diff options
Diffstat (limited to 'Build/source/libs/gd/libgd-2.1.0/src/gd_topal.c')
-rw-r--r-- | Build/source/libs/gd/libgd-2.1.0/src/gd_topal.c | 1725 |
1 files changed, 1725 insertions, 0 deletions
diff --git a/Build/source/libs/gd/libgd-2.1.0/src/gd_topal.c b/Build/source/libs/gd/libgd-2.1.0/src/gd_topal.c new file mode 100644 index 00000000000..28b6503d063 --- /dev/null +++ b/Build/source/libs/gd/libgd-2.1.0/src/gd_topal.c @@ -0,0 +1,1725 @@ +/* TODO: oim and nim in the lower level functions; + correct use of stub (sigh). */ + +/* 2.0.12: a new adaptation from the same original, this time + by Barend Gehrels. My attempt to incorporate alpha channel + into the result worked poorly and degraded the quality of + palette conversion even when the source contained no + alpha channel data. This version does not attempt to produce + an output file with transparency in some of the palette + indexes, which, in practice, doesn't look so hot anyway. TBB */ + +/* + * gd_topal, adapted from jquant2.c + * + * Copyright (C) 1991-1996, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains 2-pass color quantization (color mapping) routines. + * These routines provide selection of a custom color map for an image, + * followed by mapping of the image to that color map, with optional + * Floyd-Steinberg dithering. + * It is also possible to use just the second pass to map to an arbitrary + * externally-given color map. + * + * Note: ordered dithering is not supported, since there isn't any fast + * way to compute intercolor distances; it's unclear that ordered dither's + * fundamental assumptions even hold with an irregularly spaced color map. + */ + + +/* + * THOMAS BOUTELL & BAREND GEHRELS, february 2003 + * adapted the code to work within gd rather than within libjpeg. + * If it is not working, it's not Thomas G. Lane's fault. + */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <string.h> +#include "gd.h" +#include "gdhelpers.h" + +#ifdef HAVE_LIBIMAGEQUANT_H +#include <libimagequant.h> /* if this fails then set -DENABLE_LIQ=NO in cmake or make static libimagequant.a in libimagequant/ */ +#endif + +/* (Re)define some defines known by libjpeg */ +#define QUANT_2PASS_SUPPORTED + +#define RGB_RED 0 +#define RGB_GREEN 1 +#define RGB_BLUE 2 + +#define JSAMPLE unsigned char +#define MAXJSAMPLE (gdMaxColors-1) +#define BITS_IN_JSAMPLE 8 + +#define JSAMPROW int* +#define JDIMENSION int + +#define METHODDEF(type) static type +#define LOCAL(type) static type + + +/* We assume that right shift corresponds to signed division by 2 with + * rounding towards minus infinity. This is correct for typical "arithmetic + * shift" instructions that shift in copies of the sign bit. But some + * C compilers implement >> with an unsigned shift. For these machines you + * must define RIGHT_SHIFT_IS_UNSIGNED. + * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. + * It is only applied with constant shift counts. SHIFT_TEMPS must be + * included in the variables of any routine using RIGHT_SHIFT. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define SHIFT_TEMPS INT32 shift_temp; +#define RIGHT_SHIFT(x,shft) \ + ((shift_temp = (x)) < 0 ? \ + (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ + (shift_temp >> (shft))) +#else +#define SHIFT_TEMPS +#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) +#endif + + +#define range_limit(x) { if(x<0) x=0; if (x>255) x=255; } + + +#ifndef INT16 +#define INT16 short +#endif + +#ifndef UINT16 +#define UINT16 unsigned short +#endif + +#ifndef INT32 +#define INT32 int +#endif + +#ifndef FAR +#define FAR +#endif + + + +#ifndef boolean +#define boolean int +#endif + +#ifndef TRUE +#define TRUE 1 +#endif + +#ifndef FALSE +#define FALSE 0 +#endif + + +#define input_buf (oim->tpixels) +#define output_buf (nim->pixels) + + +#ifdef QUANT_2PASS_SUPPORTED + + +/* + * This module implements the well-known Heckbert paradigm for color + * quantization. Most of the ideas used here can be traced back to + * Heckbert's seminal paper + * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", + * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. + * + * In the first pass over the image, we accumulate a histogram showing the + * usage count of each possible color. To keep the histogram to a reasonable + * size, we reduce the precision of the input; typical practice is to retain + * 5 or 6 bits per color, so that 8 or 4 different input values are counted + * in the same histogram cell. + * + * Next, the color-selection step begins with a box representing the whole + * color space, and repeatedly splits the "largest" remaining box until we + * have as many boxes as desired colors. Then the mean color in each + * remaining box becomes one of the possible output colors. + * + * The second pass over the image maps each input pixel to the closest output + * color (optionally after applying a Floyd-Steinberg dithering correction). + * This mapping is logically trivial, but making it go fast enough requires + * considerable care. + * + * Heckbert-style quantizers vary a good deal in their policies for choosing + * the "largest" box and deciding where to cut it. The particular policies + * used here have proved out well in experimental comparisons, but better ones + * may yet be found. + * + * In earlier versions of the IJG code, this module quantized in YCbCr color + * space, processing the raw upsampled data without a color conversion step. + * This allowed the color conversion math to be done only once per colormap + * entry, not once per pixel. However, that optimization precluded other + * useful optimizations (such as merging color conversion with upsampling) + * and it also interfered with desired capabilities such as quantizing to an + * externally-supplied colormap. We have therefore abandoned that approach. + * The present code works in the post-conversion color space, typically RGB. + * + * To improve the visual quality of the results, we actually work in scaled + * RGB space, giving G distances more weight than R, and R in turn more than + * B. To do everything in integer math, we must use integer scale factors. + * The 2/3/1 scale factors used here correspond loosely to the relative + * weights of the colors in the NTSC grayscale equation. + * If you want to use this code to quantize a non-RGB color space, you'll + * probably need to change these scale factors. + */ + +#define R_SCALE 2 /* scale R distances by this much */ +#define G_SCALE 3 /* scale G distances by this much */ +#define B_SCALE 1 /* and B by this much */ + +/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined + * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B + * and B,G,R orders. If you define some other weird order in jmorecfg.h, + * you'll get compile errors until you extend this logic. In that case + * you'll probably want to tweak the histogram sizes too. + */ + +#if RGB_RED == 0 +#define C0_SCALE R_SCALE +#endif +#if RGB_BLUE == 0 +#define C0_SCALE B_SCALE +#endif +#if RGB_GREEN == 1 +#define