summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/agm.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/agm.c')
-rw-r--r--Build/source/libs/mpfr/mpfr-src/src/agm.c319
1 files changed, 319 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/agm.c b/Build/source/libs/mpfr/mpfr-src/src/agm.c
new file mode 100644
index 00000000000..0177e32d5e1
--- /dev/null
+++ b/Build/source/libs/mpfr/mpfr-src/src/agm.c
@@ -0,0 +1,319 @@
+/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
+
+Copyright 1999-2015 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#define MPFR_NEED_LONGLONG_H
+#include "mpfr-impl.h"
+
+/* agm(x,y) is between x and y, so we don't need to save exponent range */
+int
+mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mpfr_rnd_t rnd_mode)
+{
+ int compare, inexact;
+ mp_size_t s;
+ mpfr_prec_t p, q;
+ mp_limb_t *up, *vp, *ufp, *vfp;
+ mpfr_t u, v, uf, vf, sc1, sc2;
+ mpfr_exp_t scaleop = 0, scaleit;
+ unsigned long n; /* number of iterations */
+ MPFR_ZIV_DECL (loop);
+ MPFR_TMP_DECL(marker);
+ MPFR_SAVE_EXPO_DECL (expo);
+
+ MPFR_LOG_FUNC
+ (("op2[%Pu]=%.*Rg op1[%Pu]=%.*Rg rnd=%d",
+ mpfr_get_prec (op2), mpfr_log_prec, op2,
+ mpfr_get_prec (op1), mpfr_log_prec, op1, rnd_mode),
+ ("r[%Pu]=%.*Rg inexact=%d",
+ mpfr_get_prec (r), mpfr_log_prec, r, inexact));
+
+ /* Deal with special values */
+ if (MPFR_ARE_SINGULAR (op1, op2))
+ {
+ /* If a or b is NaN, the result is NaN */
+ if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+ /* now one of a or b is Inf or 0 */
+ /* If a and b is +Inf, the result is +Inf.
+ Otherwise if a or b is -Inf or 0, the result is NaN */
+ else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
+ {
+ if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
+ {
+ MPFR_SET_INF(r);
+ MPFR_SET_SAME_SIGN(r, op1);
+ MPFR_RET(0); /* exact */
+ }
+ else
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+ }
+ else /* a and b are neither NaN nor Inf, and one is zero */
+ { /* If a or b is 0, the result is +0 since a sqrt is positive */
+ MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
+ MPFR_SET_POS (r);
+ MPFR_SET_ZERO (r);
+ MPFR_RET (0); /* exact */
+ }
+ }
+
+ /* If a or b is negative (excluding -Infinity), the result is NaN */
+ if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+
+ /* Precision of the following calculus */
+ q = MPFR_PREC(r);
+ p = q + MPFR_INT_CEIL_LOG2(q) + 15;
+ MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
+ s = MPFR_PREC2LIMBS (p);
+
+ /* b (op2) and a (op1) are the 2 operands but we want b >= a */
+ compare = mpfr_cmp (op1, op2);
+ if (MPFR_UNLIKELY( compare == 0 ))
+ {
+ mpfr_set (r, op1, rnd_mode);
+ MPFR_RET (0); /* exact */
+ }
+ else if (compare > 0)
+ {
+ mpfr_srcptr t = op1;
+ op1 = op2;
+ op2 = t;
+ }
+
+ /* Now b (=op2) > a (=op1) */
+
+ MPFR_SAVE_EXPO_MARK (expo);
+
+ MPFR_TMP_MARK(marker);
+
+ /* Main loop */
+ MPFR_ZIV_INIT (loop, p);
+ for (;;)
+ {
+ mpfr_prec_t eq;
+ unsigned long err = 0; /* must be set to 0 at each Ziv iteration */
+ MPFR_BLOCK_DECL (flags);
+
+ /* Init temporary vars */
+ MPFR_TMP_INIT (up, u, p, s);
+ MPFR_TMP_INIT (vp, v, p, s);
+ MPFR_TMP_INIT (ufp, uf, p, s);
+ MPFR_TMP_INIT (vfp, vf, p, s);
+
+ /* Calculus of un and vn */
+ retry:
+ MPFR_BLOCK (flags,
+ mpfr_mul (u, op1, op2, MPFR_RNDN);
+ /* mpfr_mul(...): faster since PREC(op) < PREC(u) */
+ mpfr_add (v, op1, op2, MPFR_RNDN);
+ /* mpfr_add with !=prec is still good */);
+ if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags)))
+ {
+ mpfr_exp_t e1 , e2;
+
+ MPFR_ASSERTN (scaleop == 0);
+ e1 = MPFR_GET_EXP (op1);
+ e2 = MPFR_GET_EXP (op2);
+
+ /* Let's determine scaleop to avoid an overflow/underflow. */
+ if (MPFR_OVERFLOW (flags))
+ {
+ /* Let's recall that emin <= e1 <= e2 <= emax.
