summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/i18n/ucol.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/icu/icu-4.6/i18n/ucol.cpp')
-rw-r--r--Build/source/libs/icu/icu-4.6/i18n/ucol.cpp8593
1 files changed, 8593 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-4.6/i18n/ucol.cpp b/Build/source/libs/icu/icu-4.6/i18n/ucol.cpp
new file mode 100644
index 00000000000..18de3573996
--- /dev/null
+++ b/Build/source/libs/icu/icu-4.6/i18n/ucol.cpp
@@ -0,0 +1,8593 @@
+/*
+*******************************************************************************
+* Copyright (C) 1996-2010, International Business Machines
+* Corporation and others. All Rights Reserved.
+*******************************************************************************
+* file name: ucol.cpp
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* Modification history
+* Date Name Comments
+* 1996-1999 various members of ICU team maintained C API for collation framework
+* 02/16/2001 synwee Added internal method getPrevSpecialCE
+* 03/01/2001 synwee Added maxexpansion functionality.
+* 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant
+*/
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_COLLATION
+
+#include "unicode/coleitr.h"
+#include "unicode/unorm.h"
+#include "unicode/udata.h"
+#include "unicode/ustring.h"
+
+#include "ucol_imp.h"
+#include "bocsu.h"
+
+#include "normalizer2impl.h"
+#include "unorm_it.h"
+#include "umutex.h"
+#include "cmemory.h"
+#include "ucln_in.h"
+#include "cstring.h"
+#include "utracimp.h"
+#include "putilimp.h"
+#include "uassert.h"
+
+#ifdef UCOL_DEBUG
+#include <stdio.h>
+#endif
+
+U_NAMESPACE_USE
+
+#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
+
+#define LAST_BYTE_MASK_ 0xFF
+#define SECOND_LAST_BYTE_SHIFT_ 8
+
+#define ZERO_CC_LIMIT_ 0xC0
+
+// this is static pointer to the normalizer fcdTrieIndex
+// it is always the same between calls to u_cleanup
+// and therefore writing to it is not synchronized.
+// It is cleaned in ucol_cleanup
+static const uint16_t *fcdTrieIndex=NULL;
+// Code points at fcdHighStart and above have a zero FCD value.
+static UChar32 fcdHighStart = 0;
+
+// These are values from UCA required for
+// implicit generation and supressing sort key compression
+// they should regularly be in the UCA, but if one
+// is running without UCA, it could be a problem
+static const int32_t maxRegularPrimary = 0x7A;
+static const int32_t minImplicitPrimary = 0xE0;
+static const int32_t maxImplicitPrimary = 0xE4;
+
+U_CDECL_BEGIN
+static UBool U_CALLCONV
+ucol_cleanup(void)
+{
+ fcdTrieIndex = NULL;
+ return TRUE;
+}
+
+static int32_t U_CALLCONV
+_getFoldingOffset(uint32_t data) {
+ return (int32_t)(data&0xFFFFFF);
+}
+
+U_CDECL_END
+
+// init FCD data
+static inline
+UBool initializeFCD(UErrorCode *status) {
+ if (fcdTrieIndex != NULL) {
+ return TRUE;
+ } else {
+ // The result is constant, until the library is reloaded.
+ fcdTrieIndex = unorm_getFCDTrieIndex(fcdHighStart, status);
+ ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup);
+ return U_SUCCESS(*status);
+ }
+}
+
+static
+inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString,
+ int32_t sourceLen, collIterate *s,
+ UErrorCode *status)
+{
+ (s)->string = (s)->pos = sourceString;
+ (s)->origFlags = 0;
+ (s)->flags = 0;
+ if (sourceLen >= 0) {
+ s->flags |= UCOL_ITER_HASLEN;
+ (s)->endp = (UChar *)sourceString+sourceLen;
+ }
+ else {
+ /* change to enable easier checking for end of string for fcdpositon */
+ (s)->endp = NULL;
+ }
+ (s)->extendCEs = NULL;
+ (s)->extendCEsSize = 0;
+ (s)->CEpos = (s)->toReturn = (s)->CEs;
+ (s)->offsetBuffer = NULL;
+ (s)->offsetBufferSize = 0;
+ (s)->offsetReturn = (s)->offsetStore = NULL;
+ (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0;
+ (s)->coll = (collator);
+ (s)->nfd = Normalizer2Factory::getNFDInstance(*status);
+ (s)->fcdPosition = 0;
+ if(collator->normalizationMode == UCOL_ON) {
+ (s)->flags |= UCOL_ITER_NORM;
+ }
+ if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) {
+ (s)->flags |= UCOL_HIRAGANA_Q;
+ }
+ (s)->iterator = NULL;
+ //(s)->iteratorIndex = 0;
+}
+
+U_CAPI void U_EXPORT2
+uprv_init_collIterate(const UCollator *collator, const UChar *sourceString,
+ int32_t sourceLen, collIterate *s,
+ UErrorCode *status) {
+ /* Out-of-line version for use from other files. */
+ IInit_collIterate(collator, sourceString, sourceLen, s, status);
+}
+
+U_CAPI collIterate * U_EXPORT2
+uprv_new_collIterate(UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ collIterate *s = new collIterate;
+ if(s == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ return s;
+}
+
+U_CAPI void U_EXPORT2
+uprv_delete_collIterate(collIterate *s) {
+ delete s;
+}
+
+U_CAPI UBool U_EXPORT2
+uprv_collIterateAtEnd(collIterate *s) {
+ return s == NULL || s->pos == s->endp;
+}
+
+/**
+* Backup the state of the collIterate struct data
+* @param data collIterate to backup
+* @param backup storage
+*/
+static
+inline void backupState(const collIterate *data, collIterateState *backup)
+{
+ backup->fcdPosition = data->fcdPosition;
+ backup->flags = data->flags;
+ backup->origFlags = data->origFlags;
+ backup->pos = data->pos;
+ backup->bufferaddress = data->writableBuffer.getBuffer();
+ backup->buffersize = data->writableBuffer.length();
+ backup->iteratorMove = 0;
+ backup->iteratorIndex = 0;
+ if(data->iterator != NULL) {
+ //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT);
+ backup->iteratorIndex = data->iterator->getState(data->iterator);
+ // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE
+ if(backup->iteratorIndex == UITER_NO_STATE) {
+ while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) {
+ backup->iteratorMove++;
+ data->iterator->move(data->iterator, -1, UITER_CURRENT);
+ }
+ data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
+ }
+ }
+}
+
+/**
+* Loads the state into the collIterate struct data
+* @param data collIterate to backup
+* @param backup storage
+* @param forwards boolean to indicate if forwards iteration is used,
+* false indicates backwards iteration
+*/
+static
+inline void loadState(collIterate *data, const collIterateState *backup,
+ UBool forwards)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ data->flags = backup->flags;
+ data->origFlags = backup->origFlags;
+ if(data->iterator != NULL) {
+ //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO);
+ data->iterator->setState(data->iterator, backup->iteratorIndex, &status);
+ if(backup->iteratorMove != 0) {
+ data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
+ }
+ }
+ data->pos = backup->pos;
+
+ if ((data->flags & UCOL_ITER_INNORMBUF) &&
+ data->writableBuffer.getBuffer() != backup->bufferaddress) {
+ /*
+ this is when a new buffer has been reallocated and we'll have to
+ calculate the new position.
+ note the new buffer has to contain the contents of the old buffer.
+ */
+ if (forwards) {
+ data->pos = data->writableBuffer.getTerminatedBuffer() +
+ (data->pos - backup->bufferaddress);
+ }
+ else {
+ /* backwards direction */
+ int32_t temp = backup->buffersize -
+ (int32_t)(data->pos - backup->bufferaddress);
+ data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp);
+ }
+ }
+ if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
+ /*
+ this is alittle tricky.
+ if we are initially not in the normalization buffer, even if we
+ normalize in the later stage, the data in the buffer will be
+ ignored, since we skip back up to the data string.
+ however if we are already in the normalization buffer, any
+ further normalization will pull data into the normalization
+ buffer and modify the fcdPosition.
+ since we are keeping the data in the buffer for use, the
+ fcdPosition can not be reverted back.
+ arrgghh....
+ */
+ data->fcdPosition = backup->fcdPosition;
+ }
+}
+
+static UBool
+reallocCEs(collIterate *data, int32_t newCapacity) {
+ uint32_t *oldCEs = data->extendCEs;
+ if(oldCEs == NULL) {
+ oldCEs = data->CEs;
+ }
+ int32_t length = data->CEpos - oldCEs;
+ uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4);
+ if(newCEs == NULL) {
+ return FALSE;
+ }
+ uprv_memcpy(newCEs, oldCEs, length * 4);
+ uprv_free(data->extendCEs);
+ data->extendCEs = newCEs;
+ data->extendCEsSize = newCapacity;
+ data->CEpos = newCEs + length;
+ return TRUE;
+}
+
+static UBool
+increaseCEsCapacity(collIterate *data) {
+ int32_t oldCapacity;
+ if(data->extendCEs != NULL) {
+ oldCapacity = data->extendCEsSize;
+ } else {
+ oldCapacity = LENGTHOF(data->CEs);
+ }
+ return reallocCEs(data, 2 * oldCapacity);
+}
+
+static UBool
+ensureCEsCapacity(collIterate *data, int32_t minCapacity) {
+ int32_t oldCapacity;
+ if(data->extendCEs != NULL) {
+ oldCapacity = data->extendCEsSize;
+ } else {
+ oldCapacity = LENGTHOF(data->CEs);
+ }
+ if(minCapacity <= oldCapacity) {
+ return TRUE;
+ }
+ oldCapacity *= 2;
+ return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity);
+}
+
+void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) {
+ return;
+ }
+ int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer);
+ if(length >= offsetBufferSize) {
+ int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE;
+ int32_t *newBuffer = reinterpret_cast<int32_t *>(uprv_malloc(newCapacity * 4));
+ if(newBuffer == NULL) {
+ errorCode = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ if(length > 0) {
+ uprv_memcpy(newBuffer, offsetBuffer, length * 4);
+ }
+ uprv_free(offsetBuffer);
+ offsetBuffer = newBuffer;
+ offsetStore = offsetBuffer + length;
+ offsetBufferSize = newCapacity;
+ }
+ *offsetStore++ = offset;
+}
+
+/*
+* collIter_eos()
+* Checks for a collIterate being positioned at the end of
+* its source string.
+*
+*/
+static
+inline UBool collIter_eos(collIterate *s) {
+ if(s->flags & UCOL_USE_ITERATOR) {
+ return !(s->iterator->hasNext(s->iterator));
+ }
+ if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) {
+ // Null terminated string, but not at null, so not at end.
+ // Whether in main or normalization buffer doesn't matter.
+ return FALSE;
+ }
+
+ // String with length. Can't be in normalization buffer, which is always
+ // null termintated.
+ if (s->flags & UCOL_ITER_HASLEN) {
+ return (s->pos == s->endp);
+ }
+
+ // We are at a null termination, could be either normalization buffer or main string.
+ if ((s->flags & UCOL_ITER_INNORMBUF) == 0) {
+ // At null at end of main string.
+ return TRUE;
+ }
+
+ // At null at end of normalization buffer. Need to check whether there there are
+ // any characters left in the main buffer.
+ if(s->origFlags & UCOL_USE_ITERATOR) {
+ return !(s->iterator->hasNext(s->iterator));
+ } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) {
+ // Null terminated main string. fcdPosition is the 'return' position into main buf.
+ return (*s->fcdPosition == 0);
+ }
+ else {
+ // Main string with an end pointer.
+ return s->fcdPosition == s->endp;
+ }
+}
+
+/*
+* collIter_bos()
+* Checks for a collIterate being positioned at the start of
+* its source string.
+*
+*/
+static
+inline UBool collIter_bos(collIterate *source) {
+ // if we're going backwards, we need to know whether there is more in the
+ // iterator, even if we are in the side buffer
+ if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) {
+ return !source->iterator->hasPrevious(source->iterator);
+ }
+ if (source->pos <= source->string ||
+ ((source->flags & UCOL_ITER_INNORMBUF) &&
+ *(source->pos - 1) == 0 && source->fcdPosition == NULL)) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/*static
+inline UBool collIter_SimpleBos(collIterate *source) {
+ // if we're going backwards, we need to know whether there is more in the
+ // iterator, even if we are in the side buffer
+ if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) {
+ return !source->iterator->hasPrevious(source->iterator);
+ }
+ if (source->pos == source->string) {
+ return TRUE;
+ }
+ return FALSE;
+}*/
+ //return (data->pos == data->string) ||
+
+
+/****************************************************************************/
+/* Following are the open/close functions */
+/* */
+/****************************************************************************/
+
+static UCollator*
+ucol_initFromBinary(const uint8_t *bin, int32_t length,
+ const UCollator *base,
+ UCollator *fillIn,
+ UErrorCode *status)
+{
+ UCollator *result = fillIn;
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ /*
+ if(base == NULL) {
+ // we don't support null base yet
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+ */
+ // We need these and we could be running without UCA
+ uprv_uca_initImplicitConstants(status);
+ UCATableHeader *colData = (UCATableHeader *)bin;
+ // do we want version check here? We're trying to figure out whether collators are compatible
+ if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
+ uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) ||
+ colData->version[0] != UCOL_BUILDER_VERSION)
+ {
+ *status = U_COLLATOR_VERSION_MISMATCH;
+ return NULL;
+ }
+ else {
+ if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
+ result = ucol_initCollator((const UCATableHeader *)bin, result, base, status);
+ if(U_FAILURE(*status)){
+ return NULL;
+ }
+ result->hasRealData = TRUE;
+ }
+ else {
+ if(base) {
+ result = ucol_initCollator(base->image, result, base, status);
+ ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status);
+ if(U_FAILURE(*status)){
+ return NULL;
+ }
+ result->hasRealData = FALSE;
+ }
+ else {
+ *status = U_USELESS_COLLATOR_ERROR;
+ return NULL;
+ }
+ }
+ result->freeImageOnClose = FALSE;
+ }
+ result->actualLocale = NULL;
+ result->validLocale = NULL;
+ result->requestedLocale = NULL;
+ result->rules = NULL;
+ result->rulesLength = 0;
+ result->freeRulesOnClose = FALSE;
+ result->ucaRules = NULL;
+ return result;
+}
+
+U_CAPI UCollator* U_EXPORT2
+ucol_openBinary(const uint8_t *bin, int32_t length,
+ const UCollator *base,
+ UErrorCode *status)
+{
+ return ucol_initFromBinary(bin, length, base, NULL, status);
+}
+
+U_CAPI int32_t U_EXPORT2
+ucol_cloneBinary(const UCollator *coll,
+ uint8_t *buffer, int32_t capacity,
+ UErrorCode *status)
+{
+ int32_t length = 0;
+ if(U_FAILURE(*status)) {
+ return length;
+ }
+ if(capacity < 0) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return length;
+ }
+ if(coll->hasRealData == TRUE) {
+ length = coll->image->size;
+ if(length <= capacity) {
+ uprv_memcpy(buffer, coll->image, length);
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ } else {
+ length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
+ if(length <= capacity) {
+ /* build the UCATableHeader with minimal entries */
+ /* do not copy the header from the UCA file because its values are wrong! */
+ /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
+
+ /* reset everything */
+ uprv_memset(buffer, 0, length);
+
+ /* set the tailoring-specific values */
+ UCATableHeader *myData = (UCATableHeader *)buffer;
+ myData->size = length;
+
+ /* offset for the options, the only part of the data that is present after the header */
+ myData->options = sizeof(UCATableHeader);
+
+ /* need to always set the expansion value for an upper bound of the options */
+ myData->expansion = myData->options + sizeof(UColOptionSet);
+
+ myData->magic = UCOL_HEADER_MAGIC;
+ myData->isBigEndian = U_IS_BIG_ENDIAN;
+ myData->charSetFamily = U_CHARSET_FAMILY;
+
+ /* copy UCA's version; genrb will override all but the builder version with tailoring data */
+ uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
+
+ uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
+ myData->jamoSpecial = coll->image->jamoSpecial;
+
+ /* copy the collator options */
+ uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ return length;
+}
+
+U_CAPI UCollator* U_EXPORT2
+ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status)
+{
+ UCollator * localCollator;
+ int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator);
+ char *stackBufferChars = (char *)stackBuffer;
+ int32_t imageSize = 0;
+ int32_t rulesSize = 0;
+ int32_t rulesPadding = 0;
+ uint8_t *image;
+ UChar *rules;
+ UBool colAllocated = FALSE;
+ UBool imageAllocated = FALSE;
+
+ if (status == NULL || U_FAILURE(*status)){
+ return 0;
+ }
+ if ((stackBuffer && !pBufferSize) || !coll){
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+ if (coll->rules && coll->freeRulesOnClose) {
+ rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar);
+ rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar));
+ bufferSizeNeeded += rulesSize + rulesPadding;
+ }
+
+ if (stackBuffer && *pBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */
+ *pBufferSize = bufferSizeNeeded;
+ return 0;
+ }
+
+ /* Pointers on 64-bit platforms need to be aligned
+ * on a 64-bit boundry in memory.
+ */
+ if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
+ int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars);
+ if (*pBufferSize > offsetUp) {
+ *pBufferSize -= offsetUp;
+ stackBufferChars += offsetUp;
+ }
+ else {
+ /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */
+ *pBufferSize = 1;
+ }
+ }
+ stackBuffer = (void *)stackBufferChars;
+
+ if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) {
+ /* allocate one here...*/
+ stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded);
+ // Null pointer check.
+ if (stackBufferChars == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ colAllocated = TRUE;
+ if (U_SUCCESS(*status)) {
+ *status = U_SAFECLONE_ALLOCATED_WARNING;
+ }
+ }
+ localCollator = (UCollator *)stackBufferChars;
+ rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding);
+ {
+ UErrorCode tempStatus = U_ZERO_ERROR;
+ imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus);
+ }
+ if (coll->freeImageOnClose) {
+ image = (uint8_t *)uprv_malloc(imageSize);
+ // Null pointer check
+ if (image == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ ucol_cloneBinary(coll, image, imageSize, status);
+ imageAllocated = TRUE;
+ }
+ else {
+ image = (uint8_t *)coll->image;
+ }
+ localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status);
+ if (U_FAILURE(*status)) {
+ return NULL;
+ }
+
+ if (coll->rules) {
+ if (coll->freeRulesOnClose) {
+ localCollator->rules = u_strcpy(rules, coll->rules);
+ //bufferEnd += rulesSize;
+ }
+ else {
+ localCollator->rules = coll->rules;
+ }
+ localCollator->freeRulesOnClose = FALSE;
+ localCollator->rulesLength = coll->rulesLength;
+ }
+
+ int32_t i;
+ for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
+ ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status);
+ }
+ // zero copies of pointers
+ localCollator->actualLocale = NULL;
+ localCollator->validLocale = NULL;
+ localCollator->requestedLocale = NULL;
+ localCollator->ucaRules = coll->ucaRules; // There should only be one copy here.
+ localCollator->freeOnClose = colAllocated;
+ localCollator->freeImageOnClose = imageAllocated;
+ return localCollator;
+}
+
+U_CAPI void U_EXPORT2
+ucol_close(UCollator *coll)
+{
+ UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE);
+ UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll);
+ if(coll != NULL) {
+ // these are always owned by each UCollator struct,
+ // so we always free them
+ if(coll->validLocale != NULL) {
+ uprv_free(coll->validLocale);
+ }
+ if(coll->actualLocale != NULL) {
+ uprv_free(coll->actualLocale);
+ }
+ if(coll->requestedLocale != NULL) {
+ uprv_free(coll->requestedLocale);
+ }
+ if(coll->latinOneCEs != NULL) {
+ uprv_free(coll->latinOneCEs);
+ }
+ if(coll->options != NULL && coll->freeOptionsOnClose) {
+ uprv_free(coll->options);
+ }
+ if(coll->rules != NULL && coll->freeRulesOnClose) {
+ uprv_free((UChar *)coll->rules);
+ }
+ if(coll->image != NULL && coll->freeImageOnClose) {
+ uprv_free((UCATableHeader *)coll->image);
+ }
+ if(coll->leadBytePermutationTable != NULL) {
+ uprv_free(coll->leadBytePermutationTable);
+ }
+ if(coll->reorderCodes != NULL) {
+ uprv_free(coll->reorderCodes);
+ }
+
+ /* Here, it would be advisable to close: */
+ /* - UData for UCA (unless we stuff it in the root resb */
+ /* Again, do we need additional housekeeping... HMMM! */
+ UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose);
+ if(coll->freeOnClose){
+ /* for safeClone, if freeOnClose is FALSE,
+ don't free the other instance data */
+ uprv_free(coll);
+ }
+ }
+ UTRACE_EXIT();
+}
+
+/* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/
+/* you should be able to get the binary chunk to write out... Doesn't look very full now */
+U_CFUNC uint8_t* U_EXPORT2
+ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status)
+{
+ uint8_t *result = NULL;
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ if(coll->hasRealData == TRUE) {
+ *length = coll->image->size;
+ result = (uint8_t *)uprv_malloc(*length);
+ /* test for NULL */
+ if (result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ uprv_memcpy(result, coll->image, *length);
+ } else {
+ *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
+ result = (uint8_t *)uprv_malloc(*length);
+ /* test for NULL */
+ if (result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+
+ /* build the UCATableHeader with minimal entries */
+ /* do not copy the header from the UCA file because its values are wrong! */
+ /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
+
+ /* reset everything */
+ uprv_memset(result, 0, *length);
+
+ /* set the tailoring-specific values */
+ UCATableHeader *myData = (UCATableHeader *)result;
+ myData->size = *length;
+
+ /* offset for the options, the only part of the data that is present after the header */
+ myData->options = sizeof(UCATableHeader);
+
+ /* need to always set the expansion value for an upper bound of the options */
+ myData->expansion = myData->options + sizeof(UColOptionSet);
+
+ myData->magic = UCOL_HEADER_MAGIC;
+ myData->isBigEndian = U_IS_BIG_ENDIAN;
+ myData->charSetFamily = U_CHARSET_FAMILY;
+
+ /* copy UCA's version; genrb will override all but the builder version with tailoring data */
+ uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
+
+ uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
+ myData->jamoSpecial = coll->image->jamoSpecial;
+
+ /* copy the collator options */
+ uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
+ }
+ return result;
+}
+
+void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return;
+ }
+ result->caseFirst = (UColAttributeValue)opts->caseFirst;
+ result->caseLevel = (UColAttributeValue)opts->caseLevel;
+ result->frenchCollation = (UColAttributeValue)opts->frenchCollation;
+ result->normalizationMode = (UColAttributeValue)opts->normalizationMode;
+ if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) {
+ return;
+ }
+ result->strength = (UColAttributeValue)opts->strength;
+ result->variableTopValue = opts->variableTopValue;
+ result->alternateHandling = (UColAttributeValue)opts->alternateHandling;
+ result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ;
+ result->numericCollation = (UColAttributeValue)opts->numericCollation;
+ result->caseFirstisDefault = TRUE;
+ result->caseLevelisDefault = TRUE;
+ result->frenchCollationisDefault = TRUE;
+ result->normalizationModeisDefault = TRUE;
+ result->strengthisDefault = TRUE;
+ result->variableTopValueisDefault = TRUE;
+ result->alternateHandlingisDefault = TRUE;
+ result->hiraganaQisDefault = TRUE;
+ result->numericCollationisDefault = TRUE;
+
+ ucol_updateInternalState(result, status);
+
+ result->options = opts;
+}
+
+
+/**
+* Approximate determination if a character is at a contraction end.
+* Guaranteed to be TRUE if a character is at the end of a contraction,
+* otherwise it is not deterministic.
+* @param c character to be determined
+* @param coll collator
+*/
+static
+inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) {
+ if (c < coll->minContrEndCP) {
+ return FALSE;
+ }
+
+ int32_t hash = c;
+ uint8_t htbyte;
+ if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
+ if (U16_IS_TRAIL(c)) {
+ return TRUE;
+ }
+ hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
+ }
+ htbyte = coll->contrEndCP[hash>>3];
+ return (((htbyte >> (hash & 7)) & 1) == 1);
+}
+
+
+
+/*
+* i_getCombiningClass()
+* A fast, at least partly inline version of u_getCombiningClass()
+* This is a candidate for further optimization. Used heavily
+* in contraction processing.
+*/
+static
+inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) {
+ uint8_t sCC = 0;
+ if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) {
+ sCC = u_getCombiningClass(c);
+ }
+ return sCC;
+}
+
+UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) {
+ UChar c;
+ UCollator *result = fillIn;
+ if(U_FAILURE(*status) || image == NULL) {
+ return NULL;
+ }
+
+ if(result == NULL) {
+ result = (UCollator *)uprv_malloc(sizeof(UCollator));
+ if(result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return result;
+ }
+ result->freeOnClose = TRUE;
+ } else {
+ result->freeOnClose = FALSE;
+ }
+
+ result->image = image;
+ result->mapping.getFoldingOffset = _getFoldingOffset;
+ const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition;
+ utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status);
+ if(U_FAILURE(*status)) {
+ if(result->freeOnClose == TRUE) {
+ uprv_free(result);
+ result = NULL;
+ }
+ return result;
+ }
+
+ result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping);
+ result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs);
+ result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex);
+ result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion);
+ result->rules = NULL;
+ result->rulesLength = 0;
+ result->freeRulesOnClose = FALSE;
+ result->reorderCodes = NULL;
+ result->reorderCodesLength = 0;
+ result->leadBytePermutationTable = NULL;
+
+ /* get the version info from UCATableHeader and populate the Collator struct*/
+ result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/
+ result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/
+ result->dataVersion[2] = 0;
+ result->dataVersion[3] = 0;
+
+ result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP;
+ result->minUnsafeCP = 0;
+ for (c=0; c<0x300; c++) { // Find the smallest unsafe char.
+ if (ucol_unsafeCP(c, result)) break;
+ }
+ result->minUnsafeCP = c;
+
+ result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP;
+ result->minContrEndCP = 0;
+ for (c=0; c<0x300; c++) { // Find the Contraction-ending char.
+ if (ucol_contractionEndCP(c, result)) break;
+ }
+ result->minContrEndCP = c;
+
+ /* max expansion tables */
+ result->endExpansionCE = (uint32_t*)((uint8_t*)result->image +
+ result->image->endExpansionCE);
+ result->lastEndExpansionCE = result->endExpansionCE +
+ result->image->endExpansionCECount - 1;
+ result->expansionCESize = (uint8_t*)result->image +
+ result->image->expansionCESize;
+
+
+ //result->errorCode = *status;
+
+ result->latinOneCEs = NULL;
+
+ result->latinOneRegenTable = FALSE;
+ result->latinOneFailed = FALSE;
+ result->UCA = UCA;
+
+ /* Normally these will be set correctly later. This is the default if you use UCA or the default. */
+ result->ucaRules = NULL;
+ result->actualLocale = NULL;
+ result->validLocale = NULL;
+ result->requestedLocale = NULL;
+ result->hasRealData = FALSE; // real data lives in .dat file...
+ result->freeImageOnClose = FALSE;
+
+ /* set attributes */
+ ucol_setOptionsFromHeader(
+ result,
+ (UColOptionSet*)((uint8_t*)result->image+result->image->options),
+ status);
+ result->freeOptionsOnClose = FALSE;
+
+ return result;
+}
+
+/* new Mark's code */
+
+/**
+ * For generation of Implicit CEs
+ * @author Davis
+ *
+ * Cleaned up so that changes can be made more easily.
+ * Old values:
+# First Implicit: E26A792D
+# Last Implicit: E3DC70C0
+# First CJK: E0030300
+# Last CJK: E0A9DD00
+# First CJK_A: E0A9DF00
+# Last CJK_A: E0DE3100
+ */
+/* Following is a port of Mark's code for new treatment of implicits.
+ * It is positioned here, since ucol_initUCA need to initialize the
+ * variables below according to the data in the fractional UCA.
+ */
+
+/**
+ * Function used to:
+ * a) collapse the 2 different Han ranges from UCA into one (in the right order), and
+ * b) bump any non-CJK characters by 10FFFF.
