diff options
311 files changed, 4538 insertions, 3290 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/README b/Master/texmf-dist/doc/latex/tkz-euclide/README index 8728f0a6de1..4496217dbc7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/README +++ b/Master/texmf-dist/doc/latex/tkz-euclide/README @@ -1,6 +1,8 @@ % encodage utf8 + -------------------- english readme ---------------------------------------- -readme-tkz-euclide.txt V3.02 c 2020/02/06 + +readme-tkz-euclide.txt V3.05 c 2020/03/08 tkz-euclide is a package (latex) which allows you to draw two-dimensional geometric figures, in other words to create figures of Euclidean geometry. It uses a Cartesian coordinate system orthogonal provided by the tkz-base package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible. @@ -9,9 +11,13 @@ tkz-euclide is a package (latex) which allows you to draw Licence ------- -This program can be redistributed and/or modified under the terms -of the LaTeX Project Public License Distributed from CTAN -archives in directory macros/latex/base/lppl.txt. +This work may be distributed and/or modified under the +conditions of the LaTeX Project Public License, either version 1.3 + of this license or (at your option) any later version. + The latest version of this license is in + http://www.latex-project.org/lppl.txt + and version 1.3 or later is part of all distributions of LaTeX + version 2005/12/01 or later. Features @@ -66,7 +72,7 @@ The new package tkz-euclide 3.02c is *not* fully compatible with the version 1.1 History ------- - +-- 3.05 correction of bugs, amelioration of the documentation. -- 3.02 replacement french documentation by english documentation, correction of bugs. -- 3.01 replacement fp for xfp, addition of some macros, correction of bugs -- 1.16 correction of bugs diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf Binary files differindex aabaae0c693..2bc4e0d9b4d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx b/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx index 11b016acaa2..fb3587d4f6a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx @@ -1,6 +1,2 @@ \documentclass{standalone} \usepackage{tkz-euclide,tkz-fct} - - - - diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex deleted file mode 100644 index c38c3de860c..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex +++ /dev/null @@ -1,15 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 12 (Section 4.1.1 : Cartesian coordinates ) - - \begin{tikzpicture} - \tkzInit[xmax=5,ymax=5] - \tkzDefPoint(0,0){A} - \tkzDefPoint(4,0){B} - \tkzDefPoint(0,3){C} - \tkzDrawPolygon(A,B,C) - \tkzDrawPoints(A,B,C) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-5.tex deleted file mode 100644 index e7a180434b4..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-5.tex +++ /dev/null @@ -1,18 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 30 (Section 6.1.5 : \IoptName{tkzDefTriangleCenter}{ex}) - -\begin{tikzpicture}[scale=.5] - \tkzDefPoints{0/1/A,3/2/B,1/4/C} - \tkzDefCircle[ex](B,C,A) - \tkzGetFirstPoint{J_c} - \tkzGetSecondPoint{Tc} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,J_c) - \tkzDrawCircle[red](J_c,Tc) - \tkzDrawLines[add=1.5 and 0](A,C B,C) - \tkzLabelPoints(J_c) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex deleted file mode 100644 index b59a15d8ea1..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex +++ /dev/null @@ -1,24 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 39 (Section 8.2 : Point on a circle) - -\begin{tikzpicture} - \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} - \tkzDefPointOnCircle[angle=90,center=B, - radius=1 cm] - \tkzGetPoint{I} - \tkzDrawCircle[R,teal](B,1cm) - \tkzDrawPoint[teal](I) - \tkzDefCircle[circum](A,B,C) - \tkzGetPoint{G} \tkzGetLength{rG} - \tkzDefPointOnCircle[angle=30,center=G, - radius=\rG pt] - \tkzGetPoint{J} - \tkzDrawPoints(A,B,C) - \tkzDrawCircle(G,J) - \tkzDrawPoint(G) - \tkzDrawPoint[red](J) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-2-1.tex deleted file mode 100644 index 05d6c6a05a7..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-2-1.tex +++ /dev/null @@ -1,20 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 41 (Section 9.2.1 : Example of homothety and projection) - -\begin{tikzpicture}[scale=1.25] - \tkzInit \tkzClip - \tkzDefPoint(0,1){A} \tkzDefPoint(6,3){B} \tkzDefPoint(3,6){C} - \tkzDrawLines[add= 0 and .3](A,B A,C) - \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} - \tkzDrawLine[add=0 and 0,color=magenta!50 ](A,a) - \tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'} - \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k} - \tkzDrawSegment[blue](a',k) - \tkzDrawPoints(a,a',k,A) - \tkzDrawCircle(a',k) - \tkzLabelPoints(a,a',k,A) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex deleted file mode 100644 index c0f119a85d3..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex +++ /dev/null @@ -1,25 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 44 (Section 9.5.1 : Example of rotation) - - \begin{tikzpicture}[scale=1] - \tkzInit - \tkzDefPoint(0,0){A} - \tkzDefPoint(5,0){B} - \tkzDrawSegment(A,B) - \tkzDefPointBy[rotation=% - center A angle 60](B) - \tkzGetPoint{C} - \tkzDefPointBy[symmetry=% - center C](A) - \tkzGetPoint{D} - \tkzDrawSegment(A,tkzPointResult) - \tkzDrawLine(B,D) - \tkzDrawArc[delta=10](A,B)(C) - \tkzDrawArc[delta=10](B,C)(A) - \tkzDrawArc[delta=10](C,D)(D) - \tkzMarkRightAngle(D,B,A) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.0.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.0.0.tex new file mode 100644 index 00000000000..d14867b6e63 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.0.0.tex @@ -0,0 +1,16 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 1 (Section 1 : Presentation and Overview) + +\begin{tikzpicture}[scale=.25] + \tkzDefPoints{00/0/A,12/0/B,6/12*sind(60)/C} + \foreach \density in {20,30,...,240}{% + \tkzDrawPolygon[fill=teal!\density](A,B,C) + \pgfnodealias{X}{A} + \tkzDefPointWith[linear,K=.15](A,B) \tkzGetPoint{A} + \tkzDefPointWith[linear,K=.15](B,C) \tkzGetPoint{B} + \tkzDefPointWith[linear,K=.15](C,X) \tkzGetPoint{C}} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.1.tex index a64287e178b..b1492bf9988 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 2 (Section 1.3.1 : Example Part I gold triangle) +% Ex. No. 6 (Section 1.3.1 : Example Part I: gold triangle) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoint(0,0){C} \tkzDefPoint(4,0){D} \tkzDefSquare(C,D) @@ -31,4 +31,4 @@ \tkzLabelPoints[above right](B,F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.2.tex index 78e0fd8fd21..50520d33952 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 4 (Section 1.3.2 : Example Part II two others methods gold and euclide triangle) +% Ex. No. 8 (Section 1.3.2 : Example Part II: two others methods gold and euclide triangle) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoint(0,0){C} % possible % \tkzDefPoint[label=below:$C$](0,0){C} % but don't do this @@ -29,4 +29,4 @@ \tkzLabelPoints[above](B,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.3.tex index 193e91a2372..5bf623549a2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.3.3.tex @@ -1,18 +1,17 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 5 (Section 1.3.3 : Complete but minimal example) +% Ex. No. 10 (Section 1.3.3 : Complete but minimal example) - \begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}] +\begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}] % fixed points \tkzDefPoint(0,0){A} \tkzDefPoint(1,0){I} % calculation \tkzDefPointBy[homothety=center A ratio 10 ](I) \tkzGetPoint{B} \tkzDefMidPoint(A,B) \tkzGetPoint{M} - \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{i} - \tkzInterLC(I,i)(M,B) \tkzGetSecondPoint{C} - + \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H} + \tkzInterLC(I,H)(M,B) \tkzGetSecondPoint{C} \tkzDrawSegment[style=orange](I,C) \tkzDrawArc(M,B)(A) \tkzDrawSegment[dim={$1$,-16pt,}](A,I) @@ -24,7 +23,7 @@ \tkzLabelPoints[above right](I,M) \tkzLabelPoints[above left](C) \tkzLabelPoint[right](B){$B(10,0)$} - \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} + \tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.4.0.tex index 41afbdc2276..22349017df1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.4.0.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 6 (Section 1.4 : The Elements of tkz code) +% Ex. No. 12 (Section 1.4 : The Elements of tkz code) - \begin{tikzpicture}[scale=.75] +\begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,8/0/B} \foreach \tr in {equilateral,half,pythagore,% school,golden,euclide, gold,cheops} @@ -15,4 +15,4 @@ \tkzDrawSegments(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.5.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.5.0.tex new file mode 100644 index 00000000000..fb55d7b37ca --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.5.0.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 15 (Section 1.5 : Notations and conventions) + +\begin{tikzpicture} + \tkzDefPoints{0/0/A} + \tkzDrawPoints(A) + \tkzLabelPoint(A){$P$} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.6.1.tex index ea6d953b253..4dbf112bf2f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-6-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-1.6.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 7 (Section 1.6.1 : Let's look at a classic example) +% Ex. No. 17 (Section 1.6.1 : Let's look at a classic example) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] % fixed points \tkzDefPoint(0,0){A} \tkzDefPoint(5,2){B} @@ -22,4 +22,4 @@ \tkzLabelPoints[above](C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.1.tex index c2f47fac433..18afc7ff0b4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 49 (Section 11.1.1 : \tkzcname{tkzDefPointWith} et \tkzname{colinear at}) +% Ex. No. 60 (Section 10.1.1 : Option \tkzname{colinear at}) \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] @@ -14,4 +14,4 @@ \tkzDrawSegments[vect](A,B C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-10.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.10.tex index 553572a3173..d4facfed58d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-10.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.10.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 58 (Section 11.1.10 : \tkzcname{tkzDefPointWith} \tkzname{linear} ) +% Ex. No. 69 (Section 10.1.10 : Option \tkzname{linear}) \begin{tikzpicture}[scale=1.2] \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} @@ -12,4 +12,4 @@ \tkzLabelPoints[above right=3pt](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-11.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.11.tex index 2977b90624f..b3aa5fb1e11 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-11.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.11.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 59 (Section 11.1.11 : \tkzcname{tkzDefPointWith} \tkzname{linear normed}) +% Ex. No. 70 (Section 10.1.11 : Option \tkzname{linear normed}) \begin{tikzpicture}[scale=1.2] \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} @@ -13,4 +13,4 @@ \tkzLabelPoints[above right=3pt](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.2.tex index 7ff8f22bef5..4ce4d6822cb 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 50 (Section 11.1.2 : colinear at) +% Ex. No. 61 (Section 10.1.2 : Option \tkzname{colinear at} with $K$) \begin{tikzpicture}[vect/.style={->, shorten >=3pt,>=latex'}] @@ -17,4 +17,4 @@ \tkzDrawSegments[vect](A,B C,H) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.3.tex index 645719cca96..244c6e59a6b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 51 (Section 11.1.3 : colinear $K=\frac{\sqrt{2}}{2}$) +% Ex. No. 62 (Section 10.1.3 : Option \tkzname{colinear at} with $K=\frac{\sqrt{2}}{2}$) \begin{tikzpicture}[vect/.style={->, shorten >=3pt,>=latex'}] @@ -14,4 +14,4 @@ \tkzDrawSegments[vect](A,B C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.4.tex index a0bc38ede31..c736adac8e2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.4.tex @@ -1,18 +1,19 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 52 (Section 11.1.4 : \tkzcname{tkzDefPointWith} et \tkzname{orthogonal}) +% Ex. No. 63 (Section 10.1.4 : Option \tkzname{orthogonal}) \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} - \tkzDefPointWith[orthogonal,K=-1](A,B) + \tkzDefPointWith[orthogonal,K=1](A,B) \tkzGetPoint{C} \tkzDrawPoints[color=red](A,B,C) - \tkzLabelPoints[right=3pt](A,B,C) + \tkzLabelPoints[right=3pt](B,C) + \tkzLabelPoints[below=3pt](A) \tkzDrawSegments[vect](A,B A,C) \tkzMarkRightAngle(B,A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.5.tex index b01a8b5ca00..ad47b93669e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 53 (Section 11.1.5 : orthogonal simple) +% Ex. No. 64 (Section 10.1.5 : Option \tkzname{orthogonal} with $K=-1$) \begin{tikzpicture}[scale=.75] \tkzDefPoint(1,2){O} @@ -17,4 +17,4 @@ \tkzLabelPoints(O,I,J,K) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.6.tex index b455e51a52a..adb9a6caeb0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.6.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 54 (Section 11.1.6 : advanced orthogonal) +% Ex. No. 65 (Section 10.1.6 : Option \tkzname{orthogonal} more complicated example) \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,6/0/B} @@ -23,4 +23,4 @@ \tkzLabelPoints(A,B,C,F,M,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.7.tex index 4f824311be5..30be510ab9c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.7.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 55 (Section 11.1.7 : segment colinear and orthogonal) +% Ex. No. 66 (Section 10.1.7 : Options \tkzname{colinear} and \tkzname{orthogonal}) \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] @@ -16,4 +16,4 @@ \tkzDrawPoints(A,...,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.8.tex index 5bcb0f65bdf..a157dfdc05c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.8.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 56 (Section 11.1.8 : \tkzcname{tkzDefPointWith} \tkzname{orthogonal normed}, K=1) +% Ex. No. 67 (Section 10.1.8 : Option \tkzname{orthogonal normed}, $K=1$) \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] @@ -13,4 +13,4 @@ \tkzMarkRightAngle[fill=gray!20](B,A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.9.tex index 42519ab2585..50d5a2d651c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.1.9.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 57 (Section 11.1.9 : \tkzcname{tkzDefPointWith} et \tkzname{orthogonal normed} K=2) +% Ex. No. 68 (Section 10.1.9 : Option \tkzname{orthogonal normed} and $K=2$) \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] @@ -15,4 +15,4 @@ \tkzLabelPoints[above=3pt](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.2.1.tex index 747d00d9469..181ace6c64c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 60 (Section 11.2.1 : Coordinate transfer with \tkzcname{tkzGetVectxy}) +% Ex. No. 71 (Section 10.2.1 : Coordinate transfer with \tkzcname{tkzGetVectxy}) \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -15,4 +15,4 @@ \tkzLabelPoints(A,B,O,V) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.2.0.tex index 8301f5ad87d..2d256cb3660 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 61 (Section 12.2 : Random point in a rectangle) +% Ex. No. 72 (Section 11.2 : Random point in a rectangle) \begin{tikzpicture} \tkzInit[xmax=5,ymax=5]\tkzGrid @@ -15,4 +15,4 @@ \tkzLabelPoints(A,B,C,a,d) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.3.0.tex index 08286630a59..7be5ae33fdc 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.3.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 62 (Section 12.3 : Random point on a segment) +% Ex. No. 73 (Section 11.3 : Random point on a segment) \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid @@ -12,4 +12,4 @@ \tkzLabelPoints(A,B,C,D,a,d) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.4.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.4.0.tex new file mode 100644 index 00000000000..75d04187dba --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.4.0.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 74 (Section 11.4 : Random point on a straight line) + +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] \tkzGrid + \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} + \tkzDefRandPointOn[line = A--B]\tkzGetPoint{E} + \tkzDefRandPointOn[line = C--D]\tkzGetPoint{F} + \tkzDrawPoints(A,...,F) + \tkzLabelPoints(A,...,F) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.4.1.tex index 394404b53a0..5b3c78e4c5a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.4.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 64 (Section 12.4.1 : Example of random points) +% Ex. No. 75 (Section 11.4.1 : Example of random points) \begin{tikzpicture} \tkzDefPoints{0/0/A,2/2/B,-1/-1/C} @@ -24,4 +24,4 @@ \tkzDrawRectangle(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.5.0.tex index 42d1f9e15bf..572d8a68977 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.5.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 65 (Section 12.5 : Random point on a circle) +% Ex. No. 76 (Section 11.5 : Random point on a circle) \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid @@ -15,4 +15,4 @@ \tkzLabelPoints(A,B,a) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.5.1.tex index cfedad22b4a..0f71ebdfefb 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.5.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 66 (Section 12.5.1 : Random example and circle of Apollonius) +% Ex. No. 77 (Section 11.5.1 : Random example and circle of Apollonius) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B} @@ -27,4 +27,4 @@ { $MA/MB=\coeffK$\\$NA/NB=\coeffK$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-6-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.6.0.tex index 000691ea210..600c61b9fe7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-6-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11.6.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 67 (Section 12.6 : Middle of a compass segment) +% Ex. No. 78 (Section 11.6 : Middle of a compass segment) \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} @@ -29,4 +29,4 @@ \tkzLabelPoints(A,B,M) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-0.tex deleted file mode 100644 index d07f36751f1..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-0.tex +++ /dev/null @@ -1,15 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 63 (Section 12.4 : Random point on a straight line) - -\begin{tikzpicture} - \tkzInit[xmax=5,ymax=5] \tkzGrid - \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} - \tkzDefRandPointOn[line = A--B]\tkzGetPoint{a} - \tkzDefRandPointOn[line = C--D]\tkzGetPoint{d} - \tkzDrawPoints(A,B,C,D,a,d) - \tkzLabelPoints(A,B,C,D,a,d) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.1.tex new file mode 100644 index 00000000000..826cd564b56 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.1.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 79 (Section 12.1.1 : Example with \tkzname{mediator}) + +\begin{tikzpicture}[rotate=25] + \tkzDefPoints{-2/0/A,1/2/B} + \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D} + \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D} + \tkzDefMidPoint(A,B) \tkzGetPoint{I} + \tkzFillPolygon[color=orange!30](A,C,B,D) + \tkzDrawSegments(A,B C,D) + \tkzMarkRightAngle(B,I,C) + \tkzDrawSegments(D,B D,A) + \tkzDrawSegments(C,B C,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.2.tex new file mode 100644 index 00000000000..39f38e08669 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.2.tex @@ -0,0 +1,14 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 80 (Section 12.1.2 : Example with \tkzname{bisector} and \tkzname{normed}) + +\begin{tikzpicture}[rotate=25,scale=.75] + \tkzDefPoints{0/0/C, 2/-3/A, 4/0/B} + \tkzDefLine[bisector,normed](B,A,C) \tkzGetPoint{a} + \tkzDrawLines[add= 0 and .5](A,B A,C) + \tkzShowLine[bisector,gap=4,size=2,color=red](B,A,C) + \tkzDrawLines[blue!50,dashed,add= 0 and 3](A,a) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.3.tex index b15124718ce..1c77634e533 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.3.tex @@ -1,12 +1,12 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 69 (Section 13.1.2 : Example avec \tkzname{orthogonal} et \tkzname{parallel}) +% Ex. No. 81 (Section 12.1.3 : Example with \tkzname{orthogonal} and \tkzname{parallel}) \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C} \tkzDrawLine(A,B) - \tkzLabelLine[pos=1.25,left](A,B){$(d_1)$} + \tkzLabelLine[pos=1.25,below left](A,B){$(d_1)$} \tkzDrawPoints(A,B,C) \tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c} \tkzDrawLine(C,c) @@ -15,8 +15,8 @@ \tkzMarkRightAngle(C,I,B) \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'} \tkzDrawLine(C,c') - \tkzLabelLine[pos=1.25,left](C,c'){$(d_2)$} + \tkzLabelLine[pos=1.25,below left](C,c'){$(d_2)$} \tkzMarkRightAngle(I,C,c') \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.4.tex new file mode 100644 index 00000000000..de3be4b2be4 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.4.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 82 (Section 12.1.4 : An envelope) + +\begin{tikzpicture}[scale=.75] + \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] % necessary + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:4){A} + \tkzDefPoint(5,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:5){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.5.tex new file mode 100644 index 00000000000..afa76e3561e --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.1.5.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 83 (Section 12.1.5 : A parabola) + +\begin{tikzpicture}[scale=.75] + \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:5){A} + \tkzDefPoint(4,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:4){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.1.tex index e370a90725c..818896e6e1b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.1.tex @@ -1,12 +1,12 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 128 (Section 19.2.1 : Example of a tangent passing through a point on the circle ) +% Ex. No. 84 (Section 12.2.1 : Example of a tangent passing through a point on the circle ) -\begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){O} \tkzDefPoint(6,6){E} - \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzDefRandPointOn[circle=center O radius 3cm] \tkzGetPoint{A} \tkzDrawSegment(O,A) \tkzDrawCircle(O,A) @@ -16,4 +16,4 @@ \tkzMarkRightAngle[fill=red!30](O,A,h) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.2.tex index bdaac686b0a..27db66fd33c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 129 (Section 19.2.2 : Example of tangents passing through an external point ) +% Ex. No. 85 (Section 12.2.2 : Example of tangents passing through an external point ) -\begin{tikzpicture}[scale=0.75] +\begin{tikzpicture}[scale=.8] \tkzDefPoint(3,3){c} \tkzDefPoint(6,3){a0} \tkzRadius=1 cm @@ -18,4 +18,4 @@ }% \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.3.tex index 0cb9cec7fb3..592f7d23478 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.3.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 130 (Section 19.2.3 : Example of Andrew Mertz ) +% Ex. No. 86 (Section 12.2.3 : Example of Andrew Mertz) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] \tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B} \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R} \tkzDrawCircle(C,R) @@ -15,4 +15,4 @@ \tkzDrawPoint[color=black](I) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.4.tex new file mode 100644 index 00000000000..0b7bb6747aa --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.4.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 87 (Section 12.2.4 : Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzGetPoint{A} + \tkzDefTangent[at=A](O) + \tkzGetPoint{h} + \tkzDrawSegments(O,A) + \tkzDrawCircle(O,A) + \tkzDrawLine[add = 1 and 1](A,h) + \tkzMarkRightAngle[fill=red!30](O,A,h) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.5.tex new file mode 100644 index 00000000000..57c4ce4c919 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12.2.5.tex @@ -0,0 +1,27 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 88 (Section 12.2.5 : Drawing a tangent option \tkzimp{from}) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){B} + \tkzDefPoint(0,8){A} + \tkzDefSquare(A,B) + \tkzGetPoints{C}{D} + \tkzDrawSquare(A,B) + \tkzClipPolygon(A,B,C,D) + \tkzDefPoint(4,8){F} + \tkzDefPoint(4,0){E} + \tkzDefPoint(4,4){Q} + \tkzFillPolygon[color = green](A,B,C,D) + \tkzDrawCircle[fill = orange](B,A) + \tkzDrawCircle[fill = purple](E,B) + \tkzDefTangent[from=B](F,A) + \tkzInterLL(F,tkzFirstPointResult)(C,D) + \tkzInterLL(A,tkzPointResult)(F,E) + \tkzDrawCircle[fill = yellow](tkzPointResult,Q) + \tkzDefPointBy[projection= onto B--A](tkzPointResult) + \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-1.tex deleted file mode 100644 index 08b6b721025..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-1.tex +++ /dev/null @@ -1,19 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 68 (Section 13.1.1 : Example with \tkzname{mediator}) - -\begin{tikzpicture}[rotate=25] - \tkzInit - \tkzDefPoints{-2/0/A,1/2/B} - \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D} - \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D} - \tkzDefMidPoint(A,B) \tkzGetPoint{I} - \tkzFillPolygon[color=orange!30](A,C,B,D) - \tkzDrawSegments(A,B C,D) - \tkzMarkRightAngle(B,I,C) - \tkzDrawSegments(D,B D,A) - \tkzDrawSegments(C,B C,A) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-3.tex deleted file mode 100644 index 754b8d2c98c..