C1_SCALE G_SCALE +#endif +#if RGB_RED == 2 +#define C2_SCALE R_SCALE +#endif +#if RGB_BLUE == 2 +#define C2_SCALE B_SCALE +#endif + + +/* + * First we have the histogram data structure and routines for creating it. + * + * The number of bits of precision can be adjusted by changing these symbols. + * We recommend keeping 6 bits for G and 5 each for R and B. + * If you have plenty of memory and cycles, 6 bits all around gives marginally + * better results; if you are short of memory, 5 bits all around will save + * some space but degrade the results. + * To maintain a fully accurate histogram, we'd need to allocate a "long" + * (preferably unsigned long) for each cell. In practice this is overkill; + * we can get by with 16 bits per cell. Few of the cell counts will overflow, + * and clamping those that do overflow to the maximum value will give close- + * enough results. This reduces the recommended histogram size from 256Kb + * to 128Kb, which is a useful savings on PC-class machines. + * (In the second pass the histogram space is re-used for pixel mapping data; + * in that capacity, each cell must be able to store zero to the number of + * desired colors. 16 bits/cell is plenty for that too.) + * Since the JPEG code is intended to run in small memory model on 80x86 + * machines, we can't just allocate the histogram in one chunk. Instead + * of a true 3-D array, we use a row of pointers to 2-D arrays. Each + * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and + * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that + * on 80x86 machines, the pointer row is in near memory but the actual + * arrays are in far memory (same arrangement as we use for image arrays). + */ + +#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ + +/* These will do the right thing for either R,G,B or B,G,R color order, + * but you may not like the results for other color orders. + */ +#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ +#define HIST_C1_BITS 6 /* bits of precision in G histogram */ +#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ + +/* Number of elements along histogram axes. */ +#define HIST_C0_ELEMS (1<<HIST_C0_BITS) +#define HIST_C1_ELEMS (1<<HIST_C1_BITS) +#define HIST_C2_ELEMS (1<<HIST_C2_BITS) + +/* These are the amounts to shift an input value to get a histogram index. */ +#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) +#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) +#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) + + +typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ + +typedef histcell FAR *histptr; /* for pointers to histogram cells */ + +typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ +typedef hist1d FAR *hist2d; /* type for the 2nd-level pointers */ +typedef hist2d *hist3d; /* type for top-level pointer */ + + +/* Declarations for Floyd-Steinberg dithering. + * + * Errors are accumulated into the array fserrors[], at a resolution of + * 1/16th of a pixel count. The error at a given pixel is propagated + * to its not-yet-processed neighbors using the standard F-S fractions, + * ... (here) 7/16 + * 3/16 5/16 1/16 + * We work left-to-right on even rows, right-to-left on odd rows. + * + * We can get away with a single array (holding one row's worth of errors) + * by using it to store the current row's errors at pixel columns not yet + * processed, but the next row's errors at columns already processed. We + * need only a few extra variables to hold the errors immediately around the + * current column. (If we are lucky, those variables are in registers, but + * even if not, they're probably cheaper to access than array elements are.) + * + * The fserrors[] array has (#columns + 2) entries; the extra entry at + * each end saves us from special-casing the first and last pixels. + * Each entry is three values long, one value for each color component. + * + * Note: on a wide image, we might not have enough room in a PC's near data + * segment to hold the error array; so it is allocated with alloc_large. + */ + +#if BITS_IN_JSAMPLE == 8 +typedef INT16 FSERROR; /* 16 bits should be enough */ +typedef int LOCFSERROR; /* use 'int' for calculation temps */ +#else +typedef INT32 FSERROR; /* may need more than 16 bits */ +typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ +#endif + +typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ + + +/* Private subobject */ + +typedef struct { + /* Variables for accumulating image statistics */ + hist3d histogram; /* pointer to the histogram */ + + + /* Variables for Floyd-Steinberg dithering */ + FSERRPTR fserrors; /* accumulated errors */ + + boolean on_odd_row; /* flag to remember which row we are on */ + int *error_limiter; /* table for clamping the applied error */ + int *error_limiter_storage; /* gdMalloc'd storage for the above */ +} +my_cquantizer; + +typedef my_cquantizer *my_cquantize_ptr; + + +/* + * Prescan some rows of pixels. + * In this module the prescan simply updates the histogram, which has been + * initialized to zeroes by start_pass. + * An output_buf parameter is required by the method signature, but no data + * is actually output (in fact the buffer controller is probably passing a + * NULL pointer). + */ + +METHODDEF (void) +prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize) +{ + register JSAMPROW ptr; + register histptr histp; + register hist3d histogram = cquantize->histogram; + int row; + JDIMENSION col; + int width = oim->sx; + int num_rows = oim->sy; + + (void)nim; + + for (row = 0; row < num_rows; row++) { + ptr = input_buf[row]; + for (col = width; col > 0; col--) { + int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT; + int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT; + int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT; + /* 2.0.12: Steven Brown: support a single totally transparent + color in the original. */ + if ((oim->transparent >= 0) && (*ptr == oim->transparent)) { + ptr++; + continue; + } + /* get pixel value and index into the histogram */ + histp = &histogram[r][g][b]; + /* increment, check for overflow and undo increment if so. */ + if (++(*histp) == 0) + (*histp)--; + ptr++; + } + } +} + + +/* + * Next we have the really interesting routines: selection of a colormap + * given the completed histogram. + * These routines work with a list of "boxes", each representing a rectangular + * subset of the input color space (to histogram precision). + */ + +typedef struct { + /* The bounds of the box (inclusive); expressed as histogram indexes */ + int c0min, c0max; + int c1min, c1max; + int c2min, c2max; + /* The volume (actually 2-norm) of the box */ + INT32 volume; + /* The number of nonzero histogram cells within this box */ + long colorcount; +} +box; + +typedef box *boxptr; + + +LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes) +/* Find the splittable box with the largest color population */ +/* Returns NULL if no splittable boxes remain */ +{ + register boxptr boxp; + register int i; + register long maxc = 