negative then make_frac:=-el_gordo@+else make_frac:=el_gordo; + end +else begin n:=(n-1)*fraction_one; + @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>; + if negative then make_frac:=-(f+n)@+else make_frac:=f+n; + end; +end; + +@ The |repeat| loop here preserves the following invariant relations +between |f|, |p|, and~|q|: +(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and +$p_0$ is the original value of~$p$. + +Notice that the computation specifies +|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow. +Let us hope that optimizing compilers do not miss this point; a +special variable |be_careful| is used to emphasize the necessary +order of computation. Optimizing compilers should keep |be_careful| +in a register, not store it in memory. +@^inner loop@> + +@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>= +f:=1; +repeat be_careful:=p-q; p:=be_careful+p; +if p>=0 then f:=f+f+1 +else begin double(f); p:=p+q; + end; +until f>=fraction_one; +be_careful:=p-q; +if be_careful+p>=0 then incr(f) + +@ + +@p function take_frac(@!q:integer;@!f:integer):integer; +var @!p:integer; {the fraction so far} +@!negative:boolean; {should the result be negated?} +@!n:integer; {additional multiple of $q$} +@!be_careful:integer; {disables certain compiler optimizations} +begin @<Reduce to the case that |f>=0| and |q>0|@>; +if f<fraction_one then n:=0 +else begin n:=f div fraction_one; f:=f mod fraction_one; + if q<=el_gordo div n then n:=n*q + else begin arith_error:=true; n:=el_gordo; + end; + end; +f:=f+fraction_one; +@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>; +be_careful:=n-el_gordo; +if be_careful+p>0 then + begin arith_error:=true; n:=el_gordo-p; + end; +if negative then take_frac:=-(n+p) +else take_frac:=n+p; +end; + +@ @<Reduce to the case that |f>=0| and |q>0|@>= +if f>=0 then negative:=false +else begin negate(f); negative:=true; + end; +if q<0 then + begin negate(q); negative:=not negative; + end; + +@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor +=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and +$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$. +@^inner loop@> + +@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>= +p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$} +if q<fraction_four then + repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p); + f:=halfp(f); + until f=1 +else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p); + f:=halfp(f); + until f=1 + +@ The subroutines for logarithm and exponential involve two tables. +The first is simple: |two_to_the[k]| equals $2^k$. The second involves +a bit more calculation, which the author claims to have done correctly: +|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)= +2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the +nearest integer. + +@<Glob...@>= +@!two_to_the:array[0..30] of integer; {powers of two} +@!spec_log:array[1..28] of integer; {special logarithms} + + +@ @<Set init...@>= +two_to_the[0]:=1; +for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1]; +spec_log[1]:=93032640; +spec_log[2]:=38612034; +spec_log[3]:=17922280; +spec_log[4]:=8662214; +spec_log[5]:=4261238; +spec_log[6]:=2113709; +spec_log[7]:=1052693; +spec_log[8]:=525315; +spec_log[9]:=262400; +spec_log[10]:=131136; +spec_log[11]:=65552; +spec_log[12]:=32772; +spec_log[13]:=16385; +for k:=14 to 27 do spec_log[k]:=two_to_the[27-k]; +spec_log[28]:=1; + +@ + +@p function m_log(@!x:integer):integer; +var @!y,@!z:integer; {auxiliary registers} +@!k:integer; {iteration counter} +begin if x<=0 then @<Handle non-positive logarithm@> +else begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$} + z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$} + while x<fraction_four do + begin double(x); y:=y-93032639; z:=z-48782; + end; {$2^{27}\ln2\approx 93032639.74436163$ + and $2^{16}\times.74436163\approx 48782$} + y:=y+(z div unity); k:=2; + while x>fraction_four+4 do + @<Increase |k| until |x| can be multiplied by a + factor of $2^{-k}$, and adjust $y$ accordingly@>; + m_log:=y div 8; + end; +end; + +@ @<Increase |k| until |x| can...