diff options
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-3.1.2/src/erf.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-3.1.2/src/erf.c | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-3.1.2/src/erf.c b/Build/source/libs/mpfr/mpfr-3.1.2/src/erf.c new file mode 100644 index 00000000000..0b5a221ee8d --- /dev/null +++ b/Build/source/libs/mpfr/mpfr-3.1.2/src/erf.c @@ -0,0 +1,262 @@ +/* mpfr_erf -- error function of a floating-point number + +Copyright 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. +Contributed by the AriC and Caramel projects, INRIA. + +This file is part of the GNU MPFR Library. + +The GNU MPFR Library is free software; you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 3 of the License, or (at your +option) any later version. + +The GNU MPFR Library is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see +http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., +51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ + +#define MPFR_NEED_LONGLONG_H +#include "mpfr-impl.h" + +#define EXP1 2.71828182845904523536 /* exp(1) */ + +static int mpfr_erf_0 (mpfr_ptr, mpfr_srcptr, double, mpfr_rnd_t); + +int +mpfr_erf (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) +{ + mpfr_t xf; + int inex, large; + MPFR_SAVE_EXPO_DECL (expo); + + MPFR_LOG_FUNC + (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), + ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex)); + + if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) + { + if (MPFR_IS_NAN (x)) + { + MPFR_SET_NAN (y); + MPFR_RET_NAN; + } + else if (MPFR_IS_INF (x)) /* erf(+inf) = +1, erf(-inf) = -1 */ + return mpfr_set_si (y, MPFR_INT_SIGN (x), MPFR_RNDN); + else /* erf(+0) = +0, erf(-0) = -0 */ + { + MPFR_ASSERTD (MPFR_IS_ZERO (x)); + return mpfr_set (y, x, MPFR_RNDN); /* should keep the sign of x */ + } + } + + /* now x is neither NaN, Inf nor 0 */ + + /* first try expansion at x=0 when x is small, or asymptotic expansion + where x is large */ + + MPFR_SAVE_EXPO_MARK (expo); + + /* around x=0, we have erf(x) = 2x/sqrt(Pi) (1 - x^2/3 + ...), + with 1 - x^2/3 <= sqrt(Pi)*erf(x)/2/x <= 1 for x >= 0. This means that + if x^2/3 < 2^(-PREC(y)-1) we can decide of the correct rounding, + unless we have a worst-case for 2x/sqrt(Pi). */ + if (MPFR_EXP(x) < - (mpfr_exp_t) (MPFR_PREC(y) / 2)) + { + /* we use 2x/sqrt(Pi) (1 - x^2/3) <= erf(x) <= 2x/sqrt(Pi) for x > 0 + and 2x/sqrt(Pi) <= erf(x) <= 2x/sqrt(Pi) (1 - x^2/3) for x < 0. + In both cases |2x/sqrt(Pi) (1 - x^2/3)| <= |erf(x)| <= |2x/sqrt(Pi)|. + We will compute l and h such that l <= |2x/sqrt(Pi) (1 - x^2/3)| + and |2x/sqrt(Pi)| <= h. If l and h round to the same value to + precision PREC(y) and rounding rnd_mode, then we are done. */ + mpfr_t l, h; /* lower and upper bounds for erf(x) */ + int ok, inex2; + + mpfr_init2 (l, MPFR_PREC(y) + 17); + mpfr_init2 (h, MPFR_PREC(y) + 17); + /* first compute l */ + mpfr_mul (l, x, x, MPFR_RNDU); + mpfr_div_ui (l, l, 3, MPFR_RNDU); /* upper bound on x^2/3 */ + mpfr_ui_sub (l, 1, l, MPFR_RNDZ); /* lower bound on 1 - x^2/3 */ + mpfr_const_pi (h, MPFR_RNDU); /* upper bound of Pi */ + mpfr_sqrt (h, h, MPFR_RNDU); /* upper bound on sqrt(Pi) */ + mpfr_div (l, l, h, MPFR_RNDZ); /* lower bound on 1/sqrt(Pi) (1 - x^2/3) */ + mpfr_mul_2ui (l, l, 1, MPFR_RNDZ); /* 2/sqrt(Pi) (1 - x^2/3) */ + mpfr_mul (l, l, x, MPFR_RNDZ); /* |l| is a lower bound on + |2x/sqrt(Pi) (1 - x^2/3)| */ + /* now compute h */ + mpfr_const_pi (h, MPFR_RNDD); /* lower bound on Pi */ + mpfr_sqrt (h, h, MPFR_RNDD); /* lower bound on sqrt(Pi) */ + mpfr_div_2ui (h, h, 1, MPFR_RNDD); /* lower bound on sqrt(Pi)/2 */ + /* since sqrt(Pi)/2 < 1, the following should not underflow */ + mpfr_div (h, x, h, MPFR_IS_POS(x) ? MPFR_RNDU : MPFR_RNDD); + /* round l and h to precision PREC(y) */ + inex = mpfr_prec_round (l, MPFR_PREC(y), rnd_mode); + inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd_mode); + /* Caution: we also need inex=inex2 (inex might be 0). */ + ok = SAME_SIGN (inex, inex2) && mpfr_cmp (l, h) == 0; + if (ok) + mpfr_set (y, h, rnd_mode); + mpfr_clear (l); + mpfr_clear (h); + if (ok) + goto end; + /* this test can still fail for small precision, for example + for x=-0.100E-2 with a target precision of 3 bits, since + the error term x^2/3 is not that small. */ + } + + mpfr_init2 (xf, 53); + mpfr_const_log2 (xf, MPFR_RNDU); + mpfr_div (xf, x, xf, MPFR_RNDZ); /* round to zero ensures we get a lower + bound of |x/log(2)| */ + mpfr_mul (xf, xf, x, MPFR_RNDZ); + large = mpfr_cmp_ui (xf, MPFR_PREC (y) + 1) > 0; + mpfr_clear (xf); + + /* when x goes to infinity, we have erf(x) = 1 - 1/sqrt(Pi)/exp(x^2)/x + ... + and |erf(x) - 1| <= exp(-x^2) is true for any x >= 0, thus if + exp(-x^2) < 2^(-PREC(y)-1) the result is 1 or 1-epsilon. + This rewrites as x^2/log(2) > p+1. */ + if (MPFR_UNLIKELY (large)) + /* |erf x| = 1 or 1- */ + { + mpfr_rnd_t rnd2 = MPFR_IS_POS (x) ? rnd_mode : MPFR_INVERT_RND(rnd_mode); + if (rnd2 == MPFR_RNDN || rnd2 == MPFR_RNDU || rnd2 == MPFR_RNDA) + { + inex = MPFR_INT_SIGN (x); + mpfr_set_si (y, inex, rnd2); + } + else /* round to zero */ + { + inex = -MPFR_INT_SIGN (x); + mpfr_setmax (y, 0); /* warning: setmax keeps the old sign of y */ + MPFR_SET_SAME_SIGN (y, x); + } + } + else /* use Taylor */ + { + double xf2; + + /* FIXME: get rid of doubles/mpfr_get_d here */ + xf2 = mpfr_get_d (x, MPFR_RNDN); + xf2 = xf2 * xf2; /* xf2 ~ x^2 */ + inex = mpfr_erf_0 (y, x, xf2, rnd_mode); + } + + end: + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_check_range (y, inex, rnd_mode); +} + +/* return x*2^e */ +static double +mul_2exp (double x, mpfr_exp_t e) +{ + if (e > 0) + { + while (e--) + x *= 2.0; + } + else + { + while (e++) + x /= 2.0; + } + + return x; +} + +/* evaluates erf(x) using the expansion at x=0: + + erf(x) = 2/sqrt(Pi) * sum((-1)^k*x^(2k+1)/k!/(2k+1), k=0..infinity) + + Assumes x is neither NaN nor infinite nor zero. + Assumes also that e*x^2 <= n (target precision). + */ +static int +mpfr_erf_0 (mpfr_ptr res, mpfr_srcptr x, double xf2, mpfr_rnd_t rnd_mode) +{ + mpfr_prec_t n, m; + mpfr_exp_t nuk, sigmak; + double tauk; + mpfr_t y, s, t, u; + unsigned int k; + int log2tauk; + int inex; + MPFR_ZIV_DECL (loop); + + n = MPFR_PREC (res); /* target precision */ + + /* initial working precision */ + m = n + (mpfr_prec_t) (xf2 / LOG2) + 8 + MPFR_INT_CEIL_LOG2 (n); + + mpfr_init2 (y, m); + mpfr_init2 (s, m); + mpfr_init2 (t, m); + mpfr_init2 (u, m); + + MPFR_ZIV_INIT (loop, m); + for (;;) + { + mpfr_mul (y, x, x, MPFR_RNDU); /* err <= 1 ulp */ + mpfr_set_ui (s, 1, MPFR_RNDN); + mpfr_set_ui (t, 1, MPFR_RNDN); + tauk = 0.0; + + for (k = 1; ; k++) + { + mpfr_mul (t, y, t, MPFR_RNDU); + mpfr_div_ui (t, t, k, MPFR_RNDU); + mpfr_div_ui (u, t, 2 * k + 1, MPFR_RNDU); + sigmak = MPFR_GET_EXP (s); + if (k % 2) + mpfr_sub (s, s, u, MPFR_RNDN); + else + mpfr_add (s, s, u, MPFR_RNDN); + sigmak -= MPFR_GET_EXP(s); + nuk = MPFR_GET_EXP(u) - MPFR_GET_EXP(s); + + if ((nuk < - (mpfr_exp_t) m) && ((double) k >= xf2)) + break; + + /* tauk <- 1/2 + tauk * 2^sigmak + (1+8k)*2^nuk */ + tauk = 0.5 + mul_2exp (tauk, sigmak) + + mul_2exp (1.0 + 8.0 * (double) k, nuk); + } + + mpfr_mul (s, x, s, MPFR_RNDU); + MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1); + + mpfr_const_pi (t, MPFR_RNDZ); + mpfr_sqrt (t, t, MPFR_RNDZ); + mpfr_div (s, s, t, MPFR_RNDN); + tauk = 4.0 * tauk + 11.0; /* final ulp-error on s */ + log2tauk = __gmpfr_ceil_log2 (tauk); + + if (MPFR_LIKELY (MPFR_CAN_ROUND (s, m - log2tauk, n, rnd_mode))) + break; + + /* Actualisation of the precision */ + MPFR_ZIV_NEXT (loop, m); + mpfr_set_prec (y, m); + mpfr_set_prec (s, m); + mpfr_set_prec (t, m); + mpfr_set_prec (u, m); + + } + MPFR_ZIV_FREE (loop); + + inex = mpfr_set (res, s, rnd_mode); + + mpfr_clear (y); + mpfr_clear (t); + mpfr_clear (u); + mpfr_clear (s); + + return inex; +} |