summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/exceptions.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/exceptions.c')
-rw-r--r--Build/source/libs/mpfr/mpfr-src/src/exceptions.c360
1 files changed, 360 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/exceptions.c b/Build/source/libs/mpfr/mpfr-src/src/exceptions.c
new file mode 100644
index 00000000000..dacca4eaa1b
--- /dev/null
+++ b/Build/source/libs/mpfr/mpfr-src/src/exceptions.c
@@ -0,0 +1,360 @@
+/* Exception flags and utilities.
+
+Copyright 2001-2015 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#include "mpfr-impl.h"
+
+unsigned int MPFR_THREAD_ATTR __gmpfr_flags = 0;
+
+mpfr_exp_t MPFR_THREAD_ATTR __gmpfr_emin = MPFR_EMIN_DEFAULT;
+mpfr_exp_t MPFR_THREAD_ATTR __gmpfr_emax = MPFR_EMAX_DEFAULT;
+
+#undef mpfr_get_emin
+
+mpfr_exp_t
+mpfr_get_emin (void)
+{
+ return __gmpfr_emin;
+}
+
+#undef mpfr_set_emin
+
+int
+mpfr_set_emin (mpfr_exp_t exponent)
+{
+ if (exponent >= MPFR_EMIN_MIN && exponent <= MPFR_EMIN_MAX)
+ {
+ __gmpfr_emin = exponent;
+ return 0;
+ }
+ else
+ {
+ return 1;
+ }
+}
+
+mpfr_exp_t
+mpfr_get_emin_min (void)
+{
+ return MPFR_EMIN_MIN;
+}
+
+mpfr_exp_t
+mpfr_get_emin_max (void)
+{
+ return MPFR_EMIN_MAX;
+}
+
+#undef mpfr_get_emax
+
+mpfr_exp_t
+mpfr_get_emax (void)
+{
+ return __gmpfr_emax;
+}
+
+#undef mpfr_set_emax
+
+int
+mpfr_set_emax (mpfr_exp_t exponent)
+{
+ if (exponent >= MPFR_EMAX_MIN && exponent <= MPFR_EMAX_MAX)
+ {
+ __gmpfr_emax = exponent;
+ return 0;
+ }
+ else
+ {
+ return 1;
+ }
+}
+
+mpfr_exp_t
+mpfr_get_emax_min (void)
+{
+ return MPFR_EMAX_MIN;
+}
+mpfr_exp_t
+mpfr_get_emax_max (void)
+{
+ return MPFR_EMAX_MAX;
+}
+
+
+#undef mpfr_clear_flags
+
+void
+mpfr_clear_flags (void)
+{
+ __gmpfr_flags = 0;
+}
+
+#undef mpfr_clear_underflow
+
+void
+mpfr_clear_underflow (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_UNDERFLOW;
+}
+
+#undef mpfr_clear_overflow
+
+void
+mpfr_clear_overflow (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_OVERFLOW;
+}
+
+#undef mpfr_clear_divby0
+
+void
+mpfr_clear_divby0 (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_DIVBY0;
+}
+
+#undef mpfr_clear_nanflag
+
+void
+mpfr_clear_nanflag (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_NAN;
+}
+
+#undef mpfr_clear_inexflag
+
+void
+mpfr_clear_inexflag (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_INEXACT;
+}
+
+#undef mpfr_clear_erangeflag
+
+void
+mpfr_clear_erangeflag (void)
+{
+ __gmpfr_flags &= MPFR_FLAGS_ALL ^ MPFR_FLAGS_ERANGE;
+}
+
+#undef mpfr_set_underflow
+
+void
+mpfr_set_underflow (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_UNDERFLOW;
+}
+
+#undef mpfr_set_overflow
+
+void
+mpfr_set_overflow (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_OVERFLOW;
+}
+
+#undef mpfr_set_divby0
+
+void
+mpfr_set_divby0 (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_DIVBY0;
+}
+
+#undef mpfr_set_nanflag
+
+void
+mpfr_set_nanflag (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_NAN;
+}
+
+#undef mpfr_set_inexflag
+
+void
+mpfr_set_inexflag (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_INEXACT;
+}
+
+#undef mpfr_set_erangeflag
+
+void
+mpfr_set_erangeflag (void)
+{
+ __gmpfr_flags |= MPFR_FLAGS_ERANGE;
+}
+
+
+#undef mpfr_check_range
+
+int
+mpfr_check_range (mpfr_ptr x, int t, mpfr_rnd_t rnd_mode)
+{
+ if (MPFR_LIKELY( MPFR_IS_PURE_FP(x)) )
+ { /* x is a non-zero FP */
+ mpfr_exp_t exp = MPFR_EXP (x); /* Do not use MPFR_GET_EXP */
+ if (MPFR_UNLIKELY( exp < __gmpfr_emin) )
+ {
+ /* The following test is necessary because in the rounding to the
+ * nearest mode, mpfr_underflow always rounds away from 0. In
+ * this rounding mode, we need to round to 0 if:
+ * _ |x| < 2^(emin-2), or
+ * _ |x| = 2^(emin-2) and the absolute value of the exact
+ * result is <= 2^(emin-2).