+ * The relevant blocks are:
+ * A: 4E00..9FFF; CJK Unified Ideographs
+ * F900..FAFF; CJK Compatibility Ideographs
+ * B: 3400..4DBF; CJK Unified Ideographs Extension A
+ * 20000..XX; CJK Unified Ideographs Extension B (and others later on)
+ * As long as
+ * no new B characters are allocated between 4E00 and FAFF, and
+ * no new A characters are outside of this range,
+ * (very high probability) this simple code will work.
+ * The reordered blocks are:
+ * Block1 is CJK
+ * Block2 is CJK_COMPAT_USED
+ * Block3 is CJK_A
+ * (all contiguous)
+ * Any other CJK gets its normal code point
+ * Any non-CJK gets +10FFFF
+ * When we reorder Block1, we make sure that it is at the very start,
+ * so that it will use a 3-byte form.
+ * Warning: the we only pick up the compatibility characters that are
+ * NOT decomposed, so that block is smaller!
+ */
+
+// CONSTANTS
+static const UChar32
+ NON_CJK_OFFSET = 0x110000,
+ UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2
+
+/**
+ * Precomputed by initImplicitConstants()
+ */
+static int32_t
+ final3Multiplier = 0,
+ final4Multiplier = 0,
+ final3Count = 0,
+ final4Count = 0,
+ medialCount = 0,
+ min3Primary = 0,
+ min4Primary = 0,
+ max4Primary = 0,
+ minTrail = 0,
+ maxTrail = 0,
+ max3Trail = 0,
+ max4Trail = 0,
+ min4Boundary = 0;
+
+static const UChar32
+ // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
+ // 9FCB;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;
+ CJK_BASE = 0x4E00,
+ CJK_LIMIT = 0x9FCB+1,
+ // Unified CJK ideographs in the compatibility ideographs block.
+ CJK_COMPAT_USED_BASE = 0xFA0E,
+ CJK_COMPAT_USED_LIMIT = 0xFA2F+1,
+ // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;;
+ // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;;
+ CJK_A_BASE = 0x3400,
+ CJK_A_LIMIT = 0x4DB5+1,
+ // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;;
+ // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;;
+ CJK_B_BASE = 0x20000,
+ CJK_B_LIMIT = 0x2A6D6+1,
+ // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;;
+ // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;;
+ CJK_C_BASE = 0x2A700,
+ CJK_C_LIMIT = 0x2B734+1,
+ // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;;
+ // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;;
+ CJK_D_BASE = 0x2B740,
+ CJK_D_LIMIT = 0x2B81D+1;
+ // when adding to this list, look for all occurrences (in project)
+ // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!!
+
+static UChar32 swapCJK(UChar32 i) {
+ if (i < CJK_A_BASE) {
+ // non-CJK
+ } else if (i < CJK_A_LIMIT) {
+ // Extension A has lower code points than the original Unihan+compat
+ // but sorts higher.
+ return i - CJK_A_BASE
+ + (CJK_LIMIT - CJK_BASE)
+ + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE);
+ } else if (i < CJK_BASE) {
+ // non-CJK
+ } else if (i < CJK_LIMIT) {
+ return i - CJK_BASE;
+ } else if (i < CJK_COMPAT_USED_BASE) {
+ // non-CJK
+ } else if (i < CJK_COMPAT_USED_LIMIT) {
+ return i - CJK_COMPAT_USED_BASE
+ + (CJK_LIMIT - CJK_BASE);
+ } else if (i < CJK_B_BASE) {
+ // non-CJK
+ } else if (i < CJK_B_LIMIT) {
+ return i; // non-BMP-CJK
+ } else if (i < CJK_C_BASE) {
+ // non-CJK
+ } else if (i < CJK_C_LIMIT) {
+ return i; // non-BMP-CJK
+ } else if (i < CJK_D_BASE) {
+ // non-CJK
+ } else if (i < CJK_D_LIMIT) {
+ return i; // non-BMP-CJK
+ }
+ return i + NON_CJK_OFFSET; // non-CJK
+}
+
+U_CAPI UChar32 U_EXPORT2
+uprv_uca_getRawFromCodePoint(UChar32 i) {
+ return swapCJK(i)+1;
+}
+
+U_CAPI UChar32 U_EXPORT2
+uprv_uca_getCodePointFromRaw(UChar32 i) {
+ i--;
+ UChar32 result = 0;
+ if(i >= NON_CJK_OFFSET) {
+ result = i - NON_CJK_OFFSET;
+ } else if(i >= CJK_B_BASE) {
+ result = i;
+ } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted
+ if(i < CJK_LIMIT - CJK_BASE) {
+ result = i + CJK_BASE;
+ } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) {
+ result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE);
+ } else {
+ result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE);
+ }
+ } else {
+ result = -1;
+ }
+ return result;
+}
+
+// GET IMPLICIT PRIMARY WEIGHTS
+// Return value is left justified primary key
+U_CAPI uint32_t U_EXPORT2
+uprv_uca_getImplicitFromRaw(UChar32 cp) {
+ /*
+ if (cp < 0 || cp > UCOL_MAX_INPUT) {
+ throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp));
+ }
+ */
+ int32_t last0 = cp - min4Boundary;
+ if (last0 < 0) {
+ int32_t last1 = cp / final3Count;
+ last0 = cp % final3Count;
+
+ int32_t last2 = last1 / medialCount;
+ last1 %= medialCount;
+
+ last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start
+ last1 = minTrail + last1; // offset
+ last2 = min3Primary + last2; // offset
+ /*
+ if (last2 >= min4Primary) {
+ throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2));
+ }
+ */
+ return (last2 << 24) + (last1 << 16) + (last0 << 8);
+ } else {
+ int32_t last1 = last0 / final4Count;
+ last0 %= final4Count;
+
+ int32_t last2 = last1 / medialCount;
+ last1 %= medialCount;
+
+ int32_t last3 = last2 / medialCount;
+ last2 %= medialCount;
+
+ last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start
+ last1 = minTrail + last1; // offset
+ last2 = minTrail + last2; // offset
+ last3 = min4Primary + last3; // offset
+ /*
+ if (last3 > max4Primary) {
+ throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3));
+ }
+ */
+ return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0;
+ }
+}
+
+static uint32_t U_EXPORT2
+uprv_uca_getImplicitPrimary(UChar32 cp) {
+ //fprintf(stdout, "Incoming: %04x\n", cp);
+ //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp));
+
+ cp = swapCJK(cp);
+ cp++;
+ // we now have a range of numbers from 0 to 21FFFF.
+
+ //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp));
+ //fprintf(stdout, "CJK swapped: %04x\n", cp);
+
+ return uprv_uca_getImplicitFromRaw(cp);
+}
+
+/**
+ * Converts implicit CE into raw integer ("code point")
+ * @param implicit
+ * @return -1 if illegal format
+ */
+U_CAPI UChar32 U_EXPORT2
+uprv_uca_getRawFromImplicit(uint32_t implicit) {
+ UChar32 result;
+ UChar32 b3 = implicit & 0xFF;
+ UChar32 b2 = (implicit >> 8) & 0xFF;
+ UChar32 b1 = (implicit >> 16) & 0xFF;
+ UChar32 b0 = (implicit >> 24) & 0xFF;
+
+ // simple parameter checks
+ if (b0 < min3Primary || b0 > max4Primary
+ || b1 < minTrail || b1 > maxTrail)
+ return -1;
+ // normal offsets
+ b1 -= minTrail;
+
+ // take care of the final values, and compose
+ if (b0 < min4Primary) {
+ if (b2 < minTrail || b2 > max3Trail || b3 != 0)
+ return -1;
+ b2 -= minTrail;
+ UChar32 remainder = b2 % final3Multiplier;
+ if (remainder != 0)
+ return -1;
+ b0 -= min3Primary;
+ b2 /= final3Multiplier;
+ result = ((b0 * medialCount) + b1) * final3Count + b2;
+ } else {
+ if (b2 < minTrail || b2 > maxTrail
+ || b3 < minTrail || b3 > max4Trail)
+ return -1;
+ b2 -= minTrail;
+ b3 -= minTrail;
+ UChar32 remainder = b3 % final4Multiplier;
+ if (remainder != 0)
+ return -1;
+ b3 /= final4Multiplier;
+ b0 -= min4Primary;
+ result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary;
+ }
+ // final check
+ if (result < 0 || result > UCOL_MAX_INPUT)
+ return -1;
+ return result;
+}
+
+
+static inline int32_t divideAndRoundUp(int a, int b) {
+ return 1 + (a-1)/b;
+}
+
+/* this function is either called from initUCA or from genUCA before
+ * doing canonical closure for the UCA.
+ */
+
+/**
+ * Set up to generate implicits.
+ * Maintenance Note: this function may end up being called more than once, due
+ * to threading races during initialization. Make sure that
+ * none of the Constants is ever transiently assigned an
+ * incorrect value.
+ * @param minPrimary
+ * @param maxPrimary
+ * @param minTrail final byte
+ * @param maxTrail final byte
+ * @param gap3 the gap we leave for tailoring for 3-byte forms
+ * @param gap4 the gap we leave for tailoring for 4-byte forms
+ */
+static void initImplicitConstants(int minPrimary, int maxPrimary,
+ int minTrailIn, int maxTrailIn,
+ int gap3, int primaries3count,
+ UErrorCode *status) {
+ // some simple parameter checks
+ if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF)
+ || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF)
+ || (primaries3count < 1))
+ {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ };
+
+ minTrail = minTrailIn;
+ maxTrail = maxTrailIn;
+
+ min3Primary = minPrimary;
+ max4Primary = maxPrimary;
+ // compute constants for use later.
+ // number of values we can use in trailing bytes
+ // leave room for empty values between AND above, e.g. if gap = 2
+ // range 3..7 => +3 -4 -5 -6 -7: so 1 value
+ // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values
+ // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values
+ final3Multiplier = gap3 + 1;
+ final3Count = (maxTrail - minTrail + 1) / final3Multiplier;
+ max3Trail = minTrail + (final3Count - 1) * final3Multiplier;
+
+ // medials can use full range
+ medialCount = (maxTrail - minTrail + 1);
+ // find out how many values fit in each form
+ int32_t threeByteCount = medialCount * final3Count;
+ // now determine where the 3/4 boundary is.
+ // we use 3 bytes below the boundary, and 4 above
+ int32_t primariesAvailable = maxPrimary - minPrimary + 1;
+ int32_t primaries4count = primariesAvailable - primaries3count;
+
+
+ int32_t min3ByteCoverage = primaries3count * threeByteCount;
+ min4Primary = minPrimary + primaries3count;
+ min4Boundary = min3ByteCoverage;
+ // Now expand out the multiplier for the 4 bytes, and redo.
+
+ int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary;
+ int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count);
+ int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount);
+ int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte;
+ if (gap4 < 1) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ final4Multiplier = gap4 + 1;
+ final4Count = neededPerFinalByte;
+ max4Trail = minTrail + (final4Count - 1) * final4Multiplier;
+}
+
+ /**
+ * Supply parameters for generating implicit CEs
+ */
+U_CAPI void U_EXPORT2
+uprv_uca_initImplicitConstants(UErrorCode *status) {
+ // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms.
+ //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status);
+ initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status);
+}
+
+
+/* collIterNormalize Incremental Normalization happens here. */
+/* pick up the range of chars identifed by FCD, */
+/* normalize it into the collIterate's writable buffer, */
+/* switch the collIterate's state to use the writable buffer. */
+/* */
+static
+void collIterNormalize(collIterate *collationSource)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */
+ const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */
+
+ collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)),
+ collationSource->writableBuffer,
+ status);
+ if (U_FAILURE(status)) {
+#ifdef UCOL_DEBUG
+ fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status));
+#endif
+ return;
+ }
+
+ collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer();
+ collationSource->origFlags = collationSource->flags;
+ collationSource->flags |= UCOL_ITER_INNORMBUF;
+ collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
+}
+
+
+// This function takes the iterator and extracts normalized stuff up to the next boundary
+// It is similar in the end results to the collIterNormalize, but for the cases when we
+// use an iterator
+/*static
+inline void normalizeIterator(collIterate *collationSource) {
+ UErrorCode status = U_ZERO_ERROR;
+ UBool wasNormalized = FALSE;
+ //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT);
+ uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator);
+ int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer,
+ (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status);
+ if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) {
+ // reallocate and terminate
+ if(!u_growBufferFromStatic(collationSource->stackWritableBuffer,
+ &collationSource->writableBuffer,
+ (int32_t *)&collationSource->writableBufSize, normLen + 1,
+ 0)
+ ) {
+ #ifdef UCOL_DEBUG
+ fprintf(stderr, "normalizeIterator(), out of memory\n");
+ #endif
+ return;
+ }
+ status = U_ZERO_ERROR;
+ //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO);
+ collationSource->iterator->setState(collationSource->iterator, iterIndex, &status);
+ normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer,
+ (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status);
+ }
+ // Terminate the buffer - we already checked that it is big enough
+ collationSource->writableBuffer[normLen] = 0;
+ if(collationSource->writableBuffer != collationSource->stackWritableBuffer) {
+ collationSource->flags |= UCOL_ITER_ALLOCATED;
+ }
+ collationSource->pos = collationSource->writableBuffer;
+ collationSource->origFlags = collationSource->flags;
+ collationSource->flags |= UCOL_ITER_INNORMBUF;
+ collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
+}*/
+
+
+/* Incremental FCD check and normalize */
+/* Called from getNextCE when normalization state is suspect. */
+/* When entering, the state is known to be this: */
+/* o We are working in the main buffer of the collIterate, not the side */
+/* writable buffer. When in the side buffer, normalization mode is always off, */
+/* so we won't get here. */
+/* o The leading combining class from the current character is 0 or */
+/* the trailing combining class of the previous char was zero. */
+/* True because the previous call to this function will have always exited */
+/* that way, and we get called for every char where cc might be non-zero. */
+static
+inline UBool collIterFCD(collIterate *collationSource) {
+ const UChar *srcP, *endP;
+ uint8_t leadingCC;
+ uint8_t prevTrailingCC = 0;
+ uint16_t fcd;
+ UBool needNormalize = FALSE;
+
+ srcP = collationSource->pos-1;
+
+ if (collationSource->flags & UCOL_ITER_HASLEN) {
+ endP = collationSource->endp;
+ } else {
+ endP = NULL;
+ }
+
+ // Get the trailing combining class of the current character. If it's zero,
+ // we are OK.
+ /* trie access */
+ fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP);
+ if (fcd != 0) {
+ prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
+
+ if (prevTrailingCC != 0) {
+ // The current char has a non-zero trailing CC. Scan forward until we find
+ // a char with a leading cc of zero.
+ while (endP == NULL || srcP != endP)
+ {
+ const UChar *savedSrcP = srcP;
+
+ /* trie access */
+ fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP);
+ leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
+ if (leadingCC == 0) {
+ srcP = savedSrcP; // Hit char that is not part of combining sequence.
+ // back up over it. (Could be surrogate pair!)
+ break;
+ }
+
+ if (leadingCC < prevTrailingCC) {
+ needNormalize = TRUE;
+ }
+
+ prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
+ }
+ }
+ }
+
+ collationSource->fcdPosition = (UChar *)srcP;
+
+ return needNormalize;
+}
+
+/****************************************************************************/
+/* Following are the CE retrieval functions */
+/* */
+/****************************************************************************/
+
+static uint32_t getImplicit(UChar32 cp, collIterate *collationSource);
+static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource);
+
+/* there should be a macro version of this function in the header file */
+/* This is the first function that tries to fetch a collation element */
+/* If it's not succesfull or it encounters a more difficult situation */
+/* some more sofisticated and slower functions are invoked */
+static
+inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
+ uint32_t order = 0;
+ if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */
+ order = *(collationSource->toReturn++); /* if so, return them */
+ if(collationSource->CEpos == collationSource->toReturn) {
+ collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs;
+ }
+ return order;
+ }
+
+ UChar ch = 0;
+ collationSource->offsetReturn = NULL;
+
+ for (;;) /* Loop handles case when incremental normalize switches */
+ { /* to or from the side buffer / original string, and we */
+ /* need to start again to get the next character. */
+
+ if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0)
+ {
+ // The source string is null terminated and we're not working from the side buffer,
+ // and we're not normalizing. This is the fast path.
+ // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.)
+ ch = *collationSource->pos++;
+ if (ch != 0) {
+ break;
+ }
+ else {
+ return UCOL_NO_MORE_CES;
+ }
+ }
+
+ if (collationSource->flags & UCOL_ITER_HASLEN) {
+ // Normal path for strings when length is specified.
+ // (We can't be in side buffer because it is always null terminated.)
+ if (collationSource->pos >= collationSource->endp) {
+ // Ran off of the end of the main source string. We're done.
+ return UCOL_NO_MORE_CES;
+ }
+ ch = *collationSource->pos++;
+ }
+ else if(collationSource->flags & UCOL_USE_ITERATOR) {
+ UChar32 iterCh = collationSource->iterator->next(collationSource->iterator);
+ if(iterCh == U_SENTINEL) {
+ return UCOL_NO_MORE_CES;
+ }
+ ch = (UChar)iterCh;
+ }
+ else
+ {
+ // Null terminated string.
+ ch = *collationSource->pos++;
+ if (ch == 0) {
+ // Ran off end of buffer.
+ if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) {
+ // Ran off end of main string. backing up one character.
+ collationSource->pos--;
+ return UCOL_NO_MORE_CES;
+ }
+ else
+ {
+ // Hit null in the normalize side buffer.
+ // Usually this means the end of the normalized data,
+ // except for one odd case: a null followed by combining chars,
+ // which is the case if we are at the start of the buffer.
+ if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) {
+ break;
+ }
+
+ // Null marked end of side buffer.
+ // Revert to the main string and
+ // loop back to top to try again to get a character.
+ collationSource->pos = collationSource->fcdPosition;
+ collationSource->flags = collationSource->origFlags;
+ continue;
+ }
+ }
+ }
+
+ if(collationSource->flags&UCOL_HIRAGANA_Q) {
+ /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag
+ * based on whether the previous codepoint was Hiragana or Katakana.
+ */
+ if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) ||
+ ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) {
+ collationSource->flags |= UCOL_WAS_HIRAGANA;
+ } else {
+ collationSource->flags &= ~UCOL_WAS_HIRAGANA;
+ }
+ }
+
+ // We've got a character. See if there's any fcd and/or normalization stuff to do.
+ // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer.
+ if ((collationSource->flags & UCOL_ITER_NORM) == 0) {
+ break;
+ }
+
+ if (collationSource->fcdPosition >= collationSource->pos) {
+ // An earlier FCD check has already covered the current character.
+ // We can go ahead and process this char.
+ break;
+ }
+
+ if (ch < ZERO_CC_LIMIT_ ) {
+ // Fast fcd safe path. Trailing combining class == 0. This char is OK.
+ break;
+ }
+
+ if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) {
+ // We need to peek at the next character in order to tell if we are FCD
+ if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) {
+ // We are at the last char of source string.
+ // It is always OK for FCD check.
+ break;
+ }
+
+ // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test
+ if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) {
+ break;
+ }
+ }
+
+
+ // Need a more complete FCD check and possible normalization.
+ if (collIterFCD(collationSource)) {
+ collIterNormalize(collationSource);
+ }
+ if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) {
+ // No normalization was needed. Go ahead and process the char we already had.
+ break;
+ }
+
+ // Some normalization happened. Next loop iteration will pick up a char
+ // from the normalization buffer.
+
+ } // end for (;;)
+
+
+ if (ch <= 0xFF) {
+ /* For latin-1 characters we never need to fall back to the UCA table */
+ /* because all of the UCA data is replicated in the latinOneMapping array */
+ order = coll->latinOneMapping[ch];
+ if (order > UCOL_NOT_FOUND) {
+ order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status);
+ }
+ }
+ else
+ {
+ // Always use UCA for Han, Hangul
+ // (Han extension A is before main Han block)
+ // **** Han compatibility chars ?? ****
+ if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 &&
+ (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) {
+ if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) {
+ // between the two target ranges; do normal lookup
+ // **** this range is YI, Modifier tone letters, ****
+ // **** Latin-D, Syloti Nagari, Phagas-pa. ****
+ // **** Latin-D might be tailored, so we need to ****
+ // **** do the normal lookup for these guys. ****
+ order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ } else {
+ // in one of the target ranges; use UCA
+ order = UCOL_NOT_FOUND;
+ }
+ } else {
+ order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ }
+
+ if(order > UCOL_NOT_FOUND) { /* if a CE is special */
+ order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */
+ }
+
+ if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */
+ /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */
+ order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
+
+ if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */
+ order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status);
+ }
+ }
+ }
+ if(order == UCOL_NOT_FOUND) {
+ order = getImplicit(ch, collationSource);
+ }
+ return order; /* return the CE */
+}
+
+/* ucol_getNextCE, out-of-line version for use from other files. */
+U_CAPI uint32_t U_EXPORT2
+ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
+ return ucol_IGetNextCE(coll, collationSource, status);
+}
+
+
+/**
+* Incremental previous normalization happens here. Pick up the range of chars
+* identifed by FCD, normalize it into the collIterate's writable buffer,
+* switch the collIterate's state to use the writable buffer.
+* @param data collation iterator data
+*/
+static
+void collPrevIterNormalize(collIterate *data)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ const UChar *pEnd = data->pos; /* End normalize + 1 */
+ const UChar *pStart;
+
+ /* Start normalize */
+ if (data->fcdPosition == NULL) {
+ pStart = data->string;
+ }
+ else {
+ pStart = data->fcdPosition + 1;
+ }
+
+ int32_t normLen =
+ data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)),
+ data->writableBuffer,
+ status).
+ length();
+ if(U_FAILURE(status)) {
+ return;
+ }
+ /*
+ this puts the null termination infront of the normalized string instead
+ of the end
+ */
+ data->writableBuffer.insert(0, (UChar)0);
+
+ /*
+ * The usual case at this point is that we've got a base
+ * character followed by marks that were normalized. If
+ * fcdPosition is NULL, that means that we backed up to
+ * the beginning of the string and there's no base character.
+ *
+ * Forward processing will usually normalize when it sees
+ * the first mark, so that mark will get it's natural offset
+ * and the rest will get the offset of the character following
+ * the marks. The base character will also get its natural offset.
+ *
+ * We write the offset of the base character, if there is one,
+ * followed by the offset of the first mark and then the offsets
+ * of the rest of the marks.
+ */
+ int32_t firstMarkOffset = 0;
+ int32_t trailOffset = (int32_t)(data->pos - data->string + 1);
+ int32_t trailCount = normLen - 1;
+
+ if (data->fcdPosition != NULL) {
+ int32_t baseOffset = (int32_t)(data->fcdPosition - data->string);
+ UChar baseChar = *data->fcdPosition;
+
+ firstMarkOffset = baseOffset + 1;
+
+ /*
+ * If the base character is the start of a contraction, forward processing
+ * will normalize the marks while checking for the contraction, which means
+ * that the offset of the first mark will the same as the other marks.
+ *
+ * **** THIS IS PROBABLY NOT A COMPLETE TEST ****
+ */
+ if (baseChar >= 0x100) {
+ uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar);
+
+ if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) {
+ baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar);
+ }
+
+ if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) {
+ firstMarkOffset = trailOffset;
+ }
+ }
+
+ data->appendOffset(baseOffset, status);
+ }
+
+ data->appendOffset(firstMarkOffset, status);
+
+ for (int32_t i = 0; i < trailCount; i += 1) {
+ data->appendOffset(trailOffset, status);
+ }
+
+ data->offsetRepeatValue = trailOffset;
+
+ data->offsetReturn = data->offsetStore - 1;
+ if (data->offsetReturn == data->offsetBuffer) {
+ data->offsetStore = data->offsetBuffer;
+ }
+
+ data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen;
+ data->origFlags = data->flags;
+ data->flags |= UCOL_ITER_INNORMBUF;
+ data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+}
+
+
+/**
+* Incremental FCD check for previous iteration and normalize. Called from
+* getPrevCE when normalization state is suspect.
+* When entering, the state is known to be this:
+* o We are working in the main buffer of the collIterate, not the side
+* writable buffer. When in the side buffer, normalization mode is always
+* off, so we won't get here.
+* o The leading combining class from the current character is 0 or the
+* trailing combining class of the previous char was zero.
+* True because the previous call to this function will have always exited
+* that way, and we get called for every char where cc might be non-zero.
+* @param data collation iterate struct
+* @return normalization status, TRUE for normalization to be done, FALSE
+* otherwise
+*/
+static
+inline UBool collPrevIterFCD(collIterate *data)
+{
+ const UChar *src, *start;
+ uint8_t leadingCC;
+ uint8_t trailingCC = 0;
+ uint16_t fcd;
+ UBool result = FALSE;
+
+ start = data->string;
+ src = data->pos + 1;
+
+ /* Get the trailing combining class of the current character. */
+ fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src);
+
+ leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
+
+ if (leadingCC != 0) {
+ /*
+ The current char has a non-zero leading combining class.
+ Scan backward until we find a char with a trailing cc of zero.
+ */
+ for (;;)
+ {
+ if (start == src) {
+ data->fcdPosition = NULL;
+ return result;
+ }
+
+ fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src);
+
+ trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
+
+ if (trailingCC == 0) {
+ break;
+ }
+
+ if (leadingCC < trailingCC) {
+ result = TRUE;
+ }
+
+ leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
+ }
+ }
+
+ data->fcdPosition = (UChar *)src;
+
+ return result;
+}
+
+/** gets a code unit from the string at a given offset
+ * Handles both normal and iterative cases.
+ * No error checking - caller beware!
+ */
+static inline
+UChar peekCodeUnit(collIterate *source, int32_t offset) {
+ if(source->pos != NULL) {
+ return *(source->pos + offset);
+ } else if(source->iterator != NULL) {
+ UChar32 c;
+ if(offset != 0) {
+ source->iterator->move(source->iterator, offset, UITER_CURRENT);
+ c = source->iterator->next(source->iterator);
+ source->iterator->move(source->iterator, -offset-1, UITER_CURRENT);
+ } else {
+ c = source->iterator->current(source->iterator);
+ }
+ return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0.
+ } else {
+ return 0xfffd;
+ }
+}
+
+// Code point version. Treats the offset as a _code point_ delta.
+// We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16.
+// We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer.
+static inline
+UChar32 peekCodePoint(collIterate *source, int32_t offset) {
+ UChar32 c;
+ if(source->pos != NULL) {
+ const UChar *p = source->pos;
+ if(offset >= 0) {
+ // Skip forward over (offset-1) code points.
+ while(--offset >= 0) {
+ if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) {
+ ++p;
+ }
+ }
+ // Read the code point there.
+ c = *p++;
+ UChar trail;
+ if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) {
+ c = U16_GET_SUPPLEMENTARY(c, trail);
+ }
+ } else /* offset<0 */ {
+ // Skip backward over (offset-1) code points.
+ while(++offset < 0) {
+ if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) {
+ --p;
+ }
+ }
+ // Read the code point before that.
+ c = *--p;
+ UChar lead;
+ if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) {
+ c = U16_GET_SUPPLEMENTARY(lead, c);
+ }
+ }
+ } else if(source->iterator != NULL) {
+ if(offset >= 0) {
+ // Skip forward over (offset-1) code points.
+ int32_t fwd = offset;
+ while(fwd-- > 0) {
+ uiter_next32(source->iterator);
+ }
+ // Read the code point there.
+ c = uiter_current32(source->iterator);
+ // Return to the starting point, skipping backward over (offset-1) code points.
+ while(offset-- > 0) {
+ uiter_previous32(source->iterator);
+ }
+ } else /* offset<0 */ {
+ // Read backward, reading offset code points, remember only the last-read one.
+ int32_t back = offset;
+ do {
+ c = uiter_previous32(source->iterator);
+ } while(++back < 0);
+ // Return to the starting position, skipping forward over offset code points.
+ do {
+ uiter_next32(source->iterator);
+ } while(++offset < 0);
+ }
+ } else {
+ c = U_SENTINEL;
+ }
+ return c;
+}
+
+/**
+* Determines if we are at the start of the data string in the backwards
+* collation iterator
+* @param data collation iterator
+* @return TRUE if we are at the start
+*/
+static
+inline UBool isAtStartPrevIterate(collIterate *data) {
+ if(data->pos == NULL && data->iterator != NULL) {
+ return !data->iterator->hasPrevious(data->iterator);
+ }
+ //return (collIter_bos(data)) ||
+ return (data->pos == data->string) ||
+ ((data->flags & UCOL_ITER_INNORMBUF) &&
+ *(data->pos - 1) == 0 && data->fcdPosition == NULL);
+}
+
+static
+inline void goBackOne(collIterate *data) {
+# if 0
+ // somehow, it looks like we need to keep iterator synced up
+ // at all times, as above.
