summaryrefslogtreecommitdiff
path: root/Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c')
-rw-r--r--Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c627
1 files changed, 627 insertions, 0 deletions
diff --git a/Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c b/Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c
new file mode 100644
index 00000000000..c4b43d6ea35
--- /dev/null
+++ b/Build/source/libs/gd/libgd-2.1.1/src/gd_nnquant.c
@@ -0,0 +1,627 @@
+/* NeuQuant Neural-Net Quantization Algorithm
+ * ------------------------------------------
+ *
+ * Copyright (c) 1994 Anthony Dekker
+ *
+ * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
+ * See "Kohonen neural networks for optimal colour quantization"
+ * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
+ * for a discussion of the algorithm.
+ * See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
+ *
+ * Any party obtaining a copy of these files from the author, directly or
+ * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
+ * world-wide, paid up, royalty-free, nonexclusive right and license to deal
+ * in this software and documentation files (the "Software"), including without
+ * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons who receive
+ * copies from any such party to do so, with the only requirement being
+ * that this copyright notice remain intact.
+ *
+ *
+ * Modified to process 32bit RGBA images.
+ * Stuart Coyle 2004-2007
+ * From: http://pngnq.sourceforge.net/
+ *
+ * Ported to libgd by Pierre A. Joye
+ * (and make it thread safety by droping static and global variables)
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif /* HAVE_CONFIG_H */
+
+#include <stdlib.h>
+#include <string.h>
+#include "gd.h"
+#include "gdhelpers.h"
+#include "gd_errors.h"
+
+#include "gd_nnquant.h"
+
+/* Network Definitions
+ ------------------- */
+
+#define maxnetpos (MAXNETSIZE-1)
+#define netbiasshift 4 /* bias for colour values */
+#define ncycles 100 /* no. of learning cycles */
+
+/* defs for freq and bias */
+#define intbiasshift 16 /* bias for fractions */
+#define intbias (((int) 1)<<intbiasshift)
+#define gammashift 10 /* gamma = 1024 */
+#define gamma (((int) 1)<<gammashift)
+#define betashift 10
+#define beta (intbias>>betashift) /* beta = 1/1024 */
+#define betagamma (intbias<<(gammashift-betashift))
+
+/* defs for decreasing radius factor */
+#define initrad (MAXNETSIZE>>3) /* for 256 cols, radius starts */
+#define radiusbiasshift 6 /* at 32.0 biased by 6 bits */
+#define radiusbias (((int) 1)<<radiusbiasshift)
+#define initradius (initrad*radiusbias) /* and decreases by a */
+#define radiusdec 30 /* factor of 1/30 each cycle */
+
+/* defs for decreasing alpha factor */
+#define alphabiasshift 10 /* alpha starts at 1.0 */
+#define initalpha (((int) 1)<<alphabiasshift)
+int alphadec;
+
+/* radbias and alpharadbias used for radpower calculation */
+#define radbiasshift 8
+#define radbias (((int) 1)<<radbiasshift)
+#define alpharadbshift (alphabiasshift+radbiasshift)
+#define alpharadbias (((int) 1)<<alpharadbshift)
+
+#define ALPHA 0
+#define RED 1
+#define BLUE 2
+#define GREEN 3
+
+typedef int nq_pixel[5];
+
+typedef struct {
+ /* biased by 10 bits */
+ int alphadec;
+
+ /* lengthcount = H*W*3 */
+ int lengthcount;
+
+ /* sampling factor 1..30 */
+ int samplefac;
+
+ /* Number of colours to use. Made a global instead of #define */