0; + boxptr which = NULL; + + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { + if (boxp->colorcount > maxc && boxp->volume > 0) { + which = boxp; + maxc = boxp->colorcount; + } + } + return which; +} + + +LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes) +/* Find the splittable box with the largest (scaled) volume */ +/* Returns NULL if no splittable boxes remain */ +{ + register boxptr boxp; + register int i; + register INT32 maxv = 0; + boxptr which = NULL; + + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { + if (boxp->volume > maxv) { + which = boxp; + maxv = boxp->volume; + } + } + return which; +} + + +LOCAL (void) +update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp) +{ + hist3d histogram = cquantize->histogram; + histptr histp; + int c0, c1, c2; + int c0min, c0max, c1min, c1max, c2min, c2max; + INT32 dist0, dist1, dist2; + long ccount; + (void)oim; + (void)nim; + + c0min = boxp->c0min; + c0max = boxp->c0max; + c1min = boxp->c1min; + c1max = boxp->c1max; + c2min = boxp->c2min; + c2max = boxp->c2max; + + if (c0max > c0min) + for (c0 = c0min; c0 <= c0max; c0++) + for (c1 = c1min; c1 <= c1max; c1++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c0min = c0min = c0; + goto have_c0min; + } + } +have_c0min: + if (c0max > c0min) + for (c0 = c0max; c0 >= c0min; c0--) + for (c1 = c1min; c1 <= c1max; c1++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c0max = c0max = c0; + goto have_c0max; + } + } +have_c0max: + if (c1max > c1min) + for (c1 = c1min; c1 <= c1max; c1++) + for (c0 = c0min; c0 <= c0max; c0++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c1min = c1min = c1; + goto have_c1min; + } + } +have_c1min: + if (c1max > c1min) + for (c1 = c1max; c1 >= c1min; c1--) + for (c0 = c0min; c0 <= c0max; c0++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) + if (*histp++ != 0) { + boxp->c1max = c1max = c1; + goto have_c1max; + } + } +have_c1max: + if (c2max > c2min) + for (c2 = c2min; c2 <= c2max; c2++) + for (c0 = c0min; c0 <= c0max; c0++) { + histp = &histogram[c0][c1min][c2]; + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) + if (*histp != 0) { + boxp->c2min = c2min = c2; + goto have_c2min; + } + } +have_c2min: + if (c2max > c2min) + for (c2 = c2max; c2 >= c2min; c2--) + for (c0 = c0min; c0 <= c0max; c0++) { + histp = &histogram[c0][c1min][c2]; + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) + if (*histp != 0) { + boxp->c2max = c2max = c2; + goto have_c2max; + } + } +have_c2max: + + /* Update box volume. + * We use 2-norm rather than real volume here; this biases the method + * against making long narrow boxes, and it has the side benefit that + * a box is splittable iff norm > 0. + * Since the differences are expressed in histogram-cell units, + * we have to shift back to JSAMPLE units to get consistent distances; + * after which, we scale according to the selected distance scale factors. + */ + dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; + dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; + dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; + boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2; + + /* Now scan remaining volume of box and compute population */ + ccount = 0; + for (c0 = c0min; c0 <= c0max; c0++) + for (c1 = c1min; c1 <= c1max; c1++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++, histp++) + if (*histp != 0) { + ccount++; + } + } + boxp->colorcount = ccount; +} + + +LOCAL (int) +median_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, + boxptr boxlist, int numboxes, int desired_colors) +/* Repeatedly select and split the largest box until we have enough boxes */ +{ + int n, lb; + int c0, c1, c2, cmax; + register boxptr b1, b2; + + while (numboxes < desired_colors) { + /* Select box to split. + * Current algorithm: by population for first half, then by volume. + */ + if (numboxes * 2 <= desired_colors) { + b1 = find_biggest_color_pop (boxlist, numboxes); + } else { + b1 = find_biggest_volume (boxlist, numboxes); + } + if (b1 == NULL) /* no splittable boxes left! */ + break; + b2 = &boxlist[numboxes]; /* where new box will go */ + /* Copy the color bounds to the new box. */ + b2->c0max = b1->c0max; + b2->c1max = b1->c1max; + b2->c2max = b1->c2max; + b2->c0min = b1->c0min; + b2->c1min = b1->c1min; + b2->c2min = b1->c2min; + /* Choose which axis to split the box on. + * Current algorithm: longest scaled axis. + * See notes in update_box about scaling distances. + */ + c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; + c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; + c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; + /* We want to break any ties in favor of green, then red, blue last. + * This code does the right thing for R,G,B or B,G,R color orders only. + */ +#if RGB_RED == 0 + cmax = c1; + n = 1; + if (c0 > cmax) { + cmax = c0; + n = 0; + } + if (c2 > cmax) { + n = 2; + } +#else + cmax = c1; + n = 1; + if (c2 > cmax) { + cmax = c2; + n = 2; + } + if (c0 > cmax) { + n = 0; + } +#endif + /* Choose split point along selected axis, and update box bounds. + * Current algorithm: split at halfway point. + * (Since the box has been shrunk to minimum volume, + * any split will produce two nonempty subboxes.) + * Note that lb value is max for lower box, so must be < old max. + */ + switch (n) { + case 0: + lb = (b1->c0max + b1->c0min) / 2; + b1->c0max = lb; + b2->c0min = lb + 1; + break; + case 1: + lb = (b1->c1max + b1->c1min) / 2; + b1->c1max = lb; + b2->c1min = lb + 1; + break; + case 2: + lb = (b1->c2max + b1->c2min) / 2; + b1->c2max = lb; + b2->c2min = lb + 1; + break; + } + /* Update stats for boxes */ + update_box (oim, nim, cquantize, b1); + update_box (oim, nim, cquantize, b2); + numboxes++; + } + return numboxes; +} + + +LOCAL (void) +compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, + boxptr boxp, int icolor) +{ + hist3d histogram = cquantize->histogram; + histptr histp; + int c0, c1, c2; + int c0min, c0max, c1min, c1max, c2min, c2max; + long count = 0; /* 2.0.28: = 0 */ + long total = 0; + long c0total = 0; + long c1total = 0; + long c2total = 0; + (void)oim; + + c0min = boxp->c0min; + c0max = boxp->c0max; + c1min = boxp->c1min; + c1max = boxp->c1max; + c2min = boxp->c2min; + c2max = boxp->c2max; + + for (c0 = c0min; c0 <= c0max; c0++) + for (c1 = c1min; c1 <= c1max; c1++) { + histp = &histogram[c0][c1][c2min]; + for (c2 = c2min; c2 <= c2max; c2++) { + if ((count = *histp++) != 0) { + total += count; + c0total += + ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; + c1total += + ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; + c2total += + ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; + } + } + } + + /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */ + if (count) { + nim->red[icolor] = (int) ((c0total + (total >> 1)) / total); + nim->green[icolor] = (int) ((c1total + (total >> 1)) / total); + nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total); + } else { + nim->red[icolor] = 255; + nim->green[icolor] = 