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-3.tex +++ /dev/null @@ -1,18 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 70 (Section 13.1.3 : An envelope) - -\begin{tikzpicture}[scale=1] - \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] - \tkzClip - \tkzDefPoint(0,0){O} - \tkzDefPoint(132:4){A} - \tkzDefPoint(5,0){B} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:5){M} - \tkzDefLine[mediator](A,M) - \tkzDrawLine[color=magenta,add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-4.tex deleted file mode 100644 index bf3c722eaf2..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-4.tex +++ /dev/null @@ -1,19 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 71 (Section 13.1.4 : A parable) - -\begin{tikzpicture}[scale=1.25] - \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] - \tkzClip - \tkzDefPoint(0,0){O} - \tkzDefPoint(132:5){A} - \tkzDefPoint(4,0){B} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:4){M} - \tkzDefLine[mediator](A,M) - \tkzDrawLine[color=magenta, - add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-5.tex deleted file mode 100644 index c08103fbba3..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-5.tex +++ /dev/null @@ -1,25 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 72 (Section 13.1.5 : Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}) - - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){O} - \tkzDefPoint(6,6){E} - \tkzDefRandPointOn[circle=center O radius 4cm] - \tkzGetPoint{A} - \tkzDefRandPointOn[circle=center O radius 4cm] - \tkzGetPoint{B} - \tkzDrawSegments(O,A O,B) - \tkzDrawCircle(O,A) - \tkzDefTangent[from with R=E](O,4cm) - \tkzGetSecondPoint{k} - \tkzDefTangent[at=A](O) - \tkzGetPoint{h} - \tkzDrawPoints(E) - \tkzDrawLine[add = .5 and .5](A,h) - \tkzDrawLine[add = .5 and .5](E,k) - \tkzMarkRightAngle[fill=red!30](O,A,h) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-6.tex deleted file mode 100644 index f9c12b5df19..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-6.tex +++ /dev/null @@ -1,27 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 73 (Section 13.1.6 : Drawing a tangent option \tkzimp{from}) - - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){B} - \tkzDefPoint(0,8){A} - \tkzDefSquare(A,B) - \tkzGetPoints{C}{D} - \tkzDrawSquare(A,B) - \tkzClipPolygon(A,B,C,D) - \tkzDefPoint(4,8){F} - \tkzDefPoint(4,0){E} - \tkzDefPoint(4,4){Q} - \tkzFillPolygon[color = green](A,B,C,D) - \tkzDrawCircle[fill = orange](B,A) - \tkzDrawCircle[fill = purple](E,B) - \tkzDefTangent[from=B](F,A) - \tkzInterLL(F,tkzFirstPointResult)(C,D) - \tkzInterLL(A,tkzPointResult)(F,E) - \tkzDrawCircle[fill = yellow](tkzPointResult,Q) - \tkzDefPointBy[projection= onto B--A](tkzPointResult) - \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.1.tex index b4a79c00dcd..ccbc1bffe89 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 74 (Section 14.1.1 : Examples of right-hand plots with \tkzname{add}) +% Ex. No. 89 (Section 13.1.1 : Examples with \tkzname{add}) \begin{tikzpicture} \tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25] @@ -17,4 +17,4 @@ \tkzLabelPoints(A,B,C,D,E,F,G,H) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.2.tex index 38871e6f020..6e437bc6b1d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 75 (Section 14.1.2 : Example with \tkzcname{tkzDrawLines}) +% Ex. No. 90 (Section 13.1.2 : Example with \tkzcname{tkzDrawLines}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -12,4 +12,4 @@ \tkzLabelPoints(A,B,C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.3.tex index bc6fa74542d..09398cb87fc 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 76 (Section 14.1.3 : Example with the option \tkzname{add}) +% Ex. No. 91 (Section 13.1.3 : Example with the option \tkzname{add}) \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){O} @@ -15,4 +15,4 @@ \tkzDrawLines[add = 1 and .5,color=blue](O,i O,j) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.4.tex index 614db1b70f6..01a767172bd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 77 (Section 14.1.4 : Medians in a triangle) +% Ex. No. 92 (Section 13.1.4 : Medians in a triangle) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -12,4 +12,4 @@ \tkzDrawLine[median](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.5.tex index 0fa5586acc9..8b830cd5eab 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 78 (Section 14.1.5 : Altitudes in a triangle) +% Ex. No. 93 (Section 13.1.5 : Altitudes in a triangle) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -12,4 +12,4 @@ \tkzDrawLine[altitude](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.6.tex index dea93902829..90fc2476e77 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.1.6.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 79 (Section 14.1.6 : Bisectors in a triangle) +% Ex. No. 94 (Section 13.1.6 : Bisectors in a triangle) -\begin{tikzpicture}[scale=1.5] +\begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) \tkzSetUpLine[color=purple] @@ -12,4 +12,4 @@ \tkzDrawLine[bisector](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.2.1.tex index 98cd8c990a3..5a94a09b748 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 80 (Section 14.2.1 : Example with \tkzcname{tkzLabelLine}) +% Ex. No. 95 (Section 13.2.1 : Example with \tkzcname{tkzLabelLine}) \begin{tikzpicture} \tkzDefPoints{0/0/A,3/0/B,1/1/C} @@ -9,7 +9,7 @@ \tkzGetPoint{c} \tkzDrawLines(A,B C,c) \tkzLabelLine[pos=1.25,blue,right](C,c){$(\delta)$} - \tkzLabelLine[pos=-0.25,red,left](C,c){encore $(\delta)$} + \tkzLabelLine[pos=-0.25,red,left](C,c){again $(\delta)$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.1.tex index d61e0491bd9..c66be7b0a65 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 81 (Section 15.1.1 : Example with point references) +% Ex. No. 96 (Section 14.1.1 : Example with point references) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){A} @@ -11,4 +11,4 @@ \tkzLabelPoints(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.2.tex index a51b731c188..a4f91a1f119 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 82 (Section 15.1.2 : Example of extending an option segment \tkzimp{add}) +% Ex. No. 97 (Section 14.1.2 : Example of extending an segment with option \tkzname{add}) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{E} @@ -13,4 +13,4 @@ \tkzLabelPoints(A,B,C,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.3.tex new file mode 100644 index 00000000000..50e0c04d633 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.1.3.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 98 (Section 14.1.3 : Example of adding dimensions with option \tkzname{dim}) + +\begin{tikzpicture}[scale=4] + \pgfkeys{/pgf/number format/.cd,fixed,precision=2} + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(1,1){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \tkzCalcLength[cm](A,B)\tkzGetLength{ABl} + \tkzCalcLength[cm](B,C)\tkzGetLength{BCl} + \tkzCalcLength[cm](A,C)\tkzGetLength{ACl} + \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,transform shape}](C,B) + \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,6pt,transform shape}](A,C) + \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,-6pt,transform shape}](A,B) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.2.0.tex index 678362bd28c..074b835878d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 84 (Section 15.2 : Drawing segments \tkzcname{tkzDrawSegments}) +% Ex. No. 99 (Section 14.2 : Drawing segments \tkzcname{tkzDrawSegments}) \begin{tikzpicture} \tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2] @@ -15,4 +15,4 @@ \tkzLabelPoints[above](B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.2.1.tex index cff3b62052d..dcb8fe001d1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 85 (Section 15.2.1 : Place an arrow on segment) +% Ex. No. 100 (Section 14.2.1 : Place an arrow on segment) \begin{tikzpicture} \tikzset{ @@ -10,9 +10,9 @@ mark=at position .5 with {\arrow[thick]{#1}} }}} \tkzDefPoint(0,0){A} - \tkzDefPoint(4,0){B} + \tkzDefPoint(4,-4){B} \tkzDrawSegments[arr=stealth](A,B) \tkzDrawPoints(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.1.tex new file mode 100644 index 00000000000..a093ff53852 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.1.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 101 (Section 14.3.1 : Several marks ) + +\begin{tikzpicture} + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,4){B} + \tkzDrawSegment(A,B) + \tkzMarkSegment[color=brown,size=2pt,pos=0.4, mark=z](A,B) + \tkzMarkSegment[color=blue,pos=0.2, mark=oo](A,B) + \tkzMarkSegment[pos=0.8,mark=s,color=red](A,B) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.2.tex new file mode 100644 index 00000000000..820cca00f52 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.3.2.tex @@ -0,0 +1,16 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 102 (Section 14.3.2 : Use of \tkzname{mark}) + +\begin{tikzpicture} + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,4){B} + \tkzDrawSegment(A,B) + \tkzMarkSegment[color=gray,pos=0.2,mark=s|](A,B) + \tkzMarkSegment[color=gray,pos=0.4,mark=s||](A,B) + \tkzMarkSegment[color=brown,pos=0.6,mark=||](A,B) + \tkzMarkSegment[color=red,pos=0.8,mark=|||](A,B) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.4.1.tex index 1b5701802d4..03890e041b3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.4.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 88 (Section 15.4.1 : Marques pour un triangle isocèle) +% Ex. No. 103 (Section 14.4.1 : Marks for an isosceles triangle) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} @@ -11,4 +11,4 @@ \tkzMarkSegments[mark=||,size=6pt](O,A A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.0.tex index c4bfea9313e..eb1d6e21475 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.0.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 89 (Section 15.5 : Another marking) +% Ex. No. 104 (Section 14.5 : Another marking) - \begin{tikzpicture}[scale=1] +\begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B} \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P} \tkzDrawPolygon(A,B,C) @@ -20,4 +20,4 @@ \tkzLabelPoints[above right](P',C',B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.1.tex index e2987c9905b..8b3ca2a7b0e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 90 (Section 15.5.1 : Labels multiples) +% Ex. No. 105 (Section 14.5.1 : Multiple labels) \begin{tikzpicture} \tkzInit @@ -12,4 +12,4 @@ \tkzLabelSegment[below,pos=.2](A,B){$4$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.2.tex index 41c37c42a58..4ef89e699ef 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 91 (Section 15.5.2 : Labels and right-angled triangle) +% Ex. No. 106 (Section 14.5.2 : Labels and right-angled triangle) \begin{tikzpicture}[rotate=-60] \tikzset{label seg style/.append style = {% @@ -30,4 +30,4 @@ \tkzMarkRightAngles[german](A,C,B B,P,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.3.tex index d20e6414961..4369da6d464 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14.5.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 92 (Section 15.5.3 : Labels for an isosceles triangle) +% Ex. No. 107 (Section 14.5.3 : Labels for an isosceles triangle) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} @@ -11,4 +11,4 @@ \tkzLabelSegments[color=red,above=4pt](O,A A,B){$a$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-3.tex deleted file mode 100644 index 64d616fde2d..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-3.tex +++ /dev/null @@ -1,28 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 83 (Section 15.1.3 : Example of adding dimensions (technical figure) option \tkzimp{dim}) - - \begin{tikzpicture}[scale=2] - \pgfkeys{/pgf/number format/.cd,fixed,precision=2} - % Define the first two points - \tkzDefPoint(0,0){A} - \tkzDefPoint(3,0){B} - \tkzDefPoint(1,1){C} - % Draw the triangle and the points - \tkzDrawPolygon(A,B,C) - \tkzDrawPoints(A,B,C) - % Label the sides - \tkzCalcLength[cm](A,B)\tkzGetLength{ABl} - \tkzCalcLength[cm](B,C)\tkzGetLength{BCl} - \tkzCalcLength[cm](A,C)\tkzGetLength{ACl} - % add dim - \tkzDrawSegment[dim={\pgfmathprintnumber\BCl, - 6pt,transform shape}](C,B) - \tkzDrawSegment[dim={\pgfmathprintnumber\ACl, - 6pt,transform shape}](A,C) - \tkzDrawSegment[dim={\pgfmathprintnumber\ABl, - -6pt,transform shape}](A,B) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-1.tex deleted file mode 100644 index 8c6e4ec4926..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-1.tex +++ /dev/null @@ -1,18 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 86 (Section 15.3.1 : Several marks ) - -\begin{tikzpicture} - \tkzDefPoint(2,1){A} - \tkzDefPoint(6,4){B} - \tkzDrawSegment(A,B) - \tkzMarkSegment[color=brown,size=2pt, - pos=0.4, mark=z](A,B) - \tkzMarkSegment[color=blue, - pos=0.2, mark=oo](A,B) - \tkzMarkSegment[pos=0.8, - mark=s,color=red](A,B) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-2.tex deleted file mode 100644 index 26cb6fb9134..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-2.tex +++ /dev/null @@ -1,20 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 87 (Section 15.3.2 : Use of \tkzname{mark}) - -\begin{tikzpicture} - \tkzDefPoint(2,1){A} - \tkzDefPoint(6,4){B} - \tkzDrawSegment(A,B) - \tkzMarkSegment[color=gray, - pos=0.2,mark=s|](A,B) - \tkzMarkSegment[color=gray, - pos=0.4,mark=s||](A,B) - \tkzMarkSegment[color=brown, - pos=0.6,mark=||](A,B) - \tkzMarkSegment[color=red, - pos=0.8,mark=|||](A,B) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.1.tex index 4d4374b3f69..13d0c40f516 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 93 (Section 16.1.1 : triangle doré (golden)) +% Ex. No. 108 (Section 15.1.1 : Option \tkzname{golden}) \begin{tikzpicture}[scale=.8] \tkzInit[xmax=5,ymax=3] \tkzClip[space=.5] @@ -12,4 +12,4 @@ \tkzLabelPoints[above](C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.2.tex index 47605fcc6ff..ef87491f289 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 94 (Section 16.1.2 : triangle équilatéral) +% Ex. No. 109 (Section 15.1.2 : Option \tkzname{equilateral}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -16,4 +16,4 @@ \tkzLabelPoints(A,B,C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.3.tex index 11f13d0f52a..c1179987a31 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 95 (Section 16.1.3 : triangle d'or (euclide)) +% Ex. No. 110 (Section 15.1.3 : Option \tkzname{gold} or \tkzname{euclide} ) \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -13,4 +13,4 @@ \tkzDrawBisector(A,C,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.1.tex index dbb9772f1d5..95d14deac7d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 96 (Section 16.2.1 : triangle de Pythagore) +% Ex. No. 111 (Section 15.2.1 : Option \tkzname{pythagore}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -10,4 +10,4 @@ \tkzMarkRightAngles(A,B,tkzPointResult) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.2.tex new file mode 100644 index 00000000000..d67b7da0d63 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.2.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 112 (Section 15.2.2 : Option \tkzname{school}) + +\begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDrawTriangle[school,fill=red!30](A,B) + \tkzMarkRightAngles(tkzPointResult,B,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.3.tex new file mode 100644 index 00000000000..915e82b101f --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.3.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 113 (Section 15.2.3 : Option \tkzname{golden}) + +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,-10){M} + \tkzDefPoint(3,-10){N} + \tkzDrawTriangle[golden,color=brown](M,N) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.4.tex new file mode 100644 index 00000000000..50b34ce1f43 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.4.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 114 (Section 15.2.4 : Option \tkzname{gold}) + +\begin{tikzpicture}[scale=1] + \tkzDefPoint(5,-5){I} + \tkzDefPoint(8,-5){J} + \tkzDrawTriangle[gold,color=blue!50](I,J) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.5.tex new file mode 100644 index 00000000000..79ae689b25d --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15.2.5.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 115 (Section 15.2.5 : Option \tkzname{euclide}) + +\begin{tikzpicture}[scale=1] + \tkzDefPoint(10,-5){K} + \tkzDefPoint(13,-5){L} + \tkzDrawTriangle[euclide,color=blue,fill=blue!10](K,L) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex deleted file mode 100644 index 9bbceb668a7..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex +++ /dev/null @@ -1,16 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 97 (Section 16.2.2 : triangle 30 60 90 (school)) - -\begin{tikzpicture} -\tkzInit[ymin=-2.5,ymax=0,xmin=-5,xmax=0] -\tkzClip[space=.5] -\begin{scope}[rotate=-180] - \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} - \tkzDrawTriangle[school,fill=red!30](A,B) - \tkzMarkRightAngles(B,A,tkzPointResult) -\end{scope} -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.1.tex index e1a75b5d374..7caa380a627 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 98 (Section 17.0.1 : \tkzcname{tkzDefSpcTriangle} option "medial" ou "centroid") +% Ex. No. 116 (Section 16.0.1 : Option \tkzname{medial} or \tkzname{centroid} ) \begin{tikzpicture}[rotate=90,scale=.75] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} @@ -18,4 +18,4 @@ \tkzLabelPoints[font=\scriptsize](M) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.2.tex new file mode 100644 index 00000000000..5ab3d72d27d --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.2.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 117 (Section 16.0.2 : Option \tkzname{in} or \tkzname{incentral} ) + +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,5/0/B,1/3/C} + \tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c} + \tkzInCenter(A,B,C)\tkzGetPoint{I} + \tkzDrawPolygon[red](A,B,C) + \tkzDrawPolygon[blue](I_a,I_b,I_c) + \tkzDrawPoints(A,B,C,I,I_a,I_b,I_c) + \tkzDrawCircle[in](A,B,C) + \tkzDrawSegments[dashed](A,I_a B,I_b C,I_c) + \tkzAutoLabelPoints[center=I, + blue,font=\scriptsize](I_a,I_b,I_c) + \tkzAutoLabelPoints[center=I,red, + font=\scriptsize](A,B,C,I_a,I_b,I_c) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.3.tex new file mode 100644 index 00000000000..b6e11174223 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.3.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 118 (Section 16.0.3 : Option \tkzname{ex} or \tkzname{excentral} ) + +\begin{tikzpicture}[scale=.6] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](J_a,J_b,J_c) + \tkzDrawPoints(A,B,C) + \tkzDrawPoints[red](J_a,J_b,J_c) + \tkzLabelPoints(A,B,C) + \tkzLabelPoints[red](J_b,J_c) + \tkzLabelPoints[red,above](J_a) + \tkzClipBB \tkzShowBB + \tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.4.tex index 77666ae9079..3a6ffedf9af 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.4.tex @@ -1,21 +1,21 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 101 (Section 17.0.4 : Option : "intouch") +% Ex. No. 119 (Section 16.0.4 : Option \tkzname{intouch}) \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[intouch,name=x](A,B,C){a,b,c} + \tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c} \tkzInCenter(A,B,C)\tkzGetPoint{I} \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](xa,xb,xc) + \tkzDrawPolygon[blue](X_a,X_b,X_c) \tkzDrawPoints[red](A,B,C) - \tkzDrawPoints[blue](xa,xb,xc) + \tkzDrawPoints[blue](X_a,X_b,X_c) \tkzDrawCircle[in](A,B,C) \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% -(xa,xb,xc) +(X_a,X_b,X_c) \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% (A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.5.tex new file mode 100644 index 00000000000..64101af4cdf --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.5.tex @@ -0,0 +1,33 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 120 (Section 16.0.5 : Option \tkzname{extouch}) + +\begin{tikzpicture}[scale=.7] +\tkzDefPoints{0/0/A,6/0/B,0.8/4/C} +\tkzDefSpcTriangle[excentral, + name=J](A,B,C){_a,_b,_c} +\tkzDefSpcTriangle[extouch, + name=T](A,B,C){_a,_b,_c} +\tkzDefTriangleCenter[nagel](A,B,C) +\tkzGetPoint{N_a} +\tkzDefTriangleCenter[centroid](A,B,C) +\tkzGetPoint{G} +\tkzDrawPoints[blue](J_a,J_b,J_c) +\tkzClipBB \tkzShowBB +\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c) +\tkzDrawLines[add=1 and 1](A,B B,C C,A) +\tkzDrawSegments[gray](A,T_a B,T_b C,T_c) +\tkzDrawSegments[gray](J_a,T_a J_b,T_b J_c,T_c) +\tkzDrawPolygon[blue](A,B,C) +\tkzDrawPolygon[red](T_a,T_b,T_c) +\tkzDrawPoints(A,B,C,N_a) +\tkzLabelPoints(N_a) +\tkzAutoLabelPoints[center=Na,blue](A,B,C) +\tkzAutoLabelPoints[center=G,red, + dist=.4](T_a,T_b,T_c) +\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B + J_b,T_b,C J_c,T_c,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.6.tex index 82ae803be6c..544dfe303c3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.6.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 103 (Section 17.0.6 : Option : "feuerbach") +% Ex. No. 121 (Section 16.0.6 : Option \tkzname{feuerbach}) \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} @@ -24,4 +24,4 @@ font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.7.tex index b71f602432a..0a75442e52d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.7.tex @@ -1,21 +1,21 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 104 (Section 17.0.7 : Option Triangle "tangential") +% Ex. No. 122 (Section 16.0.7 : Option \tkzname{tangential}) \begin{tikzpicture}[scale=.5,rotate=80] \tkzDefPoints{0/0/A,6/0/B,1.8/4/C} \tkzDefSpcTriangle[tangential, - name=T](A,B,C){a,b,c} + name=T](A,B,C){_a,_b,_c} \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](Ta,Tb,Tc) + \tkzDrawPolygon[blue](T_a,T_b,T_c) \tkzDrawPoints[red](A,B,C) - \tkzDrawPoints[blue](Ta,Tb,Tc) + \tkzDrawPoints[blue](T_a,T_b,T_c) \tkzDefCircle[circum](A,B,C) \tkzGetPoint{O} \tkzDrawCircle(O,A) \tkzLabelPoints[red](A,B,C) - \tkzLabelPoints[blue](Ta,Tb,Tc) + \tkzLabelPoints[blue](T_a,T_b,T_c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.8.tex index d5041da322e..617b36b1191 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16.0.8.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 105 (Section 17.0.8 : Option Triangle "euler") +% Ex. No. 123 (Section 16.0.8 : Option \tkzname{euler}) \begin{tikzpicture}[rotate=90,scale=1.25] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} @@ -30,4 +30,4 @@ \tkzDrawPolygon[color=red](M_A,M_B,M_C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-2.tex deleted file mode 100644 index 7d41f95ce81..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-2.tex +++ /dev/null @@ -1,22 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 99 (Section 17.0.2 : Option : "in" ou "incentral") - -\begin{tikzpicture}[scale=1] - \tkzDefPoints{ 0/0/A,5/0/B,1/3/C} - \tkzDefSpcTriangle[in,name=I](A,B,C){a,b,c} - \tkzInCenter(A,B,C)\tkzGetPoint{I} - \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](Ia,Ib,Ic) - \tkzDrawPoints(A,B,C,I,Ia,Ib,Ic) - \tkzDrawCircle[in](A,B,C) - \tkzDrawSegments[dashed](A,Ia B,Ib C,Ic) - \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% -(Ia,Ib,Ic) - \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% -(A,B,C) -(A,B,C,Ia,Ib,Ic) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex deleted file mode 100644 index 1a8293accdc..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex +++ /dev/null @@ -1,21 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 100 (Section 17.0.3 : Option : "ex" ou "Excentral") - -\begin{tikzpicture}[scale=.6] - \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c} - \tkzDefSpcTriangle[extouch,name=T](A,B,C){a,b,c} - \tkzDrawPolygon[blue](A,B,C) - \tkzDrawPolygon[red](Ja,Jb,Jc) - \tkzDrawPoints(A,B,C) - \tkzDrawPoints[red](Ja,Jb,Jc) - \tkzLabelPoints(A,B,C) - \tkzLabelPoints[red](Jb,Jc) - \tkzLabelPoints[red,above](Ja) - \tkzClipBB \tkzShowBB - \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex deleted file mode 100644 index 208bb862974..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex +++ /dev/null @@ -1,33 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 102 (Section 17.0.5 : Option : "extouch") - -\begin{tikzpicture}[scale=.7] -\tkzDefPoints{0/0/A,6/0/B,0.8/4/C} -\tkzDefSpcTriangle[excentral, - name=J](A,B,C){a,b,c} -\tkzDefSpcTriangle[extouch, - name=T](A,B,C){a,b,c} -\tkzDefTriangleCenter[nagel](A,B,C) -\tkzGetPoint{Na} -\tkzDefTriangleCenter[centroid](A,B,C) -\tkzGetPoint{G} -\tkzDrawPoints[blue](Ja,Jb,Jc) -\tkzClipBB \tkzShowBB -\tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) -\tkzDrawLines[add=1 and 1](A,B B,C C,A) -\tkzDrawSegments[gray](A,Ta B,Tb C,Tc) -\tkzDrawSegments[gray](Ja,Ta Jb,Tb Jc,Tc) -\tkzDrawPolygon[blue](A,B,C) -\tkzDrawPolygon[red](Ta,Tb,Tc) -\tkzDrawPoints(A,B,C,Na) -\tkzLabelPoints(Na) -\tkzAutoLabelPoints[center=Na,blue](A,B,C) -\tkzAutoLabelPoints[center=G,red, - dist=.4](Ta,Tb,Tc) -\tkzMarkRightAngles[fill=gray!15](Ja,Ta,B - Jb,Tb,C Jc,Tc,A) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.1.tex index faead36ac40..13b0caf97b7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 106 (Section 18.1.1 : Using \tkzcname{tkzDefSquare} with two points) +% Ex. No. 124 (Section 17.1.1 : Using \tkzcname{tkzDefSquare} with two points) \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} @@ -13,4 +13,4 @@ tkzSecondPointResult) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.2.tex index 82a8f36d925..d37a9f35266 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 107 (Section 18.1.2 : Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle) +% Ex. No. 125 (Section 17.1.2 : Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle) \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} @@ -10,4 +10,4 @@ \tkzDrawPolygon[color=blue,fill=blue!30](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.3.tex index 915ff3b88a8..a767a6b163f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 108 (Section 18.1.3 : Pythagorean Theorem and \tkzcname{tkzDefSquare} ) +% Ex. No. 126 (Section 17.1.3 : Pythagorean Theorem and \tkzcname{tkzDefSquare} ) \begin{tikzpicture}[scale=.5] \tkzInit @@ -24,4 +24,4 @@ \tkzLabelSegment[swap](A,B){$c$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.1.tex new file mode 100644 index 00000000000..90e118091eb --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.1.tex @@ -0,0 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 138 (Section 17.10.1 : Option \tkzname{center}) + +\begin{tikzpicture} + \tkzDefPoints{0/0/P0,0/0/Q0,2/0/P1} + \tkzDefMidPoint(P0,P1) \tkzGetPoint{Q1} + \tkzDefRegPolygon[center,sides=7](P0,P1) + \tkzDefMidPoint(P1,P2) \tkzGetPoint{Q1} + \tkzDefRegPolygon[center,sides=7,name=Q](P0,Q1) + \tkzDrawPolygon(P1,P...,P7) + \tkzFillPolygon[gray!20](Q0,Q1,P2,Q2) + \foreach \j in {1,...,7} {\tkzDrawSegment[black](P0,Q\j)} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.2.tex new file mode 100644 index 00000000000..d5b28de5c8e --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.10.2.