+ int netsize;
+
+ /* for network lookup - really 256 */
+ int netindex[256];
+
+ /* ABGRc */
+ /* the network itself */
+ nq_pixel network[MAXNETSIZE];
+
+ /* bias and freq arrays for learning */
+ int bias[MAXNETSIZE];
+ int freq[MAXNETSIZE];
+
+ /* radpower for precomputation */
+ int radpower[initrad];
+
+ /* the input image itself */
+ unsigned char *thepicture;
+} nn_quant;
+
+/* Initialise network in range (0,0,0,0) to (255,255,255,255) and set parameters
+ ----------------------------------------------------------------------- */
+void initnet(nnq, thepic, len, sample, colours)
+nn_quant *nnq;
+unsigned char *thepic;
+int len;
+int sample;
+int colours;
+{
+ register int i;
+ register int *p;
+
+ /* Clear out network from previous runs */
+ /* thanks to Chen Bin for this fix */
+ memset((void*)nnq->network, 0, sizeof(nq_pixel)*MAXNETSIZE);
+
+ nnq->thepicture = thepic;
+ nnq->lengthcount = len;
+ nnq->samplefac = sample;
+ nnq->netsize = colours;
+
+ for (i=0; i < nnq->netsize; i++) {
+ p = nnq->network[i];
+ p[0] = p[1] = p[2] = p[3] = (i << (netbiasshift+8)) / nnq->netsize;
+ nnq->freq[i] = intbias / nnq->netsize; /* 1/netsize */
+ nnq->bias[i] = 0;
+ }
+}
+
+/* -------------------------- */
+
+/* Unbias network to give byte values 0..255 and record
+ * position i to prepare for sort
+ */
+/* -------------------------- */
+
+void unbiasnet(nn_quant *nnq)
+{
+ int i,j,temp;
+
+ for (i=0; i < nnq->netsize; i++) {
+ for (j=0; j<4; j++) {
+ /* OLD CODE: network[i][j] >>= netbiasshift; */
+ /* Fix based on bug report by Juergen Weigert jw@suse.de */
+ temp = (nnq->network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift;
+ if (temp > 255) temp = 255;
+ nnq->network[i][j] = temp;
+ }
+ nnq->network[i][4] = i; /* record colour no */
+ }
+}
+
+/* Output colour map
+ ----------------- */
+void writecolourmap(nnq, f)
+nn_quant *nnq;
+FILE *f;
+{
+ int i,j;
+
+ for (i=3; i>=0; i--)
+ for (j=0; j < nnq->netsize; j++)
+ putc(nnq->network[j][i], f);
+}
+
+/* Output colormap to unsigned char ptr in RGBA format */
+void getcolormap(nnq, map)
+nn_quant *nnq;
+unsigned char *map;
+{
+ int i,j;
+ for(j=0; j < nnq->netsize; j++) {
+ for (i=3; i>=0; i--) {
+ *map = nnq->network[j][i];
+ map++;
+ }
+ }
+}
+
+/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
+ ------------------------------------------------------------------------------- */
+void inxbuild(nn_quant *nnq)
+{
+ register int i,j,smallpos,smallval;
+ register int *p,*q;
+ int previouscol,startpos;
+
+ previouscol = 0;
+ startpos = 0;
+ for (i=0; i < nnq->netsize; i++) {
+ p = nnq->network[i];
+ smallpos = i;
+ smallval = p[2]; /* index on g */
+ /* find smallest in i..netsize-1 */
+ for (j=i+1; j < nnq->netsize; j++) {
+ q = nnq->network[j];
+ if (q[2] < smallval) { /* index on g */
+ smallpos = j;
+ smallval = q[2]; /* index on g */
+ }
+ }
+ q = nnq->network[smallpos];
+ /* swap p (i) and q (smallpos) entries */
+ if (i != smallpos) {
+ j = q[0];
+ q[0] = p[0];
+ p[0] = j;
+ j = q[1];
+ q[1] = p[1];
+ p[1] = j;
+ j = q[2];
+ q[2] = p[2];
+ p[2] = j;
+ j = q[3];
+ q[3] = p[3];
+ p[3] = j;
+ j = q[4];
+ q[4] = p[4];
+ p[4] = j;
+ }
+ /* smallval entry is now in position i */
+ if (smallval != previouscol) {
+ nnq->netindex[previouscol] = (startpos+i)>>1;
+ for (j=previouscol+1; j<smallval; j++) nnq->netindex[j] = i;
+ previouscol = smallval;