255; + nim->blue[icolor] = 255; + } + nim->open[icolor] = 0; +} + + +LOCAL (void) +select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors) +/* Master routine for color selection */ +{ + boxptr boxlist; + int numboxes; + int i; + + /* Allocate workspace for box list */ + /* This can't happen because we clamp desired_colors at gdMaxColors, + but anyway */ + if (overflow2(desired_colors, sizeof (box))) { + return; + } + boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box)); + if (!boxlist) { + return; + } + /* Initialize one box containing whole space */ + numboxes = 1; + boxlist[0].c0min = 0; + boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; + boxlist[0].c1min = 0; + boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; + boxlist[0].c2min = 0; + boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; + /* Shrink it to actually-used volume and set its statistics */ + update_box (oim, nim, cquantize, &boxlist[0]); + /* Perform median-cut to produce final box list */ + numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors); + /* Compute the representative color for each box, fill colormap */ + for (i = 0; i < numboxes; i++) + compute_color (oim, nim, cquantize, &boxlist[i], i); + nim->colorsTotal = numboxes; + + /* If we had a pure transparency color, add it as the last palette entry. + * Skip incrementing the color count so that the dither / matching phase + * won't use it on pixels that shouldn't have been transparent. We'll + * increment it after all that finishes. */ + if (oim->transparent >= 0) { + /* Save the transparent color. */ + nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent); + nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent); + nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent); + nim->alpha[nim->colorsTotal] = gdAlphaTransparent; + nim->open[nim->colorsTotal] = 0; + } + + gdFree (boxlist); +} + + +/* + * These routines are concerned with the time-critical task of mapping input + * colors to the nearest color in the selected colormap. + * + * We re-use the histogram space as an "inverse color map", essentially a + * cache for the results of nearest-color searches. All colors within a + * histogram cell will be mapped to the same colormap entry, namely the one + * closest to the cell's center. This may not be quite the closest entry to + * the actual input color, but it's almost as good. A zero in the cache + * indicates we haven't found the nearest color for that cell yet; the array + * is cleared to zeroes before starting the mapping pass. When we find the + * nearest color for a cell, its colormap index plus one is recorded in the + * cache for future use. The pass2 scanning routines call fill_inverse_cmap + * when they need to use an unfilled entry in the cache. + * + * Our method of efficiently finding nearest colors is based on the "locally + * sorted search" idea described by Heckbert and on the incremental distance + * calculation described by Spencer W. Thomas in chapter III.1 of Graphics + * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that + * the distances from a given colormap entry to each cell of the histogram can + * be computed quickly using an incremental method: the differences between + * distances to adjacent cells themselves differ by a constant. This allows a + * fairly fast implementation of the "brute force" approach of computing the + * distance from every colormap entry to every histogram cell. Unfortunately, + * it needs a work array to hold the best-distance-so-far for each histogram + * cell (because the inner loop has to be over cells, not colormap entries). + * The work array elements have to be INT32s, so the work array would need + * 256Kb at our recommended precision. This is not feasible in DOS machines. + * + * To get around these problems, we apply Thomas' method to compute the + * nearest colors for only the cells within a small subbox of the histogram. + * The work array need be only as big as the subbox, so the memory usage + * problem is solved. Furthermore, we need not fill subboxes that are never + * referenced in pass2; many images use only part of the color gamut, so a + * fair amount of work is saved. An additional advantage of this + * approach is that we can apply Heckbert's locality criterion to quickly + * eliminate colormap entries that are far away from the subbox; typically + * three-fourths of the colormap entries are rejected by Heckbert's criterion, + * and we need not compute their distances to individual cells in the subbox. + * The speed of this approach is heavily influenced by the subbox size: too + * small means too much overhead, too big loses because Heckbert's criterion + * can't eliminate as many colormap entries. Empirically the best subbox + * size seems to be about 1/512th of the histogram (1/8th in each direction). + * + * Thomas' article also describes a refined method which is asymptotically + * faster than the brute-force method, but it is also far more complex and + * cannot efficiently be applied to small subboxes. It is therefore not + * useful for programs intended to be portable to DOS machines. On machines + * with plenty of memory, filling the whole histogram in one shot with Thomas' + * refined method might be faster than the present code --- but then again, + * it might not be any faster, and it's certainly more complicated. + */ + + +/* log2(histogram cells in update box) for each axis; this can be adjusted */ +#define BOX_C0_LOG (HIST_C0_BITS-3) +#define BOX_C1_LOG (HIST_C1_BITS-3) +#define BOX_C2_LOG (HIST_C2_BITS-3) + +#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ +#define BOX_C1_ELEMS (1<<BOX_C1_LOG) +#define BOX_C2_ELEMS (1<<BOX_C2_LOG) + +#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) +#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) +#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) + + +/* + * The next three routines implement inverse colormap filling. They could + * all be folded into one big routine, but splitting them up this way saves + * some stack space (the mindist[] and bestdist[] arrays need not coexist) + * and may allow some compilers to produce better code by registerizing more + * inner-loop variables. + */ + +LOCAL (int) +find_nearby_colors ( + gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, + int minc0, int minc1, int minc2, JSAMPLE colorlist[]) +/* Locate the colormap entries close enough to an update box to be candidates + * for the nearest entry to some cell(s) in the update box. The update box + * is specified by the center coordinates of its first cell. The number of + * candidate colormap entries is returned, and their colormap indexes are + * placed in colorlist[]. + * This routine uses Heckbert's "locally sorted search" criterion to select + * the colors that need further consideration. + */ +{ + int numcolors = nim->colorsTotal; + int maxc0, maxc1, maxc2; + int centerc0, centerc1, centerc2; + int i, x, ncolors; + INT32 