+ if(data->pos) {
+ data->pos--;
+ }
+ if(data->iterator) {
+ data->iterator->previous(data->iterator);
+ }
+#endif
+ if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) {
+ data->iterator->previous(data->iterator);
+ }
+ if(data->pos) {
+ data->pos --;
+ }
+}
+
+/**
+* Inline function that gets a simple CE.
+* So what it does is that it will first check the expansion buffer. If the
+* expansion buffer is not empty, ie the end pointer to the expansion buffer
+* is different from the string pointer, we return the collation element at the
+* return pointer and decrement it.
+* For more complicated CEs it resorts to getComplicatedCE.
+* @param coll collator data
+* @param data collation iterator struct
+* @param status error status
+*/
+static
+inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data,
+ UErrorCode *status)
+{
+ uint32_t result = (uint32_t)UCOL_NULLORDER;
+
+ if (data->offsetReturn != NULL) {
+ if (data->offsetRepeatCount > 0) {
+ data->offsetRepeatCount -= 1;
+ } else {
+ if (data->offsetReturn == data->offsetBuffer) {
+ data->offsetReturn = NULL;
+ data->offsetStore = data->offsetBuffer;
+ } else {
+ data->offsetReturn -= 1;
+ }
+ }
+ }
+
+ if ((data->extendCEs && data->toReturn > data->extendCEs) ||
+ (!data->extendCEs && data->toReturn > data->CEs))
+ {
+ data->toReturn -= 1;
+ result = *(data->toReturn);
+ if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) {
+ data->CEpos = data->toReturn;
+ }
+ }
+ else {
+ UChar ch = 0;
+
+ /*
+ Loop handles case when incremental normalize switches to or from the
+ side buffer / original string, and we need to start again to get the
+ next character.
+ */
+ for (;;) {
+ if (data->flags & UCOL_ITER_HASLEN) {
+ /*
+ Normal path for strings when length is specified.
+ Not in side buffer because it is always null terminated.
+ */
+ if (data->pos <= data->string) {
+ /* End of the main source string */
+ return UCOL_NO_MORE_CES;
+ }
+ data->pos --;
+ ch = *data->pos;
+ }
+ // we are using an iterator to go back. Pray for us!
+ else if (data->flags & UCOL_USE_ITERATOR) {
+ UChar32 iterCh = data->iterator->previous(data->iterator);
+ if(iterCh == U_SENTINEL) {
+ return UCOL_NO_MORE_CES;
+ } else {
+ ch = (UChar)iterCh;
+ }
+ }
+ else {
+ data->pos --;
+ ch = *data->pos;
+ /* we are in the side buffer. */
+ if (ch == 0) {
+ /*
+ At the start of the normalize side buffer.
+ Go back to string.
+ Because pointer points to the last accessed character,
+ hence we have to increment it by one here.
+ */
+ data->flags = data->origFlags;
+ data->offsetRepeatValue = 0;
+
+ if (data->fcdPosition == NULL) {
+ data->pos = data->string;
+ return UCOL_NO_MORE_CES;
+ }
+ else {
+ data->pos = data->fcdPosition + 1;
+ }
+
+ continue;
+ }
+ }
+
+ if(data->flags&UCOL_HIRAGANA_Q) {
+ if(ch>=0x3040 && ch<=0x309f) {
+ data->flags |= UCOL_WAS_HIRAGANA;
+ } else {
+ data->flags &= ~UCOL_WAS_HIRAGANA;
+ }
+ }
+
+ /*
+ * got a character to determine if there's fcd and/or normalization
+ * stuff to do.
+ * if the current character is not fcd.
+ * if current character is at the start of the string
+ * Trailing combining class == 0.
+ * Note if pos is in the writablebuffer, norm is always 0
+ */
+ if (ch < ZERO_CC_LIMIT_ ||
+ // this should propel us out of the loop in the iterator case
+ (data->flags & UCOL_ITER_NORM) == 0 ||
+ (data->fcdPosition != NULL && data->fcdPosition <= data->pos)
+ || data->string == data->pos) {
+ break;
+ }
+
+ if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) {
+ /* if next character is FCD */
+ if (data->pos == data->string) {
+ /* First char of string is always OK for FCD check */
+ break;
+ }
+
+ /* Not first char of string, do the FCD fast test */
+ if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) {
+ break;
+ }
+ }
+
+ /* Need a more complete FCD check and possible normalization. */
+ if (collPrevIterFCD(data)) {
+ collPrevIterNormalize(data);
+ }
+
+ if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
+ /* No normalization. Go ahead and process the char. */
+ break;
+ }
+
+ /*
+ Some normalization happened.
+ Next loop picks up a char from the normalization buffer.
+ */
+ }
+
+ /* attempt to handle contractions, after removal of the backwards
+ contraction
+ */
+ if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) {
+ result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status);
+ } else {
+ if (ch <= 0xFF) {
+ result = coll->latinOneMapping[ch];
+ }
+ else {
+ // Always use UCA for [3400..9FFF], [AC00..D7AF]
+ // **** [FA0E..FA2F] ?? ****
+ if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 &&
+ (ch >= 0x3400 && ch <= 0xD7AF)) {
+ if (ch > 0x9FFF && ch < 0xAC00) {
+ // between the two target ranges; do normal lookup
+ // **** this range is YI, Modifier tone letters, ****
+ // **** Latin-D, Syloti Nagari, Phagas-pa. ****
+ // **** Latin-D might be tailored, so we need to ****
+ // **** do the normal lookup for these guys. ****
+ result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ } else {
+ result = UCOL_NOT_FOUND;
+ }
+ } else {
+ result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ }
+ }
+ if (result > UCOL_NOT_FOUND) {
+ result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status);
+ }
+ if (result == UCOL_NOT_FOUND) { // Not found in master list
+ if (!isAtStartPrevIterate(data) &&
+ ucol_contractionEndCP(ch, data->coll))
+ {
+ result = UCOL_CONTRACTION;
+ } else {
+ if(coll->UCA) {
+ result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
+ }
+ }
+
+ if (result > UCOL_NOT_FOUND) {
+ if(coll->UCA) {
+ result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status);
+ }
+ }
+ }
+ }
+
+ if(result == UCOL_NOT_FOUND) {
+ result = getPrevImplicit(ch, data);
+ }
+ }
+
+ return result;
+}
+
+
+/* ucol_getPrevCE, out-of-line version for use from other files. */
+U_CFUNC uint32_t U_EXPORT2
+ucol_getPrevCE(const UCollator *coll, collIterate *data,
+ UErrorCode *status) {
+ return ucol_IGetPrevCE(coll, data, status);
+}
+
+
+/* this should be connected to special Jamo handling */
+U_CFUNC uint32_t U_EXPORT2
+ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) {
+ collIterate colIt;
+ IInit_collIterate(coll, &u, 1, &colIt, status);
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+ return ucol_IGetNextCE(coll, &colIt, status);
+}
+
+/**
+* Inserts the argument character into the end of the buffer pushing back the
+* null terminator.
+* @param data collIterate struct data
+* @param ch character to be appended
+* @return the position of the new addition
+*/
+static
+inline const UChar * insertBufferEnd(collIterate *data, UChar ch)
+{
+ int32_t oldLength = data->writableBuffer.length();
+ return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength;
+}
+
+/**
+* Inserts the argument string into the end of the buffer pushing back the
+* null terminator.
+* @param data collIterate struct data
+* @param string to be appended
+* @param length of the string to be appended
+* @return the position of the new addition
+*/
+static
+inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length)
+{
+ int32_t oldLength = data->writableBuffer.length();
+ return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength;
+}
+
+/**
+* Special normalization function for contraction in the forwards iterator.
+* This normalization sequence will place the current character at source->pos
+* and its following normalized sequence into the buffer.
+* The fcd position, pos will be changed.
+* pos will now point to positions in the buffer.
+* Flags will be changed accordingly.
+* @param data collation iterator data
+*/
+static
+inline void normalizeNextContraction(collIterate *data)
+{
+ int32_t strsize;
+ UErrorCode status = U_ZERO_ERROR;
+ /* because the pointer points to the next character */
+ const UChar *pStart = data->pos - 1;
+ const UChar *pEnd;
+
+ if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
+ data->writableBuffer.setTo(*(pStart - 1));
+ strsize = 1;
+ }
+ else {
+ strsize = data->writableBuffer.length();
+ }
+
+ pEnd = data->fcdPosition;
+
+ data->writableBuffer.append(
+ data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status));
+ if(U_FAILURE(status)) {
+ return;
+ }
+
+ data->pos = data->writableBuffer.getTerminatedBuffer() + strsize;
+ data->origFlags = data->flags;
+ data->flags |= UCOL_ITER_INNORMBUF;
+ data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+}
+
+/**
+* Contraction character management function that returns the next character
+* for the forwards iterator.
+* Does nothing if the next character is in buffer and not the first character
+* in it.
+* Else it checks next character in data string to see if it is normalizable.
+* If it is not, the character is simply copied into the buffer, else
+* the whole normalized substring is copied into the buffer, including the
+* current character.
+* @param data collation element iterator data
+* @return next character
+*/
+static
+inline UChar getNextNormalizedChar(collIterate *data)
+{
+ UChar nextch;
+ UChar ch;
+ // Here we need to add the iterator code. One problem is the way
+ // end of string is handled. If we just return next char, it could
+ // be the sentinel. Most of the cases already check for this, but we
+ // need to be sure.
+ if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) {
+ /* if no normalization and not in buffer. */
+ if(data->flags & UCOL_USE_ITERATOR) {
+ return (UChar)data->iterator->next(data->iterator);
+ } else {
+ return *(data->pos ++);
+ }
+ }
+
+ //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) {
+ //normalizeIterator(data);
+ //}
+
+ UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF);
+ if ((innormbuf && *data->pos != 0) ||
+ (data->fcdPosition != NULL && !innormbuf &&
+ data->pos < data->fcdPosition)) {
+ /*
+ if next character is in normalized buffer, no further normalization
+ is required
+ */
+ return *(data->pos ++);
+ }
+
+ if (data->flags & UCOL_ITER_HASLEN) {
+ /* in data string */
+ if (data->pos + 1 == data->endp) {
+ return *(data->pos ++);
+ }
+ }
+ else {
+ if (innormbuf) {
+ // inside the normalization buffer, but at the end
+ // (since we encountered zero). This means, in the
+ // case we're using char iterator, that we need to
+ // do another round of normalization.
+ //if(data->origFlags & UCOL_USE_ITERATOR) {
+ // we need to restore original flags,
+ // otherwise, we'll lose them
+ //data->flags = data->origFlags;
+ //normalizeIterator(data);
+ //return *(data->pos++);
+ //} else {
+ /*
+ in writable buffer, at this point fcdPosition can not be
+ pointing to the end of the data string. see contracting tag.
+ */
+ if(data->fcdPosition) {
+ if (*(data->fcdPosition + 1) == 0 ||
+ data->fcdPosition + 1 == data->endp) {
+ /* at the end of the string, dump it into the normalizer */
+ data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1;
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
+ return *(data->fcdPosition ++);
+ }
+ data->pos = data->fcdPosition;
+ } else if(data->origFlags & UCOL_USE_ITERATOR) {
+ // if we are here, we're using a normalizing iterator.
+ // we should just continue further.
+ data->flags = data->origFlags;
+ data->pos = NULL;
+ return (UChar)data->iterator->next(data->iterator);
+ }
+ //}
+ }
+ else {
+ if (*(data->pos + 1) == 0) {
+ return *(data->pos ++);
+ }
+ }
+ }
+
+ ch = *data->pos ++;
+ nextch = *data->pos;
+
+ /*
+ * if the current character is not fcd.
+ * Trailing combining class == 0.
+ */
+ if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) &&
+ (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ ||
+ ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) {
+ /*
+ Need a more complete FCD check and possible normalization.
+ normalize substring will be appended to buffer
+ */
+ if (collIterFCD(data)) {
+ normalizeNextContraction(data);
+ return *(data->pos ++);
+ }
+ else if (innormbuf) {
+ /* fcdposition shifted even when there's no normalization, if we
+ don't input the rest into this, we'll get the wrong position when
+ we reach the end of the writableBuffer */
+ int32_t length = (int32_t)(data->fcdPosition - data->pos + 1);
+ data->pos = insertBufferEnd(data, data->pos - 1, length);
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
+ return *(data->pos ++);
+ }
+ }
+
+ if (innormbuf) {
+ /*
+ no normalization is to be done hence only one character will be
+ appended to the buffer.
+ */
+ data->pos = insertBufferEnd(data, ch) + 1;
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
+ }
+
+ /* points back to the pos in string */
+ return ch;
+}
+
+
+
+/**
+* Function to copy the buffer into writableBuffer and sets the fcd position to
+* the correct position
+* @param source data string source
+* @param buffer character buffer
+*/
+static
+inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer)
+{
+ /* okay confusing part here. to ensure that the skipped characters are
+ considered later, we need to place it in the appropriate position in the
+ normalization buffer and reassign the pos pointer. simple case if pos
+ reside in string, simply copy to normalization buffer and
+ fcdposition = pos, pos = start of normalization buffer. if pos in
+ normalization buffer, we'll insert the copy infront of pos and point pos
+ to the start of the normalization buffer. why am i doing these copies?
+ well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does
+ not require any changes, which be really painful. */
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ int32_t replaceLength = source->pos - source->writableBuffer.getBuffer();
+ source->writableBuffer.replace(0, replaceLength, buffer);
+ }
+ else {
+ source->fcdPosition = source->pos;
+ source->origFlags = source->flags;
+ source->flags |= UCOL_ITER_INNORMBUF;
+ source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
+ source->writableBuffer = buffer;
+ }
+
+ source->pos = source->writableBuffer.getTerminatedBuffer();
+}
+
+/**
+* Function to get the discontiguos collation element within the source.
+* Note this function will set the position to the appropriate places.
+* @param coll current collator used
+* @param source data string source
+* @param constart index to the start character in the contraction table
+* @return discontiguos collation element offset
+*/
+static
+uint32_t getDiscontiguous(const UCollator *coll, collIterate *source,
+ const UChar *constart)
+{
+ /* source->pos currently points to the second combining character after
+ the start character */
+ const UChar *temppos = source->pos;
+ UnicodeString buffer;
+ const UChar *tempconstart = constart;
+ uint8_t tempflags = source->flags;
+ UBool multicontraction = FALSE;
+ collIterateState discState;
+
+ backupState(source, &discState);
+
+ buffer.setTo(peekCodePoint(source, -1));
+ for (;;) {
+ UChar *UCharOffset;
+ UChar schar,
+ tchar;
+ uint32_t result;
+
+ if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp)
+ || (peekCodeUnit(source, 0) == 0 &&
+ //|| (*source->pos == 0 &&
+ ((source->flags & UCOL_ITER_INNORMBUF) == 0 ||
+ source->fcdPosition == NULL ||
+ source->fcdPosition == source->endp ||
+ *(source->fcdPosition) == 0 ||
+ u_getCombiningClass(*(source->fcdPosition)) == 0)) ||
+ /* end of string in null terminated string or stopped by a
+ null character, note fcd does not always point to a base
+ character after the discontiguos change */
+ u_getCombiningClass(peekCodePoint(source, 0)) == 0) {
+ //u_getCombiningClass(*(source->pos)) == 0) {
+ //constart = (UChar *)coll->image + getContractOffset(CE);
+ if (multicontraction) {
+ source->pos = temppos - 1;
+ setDiscontiguosAttribute(source, buffer);
+ return *(coll->contractionCEs +
+ (tempconstart - coll->contractionIndex));
+ }
+ constart = tempconstart;
+ break;
+ }
+
+ UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/
+ schar = getNextNormalizedChar(source);
+
+ while (schar > (tchar = *UCharOffset)) {
+ UCharOffset++;
+ }
+
+ if (schar != tchar) {
+ /* not the correct codepoint. we stuff the current codepoint into
+ the discontiguos buffer and try the next character */
+ buffer.append(schar);
+ continue;
+ }
+ else {
+ if (u_getCombiningClass(schar) ==
+ u_getCombiningClass(peekCodePoint(source, -2))) {
+ buffer.append(schar);
+ continue;
+ }
+ result = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+
+ if (result == UCOL_NOT_FOUND) {
+ break;
+ } else if (isContraction(result)) {
+ /* this is a multi-contraction*/
+ tempconstart = (UChar *)coll->image + getContractOffset(result);
+ if (*(coll->contractionCEs + (constart - coll->contractionIndex))
+ != UCOL_NOT_FOUND) {
+ multicontraction = TRUE;
+ temppos = source->pos + 1;
+ }
+ } else {
+ setDiscontiguosAttribute(source, buffer);
+ return result;
+ }
+ }
+
+ /* no problems simply reverting just like that,
+ if we are in string before getting into this function, points back to
+ string hence no problem.
+ if we are in normalization buffer before getting into this function,
+ since we'll never use another normalization within this function, we
+ know that fcdposition points to a base character. the normalization buffer
+ never change, hence this revert works. */
+ loadState(source, &discState, TRUE);
+ goBackOne(source);
+
+ //source->pos = temppos - 1;
+ source->flags = tempflags;
+ return *(coll->contractionCEs + (constart - coll->contractionIndex));
+}
+
+/* now uses Mark's getImplicitPrimary code */
+static
+inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) {
+ uint32_t r = uprv_uca_getImplicitPrimary(cp);
+ *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0;
+ collationSource->offsetRepeatCount += 1;
+ return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order'
+}
+
+/**
+* Inserts the argument character into the front of the buffer replacing the
+* front null terminator.
+* @param data collation element iterator data
+* @param ch character to be appended
+*/
+static
+inline void insertBufferFront(collIterate *data, UChar ch)
+{
+ data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2;
+}
+
+/**
+* Special normalization function for contraction in the previous iterator.
+* This normalization sequence will place the current character at source->pos
+* and its following normalized sequence into the buffer.
+* The fcd position, pos will be changed.
+* pos will now point to positions in the buffer.
+* Flags will be changed accordingly.
+* @param data collation iterator data
+*/
+static
+inline void normalizePrevContraction(collIterate *data, UErrorCode *status)
+{
+ const UChar *pEnd = data->pos + 1; /* End normalize + 1 */
+ const UChar *pStart;
+
+ UnicodeString endOfBuffer;
+ if (data->flags & UCOL_ITER_HASLEN) {
+ /*
+ normalization buffer not used yet, we'll pull down the next
+ character into the end of the buffer
+ */
+ endOfBuffer.setTo(*pEnd);
+ }
+ else {
+ endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL
+ }
+
+ if (data->fcdPosition == NULL) {
+ pStart = data->string;
+ }
+ else {
+ pStart = data->fcdPosition + 1;
+ }
+ int32_t normLen =
+ data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)),
+ data->writableBuffer,
+ *status).
+ length();
+ if(U_FAILURE(*status)) {
+ return;
+ }
+ /*
+ this puts the null termination infront of the normalized string instead
+ of the end
+ */
+ data->pos =
+ data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() +
+ 1 + normLen;
+ data->origFlags = data->flags;
+ data->flags |= UCOL_ITER_INNORMBUF;
+ data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+}
+
+/**
+* Contraction character management function that returns the previous character
+* for the backwards iterator.
+* Does nothing if the previous character is in buffer and not the first
+* character in it.
+* Else it checks previous character in data string to see if it is
+* normalizable.
+* If it is not, the character is simply copied into the buffer, else
+* the whole normalized substring is copied into the buffer, including the
+* current character.
+* @param data collation element iterator data
+* @return previous character
+*/
+static
+inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status)
+{
+ UChar prevch;
+ UChar ch;
+ const UChar *start;
+ UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF);
+ if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ||
+ (innormbuf && *(data->pos - 1) != 0)) {
+ /*
+ if no normalization.
+ if previous character is in normalized buffer, no further normalization
+ is required
+ */
+ if(data->flags & UCOL_USE_ITERATOR) {
+ data->iterator->move(data->iterator, -1, UITER_CURRENT);
+ return (UChar)data->iterator->next(data->iterator);
+ } else {
+ return *(data->pos - 1);
+ }
+ }
+
+ start = data->pos;
+ if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) {
+ /* in data string */
+ if ((start - 1) == data->string) {
+ return *(start - 1);
+ }
+ start --;
+ ch = *start;
+ prevch = *(start - 1);
+ }
+ else {
+ /*
+ in writable buffer, at this point fcdPosition can not be NULL.
+ see contracting tag.
+ */
+ if (data->fcdPosition == data->string) {
+ /* at the start of the string, just dump it into the normalizer */
+ insertBufferFront(data, *(data->fcdPosition));
+ data->fcdPosition = NULL;
+ return *(data->pos - 1);
+ }
+ start = data->fcdPosition;
+ ch = *start;
+ prevch = *(start - 1);
+ }
+ /*
+ * if the current character is not fcd.
+ * Trailing combining class == 0.
+ */
+ if (data->fcdPosition > start &&
+ (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_))
+ {
+ /*
+ Need a more complete FCD check and possible normalization.
+ normalize substring will be appended to buffer
+ */
+ const UChar *backuppos = data->pos;
+ data->pos = start;
+ if (collPrevIterFCD(data)) {
+ normalizePrevContraction(data, status);
+ return *(data->pos - 1);
+ }
+ data->pos = backuppos;
+ data->fcdPosition ++;
+ }
+
+ if (innormbuf) {
+ /*
+ no normalization is to be done hence only one character will be
+ appended to the buffer.
+ */
+ insertBufferFront(data, ch);
+ data->fcdPosition --;
+ }
+
+ return ch;
+}
+
+/* This function handles the special CEs like contractions, expansions, surrogates, Thai */
+/* It is called by getNextCE */
+
+/* The following should be even */
+#define UCOL_MAX_DIGITS_FOR_NUMBER 254
+
+uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) {
+ collIterateState entryState;
+ backupState(source, &entryState);
+ UChar32 cp = ch;
+
+ for (;;) {
+ // This loop will repeat only in the case of contractions, and only when a contraction
+ // is found and the first CE resulting from that contraction is itself a special
+ // (an expansion, for example.) All other special CE types are fully handled the
+ // first time through, and the loop exits.
+
+ const uint32_t *CEOffset = NULL;
+ switch(getCETag(CE)) {
+ case NOT_FOUND_TAG:
+ /* This one is not found, and we'll let somebody else bother about it... no more games */
+ return CE;
+ case SPEC_PROC_TAG:
+ {
+ // Special processing is getting a CE that is preceded by a certain prefix
+ // Currently this is only needed for optimizing Japanese length and iteration marks.
+ // When we encouter a special processing tag, we go backwards and try to see if
+ // we have a match.
+ // Contraction tables are used - so the whole process is not unlike contraction.
+ // prefix data is stored backwards in the table.
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+ collIterateState prefixState;
+ backupState(source, &prefixState);
+ loadState(source, &entryState, TRUE);
+ goBackOne(source); // We want to look at the point where we entered - actually one
+ // before that...
+
+ for(;;) {
+ // This loop will run once per source string character, for as long as we
+ // are matching a potential contraction sequence
+
+ // First we position ourselves at the begining of contraction sequence
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+ if (collIter_bos(source)) {
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ break;
+ }
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
+
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
+
+ if (schar == tchar) {
+ // Found the source string char in the table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // Source string char was not in the table.
+ // We have not found the prefix.
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ }
+
+ if(!isPrefix(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a prefix CE. We found the prefix, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of prefix handling when the source actually contained
+ // the prefix.
+ break;
+ }
+ }
+ if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue
+ loadState(source, &prefixState, TRUE);
+ if(source->origFlags & UCOL_USE_ITERATOR) {
+ source->flags = source->origFlags;
+ }
+ } else { // prefix search was a failure, we have to backup all the way to the start
+ loadState(source, &entryState, TRUE);
+ }
+ break;
+ }
+ case CONTRACTION_TAG:
+ {
+ /* This should handle contractions */
+ collIterateState state;
+ backupState(source, &state);
+ uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND;
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+
+ for (;;) {
+ /* This loop will run once per source string character, for as long as we */
+ /* are matching a potential contraction sequence */
+
+ /* First we position ourselves at the begining of contraction sequence */
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ if (collIter_eos(source)) {
+ // Ran off the end of the source string.
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ // So we'll pick whatever we have at the point...
+ if (CE == UCOL_NOT_FOUND) {
+ // back up the source over all the chars we scanned going into this contraction.
+ CE = firstCE;
+ loadState(source, &state, TRUE);
+ if(source->origFlags & UCOL_USE_ITERATOR) {
+ source->flags = source->origFlags;
+ }
+ }
+ break;
+ }
+
+ uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */
+ uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8);
+
+ schar = getNextNormalizedChar(source);
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
+
+ if (schar == tchar) {
+ // Found the source string char in the contraction table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // Source string char was not in contraction table.
+ // Unless we have a discontiguous contraction, we have finished
+ // with this contraction.
+ // in order to do the proper detection, we
+ // need to see if we're dealing with a supplementary
+ /* We test whether the next two char are surrogate pairs.
+ * This test is done if the iterator is not NULL.
+ * If there is no surrogate pair, the iterator
+ * goes back one if needed. */
+ UChar32 miss = schar;
+ if (source->iterator) {
+ UChar32 surrNextChar; /* the next char in the iteration to test */
+ int32_t prevPos; /* holds the previous position before move forward of the source iterator */
+ if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) {
+ prevPos = source->iterator->index;
+ surrNextChar = getNextNormalizedChar(source);
+ if (U16_IS_TRAIL(surrNextChar)) {
+ miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar);
+ } else if (prevPos < source->iterator->index){
+ goBackOne(source);
+ }
+ }
+ } else if (U16_IS_LEAD(schar)) {
+ miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source));
+ }
+
+ uint8_t sCC;
+ if (miss < 0x300 ||
+ maxCC == 0 ||
+ (sCC = i_getCombiningClass(miss, coll)) == 0 ||
+ sCC>maxCC ||
+ (allSame != 0 && sCC == maxCC) ||
+ collIter_eos(source))
+ {
+ // Contraction can not be discontiguous.
+ goBackOne(source); // back up the source string by one,
+ // because the character we just looked at was
+ // not part of the contraction. */
+ if(U_IS_SUPPLEMENTARY(miss)) {
+ goBackOne(source);
+ }
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ } else {
+ //
+ // Contraction is possibly discontiguous.
+ // Scan more of source string looking for a match
+ //
+ UChar tempchar;
+ /* find the next character if schar is not a base character
+ and we are not yet at the end of the string */
+ tempchar = getNextNormalizedChar(source);
+ // probably need another supplementary thingie here
+ goBackOne(source);
+ if (i_getCombiningClass(tempchar, coll) == 0) {
+ goBackOne(source);
+ if(U_IS_SUPPLEMENTARY(miss)) {
+ goBackOne(source);
+ }
+ /* Spit out the last char of the string, wasn't tasty enough */
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ } else {
+ CE = getDiscontiguous(coll, source, ContractionStart);
+ }
+ }
+ } // else after if(schar == tchar)
+
+ if(CE == UCOL_NOT_FOUND) {
+ /* The Source string did not match the contraction that we were checking. */
+ /* Back up the source position to undo the effects of having partially */
+ /* scanned through what ultimately proved to not be a contraction. */
+ loadState(source, &state, TRUE);
+ CE = firstCE;
+ break;
+ }
+
+ if(!isContraction(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a contraction CE. We completed the contraction, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of contraction handling when the source actually contained
+ // the contraction.
+ break;
+ }
+
+
+ // The source string char was in the contraction table, and the corresponding
+ // CE is IS a contraction CE. We will continue looping to check the source
+ // string for the remaining chars in the contraction.
+ uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex));
+ if(tempCE != UCOL_NOT_FOUND) {
+ // We have scanned a a section of source string for which there is a
+ // CE from the contraction table. Remember the CE and scan position, so
+ // that we can return to this point if further scanning fails to
+ // match a longer contraction sequence.