+ startpos = i;
+ }
+ }
+ nnq->netindex[previouscol] = (startpos+maxnetpos)>>1;
+ for (j=previouscol+1; j<256; j++) nnq->netindex[j] = maxnetpos; /* really 256 */
+}
+
+
+/* Search for ABGR values 0..255 (after net is unbiased) and return colour index
+ ---------------------------------------------------------------------------- */
+int inxsearch(nnq, al,b,g,r)
+nn_quant *nnq;
+register int al, b, g, r;
+{
+ register int i, j, dist, a, bestd;
+ register int *p;
+ int best;
+
+ bestd = 1000; /* biggest possible dist is 256*3 */
+ best = -1;
+ i = nnq->netindex[g]; /* index on g */
+ j = i-1; /* start at netindex[g] and work outwards */
+
+ while ((i<nnq->netsize) || (j>=0)) {
+ if (i< nnq->netsize) {
+ p = nnq->network[i];
+ dist = p[2] - g; /* inx key */
+ if (dist >= bestd) i = nnq->netsize; /* stop iter */
+ else {
+ i++;
+ if (dist<0) dist = -dist;
+ a = p[1] - b;
+ if (a<0) a = -a;
+ dist += a;
+ if (dist<bestd) {
+ a = p[3] - r;
+ if (a<0) a = -a;
+ dist += a;
+ }
+ if(dist<bestd) {
+ a = p[0] - al;
+ if (a<0) a = -a;
+ dist += a;
+ }
+ if (dist<bestd) {
+ bestd=dist;
+ best=p[4];
+ }
+ }
+ }
+
+ if (j>=0) {
+ p = nnq->network[j];
+ dist = g - p[2]; /* inx key - reverse dif */
+ if (dist >= bestd) j = -1; /* stop iter */
+ else {
+ j--;
+ if (dist<0) dist = -dist;
+ a = p[1] - b;
+ if (a<0) a = -a;
+ dist += a;
+ if (dist<bestd) {
+ a = p[3] - r;
+ if (a<0) a = -a;
+ dist += a;
+ }
+ if(dist<bestd) {
+ a = p[0] - al;
+ if (a<0) a = -a;
+ dist += a;
+ }
+ if (dist<bestd) {
+ bestd=dist;
+ best=p[4];
+ }
+ }
+ }
+ }
+
+ return(best);
+}
+
+/* Search for biased ABGR values
+ ---------------------------- */
+int contest(nnq, al,b,g,r)
+nn_quant *nnq;
+register int al,b,g,r;
+{
+ /* finds closest neuron (min dist) and updates freq */
+ /* finds best neuron (min dist-bias) and returns position */
+ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
+ /* bias[i] = gamma*((1/netsize)-freq[i]) */
+
+ register int i,dist,a,biasdist,betafreq;
+ int bestpos,bestbiaspos,bestd,bestbiasd;
+ register int *p,*f, *n;
+
+ bestd = ~(((int) 1)<<31);
+ bestbiasd = bestd;
+ bestpos = -1;
+ bestbiaspos = bestpos;
+ p = nnq->bias;
+ f = nnq->freq;
+
+ for (i=0; i< nnq->netsize; i++) {
+ n = nnq->network[i];
+ dist = n[0] - al;
+ if (dist<0) dist = -dist;
+ a = n[1] - b;
+ if (a<0) a = -a;
+ dist += a;
+ a = n[2] - g;
+ if (a<0) a = -a;
+ dist += a;
+ a = n[3] - r;
+ if (a<0) a = -a;
+ dist += a;
+ if (dist<bestd) {
+ bestd=dist;
+ bestpos=i;
+ }
+ biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
+ if (biasdist<bestbiasd) {
+ bestbiasd=biasdist;
+ bestbiaspos=i;
+ }
+ betafreq = (*f >> betashift);
+ *f++ -= betafreq;
+ *p++ += (betafreq<<gammashift);
+ }
+ nnq->freq[bestpos] += beta;
+ nnq->bias[bestpos] -= betagamma;
+ return(bestbiaspos);
+}
+
+
+/* Move neuron i towards biased (a,b,g,r) by factor alpha
+ ---------------------------------------------------- */
+
+void altersingle(nnq, alpha,i,al,b,g,r)
+nn_quant *nnq;
+register int alpha,i,al,b,g,r;
+{
+ register int *n;
+
+ n = nnq->network[i]; /* alter hit neuron */
+ *n -= (alpha*(*n - al)) / initalpha;
+ n++;
+ *n -= (alpha*(*n - b)) / initalpha;
+ n++;
+ *n -= (alpha*(*n - g)) / initalpha;
+ n++;
+ *n -= (alpha*(*n - r)) / initalpha;
+}
+
+
+/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
+ --------------------------------------------------------------------------------- */