minmaxdist, min_dist, max_dist, tdist; + INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ + (void)oim; + (void)cquantize; + + /* Compute true coordinates of update box's upper corner and center. + * Actually we compute the coordinates of the center of the upper-corner + * histogram cell, which are the upper bounds of the volume we care about. + * Note that since ">>" rounds down, the "center" values may be closer to + * min than to max; hence comparisons to them must be "<=", not "<". + */ + maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); + centerc0 = (minc0 + maxc0) >> 1; + maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); + centerc1 = (minc1 + maxc1) >> 1; + maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); + centerc2 = (minc2 + maxc2) >> 1; + + /* For each color in colormap, find: + * 1. its minimum squared-distance to any point in the update box + * (zero if color is within update box); + * 2. its maximum squared-distance to any point in the update box. + * Both of these can be found by considering only the corners of the box. + * We save the minimum distance for each color in mindist[]; + * only the smallest maximum distance is of interest. + */ + minmaxdist = 0x7FFFFFFFL; + + for (i = 0; i < numcolors; i++) { + /* We compute the squared-c0-distance term, then add in the other two. */ + x = nim->red[i]; + if (x < minc0) { + tdist = (x - minc0) * C0_SCALE; + min_dist = tdist * tdist; + tdist = (x - maxc0) * C0_SCALE; + max_dist = tdist * tdist; + } else if (x > maxc0) { + tdist = (x - maxc0) * C0_SCALE; + min_dist = tdist * tdist; + tdist = (x - minc0) * C0_SCALE; + max_dist = tdist * tdist; + } else { + /* within cell range so no contribution to min_dist */ + min_dist = 0; + if (x <= centerc0) { + tdist = (x - maxc0) * C0_SCALE; + max_dist = tdist * tdist; + } else { + tdist = (x - minc0) * C0_SCALE; + max_dist = tdist * tdist; + } + } + + x = nim->green[i]; + if (x < minc1) { + tdist = (x - minc1) * C1_SCALE; + min_dist += tdist * tdist; + tdist = (x - maxc1) * C1_SCALE; + max_dist += tdist * tdist; + } else if (x > maxc1) { + tdist = (x - maxc1) * C1_SCALE; + min_dist += tdist * tdist; + tdist = (x - minc1) * C1_SCALE; + max_dist += tdist * tdist; + } else { + /* within cell range so no contribution to min_dist */ + if (x <= centerc1) { + tdist = (x - maxc1) * C1_SCALE; + max_dist += tdist * tdist; + } else { + tdist = (x - minc1) * C1_SCALE; + max_dist += tdist * tdist; + } + } + + x = nim->blue[i]; + if (x < minc2) { + tdist = (x - minc2) * C2_SCALE; + min_dist += tdist * tdist; + tdist = (x - maxc2) * C2_SCALE; + max_dist += tdist * tdist; + } else if (x > maxc2) { + tdist = (x - maxc2) * C2_SCALE; + min_dist += tdist * tdist; + tdist = (x - minc2) * C2_SCALE; + max_dist += tdist * tdist; + } else { + /* within cell range so no contribution to min_dist */ + if (x <= centerc2) { + tdist = (x - maxc2) * C2_SCALE; + max_dist += tdist * tdist; + } else { + tdist = (x - minc2) * C2_SCALE; + max_dist += tdist * tdist; + } + } + + mindist[i] = min_dist; /* save away the results */ + if (max_dist < minmaxdist) + minmaxdist = max_dist; + } + + /* Now we know that no cell in the update box is more than minmaxdist + * away from some colormap entry. Therefore, only colors that are + * within minmaxdist of some part of the box need be considered. + */ + ncolors = 0; + for (i = 0; i < numcolors; i++) { + if (mindist[i] <= minmaxdist) + colorlist[ncolors++] = (JSAMPLE) i; + } + return ncolors; +} + + +LOCAL (void) find_best_colors ( + gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, + int minc0, int minc1, int minc2, + int numcolors, JSAMPLE colorlist[], + JSAMPLE bestcolor[]) +/* Find the closest colormap entry for each cell in the update box, + * given the list of candidate colors prepared by find_nearby_colors. + * Return the indexes of the closest entries in the bestcolor[] array. + * This routine uses Thomas' incremental distance calculation method to + * find the distance from a colormap entry to successive cells in the box. + */ +{ + int ic0, ic1, ic2; + int i, icolor; + register INT32 *bptr; /* pointer into bestdist[] array */ + JSAMPLE *cptr; /* pointer into bestcolor[] array */ + INT32 dist0, dist1; /* initial distance values */ + register INT32 dist2; /* current distance in inner loop */ + INT32 xx0, xx1; /* distance increments */ + register INT32 xx2; + INT32 inc0, inc1, inc2; /* initial values for increments */ + /* This array holds the distance to the nearest-so-far color for each cell */ + INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; + (void)oim; + (void)cquantize; + + /* Initialize best-distance for each cell of the update box */ + bptr = bestdist; + for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--) + *bptr++ = 0x7FFFFFFFL; + + /* For each color selected by find_nearby_colors, + * compute its distance to the center of each cell in the box. + * If that's less than best-so-far, update best distance and color number. + */ + + /* Nominal steps between cell centers ("x" in Thomas article) */ +#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) +#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) +#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) + + for (i = 0; i < numcolors; i++) { + int r, g, b; + icolor = colorlist[i]; + r = nim->red[icolor]; + g = nim->green[icolor]; + b = nim->blue[icolor]; + + /* Compute (square of) distance from minc0/c1/c2 to this color */ + inc0 = (minc0 - r) * C0_SCALE; + dist0 = inc0 * inc0; + inc1 = (minc1 - g) * C1_SCALE; + dist0 += inc1 * inc1; + inc2 = (minc2 - b) * C2_SCALE; + dist0 += inc2 * inc2; + /* Form the initial difference increments */ + inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; + inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; + inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; + /* Now loop over all cells in box, updating distance per Thomas method */ + bptr = bestdist; + cptr = bestcolor; + xx0 = inc0; + for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) { + dist1 = dist0; + xx1 = inc1; + for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) { + dist2 = dist1; + xx2 = inc2; + for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) { + if (dist2 < *bptr) { + *bptr = dist2; + *cptr = (JSAMPLE) icolor; + } + dist2 += xx2; + xx2 += 2 * STEP_C2 * STEP_C2; + bptr++; + cptr++; + } + dist1 += xx1; + xx1 += 2 * STEP_C1 * STEP_C1; + } + dist0 += xx0; + xx0 += 2 * STEP_C0 * STEP_C0; + } + } +} + + +LOCAL (void) +fill_inverse_cmap ( + gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, + int c0, int c1, int c2) +/* Fill the inverse-colormap entries in the update box that contains */ +/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ +/* we can fill as many others as we wish.) */ +{ + hist3d histogram = cquantize->histogram; + int minc0, minc1, minc2; /* lower left corner of update box */ + int ic0, ic1, ic2; + register JSAMPLE *cptr; /* pointer into bestcolor[] array */ + register histptr cachep; /* pointer into main cache array */ + /* This array lists the candidate