summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Master/texmf-dist/doc/latex/dynkin-diagrams/README6
-rw-r--r--Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib22
-rw-r--r--Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdfbin593579 -> 604888 bytes
-rw-r--r--Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex68
-rw-r--r--Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty198
5 files changed, 226 insertions, 68 deletions
diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/README b/Master/texmf-dist/doc/latex/dynkin-diagrams/README
index 4ccb2aec8db..988e4282461 100644
--- a/Master/texmf-dist/doc/latex/dynkin-diagrams/README
+++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/README
@@ -2,9 +2,9 @@ ___________________________________
Dynkin diagrams
- v3.12
+ v3.13
- 30 April 2018
+ 18 July 2018
___________________________________
Authors : Ben McKay
@@ -16,4 +16,4 @@ Licence : Released under the LaTeX Project Public License v1.3c or
----------------------------------------------------------------------
Draws Dynkin, Coxeter and Satake di­a­grams in LaTeX doc­u­ments, us­ing the TikZ pack­age.
-Version 3.12 fixes an error in the EIV diagram, and adds some more examples.
+Version 3.13 allows colouring of arrows.
diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib
index 8d3a8632fbe..c364aec770d 100644
--- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib
+++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.bib
@@ -56,6 +56,26 @@
Url = {https://doi.org/10.1017/CBO9780511614910}
}
+@InCollection{Carter:1995,
+ Title = {On the representation theory of the finite groups of {L}ie
+ type over an algebraically closed field of characteristic 0 [
+ {MR}1170353 (93j:20034)]},
+ Author = {Carter, R. W.},
+ Booktitle = {Algebra, {IX}},
+ Publisher = {Springer, Berlin},
+ Year = {1995},
+ Pages = {1--120, 235--239},
+ Series = {Encyclopaedia Math. Sci.},
+ Volume = {77},
+
+ Doi = {10.1007/978-3-662-03235-0_1},
+ Mrclass = {20C33 (20-02 20G05)},
+ Mrnumber = {1392478},
+ Owner = {user},
+ Timestamp = {2018.05.19},
+ Url = {https://doi.org/10.1007/978-3-662-03235-0_1}
+}
+
@Article{Chuah:2013,
Title = {Cartan automorphisms and {V}ogan superdiagrams},
Author = {Chuah, Meng-Kiat},
@@ -296,6 +316,7 @@
Year = {2013},
Month = mar,
+ Pages = {1--9},
Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
Adsurl = {http://adsabs.harvard.edu/abs/2013arXiv1303.0092R},
@@ -314,6 +335,7 @@
Year = {2016},
Month = feb,
+ Pages = {1--118},
Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
Adsurl = {http://adsabs.harvard.edu/abs/2016arXiv160208471R},
diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf
index c5cc4b5147a..c459a92e088 100644
--- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf
+++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex
index 5557830a45c..806a2960d67 100644
--- a/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex
+++ b/Master/texmf-dist/doc/latex/dynkin-diagrams/dynkin-diagrams.tex
@@ -1,8 +1,8 @@
\documentclass{amsart}
-\title{The Dynkin diagrams package \\ Version 3.12}
+\title{The Dynkin diagrams package \\ Version 3.13}
\author{Ben McKay}
-\date{30 April 2018}
+\date{18 July 2018}
\usepackage{etex}
\usepackage[T1]{fontenc}
@@ -101,8 +101,7 @@
}%
-
-\definecolor{example-color}{gray}{1}
+\definecolor{example-color}{gray}{.85}
\definecolor{example-border-color}{gray}{.7}
\tcbset{coltitle=black,colback=example-color,colframe=example-border-color,enhanced,breakable,pad at break*=1mm,
@@ -128,12 +127,6 @@ before upper={\widowpenalties=3 10000 10000 150}}
\makeatother
\begin{document}
-
-
-
-
-
-
\maketitle
\begin{center}
\begin{varwidth}{\textwidth}
@@ -313,7 +306,10 @@ We use a solid gray bar to denote the folding of a Dynkin diagram, rather than t
\section{Style}
\begin{tcblisting}{title={Colours}}
-\dynkin[edge/.style={blue!50,thick},*/.style=blue!50!red]{F}{4}
+\dynkin[
+ edge/.style={blue!50,thick},
+ */.style=blue!50!red,
+ arrowColor=red]{F}{4}
\end{tcblisting}
\begin{tcblisting}{title={Edge lengths}}
\dynkin[edgeLength=1.2,parabolic=3]{A}{3}
@@ -397,9 +393,15 @@ The mark list \verb!oo**ttxx! has one mark for each root: \verb!o!, \verb!o!, \d
Roots are listed in the current default ordering.