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 139 (Section 17.10.2 : Option \tkzname{side}) + +\begin{tikzpicture}[scale=1] + \tkzDefPoints{-4/0/A, -1/0/B} + \tkzDefRegPolygon[side,sides=5,name=P](A,B) + \tkzDrawPolygon[thick](P1,P...,P5) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.1.tex index beb81b3d884..ac26e93d442 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 109 (Section 18.3.1 : Example of a parallelogram definition) +% Ex. No. 127 (Section 17.3.1 : Example of a parallelogram definition) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B,4/2/C} @@ -13,4 +13,4 @@ \tkzDrawPoints(A,...,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.2.tex index 1ccd775cd7b..4810df86fea 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 110 (Section 18.3.2 : Simple example) +% Ex. No. 128 (Section 17.3.2 : Simple example) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B,4/2/C} @@ -13,4 +13,4 @@ \tkzDrawPoints(A,...,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.3.tex index bd138f15e93..f1562f4e6b8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.3.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 111 (Section 18.3.3 : Construction of the golden rectangle ) +% Ex. No. 129 (Section 17.3.3 : Construction of the golden rectangle ) \begin{tikzpicture}[scale=.5] \tkzInit[xmax=14,ymax=10] @@ -21,4 +21,4 @@ (E,F C,F B,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.4.1.tex index 89419953986..2a743b99cb3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.4.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 112 (Section 18.4.1 : The idea is to inscribe two squares in a semi-circle.) +% Ex. No. 130 (Section 17.4.1 : The idea is to inscribe two squares in a semi-circle.) \begin{tikzpicture}[scale=.75] \tkzInit[ymax=8,xmax=8] @@ -21,4 +21,4 @@ \tkzDrawPoints(E,G,H,F,J,K,L) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.5.1.tex index be38a5cd004..0116bad5b2d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.5.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 113 (Section 18.5.1 : Golden Rectangles) +% Ex. No. 131 (Section 17.5.1 : Golden Rectangles) \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -11,4 +11,4 @@ \tkzDrawPolygon[color=blue,fill=blue!20](B,C,E,F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.6.1.tex index 8be32ed78cf..b1cb949fdc6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-6-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.6.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 114 (Section 18.6.1 : Draw a polygon 1) +% Ex. No. 132 (Section 17.6.1 : \tkzcname{tkzDrawPolygon}) \begin{tikzpicture} [rotate=18,scale=1.5] \tkzDefPoint(0,0){A} @@ -10,6 +10,7 @@ \tkzDefPoint(-0.75,2){D} \tkzDrawPolygon[fill=black!50!blue!20!](A,B,C,D) \tkzDrawSegments[style=dashed](A,C B,D) -\end{tikzpicture} -\end{document} +\end{tikzpicture}\end{tkzexample} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.1.tex new file mode 100644 index 00000000000..489e47e509a --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.1.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 133 (Section 17.7.1 : Polygonal chain) + +\begin{tikzpicture} + \tkzDefPoints{0/0/A,6/0/B,3/4/C,2/2/D} + \tkzDrawPolySeg(A,...,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.2.tex new file mode 100644 index 00000000000..b06fc7e1812 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.7.2.tex @@ -0,0 +1,13 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 134 (Section 17.7.2 : Polygonal chain: index notation) + +\begin{tikzpicture} +\foreach \pt in {1,2,...,8} {% +\tkzDefPoint(\pt*20:3){P_\pt}} +\tkzDrawPolySeg(P_1,P_...,P_8) +\tkzDrawPoints(P_1,P_...,P_8) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.8.1.tex index 3045821ae35..3a4d1466963 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.8.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 115 (Section 18.7.1 : Simple Example) +% Ex. No. 135 (Section 17.8.1 : \tkzcname{tkzClipPolygon}) \begin{tikzpicture}[scale=1.25] \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] @@ -14,4 +14,4 @@ \tkzDrawLine[color=red](D,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.8.2.tex index 9b070480a70..e16ea98e907 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.8.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 116 (Section 18.7.2 : Example Sangaku in a square) +% Ex. No. 136 (Section 17.8.2 : Example: use of "Clip" for Sangaku in a square) \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -24,4 +24,4 @@ \tkzFillCircle[R,color = blue!50!black](F,4 cm)% \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-8-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.9.1.tex index d1c480a078f..97a1e650f14 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-8-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17.9.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 117 (Section 18.8.1 : Color a polygon) +% Ex. No. 137 (Section 17.9.1 : \tkzcname{tkzFillPolygon}) \begin{tikzpicture}[scale=0.7] \tkzInit[xmin=-3,xmax=6,ymin=-1,ymax=6] @@ -21,4 +21,4 @@ \tkzLabelAngle[pos = 1.5](A,O,B){$\alpha$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.1.tex index b3166a802f8..942deb276db 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 118 (Section 19.1.1 : Example with a random point and the option \tkzimp{through}) +% Ex. No. 140 (Section 18.1.1 : Example with a random point and option \tkzname{through}) - \begin{tikzpicture}[scale=1] +\begin{tikzpicture}[scale=1] \tkzDefPoint(0,4){A} \tkzDefPoint(2,2){B} \tkzDefMidPoint(A,B) \tkzGetPoint{I} @@ -18,8 +18,8 @@ \tkzLabelCircle[draw,fill=orange, text width=3cm,text centered, font=\scriptsize](A,C)(-90)% - {La mesure du rayon est : - \rACpt pt soit \rACcm cm} + {The radius measurement is: + \rACpt pt i.e. \rACcm cm} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-10.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.10.tex index ced687050c2..a28c5393461 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-10.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.10.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 127 (Section 19.1.10 : Orthogonal circle of given center) +% Ex. No. 149 (Section 18.1.10 : Orthogonal circle of given center) \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,1/0/A} @@ -18,4 +18,4 @@ \tkzLabelPoints(O,A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.2.tex index 92388060275..902c9febe21 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 119 (Section 19.1.2 : Example with the option \tkzimp{diameter}) +% Ex. No. 141 (Section 18.1.2 : Example with option \tkzname{diameter}) - \begin{tikzpicture}[scale=1] +\begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} \tkzDefPoint(2,2){B} \tkzDefCircle[diameter](A,B) @@ -14,4 +14,4 @@ \tkzLabelPoints(A,B,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.3.tex index cd1e96675e9..ca0f59c3a7c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 120 (Section 19.1.3 : Circles inscribed and circumscribed for a given triangle) +% Ex. No. 142 (Section 18.1.3 : Circles inscribed and circumscribed for a given triangle) \begin{tikzpicture}[scale=1] \tkzDefPoint(2,2){A} @@ -19,4 +19,4 @@ \tkzDrawPolygon(A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.4.tex index 19eb9c017fe..866f0be0cd1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.4.tex @@ -1,19 +1,19 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 121 (Section 19.1.4 : Example with the option \tkzimp{ex}) +% Ex. No. 143 (Section 18.1.4 : Example with option \tkzname{ex}) \begin{tikzpicture}[scale=.75] \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} \tkzDefCircle[ex](B,C,A) - \tkzGetPoint{Jc} \tkzGetLength{rc} - \tkzDefPointBy[projection=onto A--C ](Jc) - \tkzGetPoint{Xc} - \tkzDefPointBy[projection=onto A--B ](Jc) - \tkzGetPoint{Yc} + \tkzGetPoint{J_c} \tkzGetLength{rc} + \tkzDefPointBy[projection=onto A--C ](J_c) + \tkzGetPoint{X_c} + \tkzDefPointBy[projection=onto A--B ](J_c) + \tkzGetPoint{Y_c} \tkzGetPoint{I} \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawCircle[R,color=lightgray](Jc,\rc pt) + \tkzDrawCircle[R,color=lightgray](J_c,\rc pt) % possible \tkzDrawCircle[ex](A,B,C) \tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I} \tkzDefPointBy[projection=onto A--C ](I) @@ -21,12 +21,12 @@ \tkzDefPointBy[projection=onto A--B ](I) \tkzGetPoint{D} \tkzDrawLines[add=0 and 2.2,dashed](C,A C,B) - \tkzDrawSegments[dashed](Jc,Xc I,D I,F Jc,Yc) - \tkzMarkRightAngles(A,F,I B,D,I Jc,Xc,A Jc,Yc,B) - \tkzDrawPoints(B,C,A,I,D,F,Xc,Jc,Yc) - \tkzLabelPoints(B,A,Jc,I,D,Xc,Yc) + \tkzDrawSegments[dashed](J_c,X_c I,D I,F J_c,Y_c) + \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B) + \tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c) + \tkzLabelPoints(B,A,J_c,I,D,X_c,Y_c) \tkzLabelPoints[above left](C) \tkzLabelPoints[left](F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.5.tex index 6ba01e00770..d88b2286dde 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.5.tex @@ -1,19 +1,19 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 122 (Section 19.1.5 : Euler's circle for a given triangle) +% Ex. No. 144 (Section 18.1.5 : Euler's circle for a given triangle with option \tkzname{euler}) \begin{tikzpicture}[scale=.75] \tkzDefPoint(5,3.5){A} \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C} \tkzDefCircle[euler](A,B,C) \tkzGetPoint{E} \tkzGetLength{rEuler} - \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} - \tkzDrawPoints(A,B,C,E,Ma,Mb,Mc) + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} + \tkzDrawPoints(A,B,C,E,M_a,M_b,M_c) \tkzDrawCircle[R,blue](E,\rEuler pt) \tkzDrawPolygon(A,B,C) \tkzLabelPoints[below](B,C) \tkzLabelPoints[left](A,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.6.tex index d157b65d284..52fea9194b0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.6.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 123 (Section 19.1.6 : Coloured Apollonius circles for a given segment) +% Ex. No. 145 (Section 18.1.6 : Apollonius circles for a given segment option \tkzname{apollonius}) \begin{tikzpicture}[scale=0.75] \tkzDefPoint(0,0){A} @@ -20,4 +20,4 @@ \tkzDrawLine[add=.2 and 1](A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.7.tex index fb7dca42865..6569fd7e1f8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.7.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 124 (Section 19.1.7 : Circles exinscribed to a given triangle) +% Ex. No. 146 (Section 18.1.7 : Circles exinscribed to a given triangle option \tkzname{ex}) \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){A} @@ -26,4 +26,4 @@ \tkzLabelPoints(A,B,C,I,J,K) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.8.tex new file mode 100644 index 00000000000..f228a2c82b6 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.8.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 147 (Section 18.1.8 : Spieker circle with option \tkzname{spieker}) + +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} + \tkzDefTriangleCenter[spieker](A,B,C) + \tkzGetPoint{S_p} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](M_a,M_b,M_c) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](M_a,M_b,M_c,S_p) + \tkzDrawCircle[in,red](M_a,M_b,M_c) + \tkzAutoLabelPoints[center=S_p,dist=.3](M_a,M_b,M_c) + \tkzLabelPoints[blue,right](S_p) + \tkzAutoLabelPoints[center=S_p](A,B,C) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.9.tex index d5bd2678d4a..ae4560dbd46 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18.1.9.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 126 (Section 19.1.9 : Orthogonal circle passing through two given points) +% Ex. No. 148 (Section 18.1.9 : Orthogonal circle passing through two given points, option \tkzname{orthogonal through}) \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} @@ -17,4 +17,4 @@ \tkzLabelPoints(O,A,z1,z2,c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex deleted file mode 100644 index 21cc8385d44..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex +++ /dev/null @@ -1,21 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 125 (Section 19.1.8 : Spieker circle) - -\begin{tikzpicture}[scale=1] - \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} - \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} - \tkzDefTriangleCenter[spieker](A,B,C) - \tkzGetPoint{Sp} - \tkzDrawPolygon[blue](A,B,C) - \tkzDrawPolygon[red](Ma,Mb,Mc) - \tkzDrawPoints[blue](B,C,A) - \tkzDrawPoints[red](Ma,Mb,Mc,Sp) - \tkzDrawCircle[in,red](Ma,Mb,Mc) - \tkzAutoLabelPoints[center=Sp,dist=.3](Ma,Mb,Mc) - \tkzLabelPoints[blue,right](Sp) - \tkzAutoLabelPoints[center=Sp](A,B,C) -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.1.1.tex index 8e58ae04d49..2c15cf0d303 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.1.1.tex @@ -1,17 +1,17 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 131 (Section 20.1.1 : Circles and styles, draw a circle and color the disc) +% Ex. No. 150 (Section 19.1.1 : Circles and styles, draw a circle and color the disc) \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(3,0){A} - \tkzDrawCircle[color=blue,style=dashed](O,A) + \tkzDrawCircle[color=blue](O,A) \tkzDrawCircle[diameter,color=red,% line width=2pt,fill=red!40,% opacity=.5](O,A) - \edef\rayon{\fpeval{exp(1)}} + \edef\rayon{\fpeval{0.25*exp(1)}} \tkzDrawCircle[R,color=orange](O,\rayon cm) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.1.tex index a5ceb7175fa..118dc567789 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 132 (Section 20.2.1 : Circles defined by a triangle.) +% Ex. No. 151 (Section 19.2.1 : Circles defined by a triangle.) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -13,4 +13,4 @@ \tkzLabelPoints(A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.2.tex index ac9c9684041..58e454bedb4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 133 (Section 20.2.2 : Concentric circles.) +% Ex. No. 152 (Section 19.2.2 : Concentric circles.) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -10,4 +10,4 @@ \tkzLabelPoints(A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.3.tex index cf37487d365..65248688995 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.3.tex @@ -1,19 +1,19 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 134 (Section 20.2.3 : Exinscribed circles.) +% Ex. No. 153 (Section 19.2.3 : Exinscribed circles.) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,4/0/B,1/2.5/C} \tkzDrawPolygon(A,B,C) \tkzDefCircle[ex](B,C,A) -\tkzGetPoint{Jc} \tkzGetSecondPoint{Tc} +\tkzGetPoint{J_c} \tkzGetSecondPoint{T_c} \tkzGetLength{rJc} -\tkzDrawCircle[R](Jc,{\rJc pt}) +\tkzDrawCircle[R](J_c,{\rJc pt}) \tkzDrawLines[add=0 and 1](C,A C,B) -\tkzDrawSegment(Jc,Tc) -\tkzMarkRightAngle(Jc,Tc,B) -\tkzDrawPoints(A,B,C,Jc,Tc) +\tkzDrawSegment(J_c,T_c) +\tkzMarkRightAngle(J_c,T_c,B) +\tkzDrawPoints(A,B,C,J_c,T_c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.4.tex new file mode 100644 index 00000000000..3f9892ed966 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.2.4.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 154 (Section 19.2.4 : Cardioid) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,0){A} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:2){M} + \tkzDrawCircle(M,A) + } +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.3.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.3.1.tex new file mode 100644 index 00000000000..c0c88b08743 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.3.1.tex @@ -0,0 +1,22 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 155 (Section 19.3.1 : Use of \tkzcname{tkzDrawSemiCircle}) + +\begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzDrawPolygon(B,C,D,A) + \tkzDefPoint(3,6){F} + \tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J} + \tkzInterLL(D,B)(I,J) \tkzGetPoint{K} + \tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M} + \tkzDrawCircle(M,I) + \tkzCalcLength(M,I) \tkzGetLength{dMI} + \tkzFillPolygon[color = red!50](A,B,C,D) + \tkzFillCircle[R,color = yellow](M,\dMI pt) + \tkzDrawSemiCircle[fill = blue!50!black](F,D)% +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.4.1.tex index 997b49528cd..4f7b6999c54 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.4.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 136 (Section 20.4.1 : Example from a sangaku) +% Ex. No. 156 (Section 19.4.1 : Example from a sangaku) \begin{tikzpicture} \tkzInit[xmin=0,xmax = 6,ymin=0,ymax=6] @@ -23,4 +23,4 @@ \tkzFillCircle[color = yellow](K,Q) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.5.1.tex index 00000d13042..14a93fc7b73 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.5.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 137 (Section 20.5.1 : Example) +% Ex. No. 157 (Section 19.5.1 : Example) - \begin{tikzpicture} +\begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzClip \tkzDefPoint(0,0){A} @@ -18,4 +18,4 @@ \tkzDrawCircle[fill=red!20,opacity=.5](C,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.6.1.tex index d9b0db98a32..7ff97754d84 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-6-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19.6.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 138 (Section 20.6.1 : Example) +% Ex. No. 158 (Section 19.6.1 : Example) \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N} @@ -16,8 +16,8 @@ \tkzFillCircle[color=blue!20,opacity=.4](O,M) \tkzLabelCircle[R,draw,fill=orange,% text width=2cm,text centered](O,3 cm)(-60)% - {Le cercle\\ $\mathcal{C}$} + {The circle\\ $\mathcal{C}$} \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-4.tex deleted file mode 100644 index e0efc4e8a91..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-4.tex +++ /dev/null @@ -1,15 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 135 (Section 20.2.4 : Cardioid) - - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){O} - \tkzDefPoint(2,0){A} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:2){M} - \tkzDrawCircle(M,A) - } -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.1.1.tex index f65c476c832..c691e75cb70 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 139 (Section 21.1.1 : Example of intersection between two straight lines) +% Ex. No. 159 (Section 20.1.1 : Example of intersection between two straight lines) \begin{tikzpicture}[rotate=-45,scale=.75] \tkzDefPoint(2,1){A} @@ -15,4 +15,4 @@ \tkzDrawPoint[color=red](I) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.1.tex index 0aa2171586a..73da7dcf984 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 140 (Section 21.2.1 : Simple example of a line-circle intersection) +% Ex. No. 160 (Section 20.2.1 : Simple example of a line-circle intersection) \begin{tikzpicture}[scale=.75] \tkzInit[xmax=5,ymax=4] @@ -17,4 +17,4 @@ \tkzLabelPoints[above right](O,A,B,C,D,E) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.2.tex index 1b1472086b0..d54ae9432b7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 141 (Section 21.2.2 : More complex example of a line-circle intersection) +% Ex. No. 161 (Section 20.2.2 : More complex example of a line-circle intersection) \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} @@ -26,4 +26,4 @@ \tkzLabelPoints(A,B,O,O',E,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.3.tex index d5e11a7c130..6743c5fe38b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 142 (Section 21.2.3 : Circle defined by a center and a measure, and special cases) +% Ex. No. 162 (Section 20.2.3 : Circle defined by a center and a measure, and special cases) \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,8){A} \tkzDefPoint(8,0){B} @@ -19,4 +19,4 @@ \tkzDrawLine(I2,J2) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.4.tex index 3f1f3c77988..b6227cd8c27 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 143 (Section 21.2.4 : More complex example) +% Ex. No. 163 (Section 20.2.4 : More complex example) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,1){J} @@ -23,4 +23,4 @@ } \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.6.tex index 50a5e0823e1..e8516e5c2e6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.6.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 144 (Section 21.2.6 : Calculation of radius dimension 1) +% Ex. No. 164 (Section 20.2.6 : Calculation of radius example 2) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoint(2,2){A} \tkzDefPoint(5,4){B} \tkzDefPoint(4,4){O} @@ -16,4 +16,4 @@ \tkzDrawLine(I,J) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.7.tex index e1c50f98dd8..c1c56e0d37f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.7.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 145 (Section 21.2.7 : Calculation of radius dimension 2) +% Ex. No. 165 (Section 20.2.7 : Calculation of radius example 3) \begin{tikzpicture} \tkzDefPoints{2/2/A,5/4/B,4/4/0} @@ -14,4 +14,4 @@ \tkzDrawLine(I,J) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.8.tex index 1529306d697..43eda622ef2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.8.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 146 (Section 21.2.8 : Squares in half a disc) +% Ex. No. 166 (Section 20.2.8 : Squares in half a disc) \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,8/0/B,4/0/I} @@ -19,4 +19,4 @@ \tkzDrawPoints(E,G,H,F,J,K,L) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.9.tex index f7efc3d2bb8..036c15abbc5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.2.9.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 147 (Section 21.2.9 : Option "with nodes") +% Ex. No. 167 (Section 20.2.9 : Option "with nodes") \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E} @@ -15,4 +15,4 @@ \tkzDrawLine(F,G) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.1.tex index 8e9d4b64192..aa438fa1ad3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 148 (Section 21.3.1 : Construction of an equilateral triangle) +% Ex. No. 168 (Section 20.3.1 : Construction of an equilateral triangle) \begin{tikzpicture}[trim left=-1cm,scale=.5] \tkzDefPoint(1,1){A} @@ -18,4 +18,4 @@ \tkzLabelPoint[above](C){$C$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.2.tex index 39232148c8d..15b25c6def0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 149 (Section 21.3.2 : Example a mediator) +% Ex. No. 169 (Section 20.3.2 : Example a mediator) \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} @@ -14,4 +14,4 @@ \tkzDrawLine[color=red](M,N) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.3.tex index cf947a87ca3..867efb1726a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 150 (Section 21.3.3 : An isosceles triangle.) +% Ex. No. 170 (Section 20.3.3 : An isosceles triangle.) \begin{tikzpicture}[rotate=120,scale=.75] \tkzDefPoint(1,2){A} @@ -19,4 +19,4 @@ \tkzLabelPoint[above](C){$C$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.4.tex index 47f624f4188..eb95cc825ca 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 151 (Section 21.3.4 : Segment trisection) +% Ex. No. 171 (Section 20.3.4 : Segment trisection) \begin{tikzpicture}[scale=.8] \tkzDefPoint(0,0){A} @@ -33,4 +33,4 @@ \tkzMarkSegments[mark=s|](A,I I,J J,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.5.tex index 9d8708cf16c..c0aa5b0ec33 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20.3.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 153 (Section 21.3.6 : with the option \tkzimp{with nodes}) +% Ex. No. 172 (Section 20.3.5 : With the option \tkzimp{with nodes}) \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/a,0/5/B,5/0/C} @@ -22,4 +22,4 @@ } \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex deleted file mode 100644 index 60258c92f8f..