colormap indexes. */ + JSAMPLE colorlist[MAXNUMCOLORS]; + int numcolors; /* number of candidate colors */ + /* This array holds the actually closest colormap index for each cell. */ + JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; + + /* Convert cell coordinates to update box ID */ + c0 >>= BOX_C0_LOG; + c1 >>= BOX_C1_LOG; + c2 >>= BOX_C2_LOG; + + /* Compute true coordinates of update box's origin corner. + * Actually we compute the coordinates of the center of the corner + * histogram cell, which are the lower bounds of the volume we care about. + */ + minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); + minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); + minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); + + /* Determine which colormap entries are close enough to be candidates + * for the nearest entry to some cell in the update box. + */ + numcolors = + find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist); + find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors, + colorlist, bestcolor); + + /* Save the best color numbers (plus 1) in the main cache array */ + c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ + c1 <<= BOX_C1_LOG; + c2 <<= BOX_C2_LOG; + cptr = bestcolor; + for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { + for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { + cachep = &histogram[c0 + ic0][c1 + ic1][c2]; + for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { + *cachep++ = (histcell) ((*cptr++) + 1); + } + } + } +} + + +/* + * Map some rows of pixels to the output colormapped representation. + */ + +METHODDEF (void) +pass2_no_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize) +{ + register int *inptr; + register unsigned char *outptr; + int width = oim->sx; + int num_rows = oim->sy; + hist3d histogram = cquantize->histogram; + register int c0, c1, c2; + int row; + JDIMENSION col; + register histptr cachep; + + + for (row = 0; row < num_rows; row++) { + inptr = input_buf[row]; + outptr = output_buf[row]; + for (col = width; col > 0; col--) { + /* get pixel value and index into the cache */ + int r, g, b; + r = gdTrueColorGetRed (*inptr); + g = gdTrueColorGetGreen (*inptr); + /* + 2.0.24: inptr must not be incremented until after + transparency check, if any. Thanks to "Super Pikeman." + */ + b = gdTrueColorGetBlue (*inptr); + + /* If the pixel is transparent, we assign it the palette index that + * will later be added at the end of the palette as the transparent + * index. */ + if ((oim->transparent >= 0) && (oim->transparent == *inptr)) { + *outptr++ = nim->colorsTotal; + inptr++; + continue; + } + inptr++; + c0 = r >> C0_SHIFT; + c1 = g >> C1_SHIFT; + c2 = b >> C2_SHIFT; + cachep = &histogram[c0][c1][c2]; + /* If we have not seen this color before, find nearest colormap entry */ + /* and update the cache */ + if (*cachep == 0) + fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2); + /* Now emit the colormap index for this cell */ + *outptr++ = (*cachep - 1); + } + } +} + + +METHODDEF (void) +pass2_fs_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize) +{ + hist3d histogram = cquantize->histogram; + register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ + LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ + LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ + register FSERRPTR errorptr; /* => fserrors[] at column before current */ + histptr cachep; + int dir; /* +1 or -1 depending on direction */ + int dir3; /* 3*dir, for advancing inptr & errorptr */ + int row; + JDIMENSION col; + int *inptr; /* => current input pixel */ + unsigned char *outptr; /* => current output pixel */ + int width = oim->sx; + int num_rows = oim->sy; + int *colormap0 = nim->red; + int *colormap1 = nim->green; + int *colormap2 = nim->blue; + int *error_limit = cquantize->error_limiter; + + + SHIFT_TEMPS for (row = 0; row < num_rows; row++) { + inptr = input_buf[row]; + outptr = output_buf[row]; + if (cquantize->on_odd_row) { + /* work right to left in this row */ + inptr += (width - 1) * 3; /* so point to rightmost pixel */ + outptr += width - 1; + dir = -1; + dir3 = -3; + errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */ + } else { + /* work left to right in this row */ + dir = 1; + dir3 = 3; + errorptr = cquantize->fserrors; /* => entry before first real column */ + } + /* Preset error values: no error propagated to first pixel from left */ + cur0 = cur1 = cur2 = 0; + /* and no error propagated to row below yet */ + belowerr0 = belowerr1 = belowerr2 = 0; + bpreverr0 = bpreverr1 = bpreverr2 = 0; + + for (col = width; col > 0; col--) { + + /* If this pixel is transparent, we want to assign it to the special + * transparency color index past the end of the palette rather than + * go through matching / dithering. */ + if ((oim->transparent >= 0) && (*inptr == oim->transparent)) { + *outptr = nim->colorsTotal; + errorptr[0] = 0; + errorptr[1] = 0; + errorptr[2] = 0; + errorptr[3] = 0; + inptr += dir; + outptr += dir; + errorptr += dir3; + continue; + } + /* curN holds the error propagated from the previous pixel on the + * current line. Add the error propagated from the previous line + * to form the complete error correction term for this pixel, and + * round the error term (which is expressed * 16) to an integer. + * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct + * for either sign of the error value. + * Note: errorptr points to *previous* column's array entry. + */ + cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4); + cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4); + cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4); + /* Limit the error using transfer function set by init_error_limit. + * See comments with init_error_limit for rationale. + */ + cur0 = error_limit[cur0]; + cur1 = error_limit[cur1]; + cur2 = error_limit[cur2]; + /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. + * The maximum error is +- MAXJSAMPLE (or less with error limiting); + * this sets the required size of the range_limit array. + */ + cur0 += gdTrueColorGetRed (*inptr); + cur1 += gdTrueColorGetGreen (*inptr); + cur2 += gdTrueColorGetBlue (*inptr); + range_limit (cur0); + range_limit (cur1); + range_limit (cur2); + + /* Index into the cache with adjusted pixel value */ + cachep = + &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT]; + /* If we have not seen this color before, find nearest colormap */ + /* entry and update the cache */ + if (*cachep == 0) + fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT, + cur1 >> C1_SHIFT, cur2 >> C2_SHIFT); + /* Now emit the colormap index for this cell */ + { + register int pixcode = *cachep - 1; + *outptr = (JSAMPLE) pixcode; + /* Compute representation error for this pixel */ +#define GETJSAMPLE + cur0 -= GETJSAMPLE (colormap0[pixcode]); + cur1 -= GETJSAMPLE (colormap1[pixcode]); + cur2 -= GETJSAMPLE (colormap2[pixcode]); +#undef GETJSAMPLE + } + /* Compute error fractions to be propagated to adjacent pixels. + * Add these