diff options
-rw-r--r-- | Master/texmf-dist/doc/latex/dynkin-diagrams/README | 6 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib | 22 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf | bin | 593579 -> 604888 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex | 68 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty | 198 |
5 files changed, 226 insertions, 68 deletions
diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/README b/Master/texmf-dist/doc/latex/dynkin-diagrams/README index 4ccb2aec8db..988e4282461 100644 --- a/Master/texmf-dist/doc/latex/dynkin-diagrams/README +++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/README @@ -2,9 +2,9 @@ ___________________________________ Dynkin diagrams - v3.12 + v3.13 - 30 April 2018 + 18 July 2018 ___________________________________ Authors : Ben McKay @@ -16,4 +16,4 @@ Licence : Released under the LaTeX Project Public License v1.3c or ---------------------------------------------------------------------- Draws Dynkin, Coxeter and Satake diagrams in LaTeX documents, using the TikZ package. -Version 3.12 fixes an error in the EIV diagram, and adds some more examples. +Version 3.13 allows colouring of arrows. diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib index 8d3a8632fbe..c364aec770d 100644 --- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib +++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib @@ -56,6 +56,26 @@ Url = {https://doi.org/10.1017/CBO9780511614910} } +@InCollection{Carter:1995, + Title = {On the representation theory of the finite groups of {L}ie + type over an algebraically closed field of characteristic 0 [ + {MR}1170353 (93j:20034)]}, + Author = {Carter, R. W.}, + Booktitle = {Algebra, {IX}}, + Publisher = {Springer, Berlin}, + Year = {1995}, + Pages = {1--120, 235--239}, + Series = {Encyclopaedia Math. Sci.}, + Volume = {77}, + + Doi = {10.1007/978-3-662-03235-0_1}, + Mrclass = {20C33 (20-02 20G05)}, + Mrnumber = {1392478}, + Owner = {user}, + Timestamp = {2018.05.19}, + Url = {https://doi.org/10.1007/978-3-662-03235-0_1} +} + @Article{Chuah:2013, Title = {Cartan automorphisms and {V}ogan superdiagrams}, Author = {Chuah, Meng-Kiat}, @@ -296,6 +316,7 @@ Year = {2013}, Month = mar, + Pages = {1--9}, Adsnote = {Provided by the SAO/NASA Astrophysics Data System}, Adsurl = {http://adsabs.harvard.edu/abs/2013arXiv1303.0092R}, @@ -314,6 +335,7 @@ Year = {2016}, Month = feb, + Pages = {1--118}, Adsnote = {Provided by the SAO/NASA Astrophysics Data System}, Adsurl = {http://adsabs.harvard.edu/abs/2016arXiv160208471R}, diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf Binary files differindex c5cc4b5147a..c459a92e088 100644 --- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf +++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex index 5557830a45c..806a2960d67 100644 --- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex +++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex @@ -1,8 +1,8 @@ \documentclass{amsart} -\title{The Dynkin diagrams package \\ Version 3.12} +\title{The Dynkin diagrams package \\ Version 3.13} \author{Ben McKay} -\date{30 April 2018} +\date{18 July 2018} \usepackage{etex} \usepackage[T1]{fontenc} @@ -101,8 +101,7 @@ }% - -\definecolor{example-color}{gray}{1} +\definecolor{example-color}{gray}{.85} \definecolor{example-border-color}{gray}{.7} \tcbset{coltitle=black,colback=example-color,colframe=example-border-color,enhanced,breakable,pad at break*=1mm, @@ -128,12 +127,6 @@ before upper={\widowpenalties=3 10000 10000 150}} \makeatother \begin{document} - - - - - - \maketitle \begin{center} \begin{varwidth}{\textwidth} @@ -313,7 +306,10 @@ We use a solid gray bar to denote the folding of a Dynkin diagram, rather than t \section{Style} \begin{tcblisting}{title={Colours}} -\dynkin[edge/.style={blue!50,thick},*/.style=blue!50!red]{F}{4} +\dynkin[ + edge/.style={blue!50,thick}, + */.style=blue!50!red, + arrowColor=red]{F}{4} \end{tcblisting} \begin{tcblisting}{title={Edge lengths}} \dynkin[edgeLength=1.2,parabolic=3]{A}{3} @@ -397,9 +393,15 @@ The mark list \verb!oo**ttxx! has one mark for each root: \verb!o!, \verb!o!, \d Roots are listed in the current default ordering. (Careful: in an affine root system, a mark list will \emph{not} contain a mark for root zero.) -\NewDocumentCommand\ClassicalLieSuperalgebras{m}% + +\NewDocumentCommand\ClassicalLieSuperalgebras{om}% {% -\begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #1}{3.5cm}{6.5cm} +\IfValueT{#1}{\tikzset{/Dynkin diagram,radius=#1}} +\RenewDocumentCommand\wdtE{}{10cm} +\begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #2}{3.5cm}{6.5cm} +\IfValueT{#1}{ +& & \texttt{\textbackslash{}tikzset\{/Dynkin diagram,radius=#1\}} \\ +} A_{mn} & \dynk{A}{ooo.oto.oo} B_{mn} & \dynk{B}{ooo.oto.oo} B_{0n} & \dynk{B}{ooo.ooo.o*} @@ -407,18 +409,18 @@ C_{n} & \dynk{C}{too.oto.oo} D_{mn} & \dynk{D}{ooo.oto.oooo} D_{21\alpha} & \dynk{A}{oto} F_4 & \dynk{F}{ooot} -G_3 & \dynk[extended,affineMark=t]{G}{2} +G_3 & \dynk[extended,affineMark=t, +reverseArrows]{G}{2} \end{dynkinTable} +\IfValueT{#1}{\tikzset{/Dynkin diagram,radius=.05cm}} }% -\begingroup -\tikzset{/Dynkin diagram,radius=.07cm} -\ClassicalLieSuperalgebras{We need a slightly larger radius parameter to distinguish the tensor product symbols from the solid dots.} -\endgroup +\ClassicalLieSuperalgebras[.07cm]{We need a slightly larger radius parameter to distinguish the tensor product symbols from the solid dots.} \ClassicalLieSuperalgebras{Here we see the problem with using the default radius parameter, which is too small for tensor product symbols.} + \section{Indefinite edges} An \emph{indefinite edge} is a dashed edge between two roots, \dynkin{A}{*.*} indicating that an indefinite number of roots have been omitted from the Dynkin diagram. @@ -765,6 +767,7 @@ Most diagrams can only allow a 2-ply folding, so \verb!fold! is a synonym for \v \begin{tcblisting}{title={3-ply}} \dynkin[ply=3]{D}{4} +\dynkin[ply=3,foldright]{D}{4} \dynkin[ply=3]{D}[1]{4} \end{tcblisting} @@ -853,7 +856,7 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which \pgfkeys{/Dynkin diagram,foldradius=.35cm} \begin{longtable}{@{}p{15cm}@{}} -\caption{Some foldings of Dynkin diagrams}\\ +\caption{Some foldings of Dynkin diagrams. For these diagrams, we want to compare a folding diagram with the diagram that results when we fold it, so it looks best to set \texttt{foldradius} and \texttt{edgeLength} to equal lengths.}\\ \endfirsthead \caption{\dots continued}\\ \endhead @@ -864,7 +867,7 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which \foldingTable{A}{0}{2\ell-1}{\dynk[fold]{A}{**.*****.**}}% {C}{0}{\ell}{\dynk{C}{}} \fold*{B}{0}{3}{G}{0}{2} -\foldingTable{D}{0}{4}{\dynk[ply=3]{D}{4}}% +\foldingTable{D}{0}{4}{\dynk[ply=3,foldright]{D}{4}}% {G}{0}{2}{\dynk{G}{2}} \foldingTable{D}{0}{\ell+1}{\dynk[fold]{D}{}}% {B}{0}{\ell}{\dynk{B}{}} @@ -914,6 +917,27 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which \endgroup +\begingroup +\RenewDocumentCommand\wdtA{}{.8cm} +\begin{dynkinTable}{Frobenius fixed point subgroups of finite simple groups of Lie type \cite{Carter:1995} p. 15}{3cm}{6cm} +A_{\ell\ge 1} & \dynk{A}{} +{}^2\!A_{\ell\ge 2} & \dynk[fold]{A}{} +B_{\ell\ge 2} & \dynk{B}{} +{}^2\!B_2 & \dynk[fold]{B}{2} +C_{\ell\ge3} & \dynk{C}{} +D_{\ell\ge4} & \dynk{D}{} +{}^2\!D_{\ell\ge4} & \dynk[fold]{D}{} +{}^3\!D_4 & \dynk[ply=3]{D}{4} +E_6 & \dynk{E}{6} +{}^2\!E_6 & \dynk[fold]{E}{6} +E_7 & \dynk{E}{7} +E_8 & \dynk{E}{8} +F_4 & \dynk{F}{4} +{}^2\!F_4 & \dynk[fold]{F}{4} +G_2 & \dynk{G}{2} +{}^2G_2 & \dynk[fold]{G}{2} +\end{dynkinTable} +\endgroup \section{Root ordering}\label{section:order} @@ -1008,7 +1032,7 @@ The following diagrams arise in the Satake diagrams of the pseudo-Riemannian sym \end{tcblisting} \begin{tcblisting}{} -\pgfkeys{/Dynkin diagram/edgeLength=.75cm,/Dynkin diagram/edge/.style={draw=white,double=black,very thick}, +\pgfkeys{/Dynkin diagram/edgeLength=.75cm,/Dynkin diagram/edge/.style={draw=example-color,double=black,very