+ firstCE = tempCE;
+
+ goBackOne(source);
+ backupState(source, &state);
+ getNextNormalizedChar(source);
+
+ // Another way to do this is:
+ //collIterateState tempState;
+ //backupState(source, &tempState);
+ //goBackOne(source);
+ //backupState(source, &state);
+ //loadState(source, &tempState, TRUE);
+
+ // The problem is that for incomplete contractions we have to remember the previous
+ // position. Before, the only thing I needed to do was state.pos--;
+ // After iterator introduction and especially after introduction of normalizing
+ // iterators, it became much more difficult to decrease the saved state.
+ // I'm not yet sure which of the two methods above is faster.
+ }
+ } // for(;;)
+ break;
+ } // case CONTRACTION_TAG:
+ case LONG_PRIMARY_TAG:
+ {
+ *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
+ CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
+ source->offsetRepeatCount += 1;
+ return CE;
+ }
+ case EXPANSION_TAG:
+ {
+ /* This should handle expansion. */
+ /* NOTE: we can encounter both continuations and expansions in an expansion! */
+ /* I have to decide where continuations are going to be dealt with */
+ uint32_t size;
+ uint32_t i; /* general counter */
+
+ CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ size = getExpansionCount(CE);
+ CE = *CEOffset++;
+ //source->offsetRepeatCount = -1;
+
+ if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
+ for(i = 1; i<size; i++) {
+ *(source->CEpos++) = *CEOffset++;
+ source->offsetRepeatCount += 1;
+ }
+ } else { /* else, we do */
+ while(*CEOffset != 0) {
+ *(source->CEpos++) = *CEOffset++;
+ source->offsetRepeatCount += 1;
+ }
+ }
+
+ return CE;
+ }
+ case DIGIT_TAG:
+ {
+ /*
+ We do a check to see if we want to collate digits as numbers; if so we generate
+ a custom collation key. Otherwise we pull out the value stored in the expansion table.
+ */
+ //uint32_t size;
+ uint32_t i; /* general counter */
+
+ if (source->coll->numericCollation == UCOL_ON){
+ collIterateState digitState = {0,0,0,0,0,0,0,0,0};
+ UChar32 char32 = 0;
+ int32_t digVal = 0;
+
+ uint32_t digIndx = 0;
+ uint32_t endIndex = 0;
+ uint32_t trailingZeroIndex = 0;
+
+ uint8_t collateVal = 0;
+
+ UBool nonZeroValReached = FALSE;
+
+ uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs.
+ /*
+ We parse the source string until we hit a char that's NOT a digit.
+ Use this u_charDigitValue. This might be slow because we have to
+ handle surrogates...
+ */
+ /*
+ if (U16_IS_LEAD(ch)){
+ if (!collIter_eos(source)) {
+ backupState(source, &digitState);
+ UChar trail = getNextNormalizedChar(source);
+ if(U16_IS_TRAIL(trail)) {
+ char32 = U16_GET_SUPPLEMENTARY(ch, trail);
+ } else {
+ loadState(source, &digitState, TRUE);
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
+ digVal = u_charDigitValue(char32);
+ */
+ digVal = u_charDigitValue(cp); // if we have arrived here, we have
+ // already processed possible supplementaries that trigered the digit tag -
+ // all supplementaries are marked in the UCA.
+ /*
+ We pad a zero in front of the first element anyways. This takes
+ care of the (probably) most common case where people are sorting things followed
+ by a single digit
+ */
+ digIndx++;
+ for(;;){
+ // Make sure we have enough space. No longer needed;
+ // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER
+ // (it has been pre-incremented) so we just ensure that numTempBuf is big enough
+ // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3).
+
+ // Skipping over leading zeroes.
+ if (digVal != 0) {
+ nonZeroValReached = TRUE;
+ }
+ if (nonZeroValReached) {
+ /*
+ We parse the digit string into base 100 numbers (this fits into a byte).
+ We only add to the buffer in twos, thus if we are parsing an odd character,
+ that serves as the 'tens' digit while the if we are parsing an even one, that
+ is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
+ a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
+ overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
+ than all the other bytes.
+ */
+
+ if (digIndx % 2 == 1){
+ collateVal += (uint8_t)digVal;
+
+ // We don't enter the low-order-digit case unless we've already seen
+ // the high order, or for the first digit, which is always non-zero.
+ if (collateVal != 0)
+ trailingZeroIndex = 0;
+
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ collateVal = 0;
+ }
+ else{
+ // We drop the collation value into the buffer so if we need to do
+ // a "front patch" we don't have to check to see if we're hitting the
+ // last element.
+ collateVal = (uint8_t)(digVal * 10);
+
+ // Check for trailing zeroes.
+ if (collateVal == 0)
+ {
+ if (!trailingZeroIndex)
+ trailingZeroIndex = (digIndx/2) + 2;
+ }
+ else
+ trailingZeroIndex = 0;
+
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ }
+ digIndx++;
+ }
+
+ // Get next character.
+ if (!collIter_eos(source)){
+ ch = getNextNormalizedChar(source);
+ if (U16_IS_LEAD(ch)){
+ if (!collIter_eos(source)) {
+ backupState(source, &digitState);
+ UChar trail = getNextNormalizedChar(source);
+ if(U16_IS_TRAIL(trail)) {
+ char32 = U16_GET_SUPPLEMENTARY(ch, trail);
+ } else {
+ loadState(source, &digitState, TRUE);
+ char32 = ch;
+ }
+ }
+ } else {
+ char32 = ch;
+ }
+
+ if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){
+ // Resetting position to point to the next unprocessed char. We
+ // overshot it when doing our test/set for numbers.
+ if (char32 > 0xFFFF) { // For surrogates.
+ loadState(source, &digitState, TRUE);
+ //goBackOne(source);
+ }
+ goBackOne(source);
+ break;
+ }
+ } else {
+ break;
+ }
+ }
+
+ if (nonZeroValReached == FALSE){
+ digIndx = 2;
+ numTempBuf[2] = 6;
+ }
+
+ endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ;
+ if (digIndx % 2 != 0){
+ /*
+ We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what
+ we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward.
+ Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a
+ single pass and optimizes for strings with single digits. I'm just assuming that's the more common case.
+ */
+
+ for(i = 2; i < endIndex; i++){
+ numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) +
+ (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6;
+ }
+ --digIndx;
+ }
+
+ // Subtract one off of the last byte.
+ numTempBuf[endIndex-1] -= 1;
+
+ /*
+ We want to skip over the first two slots in the buffer. The first slot
+ is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
+ sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
+ */
+ numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
+ numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F));
+
+ // Now transfer the collation key to our collIterate struct.
+ // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
+ //size = ((endIndex+1) & ~1)/2;
+ CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
+ (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
+ UCOL_BYTE_COMMON; // Tertiary weight.
+ i = 2; // Reset the index into the buffer.
+ while(i < endIndex)
+ {
+ uint32_t primWeight = numTempBuf[i++] << 8;
+ if ( i < endIndex)
+ primWeight |= numTempBuf[i++];
+ *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
+ }
+
+ } else {
+ // no numeric mode, we'll just switch to whatever we stashed and continue
+ CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ CE = *CEOffset++;
+ break;
+ }
+ return CE;
+ }
+ /* various implicits optimization */
+ case IMPLICIT_TAG: /* everything that is not defined otherwise */
+ /* UCA is filled with these. Tailorings are NOT_FOUND */
+ return getImplicit(cp, source);
+ case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
+ // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit
+ return getImplicit(cp, source);
+ case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
+ {
+ static const uint32_t
+ SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
+ //const uint32_t LCount = 19;
+ static const uint32_t VCount = 21;
+ static const uint32_t TCount = 28;
+ //const uint32_t NCount = VCount * TCount; // 588
+ //const uint32_t SCount = LCount * NCount; // 11172
+ uint32_t L = ch - SBase;
+
+ // divide into pieces
+
+ uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation
+ L /= TCount;
+ uint32_t V = L % VCount;
+ L /= VCount;
+
+ // offset them
+
+ L += LBase;
+ V += VBase;
+ T += TBase;
+
+ // return the first CE, but first put the rest into the expansion buffer
+ if (!source->coll->image->jamoSpecial) { // FAST PATH
+
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
+ if (T != TBase) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
+ }
+
+ return UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
+
+ } else { // Jamo is Special
+ // Since Hanguls pass the FCD check, it is
+ // guaranteed that we won't be in
+ // the normalization buffer if something like this happens
+ // However, if we are using a uchar iterator and normalization
+ // is ON, the Hangul that lead us here is going to be in that
+ // normalization buffer. Here we want to restore the uchar
+ // iterator state and pull out of the normalization buffer
+ if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) {
+ source->flags = source->origFlags; // restore the iterator
+ source->pos = NULL;
+ }
+ // Move Jamos into normalization buffer
+ UChar *buffer = source->writableBuffer.getBuffer(4);
+ int32_t bufferLength;
+ buffer[0] = (UChar)L;
+ buffer[1] = (UChar)V;
+ if (T != TBase) {
+ buffer[2] = (UChar)T;
+ bufferLength = 3;
+ } else {
+ bufferLength = 2;
+ }
+ source->writableBuffer.releaseBuffer(bufferLength);
+
+ source->fcdPosition = source->pos; // Indicate where to continue in main input string
+ // after exhausting the writableBuffer
+ source->pos = source->writableBuffer.getTerminatedBuffer();
+ source->origFlags = source->flags;
+ source->flags |= UCOL_ITER_INNORMBUF;
+ source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+
+ return(UCOL_IGNORABLE);
+ }
+ }
+ case SURROGATE_TAG:
+ /* we encountered a leading surrogate. We shall get the CE by using the following code unit */
+ /* two things can happen here: next code point can be a trailing surrogate - we will use it */
+ /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */
+ /* we treat it like an unassigned code point. */
+ {
+ UChar trail;
+ collIterateState state;
+ backupState(source, &state);
+ if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) {
+ // we chould have stepped one char forward and it might have turned that it
+ // was not a trail surrogate. In that case, we have to backup.
+ loadState(source, &state, TRUE);
+ return UCOL_NOT_FOUND;
+ } else {
+ /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */
+ CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail);
+ if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one.
+ // We need to backup
+ loadState(source, &state, TRUE);
+ return CE;
+ }
+ // calculate the supplementary code point value, if surrogate was not tailored
+ cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
+ }
+ }
+ break;
+ case LEAD_SURROGATE_TAG: /* D800-DBFF*/
+ UChar nextChar;
+ if( source->flags & UCOL_USE_ITERATOR) {
+ if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) {
+ cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
+ source->iterator->next(source->iterator);
+ return getImplicit(cp, source);
+ }
+ } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) &&
+ U_IS_TRAIL((nextChar=*source->pos))) {
+ cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
+ source->pos++;
+ return getImplicit(cp, source);
+ }
+ return UCOL_NOT_FOUND;
+ case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
+ return UCOL_NOT_FOUND; /* broken surrogate sequence */
+ case CHARSET_TAG:
+ /* not yet implemented */
+ /* probably after 1.8 */
+ return UCOL_NOT_FOUND;
+ default:
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ CE=0;
+ break;
+ }
+ if (CE <= UCOL_NOT_FOUND) break;
+ }
+ return CE;
+}
+
+
+/* now uses Mark's getImplicitPrimary code */
+static
+inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) {
+ uint32_t r = uprv_uca_getImplicitPrimary(cp);
+
+ *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505;
+ collationSource->toReturn = collationSource->CEpos;
+
+ // **** doesn't work if using iterator ****
+ if (collationSource->flags & UCOL_ITER_INNORMBUF) {
+ collationSource->offsetRepeatCount = 1;
+ } else {
+ int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string);
+
+ UErrorCode errorCode = U_ZERO_ERROR;
+ collationSource->appendOffset(firstOffset, errorCode);
+ collationSource->appendOffset(firstOffset + 1, errorCode);
+
+ collationSource->offsetReturn = collationSource->offsetStore - 1;
+ *(collationSource->offsetBuffer) = firstOffset;
+ if (collationSource->offsetReturn == collationSource->offsetBuffer) {
+ collationSource->offsetStore = collationSource->offsetBuffer;
+ }
+ }
+
+ return ((r & 0x0000FFFF)<<16) | 0x000000C0;
+}
+
+/**
+ * This function handles the special CEs like contractions, expansions,
+ * surrogates, Thai.
+ * It is called by both getPrevCE
+ */
+uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE,
+ collIterate *source,
+ UErrorCode *status)
+{
+ const uint32_t *CEOffset = NULL;
+ UChar *UCharOffset = NULL;
+ UChar schar;
+ const UChar *constart = NULL;
+ uint32_t size;
+ UChar buffer[UCOL_MAX_BUFFER];
+ uint32_t *endCEBuffer;
+ UChar *strbuffer;
+ int32_t noChars = 0;
+ int32_t CECount = 0;
+
+ for(;;)
+ {
+ /* the only ces that loops are thai and contractions */
+ switch (getCETag(CE))
+ {
+ case NOT_FOUND_TAG: /* this tag always returns */
+ return CE;
+
+ case SPEC_PROC_TAG:
+ {
+ // Special processing is getting a CE that is preceded by a certain prefix
+ // Currently this is only needed for optimizing Japanese length and iteration marks.
+ // When we encouter a special processing tag, we go backwards and try to see if
+ // we have a match.
+ // Contraction tables are used - so the whole process is not unlike contraction.
+ // prefix data is stored backwards in the table.
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+ collIterateState prefixState;
+ backupState(source, &prefixState);
+ for(;;) {
+ // This loop will run once per source string character, for as long as we
+ // are matching a potential contraction sequence
+
+ // First we position ourselves at the begining of contraction sequence
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ if (collIter_bos(source)) {
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ break;
+ }
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
+
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
+
+ if (schar == tchar) {
+ // Found the source string char in the table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // if there is a completely ignorable code point in the middle of
+ // a prefix, we need to act as if it's not there
+ // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero)
+ // lone surrogates cannot be set to zero as it would break other processing
+ uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
+ // it's easy for BMP code points
+ if(isZeroCE == 0) {
+ continue;
+ } else if(U16_IS_SURROGATE(schar)) {
+ // for supplementary code points, we have to check the next one
+ // situations where we are going to ignore
+ // 1. beginning of the string: schar is a lone surrogate
+ // 2. schar is a lone surrogate
+ // 3. schar is a trail surrogate in a valid surrogate sequence
+ // that is explicitly set to zero.
+ if (!collIter_bos(source)) {
+ UChar lead;
+ if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) {
+ isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead);
+ if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) {
+ uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar);
+ if(finalCE == 0) {
+ // this is a real, assigned completely ignorable code point
+ goBackOne(source);
+ continue;
+ }
+ }
+ } else {
+ // lone surrogate, treat like unassigned
+ return UCOL_NOT_FOUND;
+ }
+ } else {
+ // lone surrogate at the beggining, treat like unassigned
+ return UCOL_NOT_FOUND;
+ }
+ }
+ // Source string char was not in the table.
+ // We have not found the prefix.
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ }
+
+ if(!isPrefix(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a prefix CE. We found the prefix, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of prefix handling when the source actually contained
+ // the prefix.
+ break;
+ }
+ }
+ loadState(source, &prefixState, TRUE);
+ break;
+ }
+
+ case CONTRACTION_TAG: {
+ /* to ensure that the backwards and forwards iteration matches, we
+ take the current region of most possible match and pass it through
+ the forward iteration. this will ensure that the obstinate problem of
+ overlapping contractions will not occur.
+ */
+ schar = peekCodeUnit(source, 0);
+ constart = (UChar *)coll->image + getContractOffset(CE);
+ if (isAtStartPrevIterate(source)
+ /* commented away contraction end checks after adding the checks
+ in getPrevCE */) {
+ /* start of string or this is not the end of any contraction */
+ CE = *(coll->contractionCEs +
+ (constart - coll->contractionIndex));
+ break;
+ }
+ strbuffer = buffer;
+ UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1);
+ *(UCharOffset --) = 0;
+ noChars = 0;
+ // have to swap thai characters
+ while (ucol_unsafeCP(schar, coll)) {
+ *(UCharOffset) = schar;
+ noChars++;
+ UCharOffset --;
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
+ // TODO: when we exhaust the contraction buffer,
+ // it needs to get reallocated. The problem is
+ // that the size depends on the string which is
+ // not iterated over. However, since we're travelling
+ // backwards, we already had to set the iterator at
+ // the end - so we might as well know where we are?
+ if (UCharOffset + 1 == buffer) {
+ /* we have exhausted the buffer */
+ int32_t newsize = 0;
+ if(source->pos) { // actually dealing with a position
+ newsize = (int32_t)(source->pos - source->string + 1);
+ } else { // iterator
+ newsize = 4 * UCOL_MAX_BUFFER;
+ }
+ strbuffer = (UChar *)uprv_malloc(sizeof(UChar) *
+ (newsize + UCOL_MAX_BUFFER));
+ /* test for NULL */
+ if (strbuffer == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return UCOL_NO_MORE_CES;
+ }
+ UCharOffset = strbuffer + newsize;
+ uprv_memcpy(UCharOffset, buffer,
+ UCOL_MAX_BUFFER * sizeof(UChar));
+ UCharOffset --;
+ }
+ if ((source->pos && (source->pos == source->string ||
+ ((source->flags & UCOL_ITER_INNORMBUF) &&
+ *(source->pos - 1) == 0 && source->fcdPosition == NULL)))
+ || (source->iterator && !source->iterator->hasPrevious(source->iterator))) {
+ break;
+ }
+ }
+ /* adds the initial base character to the string */
+ *(UCharOffset) = schar;
+ noChars++;
+
+ int32_t offsetBias;
+
+ // **** doesn't work if using iterator ****
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ offsetBias = -1;
+ } else {
+ offsetBias = (int32_t)(source->pos - source->string);
+ }
+
+ /* a new collIterate is used to simplify things, since using the current
+ collIterate will mean that the forward and backwards iteration will
+ share and change the same buffers. we don't want to get into that. */
+ collIterate temp;
+ int32_t rawOffset;
+
+ IInit_collIterate(coll, UCharOffset, noChars, &temp, status);
+ if(U_FAILURE(*status)) {
+ return UCOL_NULLORDER;
+ }
+ temp.flags &= ~UCOL_ITER_NORM;
+ temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT;
+
+ rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero?
+ CE = ucol_IGetNextCE(coll, &temp, status);
+
+ if (source->extendCEs) {
+ endCEBuffer = source->extendCEs + source->extendCEsSize;
+ CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t));
+ } else {
+ endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE;
+ CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t));
+ }
+
+ while (CE != UCOL_NO_MORE_CES) {
+ *(source->CEpos ++) = CE;
+
+ if (offsetBias >= 0) {
+ source->appendOffset(rawOffset + offsetBias, *status);
+ }
+
+ CECount++;
+ if (source->CEpos == endCEBuffer) {
+ /* ran out of CE space, reallocate to new buffer.
+ If reallocation fails, reset pointers and bail out,
+ there's no guarantee of the right character position after
+ this bail*/
+ if (!increaseCEsCapacity(source)) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+
+ endCEBuffer = source->extendCEs + source->extendCEsSize;
+ }
+
+ if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) {
+ rawOffset = (int32_t)(temp.fcdPosition - temp.string);
+ } else {
+ rawOffset = (int32_t)(temp.pos - temp.string);
+ }
+
+ CE = ucol_IGetNextCE(coll, &temp, status);
+ }
+
+ if (strbuffer != buffer) {
+ uprv_free(strbuffer);
+ }
+ if (U_FAILURE(*status)) {
+ return (uint32_t)UCOL_NULLORDER;
+ }
+
+ if (source->offsetRepeatValue != 0) {
+ if (CECount > noChars) {
+ source->offsetRepeatCount += temp.offsetRepeatCount;
+ } else {
+ // **** does this really skip the right offsets? ****
+ source->offsetReturn -= (noChars - CECount);
+ }
+ }
+
+ if (offsetBias >= 0) {
+ source->offsetReturn = source->offsetStore - 1;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+ }
+
+ source->toReturn = source->CEpos - 1;
+ if (source->toReturn == source->CEs) {
+ source->CEpos = source->CEs;
+ }
+
+ return *(source->toReturn);
+ }
+ case LONG_PRIMARY_TAG:
+ {
+ *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
+ *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
+ source->toReturn = source->CEpos - 1;
+
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ source->offsetRepeatCount = 1;
+ } else {
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
+
+ source->appendOffset(firstOffset, *status);
+ source->appendOffset(firstOffset + 1, *status);
+
+ source->offsetReturn = source->offsetStore - 1;
+ *(source->offsetBuffer) = firstOffset;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+ }
+
+
+ return *(source->toReturn);
+ }
+
+ case EXPANSION_TAG: /* this tag always returns */
+ {
+ /*
+ This should handle expansion.
+ NOTE: we can encounter both continuations and expansions in an expansion!
+ I have to decide where continuations are going to be dealt with
+ */
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
+
+ // **** doesn't work if using iterator ****
+ if (source->offsetReturn != NULL) {
+ if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }else {
+ firstOffset = -1;
+ }
+ }
+
+ /* find the offset to expansion table */
+ CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
+ size = getExpansionCount(CE);
+ if (size != 0) {
+ /*
+ if there are less than 16 elements in expansion, we don't terminate
+ */
+ uint32_t count;
+
+ for (count = 0; count < size; count++) {
+ *(source->CEpos ++) = *CEOffset++;
+
+ if (firstOffset >= 0) {
+ source->appendOffset(firstOffset + 1, *status);
+ }
+ }
+ } else {
+ /* else, we do */
+ while (*CEOffset != 0) {
+ *(source->CEpos ++) = *CEOffset ++;
+
+ if (firstOffset >= 0) {
+ source->appendOffset(firstOffset + 1, *status);
+ }
+ }
+ }
+
+ if (firstOffset >= 0) {
+ source->offsetReturn = source->offsetStore - 1;
+ *(source->offsetBuffer) = firstOffset;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+ } else {
+ source->offsetRepeatCount += size - 1;
+ }
+
+ source->toReturn = source->CEpos - 1;
+ // in case of one element expansion, we
+ // want to immediately return CEpos
+ if(source->toReturn == source->CEs) {
+ source->CEpos = source->CEs;
+ }
+
+ return *(source->toReturn);
+ }
+
+ case DIGIT_TAG:
+ {
+ /*
+ We do a check to see if we want to collate digits as numbers; if so we generate
+ a custom collation key. Otherwise we pull out the value stored in the expansion table.
+ */
+ uint32_t i; /* general counter */
+
+ if (source->coll->numericCollation == UCOL_ON){
+ uint32_t digIndx = 0;
+ uint32_t endIndex = 0;
+ uint32_t leadingZeroIndex = 0;
+ uint32_t trailingZeroCount = 0;
+
+ uint8_t collateVal = 0;
+
+ UBool nonZeroValReached = FALSE;
+
+ uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs.
+ /*
+ We parse the source string until we hit a char that's NOT a digit.
+ Use this u_charDigitValue. This might be slow because we have to
+ handle surrogates...
+ */
+ /*
+ We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less,
+ with any chunks smaller than that being on the right end of the digit string - i.e. the first collation
+ element we process when going backward. To determine how long that chunk might be, we may need to make
+ two passes through the loop that collects digits - one to see how long the string is (and how much is
+ leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has
+ more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation
+ element chunk after resetting the state to the initialState at the right side of the digit string.
+ */
+ uint32_t ceLimit = 0;
+ UChar initial_ch = ch;
+ collIterateState initialState = {0,0,0,0,0,0,0,0,0};
+ backupState(source, &initialState);
+
+ for(;;) {
+ collIterateState state = {0,0,0,0,0,0,0,0,0};
+ UChar32 char32 = 0;
+ int32_t digVal = 0;
+
+ if (U16_IS_TRAIL (ch)) {
+ if (!collIter_bos(source)){
+ UChar lead = getPrevNormalizedChar(source, status);
+ if(U16_IS_LEAD(lead)) {
+ char32 = U16_GET_SUPPLEMENTARY(lead,ch);
+ goBackOne(source);
+ } else {
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
+ digVal = u_charDigitValue(char32);
+
+ for(;;) {
+ // Make sure we have enough space. No longer needed;
+ // at this point the largest value of digIndx when we need to save data in numTempBuf
+ // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure
+ // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2).
+
+ // Skip over trailing zeroes, and keep a count of them.
+ if (digVal != 0)
+ nonZeroValReached = TRUE;
+
+ if (nonZeroValReached) {
+ /*
+ We parse the digit string into base 100 numbers (this fits into a byte).
+ We only add to the buffer in twos, thus if we are parsing an odd character,
+ that serves as the 'tens' digit while the if we are parsing an even one, that
+ is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
+ a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
+ overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
+ than all the other bytes.
+
+ Since we're doing in this reverse we want to put the first digit encountered into the
+ ones place and the second digit encountered into the tens place.
+ */
+
+ if ((digIndx + trailingZeroCount) % 2 == 1) {
+ // High-order digit case (tens place)
+ collateVal += (uint8_t)(digVal * 10);
+
+ // We cannot set leadingZeroIndex unless it has been set for the
+ // low-order digit. Therefore, all we can do for the high-order
+ // digit is turn it off, never on.
+ // The only time we will have a high digit without a low is for
+ // the very first non-zero digit, so no zero check is necessary.
+ if (collateVal != 0)
+ leadingZeroIndex = 0;
+
+ // The first pass through, digIndx may exceed the limit, but in that case
+ // we no longer care about numTempBuf contents since they will be discarded
+ if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) {
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ }
+ collateVal = 0;
+ } else {
+ // Low-order digit case (ones place)
+ collateVal = (uint8_t)digVal;
+
+ // Check for leading zeroes.
+ if (collateVal == 0) {
+ if (!leadingZeroIndex)
+ leadingZeroIndex = (digIndx/2) + 2;
+ } else
+ leadingZeroIndex = 0;
+
+ // No need to write to buffer; the case of a last odd digit
+ // is handled below.
+ }
+ ++digIndx;
+ } else
+ ++trailingZeroCount;
+
+ if (!collIter_bos(source)) {
+ ch = getPrevNormalizedChar(source, status);
+ //goBackOne(source);
+ if (U16_IS_TRAIL(ch)) {
+ backupState(source, &state);
+ if (!collIter_bos(source)) {
+ goBackOne(source);
+ UChar lead = getPrevNormalizedChar(source, status);
+
+ if(U16_IS_LEAD(lead)) {
+ char32 = U16_GET_SUPPLEMENTARY(lead,ch);
+ } else {
+ loadState(source, &state, FALSE);
+ char32 = ch;
+ }
+ }
+ } else
+ char32 = ch;
+
+ if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) {
+ if (char32 > 0xFFFF) {// For surrogates.
+ loadState(source, &state, FALSE);
+ }
+ // Don't need to "reverse" the goBackOne call,
+ // as this points to the next position to process..
+ //if (char32 > 0xFFFF) // For surrogates.
+ //getNextNormalizedChar(source);
+ break;
+ }
+
+ goBackOne(source);
+ }else
+ break;
+ }
+
+ if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) {
+ // our collation element is not too big, go ahead and finish with it
+ break;
+ }
+ // our digit string is too long for a collation element;
+ // set the limit for it, reset the state and begin again
+ ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER;
+ if ( ceLimit == 0 ) {
+ ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER;
+ }
+ ch = initial_ch;
+ loadState(source, &initialState, FALSE);
+ digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0;
+ collateVal = 0;
+ nonZeroValReached = FALSE;
+ }
+
+ if (! nonZeroValReached) {
+ digIndx = 2;
+ trailingZeroCount = 0;
+ numTempBuf[2] = 6;
+ }
+
+ if ((digIndx + trailingZeroCount) % 2 != 0) {
+ numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6;
+ digIndx += 1; // The implicit leading zero
+ }
+ if (trailingZeroCount % 2 != 0) {
+ // We had to consume one trailing zero for the low digit
+ // of the least significant byte
+ digIndx += 1; // The trailing zero not in the exponent
+ trailingZeroCount -= 1;
+ }
+
+ endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ;
+
+ // Subtract one off of the last byte. Really the first byte here, but it's reversed...
+ numTempBuf[2] -= 1;
+
+ /*
+ We want to skip over the first two slots in the buffer. The first slot
+ is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
+ sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
+ The exponent must be adjusted by the number of leading zeroes, and the number of
+ trailing zeroes.