into the running sums, and simultaneously shift the + * next-line error sums left by 1 column. + */ + { + register LOCFSERROR bnexterr, delta; + + bnexterr = cur0; /* Process component 0 */ + delta = cur0 * 2; + cur0 += delta; /* form error * 3 */ + errorptr[0] = (FSERROR) (bpreverr0 + cur0); + cur0 += delta; /* form error * 5 */ + bpreverr0 = belowerr0 + cur0; + belowerr0 = bnexterr; + cur0 += delta; /* form error * 7 */ + bnexterr = cur1; /* Process component 1 */ + delta = cur1 * 2; + cur1 += delta; /* form error * 3 */ + errorptr[1] = (FSERROR) (bpreverr1 + cur1); + cur1 += delta; /* form error * 5 */ + bpreverr1 = belowerr1 + cur1; + belowerr1 = bnexterr; + cur1 += delta; /* form error * 7 */ + bnexterr = cur2; /* Process component 2 */ + delta = cur2 * 2; + cur2 += delta; /* form error * 3 */ + errorptr[2] = (FSERROR) (bpreverr2 + cur2); + cur2 += delta; /* form error * 5 */ + bpreverr2 = belowerr2 + cur2; + belowerr2 = bnexterr; + cur2 += delta; /* form error * 7 */ + } + /* At this point curN contains the 7/16 error value to be propagated + * to the next pixel on the current line, and all the errors for the + * next line have been shifted over. We are therefore ready to move on. + */ + inptr += dir; /* Advance pixel pointers to next column */ + outptr += dir; + errorptr += dir3; /* advance errorptr to current column */ + } + /* Post-loop cleanup: we must unload the final error values into the + * final fserrors[] entry. Note we need not unload belowerrN because + * it is for the dummy column before or after the actual array. + */ + errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ + errorptr[1] = (FSERROR) bpreverr1; + errorptr[2] = (FSERROR) bpreverr2; + } +} + + +/* + * Initialize the error-limiting transfer function (lookup table). + * The raw F-S error computation can potentially compute error values of up to + * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be + * much less, otherwise obviously wrong pixels will be created. (Typical + * effects include weird fringes at color-area boundaries, isolated bright + * pixels in a dark area, etc.) The standard advice for avoiding this problem + * is to ensure that the "corners" of the color cube are allocated as output + * colors; then repeated errors in the same direction cannot cause cascading + * error buildup. However, that only prevents the error from getting + * completely out of hand; Aaron Giles reports that error limiting improves + * the results even with corner colors allocated. + * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty + * well, but the smoother transfer function used below is even better. Thanks + * to Aaron Giles for this idea. + */ + +LOCAL (void) +init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize) +/* Allocate and fill in the error_limiter table */ +{ + int *table; + int in, out; + (void)oim; + (void)nim; + + cquantize->error_limiter_storage = + (int *) gdMalloc ((MAXJSAMPLE * 2 + 1) * sizeof (int)); + if (!cquantize->error_limiter_storage) { + return; + } + table = cquantize->error_limiter_storage; + + table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ + cquantize->error_limiter = table; + +#define STEPSIZE ((MAXJSAMPLE+1)/16) + /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ + out = 0; + for (in = 0; in < STEPSIZE; in++, out++) { + table[in] = out; + table[-in] = -out; + } + /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ + for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) { + table[in] = out; + table[-in] = -out; + } + /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ + for (; in <= MAXJSAMPLE; in++) { + table[in] = out; + table[-in] = -out; + } +#undef STEPSIZE +} + + +/* + * Finish up at the end of each pass. + */ + +static void +zeroHistogram (hist3d histogram) +{ + int i; + /* Zero the histogram or inverse color map */ + for (i = 0; i < HIST_C0_ELEMS; i++) { + memset (histogram[i], + 0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell)); + } +} + + +/* + Selects quantization method used for subsequent gdImageTrueColorToPalette calls. + See gdPaletteQuantizationMethod enum (e.g. GD_QUANT_NEUQUANT, GD_QUANT_LIQ). + Speed is from 1 (highest quality) to 10 (fastest). + Speed 0 selects method-specific default (recommended). + + Returns FALSE if the given method is invalid or not available. +*/ +BGD_DECLARE(int) gdImageTrueColorToPaletteSetMethod (gdImagePtr im, int method, int speed) +{ +#ifndef HAVE_LIBIMAGEQUANT_H + if (method == GD_QUANT_LIQ) { + return FALSE; + } +#endif + + if (method >= GD_QUANT_DEFAULT && method <= GD_QUANT_LIQ) { + im->paletteQuantizationMethod = method; + + if (speed < 0 || speed > 10) { + speed = 0; + } + im->paletteQuantizationSpeed = speed; + } + return TRUE; +} + +/* + Chooses quality range that subsequent call to gdImageTrueColorToPalette will aim for. + Min and max quality is in range 1-100 (1 = ugly, 100 = perfect). Max must be higher than min. + If palette cannot represent image with at least min_quality, then image will remain true-color. + If palette can represent image with quality better than max_quality, then lower number of colors will be used. + This function has effect only when GD_QUANT_LIQ method has been selected. +*/ +BGD_DECLARE(void) gdImageTrueColorToPaletteSetQuality (gdImagePtr im, int min_quality, int max_quality) +{ + if (min_quality >= 0 && min_quality <= 100 && + max_quality >= 0 && max_quality <= 100 && min_quality <= max_quality) { + im->paletteQuantizationMinQuality = min_quality; + im->paletteQuantizationMaxQuality = max_quality; + } +} + +static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP); + +BGD_DECLARE(gdImagePtr) gdImageCreatePaletteFromTrueColor (gdImagePtr im, int dither, int colorsWanted) +{ + gdImagePtr nim; + if (TRUE == gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim)) { + return nim; + } + return NULL; +} + +BGD_DECLARE(int) gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted) +{ + return gdImageTrueColorToPaletteBody(im, dither, colorsWanted, 0); +} + +#ifdef HAVE_LIBIMAGEQUANT_H +/** + LIQ library needs pixels in RGBA order with alpha 0-255 (opaque 255). + This callback is run whenever source rows need to be converted from GD's format. +*/ +static void convert_gdpixel_to_rgba(liq_color output_row[], int y, int width, void *userinfo) +{ + gdImagePtr oim = userinfo; + int x; + for(x = 0; x < width; x++) { + output_row[x].r = gdTrueColorGetRed(input_buf[y][x]) * 255/gdRedMax; + output_row[x].g = gdTrueColorGetGreen(input_buf[y][x]) * 255/gdGreenMax; + output_row[x].b = gdTrueColorGetBlue(input_buf[y][x]) * 255/gdBlueMax; + int alpha = gdTrueColorGetAlpha(input_buf[y][x]); + if (gdAlphaOpaque < gdAlphaTransparent) { + alpha = gdAlphaTransparent - alpha; + } + output_row[x].a = alpha * 255/gdAlphaMax; + } +} +#endif + +static void free_truecolor_image_data(gdImagePtr oim) +{ + int i; + oim->trueColor = 0; + /* Junk the truecolor pixels */ + for (i = 0; i < oim->sy; i++) { + gdFree (oim->tpixels[i]); + } + gdFree (oim->tpixels); + oim->tpixels = 