(Careful: in an affine root system, a mark list will \emph{not} contain a mark for root zero.)
-\NewDocumentCommand\ClassicalLieSuperalgebras{m}%
+
+\NewDocumentCommand\ClassicalLieSuperalgebras{om}%
{%
-\begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #1}{3.5cm}{6.5cm}
+\IfValueT{#1}{\tikzset{/Dynkin diagram,radius=#1}}
+\RenewDocumentCommand\wdtE{}{10cm}
+\begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #2}{3.5cm}{6.5cm}
+\IfValueT{#1}{
+& & \texttt{\textbackslash{}tikzset\{/Dynkin diagram,radius=#1\}} \\
+}
A_{mn} & \dynk{A}{ooo.oto.oo}
B_{mn} & \dynk{B}{ooo.oto.oo}
B_{0n} & \dynk{B}{ooo.ooo.o*}
@@ -407,18 +409,18 @@ C_{n} & \dynk{C}{too.oto.oo}
D_{mn} & \dynk{D}{ooo.oto.oooo}
D_{21\alpha} & \dynk{A}{oto}
F_4 & \dynk{F}{ooot}
-G_3 & \dynk[extended,affineMark=t]{G}{2}
+G_3 & \dynk[extended,affineMark=t,
+reverseArrows]{G}{2}
\end{dynkinTable}
+\IfValueT{#1}{\tikzset{/Dynkin diagram,radius=.05cm}}
}%
-\begingroup
-\tikzset{/Dynkin diagram,radius=.07cm}
-\ClassicalLieSuperalgebras{We need a slightly larger radius parameter to distinguish the tensor product symbols from the solid dots.}
-\endgroup
+\ClassicalLieSuperalgebras[.07cm]{We need a slightly larger radius parameter to distinguish the tensor product symbols from the solid dots.}
\ClassicalLieSuperalgebras{Here we see the problem with using the default radius parameter, which is too small for tensor product symbols.}
+
\section{Indefinite edges}
An \emph{indefinite edge} is a dashed edge between two roots, \dynkin{A}{*.*} indicating that an indefinite number of roots have been omitted from the Dynkin diagram.