+ */
+ if (rnd_mode == MPFR_RNDN &&
+ (exp + 1 < __gmpfr_emin ||
+ (mpfr_powerof2_raw(x) &&
+ (MPFR_IS_NEG(x) ? t <= 0 : t >= 0))))
+ rnd_mode = MPFR_RNDZ;
+ return mpfr_underflow(x, rnd_mode, MPFR_SIGN(x));
+ }
+ if (MPFR_UNLIKELY( exp > __gmpfr_emax) )
+ return mpfr_overflow (x, rnd_mode, MPFR_SIGN(x));
+ }
+ else if (MPFR_UNLIKELY (t != 0 && MPFR_IS_INF (x)))
+ {
+ /* We need to do the following because most MPFR functions are
+ * implemented in the following way:
+ * Ziv's loop:
+ * | Compute an approximation to the result and an error bound.
+ * | Possible underflow/overflow detection -> return.
+ * | If can_round, break (exit the loop).
+ * | Otherwise, increase the working precision and loop.
+ * Round the approximation in the target precision. <== See below
+ * Restore the flags (that could have been set due to underflows
+ * or overflows during the internal computations).
+ * Execute: return mpfr_check_range (...).
+ * The problem is that an overflow could be generated when rounding the
+ * approximation (in general, such an overflow could not be detected
+ * earlier), and the overflow flag is lost when the flags are restored.
+ * This can occur only when the rounding yields an exponent change
+ * and the new exponent is larger than the maximum exponent, so that
+ * an infinity is necessarily obtained.
+ * So, the simplest solution is to detect this overflow case here in
+ * mpfr_check_range, which is easy to do since the rounded result is
+ * necessarily an inexact infinity.
+ */
+ __gmpfr_flags |= MPFR_FLAGS_OVERFLOW;
+ }
+ MPFR_RET (t); /* propagate inexact ternary value, unlike most functions */
+}
+
+#undef mpfr_underflow_p
+
+int
+mpfr_underflow_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_UNDERFLOW;
+}
+
+#undef mpfr_overflow_p
+
+int
+mpfr_overflow_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_OVERFLOW;
+}
+
+#undef mpfr_divby0_p
+
+int
+mpfr_divby0_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_DIVBY0;
+}
+
+#undef mpfr_nanflag_p
+
+int
+mpfr_nanflag_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_NAN;
+}
+
+#undef mpfr_inexflag_p
+
+int
+mpfr_inexflag_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_INEXACT;
+}
+
+#undef mpfr_erangeflag_p
+
+int
+mpfr_erangeflag_p (void)
+{
+ return __gmpfr_flags & MPFR_FLAGS_ERANGE;
+}
+
+/* #undef mpfr_underflow */
+
+/* Note: In the rounding to the nearest mode, mpfr_underflow
+ always rounds away from 0. In this rounding mode, you must call
+ mpfr_underflow with rnd_mode = MPFR_RNDZ if the exact result
+ is <= 2^(emin-2) in absolute value. */
+
+int
+mpfr_underflow (mpfr_ptr x, mpfr_rnd_t rnd_mode, int sign)
+{
+ int inex;
+
+ MPFR_ASSERT_SIGN (sign);
+
+ if (MPFR_IS_LIKE_RNDZ(rnd_mode, sign < 0))
+ {
+ MPFR_SET_ZERO(x);
+ inex = -1;
+ }
+ else
+ {
+ mpfr_setmin (x, __gmpfr_emin);
+ inex = 1;
+ }
+ MPFR_SET_SIGN(x, sign);
+ __gmpfr_flags |= MPFR_FLAGS_INEXACT | MPFR_FLAGS_UNDERFLOW;
+ return sign > 0 ? inex : -inex;
+}
+
+/* #undef mpfr_overflow */
+
+int
+mpfr_overflow (mpfr_ptr x, mpfr_rnd_t rnd_mode, int sign)
+{
+ int inex;
+
+ MPFR_ASSERT_SIGN(sign);
+ if (MPFR_IS_LIKE_RNDZ(rnd_mode, sign < 0))
+ {
+ mpfr_setmax (x, __gmpfr_emax);
+ inex = -1;
+ }
+ else
+ {
+ MPFR_SET_INF(x);
+ inex = 1;
+ }
+ MPFR_SET_SIGN(x,sign);
+ __gmpfr_flags |= MPFR_FLAGS_INEXACT | MPFR_FLAGS_OVERFLOW;
+ return sign > 0 ? inex : -inex;
+}