+
+void alterneigh(nnq, rad,i,al,b,g,r)
+nn_quant *nnq;
+int rad,i;
+register int al,b,g,r;
+{
+ register int j,k,lo,hi,a;
+ register int *p, *q;
+
+ lo = i-rad;
+ if (lo<-1) lo=-1;
+ hi = i+rad;
+ if (hi>nnq->netsize) hi=nnq->netsize;
+
+ j = i+1;
+ k = i-1;
+ q = nnq->radpower;
+ while ((j<hi) || (k>lo)) {
+ a = (*(++q));
+ if (j<hi) {
+ p = nnq->network[j];
+ *p -= (a*(*p - al)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - b)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - g)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - r)) / alpharadbias;
+ j++;
+ }
+ if (k>lo) {
+ p = nnq->network[k];
+ *p -= (a*(*p - al)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - b)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - g)) / alpharadbias;
+ p++;
+ *p -= (a*(*p - r)) / alpharadbias;
+ k--;
+ }
+ }
+}
+
+
+/* Main Learning Loop
+ ------------------ */
+
+void learn(nnq, verbose) /* Stu: N.B. added parameter so that main() could control verbosity. */
+nn_quant *nnq;
+int verbose;
+{
+ register int i,j,al,b,g,r;
+ int radius,rad,alpha,step,delta,samplepixels;
+ register unsigned char *p;
+ unsigned char *lim;
+
+ nnq->alphadec = 30 + ((nnq->samplefac-1)/3);
+ p = nnq->thepicture;
+ lim = nnq->thepicture + nnq->lengthcount;
+ samplepixels = nnq->lengthcount/(4 * nnq->samplefac);
+ /* here's a problem with small images: samplepixels < ncycles => delta = 0 */
+ delta = samplepixels/ncycles;
+ /* kludge to fix */
+ if(delta==0) delta = 1;
+ alpha = initalpha;
+ radius = initradius;
+
+ rad = radius >> radiusbiasshift;
+ if (rad <= 1) rad = 0;
+ for (i=0; i<rad; i++)
+ nnq->radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));
+
+ if (verbose) gd_error_ex(GD_NOTICE, "beginning 1D learning: initial radius=%d\n", rad);
+
+ if ((nnq->lengthcount%prime1) != 0) step = 4*prime1;
+ else {
+ if ((nnq->lengthcount%prime2) !=0) step = 4*prime2;
+ else {
+ if ((nnq->lengthcount%prime3) !=0) step = 4*prime3;
+ else step = 4*prime4;
+ }
+ }
+
+ i = 0;
+ while (i < samplepixels) {
+ al = p[ALPHA] << netbiasshift;
+ b = p[BLUE] << netbiasshift;
+ g = p[GREEN] << netbiasshift;
+ r = p[RED] << netbiasshift;
+ j = contest(nnq, al,b,g,r);
+
+ altersingle(nnq, alpha,j,al,b,g,r);
+ if (rad) alterneigh(nnq, rad,j,al,b,g,r); /* alter neighbours */
+
+ p += step;
+ while (p >= lim) p -= nnq->lengthcount;
+
+ i++;
+ if (i%delta == 0) { /* FPE here if delta=0*/
+ alpha -= alpha / nnq->alphadec;
+ radius -= radius / radiusdec;
+ rad = radius >> radiusbiasshift;
+ if (rad <= 1) rad = 0;
+ for (j=0; j<rad; j++)
+ nnq->radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad));
+ }
+ }
+ if (verbose) gd_error_ex(GD_NOTICE, "finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
+}
+
+BGD_DECLARE(gdImagePtr) gdImageNeuQuant(gdImagePtr im, const int max_color, int sample_factor)
+{
+ const int newcolors = max_color;
+ const int verbose = 1;
+
+ int bot_idx, top_idx; /* for remapping of indices */
+ int remap[MAXNETSIZE];
+ int i,x;
+
+ unsigned char map[MAXNETSIZE][4];
+ unsigned char *d;
+
+ nn_quant *nnq = NULL;
+
+ int row;
+ unsigned char *rgba = NULL;
+ gdImagePtr dst = NULL;
+
+ /* Default it to 3 */
+ if (sample_factor < 1) {
+ sample_factor = 3;
+ }
+ /* Start neuquant */
+ /* Pierre:
+ * This implementation works with aligned contiguous buffer only
+ * Upcoming new buffers are contiguous and will be much faster.