+ There has been an overflow. Thus e2 >= emax/2.
+ If the mpfr_mul overflowed, then e1 + e2 > emax.
+ If the mpfr_add overflowed, then e2 = emax.
+ We want: (e1 + scale) + (e2 + scale) <= emax,
+ i.e. scale <= (emax - e1 - e2) / 2. Let's take
+ scale = min(floor((emax - e1 - e2) / 2), -1).
+ This is OK, as:
+ 1. emin <= scale <= -1.
+ 2. e1 + scale >= emin. Indeed:
+ * If e1 + e2 > emax, then
+ e1 + scale >= e1 + (emax - e1 - e2) / 2 - 1
+ >= (emax + e1 - emax) / 2 - 1
+ >= e1 / 2 - 1 >= emin.
+ * Otherwise, mpfr_mul didn't overflow, therefore
+ mpfr_add overflowed and e2 = emax, so that
+ e1 > emin (see restriction below).
+ e1 + scale > emin - 1, thus e1 + scale >= emin.
+ 3. e2 + scale <= emax, since scale < 0. */
+ if (e1 + e2 > MPFR_EXT_EMAX)
+ {
+ scaleop = - (((e1 + e2) - MPFR_EXT_EMAX + 1) / 2);
+ MPFR_ASSERTN (scaleop < 0);
+ }
+ else
+ {
+ /* The addition necessarily overflowed. */
+ MPFR_ASSERTN (e2 == MPFR_EXT_EMAX);
+ /* The case where e1 = emin and e2 = emax is not supported
+ here. This would mean that the precision of e2 would be
+ huge (and possibly not supported in practice anyway). */
+ MPFR_ASSERTN (e1 > MPFR_EXT_EMIN);
+ scaleop = -1;
+ }
+
+ }
+ else /* underflow only (in the multiplication) */
+ {
+ /* We have e1 + e2 <= emin (so, e1 <= e2 <= 0).
+ We want: (e1 + scale) + (e2 + scale) >= emin + 1,
+ i.e. scale >= (emin + 1 - e1 - e2) / 2. let's take
+ scale = ceil((emin + 1 - e1 - e2) / 2). This is OK, as:
+ 1. 1 <= scale <= emax.
+ 2. e1 + scale >= emin + 1 >= emin.
+ 3. e2 + scale <= scale <= emax. */
+ MPFR_ASSERTN (e1 <= e2 && e2 <= 0);
+ scaleop = (MPFR_EXT_EMIN + 2 - e1 - e2) / 2;
+ MPFR_ASSERTN (scaleop > 0);
+ }
+
+ MPFR_ALIAS (sc1, op1, MPFR_SIGN (op1), e1 + scaleop);
+ MPFR_ALIAS (sc2, op2, MPFR_SIGN (op2), e2 + scaleop);
+ op1 = sc1;
+ op2 = sc2;
+ MPFR_LOG_MSG (("Exception in pre-iteration, scale = %"
+ MPFR_EXP_FSPEC "d\n", scaleop));
+ goto retry;
+ }
+
+ mpfr_clear_flags ();
+ mpfr_sqrt (u, u, MPFR_RNDN);
+ mpfr_div_2ui (v, v, 1, MPFR_RNDN);
+
+ scaleit = 0;
+ n = 1;
+ while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
+ {
+ MPFR_BLOCK_DECL (flags2);
+
+ MPFR_LOG_MSG (("Iteration n = %lu\n", n));
+
+ retry2:
+ mpfr_add (vf, u, v, MPFR_RNDN); /* No overflow? */
+ mpfr_div_2ui (vf, vf, 1, MPFR_RNDN);
+ /* See proof in algorithms.tex */
+ if (4*eq > p)
+ {
+ mpfr_t w;
+ MPFR_BLOCK_DECL (flags3);
+
+ MPFR_LOG_MSG (("4*eq > p\n", 0));
+
+ /* vf = V(k) */
+ mpfr_init2 (w, (p + 1) / 2);
+ MPFR_BLOCK
+ (flags3,
+ mpfr_sub (w, v, u, MPFR_RNDN); /* e = V(k-1)-U(k-1) */
+ mpfr_sqr (w, w, MPFR_RNDN); /* e = e^2 */
+ mpfr_div_2ui (w, w, 4, MPFR_RNDN); /* e*= (1/2)^2*1/4 */