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex +++ /dev/null @@ -1,20 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 152 (Section 21.3.5 : Angle trisection) - -\begin{tikzpicture} - \tikzset{arc/.style={color=gray,style=dashed}} - \tkzDefPoints{0/0/a,0/5/I,5/0/J} - \tkzDrawArc[angles](O,I)(0,90) - \tkzDrawArc[angles,/tikz/arc](I,O)(90,180) - \tkzDrawArc[angles,/tikz/arc](J,O)(-90,0) - \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} - \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} - \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} - \tkzDrawPoints(A,B,K) - \foreach \point in {I,A,B,J,K}{% - \tkzDrawSegment(O,\point)} -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.1.tex index 8c37a7e6177..9d9b3fd65e9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 154 (Section 22.1.1 : Exemple avec \tkzname{size}) +% Ex. No. 173 (Section 21.1.1 : Example with \tkzname{size}) \begin{tikzpicture} \tkzInit @@ -11,4 +11,4 @@ \tkzDrawPoints(O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.2.tex index 715832f9b83..83c04f5a55d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 156 (Section 22.1.2 : Changement de l'ordre des points) +% Ex. No. 175 (Section 21.1.2 : Changing the order of items) \begin{tikzpicture} \tkzInit @@ -13,4 +13,4 @@ \tkzDrawPoints(O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.3.tex index ebb3dfbb9ff..ffe82354cd1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 157 (Section 22.1.3 : Multiples angles) +% Ex. No. 176 (Section 21.1.3 : Multiples angles) \begin{tikzpicture}[scale=0.75] \tkzDefPoint(0,0){B} @@ -27,4 +27,4 @@ B,M,C M,C,B D,L,N L,N,D N,D,L) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.2.1.tex index 51b68f1e22d..c184076450d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.2.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 158 (Section 22.2.1 : Exemple avec \tkzname{mark = x}) +% Ex. No. 177 (Section 21.2.1 : Example with \tkzname{mark = x}) - \begin{tikzpicture}[scale=.75] +\begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} \tkzMarkAngle[size = 4cm,mark = x, arc=ll,mkcolor = red](A,O,B) @@ -11,4 +11,4 @@ \tkzDrawPoints(O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.2.2.tex index a8b52efe9b3..1c0b86ecb48 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.2.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 159 (Section 22.2.2 : Exemple avec \tkzname{mark =||}) +% Ex. No. 178 (Section 21.2.2 : Example with \tkzname{mark =||}) - \begin{tikzpicture}[scale=.75] +\begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} \tkzMarkAngle[size = 4cm,mark = ||, arc=ll,mkcolor = red](A,O,B) @@ -11,4 +11,4 @@ \tkzDrawPoints(O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.3.1.tex index 47b17523816..31e94ac28f3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 161 (Section 22.3.1 : Exemple avec \tkzname{pos}) +% Ex. No. 180 (Section 21.3.1 : Example with \tkzname{pos}) \begin{tikzpicture}[rotate=30] \tkzDefPoint(2,1){S} @@ -25,4 +25,4 @@ \tkzLabelAngles[pos = 2.7](T,S,s s,S,P){$30^{\circ}$}% \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.1.tex index 6ddd6bb111d..487190ae1be 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.1.tex @@ -1,16 +1,16 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 162 (Section 22.4.1 : Exemple de marquage d'un angle droit) +% Ex. No. 181 (Section 21.4.1 : Example of marking a right angle) \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} \tkzDrawLines[add=.5 and .5](P,H) \tkzMarkRightAngle[fill=blue!20,size=.5,draw](A,H,P) - \tkzDrawPoints[](A,B,P,H) \tkzDrawLines[add=.5 and .5](A,B) \tkzMarkRightAngle[fill=red!20,size=.8](B,H,P) + \tkzDrawPoints[](A,B,P,H) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.2.tex index 5e0dcb4a87d..5e4a94e15a5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.2.tex @@ -1,12 +1,11 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 163 (Section 22.4.2 : Exemple de marquage d'un angle droit, german style) +% Ex. No. 182 (Section 21.4.2 : Example of marking a right angle, german style) \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} - \pgfresetboundingbox \tkzDrawLines[add=.5 and .5](P,H) \tkzMarkRightAngle[german,size=.5,draw](A,H,P) \tkzDrawPoints[](A,B,P,H) @@ -14,4 +13,4 @@ \tkzMarkRightAngle[german,size=.8](P,H,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.3.tex index 95ed0f5cc15..68bb020c33b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 164 (Section 22.4.3 : Mélange de styles) +% Ex. No. 183 (Section 21.4.3 : Mix of styles) \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} @@ -18,4 +18,4 @@ \tkzDrawPoints(A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.4.tex index fb1c7dd8bd3..41980c3fe09 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21.4.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 165 (Section 22.4.4 : Exemple complet) +% Ex. No. 184 (Section 21.4.4 : Full example) \begin{tikzpicture}[rotate=-90] \tkzDefPoint(0,1){A} @@ -28,4 +28,4 @@ \tkzMarkRightAngle[german](B,P,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.2.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.2.0.tex new file mode 100644 index 00000000000..1a72d1ac85b --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.2.0.tex @@ -0,0 +1,23 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 185 (Section 22.2 : Example of the use of \tkzcname{tkzGetAngle}) + +\begin{tikzpicture} + \tkzInit + \tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B} + \tkzDrawSegment(A,B) + \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} + \tkzDefPointBy[rotation= center A angle \tkzang ](B) + \tkzGetPoint{C} + \tkzDefPointBy[rotation= center A angle -\tkzang ](B) + \tkzGetPoint{D} + \tkzCompass[length=1,dashed,color=red](A,C) + \tkzCompass[delta=10,brown](B,C) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(B,C,D) + \tkzLabelPoints[above left](A) + \tkzDrawSegments[style=dashed,color=orange!30](A,C A,D) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.3.1.tex index 95d407fc1c0..1e3dfaf92c8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 166 (Section 22.7.1 : Vérication de la mesure d'un angle) +% Ex. No. 186 (Section 22.3.1 : Verification of angle measurement) \begin{tikzpicture}[scale=.75] \tkzDefPoint(-1,1){A} @@ -19,4 +19,4 @@ \tkzMarkAngle[size=1.5cm](B,A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.4.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.4.0.tex new file mode 100644 index 00000000000..ad152a3e8c5 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.4.0.tex @@ -0,0 +1,27 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 187 (Section 22.4 : Example of the use of \tkzcname{tkzFindAngle} ) + +\begin{tikzpicture} + \tkzInit[xmin=-1,ymin=-1,xmax=7,ymax=7] + \tkzClip + \tkzDefPoint (0,0){O} \tkzDefPoint (6,0){A} + \tkzDefPoint (5,5){B} \tkzDefPoint (3,4){M} + \tkzFindAngle (A,O,M) \tkzGetAngle{an} + \tkzDefPointBy[rotation=center O angle \an](A) + \tkzGetPoint{C} + \tkzDrawSector[fill = blue!50,opacity=.5](O,A)(C) + \tkzFindAngle(M,B,A) \tkzGetAngle{am} + \tkzDefPointBy[rotation = center O angle \am](A) + \tkzGetPoint{D} + \tkzDrawSector[fill = red!50,opacity = .5](O,A)(D) + \tkzDrawPoints(O,A,B,M,C,D) + \tkzLabelPoints(O,A,B,M,C,D) + \edef\an{\fpeval{round(\an,2)}}\edef\am{\fpeval{round(\am,2)}} + \tkzDrawSegments(M,B B,A) + \tkzText(4,2){$\widehat{AOC}=\widehat{AOM}=\an^{\circ}$} + \tkzText(1,4){$\widehat{AOD}=\widehat{MBA}=\am^{\circ}$} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.4.1.tex index 7eb4f82bc5e..31a340396ff 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.4.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 167 (Section 22.7.2 : Détermination des trois angles d'un triangle) +% Ex. No. 188 (Section 22.4.1 : Determination of the three angles of a triangle) - \begin{tikzpicture}[scale=1.25,rotate=30] +\begin{tikzpicture}[scale=1.25,rotate=30] \tkzDefPoints{0.5/1.5/A, 3.5/4/B, 6/2.5/C} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C) @@ -27,4 +27,4 @@ \tkzLabelAngle[pos = 1](A,B,C){$\angleABC^{\circ}$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.5.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.5.0.tex new file mode 100644 index 00000000000..6eeffa8a31c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.5.0.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 189 (Section 22.5 : Determining a slope) + +\begin{tikzpicture}[scale=1.5] + \tkzInit[xmax=4,ymax=5]\tkzGrid[sub] + \tkzDefPoint(1,2){A} \tkzDefPoint(3,4){B} + \tkzDefPoint(3,2){C} \tkzDefPoint(3,1){D} + \tkzDrawSegments(A,B A,C A,D) + \tkzDrawPoints[color=red](A,B,C,D) + \tkzLabelPoints(A,B,C,D) + \tkzFindSlope(A,B){SAB} \tkzFindSlope(A,C){SAC} + \tkzFindSlope(A,D){SAD} + \pgfkeys{/pgf/number format/.cd,fixed,precision=2} + \tkzText[fill=Gold!50,draw=brown](1,4)% + {The slope of (AB) is : $\pgfmathprintnumber{\SAB}$} + \tkzText[fill=Gold!50,draw=brown](1,3.5)% + {The slope of (AC) is : $\pgfmathprintnumber{\SAC}$} + \tkzText[fill=Gold!50,draw=brown](1,3)% + {The slope of (AD) is : $\pgfmathprintnumber{\SAD}$} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-8-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.6.1.tex index 6f4efbdff23..a29cfe07ec5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-8-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.6.1.tex @@ -1,20 +1,24 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 168 (Section 22.8.1 : Pliage) +% Ex. No. 190 (Section 22.6.1 : Folding) \begin{tikzpicture} \tkzDefPoint(1,5){A} - \tkzDefPoint(5,2){B} \tkzDrawSegment(A,B) - \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} + \tkzDefPoint(5,2){B} + \tkzDrawSegment(A,B) + \tkzFindSlopeAngle(A,B) + \tkzGetAngle{tkzang} \tkzDefPointBy[rotation= center A angle \tkzang ](B) \tkzGetPoint{C} \tkzDefPointBy[rotation= center A angle -\tkzang ](B) \tkzGetPoint{D} - \tkzCompass[length=1](A,C) - \tkzCompass[delta=10](B,C) \tkzDrawPoints(A,B,C,D) - \tkzLabelPoints(B,C,D) \tkzLabelPoints[above left](A) + \tkzCompass[orange,length=1](A,C) + \tkzCompass[orange,delta=10](B,C) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(B,C,D) + \tkzLabelPoints[above left](A) \tkzDrawSegments[style=dashed,color=orange](A,C A,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.6.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.6.2.tex new file mode 100644 index 00000000000..aff651e8889 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22.6.2.tex @@ -0,0 +1,28 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 191 (Section 22.6.2 : Example of the use of \tkzcname{tkzFindSlopeAngle}) + +\begin{tikzpicture} + \tkzInit + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,2){B} + \tkzDefLine[mediator](A,B) + \tkzGetPoints{I}{J} + \tkzCalcLength[cm](A,B) + \tkzGetLength{dAB} + \tkzFindSlopeAngle(A,B) + \tkzGetAngle{tkzangle} + \begin{scope}[rotate=\tkzangle] + \tikzset{arc/.style={color=gray,delta=10}} + \tkzDrawArc[orange,R,arc](B,3/4*\dAB)(120,240) + \tkzDrawArc[orange,R,arc](A,3/4*\dAB)(-45,60) + \tkzDrawLine(I,J) + \tkzDrawSegment(A,B) + \end{scope} + \tkzDrawPoints(A,B,I,J) + \tkzLabelPoints(A,B) + \tkzLabelPoints[right](I,J) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.1.tex index 12af0238a8f..0839f78e355 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 169 (Section 23.1.1 : \tkzcname{tkzDrawSector} et \tkzname{towards}) +% Ex. No. 192 (Section 23.1.1 : \tkzcname{tkzDrawSector} and \tkzname{towards}) \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} @@ -13,7 +13,7 @@ \tkzDefPoint(-30:3){A} \tkzDefPointBy[rotation = center O angle -60](A) \tkzDrawSector[fill=blue!50](O,tkzPointResult)(A) -\end{scope} + \end{scope} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.2.tex index a50a6f5099a..4e09ef65fd5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 170 (Section 23.1.2 : \tkzcname{tkzDrawSector} et \tkzname{rotate}) +% Ex. No. 193 (Section 23.1.2 : \tkzcname{tkzDrawSector} and \tkzname{rotate}) \begin{tikzpicture}[scale=2] \tkzDefPoint(0,0){O} @@ -12,4 +12,4 @@ fill=blue!20](O,A)(-30) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.3.tex index fe10e558cf5..a6d6f744e42 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 171 (Section 23.1.3 : \tkzcname{tkzDrawSector} et \tkzname{R}) +% Ex. No. 194 (Section 23.1.3 : \tkzcname{tkzDrawSector} and \tkzname{R}) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} @@ -16,4 +16,4 @@ fill=red!90](O,2cm)(270,360) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.4.tex index cf0a6d0315e..5ee3aa70536 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 172 (Section 23.1.4 : \tkzcname{tkzDrawSector} et \tkzname{R}) +% Ex. No. 195 (Section 23.1.4 : \tkzcname{tkzDrawSector} and \tkzname{R}) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} @@ -18,4 +18,4 @@ \tkzLabelPoints[left](O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.5.tex index a53cce0c9aa..06517ed645c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.1.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 173 (Section 23.1.5 : \tkzcname{tkzDrawSector} et \tkzname{R with nodes}) +% Ex. No. 196 (Section 23.1.5 : \tkzcname{tkzDrawSector} and \tkzname{R with nodes}) \begin{tikzpicture} [scale=.5] \tkzDefPoint(-1,-2){A} @@ -28,4 +28,4 @@ \tkzLabelAngle[pos=1.5](A,S,B){$\alpha$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.2.1.tex index cb566d7e1ba..af2e378076e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 174 (Section 23.2.1 : \tkzcname{tkzFillSector} et \tkzname{towards}) +% Ex. No. 197 (Section 23.2.1 : \tkzcname{tkzFillSector} and \tkzname{towards}) \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){O} @@ -13,7 +13,7 @@ \tkzDefPoint(-30:3){A} \tkzDefPointBy[rotation = center O angle -60](A) \tkzFillSector[color=blue!50](O,tkzPointResult)(A) -\end{scope} + \end{scope} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.2.2.tex index df408c52722..55adc0d7b85 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.2.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 175 (Section 23.2.2 : \tkzcname{tkzFillSector} et \tkzname{rotate}) +% Ex. No. 198 (Section 23.2.2 : \tkzcname{tkzFillSector} and \tkzname{rotate}) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A} @@ -9,4 +9,4 @@ \tkzFillSector[rotate,color=blue!20](O,A)(-30) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.3.1.tex index 91c586f5c64..8053d152a02 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 176 (Section 23.3.1 : \tkzcname{tkzClipSector}) +% Ex. No. 199 (Section 23.3.1 : \tkzcname{tkzClipSector}) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} @@ -13,8 +13,8 @@ \begin{scope} \tkzClipSector(O,B)(A) \draw[fill=gray!20] (-1,0) rectangle (3,3); -\end{scope} + \end{scope} \tkzDrawPoints(A,B,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.1.0.tex index b0b2cf72025..251fdfe91ea 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.1.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 177 (Section 24.1 : \tkzcname{tkzDrawArc} et \tkzname{towards}) +% Ex. No. 200 (Section 24.1 : Option \tkzname{towards}) \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -15,4 +15,4 @@ \tkzLabelPoints[below](O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.2.0.tex index 84b29c8aff7..143f59aeea1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 178 (Section 24.2 : \tkzcname{tkzDrawArc} et \tkzname{towards}) +% Ex. No. 201 (Section 24.2 : Option \tkzname{towards}) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} @@ -15,4 +15,4 @@ \tkzLabelPoints[below](O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.3.0.tex index 93f76879c37..c1b2b4d8e94 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.3.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 179 (Section 24.3 : \tkzcname{tkzDrawArc} et \tkzname{rotate}) +% Ex. No. 202 (Section 24.3 : Option \tkzname{rotate}) \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -13,4 +13,4 @@ \tkzLabelPoints[below](O,A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.4.0.tex index 5d6510e9122..c55b79cd564 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.4.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 180 (Section 24.4 : \tkzcname{tkzDrawArc} et \tkzname{R}) +% Ex. No. 203 (Section 24.4 : Option \tkzname{R}) \begin{tikzpicture} \tkzDefPoints{0/0/O} @@ -12,4 +12,4 @@ \tkzLabelPoint[below](O){$O$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.5.0.tex index 23ede67eef2..3d7b5106b36 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.5.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 181 (Section 24.5 : \tkzcname{tkzDrawArc} et \tkzname{R with nodes}) +% Ex. No. 204 (Section 24.5 : Option \tkzname{R with nodes}) \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -11,4 +11,4 @@ \tkzDrawArc[R with nodes](B,\radius pt)(A,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-6-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.6.0.tex index cc9585049e6..d4cd3ba9d01 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-6-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.6.0.tex @@ -1,10 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 182 (Section 24.6 : \tkzcname{tkzDrawArc} et \tkzname{delta}) +% Ex. No. 205 (Section 24.6 : Option \tkzname{delta}) \begin{tikzpicture} - \tkzInit \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} \tkzDefPointBy[rotation= center A angle 60](B) @@ -15,12 +14,12 @@ \tkzDrawSegments(A,B A,D) \tkzDrawLine(B,D) \tkzSetUpCompass[color=orange] - \tkzDrawArc[delta=10](A,B)(C) - \tkzDrawArc[delta=10](B,C)(A) - \tkzDrawArc[delta=10](C,D)(D) + \tkzDrawArc[orange,delta=10](A,B)(C) + \tkzDrawArc[orange,delta=10](B,C)(A) + \tkzDrawArc[orange,delta=10](C,D)(D) \tkzDrawPoints(A,B,C,D) \tkzLabelPoints(A,B,C,D) \tkzMarkRightAngle(D,B,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.7.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.7.0.tex new file mode 100644 index 00000000000..2342487cacf --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.7.0.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 206 (Section 24.7 : Option \tkzname{angles}: example 1) + +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(2.5,0){O} + \tkzDefPointBy[rotation=center O angle 60](B) + \tkzGetPoint{D} + \tkzDefPointBy[symmetry=center D](O) + \tkzGetPoint{E} + \tkzSetUpLine[color=Maroon] + \tkzDrawArc[angles](O,B)(0,180) + \tkzDrawArc[angles,](B,O)(100,180) + \tkzCompass[delta=20](D,E) + \tkzDrawLines(A,B O,E B,E) + \tkzDrawPoints(A,B,O,D,E) + \tkzLabelPoints(A,B,O,D,E) + \tkzMarkRightAngle(O,B,E) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.8.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.8.0.tex new file mode 100644 index 00000000000..44acdc3c228 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24.8.0.tex @@ -0,0 +1,20 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 207 (Section 24.8 : Option \tkzname{angles}: example 2) + +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(5,0){I} + \tkzDefPoint(0,5){J} + \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} + \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} + \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} + \tkzDrawArc[angles](O,I)(0,90) + \tkzDrawArc[angles,color=gray,style=dashed](I,O)(90,180) + \tkzDrawArc[angles,color=gray,style=dashed](J,O)(-90,0) + \tkzDrawPoints(A,B,K) + \foreach \point in {I,A,B,J,K}{\tkzDrawSegment(O,\point)} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.0.tex new file mode 100644 index 00000000000..e451aef6469 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.0.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 208 (Section 25.1 : Duplicate a segment) + +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,-3){B} + \tkzDefPoint(2,5){C} + \tkzDrawSegments[red](A,B A,C) + \tkzDuplicateSegment(A,B)(A,C) + \tkzGetPoint{D} + \tkzDrawSegment[green](A,D) + \tkzDrawPoints[color=red](A,B,C,D) + \tkzLabelPoints[above right=3pt](A,B,C,D) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.1.tex new file mode 100644 index 00000000000..25f1c123490 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.1.1.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 209 (Section 25.1.1 : Proportion of gold with \tkzcname{tkzDuplicateSegment}) + +\begin{tikzpicture}[rotate=-90,scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(10,0){B} + \tkzDefMidPoint(A,B) + \tkzGetPoint{I} + \tkzDefPointWith[orthogonal,K=-.75](B,A) + \tkzGetPoint{C} + \tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D} + \tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E} + \tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M} + \tkzDrawArc[orange,delta=10](D,E)(B) + \tkzDrawArc[orange,delta=10](A,M)(E) + \tkzDrawLines(A,B B,C A,D) + \tkzDrawArc[orange,delta=10](B,D)(I) + \tkzDrawPoints(A,B,D,C,M,I,N) + \tkzLabelPoints(A,B,D,C,M,I,N) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.2.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.2.1.tex new file mode 100644 index 00000000000..95f9d4128dd --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.2.1.tex @@ -0,0 +1,22 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 210 (Section 25.2.1 : Compass square construction) + +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDrawLine[add= .6 and .2](A,B) + \tkzCalcLength[cm](A,B)\tkzGetLength{dAB} + \tkzDefLine[perpendicular=through A](A,B) + \tkzDrawLine(A,tkzPointResult) \tkzGetPoint{D} + \tkzShowLine[orthogonal=through A,gap=2](A,B) + \tkzMarkRightAngle(B,A,D) + \tkzVecKOrth[-1](B,A)\tkzGetPoint{C} + \tkzCompasss(A,D D,C) + \tkzDrawArc[R](B,\dAB)(80,110) + \tkzDrawPoints(A,B,C,D) + \tkzDrawSegments[color=gray,style=dashed](B,C C,D) + \tkzLabelPoints(A,B,C,D) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.4.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.4.1.tex new file mode 100644 index 00000000000..6a894f4f6e3 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.4.1.tex @@ -0,0 +1,19 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 211 (Section 25.4.1 : Example) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,-4){B} + \tkzDefCircle[through](A,B) + \tkzGetLength{rABpt} + \tkzpttocm(\rABpt){rABcm} + \tkzDrawCircle(A,B) + \tkzDrawPoints(A,B) + \tkzLabelPoints(A,B) + \tkzDrawSegment[dashed](A,B) + \tkzLabelSegment(A,B){$\pgfmathprintnumber{\rABcm}$} +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.1.tex new file mode 100644 index 00000000000..9097cd32634 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.1.tex @@ -0,0 +1,19 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 212 (Section 25.5.1 : Coordinate transfer with \tkzcname{tkzGetPointCoord}) + +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=3] + \tkzGrid[sub,orange] + \tkzAxeXY + \tkzDefPoint(1,0){A} + \tkzDefPoint(4,2){B} + \tkzGetPointCoord(A){a} + \tkzGetPointCoord(B){b} + \tkzDefPoint(\ax,\ay){C} + \tkzDefPoint(\bx,\by){D} + \tkzDrawPoints[color=red](C,D) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.2.tex new file mode 100644 index 00000000000..96fdfbdef33 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25.5.2.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 213 (Section 25.5.2 : Sum of vectors with \tkzcname{tkzGetPointCoord}) + +\begin{tikzpicture}[>=latex] + \tkzDefPoint(1,4){a} + \tkzDefPoint(3,2){b} + \tkzDefPoint(1,1){c} + \tkzDrawSegment[->,red](a,b) + \tkzGetPointCoord(c){c} + \draw[color=blue,->](a) -- ([shift=(b)]\cx,\cy) ; + \draw[color=purple,->](b) -- ([shift=(b)]\cx,\cy) ; + \tkzDrawSegment[->,blue](a,c) + \tkzDrawSegment[->,purple](b,c) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.1.1.tex index 0f008bc0bc1..0403f58fc4b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 183 (Section 25.1.1 : Option \tkzname{length}) +% Ex. No. 214 (Section 26.1.1 : Option \tkzname{length}) \begin{tikzpicture} \tkzDefPoint(1,1){A} @@ -14,4 +14,4 @@ \tkzDrawSegments(A,B A,C B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.1.2.tex index 746db992e2b..54f3c917c6e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 184 (Section 25.1.2 : Option \tkzname{delta}) +% Ex. No. 215 (Section 26.1.2 : Option \tkzname{delta}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -15,4 +15,4 @@ \tkzMarkAngle(A,C,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.2.0.tex index 1cffbd27c4b..1083b097b3e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 185 (Section 25.2 : Multiples constructions \tkzcname{tkzCompasss}) +% Ex. No. 216 (Section 26.2 : Multiple constructions \tkzcname{tkzCompasss}) \begin{tikzpicture}[scale=.75] \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B} @@ -19,4 +19,4 @@ \tkzLabelPoints(A,B,C,i,j,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.3.1.tex index 706b2255ca2..c9e0c91aae2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26.3.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 186 (Section 25.3 : Macro de configuration \tkzcname{tkzSetUpCompass}) +% Ex. No. 217 (Section 26.3.1 : Use of \tkzcname{tkzSetUpCompass}) \begin{tikzpicture}[scale=.75, showbi/.style={bisector,size=2,gap=3}] @@ -21,4 +21,4 @@ \tkzShowBB \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.1.tex index 690427362c6..cd5016ccb36 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 187 (Section 26.1.1 : Exemple de \tkzcname{tkzShowLine} et \tkzname{parallel}) +% Ex. No. 218 (Section 27.1.1 : Example of \tkzcname{tkzShowLine} and \tkzname{parallel}) \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C} @@ -11,4 +11,4 @@ \tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.2.tex index edb0c11dd1e..60d65e5c594 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 188 (Section 26.1.2 : Exemple de \tkzcname{tkzShowLine} et \tkzname{perpendicular}) +% Ex. No. 219 (Section 27.1.2 : Example of \tkzcname{tkzShowLine} and \tkzname{perpendicular}) \begin{tikzpicture} \tkzDefPoints{0/0/A, 3/2/B, 2/2/C} @@ -9,8 +9,8 @@ \tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B) \tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h} \tkzMarkRightAngle[fill=lightgray](A,h,C) -\tkzDrawLines[add=1 and 1](A,B C,c) +\tkzDrawLines[add=.5 and .5](A,B C,c) \tkzDrawPoints(A,B,C,h,c) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.3.tex index cb5639c088f..bf15e64e8f1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 189 (Section 26.1.3 : Exemple de \tkzcname{tkzShowLine} et \tkzname{bisector}) +% Ex. No. 220 (Section 27.1.3 : Example of \tkzcname{tkzShowLine} and \tkzname{bisector}) \begin{tikzpicture}[scale=1.25] \tkzDefPoints{0/0/A, 4/2/B, 1/4/C} @@ -20,4 +20,4 @@ \tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.4.tex index 4a90c177133..96dd4c211a4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.1.