thick}, } \begin{tikzpicture} \foreach \d in {1,...,4} @@ -1489,6 +1513,8 @@ are indicated with double edges (like those of an \(F_4\) Dynkin diagram without \optionLabel{doubleFoldRight}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ +\optionLabel{arrowColor}{\typ{}}{black} +& set to override the default color for the arrows in nonsimply laced Dynkin diagrams. \\ \optionLabel{Coxeter}{\typ{true or false}}{false} & whether to draw a Coxeter diagram, rather than a Dynkin diagram. \\ \optionLabel{ordering}{\typ{Adams, Bourbaki, Carter, Dynkin, Kac}}{Bourbaki} diff --git a/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty b/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty index 2449588637e..f62565b93e8 100644 --- a/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty +++ b/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty @@ -2,7 +2,7 @@ % % The Dynkin Diagrams package. % -% Version 3.12 +% Version 3.13 % % % This package draws Dynkin diagrams in LaTeX documents, using the TikZ package. @@ -18,7 +18,7 @@ % % \NeedsTeXFormat{LaTeX2e}[1994/06/01] -\ProvidesPackage{dynkin-diagrams}[2018/04/30 Dynkin diagrams] +\ProvidesPackage{dynkin-diagrams}[2018/07/18 Dynkin diagrams] \RequirePackage{tikz} \RequirePackage{xstring} \RequirePackage{xparse} @@ -729,11 +729,16 @@ arc (90:0:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (90:45:{\dynkin@fold@radius});% + \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (45:90:{\dynkin@fold@radius});% +% \path[/Dynkin diagram,edge,-<,tips] +% ($(\dynkin@root@name \the\@fromRoot)$)% +% arc (90:45:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (90:45:{\dynkin@fold@radius});% \fi% @@ -762,11 +767,15 @@ arc (180:90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (180:135:{\dynkin@fold@radius});% + \path[/Dynkin diagram,edge, + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (135:180:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (180:135:{\dynkin@fold@radius});% \fi% @@ -795,11 +804,14 @@ arc (-90:0:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (-90:-45:{\dynkin@fold@radius});% + \path[/Dynkin diagram,edge, + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (-45:-90:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (-90:-45:{\dynkin@fold@radius});% \fi% @@ -832,11 +844,15 @@ arc (-180:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@toRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)% - arc (-180:-135:{\dynkin@fold@radius});% + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + tips] + ($(\dynkin@root@name \the\@fromRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)% + arc (-135:-180:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@toRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)% arc (-180:-135:{\dynkin@fold@radius});% \fi% @@ -864,7 +880,9 @@ ($(\dynkin@root@name \the\@fromRoot)$)% arc (270:360:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (270:315:\dynkin@fold@radius);% \fi% @@ -891,11 +909,15 @@ arc (90:180:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (90:135:{\dynkin@fold@radius});% + \path[/Dynkin diagram,edge, + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (135:90:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (90:135:{\dynkin@fold@radius});% \fi% @@ -924,11 +946,15 @@ arc (360:270:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (360:315:{\dynkin@fold@radius});% + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (315:360:{\dynkin@fold@radius});% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (360:315:{\dynkin@fold@radius});% \fi% @@ -958,11 +984,15 @@ arc (-90:-180:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (-90:-135:\dynkin@fold@radius);% + \path[/Dynkin diagram,edge + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (-135:-90:\dynkin@fold@radius);% \else% - \path[->,tips] + \path[, + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (-90:-135:\dynkin@fold@radius);% \fi% @@ -991,11 +1021,57 @@ arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (0:90:\dynkin@fold@radius);% + \else% + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (90:0:\dynkin@fold@radius);% + \fi% + \fi% + \end{scope}% +}% + + + + +%% \dynkinDefiniteTripleDownRightSemiCircle{<p>}{<q>} +%% Draws a semi circle from root <p> to root <q> on the current Dynkin diagram in the current label ordering +%% as a triple path. +%% The starred form accepts <p> and <q> in the Bourbaki ordering. +\NewDocumentCommand\dynkinDefiniteTripleDownRightSemiCircle{sO{}mm}% +{% + \IfBooleanTF{#1}% + {% + \convertRootPair{#3}{#4}% + }% + {% + \@fromRoot=#3% + \@toRoot=#4% + }% + \begin{scope}[on background layer]% + \draw[/Dynkin diagram,/Dynkin diagram/edge,double,double distance=\dynkin@root@radius,fill=none,#2]% + ($(\dynkin@root@name \the\@fromRoot)$)% + arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% + \draw[/Dynkin diagram,/Dynkin diagram/edge,fill=none,#2]% + ($(\dynkin@root@name \the\@fromRoot)$)% + arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% + \ifdynkin@arrows% + \ifdynkin@reverse@arrows% + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (0:90:\dynkin@fold@radius);% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (90:0:\dynkin@fold@radius);% \fi% @@ -1005,6 +1081,7 @@ + %% \dynkinDefiniteDoubleUpRightSemiCircle{<p>}{<q>} %% Draws a semi circle from root <p> to root <q> on the current Dynkin diagram in the current label ordering %% as a double path. @@ -1025,11 +1102,15 @@ arc (-90:90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);% \ifdynkin@arrows% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$)% - arc (-90:0:\dynkin@fold@radius);% + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] + ($(\dynkin@root@name \the\@toRoot)$)% + arc (0:-90:\dynkin@fold@radius);% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + ,tips] ($(\dynkin@root@name \the\@fromRoot)$)% arc (-90:0:\dynkin@fold@radius);% \fi% @@ -1080,12 +1161,16 @@ }% \begin{scope}[on background layer]% \ifdynkin@reverse@arrows% - \path[-<,tips] - ($(\dynkin@root@name \the\@fromRoot)$) + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + tips] + ($(\dynkin@root@name \the\@toRoot)$) -- - ($.3*(\dynkin@root@name \the\@fromRoot)+.7*(\dynkin@root@name \the\@toRoot)$);% + ($.3*(\dynkin@root@name \the\@toRoot)+.7*(\dynkin@root@name \the\@fromRoot)$);% \else% - \path[->,tips] + \path[ + -{Computer Modern Rightarrow[\dynkin@arrow@color]}, + tips] ($(\dynkin@root@name \the\@fromRoot)$) -- ($.3*(\dynkin@root@name \the\@fromRoot)+.7*(\dynkin@root@name \the\@toRoot)$);% @@ -1353,6 +1438,8 @@ \def\dynkin@current@location{(0,0)} +\def\dynkin@arrow@color{} + \NewDocumentCommand\regurgitate{m}{#1} \pgfkeys{ @@ -1378,6 +1465,8 @@ foldStyle/.style = {draw=black!40,fill=none,line width=\dynkin@root@radius}, leftFold/.style = {}, rightFold/.style = {}, + arrowColor/.estore in = \dynkin@arrow@color, + arrowColor=black, doubleEdges/.style = { foldStyle/.style = { draw=black, @@ -2913,6 +3002,7 @@ %% Draws a D series Dynkin diagram of rank 4, folded over a G2. \NewDocumentCommand\DthreePly{}% {% +\ifdynkin@right@fold% \dynkinPlaceRootHere*{2}{right}% \xdef\old@edge@length{\dynkin@edge@length}% \pgfmathparse{1.5*\dynkin@edge@length}% @@ -2931,6 +3021,17 @@ \dynkin@fold@arrow@if@oo{2}{3}% \dynkin@fold@arrow@if@oo{3}{4}% \fi% +\else% + \global\dynkin@ply=1\relax% + \Ddynkin{}% + \begin{scope}[on background layer]% + \draw + [/Dynkin diagram/foldStyle] + ($(\dynkin@root@name 2)$) + circle + (\dynkin@edge@length);% + \end{scope}% +\fi% }% %% \Ddynkin @@ -3153,9 +3254,18 @@ \ifdynkin@Coxeter% \Idynkin% \else% - \dynkinPlaceRootHere*{1}{below}% - \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}% - \dynkinTripleEdge*{1}{2}% + \ifnum\dynkin@ply>1% + \dynkinPlaceRootHere*{1}{left}% + \dynkinPlaceRootRelativeTo*{2}{1}{southfold}{left}% + \dynkinEdge*{TripleDownRightSemiCircle}{1}{2}% + \ifdynkin@arrows% + \dynkinLeftFold*{1}{2}% + \fi% + \else% + \dynkinPlaceRootHere*{1}{below}% + \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}% + \dynkinTripleEdge*{1}{2}% + \fi% \fi% }% |