+ mpfr_div (w, w, vf, MPFR_RNDN); /* 1/4*e^2/V(k) */
+ );
+ if (MPFR_LIKELY (! MPFR_UNDERFLOW (flags3)))
+ {
+ mpfr_sub (v, vf, w, MPFR_RNDN);
+ err = MPFR_GET_EXP (vf) - MPFR_GET_EXP (v); /* 0 or 1 */
+ mpfr_clear (w);
+ break;
+ }
+ /* There has been an underflow because of the cancellation
+ between V(k-1) and U(k-1). Let's use the conventional
+ method. */
+ MPFR_LOG_MSG (("4*eq > p -> underflow\n", 0));
+ mpfr_clear (w);
+ mpfr_clear_underflow ();
+ }
+ /* U(k) increases, so that U.V can overflow (but not underflow). */
+ MPFR_BLOCK (flags2, mpfr_mul (uf, u, v, MPFR_RNDN););
+ if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags2)))
+ {
+ mpfr_exp_t scale2;
+
+ scale2 = - (((MPFR_GET_EXP (u) + MPFR_GET_EXP (v))
+ - MPFR_EXT_EMAX + 1) / 2);
+ MPFR_EXP (u) += scale2;
+ MPFR_EXP (v) += scale2;
+ scaleit += scale2;
+ MPFR_LOG_MSG (("Overflow in iteration n = %lu, scaleit = %"
+ MPFR_EXP_FSPEC "d (%" MPFR_EXP_FSPEC "d)\n",
+ n, scaleit, scale2));
+ mpfr_clear_overflow ();
+ goto retry2;
+ }
+ mpfr_sqrt (u, uf, MPFR_RNDN);
+ mpfr_swap (v, vf);
+ n ++;
+ }
+
+ MPFR_LOG_MSG (("End of iterations (n = %lu)\n", n));
+
+ /* the error on v is bounded by (18n+51) ulps, or twice if there
+ was an exponent loss in the final subtraction */
+ err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
+ since n is about log(p) */
+ /* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
+ if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
+ MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
+ break; /* Stop the loop */
+
+ /* Next iteration */
+ MPFR_ZIV_NEXT (loop, p);
+ s = MPFR_PREC2LIMBS (p);
+ }
+ MPFR_ZIV_FREE (loop);
+
+ if (MPFR_UNLIKELY ((__gmpfr_flags & (MPFR_FLAGS_ALL ^ MPFR_FLAGS_INEXACT))
+ != 0))
+ {
+ MPFR_ASSERTN (! mpfr_overflow_p ()); /* since mpfr_clear_flags */
+ MPFR_ASSERTN (! mpfr_underflow_p ()); /* since mpfr_clear_flags */
+ MPFR_ASSERTN (! mpfr_divby0_p ()); /* since mpfr_clear_flags */
+ MPFR_ASSERTN (! mpfr_nanflag_p ()); /* since mpfr_clear_flags */
+ }
+
+ /* Setting of the result */
+ inexact = mpfr_set (r, v, rnd_mode);
+ MPFR_EXP (r) -= scaleop + scaleit;
+
+ /* Let's clean */
+ MPFR_TMP_FREE(marker);
+
+ MPFR_SAVE_EXPO_FREE (expo);
+ /* From the definition of the AGM, underflow and overflow
+ are not possible. */
+ return mpfr_check_range (r, inexact, rnd_mode);
+ /* agm(u,v) can be exact for u, v rational only for u=v.
+ Proof (due to Nicolas Brisebarre): it suffices to consider
+ u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
+ and a theorem due to G.V. Chudnovsky states that for x a
+ non-zero algebraic number with |x|<1, then
+ 2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
+ independent over Q. */
+}