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 190 (Section 26.1.4 : Exemple de \tkzcname{tkzShowLine} et \tkzname{mediator}) +% Ex. No. 221 (Section 27.1.4 : Example of \tkzcname{tkzShowLine} and \tkzname{mediator}) \begin{tikzpicture} \tkzDefPoint(2,2){A} @@ -14,4 +14,4 @@ \tkzLabelPoints[below =3pt](A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.2.1.tex index 7a6f39ed3d7..e1160c2c2b3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 191 (Section 26.2.1 : Exemple d'utilisation de \tkzcname{tkzShowTransformation}) +% Ex. No. 222 (Section 27.2.1 : Example of the use of \tkzcname{tkzShowTransformation}) \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} @@ -31,4 +31,4 @@ color=red,size=3,gap=-2](C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.2.2.tex index 5d233157d18..27dedda2cf2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27.2.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 192 (Section 26.2.2 : Autre exemple d'utilisation de \tkzcname{tkzShowTransformation}) +% Ex. No. 223 (Section 27.2.2 : Another example of the use of \tkzcname{tkzShowTransformation}) \begin{tikzpicture}[scale=.6] \tkzDefPoints{0/0/A,8/0/B,3.5/10/I} @@ -23,4 +23,4 @@ \tkzLabelPoints[below left](M,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28.1.1.tex index 674791cac89..8a7b00c1cd2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 193 (Section 27.1.1 : Utilisation de \tkzcname{tkzDefEquiPoints} avec des options) +% Ex. No. 224 (Section 28.1.1 : Using \tkzcname{tkzDefEquiPoints} with options) \begin{tikzpicture} \tkzSetUpCompass[color=purple,line width=1pt] @@ -18,4 +18,4 @@ \tkzLabelPoints[color=blue](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-2.tex deleted file mode 100644 index 3e4d69b6e52..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-2.tex +++ /dev/null @@ -1,24 +0,0 @@ -\input{preamble-standalone.ltx} -\begin{document} - -% Ex. No. 201 (Section 29.2.2 : Circle and tangent) - -\begin{tikzpicture} - \edef\alphaR{\fpeval{asin(2/3)}} - \edef\xB{8-3*cos(\alphaR)} - \tkzDrawX[noticks,label=$(d)$] - \tkzDefPoint["$A$" above right](8,2){A} - \tkzDefPoint[color=red,"$O$" above right](0,0){O} - \tkzDefPoint["$B$" above left](\xB,4){B} - \tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b} - \tkzDefPoint(1,0){i} - \tkzInterLL(B,b)(O,i) \tkzGetPoint{B'} - \tkzDrawSegment[line width=1pt](A,B) - \tkzHLine[color=red,style=dashed]{4} - \tkzText[above](12,4){$\delta$} - \tkzDrawCircle[R,color=blue,line width=.8pt](A,3 cm) - \tkzDrawPoint(B') - \tkzDrawLine(B,B') -\end{tikzpicture} - -\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29.1.0.tex index 0a4e8657e44..6e0803cb626 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29.1.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 194 (Section 28.1 : Le rapporteur circulaire) +% Ex. No. 225 (Section 29.1 : The circular protractor) \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,0){A}\tkzDefPoint(0,0){O} @@ -13,4 +13,4 @@ \tkzProtractor[scale = 1](A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29.2.0.tex index ba0005a4fc2..d39457cf575 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 195 (Section 28.2 : Le rapporteur circulaire, transparent et retourné) +% Ex. No. 226 (Section 29.2 : The circular protractor, transparent and returned) \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,3){A} @@ -11,4 +11,4 @@ \tkzProtractor[return](A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.2.tex index 57fc3d3ef40..1b7d2216ba5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 196 (Section 29.1.2 : version revue "Tangente") +% Ex. No. 227 (Section 30.1.2 : Revised version of "Tangente") \begin{tikzpicture}[scale=.8,rotate=60] \tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y} @@ -21,4 +21,4 @@ \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.3.tex index 82e98b1c95f..9d4e24c0ba4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 197 (Section 29.1.3 : version "Le Monde") +% Ex. No. 228 (Section 30.1.3 : "Le Monde" version) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} @@ -25,4 +25,4 @@ \tkzLabelPoints[above right](X,Y,M,I) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.4.tex index 9b70cff832a..e2c28fa15da 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 198 (Section 29.1.4 : Hauteurs d'un triangle) +% Ex. No. 229 (Section 30.1.4 : Triangle altitudes) \begin{tikzpicture}[scale=.8] \tkzDefPoint(0,0){C} @@ -28,4 +28,4 @@ \tkzLabelPoints(A,B,C,A',B',C',H) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.5.tex index 5a328799676..68bedb75371 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.1.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 199 (Section 29.1.5 : Hauteurs - autre construction) +% Ex. No. 230 (Section 30.1.5 : Altitudes - other construction) \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} @@ -30,4 +30,4 @@ \tkzDrawPoints[color=brown](O,A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.1.tex index c673e80b66f..e701c79437d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 200 (Section 29.2.1 : Square root of the integers ) +% Ex. No. 231 (Section 30.2.1 : Square root of the integers) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} @@ -13,4 +13,4 @@ \tkzDrawPolySeg[color=blue](a\i,a\j,O)} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-11.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.10.tex index b5717e72ce9..7ae1ec1a7f7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-11.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.10.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 210 (Section 29.2.11 : Another example from Indonesia) +% Ex. No. 240 (Section 30.2.10 : Example 2: from Indonesia) - \begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5}, +\begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5}, seg/.style={tkzdotted,color=gray}, hidden pt/.style={fill=gray!40}, mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2}, @@ -55,4 +55,4 @@ \tkzLabelPoints[below left](K) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-12.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.11.tex index 9d596313037..936ce71654b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-12.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.11.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 211 (Section 29.2.12 : Three circles) +% Ex. No. 241 (Section 30.2.11 : Three circles) \begin{tikzpicture}[scale=1.5] \tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c} @@ -36,4 +36,4 @@ \tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b A,a a,b b,B A,D Ia,ha) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-13.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.12.tex index 1a6f14bfb89..8be2c168cd4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-13.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.12.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 212 (Section 29.2.13 : "The" Circle of APOLLONIUS) +% Ex. No. 242 (Section 30.2.12 : "The" Circle of APOLLONIUS) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N} \tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{O} @@ -47,4 +47,4 @@ \tkzLabelPoints[above](K,O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.2.tex index 5e34acb8901..f70246491f3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 202 (Section 29.2.3 : About right triangle) +% Ex. No. 232 (Section 30.2.2 : About right triangle) -\begin{tikzpicture} +\begin{tikzpicture}[scale=.5] \tkzDefPoint["$A$" left](2,1){A} \tkzDefPoint(6,4){B} \tkzDrawSegment(A,B) @@ -19,4 +19,4 @@ \tkzDrawLine[color=gray,style=dashed](A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.3.tex index 9043a7862f6..3d679858829 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 203 (Section 29.2.4 : Archimedes) +% Ex. No. 233 (Section 30.2.3 : Archimedes) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D} @@ -21,4 +21,4 @@ \tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.4.tex index 3c691fd04ef..ce6746584fb 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 204 (Section 29.2.5 : Exemple : Dimitris Kapeta) +% Ex. No. 234 (Section 30.2.4 : Example: Dimitris Kapeta) \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} @@ -25,4 +25,4 @@ \tkzLabelPoint[below left](A'){$A'$} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.5.tex index e3e2f35be13..c2ba7d9aa65 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 205 (Section 29.2.6 : Example : John Kitzmiller ) +% Ex. No. 235 (Section 30.2.5 : Example 1: John Kitzmiller ) \begin{tikzpicture}[scale=2] \tkzDefPoint[label=below left:A](0,0){A} @@ -16,18 +16,21 @@ \tkzInterLL(B,B')(A,A') \tkzGetPoint{L} \tkzLabelPoint[above](C){C} \tkzDrawPolygon(A,B,C) \tkzDrawSegments(A,J B,L C,K) - \tkzMarkAngles[fill= orange,size=1cm,opacity=.3](J,A,C K,C,B L,B,A) - \tkzLabelPoint[right](J){J} - \tkzLabelPoint[below](K){K} - \tkzLabelPoint[above left](L){L} - \tkzMarkAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L) - \tkzMarkAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L) + \tkzMarkAngles[size=1 cm](J,A,C K,C,B L,B,A) + \tkzMarkAngles[thick,size=1 cm](A,C,J C,B,K B,A,L) + \tkzMarkAngles[opacity=.5](A,C,J C,B,K B,A,L) + \tkzFillAngles[fill= orange,size=1 cm,opacity=.3](J,A,C K,C,B L,B,A) + \tkzFillAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L) + \tkzFillAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L) \tkzFillPolygon[color=yellow, opacity=.2](J,A,C) \tkzFillPolygon[color=yellow, opacity=.2](K,B,C) \tkzFillPolygon[color=yellow, opacity=.2](L,A,B) \tkzDrawSegments[line width=3pt,color=cyan,opacity=0.4](A,J C,K B,L) \tkzDrawSegments[line width=3pt,color=red,opacity=0.4](A,L B,K C,J) \tkzMarkSegments[mark=o](J,K K,L L,J) + \tkzLabelPoint[right](J){J} + \tkzLabelPoint[below](K){K} + \tkzLabelPoint[above left](L){L} \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.6.tex index 16133d1b7d7..953da4ee5d5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.6.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 206 (Section 29.2.7 : Exemple : John Kitzmiller ) +% Ex. No. 236 (Section 30.2.6 : Example 2: John Kitzmiller ) \begin{tikzpicture}[scale=2,decoration={markings, mark=at position 3cm with {\arrow[scale=2]{>}}}] @@ -23,4 +23,4 @@ \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.7.tex index 7314c830de4..824a01e5ddd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.7.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 207 (Section 29.2.8 : Exemple : John Kitzmiller ) +% Ex. No. 237 (Section 30.2.7 : Example 3: John Kitzmiller ) \begin{tikzpicture}[scale=2] \tkzDefPoints{0/0/B, 5/0/D} \tkzDefPoint(70:3){A} @@ -13,19 +13,22 @@ \begin{scope}[decoration={markings, mark=at position .5 with {\arrow[scale=2]{>}}}] \tkzDrawSegments[postaction={decorate},dashed](C,A P,B) -\end{scope} + \end{scope} \tkzDrawSegment(A,C) \tkzDrawSegment[style=dashed](A,P) \tkzLabelPoints[below](B,C,D) \tkzLabelPoints[above](A,P) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](B,C P,A) \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](C,D A,D) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](A,B) - \tkzMarkAngles[size=0.7](B,A,C C,A,D) - \tkzMarkAngles[size=0.7, fill=green, opacity=0.5](B,A,C A,B,P) - \tkzMarkAngles[size=0.7, fill=yellow, opacity=0.3](B,P,A C,A,D) - \tkzMarkAngles[size=0.7, fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D) + \tkzMarkAngles[size=3mm](B,A,C C,A,D) + \tkzMarkAngles[size=3mm](B,A,C A,B,P) + \tkzMarkAngles[size=3mm](B,P,A C,A,D) + \tkzMarkAngles[size=3mm](B,A,C A,B,P B,P,A C,A,D) + \tkzFillAngles[fill=green, opacity=0.5](B,A,C A,B,P) + \tkzFillAngles[fill=yellow, opacity=0.3](B,P,A C,A,D) + \tkzFillAngles[fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D) \tkzLabelAngle[pos=1](B,A,C){1} \tkzLabelAngle[pos=1](C,A,D){2} \tkzLabelAngle[pos=1](A,B,P){3} \tkzLabelAngle[pos=1](B,P,A){4} \tkzMarkSegments[mark=|](A,B A,P) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.8.tex index 350113e1174..1717f0cfc6d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.8.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 208 (Section 29.2.9 : Exemple : author John Kitzmiller ) +% Ex. No. 238 (Section 30.2.8 : Example 4: author John Kitzmiller ) \begin{tikzpicture}[scale=2] \tkzDefPoint(0,3){A} \tkzDefPoint(6,3){E} \tkzDefPoint(1.35,3){B} @@ -11,10 +11,14 @@ \tkzFillPolygon[yellow, opacity=0.4](D,F,C) \tkzFillPolygon[blue, opacity=0.3](A,B,G) \tkzFillPolygon[blue, opacity=0.3](E,D,F) - \tkzMarkAngles[size=0.6,fill=green](B,G,A D,F,E) - \tkzMarkAngles[size=0.6,fill=orange](B,C,G D,C,F) - \tkzMarkAngles[size=0.6,fill=yellow](G,B,C F,D,C) - \tkzMarkAngles[size=0.6,fill=red](A,B,G E,D,F) + \tkzMarkAngles[size=0.5 cm](B,G,A D,F,E) + \tkzMarkAngles[size=0.5 cm](B,C,G D,C,F) + \tkzMarkAngles[size=0.5 cm](G,B,C F,D,C) + \tkzMarkAngles[size=0.5 cm](A,B,G E,D,F) + \tkzFillAngles[size=0.5 cm,fill=green](B,G,A D,F,E) + \tkzFillAngles[size=0.5 cm,fill=orange](B,C,G D,C,F) + \tkzFillAngles[size=0.5 cm,fill=yellow](G,B,C F,D,C) + \tkzFillAngles[size=0.5 cm,fill=red](A,B,G E,D,F) \tkzMarkSegments[mark=|](B,C D,C) \tkzMarkSegments[mark=s||](G,C F,C) \tkzMarkSegments[mark=o](A,G E,F) \tkzMarkSegments[mark=s](B,G D,F) \tkzDrawSegment[color=red](A,E) @@ -23,4 +27,4 @@ \tkzLabelPoints[below](C,D,E,G) \tkzLabelPoints[above](A,B,F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-10.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.9.tex index 86353f826f4..70825cb1323 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-10.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30.2.9.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 209 (Section 29.2.10 : Example from Indonesia) +% Ex. No. 239 (Section 30.2.9 : Example 1: from Indonesia) \begin{tikzpicture}[scale=3] \tkzDefPoints{0/0/A,2/0/B} @@ -20,4 +20,4 @@ \tkzMarkRightAngles(D,A,B D,G,F) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.1.tex index 65261c69a59..58fa13558be 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.1.tex @@ -1,9 +1,10 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 213 (Section 30.1.1 : Example 1 change line width) +% Ex. No. 243 (Section 31.1.1 : Example 1: change line width) \begin{tikzpicture} + \tkzSetUpLine[color=blue,line width=1pt] \begin{scope}[rotate=-90] \tkzDefPoint(10,6){C} \tkzDefPoint( 0,6){A} @@ -15,7 +16,6 @@ \tkzMarkRightAngle[size=.4,fill=red!20](B,H,C) \tkzDrawSegment[color=red](C,H) \end{scope} - \tkzSetUpLine[color=blue,line width=1pt] \tkzLabelSegment[below](C,B){$a$} \tkzLabelSegment[right](A,C){$b$} \tkzLabelSegment[left](A,B){$c$} @@ -26,4 +26,4 @@ \tkzLabelPoints[above](A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.2.tex index ce3f561f2ee..f7978fd5d9e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.2.tex @@ -1,27 +1,27 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 214 (Section 30.1.2 : Example 2 change style of line) +% Ex. No. 244 (Section 31.1.2 : Example 2: change style of line) \begin{tikzpicture}[scale=.6] \tkzDefPoint(1,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,1){C} \tkzDefPoint(5,1){D} \tkzDefPoint(1,2){E} \tkzDefPoint(6,2){F} \tkzDefPoint(0,4){A'}\tkzDefPoint(3,4){B'} - \tkzDrawSegments(A,B C,D E,F) - \tkzDrawLine(A',B') - \tkzSetUpLine[style=dashed,color=gray] - \tkzCompass(A',B') \tkzCalcLength[cm](C,D) \tkzGetLength{rCD} - \tkzDrawCircle[R](A',\rCD cm) \tkzCalcLength[cm](E,F) \tkzGetLength{rEF} - \tkzDrawCircle[R](B',\rEF cm) \tkzInterCC[R](A',\rCD cm)(B',\rEF cm) \tkzGetPoints{I}{J} - \tkzSetUpLine[color=red] \tkzDrawLine(A',B') + \tkzSetUpLine[style=dashed,color=gray] + \tkzDrawLine(A',B') + \tkzCompass(A',B') + \tkzDrawSegments(A,B C,D E,F) + \tkzDrawCircle[R](A',\rCD cm) + \tkzDrawCircle[R](B',\rEF cm) + \tkzSetUpLine[color=red] \tkzDrawSegments(A',I B',I) \tkzDrawPoints(A,B,C,D,E,F,A',B',I,J) \tkzLabelPoints(A,B,C,D,E,F,A',B',I,J) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.3.tex index 0452f420a36..34476f6d055 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.1.3.tex @@ -1,12 +1,12 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 215 (Section 30.1.3 : Example 3 extend lines) +% Ex. No. 245 (Section 31.1.3 : Example 3: extend lines) - \begin{tikzpicture} +\begin{tikzpicture} \tkzSetUpLine[add=.5 and .5] \tkzDefPoints{0/0/A,4/0/B,1/3/C} \tkzDrawLines(A,B B,C A,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.2.1.tex index 1472372575c..1b599cde556 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 216 (Section 30.2.1 : use of\tkzcname{tkzSetUpPoint}) +% Ex. No. 246 (Section 31.2.1 : Use of \tkzcname{tkzSetUpPoint}) \begin{tikzpicture} \tkzSetUpPoint[shape = cross out,color=blue] @@ -12,4 +12,4 @@ \tkzDrawPoints(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.2.2.tex index 313205c831d..73cd6a54c99 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.2.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 217 (Section 30.2.2 : use of\tkzcname{tkzSetUpPoint} inside a group) +% Ex. No. 247 (Section 31.2.2 : Use of \tkzcname{tkzSetUpPoint} inside a group) - \begin{tikzpicture} +\begin{tikzpicture} \tkzInit[ymin=-0.5,ymax=3,xmin=-0.5,xmax=7] \tkzDefPoint(0,0){A} \tkzDefPoint(02.25,04.25){B} @@ -20,4 +20,4 @@ \tkzLabelPoints(A,B,C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.3.1.tex index 3b30aef8e25..6c94964942e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.3.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 218 (Section 30.3.1 : use of\tkzcname{tkzSetUpCompass} with bisector) +% Ex. No. 248 (Section 31.3.1 : Use of \tkzcname{tkzSetUpCompass} with bisector) - \begin{tikzpicture}[scale=0.75] +\begin{tikzpicture}[scale=0.75] \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} \tkzDrawPolygon(A,B,C) \tkzSetUpCompass[color=red,line width=.2 pt] @@ -13,9 +13,9 @@ \tkzShowLine[bisector,size=2,gap=3](A,C,B) \tkzShowLine[bisector,size=2,gap=3](B,A,C) \tkzShowLine[bisector,size=1,gap=2](C,B,A) - \tkzDrawLines[add=0 and 0 ](B,b C,c) - \tkzDrawLine[add=0 and -.4 ](A,a) + \tkzDrawLines[add=0 and 0 ](B,b) + \tkzDrawLines[add=0 and -.4 ](A,a C,c) \tkzLabelPoints(A,B) \tkzLabelPoints[above](C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.3.2.tex index a09172bba7e..d0770c2c933 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.3.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 219 (Section 30.3.2 : Another example of of\tkzcname{tkzSetUpCompass}) +% Ex. No. 249 (Section 31.3.2 : Another example of of\tkzcname{tkzSetUpCompass}) - \begin{tikzpicture}[scale=1,rotate=90] +\begin{tikzpicture}[scale=1,rotate=90] \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} \tkzDrawPolygon(A,B,C) \tkzSetUpCompass[color=brown, @@ -20,7 +20,7 @@ \tkzDrawLines[add=0 and 0,color=red](B,b) \tkzShowLine[bisector,size=2,gap=3](B,A,C) \tkzShowLine[bisector,size=1,gap=3](C,B,A) - \tkzLabelPoints(A,B,C) + \tkzLabelPoints(A,B)\tkzLabelPoints[left](C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.4.0.tex index 149bdfe307a..f7594210cd2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31.4.0.tex @@ -1,13 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 220 (Section 30.4 : Own style) +% Ex. No. 250 (Section 31.4 : Own style) -\tkzSetUpPoint[color=blue!50!white, fill=gray!20!red!50!white] -\tikzset{/tikz/mystyle/.style={ - color=blue!20!black, - fill=blue!20}} - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(0,1){A} \tkzDrawPoints(O) % general style @@ -15,4 +11,4 @@ \tkzLabelPoints(O,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.2.0.tex index b60291f2770..99cf75ec36c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.2.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 221 (Section 31.2 : \tkzcname{tkzInit} et \tkzcname{tkzShowBB}) +% Ex. No. 251 (Section 32.2 : \tkzcname{tkzInit} and \tkzcname{tkzShowBB}) \begin{tikzpicture} \tkzInit[xmin=-1,xmax=3,ymin=-1, ymax=3] @@ -9,4 +9,4 @@ \tkzShowBB[red,line width=2pt] \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.3.0.tex index 62f5ee84a14..d64141c8019 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.3.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 222 (Section 31.3 : \tkzcname{tkzClip}) +% Ex. No. 252 (Section 32.3 : \tkzcname{tkzClip}) \begin{tikzpicture} \tkzInit[xmax=4, ymax=3] @@ -11,4 +11,4 @@ \draw[red] (-1,-1)--(5,2); \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.4.0.tex index 30ec471939e..be93fea5d0c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-32.4.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 223 (Section 31.4 : \tkzcname{tkzClip} et l'option \tkzname{space}) +% Ex. No. 253 (Section 32.4 : \tkzcname{tkzClip} and the option \tkzname{space}) \begin{tikzpicture} \tkzInit[xmax=4, ymax=3] @@ -11,4 +11,4 @@ \draw[red] (-1,-1)--(5,2); \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-0-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.0.0.tex index 94ab543939b..c0de49d5e8b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-0-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.0.0.tex @@ -1,24 +1,24 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 11 (Section 4 : Definition of a point) +% Ex. No. 21 (Section 4 : Definition of a point) \begin{tikzpicture}[,scale=1] \tkzInit[xmax=5,ymax=5] \tkzDefPoints{0/0/O,1/0/I,0/1/J} \tkzDefPoint(40:4){P} \tkzDrawXY[noticks,>=triangle 45] - \tkzDrawSegment[dim={$r$, + \tkzDrawSegment[dim={$d$, 16pt,above=6pt}](O,P) \tkzDrawPoints(O,P) \tkzMarkAngle[mark=none,->](I,O,P) \tkzFillAngle[fill=blue!20, opacity=.5](I,O,P) \tkzLabelAngle[pos=1.25](I,O,P){$\alpha$} - \tkzLabelPoint(P){$P (\alpha : r )$} + \tkzLabelPoint(P){$P (\alpha : d )$} \tkzDrawPoints[shape=cross](I,J) \tkzLabelPoints(O,I) \tkzLabelPoints[left](J) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.1.tex new file mode 100644 index 00000000000..37a2adf9a28 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.1.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 22 (Section 4.1.1 : Cartesian coordinates ) + +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefPoint(0,3){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.2.tex index d17061d3465..1d3db1934a2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 13 (Section 4.1.2 : Calculations with \tkzNamePack{xfp}) +% Ex. No. 23 (Section 4.1.2 : Calculations with \tkzNamePack{xfp}) \begin{tikzpicture}[scale=1] \tkzInit[xmax=4,ymax=4] @@ -12,4 +12,4 @@ \tkzDrawPoints[color=blue](O,B,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.3.tex index 27a95601b9a..e855f437208 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.3.tex @@ -1,13 +1,13 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 14 (Section 4.1.3 : Polar coordinates ) +% Ex. No. 24 (Section 4.1.3 : Polar coordinates ) - \begin{tikzpicture} +\begin{tikzpicture} \foreach \an [count=\i] in {0,60,...,300} { \tkzDefPoint(\an:3){A_\i}} \tkzDrawPolygon(A_1,A_...,A_6) \tkzDrawPoints(A_1,A_...,A_6) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.4.tex index ff7508f4b58..f6c22119476 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.4.tex @@ -1,12 +1,12 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 15 (Section 4.1.4 : Calculations and coordinates) +% Ex. No. 25 (Section 4.1.4 : Calculations and coordinates) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] \foreach \an [count=\i] in {0,2,...,358} { \tkzDefPoint(\an:sqrt(sqrt(\an mm))){A_\i}} \tkzDrawPoints(A_1,A_...,A_180) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.5.tex index 6d4830eb98a..46e19dd7380 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.1.5.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 16 (Section 4.1.5 : Relative points) +% Ex. No. 26 (Section 4.1.5 : Relative points) \begin{tikzpicture}[scale=1] \tkzSetUpLine[color=blue!60] @@ -10,12 +10,12 @@ \begin{scope}[shift=(A)] \tkzDefPoint(90:5){B} \tkzDefPoint(30:5){C} -\end{scope} -\end{scope} + \end{scope} + \end{scope} \tkzDrawPolygon(A,B,C) \tkzLabelPoints[above](B,C) \tkzLabelPoints[below](A) \tkzDrawPoints(A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.1.tex index 33389d46964..c0c8f00be34 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.1.tex @@ -1,18 +1,17 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 17 (Section 4.2.1 : Isosceles triangle with \tkzcname{tkzDefShiftPoint}) +% Ex. No. 27 (Section 4.2.1 : Isosceles triangle with \tkzcname{tkzDefShiftPoint}) \begin{tikzpicture}[rotate=-30] \tkzDefPoint(2,3){A} \tkzDefShiftPoint[A](0:4){B} \tkzDefShiftPoint[A](30:4){C} \tkzDrawSegments(A,B B,C C,A) - \tkzMarkSegments[mark=|, - color=red](A,B A,C) + \tkzMarkSegments[mark=|,color=red](A,B A,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.2.tex index 794969f7c06..ba8146983a5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.2.tex @@ -1,16 +1,17 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 18 (Section 4.2.2 : Equilateral triangle) +% Ex. No. 28 (Section 4.2.2 : Equilateral triangle) \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} - \tkzDefShiftPoint[A](30:4){B} - \tkzDefShiftPoint[A](-30:4){C} + \tkzDefShiftPoint[A](30:3){B} + \tkzDefShiftPoint[A](-30:3){C} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) + \tkzMarkSegments[mark=|,color=red](A,B A,C B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.3.tex index 9b2cf820636..1e08116f736 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.2.3.tex @@ -1,15 +1,15 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 19 (Section 4.2.3 : Parallelogram) +% Ex. No. 29 (Section 4.2.3 : Parallelogram) \begin{tikzpicture} \tkzDefPoint(0,0){A} - \tkzDefPoint(60:3){B} - \tkzDefShiftPointCoord[B](30:4){C} - \tkzDefShiftPointCoord[A](30:4){D} + \tkzDefPoint(30:3){B} + \tkzDefShiftPointCoord[B](10:2){C} + \tkzDefShiftPointCoord[A](10:2){D} \tkzDrawPolygon(A,...,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.4.0.tex index 71598e7cd85..7e4708d5ece 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.4.