+ */
+ numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
+ uint32_t exponent = (digIndx+trailingZeroCount)/2;
+ if (leadingZeroIndex)
+ exponent -= ((digIndx/2) + 2 - leadingZeroIndex);
+ numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F));
+
+ // Now transfer the collation key to our collIterate struct.
+ // The total size for our collation key is half of endIndex, rounded up.
+ int32_t size = (endIndex+1)/2;
+ if(!ensureCEsCapacity(source, size)) {
+ return UCOL_NULLORDER;
+ }
+ *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
+ (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
+ UCOL_BYTE_COMMON; // Tertiary weight.
+ i = endIndex - 1; // Reset the index into the buffer.
+ while(i >= 2) {
+ uint32_t primWeight = numTempBuf[i--] << 8;
+ if ( i >= 2)
+ primWeight |= numTempBuf[i--];
+ *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
+ }
+
+ source->toReturn = source->CEpos -1;
+ return *(source->toReturn);
+ } else {
+ CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
+ CE = *(CEOffset++);
+ break;
+ }
+ }
+
+ case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
+ {
+ static const uint32_t
+ SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
+ //const uint32_t LCount = 19;
+ static const uint32_t VCount = 21;
+ static const uint32_t TCount = 28;
+ //const uint32_t NCount = VCount * TCount; /* 588 */
+ //const uint32_t SCount = LCount * NCount; /* 11172 */
+
+ uint32_t L = ch - SBase;
+ /*
+ divide into pieces.
+ we do it in this order since some compilers can do % and / in one
+ operation
+ */
+ uint32_t T = L % TCount;
+ L /= TCount;
+ uint32_t V = L % VCount;
+ L /= VCount;
+
+ /* offset them */
+ L += LBase;
+ V += VBase;
+ T += TBase;
+
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
+ source->appendOffset(firstOffset, *status);
+
+ /*
+ * return the first CE, but first put the rest into the expansion buffer
+ */
+ if (!source->coll->image->jamoSpecial) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
+ source->appendOffset(firstOffset + 1, *status);
+
+ if (T != TBase) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
+ source->appendOffset(firstOffset + 1, *status);
+ }
+
+ source->toReturn = source->CEpos - 1;
+
+ source->offsetReturn = source->offsetStore - 1;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+
+ return *(source->toReturn);
+ } else {
+ // Since Hanguls pass the FCD check, it is
+ // guaranteed that we won't be in
+ // the normalization buffer if something like this happens
+ // Move Jamos into normalization buffer
+ /*
+ Move the Jamos into the
+ normalization buffer
+ */
+ UChar *tempbuffer = source->writableBuffer.getBuffer(5);
+ int32_t tempbufferLength;
+ tempbuffer[0] = 0;
+ tempbuffer[1] = (UChar)L;
+ tempbuffer[2] = (UChar)V;
+ if (T != TBase) {
+ tempbuffer[3] = (UChar)T;
+ tempbufferLength = 4;
+ } else {
+ tempbufferLength = 3;
+ }
+ source->writableBuffer.releaseBuffer(tempbufferLength);
+
+ /*
+ Indicate where to continue in main input string after exhausting
+ the writableBuffer
+ */
+ if (source->pos == source->string) {
+ source->fcdPosition = NULL;
+ } else {
+ source->fcdPosition = source->pos-1;
+ }
+
+ source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength;
+ source->origFlags = source->flags;
+ source->flags |= UCOL_ITER_INNORMBUF;
+ source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+
+ return(UCOL_IGNORABLE);
+ }
+ }
+
+ case IMPLICIT_TAG: /* everything that is not defined otherwise */
+ return getPrevImplicit(ch, source);
+
+ // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function
+ case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
+ return getPrevImplicit(ch, source);
+
+ case SURROGATE_TAG: /* This is a surrogate pair */
+ /* essentially an engaged lead surrogate. */
+ /* if you have encountered it here, it means that a */
+ /* broken sequence was encountered and this is an error */
+ return UCOL_NOT_FOUND;
+
+ case LEAD_SURROGATE_TAG: /* D800-DBFF*/
+ return UCOL_NOT_FOUND; /* broken surrogate sequence */
+
+ case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
+ {
+ UChar32 cp = 0;
+ UChar prevChar;
+ const UChar *prev;
+ if (isAtStartPrevIterate(source)) {
+ /* we are at the start of the string, wrong place to be at */
+ return UCOL_NOT_FOUND;
+ }
+ if (source->pos != source->writableBuffer.getBuffer()) {
+ prev = source->pos - 1;
+ } else {
+ prev = source->fcdPosition;
+ }
+ prevChar = *prev;
+
+ /* Handles Han and Supplementary characters here.*/
+ if (U16_IS_LEAD(prevChar)) {
+ cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
+ source->pos = prev;
+ } else {
+ return UCOL_NOT_FOUND; /* like unassigned */
+ }
+
+ return getPrevImplicit(cp, source);
+ }
+
+ /* UCA is filled with these. Tailorings are NOT_FOUND */
+ /* not yet implemented */
+ case CHARSET_TAG: /* this tag always returns */
+ /* probably after 1.8 */
+ return UCOL_NOT_FOUND;
+
+ default: /* this tag always returns */
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ CE=0;
+ break;
+ }
+
+ if (CE <= UCOL_NOT_FOUND) {
+ break;
+ }
+ }
+
+ return CE;
+}
+
+/* This should really be a macro */
+/* However, it is used only when stack buffers are not sufficiently big, and then we're messed up performance wise */
+/* anyway */
+static
+uint8_t *reallocateBuffer(uint8_t **secondaries, uint8_t *secStart, uint8_t *second, uint32_t *secSize, uint32_t newSize, UErrorCode *status) {
+#ifdef UCOL_DEBUG
+ fprintf(stderr, ".");
+#endif
+ uint8_t *newStart = NULL;
+ uint32_t offset = (uint32_t)(*secondaries-secStart);
+
+ if(secStart==second) {
+ newStart=(uint8_t*)uprv_malloc(newSize);
+ if(newStart==NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ uprv_memcpy(newStart, secStart, *secondaries-secStart);
+ } else {
+ newStart=(uint8_t*)uprv_realloc(secStart, newSize);
+ if(newStart==NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ /* Since we're reallocating, return original reference so we don't loose it. */
+ return secStart;
+ }
+ }
+ *secondaries=newStart+offset;
+ *secSize=newSize;
+ return newStart;
+}
+
+
+/* This should really be a macro */
+/* This function is used to reverse parts of a buffer. We need this operation when doing continuation */
+/* secondaries in French */
+/*
+void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) {
+ uint8_t temp;
+ while(start<end) {
+ temp = *start;
+ *start++ = *end;
+ *end-- = temp;
+ }
+}
+*/
+
+#define uprv_ucol_reverse_buffer(TYPE, start, end) { \
+ TYPE tempA; \
+while((start)<(end)) { \
+ tempA = *(start); \
+ *(start)++ = *(end); \
+ *(end)-- = tempA; \
+} \
+}
+
+/****************************************************************************/
+/* Following are the sortkey generation functions */
+/* */
+/****************************************************************************/
+
+/**
+ * Merge two sort keys.
+ * This is useful, for example, to combine sort keys from first and last names
+ * to sort such pairs.
+ * Merged sort keys consider on each collation level the first part first entirely,
+ * then the second one.
+ * It is possible to merge multiple sort keys by consecutively merging
+ * another one with the intermediate result.
+ *
+ * The length of the merge result is the sum of the lengths of the input sort keys
+ * minus 1.
+ *
+ * @param src1 the first sort key
+ * @param src1Length the length of the first sort key, including the zero byte at the end;
+ * can be -1 if the function is to find the length
+ * @param src2 the second sort key
+ * @param src2Length the length of the second sort key, including the zero byte at the end;
+ * can be -1 if the function is to find the length
+ * @param dest the buffer where the merged sort key is written,
+ * can be NULL if destCapacity==0
+ * @param destCapacity the number of bytes in the dest buffer
+ * @return the length of the merged sort key, src1Length+src2Length-1;
+ * can be larger than destCapacity, or 0 if an error occurs (only for illegal arguments),
+ * in which cases the contents of dest is undefined
+ *
+ * @draft
+ */
+U_CAPI int32_t U_EXPORT2
+ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length,
+ const uint8_t *src2, int32_t src2Length,
+ uint8_t *dest, int32_t destCapacity) {
+ int32_t destLength;
+ uint8_t b;
+
+ /* check arguments */
+ if( src1==NULL || src1Length<-2 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) ||
+ src2==NULL || src2Length<-2 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) ||
+ destCapacity<0 || (destCapacity>0 && dest==NULL)
+ ) {
+ /* error, attempt to write a zero byte and return 0 */
+ if(dest!=NULL && destCapacity>0) {
+ *dest=0;
+ }
+ return 0;
+ }
+
+ /* check lengths and capacity */
+ if(src1Length<0) {
+ src1Length=(int32_t)uprv_strlen((const char *)src1)+1;
+ }
+ if(src2Length<0) {
+ src2Length=(int32_t)uprv_strlen((const char *)src2)+1;
+ }
+
+ destLength=src1Length+src2Length-1;
+ if(destLength>destCapacity) {
+ /* the merged sort key does not fit into the destination */
+ return destLength;
+ }
+
+ /* merge the sort keys with the same number of levels */
+ while(*src1!=0 && *src2!=0) { /* while both have another level */
+ /* copy level from src1 not including 00 or 01 */
+ while((b=*src1)>=2) {
+ ++src1;
+ *dest++=b;
+ }
+
+ /* add a 02 merge separator */
+ *dest++=2;
+
+ /* copy level from src2 not including 00 or 01 */
+ while((b=*src2)>=2) {
+ ++src2;
+ *dest++=b;
+ }
+
+ /* if both sort keys have another level, then add a 01 level separator and continue */
+ if(*src1==1 && *src2==1) {
+ ++src1;
+ ++src2;
+ *dest++=1;
+ }
+ }
+
+ /*
+ * here, at least one sort key is finished now, but the other one
+ * might have some contents left from containing more levels;
+ * that contents is just appended to the result
+ */
+ if(*src1!=0) {
+ /* src1 is not finished, therefore *src2==0, and src1 is appended */
+ src2=src1;
+ }
+ /* append src2, "the other, unfinished sort key" */
+ uprv_strcpy((char *)dest, (const char *)src2);
+
+ /* trust that neither sort key contained illegally embedded zero bytes */
+ return destLength;
+}
+
+/* sortkey API */
+U_CAPI int32_t U_EXPORT2
+ucol_getSortKey(const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ uint8_t *result,
+ int32_t resultLength)
+{
+ UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY);
+ if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source,
+ ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength));
+ }
+
+ UErrorCode status = U_ZERO_ERROR;
+ int32_t keySize = 0;
+
+ if(source != NULL) {
+ // source == NULL is actually an error situation, but we would need to
+ // have an error code to return it. Until we introduce a new
+ // API, it stays like this
+
+ /* this uses the function pointer that is set in updateinternalstate */
+ /* currently, there are two funcs: */
+ /*ucol_calcSortKey(...);*/
+ /*ucol_calcSortKeySimpleTertiary(...);*/
+
+ keySize = coll->sortKeyGen(coll, source, sourceLength, &result, resultLength, FALSE, &status);
+ //if (U_FAILURE(status) && status != U_BUFFER_OVERFLOW_ERROR && result && resultLength > 0) {
+ // That's not good. Something unusual happened.
+ // We don't know how much we initialized before we failed.
+ // NULL terminate for safety.
+ // We have no way say that we have generated a partial sort key.
+ //result[0] = 0;
+ //keySize = 0;
+ //}
+ }
+ UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize);
+ UTRACE_EXIT_STATUS(status);
+ return keySize;
+}
+
+/* this function is called by the C++ API for sortkey generation */
+U_CFUNC int32_t
+ucol_getSortKeyWithAllocation(const UCollator *coll,
+ const UChar *source, int32_t sourceLength,
+ uint8_t **pResult,
+ UErrorCode *pErrorCode) {
+ *pResult = 0;
+ return coll->sortKeyGen(coll, source, sourceLength, pResult, 0, TRUE, pErrorCode);
+}
+
+#define UCOL_FSEC_BUF_SIZE 256
+
+// Is this primary weight compressible?
+// Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit).
+// TODO: This should use per-lead-byte flags from FractionalUCA.txt.
+static inline UBool
+isCompressible(const UCollator * /*coll*/, uint8_t primary1) {
+ return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary;
+}
+
+/* This function tries to get the size of a sortkey. It will be invoked if the size of resulting buffer is 0 */
+/* or if we run out of space while making a sortkey and want to return ASAP */
+int32_t ucol_getSortKeySize(const UCollator *coll, collIterate *s, int32_t currentSize, UColAttributeValue strength, int32_t len) {
+ UErrorCode status = U_ZERO_ERROR;
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+ uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
+ uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
+ uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
+ UBool compareIdent = (strength == UCOL_IDENTICAL);
+ UBool doCase = (coll->caseLevel == UCOL_ON);
+ UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
+ //UBool qShifted = shifted && (compareQuad == 0);
+ UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0);
+ UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
+ uint8_t fSecsBuff[UCOL_FSEC_BUF_SIZE];
+ uint8_t *fSecs = fSecsBuff;
+ uint32_t fSecsLen = 0, fSecsMaxLen = UCOL_FSEC_BUF_SIZE;
+ uint8_t *frenchStartPtr = NULL, *frenchEndPtr = NULL;
+
+ uint32_t variableTopValue = coll->variableTopValue;
+ uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
+ if(doHiragana) {
+ UCOL_COMMON_BOT4++;
+ /* allocate one more space for hiragana */
+ }
+ uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
+
+ uint32_t order = UCOL_NO_MORE_CES;
+ uint8_t primary1 = 0;
+ uint8_t primary2 = 0;
+ uint8_t secondary = 0;
+ uint8_t tertiary = 0;
+ int32_t caseShift = 0;
+ uint32_t c2 = 0, c3 = 0, c4 = 0; /* variables for compression */
+
+ uint8_t caseSwitch = coll->caseSwitch;
+ uint8_t tertiaryMask = coll->tertiaryMask;
+ uint8_t tertiaryCommon = coll->tertiaryCommon;
+
+ UBool wasShifted = FALSE;
+ UBool notIsContinuation = FALSE;
+ uint8_t leadPrimary = 0;
+
+
+ for(;;) {
+ order = ucol_IGetNextCE(coll, s, &status);
+ if(order == UCOL_NO_MORE_CES) {
+ break;
+ }
+
+ if(order == 0) {
+ continue;
+ }
+
+ notIsContinuation = !isContinuation(order);
+
+
+ if(notIsContinuation) {
+ tertiary = (uint8_t)((order & UCOL_BYTE_SIZE_MASK));
+ } else {
+ tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
+ }
+ secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(order >> 8);
+
+ /* no need to permute since the actual code values don't matter
+ if (coll->leadBytePermutationTable != NULL && notIsContinuation) {
+ primary1 = coll->leadBytePermutationTable[primary1];
+ }
+ */
+
+ if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
+ || (!notIsContinuation && wasShifted)))
+ || (wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */
+ /* and other ignorables should be removed if following a shifted code point */
+ if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ continue;
+ }
+ if(compareQuad == 0) {
+ if(c4 > 0) {
+ currentSize += (c2/UCOL_BOT_COUNT4)+1;
+ c4 = 0;
+ }
+ currentSize++;
+ if(primary2 != 0) {
+ currentSize++;
+ }
+ }
+ wasShifted = TRUE;
+ } else {
+ wasShifted = FALSE;
+ /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
+ /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
+ /* calculate sortkey size */
+ if(primary1 != UCOL_IGNORABLE) {
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ currentSize++;
+ } else {
+ if(leadPrimary != 0) {
+ currentSize++;
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ currentSize++;
+ leadPrimary = 0;
+ } else if(isCompressible(coll, primary1)) {
+ /* compress */
+ leadPrimary = primary1;
+ currentSize+=2;
+ } else {
+ leadPrimary = 0;
+ currentSize+=2;
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
+ currentSize++;
+ if(primary2 != UCOL_IGNORABLE) {
+ currentSize++;
+ }
+ }
+ }
+
+ if(secondary > compareSec) { /* I think that != 0 test should be != IGNORABLE */
+ if(!isFrenchSec){
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ c2++;
+ } else {
+ if(c2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+1;
+ } else {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+1;
+ }
+ c2 = 0;
+ }
+ currentSize++;
+ }
+ } else {
+ fSecs[fSecsLen++] = secondary;
+ if(fSecsLen == fSecsMaxLen) {
+ uint8_t *fSecsTemp;
+ if(fSecs == fSecsBuff) {
+ fSecsTemp = (uint8_t *)uprv_malloc(2*fSecsLen);
+ } else {
+ fSecsTemp = (uint8_t *)uprv_realloc(fSecs, 2*fSecsLen);
+ }
+ if(fSecsTemp == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ fSecs = fSecsTemp;
+ fSecsMaxLen *= 2;
+ }
+ if(notIsContinuation) {
+ if (frenchStartPtr != NULL) {
+ /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ frenchStartPtr = NULL;
+ }
+ } else {
+ if (frenchStartPtr == NULL) {
+ frenchStartPtr = fSecs+fSecsLen-2;
+ }
+ frenchEndPtr = fSecs+fSecsLen-1;
+ }
+ }
+ }
+
+ if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ if (caseShift == 0) {
+ currentSize++;
+ caseShift = UCOL_CASE_SHIFT_START;
+ }
+ if((tertiary&0x3F) > 0 && notIsContinuation) {
+ caseShift--;
+ if((tertiary &0xC0) != 0) {
+ if (caseShift == 0) {
+ currentSize++;
+ caseShift = UCOL_CASE_SHIFT_START;
+ }
+ caseShift--;
+ }
+ }
+ } else {
+ if(notIsContinuation) {
+ tertiary ^= caseSwitch;
+ }
+ }
+
+ tertiary &= tertiaryMask;
+ if(tertiary > compareTer) { /* I think that != 0 test should be != IGNORABLE */
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ c3++;
+ } else {
+ if(c3 > 0) {
+ if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL)
+ || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) {
+ currentSize += (c3/(uint32_t)coll->tertiaryTopCount)+1;
+ } else {
+ currentSize += (c3/(uint32_t)coll->tertiaryBottomCount)+1;
+ }
+ c3 = 0;
+ }
+ currentSize++;
+ }
+ }
+
+ if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
+ if(s->flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ if(c4>0) { // Close this part
+ currentSize += (c4/UCOL_BOT_COUNT4)+1;
+ c4 = 0;
+ }
+ currentSize++; // Add the Hiragana
+ } else { // This wasn't Hiragana, so we can continue adding stuff
+ c4++;
+ }
+ }
+ }
+ }
+
+ if(!isFrenchSec){
+ if(c2 > 0) {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
+ } else {
+ uint32_t i = 0;
+ if(frenchStartPtr != NULL) {
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ }
+ for(i = 0; i<fSecsLen; i++) {
+ secondary = *(fSecs+fSecsLen-i-1);
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2) {
+ ++c2;
+ } else {
+ if(c2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+((c2%(uint32_t)UCOL_TOP_COUNT2 != 0)?1:0);
+ } else {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
+ c2 = 0;
+ }
+ currentSize++;
+ }
+ }
+ if(c2 > 0) {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
+ if(fSecs != fSecsBuff) {
+ uprv_free(fSecs);
+ }
+ }
+
+ if(c3 > 0) {
+ currentSize += (c3/(uint32_t)coll->tertiaryBottomCount) + ((c3%(uint32_t)coll->tertiaryBottomCount != 0)?1:0);
+ }
+
+ if(c4 > 0 && compareQuad == 0) {
+ currentSize += (c4/(uint32_t)UCOL_BOT_COUNT4)+((c4%(uint32_t)UCOL_BOT_COUNT4 != 0)?1:0);
+ }
+
+ if(compareIdent) {
+ currentSize += u_lengthOfIdenticalLevelRun(s->string, len);
+ }
+ return currentSize;
+}
+
+static
+inline void doCaseShift(uint8_t **cases, uint32_t &caseShift) {
+ if (caseShift == 0) {
+ *(*cases)++ = UCOL_CASE_BYTE_START;
+ caseShift = UCOL_CASE_SHIFT_START;
+ }
+}
+
+// Adds a value to the buffer if it's safe to add. Increments the number of added values, so that we
+// know how many values we wanted to add, even if we didn't add them all
+static
+inline void addWithIncrement(uint8_t *&primaries, uint8_t *limit, uint32_t &size, const uint8_t value) {
+ size++;
+ if(primaries < limit) {
+ *(primaries)++ = value;
+ }
+}
+
+// Packs the secondary buffer when processing French locale. Adds the terminator.
+static
+inline uint8_t *packFrench(uint8_t *primaries, uint8_t *primEnd, uint8_t *secondaries, uint32_t *secsize, uint8_t *frenchStartPtr, uint8_t *frenchEndPtr) {
+ uint8_t secondary;
+ int32_t count2 = 0;
+ uint32_t i = 0, size = 0;
+ // we use i here since the key size already accounts for terminators, so we'll discard the increment
+ addWithIncrement(primaries, primEnd, i, UCOL_LEVELTERMINATOR);
+ /* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */
+ if(frenchStartPtr != NULL) {
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ }
+ for(i = 0; i<*secsize; i++) {
+ secondary = *(secondaries-i-1);
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2) {
+ ++count2;
+ } else {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2));
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
+ }
+ count2 = 0;
+ }
+ addWithIncrement(primaries, primEnd, size, secondary);
+ }
+ }
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
+ }
+ *secsize = size;
+ return primaries;
+}
+
+#define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0
+
+/* This is the sortkey work horse function */
+U_CFUNC int32_t U_CALLCONV
+ucol_calcSortKey(const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ uint8_t **result,
+ uint32_t resultLength,
+ UBool allocateSKBuffer,
+ UErrorCode *status)
+{
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+
+ uint32_t i = 0; /* general purpose counter */
+
+ /* Stack allocated buffers for buffers we use */
+ uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER], caseB[UCOL_CASE_MAX_BUFFER], quad[UCOL_QUAD_MAX_BUFFER];
+
+ uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert, *cases = caseB, *quads = quad;
+
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+
+ if(primaries == NULL && allocateSKBuffer == TRUE) {
+ primaries = *result = prim;
+ resultLength = UCOL_PRIMARY_MAX_BUFFER;
+ }
+
+ uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER,
+ caseSize = UCOL_CASE_MAX_BUFFER, quadSize = UCOL_QUAD_MAX_BUFFER;
+
+ uint32_t sortKeySize = 1; /* it is always \0 terminated */
+
+ UnicodeString normSource;
+
+ int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
+
+ UColAttributeValue strength = coll->strength;
+
+ uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
+ uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
+ uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
+ UBool compareIdent = (strength == UCOL_IDENTICAL);
+ UBool doCase = (coll->caseLevel == UCOL_ON);
+ UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
+ UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
+ //UBool qShifted = shifted && (compareQuad == 0);
+ UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0);
+
+ uint32_t variableTopValue = coll->variableTopValue;
+ // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no
+ // qShifted, we don't need to set UCOL_COMMON_BOT4 so high.
+ uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
+ uint8_t UCOL_HIRAGANA_QUAD = 0;
+ if(doHiragana) {
+ UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++;
+ /* allocate one more space for hiragana, value for hiragana */
+ }
+ uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
+
+ /* support for special features like caselevel and funky secondaries */
+ uint8_t *frenchStartPtr = NULL;
+ uint8_t *frenchEndPtr = NULL;
+ uint32_t caseShift = 0;
+
+ sortKeySize += ((compareSec?0:1) + (compareTer?0:1) + (doCase?1:0) + /*(qShifted?1:0)*/(compareQuad?0:1) + (compareIdent?1:0));
+
+ /* If we need to normalize, we'll do it all at once at the beginning! */
+ const Normalizer2 *norm2;
+ if(compareIdent) {
+ norm2 = Normalizer2Factory::getNFDInstance(*status);
+ } else if(coll->normalizationMode != UCOL_OFF) {
+ norm2 = Normalizer2Factory::getFCDInstance(*status);
+ } else {
+ norm2 = NULL;
+ }
+ if(norm2 != NULL) {
+ normSource.setTo(FALSE, source, len);
+ int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status);
+ if(qcYesLength != len) {
+ UnicodeString unnormalized = normSource.tempSubString(qcYesLength);
+ normSource.truncate(qcYesLength);
+ norm2->normalizeSecondAndAppend(normSource, unnormalized, *status);
+ source = normSource.getBuffer();
+ len = normSource.length();
+ }
+ }
+ collIterate s;
+ IInit_collIterate(coll, source, len, &s, status);
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+ s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized.