@>= +begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$} +while x<fraction_four+z do + begin z:=halfp(z+1); k:=k+1; + end; +y:=y+spec_log[k]; x:=x-z; +end + +@ @<Handle non-positive logarithm@>= +begin print_err("Logarithm of "); +@.Logarithm...replaced by 0@> +print_scaled(x); print(" has been replaced by 0"); +help2("Since I don't take logs of non-positive numbers,")@/ + ("I'm zeroing this one. Proceed, with fingers crossed."); +error; m_log:=0; +end + +@ The following somewhat different subroutine tests rigorously if $ab$ is +greater than, equal to, or less than~$cd$, +given integers $(a,b,c,d)$. In most cases a quick decision is reached. +The result is $+1$, 0, or~$-1$ in the three respective cases. + +@d return_sign(#)==begin ab_vs_cd:=#; return; + end + +@p function ab_vs_cd(@!a,b,c,d:integer):integer; +label exit; +var @!q,@!r:integer; {temporary registers} +begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>; +loop@+ begin q := a div d; r := c div b; + if q<>r then + if q>r then return_sign(1)@+else return_sign(-1); + q := a mod d; r := c mod b; + if r=0 then + if q=0 then return_sign(0)@+else return_sign(1); + if q=0 then return_sign(-1); + a:=b; b:=q; c:=d; d:=r; + end; {now |a>d>0| and |c>b>0|} +exit:end; + +@ @<Reduce to the case that |a...@>= +if a<0 then + begin negate(a); negate(b); + end; +if c<0 then + begin negate(c); negate(d); + end; +if d<=0 then + begin if b>=0 then + if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0) + else return_sign(1); + if d=0 then + if a=0 then return_sign(0)@+else return_sign(-1); + q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q; + end +else if b<=0 then + begin if b<0 then if a>0 then return_sign(-1); + if c=0 then return_sign(0) else return_sign(-1); + end + +@ To consume a random integer, the program below will say `|next_random|' +and then it will fetch |randoms[j_random]|. + +@d next_random==if j_random=0 then new_randoms + else decr(j_random) + +@p procedure new_randoms; +var @!k:0..54; {index into |randoms|} +@!x:integer; {accumulator} +begin for k:=0 to 23 do + begin x:=randoms[k]-randoms[k+31]; + if x<0 then x:=x+fraction_one; + randoms[k]:=x; + end; +for k:=24 to 54 do + begin x:=randoms[k]-randoms[k-24]; + if x<0 then x:=x+fraction_one; + randoms[k]:=x; + end; +j_random:=54; +end; + +@ To initialize the |randoms| table, we call the following routine. + +@p procedure init_randoms(@!seed:integer); +var @!j,@!jj,@!k:integer; {more or less random integers} +@!i:0..54; {index into |randoms|} +begin j:=abs(seed); +while j>=fraction_one do j:=halfp(j); +k:=1; +for i:=0 to 54 do + begin jj:=k; k:=j-k; j:=jj; + if k<0 then k:=k+fraction_one; + randoms[(i*21)mod 55]:=j; + end; +new_randoms; new_randoms; new_randoms; {``warm up'' the array} +end; + +@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x| +or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here. + +Note that the call of |take_frac| will produce the values 0 and~|x| +with about half the probability that it will produce any other particular +values between 0 and~|x|, because it rounds its answers. + +@p function unif_rand(@!x:integer):integer; +var @!y:integer; {trial value} +begin next_random; y:=take_frac(abs(x),randoms[j_random]); +if y=abs(x) then unif_rand:=0 +else if x>0 then unif_rand:=y +else unif_rand:=-y; +end; + +@ Finally, a normal deviate with mean zero and unit standard deviation +can readily be obtained with the ratio method (Algorithm 3.4.1R in +{\sl The Art of Computer Programming\/}). + +@p function norm_rand:integer; +var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$, + and $-2^{24}\ln U$} +begin repeat + repeat next_random; + x:=take_frac(112429,randoms[j_random]-fraction_half); + {$2^{16}\sqrt{8/e}\approx 112428.82793$} + next_random; u:=randoms[j_random]; + until abs(x)<u; +x:=make_frac(x,u); +l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$} +until ab_vs_cd(1024,l,x,x)>=0; +norm_rand:=x; +end; + +@* \[8] Packed data. +@z + +@x l.388 +@d pdftex_last_item_codes = pdftex_first_rint_code + 11 {end of \pdfTeX's command codes} +@y +@d random_seed_code = pdftex_first_rint_code + 12 {code for \.