@@ -765,6 +767,7 @@ Most diagrams can only allow a 2-ply folding, so \verb!fold! is a synonym for \v
\begin{tcblisting}{title={3-ply}}
\dynkin[ply=3]{D}{4}
+\dynkin[ply=3,foldright]{D}{4}
\dynkin[ply=3]{D}[1]{4}
\end{tcblisting}
@@ -853,7 +856,7 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which
\pgfkeys{/Dynkin diagram,foldradius=.35cm}
\begin{longtable}{@{}p{15cm}@{}}
-\caption{Some foldings of Dynkin diagrams}\\
+\caption{Some foldings of Dynkin diagrams. For these diagrams, we want to compare a folding diagram with the diagram that results when we fold it, so it looks best to set \texttt{foldradius} and \texttt{edgeLength} to equal lengths.}\\
\endfirsthead
\caption{\dots continued}\\
\endhead
@@ -864,7 +867,7 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which
\foldingTable{A}{0}{2\ell-1}{\dynk[fold]{A}{**.*****.**}}%
{C}{0}{\ell}{\dynk{C}{}}
\fold*{B}{0}{3}{G}{0}{2}
-\foldingTable{D}{0}{4}{\dynk[ply=3]{D}{4}}%
+\foldingTable{D}{0}{4}{\dynk[ply=3,foldright]{D}{4}}%
{G}{0}{2}{\dynk{G}{2}}
\foldingTable{D}{0}{\ell+1}{\dynk[fold]{D}{}}%
{B}{0}{\ell}{\dynk{B}{}}
@@ -914,6 +917,27 @@ We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which
\endgroup
+\begingroup
+\RenewDocumentCommand\wdtA{}{.8cm}
+\begin{dynkinTable}{Frobenius fixed point subgroups of finite simple groups of Lie type \cite{Carter:1995} p. 15}{3cm}{6cm}
+A_{\ell\ge 1} & \dynk{A}{}
+{}^2\!A_{\ell\ge 2} & \dynk[fold]{A}{}
+B_{\ell\ge 2} & \dynk{B}{}
+{}^2\!B_2 & \dynk[fold]{B}{2}
+C_{\ell\ge3} & \dynk{C}{}
+D_{\ell\ge4} & \dynk{D}{}
+{}^2\!D_{\ell\ge4} & \dynk[fold]{D}{}
+{}^3\!D_4 & \dynk[ply=3]{D}{4}
+E_6 & \dynk{E}{6}
+{}^2\!E_6 & \dynk[fold]{E}{6}
+E_7 & \dynk{E}{7}
+E_8 & \dynk{E}{8}
+F_4 & \dynk{F}{4}
+{}^2\!F_4 & \dynk[fold]{F}{4}
+G_2 & \dynk{G}{2}
+{}^2G_2 & \dynk[fold]{G}{2}
+\end{dynkinTable}
+\endgroup
\section{Root ordering}\label{section:order}
@@ -1008,7 +1032,7 @@ The following diagrams arise in the Satake diagrams of the pseudo-Riemannian sym
\end{tcblisting}
\begin{tcblisting}{}
-\pgfkeys{/Dynkin diagram/edgeLength=.75cm,/Dynkin diagram/edge/.style={draw=white,double=black,very thick},
+\pgfkeys{/Dynkin diagram/edgeLength=.75cm,/Dynkin diagram/edge/.style={draw=example-color,double=black,very thick},
}
\begin{tikzpicture}
\foreach \d in {1,...,4}
@@ -1489,6 +1513,8 @@ are indicated with double edges (like those of an \(F_4\) Dynkin diagram without
\optionLabel{doubleFoldRight}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly.
\\
+\optionLabel{arrowColor}{\typ{}}{black}
+& set to override the default color for the arrows in nonsimply laced Dynkin diagrams. \\
\optionLabel{Coxeter}{\typ{true or false}}{false}
& whether to draw a Coxeter diagram, rather than a Dynkin diagram. \\
\optionLabel{ordering}{\typ{Adams, Bourbaki, Carter, Dynkin, Kac}}{Bourbaki}
diff --git a/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty b/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty
index 2449588637e..f62565b93e8 100644
--- a/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty
+++ b/Master/texmf-dist/tex/latex/dynkin-diagrams/dynkin-diagrams.sty
@@ -2,7 +2,7 @@
%
% The Dynkin Diagrams package.
%
-% Version 3.12
+% Version 3.13
%
%
% This package draws Dynkin diagrams in LaTeX documents, using the TikZ package.