+
+ if(resultLength == 0 || primaries == NULL) {
+ return ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
+ }
+ uint8_t *primarySafeEnd = primaries + resultLength - 1;
+ if(strength > UCOL_PRIMARY) {
+ primarySafeEnd--;
+ }
+
+ uint32_t minBufferSize = UCOL_MAX_BUFFER;
+
+ uint8_t *primStart = primaries;
+ uint8_t *secStart = secondaries;
+ uint8_t *terStart = tertiaries;
+ uint8_t *caseStart = cases;
+ uint8_t *quadStart = quads;
+
+ uint32_t order = 0;
+
+ uint8_t primary1 = 0;
+ uint8_t primary2 = 0;
+ uint8_t secondary = 0;
+ uint8_t tertiary = 0;
+ uint8_t caseSwitch = coll->caseSwitch;
+ uint8_t tertiaryMask = coll->tertiaryMask;
+ int8_t tertiaryAddition = coll->tertiaryAddition;
+ uint8_t tertiaryTop = coll->tertiaryTop;
+ uint8_t tertiaryBottom = coll->tertiaryBottom;
+ uint8_t tertiaryCommon = coll->tertiaryCommon;
+ uint8_t caseBits = 0;
+
+ UBool finished = FALSE;
+ UBool wasShifted = FALSE;
+ UBool notIsContinuation = FALSE;
+
+ uint32_t prevBuffSize = 0;
+
+ uint32_t count2 = 0, count3 = 0, count4 = 0;
+ uint8_t leadPrimary = 0;
+
+ for(;;) {
+ for(i=prevBuffSize; i<minBufferSize; ++i) {
+
+ order = ucol_IGetNextCE(coll, &s, status);
+ if(order == UCOL_NO_MORE_CES) {
+ finished = TRUE;
+ break;
+ }
+
+ if(order == 0) {
+ continue;
+ }
+
+ notIsContinuation = !isContinuation(order);
+
+ if(notIsContinuation) {
+ tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK);
+ } else {
+ tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
+ }
+
+ secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(order >> 8);
+
+ uint8_t originalPrimary1 = primary1;
+ if(notIsContinuation && coll->leadBytePermutationTable != NULL) {
+ primary1 = coll->leadBytePermutationTable[primary1];
+ }
+
+ if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
+ || (!notIsContinuation && wasShifted)))
+ || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
+ {
+ /* and other ignorables should be removed if following a shifted code point */
+ if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ continue;
+ }
+ if(compareQuad == 0) {
+ if(count4 > 0) {
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ count4 = 0;
+ }
+ /* We are dealing with a variable and we're treating them as shifted */
+ /* This is a shifted ignorable */
+ if(primary1 != 0) { /* we need to check this since we could be in continuation */
+ *quads++ = primary1;
+ }
+ if(primary2 != 0) {
+ *quads++ = primary2;
+ }
+ }
+ wasShifted = TRUE;
+ } else {
+ wasShifted = FALSE;
+ /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
+ /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
+ /* regular and simple sortkey calc */
+ if(primary1 != UCOL_IGNORABLE) {
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ *primaries++ = primary2;
+ } else {
+ if(leadPrimary != 0) {
+ *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ *primaries++ = primary1;
+ leadPrimary = 0;
+ } else if(isCompressible(coll, originalPrimary1)) {
+ /* compress */
+ *primaries++ = leadPrimary = primary1;
+ if(primaries <= primarySafeEnd) {
+ *primaries++ = primary2;
+ }
+ } else {
+ leadPrimary = 0;
+ *primaries++ = primary1;
+ if(primaries <= primarySafeEnd) {
+ *primaries++ = primary2;
+ }
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
+ *primaries++ = primary1;
+ if((primary2 != UCOL_IGNORABLE) && (primaries <= primarySafeEnd)) {
+ *primaries++ = primary2; /* second part */
+ }
+ }
+ }
+
+ if(secondary > compareSec) {
+ if(!isFrenchSec) {
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ ++count2;
+ } else {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ count2 = 0;
+ }
+ *secondaries++ = secondary;
+ }
+ } else {
+ *secondaries++ = secondary;
+ /* Do the special handling for French secondaries */
+ /* We need to get continuation elements and do intermediate restore */
+ /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */
+ if(notIsContinuation) {
+ if (frenchStartPtr != NULL) {
+ /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ frenchStartPtr = NULL;
+ }
+ } else {
+ if (frenchStartPtr == NULL) {
+ frenchStartPtr = secondaries - 2;
+ }
+ frenchEndPtr = secondaries-1;
+ }
+ }
+ }
+
+ if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ doCaseShift(&cases, caseShift);
+ if(notIsContinuation) {
+ caseBits = (uint8_t)(tertiary & 0xC0);
+
+ if(tertiary != 0) {
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ if((caseBits & 0xC0) == 0) {
+ *(cases-1) |= 1 << (--caseShift);
+ } else {
+ *(cases-1) |= 0 << (--caseShift);
+ /* second bit */
+ doCaseShift(&cases, caseShift);
+ *(cases-1) |= ((caseBits>>6)&1) << (--caseShift);
+ }
+ } else {
+ if((caseBits & 0xC0) == 0) {
+ *(cases-1) |= 0 << (--caseShift);
+ } else {
+ *(cases-1) |= 1 << (--caseShift);
+ /* second bit */
+ doCaseShift(&cases, caseShift);
+ *(cases-1) |= ((caseBits>>7)&1) << (--caseShift);
+ }
+ }
+ }
+
+ }
+ } else {
+ if(notIsContinuation) {
+ tertiary ^= caseSwitch;
+ }
+ }
+
+ tertiary &= tertiaryMask;
+ if(tertiary > compareTer) {
+ /* This is compression code. */
+ /* sequence size check is included in the if clause */
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ ++count3;
+ } else {
+ if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
+ tertiary += tertiaryAddition;
+ } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
+ tertiary -= tertiaryAddition;
+ }
+ if (count3 > 0) {
+ if ((tertiary > tertiaryCommon)) {
+ while (count3 > coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ count3 = 0;
+ }
+ *tertiaries++ = tertiary;
+ }
+ }
+
+ if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
+ if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ if(count4>0) { // Close this part
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ count4 = 0;
+ }
+ *quads++ = UCOL_HIRAGANA_QUAD; // Add the Hiragana
+ } else { // This wasn't Hiragana, so we can continue adding stuff
+ count4++;
+ }
+ }
+ }
+
+ if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
+ if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
+ IInit_collIterate(coll, (UChar *)source, len, &s, status);
+ if(U_FAILURE(*status)) {
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
+ s.flags &= ~UCOL_ITER_NORM;
+ sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ finished = TRUE;
+ break;
+ } else { /* It's much nicer if we can actually reallocate */
+ int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart));
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ primarySafeEnd = primStart + resultLength - 1;
+ if(strength > UCOL_PRIMARY) {
+ primarySafeEnd--;
+ }
+ } else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
+ }
+ }
+ }
+ if(finished) {
+ break;
+ } else {
+ prevBuffSize = minBufferSize;
+
+ uint32_t frenchStartOffset = 0, frenchEndOffset = 0;
+ if (frenchStartPtr != NULL) {
+ frenchStartOffset = (uint32_t)(frenchStartPtr - secStart);
+ frenchEndOffset = (uint32_t)(frenchEndPtr - secStart);
+ }
+ secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
+ terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
+ caseStart = reallocateBuffer(&cases, caseStart, caseB, &caseSize, 2*caseSize, status);
+ quadStart = reallocateBuffer(&quads, quadStart, quad, &quadSize, 2*quadSize, status);
+ if(U_FAILURE(*status)) {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ break;
+ }
+ if (frenchStartPtr != NULL) {
+ frenchStartPtr = secStart + frenchStartOffset;
+ frenchEndPtr = secStart + frenchEndOffset;
+ }
+ minBufferSize *= 2;
+ }
+ }
+
+ /* Here, we are generally done with processing */
+ /* bailing out would not be too productive */
+
+ if(U_SUCCESS(*status)) {
+ sortKeySize += (uint32_t)(primaries - primStart);
+ /* we have done all the CE's, now let's put them together to form a key */
+ if(compareSec == 0) {
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ uint32_t secsize = (uint32_t)(secondaries-secStart);
+ if(!isFrenchSec) { // Regular situation, we know the length of secondaries
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, secStart, secsize);
+ primaries += secsize;
+ } else {
+ if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, secStart, secsize);
+ primaries += secsize;
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ } else { // French secondary is on. We will need to pack French. packFrench will add the level terminator
+ uint8_t *newPrim = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) { // if we managed to pack fine
+ primaries = newPrim; // update the primary pointer
+ } else { // overflow, need to reallocate and redo
+ if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ primaries = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ }
+ }
+
+ if(doCase) {
+ uint32_t casesize = (uint32_t)(cases - caseStart);
+ sortKeySize += casesize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, caseStart, casesize);
+ primaries += casesize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, caseStart, casesize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ }
+
+ if(compareTer == 0) {
+ if (count3 > 0) {
+ if (coll->tertiaryCommon != UCOL_COMMON_BOT3) {
+ while (count3 >= coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - count3);
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ }
+ uint32_t tersize = (uint32_t)(tertiaries - terStart);
+ sortKeySize += tersize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ primaries += tersize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+
+ if(compareQuad == 0/*qShifted == TRUE*/) {
+ if(count4 > 0) {
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ }
+ uint32_t quadsize = (uint32_t)(quads - quadStart);
+ sortKeySize += quadsize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, quadStart, quadsize);
+ primaries += quadsize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, quadStart, quadsize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ }
+
+ if(compareIdent) {
+ sortKeySize += u_lengthOfIdenticalLevelRun(s.string, len);
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ primaries += u_writeIdenticalLevelRun(s.string, len, primaries);
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ u_writeIdenticalLevelRun(s.string, len, primaries);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ }
+ }
+ *(primaries++) = '\0';
+ }
+
+ if(allocateSKBuffer == TRUE) {
+ *result = (uint8_t*)uprv_malloc(sortKeySize);
+ /* test for NULL */
+ if (*result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup;
+ }
+ uprv_memcpy(*result, primStart, sortKeySize);
+ if(primStart != prim) {
+ uprv_free(primStart);
+ }
+ }
+
+cleanup:
+ if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
+ /* NULL terminate for safety */
+ **result = 0;
+ }
+ if(terStart != tert) {
+ uprv_free(terStart);
+ uprv_free(secStart);
+ uprv_free(caseStart);
+ uprv_free(quadStart);
+ }
+
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ ucol_freeOffsetBuffer(&s);
+
+ return sortKeySize;
+}
+
+
+U_CFUNC int32_t U_CALLCONV
+ucol_calcSortKeySimpleTertiary(const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ uint8_t **result,
+ uint32_t resultLength,
+ UBool allocateSKBuffer,
+ UErrorCode *status)
+{
+ U_ALIGN_CODE(16);
+
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+ uint32_t i = 0; /* general purpose counter */
+
+ /* Stack allocated buffers for buffers we use */
+ uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER];
+
+ uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert;
+
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+
+ if(primaries == NULL && allocateSKBuffer == TRUE) {
+ primaries = *result = prim;
+ resultLength = UCOL_PRIMARY_MAX_BUFFER;
+ }
+
+ uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER;
+
+ uint32_t sortKeySize = 3; /* it is always \0 terminated plus separators for secondary and tertiary */
+
+ UnicodeString normSource;
+
+ int32_t len = sourceLength;
+
+ /* If we need to normalize, we'll do it all at once at the beginning! */
+ if(coll->normalizationMode != UCOL_OFF) {
+ normSource.setTo(len < 0, source, len);
+ const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status);
+ int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status);
+ if(qcYesLength != normSource.length()) {
+ UnicodeString unnormalized = normSource.tempSubString(qcYesLength);
+ normSource.truncate(qcYesLength);
+ norm2->normalizeSecondAndAppend(normSource, unnormalized, *status);
+ source = normSource.getBuffer();
+ len = normSource.length();
+ }
+ }
+ collIterate s;
+ IInit_collIterate(coll, (UChar *)source, len, &s, status);
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+ s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized.
+
+ if(resultLength == 0 || primaries == NULL) {
+ return ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
+ }
+
+ uint8_t *primarySafeEnd = primaries + resultLength - 2;
+
+ uint32_t minBufferSize = UCOL_MAX_BUFFER;
+
+ uint8_t *primStart = primaries;
+ uint8_t *secStart = secondaries;
+ uint8_t *terStart = tertiaries;
+
+ uint32_t order = 0;
+
+ uint8_t primary1 = 0;
+ uint8_t primary2 = 0;
+ uint8_t secondary = 0;
+ uint8_t tertiary = 0;
+ uint8_t caseSwitch = coll->caseSwitch;
+ uint8_t tertiaryMask = coll->tertiaryMask;
+ int8_t tertiaryAddition = coll->tertiaryAddition;
+ uint8_t tertiaryTop = coll->tertiaryTop;
+ uint8_t tertiaryBottom = coll->tertiaryBottom;
+ uint8_t tertiaryCommon = coll->tertiaryCommon;
+
+ uint32_t prevBuffSize = 0;
+
+ UBool finished = FALSE;
+ UBool notIsContinuation = FALSE;
+
+ uint32_t count2 = 0, count3 = 0;
+ uint8_t leadPrimary = 0;
+
+ for(;;) {
+ for(i=prevBuffSize; i<minBufferSize; ++i) {
+
+ order = ucol_IGetNextCE(coll, &s, status);
+
+ if(order == 0) {
+ continue;
+ }
+
+ if(order == UCOL_NO_MORE_CES) {
+ finished = TRUE;
+ break;
+ }
+
+ notIsContinuation = !isContinuation(order);
+
+ if(notIsContinuation) {
+ tertiary = (uint8_t)((order & tertiaryMask));
+ } else {
+ tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
+ }
+
+ secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(order >> 8);
+
+ uint8_t originalPrimary1 = primary1;
+ if (coll->leadBytePermutationTable != NULL && notIsContinuation) {
+ primary1 = coll->leadBytePermutationTable[primary1];
+ }
+
+ /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
+ /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
+ /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
+ /* regular and simple sortkey calc */
+ if(primary1 != UCOL_IGNORABLE) {
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ *primaries++ = primary2;
+ } else {
+ if(leadPrimary != 0) {
+ *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ *primaries++ = primary1;
+ leadPrimary = 0;
+ } else if(isCompressible(coll, originalPrimary1)) {
+ /* compress */
+ *primaries++ = leadPrimary = primary1;
+ *primaries++ = primary2;
+ } else {
+ leadPrimary = 0;
+ *primaries++ = primary1;
+ *primaries++ = primary2;
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
+ *primaries++ = primary1;
+ if(primary2 != UCOL_IGNORABLE) {
+ *primaries++ = primary2; /* second part */
+ }
+ }
+ }
+
+ if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ ++count2;
+ } else {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ count2 = 0;
+ }
+ *secondaries++ = secondary;
+ }
+ }
+
+ if(notIsContinuation) {
+ tertiary ^= caseSwitch;
+ }
+
+ if(tertiary > 0) {
+ /* This is compression code. */
+ /* sequence size check is included in the if clause */
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ ++count3;
+ } else {
+ if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
+ tertiary += tertiaryAddition;
+ } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
+ tertiary -= tertiaryAddition;
+ }
+ if (count3 > 0) {
+ if ((tertiary > tertiaryCommon)) {
+ while (count3 > coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ count3 = 0;
+ }
+ *tertiaries++ = tertiary;
+ }
+ }
+
+ if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
+ if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
+ IInit_collIterate(coll, (UChar *)source, len, &s, status);
+ if(U_FAILURE(*status)) {
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
+ s.flags &= ~UCOL_ITER_NORM;
+ sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ finished = TRUE;
+ break;
+ } else { /* It's much nicer if we can actually reallocate */
+ int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart));
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ primarySafeEnd = primStart + resultLength - 2;
+ } else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
+ }
+ }
+ }
+ if(finished) {
+ break;
+ } else {
+ prevBuffSize = minBufferSize;
+ secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
+ terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
+ minBufferSize *= 2;
+ if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ break;
+ }
+ }
+ }
+
+ if(U_SUCCESS(*status)) {
+ sortKeySize += (uint32_t)(primaries - primStart);
+ /* we have done all the CE's, now let's put them together to form a key */
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ uint32_t secsize = (uint32_t)(secondaries-secStart);
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, secStart, secsize);
+ primaries += secsize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ *result = primStart;
+ uprv_memcpy(primaries, secStart, secsize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+
+ if (count3 > 0) {
+ if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) {
+ while (count3 >= coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - count3);
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ }
+ uint32_t tersize = (uint32_t)(tertiaries - terStart);
+ sortKeySize += tersize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ primaries += tersize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+
+ *(primaries++) = '\0';
+ }
+
+ if(allocateSKBuffer == TRUE) {
+ *result = (uint8_t*)uprv_malloc(sortKeySize);
+ /* test for NULL */
+ if (*result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup;
+ }
+ uprv_memcpy(*result, primStart, sortKeySize);
+ if(primStart != prim) {
+ uprv_free(primStart);
+ }
+ }
+
+cleanup:
+ if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
+ /* NULL terminate for safety */
+ **result = 0;
+ }
+ if(terStart != tert) {
+ uprv_free(terStart);
+ uprv_free(secStart);
+ }
+
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ ucol_freeOffsetBuffer(&s);
+
+ return sortKeySize;
+}
+
+static inline
+UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) {
+ UBool notIsContinuation = !isContinuation(CE);
+ uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF);
+ if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0)
+ || (!notIsContinuation && *wasShifted)))
+ || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
+ {
+ // The stuff below should probably be in the sortkey code... maybe not...
+ if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ *wasShifted = TRUE;
+ //continue;
+ }
+ //*wasShifted = TRUE;
+ return TRUE;
+ } else {
+ *wasShifted = FALSE;
+ return FALSE;
+ }
+}
+static inline
+void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) {
+ if(level < maxLevel) {
+ dest[i++] = UCOL_LEVELTERMINATOR;
+ } else {
+ dest[i++] = 0;
+ }
+}
+
+/** enumeration of level identifiers for partial sort key generation */
+enum {
+ UCOL_PSK_PRIMARY = 0,
+ UCOL_PSK_SECONDARY = 1,
+ UCOL_PSK_CASE = 2,
+ UCOL_PSK_TERTIARY = 3,
+ UCOL_PSK_QUATERNARY = 4,
+ UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */
+ UCOL_PSK_IDENTICAL = 6,
+ UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */
+ UCOL_PSK_LIMIT
+};
+
+/** collation state enum. *_SHIFT value is how much to shift right
+ * to get the state piece to the right. *_MASK value should be
+ * ANDed with the shifted state. This data is stored in state[1]
+ * field.
+ */
+enum {
+ UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */
+ UCOL_PSK_LEVEL_MASK = 7, /** three bits */
+ UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */
+ UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1,
+ /** can be only 0 or 1, since we get up to two bytes from primary or quaternary
+ * This field is also used to denote that the French secondary level is finished
+ */
+ UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */
+ UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */
+ UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */
+ UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */
+ /** When we do French we need to reverse secondary values. However, continuations
+ * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba
+ */
+ UCOL_PSK_BOCSU_BYTES_SHIFT = 7,
+ UCOL_PSK_BOCSU_BYTES_MASK = 3,
+ UCOL_PSK_CONSUMED_CES_SHIFT = 9,
+ UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF
+};
+
+// macro calculating the number of expansion CEs available
+#define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn
+
+
+/** main sortkey part procedure. On the first call,
+ * you should pass in a collator, an iterator, empty state
+ * state[0] == state[1] == 0, a buffer to hold results
+ * number of bytes you need and an error code pointer.
+ * Make sure your buffer is big enough to hold the wanted
+ * number of sortkey bytes. I don't check.
+ * The only meaningful status you can get back is
+ * U_BUFFER_OVERFLOW_ERROR, which basically means that you
+ * have been dealt a raw deal and that you probably won't
+ * be able to use partial sortkey generation for this
+ * particular combination of string and collator. This
+ * is highly unlikely, but you should still check the error code.
+ * Any other status means that you're not in a sane situation
+ * anymore. After the first call, preserve state values and
+ * use them on subsequent calls to obtain more bytes of a sortkey.
+ * Use until the number of bytes written is smaller than the requested
+ * number of bytes. Generated sortkey is not compatible with the
+ * one generated by ucol_getSortKey, as we don't do any compression.
+ * However, levels are still terminated by a 1 (one) and the sortkey
+ * is terminated by a 0 (zero). Identical level is the same as in the
+ * regular sortkey - internal bocu-1 implementation is used.
+ * For curious, although you cannot do much about this, here is
+ * the structure of state words.
+ * state[0] - iterator state. Depends on the iterator implementation,
+ * but allows the iterator to continue where it stopped in
+ * the last iteration.
+ * state[1] - collation processing state. Here is the distribution
+ * of the bits:
+ * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary
+ * quaternary, quin (we don't use this one), identical and
+ * null (producing only zeroes - first one to terminate the
+ * sortkey and subsequent to fill the buffer).
+ * 3 - byte count. Number of bytes written on the primary level.
+ * 4 - was shifted. Whether the previous iteration finished in the
+ * shifted state.
+ * 5, 6 - French continuation bytes written. See the comment in the enum
+ * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on
+ * the identical level.
+ * 9..31 - CEs consumed. Number of getCE or next32 operations performed
+ * since thes last successful update of the iterator state.
+ */
+U_CAPI int32_t U_EXPORT2
+ucol_nextSortKeyPart(const UCollator *coll,
+ UCharIterator *iter,
+ uint32_t state[2],
+ uint8_t *dest, int32_t count,
+ UErrorCode *status)
+{
+ /* error checking */
+ if(status==NULL || U_FAILURE(*status)) {
+ return 0;
+ }
+ UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART);
+ if( coll==NULL || iter==NULL ||
+ state==NULL ||
+ count<0 || (count>0 && dest==NULL)
+ ) {
+ *status=U_ILLEGAL_ARGUMENT_ERROR;
+ UTRACE_EXIT_STATUS(status);
+ return 0;
+ }
+
+ UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d",
+ coll, iter, state[0], state[1], dest, count);
+
+ if(count==0) {
+ /* nothing to do */
+ UTRACE_EXIT_VALUE(0);
+ return 0;
+ }
+ /** Setting up situation according to the state we got from the previous iteration */
+ // The state of the iterator from the previous invocation
+ uint32_t iterState = state[0];
+ // Has the last iteration ended in the shifted state
+ UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE;
+ // What is the current level of the sortkey?
+ int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK;
+ // Have we written only one byte from a two byte primary in the previous iteration?
+ // Also on secondary level - have we finished with the French secondary?
+ int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK;
+ // number of bytes in the continuation buffer for French
+ int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK;
+ // Number of bytes already written from a bocsu sequence. Since
+ // the longes bocsu sequence is 4 long, this can be up to 3.
+ int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK;
+ // Number of elements that need to be consumed in this iteration because
+ // the iterator returned UITER_NO_STATE at the end of the last iteration,
+ // so we had to save the last valid state.
+ int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK;
+
+ /** values that depend on the collator attributes */
+ // strength of the collator.
+ int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status);
+ // maximal level of the partial sortkey. Need to take whether case level is done
+ int32_t maxLevel = 0;
+ if(strength < UCOL_TERTIARY) {
+ if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
+ maxLevel = UCOL_PSK_CASE;
+ } else {
+ maxLevel = strength;
+ }
+ } else {
+ if(strength == UCOL_TERTIARY) {
+ maxLevel = UCOL_PSK_TERTIARY;
+ } else if(strength == UCOL_QUATERNARY) {
+ maxLevel = UCOL_PSK_QUATERNARY;
+ } else { // identical
+ maxLevel = UCOL_IDENTICAL;
+ }
+ }
+ // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation
+ uint8_t UCOL_HIRAGANA_QUAD =
+ (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF;
+ // Boundary value that decides whether a CE is shifted or not
+ uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0;
+ // Are we doing French collation?
+ UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON);
+
+ /** initializing the collation state */
+ UBool notIsContinuation = FALSE;
+ uint32_t CE = UCOL_NO_MORE_CES;
+
+ collIterate s;
+ IInit_collIterate(coll, NULL, -1, &s, status);
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ s.iterator = iter;
+ s.flags |= UCOL_USE_ITERATOR;
+ // This variable tells us whether we have produced some other levels in this iteration
+ // before we moved to the identical level. In that case, we need to switch the
+ // type of the iterator.
+ UBool doingIdenticalFromStart = FALSE;
+ // Normalizing iterator
+ // The division for the array length may truncate the array size to
+ // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
+ // for all platforms anyway.
+ UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UNormIterator *normIter = NULL;
+ // If the normalization is turned on for the collator and we are below identical level
+ // we will use a FCD normalizing iterator
+ if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) {
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status);
+ s.flags &= ~UCOL_ITER_NORM;
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ } else if(level == UCOL_PSK_IDENTICAL) {
+ // for identical level, we need a NFD iterator. We need to instantiate it here, since we
+ // will be updating the state - and this cannot be done on an ordinary iterator.
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ s.flags &= ~UCOL_ITER_NORM;
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ doingIdenticalFromStart = TRUE;
+ }
+
+ // This is the tentative new state of the iterator. The problem
+ // is that the iterator might return an undefined state, in
+ // which case we should save the last valid state and increase
+ // the iterator skip value.
+ uint32_t newState = 0;
+
+ // First, we set the iterator to the last valid position
+ // from the last iteration. This was saved in state[0].
+ if(iterState == 0) {
+ /* initial state */
+ if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) {
+ s.iterator->move(s.iterator, 0, UITER_LIMIT);
+ } else {
+ s.iterator->move(s.iterator, 0, UITER_START);
+ }
+ } else {
+ /* reset to previous state */
+ s.iterator->setState(s.iterator, iterState, status);
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ }
+
+
+
+ // This variable tells us whether we can attempt to update the state
+ // of iterator. Situations where we don't want to update iterator state
+ // are the existence of expansion CEs that are not yet processed, and
+ // finishing the case level without enough space in the buffer to insert
+ // a level terminator.
+ UBool canUpdateState = TRUE;
+
+ // Consume all the CEs that were consumed at the end of the previous
+ // iteration without updating the iterator state. On identical level,
+ // consume the code points.
+ int32_t counter = cces;
+ if(level < UCOL_PSK_IDENTICAL) {
+ while(counter-->0) {
+ // If we're doing French and we are on the secondary level,
+ // we go backwards.
+ if(level == UCOL_PSK_SECONDARY && doingFrench) {
+ CE = ucol_IGetPrevCE(coll, &s, status);
+ } else {
+ CE = ucol_IGetNextCE(coll, &s, status);
+ }
+ if(CE==UCOL_NO_MORE_CES) {
+ /* should not happen */
+ *status=U_INTERNAL_PROGRAM_ERROR;
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ }
+ }
+ } else {
+ while(counter-->0) {
+ uiter_next32(s.iterator);
+ }
+ }
+
+ // French secondary needs to know whether the iterator state of zero came from previous level OR
+ // from a new invocation...
+ UBool wasDoingPrimary = FALSE;
+ // destination buffer byte counter. When this guy
+ // gets to count, we're done with the iteration
+ int32_t i = 0;
+ // used to count the zero bytes written after we
+ // have finished with the sort key
+ int32_t j = 0;
+
+
+ // Hm.... I think we're ready to plunge in. Basic story is as following:
+ // we have a fall through case based on level. This is used for initial
+ // positioning on iteration start. Every level processor contains a
+ // for(;;) which will be broken when we exhaust all the CEs. Other
+ // way to exit is a goto saveState, which happens when we have filled
+ // out our buffer.
+ switch(level) {
+ case UCOL_PSK_PRIMARY:
+ wasDoingPrimary = TRUE;
+ for(;;) {
+ if(i==count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState && byteCountOrFrenchDone == 0) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone=0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_SECONDARY;
+ break;
+ }
+ if(!isContinuation(CE)){
+ if(coll->leadBytePermutationTable != NULL){
+ CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF);
+ }
+ }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */
+ if(CE != 0) {
+ if(byteCountOrFrenchDone == 0) {
+ // get the second byte of primary
+ dest[i++]=(uint8_t)(CE >> 8);
+ } else {
+ byteCountOrFrenchDone = 0;
+ }
+ if((CE &=0xff)!=0) {
+ if(i==count) {
+ /* overflow */
+ byteCountOrFrenchDone = 1;
+ cces--;
+ goto saveState;
+ }
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ /* fall through to next level */
+ case UCOL_PSK_SECONDARY:
+ if(strength >= UCOL_SECONDARY) {
+ if(!doingFrench) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_CASE;
+ break;
+ }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 8; /* get secondary */
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ } else { // French secondary processing
+ uint8_t frenchBuff[UCOL_MAX_BUFFER];
+ int32_t frenchIndex = 0;
+ // Here we are going backwards.
+ // If the iterator is at the beggining, it should be
+ // moved to end.
+ if(wasDoingPrimary) {
+ s.iterator->move(s.iterator, 0, UITER_LIMIT);
+ cces = 0;
+ }
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetPrevCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the next level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ level = UCOL_PSK_CASE;
+ break;
+ }
+ if(isContinuation(CE)) { // if it's a continuation, we want to save it and
+ // reverse when we get a first non-continuation CE.
+ CE >>= 8;
+ frenchBuff[frenchIndex++] = (uint8_t)CE;
+ } else if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 8; /* get secondary */
+ if(!frenchIndex) {
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ } else {
+ frenchBuff[frenchIndex++] = (uint8_t)CE;
+ frenchIndex -= usedFrench;
+ usedFrench = 0;
+ while(i < count && frenchIndex) {
+ dest[i++] = frenchBuff[--frenchIndex];
+ usedFrench++;
+ }
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ }
+ } else {
+ level = UCOL_PSK_CASE;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_CASE:
+ if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
+ uint32_t caseShift = UCOL_CASE_SHIFT_START;
+ uint8_t caseByte = UCOL_CASE_BYTE_START;
+ uint8_t caseBits = 0;
+
+ for(;;) {
+ U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START);
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // On the case level we might have an unfinished
+ // case byte. Add one if it's started.
+ if(caseShift != UCOL_CASE_SHIFT_START) {
+ dest[i++] = caseByte;
+ }
+ cces = 0;
+ // We have finished processing CEs on this level.
+ // However, we don't know if we have enough space
+ // to add a case level terminator.
