summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/mplibdir/mpmathdecimal.w
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/web2c/mplibdir/mpmathdecimal.w')
-rw-r--r--Build/source/texk/web2c/mplibdir/mpmathdecimal.w110
1 files changed, 108 insertions, 2 deletions
diff --git a/Build/source/texk/web2c/mplibdir/mpmathdecimal.w b/Build/source/texk/web2c/mplibdir/mpmathdecimal.w
index c65e2a5a420..3ae1cce3042 100644
--- a/Build/source/texk/web2c/mplibdir/mpmathdecimal.w
+++ b/Build/source/texk/web2c/mplibdir/mpmathdecimal.w
@@ -55,6 +55,7 @@ First, here are some very important constants.
static void mp_decimal_scan_fractional_token (MP mp, int n);
static void mp_decimal_scan_numeric_token (MP mp, int n);
static void mp_ab_vs_cd (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c, mp_number d);
+/*static void mp_decimal_ab_vs_cd (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c, mp_number d);*/
static void mp_decimal_crossing_point (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c);
static void mp_decimal_number_modulo (mp_number *a, mp_number b);
static void mp_decimal_print_number (MP mp, mp_number n);
@@ -67,6 +68,7 @@ static void mp_number_angle_to_scaled (mp_number *A);
static void mp_number_fraction_to_scaled (mp_number *A);
static void mp_number_scaled_to_fraction (mp_number *A);
static void mp_number_scaled_to_angle (mp_number *A);
+static void mp_decimal_m_norm_rand (MP mp, mp_number *ret);
static void mp_decimal_m_exp (MP mp, mp_number *ret, mp_number x_orig);
static void mp_decimal_m_log (MP mp, mp_number *ret, mp_number x_orig);
static void mp_decimal_pyth_sub (MP mp, mp_number *r, mp_number a, mp_number b);
@@ -444,7 +446,7 @@ void * mp_initialize_decimal_math (MP mp) {
decNumberFromInt32(math->one_eighty_deg_t.data.num, 180 * angle_multiplier);
/* various approximations */
mp_new_number (mp, &math->one_k, mp_scaled_type);
- decNumberFromInt32(math->one_k.data.num, 1024);
+ decNumberFromDouble(math->one_k.data.num, 1.0/64);
mp_new_number (mp, &math->sqrt_8_e_k, mp_scaled_type);
{
decNumberFromDouble(math->sqrt_8_e_k.data.num, 112428.82793 / 65536.0);
@@ -540,6 +542,7 @@ void * mp_initialize_decimal_math (MP mp) {
math->n_arg = mp_decimal_n_arg;
math->m_log = mp_decimal_m_log;
math->m_exp = mp_decimal_m_exp;
+ math->m_norm_rand = mp_decimal_m_norm_rand;
math->pyth_add = mp_decimal_pyth_add;
math->pyth_sub = mp_decimal_pyth_sub;
math->fraction_to_scaled = mp_number_fraction_to_scaled;
@@ -1748,4 +1751,107 @@ void mp_init_randoms (MP mp, int seed) {
@ @c
void mp_decimal_number_modulo (mp_number *a, mp_number b) {
decNumberRemainder(a->data.num, a->data.num, b.data.num, &set);
-} \ No newline at end of file
+}
+
+
+
+
+
+
+
+
+
+
+
+
+@ To consume a random fraction, the program below will say `|next_random|'.
+
+@c
+static void mp_next_random (MP mp, mp_number *ret) {
+ if ( mp->j_random==0 )
+ mp_new_randoms(mp);
+ else
+ mp->j_random = mp->j_random-1;
+ mp_number_clone (ret, mp->randoms[mp->j_random]);
+}
+
+
+@ Finally, a normal deviate with mean zero and unit standard deviation
+can readily be obtained with the ratio method (Algorithm 3.4.1R in
+{\sl The Art of Computer Programming\/}).
+
+@c
+static void mp_decimal_m_norm_rand (MP mp, mp_number *ret) {
+ mp_number ab_vs_cd;
+ mp_number abs_x;
+ mp_number u;
+ mp_number r;
+ mp_number la, xa;
+ new_number (ab_vs_cd);
+ new_number (la);
+ new_number (xa);
+ new_number (abs_x);
+ new_number (u);
+ new_number (r);
+
+ do {
+ do {
+ mp_number v;
+ new_number (v);
+ mp_next_random(mp, &v);
+ mp_number_substract (&v, ((math_data *)mp->math)->fraction_half_t);
+ mp_decimal_number_take_fraction (mp,&xa, ((math_data *)mp->math)->sqrt_8_e_k, v);
+ free_number (v);
+ mp_next_random(mp, &u);
+ mp_number_clone (&abs_x, xa);
+ mp_decimal_abs (&abs_x);
+ } while (!mp_number_less(abs_x, u));
+ mp_decimal_number_make_fraction (mp, &r, xa, u);
+ mp_number_clone (&xa, r);
+ mp_decimal_m_log (mp,&la, u);
+ mp_set_decimal_from_substraction(&la, ((math_data *)mp->math)->twelve_ln_2_k, la);
+ /*mp_decimal_ab_vs_cd (mp,&ab_vs_cd, ((math_data *)mp->math)->one_k, la, xa, xa);*/
+ mp_ab_vs_cd (mp,&ab_vs_cd, ((math_data *)mp->math)->one_k, la, xa, xa);
+ } while (mp_number_less(ab_vs_cd,((math_data *)mp->math)->zero_t));
+ mp_number_clone (ret, xa);
+ free_number (ab_vs_cd);
+ free_number (r);
+ free_number (abs_x);
+ free_number (la);
+ free_number (xa);
+ free_number (u);
+}
+
+
+
+
+@ The following subroutine could be used in norm_rand and tests if $ab$ is
+greater than, equal to, or less than~$cd$.
+The result is $+1$, 0, or~$-1$ in the three respective cases.
+This is not necessary, even if it's shorter than the current ab_vs_cd
+and looks as a native implememtation.
+
+@c
+/*
+void mp_decimal_ab_vs_cd (MP mp, mp_number *ret, mp_number a_orig, mp_number b_orig, mp_number c_orig, mp_number d_orig) {
+ decNumber a, b, c, d;
+ decNumber ab, cd;
+ (void)mp;
+
+ decNumberCopy(&a, (decNumber *)a_orig.data.num);
+ decNumberCopy(&b, (decNumber *)b_orig.data.num);
+ decNumberCopy(&c, (decNumber *)c_orig.data.num);
+ decNumberCopy(&d, (decNumber *)d_orig.data.num);
+
+
+ decNumberMultiply (&ab, (decNumber *)a_orig.data.num, (decNumber *)b_orig.data.num, &set);
+ decNumberMultiply (&cd, (decNumber *)c_orig.data.num, (decNumber *)d_orig.data.num, &set);
+ decNumberCompare(ret->data.num, &ab, &cd, &set);
+ mp_check_decNumber(mp, ret->data.num, &set);
+ return;
+
+}
+*/
+
+
+