@@ -18,7 +18,7 @@
%
%
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
-\ProvidesPackage{dynkin-diagrams}[2018/04/30 Dynkin diagrams]
+\ProvidesPackage{dynkin-diagrams}[2018/07/18 Dynkin diagrams]
\RequirePackage{tikz}
\RequirePackage{xstring}
\RequirePackage{xparse}
@@ -729,11 +729,16 @@
arc (90:0:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (90:45:{\dynkin@fold@radius});%
+ \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (45:90:{\dynkin@fold@radius});%
+% \path[/Dynkin diagram,edge,-<,tips]
+% ($(\dynkin@root@name \the\@fromRoot)$)%
+% arc (90:45:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (90:45:{\dynkin@fold@radius});%
\fi%
@@ -762,11 +767,15 @@
arc (180:90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (180:135:{\dynkin@fold@radius});%
+ \path[/Dynkin diagram,edge,
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (135:180:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (180:135:{\dynkin@fold@radius});%
\fi%
@@ -795,11 +804,14 @@
arc (-90:0:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (-90:-45:{\dynkin@fold@radius});%
+ \path[/Dynkin diagram,edge,
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (-45:-90:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[-{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (-90:-45:{\dynkin@fold@radius});%
\fi%
@@ -832,11 +844,15 @@
arc (-180:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@toRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)%
- arc (-180:-135:{\dynkin@fold@radius});%
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ tips]
+ ($(\dynkin@root@name \the\@fromRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)%
+ arc (-135:-180:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@toRoot)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)%
arc (-180:-135:{\dynkin@fold@radius});%
\fi%
@@ -864,7 +880,9 @@
($(\dynkin@root@name \the\@fromRoot)$)%
arc (270:360:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (270:315:\dynkin@fold@radius);%
\fi%
@@ -891,11 +909,15 @@
arc (90:180:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (90:135:{\dynkin@fold@radius});%
+ \path[/Dynkin diagram,edge,
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (135:90:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (90:135:{\dynkin@fold@radius});%
\fi%
@@ -924,11 +946,15 @@
arc (360:270:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (360:315:{\dynkin@fold@radius});%
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (315:360:{\dynkin@fold@radius});%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (360:315:{\dynkin@fold@radius});%
\fi%
@@ -958,11 +984,15 @@
arc (-90:-180:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (-90:-135:\dynkin@fold@radius);%
+ \path[/Dynkin diagram,edge
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (-135:-90:\dynkin@fold@radius);%
\else%
- \path[->,tips]
+ \path[,
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (-90:-135:\dynkin@fold@radius);%
\fi%
@@ -991,11 +1021,57 @@
arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (0:90:\dynkin@fold@radius);%
+ \else%
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (90:0:\dynkin@fold@radius);%
+ \fi%
+ \fi%
+ \end{scope}%
+}%
+
+
+
+
+%% \dynkinDefiniteTripleDownRightSemiCircle{<p>}{<q>}
+%% Draws a semi circle from root <p> to root <q> on the current Dynkin diagram in the current label ordering
+%% as a triple path.
+%% The starred form accepts <p> and <q> in the Bourbaki ordering.
+\NewDocumentCommand\dynkinDefiniteTripleDownRightSemiCircle{sO{}mm}%
+{%
+ \IfBooleanTF{#1}%
+ {%
+ \convertRootPair{#3}{#4}%
+ }%
+ {%
+ \@fromRoot=#3%
+ \@toRoot=#4%
+ }%
+ \begin{scope}[on background layer]%
+ \draw[/Dynkin diagram,/Dynkin diagram/edge,double,double distance=\dynkin@root@radius,fill=none,#2]%
+ ($(\dynkin@root@name \the\@fromRoot)$)%
+ arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
+ \draw[/Dynkin diagram,/Dynkin diagram/edge,fill=none,#2]%
+ ($(\dynkin@root@name \the\@fromRoot)$)%
+ arc (90:-90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
+ \ifdynkin@arrows%
+ \ifdynkin@reverse@arrows%
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (0:90:\dynkin@fold@radius);%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (90:0:\dynkin@fold@radius);%
\fi%
@@ -1005,6 +1081,7 @@
+
%% \dynkinDefiniteDoubleUpRightSemiCircle{<p>}{<q>}
%% Draws a semi circle from root <p> to root <q> on the current Dynkin diagram in the current label ordering
%% as a double path.
