diff options
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/eint.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-src/src/eint.c | 157 |
1 files changed, 98 insertions, 59 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/eint.c b/Build/source/libs/mpfr/mpfr-src/src/eint.c index c09efe94143..cd9588e5064 100644 --- a/Build/source/libs/mpfr/mpfr-src/src/eint.c +++ b/Build/source/libs/mpfr/mpfr-src/src/eint.c @@ -30,8 +30,10 @@ http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., eint (x) is undefined for x < 0. */ -/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity), - and return e such that the absolute error is bound by 2^e ulp(y) */ +/* Compute in y an approximation of sum(x^k/k/k!, k=1..infinity), + and return e such that the absolute error is bound by 2^e ulp(y). + Return PREC(y) when the truncated series does not converge. +*/ static mpfr_exp_t mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) { @@ -44,7 +46,7 @@ mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) MPFR_GROUP_DECL (group); /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x) - where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2 + where |R(x)| <= (x/2)^2/(1-|x|/2) <= 2*(x/2)^2 thus |R(x)/x| <= |x|/2 thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */ @@ -75,16 +77,19 @@ mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) mpz_set_ui (t, 1); mpz_mul_2exp (t, t, w); mpfr_set_ui (eps, 0, MPFR_RNDN); /* eps[0] = 0 */ - mpfr_set_ui (errs, 0, MPFR_RNDN); + mpfr_set_ui (errs, 0, MPFR_RNDN); /* maximal error on s */ for (k = 1;; k++) { - /* let eps[k] be the absolute error on t[k]: + /* let t[k] = x^k/k/k!, and eps[k] be the absolute error on t[k]: since t[k] = trunc(t[k-1]*m*2^e/k), we have - eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k - = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k - = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */ + eps[k+1] <= 1 + eps[k-1]*|m|*2^e/k + |t[k-1]|*|m|*2^(1-w)*2^e/k + = 1 + (eps[k-1] + |t[k-1]|*2^(1-w))*|m|*2^e/k + = 1 + (eps[k-1]*2^(w-1) + |t[k-1]|)*2^(1-w)*|m|*2^e/k */ mpfr_mul_2ui (eps, eps, w - 1, MPFR_RNDU); - mpfr_add_z (eps, eps, t, MPFR_RNDU); + if (mpz_sgn (t) >= 0) + mpfr_add_z (eps, eps, t, MPFR_RNDU); + else + mpfr_sub_z (eps, eps, t, MPFR_RNDU); MPFR_MPZ_SIZEINBASE2 (sizeinbase, m); mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, MPFR_RNDU); mpfr_div_ui (eps, eps, k, MPFR_RNDU); @@ -145,7 +150,7 @@ mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) /* Return in y an approximation of Ei(x) using the asymptotic expansion: Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...) - Assumes x >= PREC(y) * log(2). + Assumes |x| >= PREC(y) * log(2). Returns the error bound in terms of ulp(y). */ static mpfr_exp_t @@ -190,11 +195,13 @@ mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x) return err_exp; } +/* mpfr_eint returns Ei(x) for x >= 0, + and -E1(-x) for x < 0, following http://dlmf.nist.gov/6.2 */ int mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) { int inex; - mpfr_t tmp, ump; + mpfr_t tmp, ump, x_abs; mpfr_exp_t err, te; mpfr_prec_t prec; MPFR_SAVE_EXPO_DECL (expo); @@ -206,80 +213,104 @@ mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { - /* eint(NaN) = eint(-Inf) = NaN */ - if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x))) + if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } - /* eint(+inf) = +inf */ else if (MPFR_IS_INF (x)) { - MPFR_SET_INF(y); - MPFR_SET_POS(y); + /* eint(+inf) = +inf and eint(-inf) = -0 */ + if (MPFR_IS_POS (x)) + { + MPFR_SET_INF(y); + MPFR_SET_POS(y); + } + else + { + MPFR_SET_ZERO(y); + MPFR_SET_NEG(y); + } MPFR_RET(0); } else /* eint(+/-0) = -Inf */ { MPFR_SET_INF(y); MPFR_SET_NEG(y); - mpfr_set_divby0 (); + MPFR_SET_DIVBY0 (); MPFR_RET(0); } } - /* eint(x) = NaN for x < 0 */ - if (MPFR_IS_NEG(x)) - { - MPFR_SET_NAN (y); - MPFR_RET_NAN; - } + MPFR_TMP_INIT_ABS (x_abs, x); MPFR_SAVE_EXPO_MARK (expo); + /* Init stuff */ + prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6; + mpfr_init2 (tmp, 64); + mpfr_init2 (ump, 64); + /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2). Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax, then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */ - mpfr_init2 (tmp, 64); - mpfr_init2 (ump, 64); - mpfr_log (tmp, x, MPFR_RNDU); - mpfr_sub (ump, x, tmp, MPFR_RNDD); - mpfr_const_log2 (tmp, MPFR_RNDU); - mpfr_div (ump, ump, tmp, MPFR_RNDD); - /* FIXME: We really need mpfr_set_exp_t and mpfr_cmpfr_exp_t functions. */ - MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); - if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0) + if (MPFR_IS_POS(x)) { - mpfr_clear (tmp); - mpfr_clear (ump); - MPFR_SAVE_EXPO_FREE (expo); - return mpfr_overflow (y, rnd, 1); + mpfr_log (tmp, x, MPFR_RNDU); + mpfr_sub (ump, x, tmp, MPFR_RNDD); + mpfr_div (ump, ump, __gmpfr_const_log2_RNDU, MPFR_RNDD); + /* FIXME: We really need a mpfr_cmp_exp_t function. */ + MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); + if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0) + { + mpfr_clear (tmp); + mpfr_clear (ump); + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_overflow (y, rnd, 1); + } } - /* Init stuff */ - prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6; + /* Since E1(x) <= exp(-x) for x >= 1, we have log2(E1(x)) <= -x/log(2). + Let's compute k >= -x/log(2) in a low precision. If k < emin + then log2(E1(x)) <= emin-1, and E1(x) <= 2^(emin-1): it underflows. */ + if (MPFR_IS_NEG(x) && MPFR_GET_EXP(x) >= 1) + { + mpfr_div (ump, x, __gmpfr_const_log2_RNDD, MPFR_RNDU); + MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN); + if (mpfr_cmp_si (ump, __gmpfr_emin) < 0) + { + mpfr_clear (tmp); + mpfr_clear (ump); + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_underflow (y, rnd, -1); + } + } - /* eint() has a root 0.37250741078136663446..., so if x is near, - already take more bits */ - /* FIXME: do not use native floating-point here. */ - if (MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */ + /* eint() has a root 0.37250741078136663446..., + so if x is near, already take more bits */ + if (MPFR_IS_POS(x) && MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */ { - double d; - d = mpfr_get_d (x, MPFR_RNDN) - 0.37250741078136663; - d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d); - prec += -d; + mpfr_t y; + mpfr_init2 (y, 32); + /* 1599907147/2^32 is a 32-bit approximation of 0.37250741078136663446 */ + mpfr_set_ui_2exp (y, 1599907147UL, -32, MPFR_RNDN); + mpfr_sub (y, x, y, MPFR_RNDN); + prec += (mpfr_zero_p (y)) ? 32 + : mpfr_get_exp (y) < 0 ? -mpfr_get_exp (y) : 0; + mpfr_clear (y); } mpfr_set_prec (tmp, prec); mpfr_set_prec (ump, prec); - MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */ - for (;;) /* Infinite loop */ + MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controller */ + for (;;) /* Infinite loop */ { - /* We need that the smallest value of k!/x^k is smaller than 2^(-p). - The minimum is obtained for x=k, and it is smaller than e*sqrt(x)/e^x - for x>=1. */ - if (MPFR_GET_EXP (x) > 0 && mpfr_cmp_d (x, ((double) prec + + /* For the asymptotic expansion to work, we need that the smallest + value of k!/|x|^k is smaller than 2^(-p). The minimum is obtained for + x=k, and it is smaller than e*sqrt(x)/e^x for x>=1. */ + if (MPFR_GET_EXP (x) > 0 && + mpfr_cmp_d (x_abs, ((double) prec + 0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0) err = mpfr_eint_asympt (tmp, x); else @@ -288,20 +319,27 @@ mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) te = MPFR_GET_EXP(tmp); mpfr_const_euler (ump, MPFR_RNDN); /* 0.577 -> EXP(ump)=0 */ mpfr_add (tmp, tmp, ump, MPFR_RNDN); - /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err) + /* If tmp <> 0: + error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err) <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp)) - <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */ - err = MAX(1, te + err + 2) - MPFR_GET_EXP(tmp); + <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))). + If tmp = 0 we can use the same bound, replacing + EXP(tmp) by EXP(ump). */ + err = MAX(1, te + err + 2); + te = MPFR_IS_ZERO(tmp) ? MPFR_GET_EXP(ump) : MPFR_GET_EXP(tmp); + err = err - te; err = MAX(0, err); - te = MPFR_GET_EXP(tmp); - mpfr_log (ump, x, MPFR_RNDN); + mpfr_log (ump, x_abs, MPFR_RNDN); mpfr_add (tmp, tmp, ump, MPFR_RNDN); /* same formula as above, except now EXP(ump) is not 0 */ err += te + 1; if (MPFR_LIKELY (!MPFR_IS_ZERO (ump))) err = MAX (MPFR_GET_EXP (ump), err); - err = MAX(0, err - MPFR_GET_EXP (tmp)); + /* if tmp is zero, we surely cannot round correctly */ + err = (MPFR_IS_ZERO(tmp)) ? prec : MAX(0, err - MPFR_GET_EXP (tmp)); } + /* Note: we assume here that MPFR_CAN_ROUND returns the same result + for rnd and MPFR_INVERT_RND(rnd) */ if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd))) break; MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */ @@ -310,7 +348,8 @@ mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) } MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controller */ - inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */ + /* Set y to the computed value */ + inex = mpfr_set (y, tmp, rnd); mpfr_clear (tmp); mpfr_clear (ump); |