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 20 (Section 4.4 : Create a triangle) +% Ex. No. 30 (Section 4.4 : Create a triangle) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,4/0/B,4/3/C} @@ -9,4 +9,4 @@ \tkzDrawPoints(A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.5.0.tex index 87885436ebd..4e4840dd96e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-4.5.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 21 (Section 4.5 : Create a square) +% Ex. No. 31 (Section 4.5 : Create a square) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D} @@ -9,4 +9,4 @@ \tkzDrawPoints(A,B,C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.1.1.tex index e655da26833..f8e64c8c7fd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 22 (Section 5.1.1 : Use of \tkzcname{tkzDefMidPoint}) +% Ex. No. 32 (Section 5.1.1 : Use of \tkzcname{tkzDefMidPoint}) \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} @@ -12,4 +12,4 @@ \tkzLabelPoints[right](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.2.1.tex index 9df81202fd3..3769b15dc92 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.2.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 23 (Section 5.2.1 : Using \tkzcname{tkzDefBarycentricPoint} with two points) +% Ex. No. 33 (Section 5.2.1 : Using \tkzcname{tkzDefBarycentricPoint} with two points) \begin{tikzpicture} \tkzDefPoint(2,3){A} @@ -13,4 +13,4 @@ \tkzLabelPoints(A,B,I) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.2.2.tex index 0b04be6dad5..4d9a504efa2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.2.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 24 (Section 5.2.2 : Using \tkzcname{tkzDefBarycentricPoint} with three points) +% Ex. No. 34 (Section 5.2.2 : Using \tkzcname{tkzDefBarycentricPoint} with three points) \begin{tikzpicture}[scale=.8] \tkzDefPoint(2,1){A} @@ -21,4 +21,4 @@ \tkzAutoLabelPoints[center=M,above right](A',B',C') \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.3.0.tex index 38fa5d98cfb..38faf71e015 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-5.3.0.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 25 (Section 5.3 : Internal Similitude Center) +% Ex. No. 35 (Section 5.3 : Internal Similitude Center) \begin{tikzpicture}[scale=.75,rotate=-30] \tkzDefPoint(0,0){O} @@ -26,4 +26,4 @@ \tkzLabelPoints[font=\scriptsize](O,A,I,J,D,E,F,G,D',E',F',G') \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.1.tex index dd99b489680..763183c6342 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.1.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 26 (Section 6.1.1 : \IoptName{tkzDefTriangleCenter}{ortho}) +% Ex. No. 36 (Section 6.1.1 : Option \tkzname{ortho} or \tkzname{orthic}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -19,4 +19,4 @@ \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.2.tex index 640a06ed5d9..b637a481138 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.2.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 27 (Section 6.1.2 : \IoptName{tkzDefTriangleCenter}{centroid}) +% Ex. No. 37 (Section 6.1.2 : Option \tkzname{centroid}) \begin{tikzpicture}[scale=.75] \tkzDefPoints{-1/1/A,5/1/B} @@ -14,4 +14,4 @@ \tkzDrawLines[add = 0 and 2/3](A,G B,G C,G) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.3.tex index 0277dd685ea..684da82e65b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.3.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 28 (Section 6.1.3 : \IoptName{tkzDefTriangleCenter}{circum}) +% Ex. No. 38 (Section 6.1.3 : Option \tkzname{circum}) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoints{0/1/A,3/2/B,1/4/C} \tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{G} @@ -12,4 +12,4 @@ \tkzDrawPoints(A,B,C,G) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.4.tex index 64638de5a78..40a50fbf067 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 29 (Section 6.1.4 : \IoptName{tkzDefTriangleCenter}{in}) +% Ex. No. 39 (Section 6.1.4 : Option \tkzname{in}) \begin{tikzpicture} \tkzDefPoints{0/1/A,3/2/B,1/4/C} @@ -14,4 +14,4 @@ \tkzDrawCircle(I,Ib) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.5.tex new file mode 100644 index 00000000000..92701dca998 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.5.tex @@ -0,0 +1,23 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 40 (Section 6.1.5 : Option \tkzname{ex}) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[ex](B,C,A) + \tkzGetPoint{J_c} + \tkzDefPointBy[projection=onto A--B](J_c) + \tkzGetPoint{Tc} + %or + % \tkzDefCircle[ex](B,C,A) + % \tkzGetFirstPoint{J_c} + % \tkzGetSecondPoint{Tc} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,J_c) + \tkzDrawCircle[red](J_c,Tc) + \tkzDrawLines[add=1.5 and 0](A,C B,C) + \tkzLabelPoints(J_c) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.6.tex index 2e6e8ea628d..2caaafffe98 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.6.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 31 (Section 6.1.6 : Utilisation de \IoptName{tkzDefTriangleCenter}{euler} ) +% Ex. No. 41 (Section 6.1.6 : Option \tkzname{euler}) \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} @@ -32,4 +32,4 @@ color=blue,line width=1pt](B,E_B E_B,H) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.7.tex index 031afaeb833..0df63327ee0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.7.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 32 (Section 6.1.7 : Using option \IoptName{tkzDefTriangleCenter}{symmedian}) +% Ex. No. 42 (Section 6.1.7 : Option \tkzname{symmedian}) \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -13,11 +13,11 @@ \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c} \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c} \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,K) \tkzDrawLines[add = 0 and 2/3,blue](A,K B,K C,K) \tkzDrawSegments[red,dashed](A,Ma B,Mb C,Mc) \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic) - \tkzDrawLine(G,I) + \tkzDrawLine[add=2 and 2](G,I) + \tkzDrawPoints(A,B,C,K,G,I) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.8.tex index 9ed2e4cdc43..7c5a83fcbf0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.8.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 33 (Section 6.1.8 : Using option \IoptName{tkzDefTriangleCenter}{nagel}) +% Ex. No. 43 (Section 6.1.8 : Option \tkzname{nagel}) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/A,6/0/B,4/6/C} \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} @@ -20,7 +20,8 @@ \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) \tkzDrawCircles[ex,gray](A,B,C C,A,B B,C,A) \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) - \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Tb,A Jc,Tc,B) + \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C + Jb,Tb,A Jc,Tc,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.9.tex index 75f79a104dc..1b3b13181a7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-6.1.9.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 34 (Section 6.1.9 : Option Triangle "mittenpunkt") +% Ex. No. 44 (Section 6.1.9 : Option \tkzname{mittenpunkt}) \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/A,6/0/B,4/6/C} @@ -26,4 +26,4 @@ \tkzShowBB \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.2.tex index a384d79ccff..4cdbb373124 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.2.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 35 (Section 7.0.2 : Example of point drawings) +% Ex. No. 45 (Section 7.0.2 : Example of point drawings) - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.5] \tkzDefPoint(1,3){A} \tkzDefPoint(4,1){B} \tkzDefPoint(0,0){O} @@ -12,4 +12,4 @@ \tkzDrawPoint[color=green](O) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.3.tex index 72c4c2a189b..33ea4dcbafa 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.3.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 36 (Section 7.0.3 : First example) +% Ex. No. 46 (Section 7.0.3 : First example) \begin{tikzpicture} \tkzDefPoint(1,3){A} @@ -11,4 +11,4 @@ fill=red!50](A,B,C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.4.tex index 6f4a965fee4..9ee9b5de996 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-7.0.4.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 37 (Section 7.0.4 : Second example) +% Ex. No. 47 (Section 7.0.4 : Second example) \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B} @@ -9,7 +9,7 @@ shift={(2,3)}](-30:5.5){E} \begin{scope}[shift=(A)] \tkzDefPoint(30:5){C} -\end{scope} + \end{scope} \tkzCalcLength[cm](A,B)\tkzGetLength{rAB} \tkzDrawCircle[R](A,\rAB cm) \tkzDrawSegment(A,B) @@ -18,4 +18,4 @@ \tkzLabelPoints[above](A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-8.1.1.tex index 60d9222e9c0..0a6b2a966fe 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-8.1.1.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 38 (Section 8.1.1 : Use of option \tkzname{pos} 1) +% Ex. No. 48 (Section 8.1.1 : Use of option \tkzname{pos}) - \begin{tikzpicture} +\begin{tikzpicture} \tkzDefPoints{0/0/A,4/0/B} \tkzDrawLine[red](A,B) \tkzDefPointOnLine[pos=1.2](A,B) @@ -21,4 +21,4 @@ \tkzLabelPoints(A,B) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-8.2.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-8.2.0.tex new file mode 100644 index 00000000000..75acbd5d7c1 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-8.2.0.tex @@ -0,0 +1,23 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 49 (Section 8.2 : Point on a circle) + +\begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} + \tkzDefPointOnCircle[angle=90,center=B,radius=1 cm] + \tkzGetPoint{I} + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{G} \tkzGetLength{rG} + \tkzDefPointOnCircle[angle=30,center=G,radius=\rG pt] + \tkzGetPoint{J} + \tkzDrawCircle[R,teal](B,1cm) + \tkzDrawPoint[teal](I) + \tkzDrawPoints(A,B,C) + \tkzDrawCircle(G,J) + \tkzDrawPoints(G,J) + \tkzDrawPoint[red](J) + \tkzLabelPoints(G,J) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.0.tex new file mode 100644 index 00000000000..4b83d72a9a7 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.0.tex @@ -0,0 +1,16 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 50 (Section 9.2 : Example of translation) + +\begin{tikzpicture}[>=latex] + \tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} + \tkzDefPoint(3,0){C} + \tkzDefPointBy[translation= from B to A](C) + \tkzGetPoint{D} + \tkzDrawPoints[teal](A,B,C,D) + \tkzLabelPoints[color=teal](A,B,C,D) + \tkzDrawSegments[orange,->](A,B D,C) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.1.tex index ed299332347..7d9517c8032 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.1.tex @@ -1,11 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 40 (Section 9.1.1 : Example of reflection) +% Ex. No. 51 (Section 9.2.1 : Example of reflection (orthogonal symmetry)) \begin{tikzpicture}[scale=1] - \tkzInit[ymin=-4,ymax=6,xmin=-7,xmax=3] - \tkzClip \tkzDefPoints{1.5/-1.5/C,-4.5/2/D} \tkzDefPoint(-4,-2){O} \tkzDefPoint(-2,-2){A} @@ -21,4 +19,4 @@ \tkzDrawLine[add= .5 and .5](C,D) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.2.tex new file mode 100644 index 00000000000..4d5341ddd69 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.2.tex @@ -0,0 +1,20 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 52 (Section 9.2.2 : Example of \tkzname{homothety} and \tkzname{projection}) + +\begin{tikzpicture}[scale=1.2] + \tkzDefPoint(0,1){A} \tkzDefPoint(5,3){B} \tkzDefPoint(3,4){C} + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDrawLine[add=0 and 0,color=magenta!50 ](A,a) + \tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'} + \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k'} + \tkzDefPointBy[projection = onto A--B](a) \tkzGetPoint{k} + \tkzDrawLines[add= 0 and .3](A,k A,C) + \tkzDrawSegments[blue](a',k' a,k) + \tkzDrawPoints(a,a',k,k',A) + \tkzDrawCircles(a',k' a,k) + \tkzLabelPoints(a,a',k,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.3.tex index ced8e2745c2..185d9cedad2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.3.tex @@ -1,22 +1,24 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 42 (Section 9.3.1 : Example of projection) +% Ex. No. 53 (Section 9.2.3 : Example of projection) \begin{tikzpicture}[scale=1.5] - \tkzInit[xmin=-3,xmax=5,ymax=4] \tkzClip[space=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(0,4){B} - \tkzDrawTriangle[pythagore](B,A) \tkzGetPoint{C} + \tkzDefTriangle[pythagore](B,A) \tkzGetPoint{C} \tkzDefLine[bisector](B,C,A) \tkzGetPoint{c} \tkzInterLL(C,c)(A,B) \tkzGetPoint{D} - \tkzDrawSegment(C,D) - \tkzDrawCircle(D,A) \tkzDefPointBy[projection=onto B--C](D) \tkzGetPoint{G} \tkzInterLC(C,D)(D,A) \tkzGetPoints{E}{F} + \tkzDrawPolygon[teal](A,B,C) + \tkzDrawSegment(C,D) + \tkzDrawCircle(D,A) + \tkzDrawSegment[orange](D,G) + \tkzMarkRightAngle[fill=orange!20](D,G,B) \tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F) \tkzDrawPoints(B,D,E,G) \tkzLabelPoints[above right](B,D,E,G) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.4.tex index 5c52a48c781..639e23b3921 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.4.tex @@ -1,9 +1,9 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 43 (Section 9.4.1 : Example of symmetry) +% Ex. No. 54 (Section 9.2.4 : Example of symmetry) -\begin{tikzpicture}[scale=1.5] +\begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} \tkzDefPoint(2,2){B} @@ -18,4 +18,4 @@ \tkzLabelPoints(A,B,O,A',B') \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.5.tex new file mode 100644 index 00000000000..fbd70534b53 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.5.tex @@ -0,0 +1,22 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 55 (Section 9.2.5 : Example of rotation) + +\begin{tikzpicture}[scale=0.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDrawSegment(A,B) + \tkzDefPointBy[rotation=center A angle 60](B) + \tkzGetPoint{C} + \tkzDefPointBy[symmetry=center C](A) + \tkzGetPoint{D} + \tkzDrawSegment(A,tkzPointResult) + \tkzDrawLine(B,D) + \tkzDrawArc[orange,delta=10](A,B)(C) + \tkzDrawArc[orange,delta=10](B,C)(A) + \tkzDrawArc[orange,delta=10](C,D)(D) + \tkzMarkRightAngle(D,B,A) +\end{tikzpicture} + +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.6.tex index 6bab89ec36c..924a66ff764 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-6-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.6.tex @@ -1,20 +1,18 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 45 (Section 9.6.1 : Example of rotation in radian) +% Ex. No. 56 (Section 9.2.6 : Example of rotation in radian) \begin{tikzpicture} \tkzDefPoint["$A$" left](1,5){A} \tkzDefPoint["$B$" right](5,2){B} \tkzDefPointBy[rotation in rad= center A angle pi/3](B) \tkzGetPoint{C} - \tkzDrawSegment(A,B) \tkzDrawPoints(A,B,C) \tkzCompass[color=red](A,C) \tkzCompass[color=red](B,C) - \tkzLabelPoints(C) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.7.tex index bd131e4c5f0..7f4955b754b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.7.tex @@ -1,26 +1,26 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 46 (Section 9.7.1 : Inversion of points) +% Ex. No. 57 (Section 9.2.7 : Inversion of points) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(1,0){A} - \tkzDrawCircle(O,A) \tkzDefPoint(-1.5,-1.5){z1} \tkzDefPoint(0.35,0){z2} - \tkzDrawPoints[color=black, - fill=red,size=4](O,z1,z2) \tkzDefPointBy[inversion =% center O through A](z1) \tkzGetPoint{Z1} \tkzDefPointBy[inversion =% center O through A](z2) \tkzGetPoint{Z2} + \tkzDrawCircle(O,A) \tkzDrawPoints[color=black, fill=red,size=4](Z1,Z2) \tkzDrawSegments(z1,Z1 z2,Z2) + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2) \tkzLabelPoints(O,A,z1,z2,Z1,Z2) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.8.tex index 4d943a54f1f..0606dec8247 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.2.8.tex @@ -1,7 +1,7 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 47 (Section 9.7.2 : Point Inversion: Orthogonal Circles) +% Ex. No. 58 (Section 9.2.8 : Point Inversion: Orthogonal Circles) \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} @@ -19,4 +19,4 @@ fill=red,size=4](O,z1,z2,Z1,O,A) \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.3.1.tex index 179a48984a5..1ad547124c7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-9.3.1.tex @@ -1,10 +1,10 @@ \input{preamble-standalone.ltx} \begin{document} -% Ex. No. 48 (Section 10.1 : Example de translation) +% Ex. No. 59 (Section 9.3.1 : Example of translation) -\begin{tikzpicture} - \tkzDefPoint(0,0){A} \tkzDefPoint(4,2){A'} +\begin{tikzpicture}[>=latex] + \tkzDefPoint(0,0){A} \tkzDefPoint(3,1){A'} \tkzDefPoint(3,0){B} \tkzDefPoint(1,2){C} \tkzDefPointsBy[translation= from A to A'](B,C){} \tkzDrawPolygon[color=blue](A,B,C) @@ -17,4 +17,4 @@ style=dashed](A,A' B,B' C,C') \end{tikzpicture} -\end{document} +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex index 0725aa2c3a1..c445fcc6388 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex @@ -3,11 +3,10 @@ \subsection{Most common errors} For the moment, I'm basing myself on my own, because having changed syntax several times, I've made a number of mistakes. This section is going to be expanded. - \begin{itemize}\setlength{\itemsep}{10pt} - - \item \tkzcname{tkzDrawPoint(A,B)} when it is necessary \tkzcname{tkzDrawPoints} +\begin{itemize}\setlength{\itemsep}{10pt} +\item \tkzcname{tkzDrawPoint(A,B)} when you need \tkzcname{tkzDrawPoints}. -\item \tkzcname{tkzGetPoint(A)} When defining an object, use braces and not brackets, so write~: \tkzcname{tkzGetPoint\{A\}} +\item \tkzcname{tkzGetPoint(A)} When defining an object, use braces and not brackets, so write: \tkzcname{tkzGetPoint\{A\}}. \item \tkzcname{tkzGetPoint\{A\}} in place of \tkzcname{tkzGetFirstPoint\{A\}}. When a macro gives two points as results, either we retrieve these points using \tkzcname{tkzGetPoints\{A\}\{B\}}, or we retrieve only one of the two points, using \tkzcname{tkzGetFirstPoint\{A\}} or \tkzcname{tkzGetSecondPoint\{A\}}. These two points can be used with the reference \tkzname{tkzFirstPointResult} or @@ -19,17 +18,15 @@ \item \tkzcname{tkzDrawSegments[color = gray,style=dashed]\{B,B' C,C'\}} is a mistake. Only macros that define an object use braces. -\item The angles are given in degrees, more rarely in radians. - +\item The angles are given in degrees, more rarely in radians. \item If an error occurs in a calculation when passing parameters, then it is better to make these calculations before calling the macro. \item Do not mix the syntax of \tkzNamePack{pgfmath} and \tkzNamePack{xfp}. I've often chosen \tkzNamePack{xfp} but if you prefer pgfmath then do your calculations before passing parameters. -\item Use of \tkzcname{tkzClip} : In order to get accurate results, I avoided using normalized vectors. The advantage of normalization is to control the dimension of the manipulated objects, the disadvantage is that with TeX, this implies inaccuracies. These inaccuracies are often small, in the order of a thousandth, but they lead to disasters if the drawing is enlarged. Not normalizing implies that some points are far away from the working area and \tkzcname{tkzClip} allows you to reduce the size of the drawing. - +\item Use of \tkzcname{tkzClip}: In order to get accurate results, I avoided using normalized vectors. The advantage of normalization is to control the dimension of the manipulated objects, the disadvantage is that with TeX, this implies inaccuracies. These inaccuracies are often small, in the order of a thousandth, but they lead to disasters if the drawing is enlarged. Not normalizing implies that some points are far away from the working area and \tkzcname{tkzClip} allows you to reduce the size of the drawing. \item An error occurs if you use the macro \tkzcname{tkzDrawAngle} with too small an angle. The error is produced by the \NameLib{decoration} library when you want to place a mark on an arc. Even if the mark is absent, the error is still present. It is possible to get around this difficulty with the option \tkzname{mkpos=.2} for example, which will place the mark before the arc. Another possibility is to use the macro \tkzcname{tkzFillAngle}. - \end{itemize} +\end{itemize} \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex index f4516e05d38..d67ea4cc8d8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex @@ -1,27 +1,27 @@ -\section{Les angles} +\section{The angles} -\subsection{Colorier un angle : fill} +\subsection{Colour an angle: fill} -L'opération la plus simple -\begin{NewMacroBox}{tkzFillAngle}{\oarg{local options}\parg{A,O,B}} -O est le sommet de l'angle. OA et OB sont les côtés. Attention l'angle est déterminé avec l'ordre des points. +The simplest operation +\begin{NewMacroBox}{tkzFillAngle}{\oarg{local options}\parg{A,O,B}}% +$O$ is the vertex of the angle. $OA$ and $OB$ are the sides. Attention the angle is determined by the order of the points. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{size}{1 cm}{cette option détermine le rayon du secteur angulaire colorié} +\TOline{size}{1 cm}{this option determines the radius of the coloured angular sector.} \bottomrule \end{tabular} \medskip -Il faut ajouter bien sûr tous les styles de \TIKZ\ comme par exemple l'usage de fill \index{fill} ou encore shade \index{shade} +Of course, you have to add all the styles of \TIKZ, like the use of fill and shade... \end{NewMacroBox} -\subsubsection{Exemple avec \tkzname{size}} +\subsubsection{Example with \tkzname{size}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzInit @@ -33,7 +33,7 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ comme par exemple l'usage d \end{tkzexample} -\subsubsection{Changement de l'ordre des points} +\subsubsection{Changing the order of items} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzInit @@ -56,8 +56,8 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ comme par exemple l'usage d \end{tikzpicture} \end{tkzexample} -\begin{NewMacroBox}{tkzFillAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} -Avec des options communes, il existe une macro pour de mutiples angles +\begin{NewMacroBox}{tkzFillAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.}% +With common options, there is a macro for multiple angles. \end{NewMacroBox} \subsubsection{Multiples angles} @@ -87,13 +87,12 @@ Avec des options communes, il existe une macro pour de mutiples angles \end{tikzpicture} \end{tkzexample} - \newpage -\subsection{Marquer un angle mark} -Opération plus délicate car les options sont nombreuses. Les symboles utilisés pour le marquage outre ceux de TikZ sont définis dans le fichier |tkz-lib-marks.tex| et désignés par les caractères suivants:\begin{tkzltxexample}[] +\subsection{Mark an angle mark} +More delicate operation because there are many options. The symbols used for marking in addition to those of \TIKZ\ are defined in the file |tkz-lib-marks.tex| and designated by the following characters:\begin{tkzltxexample}[] |, ||,|||, z, s, x, o, oo \end{tkzltxexample} -Leurs définitions est la suivante +Their definitions are as follows \begin{tkzltxexample}[] \pgfdeclareplotmark{||} @@ -205,7 +204,6 @@ Leurs définitions est la suivante } \end{tkzltxexample} -\newpage % \tkzMarkAngle(B, A, C) @@ -230,25 +228,25 @@ Leurs définitions est la suivante % mark : none , |, ||,|||, z, s, x, o, oo mais tous les % % symboles de tikz sont permis -\begin{NewMacroBox}{tkzMarkAngle}{\oarg{local options}\parg{A,O,B}} -O est le sommet. Attention les arguments varient en fonction des options. Plusieurs marquages sont possibles. Vous pouvez simplement tracer un arc ou bian ajouter une marque sur cet arc. Le style de l'arc est choisi avec l'option \tkzname{arc}, le rayon de l'arc est donné par \tkzname{mksize}, l'arc peut bien sûr être colorié. +\begin{NewMacroBox}{tkzMarkAngle}{\oarg{local options}\parg{A,O,B}}% +$O$ is the vertex. Attention the arguments vary according to the options. Several markings are possible. You can simply draw an arc or add a mark on this arc. The style of the arc is chosen with the option \tkzname{arc}, the radius of the arc is given by \tkzname{mksize}, the arc can, of course, be colored. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{arc}{l}{choix parmi l, ll et lll simple, double ou triple.} -\TOline{size}{1 cm}{rayon de l'arc.} -\TOline{mark}{none}{choix parmi s.} -\TOline{mksize}{4pt}{taille du symbol (mark).} -\TOline{mkcolor}{black}{couleur du symbole (mark).} -\TOline{mkpos}{0.5}{position du symbole sur l'arc.} +\TOline{arc}{l}{choice of l, ll and lll (single, double or triple).} +\TOline{size}{1 cm}{arc radius.} +\TOline{mark}{none}{choice of mark.} +\TOline{mksize}{4pt}{symbol size (mark).} +\TOline{mkcolor}{black}{symbol color (mark).} +\TOline{mkpos}{0.5}{position of the symbol on the arc.} \end{tabular} \end{NewMacroBox} -\subsubsection{Exemple avec \tkzname{mark = x}} +\subsubsection{Example with \tkzname{mark = x}} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} @@ -259,7 +257,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} \DeleteShortVerb{\|} -\subsubsection{Exemple avec \tkzname{mark =||}} +\subsubsection{Example with \tkzname{mark =||}} \MakeShortVerb{\|} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.75] @@ -271,29 +269,29 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\begin{NewMacroBox}{tkzMarkAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} -Avec des options communes, il existe une macro pour de mutiples angles +\begin{NewMacroBox}{tkzMarkAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.