+ * let don't bloat this code to support our good "old" 31bit format.
+ * It alos lets us convert palette image, if one likes to reduce
+ * a palette
+ */
+ if (overflow2(gdImageSX(im), gdImageSY(im))
+ || overflow2(gdImageSX(im) * gdImageSY(im), 4)) {
+ goto done;
+ }
+ rgba = (unsigned char *) gdMalloc(gdImageSX(im) * gdImageSY(im) * 4);
+ if (!rgba) {
+ goto done;
+ }
+
+ d = rgba;
+ for (row = 0; row < gdImageSY(im); row++) {
+ int *p = im->tpixels[row];
+ register int c;
+
+ for (i = 0; i < gdImageSX(im); i++) {
+ c = *p;
+ *d++ = gdImageAlpha(im, c);
+ *d++ = gdImageRed(im, c);
+ *d++ = gdImageBlue(im, c);
+ *d++ = gdImageGreen(im, c);
+ p++;
+ }
+ }
+
+ nnq = (nn_quant *) gdMalloc(sizeof(nn_quant));
+ if (!nnq) {
+ goto done;
+ }
+
+ initnet(nnq, rgba, gdImageSY(im) * gdImageSX(im) * 4, sample_factor, newcolors);
+
+ learn(nnq, verbose);
+ unbiasnet(nnq);
+ getcolormap(nnq, (unsigned char*)map);
+ inxbuild(nnq);
+ /* remapping colormap to eliminate opaque tRNS-chunk entries... */
+ for (top_idx = newcolors-1, bot_idx = x = 0; x < newcolors; ++x) {
+ if (map[x][3] == 255) { /* maxval */
+ remap[x] = top_idx--;
+ } else {
+ remap[x] = bot_idx++;
+ }
+ }
+ if (bot_idx != top_idx + 1) {
+ gd_error(" internal logic error: remapped bot_idx = %d, top_idx = %d\n",
+ bot_idx, top_idx);
+ goto done;
+ }
+
+ dst = gdImageCreate(gdImageSX(im), gdImageSY(im));
+ if (!dst) {
+ goto done;
+ }
+
+ for (x = 0; x < newcolors; ++x) {
+ dst->red[remap[x]] = map[x][0];
+ dst->green[remap[x]] = map[x][1];
+ dst->blue[remap[x]] = map[x][2];
+ dst->alpha[remap[x]] = map[x][3];
+ dst->open[remap[x]] = 0;
+ dst->colorsTotal++;
+ }
+
+ /* Do each image row */
+ for ( row = 0; row < gdImageSY(im); ++row ) {
+ int offset;
+ unsigned char *p = dst->pixels[row];
+
+ /* Assign the new colors */
+ offset = row * gdImageSX(im) * 4;
+ for(i=0; i < gdImageSX(im); i++) {
+ p[i] = remap[
+ inxsearch(nnq, rgba[i * 4 + offset + ALPHA],
+ rgba[i * 4 + offset + BLUE],
+ rgba[i * 4 + offset + GREEN],
+ rgba[i * 4 + offset + RED])
+ ];
+ }
+ }
+
+done:
+ if (rgba) {
+ gdFree(rgba);
+ }
+
+ if (nnq) {
+ gdFree(nnq);
+ }
+ return dst;
+}