{\\pdfrandomseed}} +@d pdftex_last_item_codes = pdftex_first_rint_code + 12 {end of \pdfTeX's command codes} +@z + +@x l.417 +primitive("pdfelapsedtime",last_item,elapsed_time_code); +@!@:elapsed_time_}{\.{\\pdfelapsedtime} primitive@> +@y +primitive("pdfelapsedtime",last_item,elapsed_time_code); +@!@:elapsed_time_}{\.{\\pdfelapsedtime} primitive@> +primitive("pdfrandomseed",last_item,random_seed_code); +@!@:random_seed_}{\.{\\pdfrandomseed} primitive@> +@z + +@x l.434 + elapsed_time_code: print_esc("pdfelapsedtime"); +@y + elapsed_time_code: print_esc("pdfelapsedtime"); + random_seed_code: print_esc("pdfrandomseed"); +@z + +@x l.461 + elapsed_time_code: cur_val := get_microinterval; +@y + elapsed_time_code: cur_val := get_microinterval; + random_seed_code: cur_val := random_seed; +@z + +@x +@d pdftex_convert_codes = pdftex_first_expand_code + 21 {end of \pdfTeX's command codes} +@y +@d uniform_deviate_code = pdftex_first_expand_code + 21 {end of \pdfTeX's command codes} +@d normal_deviate_code = pdftex_first_expand_code + 22 {end of \pdfTeX's command codes} +@d pdftex_convert_codes = pdftex_first_expand_code + 23 {end of \pdfTeX's command codes} +@z + +@x +primitive("jobname",convert,job_name_code);@/ +@y +primitive("pdfuniformdeviate",convert,uniform_deviate_code);@/ +@!@:uniform_deviate_}{\.{\\pdfuniformdeviate} primitive@> +primitive("pdfnormaldeviate",convert,normal_deviate_code);@/ +@!@:normal_deviate_}{\.{\\pdfnormaldeviate} primitive@> +primitive("jobname",convert,job_name_code);@/ +@z + +@x + othercases print_esc("jobname") +@y + uniform_deviate_code: print_esc("pdfuniformdeviate"); + normal_deviate_code: print_esc("pdfnormaldeviate"); + othercases print_esc("jobname") +@z + +@x +pdf_strcmp_code: + begin + save_scanner_status := scanner_status; + save_warning_index := warning_index; + save_def_ref := def_ref; + compare_strings; + def_ref := save_def_ref; + warning_index := save_warning_index; + scanner_status := save_scanner_status; + end; +job_name_code: if job_name=0 then open_log_file; +@y +pdf_strcmp_code: + begin + save_scanner_status := scanner_status; + save_warning_index := warning_index; + save_def_ref := def_ref; + compare_strings; + def_ref := save_def_ref; + warning_index := save_warning_index; + scanner_status := save_scanner_status; + end; +job_name_code: if job_name=0 then open_log_file; +uniform_deviate_code: scan_int; +normal_deviate_code: do_nothing; +@z + +@x +job_name_code: print(job_name); +@y +uniform_deviate_code: print_int(unif_rand(cur_val)); +normal_deviate_code: print_int(norm_rand); +job_name_code: print(job_name); +@z + + +@x +@<Compute the magic offset@>; +@y +random_seed :=(microseconds*1000)+(epochseconds mod 1000000);@/ +init_randoms(random_seed);@/ +@<Compute the magic offset@>; +@z + +@x l. 4562 +@d pdftex_last_extension_code == pdftex_first_extension_code + 25 +@y +@d set_random_seed_code == pdftex_first_extension_code + 26 +@d pdftex_last_extension_code == pdftex_first_extension_code + 26 +@z + +@x l.4625 +primitive("pdfresettimer",extension,reset_timer_code);@/ +@!@:reset_timer_}{\.{\\pdfresettimer} primitive@> +@y +primitive("pdfresettimer",extension,reset_timer_code);@/ +@!@:reset_timer_}{\.{\\pdfresettimer} primitive@> +primitive("pdfsetrandomseed",extension,set_random_seed_code);@/ +@!@:set_random_seed_code}{\.{\\pdfsetrandomseed} primitive@> +@z + +@x + reset_timer_code: print_esc("pdfresettimer"); +@y + reset_timer_code: print_esc("pdfresettimer"); + set_random_seed_code: print_esc("pdfsetrandomseed"); +@z + +@x +reset_timer_code: @<Implement \.{\\pdfresettimer}@>; +@y +reset_timer_code: @<Implement \.{\\pdfresettimer}@>; +set_random_seed_code: @<Implement \.{\\pdfsetrandomseed}@>; +@z + +@x +@ @<Implement \.{\\pdfresettimer}@>= +@y +@ Negative random seed values are silently converted to positive ones + +@<Implement \.{\\pdfsetrandomseed}@>= +begin + scan_int; + if cur_val<0 then negate(cur_val); + random_seed := cur_val; + init_randoms(random_seed); +end + +@ @<Implement \.{\\pdfresettimer}@>= +@z + |