0; +} + +/* + * Module initialization routine for 2-pass color quantization. + */ + +static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP) +{ + my_cquantize_ptr cquantize = NULL; + int i, conversionSucceeded=0; + + /* Allocate the JPEG palette-storage */ + size_t arraysize; + int maxColors = gdMaxColors; + gdImagePtr nim; + + if (cimP) { + nim = gdImageCreate(oim->sx, oim->sy); + *cimP = nim; + if (!nim) { + return FALSE; + } + } else { + nim = oim; + } + + if (!oim->trueColor) { + /* (Almost) nothing to do! */ + if (cimP) { + gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy); + *cimP = nim; + } + return TRUE; + } + + /* If we have a transparent color (the alphaless mode of transparency), we + * must reserve a palette entry for it at the end of the palette. */ + if (oim->transparent >= 0) { + maxColors--; + } + if (colorsWanted > maxColors) { + colorsWanted = maxColors; + } + if (!cimP) { + nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy); + if (!nim->pixels) { + /* No can do */ + goto outOfMemory; + } + for (i = 0; (i < nim->sy); i++) { + nim->pixels[i] = (unsigned char *) gdCalloc (sizeof (unsigned char *), oim->sx); + if (!nim->pixels[i]) { + goto outOfMemory; + } + } + } + + + if (oim->paletteQuantizationMethod == GD_QUANT_NEUQUANT) { + if (cimP) { /* NeuQuant alwasy creates a copy, so the new blank image can't be used */ + gdImageDestroy(nim); + } + nim = gdImageNeuQuant(oim, colorsWanted, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 2); + if (cimP) { + *cimP = nim; + } else { + gdImageCopy(oim, nim, 0, 0, 0, 0, oim->sx, oim->sy); + gdImageDestroy(nim); + } + return TRUE; + } + + +#ifdef HAVE_LIBIMAGEQUANT_H + if (oim->paletteQuantizationMethod == GD_QUANT_DEFAULT || + oim->paletteQuantizationMethod == GD_QUANT_LIQ) { + liq_attr *attr = liq_attr_create_with_allocator(gdMalloc, gdFree); + liq_image *image; + liq_result *remap; + int remapped_ok = 0; + + liq_set_max_colors(attr, colorsWanted); + + /* by default make it fast to match speed of previous implementation */ + liq_set_speed(attr, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 9); + if (oim->paletteQuantizationMaxQuality) { + liq_set_quality(attr, oim->paletteQuantizationMinQuality, oim->paletteQuantizationMaxQuality); + } + image = liq_image_create_custom(attr, convert_gdpixel_to_rgba, oim, oim->sx, oim->sy, 0); + remap = liq_quantize_image(attr, image); + if (!remap) { /* minimum quality not met, leave image unmodified */ + liq_image_destroy(image); + liq_attr_destroy(attr); + goto outOfMemory; + } + + liq_set_dithering_level(remap, dither ? 1 : 0); + if (LIQ_OK == liq_write_remapped_image_rows(remap, image, output_buf)) { + remapped_ok = 1; + const liq_palette *pal = liq_get_palette(remap); + nim->transparent = -1; + unsigned int icolor; + for(icolor=0; icolor < pal->count; icolor++) { + nim->open[icolor] = 0; + nim->red[icolor] = pal->entries[icolor].r * gdRedMax/255; + nim->green[icolor] = pal->entries[icolor].g * gdGreenMax/255; + nim->blue[icolor] = pal->entries[icolor].b * gdBlueMax/255; + int alpha = pal->entries[icolor].a * gdAlphaMax/255; + if (gdAlphaOpaque < gdAlphaTransparent) { + alpha = gdAlphaTransparent - alpha; + } + nim->alpha[icolor] = alpha; + if (nim->transparent == -1 && alpha == gdAlphaTransparent) { + nim->transparent = icolor; + } + } + nim->colorsTotal = pal->count; + } + liq_result_destroy(remap); + liq_image_destroy(image); + liq_attr_destroy(attr); + + if (remapped_ok) { + if (!cimP) { + free_truecolor_image_data(oim); + } + return TRUE; + } + } +#endif + + cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1); + if (!cquantize) { + /* No can do */ + goto outOfMemory; + } + cquantize->fserrors = NULL; /* flag optional arrays not allocated */ + cquantize->error_limiter = NULL; + + + /* Allocate the histogram/inverse colormap storage */ + cquantize->histogram = (hist3d) gdMalloc (HIST_C0_ELEMS * sizeof (hist2d)); + for (i = 0; i < HIST_C0_ELEMS; i++) { + cquantize->histogram[i] = + (hist2d) gdMalloc (HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell)); + if (!cquantize->histogram[i]) { + goto outOfMemory; + } + } + + + cquantize->fserrors = (FSERRPTR) gdMalloc (3 * sizeof (FSERROR)); + init_error_limit (oim, nim, cquantize); + arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR))); + /* Allocate Floyd-Steinberg workspace. */ + cquantize->fserrors = gdReallocEx(cquantize->fserrors, arraysize); + if (!cquantize->fserrors) { + goto outOfMemory; + } + memset(cquantize->fserrors, 0, arraysize); + cquantize->on_odd_row = FALSE; + + /* Do the work! */ + zeroHistogram (cquantize->histogram); + prescan_quantize (oim, nim, cquantize); + /* TBB 2.0.5: pass colorsWanted, not 256! */ + select_colors (oim, nim, cquantize, colorsWanted); + zeroHistogram (cquantize->histogram); + if (dither) { + pass2_fs_dither (oim, nim, cquantize); + } else { + pass2_no_dither (oim, nim, cquantize); + } +#if 0 /* 2.0.12; we no longer attempt full alpha in palettes */ + if (cquantize->transparentIsPresent) { + int mt = -1; + int mtIndex = -1; + for (i = 0; (i < im->colorsTotal); i++) { + if (im->alpha[i] > mt) { + mtIndex = i; + mt = im->alpha[i]; + } + } + for (i = 0; (i < im->colorsTotal); i++) { + if (im->alpha[i] == mt) { + im->alpha[i] = gdAlphaTransparent; + } + } + } + if (cquantize->opaqueIsPresent) { + int mo = 128; + int moIndex = -1; + for (i = 0; (i < im->colorsTotal); i++) { + if (im->alpha[i] < mo) { + moIndex = i; + mo = im->alpha[i]; + } + } + for (i = 0; (i < im->colorsTotal); i++) { + if (im->alpha[i] == mo) { + im->alpha[i] = gdAlphaOpaque; + } + } + } +#endif + + /* If we had a 'transparent' color, increment the color count so it's + * officially in the palette and convert the transparent variable to point to + * an index rather than a color (Its data already exists and transparent + * pixels have already been mapped to it by this point, it is done late as to + * avoid color matching / dithering with it). */ + if (oim->transparent >= 0) { + nim->transparent = nim->colorsTotal; + nim->colorsTotal++; + } + + /* Success! Get rid of the truecolor image data. */ + conversionSucceeded = TRUE; + if (!cimP) { + free_truecolor_image_data(oim); + } + + goto freeQuantizeData; + /* Tediously free stuff. */ +outOfMemory: + conversionSucceeded = FALSE; + if (oim->trueColor) { + if (!cimP) { + /* On failure only */ + if (nim->pixels) { + for (i = 0; i < nim->sy; i++) { + if (nim->pixels[i]) { + gdFree (nim->pixels[i]); + } + } + gdFree (nim->pixels); + } + nim->pixels = NULL; + } else { + gdImageDestroy(nim); + *cimP = 0; + } + } + +freeQuantizeData: + if (cquantize) { + if (cquantize->histogram) { + for (i = 0; i < HIST_C0_ELEMS; i++) { + if (cquantize->histogram[i]) { + gdFree (cquantize->histogram[i]); + } + } + gdFree (cquantize->histogram); + } + if (cquantize->fserrors) { + gdFree (cquantize->fserrors); + } + if (cquantize->error_limiter_storage) { + gdFree (cquantize->error_limiter_storage); + } + gdFree (cquantize); + } + + return conversionSucceeded; +} + +#endif |