+ if(i < count) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ // Restart the iteration and move to the
+ // next level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ level = UCOL_PSK_TERTIARY;
+ } else {
+ canUpdateState = FALSE;
+ }
+ break;
+ }
+
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
+ caseBits = (uint8_t)(CE & 0xC0);
+ // this copies the case level logic from the
+ // sort key generation code
+ if(CE != 0) {
+ if (caseShift == 0) {
+ dest[i++] = caseByte;
+ caseShift = UCOL_CASE_SHIFT_START;
+ caseByte = UCOL_CASE_BYTE_START;
+ }
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ if((caseBits & 0xC0) == 0) {
+ caseByte |= 1 << (--caseShift);
+ } else {
+ caseByte |= 0 << (--caseShift);
+ /* second bit */
+ if(caseShift == 0) {
+ dest[i++] = caseByte;
+ caseShift = UCOL_CASE_SHIFT_START;
+ caseByte = UCOL_CASE_BYTE_START;
+ }
+ caseByte |= ((caseBits>>6)&1) << (--caseShift);
+ }
+ } else {
+ if((caseBits & 0xC0) == 0) {
+ caseByte |= 0 << (--caseShift);
+ } else {
+ caseByte |= 1 << (--caseShift);
+ /* second bit */
+ if(caseShift == 0) {
+ dest[i++] = caseByte;
+ caseShift = UCOL_CASE_SHIFT_START;
+ caseByte = UCOL_CASE_BYTE_START;
+ }
+ caseByte |= ((caseBits>>7)&1) << (--caseShift);
+ }
+ }
+ }
+
+ }
+ }
+ // Not sure this is correct for the case level - revisit
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ } else {
+ level = UCOL_PSK_TERTIARY;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_TERTIARY:
+ if(strength >= UCOL_TERTIARY) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_QUATERNARY;
+ break;
+ }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ notIsContinuation = !isContinuation(CE);
+
+ if(notIsContinuation) {
+ CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
+ CE ^= coll->caseSwitch;
+ CE &= coll->tertiaryMask;
+ } else {
+ CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
+ }
+
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ } else {
+ // if we're not doing tertiary
+ // skip to the end
+ level = UCOL_PSK_NULL;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_QUATERNARY:
+ if(strength >= UCOL_QUATERNARY) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ //dest[i++] = UCOL_LEVELTERMINATOR;
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_QUIN;
+ break;
+ }
+ if(CE==0)
+ continue;
+ if(isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 16; /* get primary */
+ if(CE != 0) {
+ if(byteCountOrFrenchDone == 0) {
+ dest[i++]=(uint8_t)(CE >> 8);
+ } else {
+ byteCountOrFrenchDone = 0;
+ }
+ if((CE &=0xff)!=0) {
+ if(i==count) {
+ /* overflow */
+ byteCountOrFrenchDone = 1;
+ goto saveState;
+ }
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ } else {
+ notIsContinuation = !isContinuation(CE);
+ if(notIsContinuation) {
+ if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ dest[i++] = UCOL_HIRAGANA_QUAD;
+ } else {
+ dest[i++] = 0xFF;
+ }
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
+ }
+ } else {
+ // if we're not doing quaternary
+ // skip to the end
+ level = UCOL_PSK_NULL;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_QUIN:
+ level = UCOL_PSK_IDENTICAL;
+ /* fall through to next level */
+ case UCOL_PSK_IDENTICAL:
+ if(strength >= UCOL_IDENTICAL) {
+ UChar32 first, second;
+ int32_t bocsuBytesWritten = 0;
+ // We always need to do identical on
+ // the NFD form of the string.
+ if(normIter == NULL) {
+ // we arrived from the level below and
+ // normalization was not turned on.
+ // therefore, we need to make a fresh NFD iterator
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ } else if(!doingIdenticalFromStart) {
+ // there is an iterator, but we did some other levels.
+ // therefore, we have a FCD iterator - need to make
+ // a NFD one.
+ // normIter being at the beginning does not guarantee
+ // that the underlying iterator is at the beginning
+ iter->move(iter, 0, UITER_START);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ }
+ // At this point we have a NFD iterator that is positioned
+ // in the right place
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ first = uiter_previous32(s.iterator);
+ // maybe we're at the start of the string
+ if(first == U_SENTINEL) {
+ first = 0;
+ } else {
+ uiter_next32(s.iterator);
+ }
+
+ j = 0;
+ for(;;) {
+ if(i == count) {
+ if(j+1 < bocsuBytesWritten) {
+ bocsuBytesUsed = j+1;
+ }
+ goto saveState;
+ }
+
+ // On identical level, we will always save
+ // the state if we reach this point, since
+ // we don't depend on getNextCE for content
+ // all the content is in our buffer and we
+ // already either stored the full buffer OR
+ // otherwise we won't arrive here.
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+
+ uint8_t buff[4];
+ second = uiter_next32(s.iterator);
+ cces++;
+
+ // end condition for identical level
+ if(second == U_SENTINEL) {
+ terminatePSKLevel(level, maxLevel, i, dest);
+ level = UCOL_PSK_NULL;
+ break;
+ }
+ bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff);
+ first = second;
+
+ j = 0;
+ if(bocsuBytesUsed != 0) {
+ while(bocsuBytesUsed-->0) {
+ j++;
+ }
+ }
+
+ while(i < count && j < bocsuBytesWritten) {
+ dest[i++] = buff[j++];
+ }
+ }
+
+ } else {
+ level = UCOL_PSK_NULL;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_NULL:
+ j = i;
+ while(j<count) {
+ dest[j++]=0;
+ }
+ break;
+ default:
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+
+saveState:
+ // Now we need to return stuff. First we want to see whether we have
+ // done everything for the current state of iterator.
+ if(byteCountOrFrenchDone
+ || canUpdateState == FALSE
+ || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE)
+ {
+ // Any of above mean that the previous transaction
+ // wasn't finished and that we should store the
+ // previous iterator state.
+ state[0] = iterState;
+ } else {
+ // The transaction is complete. We will continue in the next iteration.
+ state[0] = s.iterator->getState(s.iterator);
+ cces = 0;
+ }
+ // Store the number of bocsu bytes written.
+ if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) {
+ *status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT;
+
+ // Next we put in the level of comparison
+ state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT);
+
+ // If we are doing French, we need to store whether we have just finished the French level
+ if(level == UCOL_PSK_SECONDARY && doingFrench) {
+ state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
+ } else {
+ state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
+ }
+
+ // Was the latest CE shifted
+ if(wasShifted) {
+ state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT;
+ }
+ // Check for cces overflow
+ if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) {
+ *status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ // Store cces
+ state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT);
+
+ // Check for French overflow
+ if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) {
+ *status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ // Store number of bytes written in the French secondary continuation sequence
+ state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT);
+
+
+ // If we have used normalizing iterator, get rid of it
+ if(normIter != NULL) {
+ unorm_closeIter(normIter);
+ }
+
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ ucol_freeOffsetBuffer(&s);
+
+ // Return number of meaningful sortkey bytes.
+ UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d",
+ dest,i, state[0], state[1]);
+ UTRACE_EXIT_VALUE(i);
+ return i;
+}
+
+/**
+ * Produce a bound for a given sortkey and a number of levels.
+ */
+U_CAPI int32_t U_EXPORT2
+ucol_getBound(const uint8_t *source,
+ int32_t sourceLength,
+ UColBoundMode boundType,
+ uint32_t noOfLevels,
+ uint8_t *result,
+ int32_t resultLength,
+ UErrorCode *status)
+{
+ // consistency checks
+ if(status == NULL || U_FAILURE(*status)) {
+ return 0;
+ }
+ if(source == NULL) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+ int32_t sourceIndex = 0;
+ // Scan the string until we skip enough of the key OR reach the end of the key
+ do {
+ sourceIndex++;
+ if(source[sourceIndex] == UCOL_LEVELTERMINATOR) {
+ noOfLevels--;
+ }
+ } while (noOfLevels > 0
+ && (source[sourceIndex] != 0 || sourceIndex < sourceLength));
+
+ if((source[sourceIndex] == 0 || sourceIndex == sourceLength)
+ && noOfLevels > 0) {
+ *status = U_SORT_KEY_TOO_SHORT_WARNING;
+ }
+
+
+ // READ ME: this code assumes that the values for boundType
+ // enum will not changes. They are set so that the enum value
+ // corresponds to the number of extra bytes each bound type
+ // needs.
+ if(result != NULL && resultLength >= sourceIndex+boundType) {
+ uprv_memcpy(result, source, sourceIndex);
+ switch(boundType) {
+ // Lower bound just gets terminated. No extra bytes
+ case UCOL_BOUND_LOWER: // = 0
+ break;
+ // Upper bound needs one extra byte
+ case UCOL_BOUND_UPPER: // = 1
+ result[sourceIndex++] = 2;
+ break;
+ // Upper long bound needs two extra bytes
+ case UCOL_BOUND_UPPER_LONG: // = 2
+ result[sourceIndex++] = 0xFF;
+ result[sourceIndex++] = 0xFF;
+ break;
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+ result[sourceIndex++] = 0;
+
+ return sourceIndex;
+ } else {
+ return sourceIndex+boundType+1;
+ }
+}
+
+/****************************************************************************/
+/* Following are the functions that deal with the properties of a collator */
+/* there are new APIs and some compatibility APIs */
+/****************************************************************************/
+
+static inline void
+ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE,
+ int32_t *primShift, int32_t *secShift, int32_t *terShift)
+{
+ uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0;
+ UBool reverseSecondary = FALSE;
+ UBool continuation = isContinuation(CE);
+ if(!continuation) {
+ tertiary = (uint8_t)((CE & coll->tertiaryMask));
+ tertiary ^= coll->caseSwitch;
+ reverseSecondary = TRUE;
+ } else {
+ tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
+ tertiary &= UCOL_REMOVE_CASE;
+ reverseSecondary = FALSE;
+ }
+
+ secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(CE >> 8);
+
+ if(primary1 != 0) {
+ if (coll->leadBytePermutationTable != NULL && !continuation) {
+ primary1 = coll->leadBytePermutationTable[primary1];
+ }
+
+ coll->latinOneCEs[ch] |= (primary1 << *primShift);
+ *primShift -= 8;
+ }
+ if(primary2 != 0) {
+ if(*primShift < 0) {
+ coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ return;
+ }
+ coll->latinOneCEs[ch] |= (primary2 << *primShift);
+ *primShift -= 8;
+ }
+ if(secondary != 0) {
+ if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary
+ coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary
+ coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24);
+ } else { // normal case
+ coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift);
+ }
+ *secShift -= 8;
+ }
+ if(tertiary != 0) {
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift);
+ *terShift -= 8;
+ }
+}
+
+static inline UBool
+ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) {
+ uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3);
+ if(newTable == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ coll->latinOneFailed = TRUE;
+ return FALSE;
+ }
+ int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t);
+ uprv_memset(newTable, 0, size*sizeof(uint32_t)*3);
+ uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy);
+ uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy);
+ uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy);
+ coll->latinOneTableLen = size;
+ uprv_free(coll->latinOneCEs);
+ coll->latinOneCEs = newTable;
+ return TRUE;
+}
+
+static UBool
+ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) {
+ UBool result = TRUE;
+ if(coll->latinOneCEs == NULL) {
+ coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3);
+ if(coll->latinOneCEs == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return FALSE;
+ }
+ coll->latinOneTableLen = UCOL_LATINONETABLELEN;
+ }
+ UChar ch = 0;
+ UCollationElements *it = ucol_openElements(coll, &ch, 1, status);
+ // Check for null pointer
+ if (U_FAILURE(*status)) {
+ return FALSE;
+ }
+ uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3);
+
+ int32_t primShift = 24, secShift = 24, terShift = 24;
+ uint32_t CE = 0;
+ int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1;
+
+ // TODO: make safe if you get more than you wanted...
+ for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) {
+ primShift = 24; secShift = 24; terShift = 24;
+ if(ch < 0x100) {
+ CE = coll->latinOneMapping[ch];
+ } else {
+ CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ if(CE == UCOL_NOT_FOUND && coll->UCA) {
+ CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
+ }
+ }
+ if(CE < UCOL_NOT_FOUND) {
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ } else {
+ switch (getCETag(CE)) {
+ case EXPANSION_TAG:
+ case DIGIT_TAG:
+ ucol_setText(it, &ch, 1, status);
+ while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) {
+ if(primShift < 0 || secShift < 0 || terShift < 0) {
+ coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ break;
+ }
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ }
+ break;
+ case CONTRACTION_TAG:
+ // here is the trick
+ // F2 is contraction. We do something very similar to contractions
+ // but have two indices, one in the real contraction table and the
+ // other to where we stuffed things. This hopes that we don't have
+ // many contractions (this should work for latin-1 tables).
+ {
+ if((CE & 0x00FFF000) != 0) {
+ *status = U_UNSUPPORTED_ERROR;
+ goto cleanup_after_failure;
+ }
+
+ const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table
+
+ coll->latinOneCEs[ch] = CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE;
+
+ // We're going to jump into contraction table, pick the elements
+ // and use them
+ do {
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) {
+ uint32_t size;
+ uint32_t i; /* general counter */
+ uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ size = getExpansionCount(CE);
+ //CE = *CEOffset++;
+ if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
+ for(i = 0; i<size; i++) {
+ if(primShift < 0 || secShift < 0 || terShift < 0) {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ break;
+ }
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
+ }
+ } else { /* else, we do */
+ while(*CEOffset != 0) {
+ if(primShift < 0 || secShift < 0 || terShift < 0) {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ break;
+ }
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
+ }
+ }
+ contractionOffset++;
+ } else if(CE < UCOL_NOT_FOUND) {
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift);
+ } else {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ contractionOffset++;
+ }
+ UCharOffset++;
+ primShift = 24; secShift = 24; terShift = 24;
+ if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate
+ if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) {
+ goto cleanup_after_failure;
+ }
+ }
+ } while(*UCharOffset != 0xFFFF);
+ }
+ break;;
+ case SPEC_PROC_TAG:
+ {
+ // 0xB7 is a precontext character defined in UCA5.1, a special
+ // handle is implemeted in order to save LatinOne table for
+ // most locales.
+ if (ch==0xb7) {
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ }
+ else {
+ goto cleanup_after_failure;
+ }
+ }
+ break;
+ default:
+ goto cleanup_after_failure;
+ }
+ }
+ }
+ // compact table
+ if(contractionOffset < coll->latinOneTableLen) {
+ if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) {
+ goto cleanup_after_failure;
+ }
+ }
+ ucol_closeElements(it);
+ return result;
+
+cleanup_after_failure:
+ // status should already be set before arriving here.
+ coll->latinOneFailed = TRUE;
+ ucol_closeElements(it);
+ return FALSE;
+}
+
+void ucol_updateInternalState(UCollator *coll, UErrorCode *status) {
+ if(U_SUCCESS(*status)) {
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ coll->caseSwitch = UCOL_CASE_SWITCH;
+ } else {
+ coll->caseSwitch = UCOL_NO_CASE_SWITCH;
+ }
+
+ if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) {
+ coll->tertiaryMask = UCOL_REMOVE_CASE;
+ coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
+ coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF;
+ coll->tertiaryBottom = UCOL_COMMON_BOT3;
+ } else {
+ coll->tertiaryMask = UCOL_KEEP_CASE;
+ coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON;
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST;
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER;
+ coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER;
+ } else {
+ coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER;
+ coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER;
+ }
+ }
+
+ /* Set the compression values */
+ uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - UCOL_COMMON_BOT3-1);
+ coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */
+ coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount);
+
+ if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY
+ && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE)
+ {
+ coll->sortKeyGen = ucol_calcSortKeySimpleTertiary;
+ } else {
+ coll->sortKeyGen = ucol_calcSortKey;
+ }
+ if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF
+ && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed)
+ {
+ if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) {
+ if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it
+ //fprintf(stderr, "F");
+ coll->latinOneUse = TRUE;
+ } else {
+ coll->latinOneUse = FALSE;
+ }
+ if(*status == U_UNSUPPORTED_ERROR) {
+ *status = U_ZERO_ERROR;
+ }
+ } else { // latin1Table exists and it doesn't need to be regenerated, just use it
+ coll->latinOneUse = TRUE;
+ }
+ } else {
+ coll->latinOneUse = FALSE;
+ }
+ }
+}
+
+U_CAPI uint32_t U_EXPORT2
+ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return 0;
+ }
+ if(len == -1) {
+ len = u_strlen(varTop);
+ }
+ if(len == 0) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+ collIterate s;
+ IInit_collIterate(coll, varTop, len, &s, status);
+ if(U_FAILURE(*status)) {
+ return 0;
+ }
+
+ uint32_t CE = ucol_IGetNextCE(coll, &s, status);
+
+ /* here we check if we have consumed all characters */
+ /* you can put in either one character or a contraction */
+ /* you shouldn't put more... */
+ if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) {
+ *status = U_CE_NOT_FOUND_ERROR;
+ return 0;
+ }
+
+ uint32_t nextCE = ucol_IGetNextCE(coll, &s, status);
+
+ if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) {
+ *status = U_PRIMARY_TOO_LONG_ERROR;
+ return 0;
+ }
+ if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) {
+ coll->variableTopValueisDefault = FALSE;
+ coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16;
+ }
+
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ ucol_freeOffsetBuffer(&s);
+
+ return CE & UCOL_PRIMARYMASK;
+}
+
+U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return 0;
+ }
+ return coll->variableTopValue<<16;
+}
+
+U_CAPI void U_EXPORT2
+ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return;
+ }
+
+ if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) {
+ coll->variableTopValueisDefault = FALSE;
+ coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16;
+ }
+}
+/* Attribute setter API */
+U_CAPI void U_EXPORT2
+ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return;
+ }
+ UColAttributeValue oldFrench = coll->frenchCollation;
+ UColAttributeValue oldCaseFirst = coll->caseFirst;
+ switch(attr) {
+ case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */
+ if(value == UCOL_ON) {
+ coll->numericCollation = UCOL_ON;
+ coll->numericCollationisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->numericCollation = UCOL_OFF;
+ coll->numericCollationisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->numericCollationisDefault = TRUE;
+ coll->numericCollation = (UColAttributeValue)coll->options->numericCollation;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ break;
+ case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */
+ if(value == UCOL_ON) {
+ coll->hiraganaQ = UCOL_ON;
+ coll->hiraganaQisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->hiraganaQ = UCOL_OFF;
+ coll->hiraganaQisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->hiraganaQisDefault = TRUE;
+ coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ break;
+ case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
+ if(value == UCOL_ON) {
+ coll->frenchCollation = UCOL_ON;
+ coll->frenchCollationisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->frenchCollation = UCOL_OFF;
+ coll->frenchCollationisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->frenchCollationisDefault = TRUE;
+ coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
+ if(value == UCOL_SHIFTED) {
+ coll->alternateHandling = UCOL_SHIFTED;
+ coll->alternateHandlingisDefault = FALSE;
+ } else if (value == UCOL_NON_IGNORABLE) {
+ coll->alternateHandling = UCOL_NON_IGNORABLE;
+ coll->alternateHandlingisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->alternateHandlingisDefault = TRUE;
+ coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
+ if(value == UCOL_LOWER_FIRST) {
+ coll->caseFirst = UCOL_LOWER_FIRST;
+ coll->caseFirstisDefault = FALSE;
+ } else if (value == UCOL_UPPER_FIRST) {
+ coll->caseFirst = UCOL_UPPER_FIRST;
+ coll->caseFirstisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->caseFirst = UCOL_OFF;
+ coll->caseFirstisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->caseFirst = (UColAttributeValue)coll->options->caseFirst;
+ coll->caseFirstisDefault = TRUE;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_CASE_LEVEL: /* do we have an extra case level */
+ if(value == UCOL_ON) {
+ coll->caseLevel = UCOL_ON;
+ coll->caseLevelisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->caseLevel = UCOL_OFF;
+ coll->caseLevelisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->caseLevel = (UColAttributeValue)coll->options->caseLevel;
+ coll->caseLevelisDefault = TRUE;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
+ if(value == UCOL_ON) {
+ coll->normalizationMode = UCOL_ON;
+ coll->normalizationModeisDefault = FALSE;
+ initializeFCD(status);
+ } else if (value == UCOL_OFF) {
+ coll->normalizationMode = UCOL_OFF;
+ coll->normalizationModeisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->normalizationModeisDefault = TRUE;
+ coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode;
+ if(coll->normalizationMode == UCOL_ON) {
+ initializeFCD(status);
+ }
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_STRENGTH: /* attribute for strength */
+ if (value == UCOL_DEFAULT) {
+ coll->strengthisDefault = TRUE;
+ coll->strength = (UColAttributeValue)coll->options->strength;
+ } else if (value <= UCOL_IDENTICAL) {
+ coll->strengthisDefault = FALSE;
+ coll->strength = value;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR ;
+ }
+ break;
+ case UCOL_ATTRIBUTE_COUNT:
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ break;
+ }
+ if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) {
+ coll->latinOneRegenTable = TRUE;
+ } else {
+ coll->latinOneRegenTable = FALSE;
+ }
+ ucol_updateInternalState(coll, status);
+}
+
+U_CAPI UColAttributeValue U_EXPORT2
+ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return UCOL_DEFAULT;
+ }
+ switch(attr) {
+ case UCOL_NUMERIC_COLLATION:
+ return coll->numericCollation;
+ case UCOL_HIRAGANA_QUATERNARY_MODE:
+ return coll->hiraganaQ;
+ case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
+ return coll->frenchCollation;
+ case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
+ return coll->alternateHandling;
+ case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
+ return coll->caseFirst;
+ case UCOL_CASE_LEVEL: /* do we have an extra case level */
+ return coll->caseLevel;
+ case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
+ return coll->normalizationMode;
+ case UCOL_STRENGTH: /* attribute for strength */
+ return coll->strength;
+ case UCOL_ATTRIBUTE_COUNT:
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ break;
+ }
+ return UCOL_DEFAULT;
+}
+
+U_CAPI void U_EXPORT2
+ucol_setStrength( UCollator *coll,
+ UCollationStrength strength)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status);
+}
+
+U_CAPI UCollationStrength U_EXPORT2
+ucol_getStrength(const UCollator *coll)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ return ucol_getAttribute(coll, UCOL_STRENGTH, &status);
+}
+
+U_INTERNAL int32_t U_EXPORT2
+ucol_getReorderCodes(const UCollator *coll,
+ int32_t *dest,
+ int32_t destCapacity,
+ UErrorCode *pErrorCode) {
+ if (U_FAILURE(*pErrorCode)) {
+ return 0;
+ }
+
+ if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) {
+ *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+ if (coll->reorderCodesLength > destCapacity) {
+ *pErrorCode = U_BUFFER_OVERFLOW_ERROR;
+ return coll->reorderCodesLength;
+ }
+ for (int32_t i = 0; i < coll->reorderCodesLength; i++) {
+ dest[i] = coll->reorderCodes[i];
+ }
+ return coll->reorderCodesLength;
+}
+
+U_INTERNAL void U_EXPORT2
+ucol_setReorderCodes(UCollator *coll,
+ const int32_t *reorderCodes,
+ int32_t reorderCodesLength,
+ UErrorCode *pErrorCode) {
+ if (U_FAILURE(*pErrorCode)) {
+ return;
+ }
+
+ if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) {
+ *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+
+ uprv_free(coll->reorderCodes);
+ coll->reorderCodes = NULL;
+ coll->reorderCodesLength = 0;
+ if (reorderCodesLength == 0) {
+ uprv_free(coll->leadBytePermutationTable);
+ coll->leadBytePermutationTable = NULL;
+ return;
+ }
+ coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t));
+ if (coll->reorderCodes == NULL) {
+ *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ for (int32_t i = 0; i < reorderCodesLength; i++) {
+ coll->reorderCodes[i] = reorderCodes[i];
+ }
+ coll->reorderCodesLength = reorderCodesLength;
+ ucol_buildPermutationTable(coll, pErrorCode);
+ if (U_FAILURE(*pErrorCode)) {
+ uprv_free(coll->reorderCodes);
+ coll->reorderCodes = NULL;
+ coll->reorderCodesLength = 0;
+ }
+}
+
+
+/****************************************************************************/
+/* Following are misc functions */
+/* there are new APIs and some compatibility APIs */
+/****************************************************************************/
+
+U_CAPI void U_EXPORT2
+ucol_getVersion(const UCollator* coll,
+ UVersionInfo versionInfo)
+{
+ /* RunTime version */
+ uint8_t rtVersion = UCOL_RUNTIME_VERSION;
+ /* Builder version*/
+ uint8_t bdVersion = coll->image->version[0];
+
+ /* Charset Version. Need to get the version from cnv files
+ * makeconv should populate cnv files with version and
+ * an api has to be provided in ucnv.h to obtain this version
+ */
+ uint8_t csVersion = 0;
+
+ /* combine the version info */
+ uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion));
+
+ /* Tailoring rules */
+ versionInfo[0] = (uint8_t)(cmbVersion>>8);
+ versionInfo[1] = (uint8_t)cmbVersion;
+ versionInfo[2] = coll->image->version[1];
+ if(coll->UCA) {
+ /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */
+ versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07);
+ } else {
+ versionInfo[3] = 0;
+ }
+}
+
+
+/* This internal API checks whether a character is tailored or not */
+U_CAPI UBool U_EXPORT2
+ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) {
+ return FALSE;
+ }
+
+ uint32_t CE = UCOL_NOT_FOUND;
+ const UChar *ContractionStart = NULL;
+ if(u < 0x100) { /* latin-1 */
+ CE = coll->latinOneMapping[u];
+ if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) {
+ return FALSE;
+ }
+ } else { /* regular */
+ CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u);
+ }
+
+ if(isContraction(CE)) {
+ ContractionStart = (UChar *)coll->image+getContractOffset(CE);
+ CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex));
+ }
+
+ return (UBool)(CE != UCOL_NOT_FOUND);
+}
+
+
+/****************************************************************************/
+/* Following are the string compare functions */
+/* */
+/****************************************************************************/
+
+
+/* ucol_checkIdent internal function. Does byte level string compare. */
+/* Used by strcoll if strength == identical and strings */
+/* are otherwise equal. */
+/* */
+/* Comparison must be done on NFD normalized strings. */
+/* FCD is not good enough. */
+
+static
+UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status)
+{
+ // When we arrive here, we can have normal strings or UCharIterators. Currently they are both
+ // of same type, but that doesn't really mean that it will stay that way.
+ int32_t comparison;
+
+ if (sColl->flags & UCOL_USE_ITERATOR) {
+ // The division for the array length may truncate the array size to
+ // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
+ // for all platforms anyway.
+ UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UNormIterator *sNIt = NULL, *tNIt = NULL;
+ sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
+ tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
+ sColl->iterator->move(sColl->iterator, 0, UITER_START);
+ tColl->iterator->move(tColl->iterator, 0, UITER_START);
+ UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status);
+ UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status);
+ comparison = u_strCompareIter(sIt, tIt, TRUE);
+ unorm_closeIter(sNIt);
+ unorm_closeIter(tNIt);
+ } else {
+ int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1;
+ const UChar *sBuf = sColl->string;
+ int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1;
+ const UChar *tBuf = tColl->string;
+
+ if (normalize) {
+ *status = U_ZERO_ERROR;
+ // Note: We could use Normalizer::compare() or similar, but for short strings
+ // which may not be in FCD it might be faster to just NFD them.
+ // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than
+ // NFD'ing immediately might be faster for long strings,
+ // but string comparison is usually done on relatively short strings.
+ sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen),
+ sColl->writableBuffer,
+ *status);
+ tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen),
+ tColl->writableBuffer,
+ *status);
+ if(U_FAILURE(*status)) {
+ return UCOL_LESS;
+ }
+ comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer);
+ } else {
+ comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE);
+ }
+ }
+
+ if (comparison < 0) {
+ return UCOL_LESS;
+ } else if (comparison == 0) {
+ return UCOL_EQUAL;
+ } else /* comparison > 0 */ {
+ return UCOL_GREATER;
+ }
+}
+
+/* CEBuf - A struct and some inline functions to handle the saving */
+/* of CEs in a buffer within ucol_strcoll */
+
+#define UCOL_CEBUF_SIZE 512
+typedef struct ucol_CEBuf {
+ uint32_t *buf;
+ uint32_t *endp;
+ uint32_t *pos;
+ uint32_t localArray[UCOL_CEBUF_SIZE];
+} ucol_CEBuf;
+
+
+static
+inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) {
+ (b)->buf = (b)->pos = (b)->localArray;
+ (b)->endp = (b)->buf + UCOL_CEBUF_SIZE;
+}
+
+static
+void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) {
+ uint32_t oldSize;
+ uint32_t newSize;
+ uint32_t *newBuf;
+
+ ci->flags |= UCOL_ITER_ALLOCATED;
+ oldSize = (uint32_t)(b->pos - b->buf);
+ newSize = oldSize * 2;
+ newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t));
+ if(newBuf == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ else {
+ uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t));
+ if (b->buf != b->localArray) {
+ uprv_free(b->buf);
+ }
+ b->buf = newBuf;
+ b->endp = b->buf + newSize;
+ b->pos = b->buf + oldSize;
+ }
+}
+
+static
+inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) {
+ if (b->pos == b->endp) {
+ ucol_CEBuf_Expand(b, ci, status);
+ }
+ if (U_SUCCESS(*status)) {
+ *(b)->pos++ = ce;
+ }
+}
+
+/* This is a trick string compare function that goes in and uses sortkeys to compare */
+/* It is used when compare gets in trouble and needs to bail out */
+static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl,
+ collIterate *tColl,
+ UErrorCode *status)
+{
+ uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER];
+ uint8_t *sourceKeyP = sourceKey;
+ uint8_t *targetKeyP = targetKey;
+ int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER;
+ const UCollator *coll = sColl->coll;
+ const UChar *source = NULL;
+ const UChar *target = NULL;
+ int32_t result = UCOL_EQUAL;
+ UnicodeString sourceString, targetString;
+ int32_t sourceLength;
+ int32_t targetLength;
+
+ if(sColl->flags & UCOL_USE_ITERATOR) {
+ sColl->iterator->move(sColl->iterator, 0, UITER_START);
+ tColl->iterator->move(tColl->iterator, 0, UITER_START);
+ UChar32 c;
+ while((c=sColl->iterator->next(sColl->iterator))>=0) {
+ sourceString.append((UChar)c);
+ }
+ while((c=tColl->iterator->next(tColl->iterator))>=0) {
+ targetString.append((UChar)c);
+ }
+ source = sourceString.getBuffer();
+ sourceLength = sourceString.length();
+ target = targetString.getBuffer();
+ targetLength = targetString.length();
+ } else { // no iterators
+ sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1;
+ targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1;
+ source = sColl->string;
+ target = tColl->string;
+ }
+
+
+
+ sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
+ if(sourceKeyLen > UCOL_MAX_BUFFER) {
+ sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t));
+ if(sourceKeyP == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup_and_do_compare;
+ }
+ sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
+ }
+
+ targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
+ if(targetKeyLen > UCOL_MAX_BUFFER) {
+ targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t));
+ if(targetKeyP == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup_and_do_compare;
+ }
+ targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
+ }
+
+ result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP);
+
+cleanup_and_do_compare:
+ if(sourceKeyP != NULL && sourceKeyP != sourceKey) {
+ uprv_free(sourceKeyP);
+ }
+
+ if(targetKeyP != NULL && targetKeyP != targetKey) {
+ uprv_free(targetKeyP);
+ }
+
+ if(result<0) {
+ return UCOL_LESS;
+ } else if(result>0) {
+ return UCOL_GREATER;
+ } else {
+ return UCOL_EQUAL;
+ }
+}
+
+
+static UCollationResult
+ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status)
+{
+ U_ALIGN_CODE(16);
+
+ const UCollator *coll = sColl->coll;
+
+
+ // setting up the collator parameters
+ UColAttributeValue strength = coll->strength;
+ UBool initialCheckSecTer = (strength >= UCOL_SECONDARY);
+
+ UBool checkSecTer = initialCheckSecTer;
+ UBool checkTertiary = (strength >= UCOL_TERTIARY);
+ UBool checkQuad = (strength >= UCOL_QUATERNARY);
+ UBool checkIdent = (strength == UCOL_IDENTICAL);
+ UBool checkCase = (coll->caseLevel == UCOL_ON);
+ UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer;
+ UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
+ UBool qShifted = shifted && checkQuad;
+ UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad;
+
+ if(doHiragana && shifted) {
+ return (ucol_compareUsingSortKeys(sColl, tColl, status));
+ }
+ uint8_t caseSwitch = coll->caseSwitch;
+ uint8_t tertiaryMask = coll->tertiaryMask;
+
+ // This is the lowest primary value that will not be ignored if shifted
+ uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0;
+
+ UCollationResult result = UCOL_EQUAL;
+ UCollationResult hirResult = UCOL_EQUAL;
+
+ // Preparing the CE buffers. They will be filled during the primary phase
+ ucol_CEBuf sCEs;
+ ucol_CEBuf tCEs;
+ UCOL_INIT_CEBUF(&sCEs);
+ UCOL_INIT_CEBUF(&tCEs);
+
+ uint32_t secS = 0, secT = 0;
+ uint32_t sOrder=0, tOrder=0;
+
+ // Non shifted primary processing is quite simple
+ if(!shifted) {
+ for(;;) {
+
+ // We fetch CEs until we hit a non ignorable primary or end.
+ do {
+ // We get the next CE
+ sOrder = ucol_IGetNextCE(coll, sColl, status);
+ // Stuff it in the buffer
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ // And keep just the primary part.
+ sOrder &= UCOL_PRIMARYMASK;
+ } while(sOrder == 0);
+
+ // see the comments on the above block
+ do {
+ tOrder = ucol_IGetNextCE(coll, tColl, status);
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ tOrder &= UCOL_PRIMARYMASK;
+ } while(tOrder == 0);
+
+ // if both primaries are the same
+ if(sOrder == tOrder) {
+ // and there are no more CEs, we advance to the next level
+ if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ }
+ if(doHiragana && hirResult == UCOL_EQUAL) {
+ if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) {
+ hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA))
+ ? UCOL_LESS:UCOL_GREATER;
+ }
+ }
+ } else {
+ // only need to check one for continuation
+ // if one is then the other must be or the preceding CE would be a prefix of the other
+ if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) {
+ sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF);
+ tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF);
+ }
+ // if two primaries are different, we are done
+ result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER;
+ goto commonReturn;
+ }
+ } // no primary difference... do the rest from the buffers
+ } else { // shifted - do a slightly more complicated processing :)
+ for(;;) {
+ UBool sInShifted = FALSE;
+ UBool tInShifted = FALSE;
+ // This version of code can be refactored. However, it seems easier to understand this way.
+ // Source loop. Sam as the target loop.
+ for(;;) {
+ sOrder = ucol_IGetNextCE(coll, sColl, status);
+ if(sOrder == UCOL_NO_MORE_CES) {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) {
+ /* UCA amendment - ignore ignorables that follow shifted code points */
+ continue;
+ } else if(isContinuation(sOrder)) {
+ if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
+ if(sInShifted) {
+ sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ }
+ } else { /* Just lower level values */
+ if(sInShifted) {
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ }
+ }
+ } else { /* regular */
+ if(coll->leadBytePermutationTable != NULL){
+ sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF);
+ }
+ if((sOrder & UCOL_PRIMARYMASK) > LVT) {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ } else {
+ if((sOrder & UCOL_PRIMARYMASK) > 0) {
+ sInShifted = TRUE;
+ sOrder &= UCOL_PRIMARYMASK;
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ sInShifted = FALSE;
+ continue;
+ }
+ }
+ }
+ }
+ sOrder &= UCOL_PRIMARYMASK;
+ sInShifted = FALSE;
+
+ for(;;) {
+ tOrder = ucol_IGetNextCE(coll, tColl, status);
+ if(tOrder == UCOL_NO_MORE_CES) {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) {
+ /* UCA amendment - ignore ignorables that follow shifted code points */
+ continue;
+ } else if(isContinuation(tOrder)) {
+ if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
+ if(tInShifted) {
+ tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ }
+ } else { /* Just lower level values */
+ if(tInShifted) {
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ }
+ }
+ } else { /* regular */
+ if(coll->leadBytePermutationTable != NULL){
+ tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF);
+ }
+ if((tOrder & UCOL_PRIMARYMASK) > LVT) {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ } else {
+ if((tOrder & UCOL_PRIMARYMASK) > 0) {
+ tInShifted = TRUE;
+ tOrder &= UCOL_PRIMARYMASK;
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ tInShifted = FALSE;
+ continue;
+ }
+ }
+ }
+ }
+ tOrder &= UCOL_PRIMARYMASK;
+ tInShifted = FALSE;
+
+ if(sOrder == tOrder) {
+ /*
+ if(doHiragana && hirResult == UCOL_EQUAL) {
+ if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) {
+ hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA))
+ ? UCOL_LESS:UCOL_GREATER;
+ }
+ }
+ */
+ if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ } else {
+ sOrder = 0;
+ tOrder = 0;
+ continue;
+ }
+ } else {
+ result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
+ } /* no primary difference... do the rest from the buffers */
+ }
+
+ /* now, we're gonna reexamine collected CEs */
+ uint32_t *sCE;
+ uint32_t *tCE;
+
+ /* This is the secondary level of comparison */
+ if(checkSecTer) {
+ if(!isFrenchSec) { /* normal */
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while (secS == 0) {
+ secS = *(sCE++) & UCOL_SECONDARYMASK;
+ }
+
+ while(secT == 0) {
+ secT = *(tCE++) & UCOL_SECONDARYMASK;
+ }
+
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_SECONDARY) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
+ }
+ } else { /* do the French */
+ uint32_t *sCESave = NULL;
+ uint32_t *tCESave = NULL;
+ sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */
+ tCE = tCEs.pos-2;
+ for(;;) {
+ while (secS == 0 && sCE >= sCEs.buf) {
+ if(sCESave == NULL) {
+ secS = *(sCE--);
+ if(isContinuation(secS)) {
+ while(isContinuation(secS = *(sCE--)))
+ ;
+ /* after this, secS has the start of continuation, and sCEs points before that */
+ sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */
+ sCE+=2; /* need to point to the first continuation CP */
+ /* However, now you can just continue doing stuff */
+ }
+ } else {
+ secS = *(sCE++);
+ if(!isContinuation(secS)) { /* This means we have finished with this cont */
+ sCE = sCESave; /* reset the pointer to before continuation */
+ sCESave = NULL;
+ secS = 0; /* Fetch a fresh CE before the continuation sequence. */
+ continue;
+ }
+ }
+ secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */
+ }
+
+ while(secT == 0 && tCE >= tCEs.buf) {
+ if(tCESave == NULL) {
+ secT = *(tCE--);
+ if(isContinuation(secT)) {
+ while(isContinuation(secT = *(tCE--)))
+ ;
+ /* after this, secS has the start of continuation, and sCEs points before that */
+ tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */
+ tCE+=2; /* need to point to the first continuation CP */
+ /* However, now you can just continue doing stuff */
+ }
+ } else {
+ secT = *(tCE++);
+ if(!isContinuation(secT)) { /* This means we have finished with this cont */
+ tCE = tCESave; /* reset the pointer to before continuation */
+ tCESave = NULL;
+ secT = 0; /* Fetch a fresh CE before the continuation sequence. */
+ continue;
+ }
+ }
+ secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */
+ }
+
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
+ }
+ }
+ }
+
+ /* doing the case bit */
+ if(checkCase) {
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while((secS & UCOL_REMOVE_CASE) == 0) {
+ if(!isContinuation(*sCE++)) {
+ secS =*(sCE-1);
+ if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
+ // primary ignorables should not be considered on the case level when the strength is primary
+ // otherwise, the CEs stop being well-formed
+ secS &= UCOL_TERT_CASE_MASK;
+ secS ^= caseSwitch;
+ } else {
+ secS = 0;
+ }
+ } else {
+ secS = 0;
+ }
+ }
+
+ while((secT & UCOL_REMOVE_CASE) == 0) {
+ if(!isContinuation(*tCE++)) {
+ secT = *(tCE-1);
+ if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
+ // primary ignorables should not be considered on the case level when the strength is primary
+ // otherwise, the CEs stop being well-formed
+ secT &= UCOL_TERT_CASE_MASK;
+ secT ^= caseSwitch;
+ } else {
+ secT = 0;
+ }
+ } else {
+ secT = 0;
+ }
+ }
+
+ if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) {
+ result = UCOL_LESS;
+ goto commonReturn;
+ } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) {
+ result = UCOL_GREATER;
+ goto commonReturn;
+ }
+
+ if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) {
+ break;
+ } else {
+ secS = 0;
+ secT = 0;
+ }
+ }
+ }
+
+ /* Tertiary level */
+ if(checkTertiary) {
+ secS = 0;
+ secT = 0;
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while((secS & UCOL_REMOVE_CASE) == 0) {
+ secS = *(sCE++) & tertiaryMask;
+ if(!isContinuation(secS)) {
+ secS ^= caseSwitch;
+ } else {
+ secS &= UCOL_REMOVE_CASE;
+ }
+ }
+
+ while((secT & UCOL_REMOVE_CASE) == 0) {
+ secT = *(tCE++) & tertiaryMask;
+ if(!isContinuation(secT)) {
+ secT ^= caseSwitch;
+ } else {
+ secT &= UCOL_REMOVE_CASE;
+ }
+ }
+
+ if(secS == secT) {
+ if((secS & UCOL_REMOVE_CASE) == 1) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
+ }
+ }
+
+
+ if(qShifted /*checkQuad*/) {
+ UBool sInShifted = TRUE;
+ UBool tInShifted = TRUE;
+ secS = 0;
+ secT = 0;
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) {
+ secS = *(sCE++);
+ if(isContinuation(secS)) {
+ if(!sInShifted) {
+ continue;
+ }
+ } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */
+ secS = UCOL_PRIMARYMASK;
+ sInShifted = FALSE;
+ } else {
+ sInShifted = TRUE;
+ }
+ }
+ secS &= UCOL_PRIMARYMASK;
+
+
+ while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) {
+ secT = *(tCE++);
+ if(isContinuation(secT)) {
+ if(!tInShifted) {
+ continue;
+ }
+ } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) {
+ secT = UCOL_PRIMARYMASK;
+ tInShifted = FALSE;
+ } else {
+ tInShifted = TRUE;
+ }
+ }
+ secT &= UCOL_PRIMARYMASK;
+
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
+ }
+ } else if(doHiragana && hirResult != UCOL_EQUAL) {
+ // If we're fine on quaternaries, we might be different
+ // on Hiragana. This, however, might fail us in shifted.
+ result = hirResult;
+ goto commonReturn;
+ }
+
+ /* For IDENTICAL comparisons, we use a bitwise character comparison */
+ /* as a tiebreaker if all else is equal. */
+ /* Getting here should be quite rare - strings are not identical - */
+ /* that is checked first, but compared == through all other checks. */
+ if(checkIdent)
+ {
+ //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON);
+ result = ucol_checkIdent(sColl, tColl, TRUE, status);
+ }
+
+commonReturn:
+ if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) {
+ if (sCEs.buf != sCEs.localArray ) {
+ uprv_free(sCEs.buf);
+ }
+ if (tCEs.buf != tCEs.localArray ) {
+ uprv_free(tCEs.buf);
+ }
+ }
+
+ return result;
+}
+
+static UCollationResult
+ucol_strcollRegular(const UCollator *coll,
+ const UChar *source, int32_t sourceLength,
+ const UChar *target, int32_t targetLength,
+ UErrorCode *status) {
+ collIterate sColl, tColl;
+ // Preparing the context objects for iterating over strings
+ IInit_collIterate(coll, source, sourceLength, &sColl, status);
+ IInit_collIterate(coll, target, targetLength, &tColl, status);
+ if(U_FAILURE(*status)) {
+ return UCOL_LESS;
+ }
+ return ucol_strcollRegular(&sColl, &tColl, status);
+}
+
+static inline uint32_t
+ucol_getLatinOneContraction(const UCollator *coll, int32_t strength,
+ uint32_t CE, const UChar *s, int32_t *index, int32_t len)
+{
+ const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF);
+ int32_t latinOneOffset = (CE & 0x00FFF000) >> 12;
+ int32_t offset = 1;
+ UChar schar = 0, tchar = 0;
+
+ for(;;) {
+ if(len == -1) {
+ if(s[*index] == 0) { // end of string
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ } else {
+ schar = s[*index];
+ }
+ } else {
+ if(*index == len) {
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ } else {
+ schar = s[*index];
+ }
+ }
+
+ while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ offset++;
+ }
+
+ if (schar == tchar) {
+ (*index)++;
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]);
+ }
+ else
+ {
+ if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) {
+ return UCOL_BAIL_OUT_CE;
+ }
+ // skip completely ignorables
+ uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
+ if(isZeroCE == 0) { // we have to ignore completely ignorables
+ (*index)++;
+ continue;
+ }
+
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ }
+ }
+}
+
+
+/**
+ * This is a fast strcoll, geared towards text in Latin-1.
+ * It supports contractions of size two, French secondaries
+ * and case switching. You can use it with strengths primary
+ * to tertiary. It does not support shifted and case level.
+ * It relies on the table build by setupLatin1Table. If it
+ * doesn't understand something, it will go to the regular
+ * strcoll.
+ */
+static UCollationResult
+ucol_strcollUseLatin1( const UCollator *coll,
+ const UChar *source,
+ int32_t sLen,
+ const UChar *target,
+ int32_t tLen,
+ UErrorCode *status)
+{
+ U_ALIGN_CODE(16);
+ int32_t strength = coll->strength;
+
+ int32_t sIndex = 0, tIndex = 0;
+ UChar sChar = 0, tChar = 0;
+ uint32_t sOrder=0, tOrder=0;
+
+ UBool endOfSource = FALSE;
+
+ uint32_t *elements = coll->latinOneCEs;
+
+ UBool haveContractions = FALSE; // if we have contractions in our string
+ // we cannot do French secondary
+
+ // Do the primary level
+ for(;;) {
+ while(sOrder==0) { // this loop skips primary ignorables
+ // sOrder=getNextlatinOneCE(source);
+ if(sLen==-1) { // handling zero terminated strings
+ sChar=source[sIndex++];
+ if(sChar==0) {
+ endOfSource = TRUE;
+ break;
+ }
+ } else { // handling strings with known length
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ }
+ if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
+ //fprintf(stderr, "R");
+ return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ sOrder = elements[sChar];
+ if(sOrder >= UCOL_NOT_FOUND) { // if we got a special
+ // specials can basically be either contractions or bail-out signs. If we get anything
+ // else, we'll bail out anywasy
+ if(getCETag(sOrder) == CONTRACTION_TAG) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen);
+ haveContractions = TRUE; // if there are contractions, we cannot do French secondary
+ // However, if there are contractions in the table, but we always use just one char,
+ // we might be able to do French. This should be checked out.
+ }
+ if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
+ //fprintf(stderr, "S");
+ return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ }
+ }
+
+ while(tOrder==0) { // this loop skips primary ignorables
+ // tOrder=getNextlatinOneCE(target);
+ if(tLen==-1) { // handling zero terminated strings
+ tChar=target[tIndex++];
+ if(tChar==0) {
+ if(endOfSource) { // this is different than source loop,
+ // as we already know that source loop is done here,
+ // so we can either finish the primary loop if both
+ // strings are done or anounce the result if only
+ // target is done. Same below.
+ goto endOfPrimLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ } else { // handling strings with known length
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ goto endOfPrimLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
+ }
+ if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
+ //fprintf(stderr, "R");
+ return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ tOrder = elements[tChar];
+ if(tOrder >= UCOL_NOT_FOUND) {
+ // Handling specials, see the comments for source
+ if(getCETag(tOrder) == CONTRACTION_TAG) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen);
+ haveContractions = TRUE;
+ }
+ if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
+ //fprintf(stderr, "S");
+ return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ }
+ }
+ if(endOfSource) { // source is finished, but target is not, say the result.
+ return UCOL_LESS;
+ }
+
+ if(sOrder == tOrder) { // if we have same CEs, we continue the loop
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // compare current top bytes
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ // top bytes differ, return difference
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24);
+ // since we must return enum value
+ }
+
+ // top bytes match, continue with following bytes
+ sOrder<<=8;
+ tOrder<<=8;
+ }
+ }
+
+endOfPrimLoop:
+ // after primary loop, we definitely know the sizes of strings,
+ // so we set it and use simpler loop for secondaries and tertiaries
+ sLen = sIndex; tLen = tIndex;
+ if(strength >= UCOL_SECONDARY) {
+ // adjust the table beggining
+ elements += coll->latinOneTableLen;
+ endOfSource = FALSE;
+
+ if(coll->frenchCollation == UCOL_OFF) { // non French
+ // This loop is a simplified copy of primary loop
+ // at this point we know that whole strings are latin-1, so we don't
+ // check for that. We also know that we only have contractions as
+ // specials.
+ sIndex = 0; tIndex = 0;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ sOrder = elements[sChar];
+ if(sOrder > UCOL_NOT_FOUND) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen);
+ }
+ }
+
+ while(tOrder==0) {
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ goto endOfSecLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
+ tOrder = elements[tChar];
+ if(tOrder > UCOL_NOT_FOUND) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen);
+ }
+ }
+ if(endOfSource) {
+ return UCOL_LESS;
+ }
+
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // see primary loop for comments on this
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
+ }
+ }
+ } else { // French
+ if(haveContractions) { // if we have contractions, we have to bail out
+ // since we don't really know how to handle them here
+ return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ // For French, we go backwards
+ sIndex = sLen; tIndex = tLen;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==0) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[--sIndex];
+ sOrder = elements[sChar];
+ // don't even look for contractions
+ }
+
+ while(tOrder==0) {
+ if(tIndex==0) {
+ if(endOfSource) {
+ goto endOfSecLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[--tIndex];
+ tOrder = elements[tChar];
+ // don't even look for contractions
+ }
+ if(endOfSource) {
+ return UCOL_LESS;
+ }
+
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // see the primary loop for comments
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
+ }
+ }
+ }
+ }
+
+endOfSecLoop:
+ if(strength >= UCOL_TERTIARY) {
+ // tertiary loop is the same as secondary (except no French)
+ elements += coll->latinOneTableLen;
+ sIndex = 0; tIndex = 0;
+ endOfSource = FALSE;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ sOrder = elements[sChar];
+ if(sOrder > UCOL_NOT_FOUND) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen);
+ }
+ }
+ while(tOrder==0) {
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ return UCOL_EQUAL; // if both strings are at the end, they are equal
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
+ tOrder = elements[tChar];
+ if(tOrder > UCOL_NOT_FOUND) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen);
+ }
+ }
+ if(endOfSource) {
+ return UCOL_LESS;
+ }
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ if(((sOrder^tOrder)&0xff000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
+ }
+ }
+ }
+ return UCOL_EQUAL;
+}
+
+
+U_CAPI UCollationResult U_EXPORT2
+ucol_strcollIter( const UCollator *coll,
+ UCharIterator *sIter,
+ UCharIterator *tIter,
+ UErrorCode *status)
+{
+ if(!status || U_FAILURE(*status)) {
+ return UCOL_EQUAL;
+ }
+
+ UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER);
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter);
+
+ if (sIter == tIter) {
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
+ return UCOL_EQUAL;
+ }
+ if(sIter == NULL || tIter == NULL || coll == NULL) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
+ return UCOL_EQUAL;
+ }
+
+ UCollationResult result = UCOL_EQUAL;
+
+ // Preparing the context objects for iterating over strings
+ collIterate sColl, tColl;
+ IInit_collIterate(coll, NULL, -1, &sColl, status);
+ IInit_collIterate(coll, NULL, -1, &tColl, status);
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
+ return UCOL_EQUAL;
+ }
+ // The division for the array length may truncate the array size to
+ // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
+ // for all platforms anyway.
+ UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UNormIterator *sNormIter = NULL, *tNormIter = NULL;
+
+ sColl.iterator = sIter;
+ sColl.flags |= UCOL_USE_ITERATOR;
+ tColl.flags |= UCOL_USE_ITERATOR;
+ tColl.iterator = tIter;
+
+ if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) {
+ sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
+ sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status);
+ sColl.flags &= ~UCOL_ITER_NORM;
+
+ tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
+ tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status);
+ tColl.flags &= ~UCOL_ITER_NORM;
+ }
+
+ UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL;
+
+ while((sChar = sColl.iterator->next(sColl.iterator)) ==
+ (tChar = tColl.iterator->next(tColl.iterator))) {
+ if(sChar == U_SENTINEL) {
+ result = UCOL_EQUAL;
+ goto end_compare;
+ }
+ }
+
+ if(sChar == U_SENTINEL) {
+ tChar = tColl.iterator->previous(tColl.iterator);
+ }
+
+ if(tChar == U_SENTINEL) {
+ sChar = sColl.iterator->previous(sColl.iterator);
+ }
+
+ sChar = sColl.iterator->previous(sColl.iterator);
+ tChar = tColl.iterator->previous(tColl.iterator);
+
+ if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll))
+ {
+ // We are stopped in the middle of a contraction.
+ // Scan backwards through the == part of the string looking for the start of the contraction.
+ // It doesn't matter which string we scan, since they are the same in this region.
+ do
+ {
+ sChar = sColl.iterator->previous(sColl.iterator);
+ tChar = tColl.iterator->previous(tColl.iterator);
+ }
+ while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll));
+ }
+
+
+ if(U_SUCCESS(*status)) {
+ result = ucol_strcollRegular(&sColl, &tColl, status);
+ }
+
+end_compare:
+ if(sNormIter || tNormIter) {
+ unorm_closeIter(sNormIter);
+ unorm_closeIter(tNormIter);
+ }
+
+ UTRACE_EXIT_VALUE_STATUS(result, *status)
+ return result;
+}
+
+
+/* */
+/* ucol_strcoll Main public API string comparison function */
+/* */
+U_CAPI UCollationResult U_EXPORT2
+ucol_strcoll( const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ const UChar *target,
+ int32_t targetLength)
+{
+ U_ALIGN_CODE(16);
+
+ UTRACE_ENTRY(UTRACE_UCOL_STRCOLL);
+ if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target);
+ UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength);
+ UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength);
+ }
+
+ if(source == NULL || target == NULL) {
+ // do not crash, but return. Should have
+ // status argument to return error.
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
+
+ /* Quick check if source and target are same strings. */
+ /* They should either both be NULL terminated or the explicit length should be set on both. */
+ if (source==target && sourceLength==targetLength) {
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
+
+ /* Scan the strings. Find: */
+ /* The length of any leading portion that is equal */
+ /* Whether they are exactly equal. (in which case we just return) */
+ const UChar *pSrc = source;
+ const UChar *pTarg = target;
+ int32_t equalLength;
+
+ if (sourceLength == -1 && targetLength == -1) {
+ // Both strings are null terminated.
+ // Scan through any leading equal portion.
+ while (*pSrc == *pTarg && *pSrc != 0) {
+ pSrc++;
+ pTarg++;
+ }
+ if (*pSrc == 0 && *pTarg == 0) {
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
+ equalLength = (int32_t)(pSrc - source);
+ }
+ else
+ {
+ // One or both strings has an explicit length.
+ const UChar *pSrcEnd = source + sourceLength;
+ const UChar *pTargEnd = target + targetLength;
+
+ // Scan while the strings are bitwise ==, or until one is exhausted.
+ for (;;) {
+ if (pSrc == pSrcEnd || pTarg == pTargEnd) {
+ break;
+ }
+ if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) {
+ break;
+ }
+ if (*pSrc != *pTarg) {
+ break;
+ }
+ pSrc++;
+ pTarg++;
+ }
+ equalLength = (int32_t)(pSrc - source);
+
+ // If we made it all the way through both strings, we are done. They are ==
+ if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */
+ (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */
+ {
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
+ }
+ if (equalLength > 0) {
+ /* There is an identical portion at the beginning of the two strings. */
+ /* If the identical portion ends within a contraction or a comibining */
+ /* character sequence, back up to the start of that sequence. */
+
+ // These values should already be set by the code above.
+ //pSrc = source + equalLength; /* point to the first differing chars */
+ //pTarg = target + equalLength;
+ if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) ||
+ (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll)))
+ {
+ // We are stopped in the middle of a contraction.
+ // Scan backwards through the == part of the string looking for the start of the contraction.
+ // It doesn't matter which string we scan, since they are the same in this region.
+ do
+ {
+ equalLength--;
+ pSrc--;
+ }
+ while (equalLength>0 && ucol_unsafeCP(*pSrc, coll));
+ }
+
+ source += equalLength;
+ target += equalLength;
+ if (sourceLength > 0) {
+ sourceLength -= equalLength;
+ }
+ if (targetLength > 0) {
+ targetLength -= equalLength;
+ }
+ }
+
+ UErrorCode status = U_ZERO_ERROR;
+ UCollationResult returnVal;
+ if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) {
+ returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status);
+ } else {
+ returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status);
+ }
+ UTRACE_EXIT_VALUE(returnVal);
+ return returnVal;
+}
+
+/* convenience function for comparing strings */
+U_CAPI UBool U_EXPORT2
+ucol_greater( const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ const UChar *target,
+ int32_t targetLength)
+{
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ == UCOL_GREATER);
+}
+
+/* convenience function for comparing strings */
+U_CAPI UBool U_EXPORT2
+ucol_greaterOrEqual( const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ const UChar *target,
+ int32_t targetLength)
+{
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ != UCOL_LESS);
+}
+
+/* convenience function for comparing strings */
+U_CAPI UBool U_EXPORT2
+ucol_equal( const UCollator *coll,
+ const UChar *source,
+ int32_t sourceLength,
+ const UChar *target,
+ int32_t targetLength)
+{
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ == UCOL_EQUAL);
+}
+
+U_CAPI void U_EXPORT2
+ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) {
+ if(coll && coll->UCA) {
+ uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo));
+ }
+}
+
+#endif /* #if !UCONFIG_NO_COLLATION */