@@ -1025,11 +1102,15 @@
arc (-90:90:{\dynkin@fold@radius}) -- ($(\dynkin@root@name \the\@toRoot)$);%
\ifdynkin@arrows%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)%
- arc (-90:0:\dynkin@fold@radius);%
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
+ ($(\dynkin@root@name \the\@toRoot)$)%
+ arc (0:-90:\dynkin@fold@radius);%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ ,tips]
($(\dynkin@root@name \the\@fromRoot)$)%
arc (-90:0:\dynkin@fold@radius);%
\fi%
@@ -1080,12 +1161,16 @@
}%
\begin{scope}[on background layer]%
\ifdynkin@reverse@arrows%
- \path[-<,tips]
- ($(\dynkin@root@name \the\@fromRoot)$)
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ tips]
+ ($(\dynkin@root@name \the\@toRoot)$)
--
- ($.3*(\dynkin@root@name \the\@fromRoot)+.7*(\dynkin@root@name \the\@toRoot)$);%
+ ($.3*(\dynkin@root@name \the\@toRoot)+.7*(\dynkin@root@name \the\@fromRoot)$);%
\else%
- \path[->,tips]
+ \path[
+ -{Computer Modern Rightarrow[\dynkin@arrow@color]},
+ tips]
($(\dynkin@root@name \the\@fromRoot)$)
--
($.3*(\dynkin@root@name \the\@fromRoot)+.7*(\dynkin@root@name \the\@toRoot)$);%
@@ -1353,6 +1438,8 @@
\def\dynkin@current@location{(0,0)}
+\def\dynkin@arrow@color{}
+
\NewDocumentCommand\regurgitate{m}{#1}
\pgfkeys{
@@ -1378,6 +1465,8 @@
foldStyle/.style = {draw=black!40,fill=none,line width=\dynkin@root@radius},
leftFold/.style = {},
rightFold/.style = {},
+ arrowColor/.estore in = \dynkin@arrow@color,
+ arrowColor=black,
doubleEdges/.style = {
foldStyle/.style = {
draw=black,
@@ -2913,6 +3002,7 @@
%% Draws a D series Dynkin diagram of rank 4, folded over a G2.
\NewDocumentCommand\DthreePly{}%
{%
+\ifdynkin@right@fold%
\dynkinPlaceRootHere*{2}{right}%
\xdef\old@edge@length{\dynkin@edge@length}%
\pgfmathparse{1.5*\dynkin@edge@length}%
@@ -2931,6 +3021,17 @@
\dynkin@fold@arrow@if@oo{2}{3}%
\dynkin@fold@arrow@if@oo{3}{4}%
\fi%
+\else%
+ \global\dynkin@ply=1\relax%
+ \Ddynkin{}%
+ \begin{scope}[on background layer]%
+ \draw
+ [/Dynkin diagram/foldStyle]
+ ($(\dynkin@root@name 2)$)
+ circle
+ (\dynkin@edge@length);%
+ \end{scope}%
+\fi%
}%
%% \Ddynkin
@@ -3153,9 +3254,18 @@
\ifdynkin@Coxeter%
\Idynkin%
\else%
- \dynkinPlaceRootHere*{1}{below}%
- \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}%
- \dynkinTripleEdge*{1}{2}%
+ \ifnum\dynkin@ply>1%
+ \dynkinPlaceRootHere*{1}{left}%
+ \dynkinPlaceRootRelativeTo*{2}{1}{southfold}{left}%
+ \dynkinEdge*{TripleDownRightSemiCircle}{1}{2}%
+ \ifdynkin@arrows%
+ \dynkinLeftFold*{1}{2}%
+ \fi%
+ \else%
+ \dynkinPlaceRootHere*{1}{below}%
+ \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}%
+ \dynkinTripleEdge*{1}{2}%
+ \fi%
\fi%
}%