}% +With common options, there is a macro for multiple angles. \end{NewMacroBox} -\subsection{Label dans un angle} +\subsection{Label at an angle} -\begin{NewMacroBox}{tkzLabelAngle}{\oarg{local options}\parg{A,O,B}} -Une seule option \tkzname{dist} qui n'est pas indispensable car l'option \tkzname{pos} de \TIKZ\ fonctionne très bien. +\begin{NewMacroBox}{tkzLabelAngle}{\oarg{local options}\parg{A,O,B}}% +There is only one option, dist (with or without unit), which can be replaced by the TikZ's pos option (without unit for the latter). By default, the value is in centimeters. -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{pos}{1}{ ou dist, permet de contrôler la distance du sommet au label.} +\TOline{pos}{1}{ or dist, controls the distance from the top to the label.} \bottomrule \end{tabular} \medskip -Il est possible de déplacer le label avec toutes les options de TikZ : rotate, shift, below, etc. +It is possible to move the label with all TikZ options : rotate, shift, below, etc. \end{NewMacroBox} -\subsubsection{Exemple avec \tkzname{pos}} +\subsubsection{Example with \tkzname{pos}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} @@ -330,42 +328,43 @@ Il est possible de déplacer le label avec toutes les options de TikZ : rotate, \end{tikzpicture} \end{tkzexample} -\begin{NewMacroBox}{tkzLabelAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} -Avec des options communes, il existe une macro pour de mutiples angles - \end{NewMacroBox} +\begin{NewMacroBox}{tkzLabelAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.}% +With common options, there is a macro for multiple angles. +\end{NewMacroBox} -\subsection{Marquer un angle droit} +\subsection{Marking a right angle} + +\begin{NewMacroBox}{tkzMarkRightAngle}{\oarg{local options}\parg{A,O,B}}% +The \tkzname{german} option allows you to change the style of the drawing. The option \tkzname{size} allows to change the size of the drawing. -\begin{NewMacroBox}{tkzMarkRightAngle}{\oarg{local options}\parg{A,O,B}} -L'option \tkzname{german} permet de changer le style du dessin. L'option \tkzname{size} permet de modifier la taille du dessin. -\begin{tabular}{lll} +\medskip +\begin{tabular}{lll}% \toprule -options & default & definition \\ +options & default & definition \\ \midrule -\TOline{german}{normal}{ german arc avec point intérieur.} -\TOline{size}{0.2}{ taille d'un coté.} +\TOline{german}{normal}{ german arc with inner point.} +\TOline{size}{0.2}{ side size.} \end{tabular} \end{NewMacroBox} -\subsubsection{Exemple de marquage d'un angle droit} +\subsubsection{Example of marking a right angle} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} \tkzDrawLines[add=.5 and .5](P,H) \tkzMarkRightAngle[fill=blue!20,size=.5,draw](A,H,P) - \tkzDrawPoints[](A,B,P,H) \tkzDrawLines[add=.5 and .5](A,B) - \tkzMarkRightAngle[fill=red!20,size=.8](B,H,P) + \tkzMarkRightAngle[fill=red!20,size=.8](B,H,P) + \tkzDrawPoints[](A,B,P,H) \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple de marquage d'un angle droit, german style} +\subsubsection{Example of marking a right angle, german style} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} - \pgfresetboundingbox \tkzDrawLines[add=.5 and .5](P,H) \tkzMarkRightAngle[german,size=.5,draw](A,H,P) \tkzDrawPoints[](A,B,P,H) @@ -374,7 +373,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{Mélange de styles} +\subsubsection{Mix of styles} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} @@ -392,7 +391,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple complet} +\subsubsection{Full example} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[rotate=-90] @@ -422,21 +421,72 @@ options & default & definition \\ \end{tkzexample} \subsection{\tkzcname{tkzMarkRightAngles}} -\begin{NewMacroBox}{tkzMarkRightAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} -Avec des options communes, il existe une macro pour de mutiples angles - \end{NewMacroBox} - -\subsection{\tkzcname{tkzGetAngle}} -\begin{NewMacroBox}{tkzGetAngle}{\parg{macro}} -Attribue la valeur d'un angle à une macro. - \end{NewMacroBox} - -\subsection{\tkzcname{tkzFindAngle}} -\begin{NewMacroBox}{tkzFindAngle}{\parg{A,O,B}} -Détermine la valeur de l'angle en degrés. - \end{NewMacroBox} +\begin{NewMacroBox}{tkzMarkRightAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.}% +With common options, there is a macro for multiple angles. +\end{NewMacroBox} + +\section{Angles tools} + +\subsection{Recovering an angle \tkzcname{tkzGetAngle}} +\begin{NewMacroBox}{tkzGetAngle}{\parg{name of macro}}% +Assigns the value in degree of an angle to a macro. This macro retrieves \tkzcname{tkzAngleResult} and stores the result in a new macro. + +\medskip + +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{name of macro} {\tkzcname{tkzGetAngle}\{ang\}}{\tkzcname{ang} contains the value of the angle.} +\end{tabular} +\end{NewMacroBox} + +\subsection{Example of the use of \tkzcname{tkzGetAngle}} + + The point here is that $(AB)$ is the bisector of $\widehat{CAD}$, such that the $AD$ slope is zero. We recover the slope of $(AB)$ and then rotate twice. + + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B} + \tkzDrawSegment(A,B) + \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} + \tkzDefPointBy[rotation= center A angle \tkzang ](B) + \tkzGetPoint{C} + \tkzDefPointBy[rotation= center A angle -\tkzang ](B) + \tkzGetPoint{D} + \tkzCompass[length=1,dashed,color=red](A,C) + \tkzCompass[delta=10,brown](B,C) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(B,C,D) + \tkzLabelPoints[above left](A) + \tkzDrawSegments[style=dashed,color=orange!30](A,C A,D) +\end{tikzpicture} +\end{tkzexample} + + + +\subsection{Angle formed by three points} + +\begin{NewMacroBox}{tkzFindAngle}{\parg{pt1,pt2,pt3}}% +The result is stored in a macro \tkzcname{tkzAngleResult}. + +\medskip + +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{(pt1,pt2,pt3)} {\tkzcname{tkzFindAngle}(A,B,C)}{\tkzcname{tkzAngleResult} gives the angle ($\overrightarrow{BA},\overrightarrow{BC}$)} +\bottomrule +\end{tabular} + +\medskip +The result is between -180 degrees and +180 degrees. pt2 is the vertex and \tkzcname{tkzGetAngle} can retrieve the angle. +\end{NewMacroBox} -\subsubsection{Vérication de la mesure d'un angle} +\subsubsection{Verification of angle measurement} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] @@ -456,7 +506,32 @@ Détermine la valeur de l'angle en degrés. \end{tikzpicture} \end{tkzexample} -\subsubsection{Détermination des trois angles d'un triangle} +\subsection{Example of the use of \tkzcname{tkzFindAngle} } + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture} + \tkzInit[xmin=-1,ymin=-1,xmax=7,ymax=7] + \tkzClip + \tkzDefPoint (0,0){O} \tkzDefPoint (6,0){A} + \tkzDefPoint (5,5){B} \tkzDefPoint (3,4){M} + \tkzFindAngle (A,O,M) \tkzGetAngle{an} + \tkzDefPointBy[rotation=center O angle \an](A) + \tkzGetPoint{C} + \tkzDrawSector[fill = blue!50,opacity=.5](O,A)(C) + \tkzFindAngle(M,B,A) \tkzGetAngle{am} + \tkzDefPointBy[rotation = center O angle \am](A) + \tkzGetPoint{D} + \tkzDrawSector[fill = red!50,opacity = .5](O,A)(D) + \tkzDrawPoints(O,A,B,M,C,D) + \tkzLabelPoints(O,A,B,M,C,D) + \edef\an{\fpeval{round(\an,2)}}\edef\am{\fpeval{round(\am,2)}} + \tkzDrawSegments(M,B B,A) + \tkzText(4,2){$\widehat{AOC}=\widehat{AOM}=\an^{\circ}$} + \tkzText(1,4){$\widehat{AOD}=\widehat{MBA}=\am^{\circ}$} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Determination of the three angles of a triangle} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.25,rotate=30] @@ -484,32 +559,114 @@ Détermine la valeur de l'angle en degrés. \end{tikzpicture} \end{tkzexample} -\subsection{\tkzcname{tkzFindSlopeAngle}} -\begin{NewMacroBox}{tkzFindSlopeAngle}{\parg{A,B}} -Détermine la pente de la droite (AB). - \end{NewMacroBox} + \subsection{Determining a slope} +It is a question of determining whether it exists, the slope of a straight line defined by two points. No verification of the existence is made. + +\begin{NewMacroBox}{tkzFindSlope}{\parg{pt1,pt2}\marg{name of macro}}% +The result is stored in a macro. + +\medskip + +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{(pt1,pt2){pt3}} {\tkzcname{tkzFindSlope}(A,B)\{slope\}}{\tkzcname{slope} will give the result of $\frac{y_B-y_A}{x_B-x_A}$} \\ +\bottomrule +\end{tabular} + +\medskip +\tkzHandBomb\ Careful not to have $x_B=x_A$. +\end{NewMacroBox} + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzInit[xmax=4,ymax=5]\tkzGrid[sub] + \tkzDefPoint(1,2){A} \tkzDefPoint(3,4){B} + \tkzDefPoint(3,2){C} \tkzDefPoint(3,1){D} + \tkzDrawSegments(A,B A,C A,D) + \tkzDrawPoints[color=red](A,B,C,D) + \tkzLabelPoints(A,B,C,D) + \tkzFindSlope(A,B){SAB} \tkzFindSlope(A,C){SAC} + \tkzFindSlope(A,D){SAD} + \pgfkeys{/pgf/number format/.cd,fixed,precision=2} + \tkzText[fill=Gold!50,draw=brown](1,4)% + {The slope of (AB) is : $\pgfmathprintnumber{\SAB}$} + \tkzText[fill=Gold!50,draw=brown](1,3.5)% + {The slope of (AC) is : $\pgfmathprintnumber{\SAC}$} + \tkzText[fill=Gold!50,draw=brown](1,3)% + {The slope of (AD) is : $\pgfmathprintnumber{\SAD}$} +\end{tikzpicture} +\end{tkzexample} + +\subsection{Angle formed by a straight line with the horizontal axis \tkzcname{tkzFindSlopeAngle}} +Much more interesting than the last one. The result is between -180 degrees and +180 degrees. + +\begin{NewMacroBox}{tkzFindSlopeAngle}{\parg{A,B}}% +Determines the slope of the straight line (AB). The result is stored in a macro \tkzcname{tkzAngleResult}. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{(pt1,pt2)} {\tkzcname{tkzFindSlopeAngle}(A,B)}{} +\bottomrule +\end{tabular} + +\medskip +\tkzcname{tkzGetAngle} can retrieve the result. If retrieval is not necessary, you can use \tkzcname{tkzAngleResult}. +\end{NewMacroBox} - \subsubsection{Pliage} + \subsubsection{Folding} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoint(1,5){A} - \tkzDefPoint(5,2){B} \tkzDrawSegment(A,B) - \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} + \tkzDefPoint(5,2){B} + \tkzDrawSegment(A,B) + \tkzFindSlopeAngle(A,B) + \tkzGetAngle{tkzang} \tkzDefPointBy[rotation= center A angle \tkzang ](B) \tkzGetPoint{C} \tkzDefPointBy[rotation= center A angle -\tkzang ](B) \tkzGetPoint{D} - \tkzCompass[length=1](A,C) - \tkzCompass[delta=10](B,C) \tkzDrawPoints(A,B,C,D) - \tkzLabelPoints(B,C,D) \tkzLabelPoints[above left](A) + \tkzCompass[orange,length=1](A,C) + \tkzCompass[orange,delta=10](B,C) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(B,C,D) + \tkzLabelPoints[above left](A) \tkzDrawSegments[style=dashed,color=orange](A,C A,D) \end{tikzpicture} \end{tkzexample} +\subsubsection{Example of the use of \tkzcname{tkzFindSlopeAngle}} +Here is another version of the construction of a mediator + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,2){B} + \tkzDefLine[mediator](A,B) + \tkzGetPoints{I}{J} + \tkzCalcLength[cm](A,B) + \tkzGetLength{dAB} + \tkzFindSlopeAngle(A,B) + \tkzGetAngle{tkzangle} + \begin{scope}[rotate=\tkzangle] + \tikzset{arc/.style={color=gray,delta=10}} + \tkzDrawArc[orange,R,arc](B,3/4*\dAB)(120,240) + \tkzDrawArc[orange,R,arc](A,3/4*\dAB)(-45,60) + \tkzDrawLine(I,J) + \tkzDrawSegment(A,B) + \end{scope} + \tkzDrawPoints(A,B,I,J) + \tkzLabelPoints(A,B) + \tkzLabelPoints[right](I,J) +\end{tikzpicture} +\end{tkzexample} \endinput -% \tkzGetAngle -% \tkzNormalizeAngle -% \tkzFindSlopeAngle -% \tkzFindAngle + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex index 91d130cabd5..9c802352a1c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex @@ -1,44 +1,44 @@ -\section{Les arcs} +\section{The arcs} +\begin{NewMacroBox}{tkzDrawArc}{\oarg{local options}\parg{O,\dots}\parg{\dots}}% -\begin{NewMacroBox}{tkzDrawArc}{\oarg{local options}\parg{O,\dots}\parg{\dots} } - -Cette macro trace un arc de centre O. Suivant les options, les arguments diffèrent. Il s'agit de déterminer un point de départ et un point d'arrivée. Soit le point de départ est donné, c'est ce qu'il y a de plus simple, soit on donne le rayon de l'arc. Dans ce dernier cas, il est nécessaire d'avoir deux angles. On peut soit donner directement les angles, soit donner des nodes qui associés au centre permettront de les déterminer. +This macro traces the arc of center $O$. Depending on the options, the arguments differ. It is a question of determining a starting point and an end point. Either the starting point is given, which is the simplest, or the radius of the arc is given. In the latter case, it is necessary to have two angles. Either the angles can be given directly, or nodes associated with the center can be given to determine them. The angles are in degrees. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} -\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } -\TOline{R}{towards}{On donne le rayon et deux angles} -\TOline{R with nodes}{towards}{On donne le rayon et deux points} -\TOline{delta}{0}{angle ajouté de chaque côté } +\TOline{towards}{towards}{$O$ is the center and the arc from $A$ to $(OB)$} +\TOline{rotate} {towards}{the arc starts from $A$ and the angle determines its length} +\TOline{R}{towards}{We give the radius and two angles} +\TOline{R with nodes}{towards}{We give the radius and two points} +\TOline{angles}{towards}{We give the radius and two points} +\TOline{delta}{0}{angle added on each side } \bottomrule \end{tabular} \medskip -Il faut ajouter bien sûr tous les styles de \TIKZ pour les tracés +Of course, you have to add all the styles of \TIKZ\ for the tracings... \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & arguments & exemple \\ +options & arguments & example \\ \midrule \TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzDrawArc[delta=10](O,A)(B)}} \TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzDrawArc[rotate,color=red](O,A)(90)}} -\TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzDrawArc[R,color=blue](O,2 cm)(30,90)}} +\TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzDrawArc[R](O,2 cm)(30,90)}} \TOline{R with nodes}{\parg{pt,$r$}\parg{pt,pt}}{\tkzcname{tkzDrawArc[R with nodes](O,2 cm)(A,B)}} -\bottomrule +\TOline{angles}{\parg{pt,pt}\parg{an,an}}{\tkzcname{tkzDrawArc[angles](O,A)(0,90)}} \end{tabular} \end{NewMacroBox} -Quelques exemples : +Here are a few examples: -\subsection{\tkzcname{tkzDrawArc} et \tkzname{towards}} -Il est inutile de mettre \tkzname{towards}. Dans ce premier exemple l'arc part de A et va sur B. L'arc qui va de B vers A est différent. On obtient le saillant en allant dans le sens direct du cercle trigonométrique. +\subsection{Option \tkzname{towards}} +It's useless to put \tkzname{towards}. In this first example the arc starts from $A$ and goes to $B$. The arc going from $B$ to $A$ is different. The salient is obtained by going in the direct direction of the trigonometric circle. \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -54,8 +54,8 @@ Il est inutile de mettre \tkzname{towards}. Dans ce premier exemple l'arc part d \end{tkzexample} -\subsection{\tkzcname{tkzDrawArc} et \tkzname{towards}} -Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). +\subsection{Option \tkzname{towards}} +In this one, the arc starts from A but stops on the right (OB). \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1.5] @@ -71,7 +71,7 @@ Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). \end{tikzpicture} \end{tkzexample} -\subsection{\tkzcname{tkzDrawArc} et \tkzname{rotate}} +\subsection{Option \tkzname{rotate}} \begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -85,7 +85,7 @@ Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). \end{tkzexample} -\subsection{\tkzcname{tkzDrawArc} et \tkzname{R}} +\subsection{Option \tkzname{R}} \begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoints{0/0/O} @@ -97,7 +97,7 @@ Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). \end{tikzpicture} \end{tkzexample} -\subsection{\tkzcname{tkzDrawArc} et \tkzname{R with nodes}} +\subsection{Option \tkzname{R with nodes}} \begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){O} @@ -108,12 +108,11 @@ Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). \end{tikzpicture} \end{tkzexample} -\subsection{\tkzcname{tkzDrawArc} et \tkzname{delta}} -Cette option permet un peu comme \tkzcname{tkzCompass} de placer un arc et de déborder de chaque côté. delta est une mesure en degré. +\subsection{Option \tkzname{delta}} +This option allows a bit like \tkzcname{tkzCompass} to place an arc and overflow on either side. delta is a measure in degrees. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} - \tkzInit \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} \tkzDefPointBy[rotation= center A angle 60](B) @@ -124,15 +123,56 @@ Cette option permet un peu comme \tkzcname{tkzCompass} de placer un arc et de d \tkzDrawSegments(A,B A,D) \tkzDrawLine(B,D) \tkzSetUpCompass[color=orange] - \tkzDrawArc[delta=10](A,B)(C) - \tkzDrawArc[delta=10](B,C)(A) - \tkzDrawArc[delta=10](C,D)(D) + \tkzDrawArc[orange,delta=10](A,B)(C) + \tkzDrawArc[orange,delta=10](B,C)(A) + \tkzDrawArc[orange,delta=10](C,D)(D) \tkzDrawPoints(A,B,C,D) \tkzLabelPoints(A,B,C,D) \tkzMarkRightAngle(D,B,A) \end{tikzpicture} \end{tkzexample} +\subsection{Option \tkzname{angles}: example 1} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(2.5,0){O} + \tkzDefPointBy[rotation=center O angle 60](B) + \tkzGetPoint{D} + \tkzDefPointBy[symmetry=center D](O) + \tkzGetPoint{E} + \tkzSetUpLine[color=Maroon] + \tkzDrawArc[angles](O,B)(0,180) + \tkzDrawArc[angles,](B,O)(100,180) + \tkzCompass[delta=20](D,E) + \tkzDrawLines(A,B O,E B,E) + \tkzDrawPoints(A,B,O,D,E) + \tkzLabelPoints(A,B,O,D,E) + \tkzMarkRightAngle(O,B,E) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Option \tkzname{angles}: example 2} + + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(5,0){I} + \tkzDefPoint(0,5){J} + \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} + \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} + \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} + \tkzDrawArc[angles](O,I)(0,90) + \tkzDrawArc[angles,color=gray,style=dashed](I,O)(90,180) + \tkzDrawArc[angles,color=gray,style=dashed](J,O)(-90,0) + \tkzDrawPoints(A,B,K) + \foreach \point in {I,A,B,J,K}{\tkzDrawSegment(O,\point)} + \end{tikzpicture} +\end{tkzexample} + \endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex index 4f10a562930..6e250bb49ab 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex @@ -14,9 +14,9 @@ The two macros in \tkzNamePack{tkz-base} that are useful for \tkzNamePack{tkz-eu \end{itemize} \vspace{20pt} -To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the documentation of \tkzNamePack{tkz-base} section BB) +To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the documentation of \tkzNamePack{tkz-base} section Bounding Box). -\subsection{\tkzcname{tkzInit} et \tkzcname{tkzShowBB}} +\subsection{\tkzcname{tkzInit} and \tkzcname{tkzShowBB}} The rectangle around the figure shows you the bounding box. \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture} @@ -44,7 +44,7 @@ It is possible to add a bit of space \tkzClip[space=1] \end{tkzltxexample} -\subsection{\tkzcname{tkzClip} et l'option \tkzname{space}} +\subsection{\tkzcname{tkzClip} and the option \tkzname{space}} This option allows you to add some space around the "clipped" rectangle. \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture} @@ -55,7 +55,7 @@ This option allows you to add some space around the "clipped" rectangle. \draw[red] (-1,-1)--(5,2); \end{tikzpicture} \end{tkzexample} -the dimensions of the "clipped" rectangle are \tkzname{xmin-1}, \tkzname{ymin-1}, \tkzname{xmax+1} et \tkzname{ymax+1}. +The dimensions of the "clipped" rectangle are \tkzname{xmin-1}, \tkzname{ymin-1}, \tkzname{xmax+1} and \tkzname{ymax+1}. \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex index 66bbea6c769..7b58f6dffd8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex @@ -3,39 +3,38 @@ Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle. \begin{itemize} - \item I have created a first macro \tkzcname{tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \tkzcname{tkzGetPoint} and \tkzcname{tkzGetLength}, + \item I have created a first macro \tkzcname{tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \tkzcname{tkzGetPoint} and \tkzcname{tkzGetLength}; - \item then a macro \tkzcname{tkzDrawCircle} + \item then a macro \tkzcname{tkzDrawCircle}; - \item then a macro that allows you to color in a disc, but without drawing the circle \tkzcname{tkzFillCircle} + \item then a macro that allows you to color in a disc, but without drawing the circle \tkzcname{tkzFillCircle}; - \item sometimes, it is necessary for a drawing to be contained in a disk this is the role assigned to \tkzcname{tkzClipCircle}, + \item sometimes, it is necessary for a drawing to be contained in a disk, this is the role assigned to \tkzcname{tkzClipCircle}; - \item It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. -\end{itemize} - + \item it finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. +\end{itemize} -\subsection{Characteristics of a circle : \tkzcname{tkzDefCircle}} +\subsection{Characteristics of a circle: \tkzcname{tkzDefCircle}} This macro allows you to retrieve the characteristics (center and radius) of certain circles. -\begin{NewMacroBox}{tkzDefCircle}{\oarg{local options}\parg{A,B} ou \parg{A,B,C}} +\begin{NewMacroBox}{tkzDefCircle}{\oarg{local options}\parg{A,B} or \parg{A,B,C}}% \tkzHandBomb\ Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzcname{tkzGetPoint} and/or \tkzcname{tkzGetLength} to obtain the center and the radius of the circle, or by using \tkzname{tkzPointResult} and \tkzname{tkzLengthResult} if it is not necessary to keep the results. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -arguments & exemple & explication \\ +arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}{\parg{A,B}} {$[AB]$ is radius $A$ is the center} \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & derror & definition \\ +options & default & definition \\ \midrule \TOline{through} {through}{circle characterized by two points defining a radius} \TOline{diameter} {through}{circle characterized by two points defining a diameter} @@ -54,7 +53,7 @@ options & derror & definition \\ {In the following examples, I draw the circles with a macro not yet presented, but this is not necessary. In some cases you may only need the center or the radius.} \end{NewMacroBox} - \subsubsection{Example with a random point and the option \tkzimp{through}} + \subsubsection{Example with a random point and option \tkzname{through}} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture}[scale=1] @@ -72,13 +71,13 @@ options & derror & definition \\ \tkzLabelCircle[draw,fill=orange, text width=3cm,text centered, font=\scriptsize](A,C)(-90)% - {La mesure du rayon est : - \rACpt pt soit \rACcm cm} + {The radius measurement is: + \rACpt pt i.e. \rACcm cm} \end{tikzpicture} \end{tkzexample} - \subsubsection{Example with the option \tkzimp{diameter}} - It is simpler here to search directly for the middle of AB + \subsubsection{Example with option \tkzname{diameter}} + It is simpler here to search directly for the middle of $[AB]$. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} @@ -93,7 +92,7 @@ options & derror & definition \\ \end{tkzexample} \subsubsection{Circles inscribed and circumscribed for a given triangle} - You can also obtain the center of the inscribed circle and its projection on one side of the triangle with \tkzcname{tkzGetFirstPoint{I}} et \tkzcname{tkzGetSecondPoint{Ib}}. + You can also obtain the center of the inscribed circle and its projection on one side of the triangle with \tkzcname{tkzGetFirstPoint{I}} and \tkzcname{tkzGetSecondPoint{Ib}}. \begin{tkzexample}[latex=7cm,small] @@ -114,21 +113,21 @@ options & derror & definition \\ \end{tikzpicture} \end{tkzexample} - \subsubsection{Example with the option \tkzimp{ex}} -We want to define an excircle of a triangle relativement au point C + \subsubsection{Example with option \tkzname{ex}} +We want to define an excircle of a triangle relatively to point $C$ \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} \tkzDefCircle[ex](B,C,A) - \tkzGetPoint{Jc} \tkzGetLength{rc} - \tkzDefPointBy[projection=onto A--C ](Jc) - \tkzGetPoint{Xc} - \tkzDefPointBy[projection=onto A--B ](Jc) - \tkzGetPoint{Yc} + \tkzGetPoint{J_c} \tkzGetLength{rc} + \tkzDefPointBy[projection=onto A--C ](J_c) + \tkzGetPoint{X_c} + \tkzDefPointBy[projection=onto A--B ](J_c) + \tkzGetPoint{Y_c} \tkzGetPoint{I} \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawCircle[R,color=lightgray](Jc,\rc pt) + \tkzDrawCircle[R,color=lightgray](J_c,\rc pt) % possible \tkzDrawCircle[ex](A,B,C) \tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I} \tkzDefPointBy[projection=onto A--C ](I) @@ -136,16 +135,16 @@ We want to define an excircle of a triangle relativement au point C \tkzDefPointBy[projection=onto A--B ](I) \tkzGetPoint{D} \tkzDrawLines[add=0 and 2.2,dashed](C,A C,B) - \tkzDrawSegments[dashed](Jc,Xc I,D I,F Jc,Yc) - \tkzMarkRightAngles(A,F,I B,D,I Jc,Xc,A Jc,Yc,B) - \tkzDrawPoints(B,C,A,I,D,F,Xc,Jc,Yc) - \tkzLabelPoints(B,A,Jc,I,D,Xc,Yc) + \tkzDrawSegments[dashed](J_c,X_c I,D I,F J_c,Y_c) + \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B) + \tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c) + \tkzLabelPoints(B,A,J_c,I,D,X_c,Y_c) \tkzLabelPoints[above left](C) \tkzLabelPoints[left](F) \end{tikzpicture} \end{tkzexample} - \subsubsection{Euler's circle for a given triangle} + \subsubsection{Euler's circle for a given triangle with option \tkzname{euler}} We verify that this circle passes through the middle of each side. \begin{tkzexample}[latex=8cm,small] @@ -154,8 +153,8 @@ We verify that this circle passes through the middle of each side. \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C} \tkzDefCircle[euler](A,B,C) \tkzGetPoint{E} \tkzGetLength{rEuler} - \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} - \tkzDrawPoints(A,B,C,E,Ma,Mb,Mc) + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} + \tkzDrawPoints(A,B,C,E,M_a,M_b,M_c) \tkzDrawCircle[R,blue](E,\rEuler pt) \tkzDrawPolygon(A,B,C) \tkzLabelPoints[below](B,C) @@ -163,7 +162,7 @@ We verify that this circle passes through the middle of each side. \end{tikzpicture} \end{tkzexample} - \subsubsection{Coloured Apollonius circles for a given segment} + \subsubsection{Apollonius circles for a given segment option \tkzname{apollonius}} \begin{tkzexample}[latex=9cm,small] \begin{tikzpicture}[scale=0.75] @@ -184,7 +183,7 @@ We verify that this circle passes through the middle of each side. \end{tikzpicture} \end{tkzexample} - \subsubsection{Circles exinscribed to a given triangle} + \subsubsection{Circles exinscribed to a given triangle option \tkzname{ex}} You can also get the center and the projection of it on one side of the triangle. with \tkzcname{tkzGetFirstPoint\{Jb\}} and \tkzcname{tkzGetSecondPoint\{Tb\}}. @@ -214,28 +213,28 @@ We verify that this circle passes through the middle of each side. \end{tikzpicture} \end{tkzexample} - \subsubsection{Spieker circle} -The incircle of the medial triangle $M_AM_BM_C$ is the Spieker circle + \subsubsection{Spieker circle with option \tkzname{spieker}} +The incircle of the medial triangle $M_aM_bM_c$ is the Spieker circle: \begin{tkzexample}[latex=8cm, small] \begin{tikzpicture}[scale=1] \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} - \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} \tkzDefTriangleCenter[spieker](A,B,C) - \tkzGetPoint{Sp} + \tkzGetPoint{S_p} \tkzDrawPolygon[blue](A,B,C) - \tkzDrawPolygon[red](Ma,Mb,Mc) + \tkzDrawPolygon[red](M_a,M_b,M_c) \tkzDrawPoints[blue](B,C,A) - \tkzDrawPoints[red](Ma,Mb,Mc,Sp) - \tkzDrawCircle[in,red](Ma,Mb,Mc) - \tkzAutoLabelPoints[center=Sp,dist=.3](Ma,Mb,Mc) - \tkzLabelPoints[blue,right](Sp) - \tkzAutoLabelPoints[center=Sp](A,B,C) + \tkzDrawPoints[red](M_a,M_b,M_c,S_p) + \tkzDrawCircle[in,red](M_a,M_b,M_c) + \tkzAutoLabelPoints[center=S_p,dist=.3](M_a,M_b,M_c) + \tkzLabelPoints[blue,right](S_p) + \tkzAutoLabelPoints[center=S_p](A,B,C) \end{tikzpicture} \end{tkzexample} - \subsubsection{Orthogonal circle passing through two given points} + \subsubsection{Orthogonal circle passing through two given points, option \tkzname{orthogonal through}} \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture}[scale=1] @@ -272,121 +271,35 @@ The incircle of the medial triangle $M_AM_BM_C$ is the Spieker circle \end{tikzpicture} \end{tkzexample} - %<----------------------------------------------------------------------------> -% Tangente -%<----------------------------------------------------------------------------> -\subsection{Tangent to a circle} -Two constructions are proposed. The first one is the construction of a tangent to a circle at a given point of this circle and the second one is the construction of a tangent to a circle passing through a given point outside a disc. - -\begin{NewMacroBox}{tkzDefTangent}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,dim}} -The parameter in brackets is the center of the circle or the center of the circle and a point on the circle or the center and the radius. - -\medskip -\begin{tabular}{lll} -\toprule -arguments & exemple & explication \\ -\midrule -\TAline{\parg{pt1,pt2 or \parg{pt1,dim}} }{\parg{A,B} or \parg{A,2cm}} {$[AB]$ is radius $A$ is the center} -\bottomrule -\end{tabular} - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ -\midrule -\TOline{at=pt}{at}{tangent to a point on the circle} -\TOline{from=pt} {at}{tangent to a circle passing through a point} -\TOline{from with R=pt} {at}{idem, but the circle is defined by center = radius} -\bottomrule -\end{tabular} - -The tangent is not drawn. A second point of the tangent is given by \tkzname{tkzPointResult}. -\end{NewMacroBox} - - \subsubsection{Example of a tangent passing through a point on the circle } -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){O} - \tkzDefPoint(6,6){E} - \tkzDefRandPointOn[circle=center O radius 4cm] - \tkzGetPoint{A} - \tkzDrawSegment(O,A) - \tkzDrawCircle(O,A) - \tkzDefTangent[at=A](O) - \tkzGetPoint{h} - \tkzDrawLine[add = 4 and 3](A,h) - \tkzMarkRightAngle[fill=red!30](O,A,h) -\end{tikzpicture} -\end{tkzexample} - - \subsubsection{Example of tangents passing through an external point } - -\begin{tkzexample}[latex=6cm,small] -\begin{tikzpicture}[scale=0.75] - \tkzDefPoint(3,3){c} - \tkzDefPoint(6,3){a0} - \tkzRadius=1 cm - \tkzDrawCircle[R](c,\tkzRadius) - \foreach \an in {0,10,...,350}{ - \tkzDefPointBy[rotation=center c angle \an](a0) - \tkzGetPoint{a} - \tkzDefTangent[from with R = a](c,\tkzRadius) - \tkzGetPoints{e}{f} - \tkzDrawLines[color=magenta](a,f a,e) - \tkzDrawSegments(c,e c,f) - }% -\end{tikzpicture} -\end{tkzexample} - - \subsubsection{Example of Andrew Mertz } - -\begin{tkzexample}[latex=6cm,small] - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B} - \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R} - \tkzDrawCircle(C,R) - \tkzDefTangent[from = A](C,R) \tkzGetPoints{D}{E} - \tkzDefTangent[from = B](C,R) \tkzGetPoints{F}{G} - \tkzDrawSector[fill=blue!80!black,opacity=0.5](A,D)(E) - \tkzFillSector[color=red!80!black,opacity=0.5](B,F)(G) - \tkzInterCC(A,D)(B,F) \tkzGetSecondPoint{I} - \tkzDrawPoint[color=black](I) - \end{tikzpicture} -\end{tkzexample} -\url{http://www.texample.net/tikz/examples/} - -\section{Draw, Label The Circles} - -Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. +\section{Draw, Label the Circles} \begin{itemize} \item I created a first macro \tkzcname{tkzDrawCircle}, \item then a macro that allows you to color a disc, but without drawing the circle. \tkzcname{tkzFillCircle}, - \item sometimes, it is necessary for a drawing to be contained in a disc is the role assigned to \tkzcname{tkzClipCircle}, + \item sometimes, it is necessary for a drawing to be contained in a disc,this is the role assigned to \tkzcname{tkzClipCircle}, \item It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. \end{itemize} \subsection{Draw a circle} -\begin{NewMacroBox}{tkzDrawCircle}{\oarg{local options}\parg{A,B}} -\tkzHandBomb\ Attention the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} to give directly a measure. +\begin{NewMacroBox}{tkzDrawCircle}{\oarg{local options}\parg{A,B}}% +\tkzHandBomb\ Attention you need only two points to define a radius or a diameter. An additional option \tkzname{R} is available to give a measure directly. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -arguments & exemple & explication \\ +arguments & example & explication \\ \midrule -\TAline{\parg{pt1,pt2 pt3,pt4 ...}}{\parg{A,B C,D}} {List of two points} +\TAline{\parg{pt1,pt2}}{\parg{A,B}} {two points to define a radius or a diameter} \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule @@ -397,7 +310,7 @@ options & default & definition \\ \end{tabular} \medskip -Of course, you have to add all the styles of \TIKZ for the tracings... +Of course, you have to add all the styles of \TIKZ\ for the tracings... \end{NewMacroBox} \subsubsection{Circles and styles, draw a circle and color the disc} @@ -407,33 +320,33 @@ Of course, you have to add all the styles of \TIKZ for the tracings... \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(3,0){A} - % cercle de centre O et passant par A - \tkzDrawCircle[color=blue,style=dashed](O,A) - % cercle de diamètre $[OA]$ + % circle with centre O and passing through A + \tkzDrawCircle[color=blue](O,A) + % diameter circle $[OA]$ \tkzDrawCircle[diameter,color=red,% line width=2pt,fill=red!40,% opacity=.5](O,A) - % cercle de centre O et de rayon = exp(1) cm - \edef\rayon{\fpeval{exp(1)}} + % circle with centre O and radius = exp(1) cm + \edef\rayon{\fpeval{0.25*exp(1)}} \tkzDrawCircle[R,color=orange](O,\rayon cm) \end{tikzpicture} \end{tkzexample} \subsection{Drawing circles} -\begin{NewMacroBox}{tkzDrawCircles}{\oarg{local options}\parg{A,B C,D}} -\tkzHandBomb\ Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} to give directly a measure. +\begin{NewMacroBox}{tkzDrawCircles}{\oarg{local options}\parg{A,B C,D}}% +\tkzHandBomb\ Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} is available to give a measure directly. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -arguments & exemple & explication \\ +arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2 pt3,pt4 ...}}{\parg{A,B C,D}} {List of two points} \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule @@ -444,7 +357,7 @@ options & default & definition \\ \end{tabular} \medskip -Of course, you have to add all the styles of \TIKZ for the tracings... +Of course, you have to add all the styles of \TIKZ\ for the tracings... \end{NewMacroBox} \subsubsection{Circles defined by a triangle.} @@ -479,56 +392,80 @@ Of course, you have to add all the styles of \TIKZ for the tracings... \tkzDefPoints{0/0/A,4/0/B,1/2.5/C} \tkzDrawPolygon(A,B,C) \tkzDefCircle[ex](B,C,A) -\tkzGetPoint{Jc} \tkzGetSecondPoint{Tc} +\tkzGetPoint{J_c} \tkzGetSecondPoint{T_c} \tkzGetLength{rJc} -\tkzDrawCircle[R](Jc,{\rJc pt}) +\tkzDrawCircle[R](J_c,{\rJc pt}) \tkzDrawLines[add=0 and 1](C,A C,B) -\tkzDrawSegment(Jc,Tc) -\tkzMarkRightAngle(Jc,Tc,B) -\tkzDrawPoints(A,B,C,Jc,Tc) +\tkzDrawSegment(J_c,T_c) +\tkzMarkRightAngle(J_c,T_c,B) +\tkzDrawPoints(A,B,C,J_c,T_c) \end{tikzpicture} \end{tkzexample} - \subsubsection{Cardioid} - Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. +\subsubsection{Cardioid} +Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. - Its name comes from the Greek kardia (heart), in reference to its shape, and was given to it by Johan Castillon. Wikipedia + Its name comes from the Greek \textit{kardia (heart)}, in reference to its shape, and was given to it by Johan Castillon (Wikipedia). - \begin{tkzexample}[latex=7cm,small] - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){O} - \tkzDefPoint(2,0){A} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:2){M} - \tkzDrawCircle(M,A) - } - \end{tikzpicture} - \end{tkzexample} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,0){A} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:2){M} + \tkzDrawCircle(M,A) + } +\end{tikzpicture} +\end{tkzexample} \subsection{Draw a semicircle} -\begin{NewMacroBox}{tkzDrawSemiCircle}{\oarg{local options}\parg{A,B} ou \parg{A,B,C}} -\tkzHandBomb\ Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzcname{tkzGetPoint} and/or \tkzcname{tkzGetLength} to obtain the center and the radius of the circle, or by using \\ \tkzname{tkzPointResult} and \tkzname{tkzLengthResult} if it is not necessary to keep the results. - +\begin{NewMacroBox}{tkzDrawSemiCircle}{\oarg{local options}\parg{A,B}}% \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{O,A} or\parg{A,B}} {radius or diameter} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule \TOline{through} {through}{circle characterized by two points defining a radius} \TOline{diameter} {through}{circle characterized by two points defining a diameter} - \bottomrule \end{tabular} +\end{NewMacroBox} +\subsubsection{Use of \tkzcname{tkzDrawSemiCircle}} + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzDrawPolygon(B,C,D,A) + \tkzDefPoint(3,6){F} + \tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J} + \tkzInterLL(D,B)(I,J) \tkzGetPoint{K} + \tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M} + \tkzDrawCircle(M,I) + \tkzCalcLength(M,I) \tkzGetLength{dMI} + \tkzFillPolygon[color = red!50](A,B,C,D) + \tkzFillCircle[R,color = yellow](M,\dMI pt) + \tkzDrawSemiCircle[fill = blue!50!black](F,D)% + \end{tikzpicture} +\end{tkzexample} -\end{NewMacroBox} - \subsection{Colouring a disc} This was possible with the previous macro, but disk tracing was mandatory, this is no longer the case. -\begin{NewMacroBox}{tkzFillCircle}{\oarg{local options}\parg{A,B}} -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzFillCircle}{\oarg{local options}\parg{A,B}}% +\begin{tabular}{lll}% options & default & definition \\ \midrule \TOline{radius} {radius}{two points define a radius} @@ -537,7 +474,7 @@ options & default & definition \\ \end{tabular} \medskip -You don't need to put \tkzname{radius} because that's the default option. Of course, you have to add all the styles of \TIKZ for the plots. +You don't need to put \tkzname{radius} because that's the default option. Of course, you have to add all the styles of \TIKZ\ for the plots. \end{NewMacroBox} \subsubsection{Example from a sangaku} @@ -564,25 +501,19 @@ You don't need to put \tkzname{radius} because that's the default option. Of cou \end{tikzpicture} \end{tkzexample} - - -\newpage \subsection{Clipping a disc} -\begin{NewMacroBox}{tkzClipCircle}{\oarg{local options}\parg{A,B} or \parg{A,r}} - - -\medskip -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzClipCircle}{\oarg{local options}\parg{A,B} or \parg{A,r}}% +\begin{tabular}{lll}% \toprule -arguments & exemple & explication \\ +arguments & example & explication \\ \midrule \TAline{\parg{A,B} or \parg{A,r}}{\parg{A,B} or \parg{A,2cm}} {AB radius or diameter } \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% options & default & definition \\ \midrule \TOline{radius} {radius}{circle characterized by two points defining a radius} @@ -614,10 +545,8 @@ It is not necessary to put \tkzname{radius} because that is the default option. \subsection{Giving a label to a circle} -\begin{NewMacroBox}{tkzLabelCircle}{\oarg{local options}\parg{A,B}\parg{angle}\marg{label}} -\begin{tabular}{lll} -\toprule - +\begin{NewMacroBox}{tkzLabelCircle}{\oarg{local options}\parg{A,B}\parg{angle}\marg{label}}% +\begin{tabular}{lll}% options & default & definition \\ \midrule \TOline{radius} {radius}{circle characterized by two points defining a radius} @@ -644,7 +573,7 @@ You don't need to put \tkzname{radius} because that's the default option. We can \tkzFillCircle[color=blue!20,opacity=.4](O,M) \tkzLabelCircle[R,draw,fill=orange,% text width=2cm,text centered](O,3 cm)(-60)% - {Le cercle\\ $\mathcal{C}$} + {The circle\\ $\mathcal{C}$} \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) \end{tikzpicture} \end{tkzexample} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex index 0521c587228..a66e7809a18 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex @@ -1,17 +1,18 @@ -\section{Utilisation du compas} +\section{Using the compass} -\subsection{Macro principale \tkzcname{tkzCompass}} -\begin{NewMacroBox}{tkzCompass}{\oarg{local options}\parg{A,B}} -Cette macro permet de laisser une trace de compas autrement dit un arc en un point désigné. Il faut indiquer le centre. Plusieurs options spécifiques vont modifier l'aspect de l'arc ainsi que les options de TikZ comme le style, la couleur, l'épaisseur du trait etc. +\subsection{Main macro \tkzcname{tkzCompass}} +\begin{NewMacroBox}{tkzCompass}{\oarg{local options}\parg{A,B}}% +This macro allows you to leave a compass trace, i.e. an arc at a designated point. The center must be indicated. Several specific options will modify the appearance of the arc as well as TikZ options such as style, color, line thickness etc. + +You can define the length of the arc with the option |length| or the option |delta|. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{delta} {0}{Modifie l'angle de l'arc en l'augmentant symétriquement} -\TOline{length}{1}{Modifie la longueur} -\bottomrule +\TOline{delta} {0 (deg)}{Modifies the angle of the arc by increasing it symmetrically (in degrees)} +\TOline{length}{1 (cm)}{Changes the length (in cm)} \end{tabular} \end{NewMacroBox} @@ -44,15 +45,17 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsection{Multiples constructions \tkzcname{tkzCompasss}} -\begin{NewMacroBox}{tkzCompasss}{\oarg{local options}\parg{pt1,pt2 pt3,pt4,...}} -\tkzHandBomb\ Attention les arguments sont des listes de deux points. Cela permet d'économiser quelques lignes de codes. -\begin{tabular}{lll} +\subsection{Multiple constructions \tkzcname{tkzCompasss}} +\begin{NewMacroBox}{tkzCompasss}{\oarg{local options}\parg{pt1,pt2 pt3,pt4,\dots}}% +\tkzHandBomb\ Attention the arguments are lists of two points. This saves a few lines of code. + +\medskip +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{delta} {0}{Modifie l'angle de l'arc en l'augmentant symétriquement} -\TOline{length}{1}{Modifie la longueur} +\TOline{delta} {0}{Modifies the angle of the arc by increasing it symmetrically} +\TOline{length}{1}{Changes the length} \end{tabular} \end{NewMacroBox} @@ -75,21 +78,19 @@ options & default & definition \\ \end{tkzexample} -\subsection{Macro de configuration \tkzcname{tkzSetUpCompass}} +\subsection{Configuration macro \tkzcname{tkzSetUpCompass}} -\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}}% +\begin{tabular}{lll}% options & default & definition \\ \midrule -\TOline{line width} {0.4pt}{épaisseur du trait} -\TOline{color} {black!50}{couleur du trait} -\TOline{style} {solid}{style du trait solid, dashed,dotted,...} +\TOline{line width} {0.4pt}{line thickness} +\TOline{color} {black!50}{line colour} +\TOline{style} {solid}{solid line style, dashed,dotted,...} \end{tabular} \end{NewMacroBox} -\begin{tkzltxexample}[] - \tkzSetUpCompass[color=blue,line width=.3 pt] -\end{tkzltxexample} +\subsubsection{Use of \tkzcname{tkzSetUpCompass}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75, diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex index 7c5c13b33c9..c4bdaa1a224 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex @@ -1,23 +1,23 @@ \section{Customization} -\subsection{\tkzcname{tkzSetUpLine}} \label{tkzsetupline} -It is a macro that allows you to define the style of all the lines. +\subsection{Use of \tkzcname{tkzSetUpLine}} \label{tkzsetupline} It is a macro that allows you to define the style of all the lines. -\begin{NewMacroBox}{tkzSetUpLine}{\oarg{local options}} -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzSetUpLine}{\oarg{local options}}% +\begin{tabular}{lll}% options & default & definition \\ \midrule -\TOline{color}{black}{colour of the construction arcs} -\TOline{line width}{0.4pt}{thickness of the construction arcs} -\TOline{style}{solid}{style des arcs de cercle de construction} -\TOline{add}{.2 and .2}{changing the length of a segment} +\TOline{color}{black}{colour of the construction lines} +\TOline{line width}{0.4pt}{thickness of the construction lines} +\TOline{style}{solid}{style of construction lines} +\TOline{add}{.2 and .2}{changing the length of a line segment} \end{tabular} \end{NewMacroBox} -\subsubsection{Example 1 change line width} +\subsubsection{Example 1: change line width} \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture} + \tkzSetUpLine[color=blue,line width=1pt] \begin{scope}[rotate=-90] \tkzDefPoint(10,6){C} \tkzDefPoint( 0,6){A} @@ -29,7 +29,6 @@ options & default & definition \\ \tkzMarkRightAngle[size=.4,fill=red!20](B,H,C) \tkzDrawSegment[color=red](C,H) \end{scope} - \tkzSetUpLine[color=blue,line width=1pt] \tkzLabelSegment[below](C,B){$a$} \tkzLabelSegment[right](A,C){$b$} \tkzLabelSegment[left](A,B){$c$} @@ -44,7 +43,7 @@ options & default & definition \\ -\subsubsection{Example 2 change style of line} +\subsubsection{Example 2: change style of line} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.6] @@ -52,17 +51,17 @@ options & default & definition \\ \tkzDefPoint(1,1){C} \tkzDefPoint(5,1){D} \tkzDefPoint(1,2){E} \tkzDefPoint(6,2){F} \tkzDefPoint(0,4){A'}\tkzDefPoint(3,4){B'} - \tkzDrawSegments(A,B C,D E,F) - \tkzDrawLine(A',B') + \tkzCalcLength[cm](C,D) \tkzGetLength{rCD} + \tkzCalcLength[cm](E,F) \tkzGetLength{rEF} + \tkzInterCC[R](A',\rCD cm)(B',\rEF cm) + \tkzGetPoints{I}{J} \tkzSetUpLine[style=dashed,color=gray] + \tkzDrawLine(A',B') \tkzCompass(A',B') - \tkzCalcLength[cm](C,D) \tkzGetLength{rCD} + \tkzDrawSegments(A,B C,D E,F) \tkzDrawCircle[R](A',\rCD cm) - \tkzCalcLength[cm](E,F) \tkzGetLength{rEF} \tkzDrawCircle[R](B',\rEF cm) - \tkzInterCC[R](A',\rCD cm)(B',\rEF cm) - \tkzGetPoints{I}{J} - \tkzSetUpLine[color=red] \tkzDrawLine(A',B') + \tkzSetUpLine[color=red] \tkzDrawSegments(A',I B',I) \tkzDrawPoints(A,B,C,D,E,F,A',B',I,J) \tkzLabelPoints(A,B,C,D,E,F,A',B',I,J) @@ -70,7 +69,7 @@ options & default & definition \\ \end{tkzexample} -\subsubsection{Example 3 extend lines} +\subsubsection{Example 3: extend lines} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzSetUpLine[add=.5 and .5] @@ -80,21 +79,19 @@ options & default & definition \\ \end{tkzexample} -\subsection{\tkzcname{tkzSetUpPoint}} +\subsection{Points style} +\begin{NewMacroBox}{tkzSetUpPoint}{\oarg{local options}}% +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{color}{black}{point color} +\TOline{size}{3pt}{point size} +\TOline{fill}{black!50}{inside point color} +\TOline{shape}{circle}{point shape circle or cross} +\end{tabular} +\end{NewMacroBox} - - \begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} - \begin{tabular}{lll} - options & default & definition \\ - \midrule - \TOline{color}{black}{ point color} - \TOline{size}{3pt}{point size} - \TOline{fill}{black!50}{Inside point color} - \TOline{shape}{circle}{point shape circle or cross} - \end{tabular} - \end{NewMacroBox} - -\subsubsection{use of\tkzcname{tkzSetUpPoint}} +\subsubsection{Use of \tkzcname{tkzSetUpPoint}} \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture} \tkzSetUpPoint[shape = cross out,color=blue] @@ -106,7 +103,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{use of\tkzcname{tkzSetUpPoint} inside a group} +\subsubsection{Use of \tkzcname{tkzSetUpPoint} inside a group} \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture} \tkzInit[ymin=-0.5,ymax=3,xmin=-0.5,xmax=7] @@ -128,10 +125,10 @@ options & default & definition \\ -\subsection{\tkzcname{tkzSetUpCompass}} +\subsection{Use of \tkzcname{tkzSetUpCompass}} -\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}}% +\begin{tabular}{lll}% options & default & definition \\ \midrule \TOline{color}{black}{color of construction arcs} @@ -140,9 +137,7 @@ options & default & definition \\ \end{tabular} \end{NewMacroBox} -\subsubsection{use of\tkzcname{tkzSetUpCompass} with bisector} - - +\subsubsection{Use of \tkzcname{tkzSetUpCompass} with bisector} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=0.75] \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} @@ -154,14 +149,13 @@ options & default & definition \\ \tkzShowLine[bisector,size=2,gap=3](A,C,B) \tkzShowLine[bisector,size=2,gap=3](B,A,C) \tkzShowLine[bisector,size=1,gap=2](C,B,A) - \tkzDrawLines[add=0 and 0 ](B,b C,c) - \tkzDrawLine[add=0 and -.4 ](A,a) + \tkzDrawLines[add=0 and 0 ](B,b) + \tkzDrawLines[add=0 and -.4 ](A,a C,c) \tkzLabelPoints(A,B) \tkzLabelPoints[above](C) \end{tikzpicture} \end{tkzexample} \subsubsection{Another example of of\tkzcname{tkzSetUpCompass}} - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1,rotate=90] \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} @@ -180,18 +174,16 @@ options & default & definition \\ \tkzDrawLines[add=0 and 0,color=red](B,b) \tkzShowLine[bisector,size=2,gap=3](B,A,C) \tkzShowLine[bisector,size=1,gap=3](C,B,A) - \tkzLabelPoints(A,B,C) + \tkzLabelPoints(A,B)\tkzLabelPoints[left](C) \end{tikzpicture} \end{tkzexample} \subsection{Own style} You can set the normal style with |tkzSetUpPoint| and your own style -\begin{tkzexample}[vbox,small] +\begin{tkzexample}[latex=2cm,small] \tkzSetUpPoint[color=blue!50!white, fill=gray!20!red!50!white] -\tikzset{/tikz/mystyle/.style={ - color=blue!20!black, - fill=blue!20}} +\tikzset{/tikz/mystyle/.style={color=blue!20!black,fill=blue!20}} \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(0,1){A} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex index 4a380e355f2..fb591ba5e01 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex @@ -1,33 +1,39 @@ -\section{Des exemples} -\subsection{Quelques exemples intéressants} +\section{Some examples} +\subsection{Some interesting examples} -\subsubsection{Triangles isocèles semblables} +\subsubsection{Similar isosceles triangles} -Ce qui suit provient de l'excellent site \textbf{Descartes et les Mathématiques}. Je n'ai pas modifié le texte et je ne suis l'auteur que de la programmation des figures. +The following is from the excellent site \textbf{Descartes et les Mathématiques}. I did not modify the text and I am only the author of the programming of the figures. \url{http://debart.pagesperso-orange.fr/seconde/triangle.html} -Bibliographie : Géométrie au Bac - Tangente, hors série no 8 - Exercice 11, page 11 +Bibliography: -Élisabeth Busser et Gilles Cohen : 200 nouveaux problèmes du Monde - POLE 2007 +\begin{itemize} -Affaire de logique n° 364 - Le Monde 17 février 2004 +\item Géométrie au Bac - Tangente, special issue no. 8 - Exercise 11, page 11 -Deux énoncés ont été proposés, l'un par la revue \emph{Tangente}, et l'autre par le journal \emph{Le Monde}. +\item Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" - POLE 2007 (200 new problems of "Le Monde") + + +\item Affaire de logique n° 364 - Le Monde February 17, 2004 +\end{itemize} + + +Two statements were proposed, one by the magazine \textit{Tangente} and the other by \textit{Le Monde}. \vspace*{2cm} -\emph{Rédaction de la revue Tangente} : \textcolor{orange}{On construit deux triangles isocèles semblables AXB et BYC de sommets principaux X et Y, tels que A, B et C soient alignés et que ces triangles soient « indirect ». Soit $\alpha$ l'angle au sommet $\widehat{AXB}$ = $\widehat{BYC}$. On construit ensuite un troisième triangle isocèle XZY semblable aux deux premiers, de sommet principal Z et « indirect ».\\ -On demande de démontrer que le point Z appartient à la droite (AC).} +\emph{Editor of the magazine "Tangente"}: \textcolor{orange}{Two similar isosceles triangles $AXB$ and $BYC$ are constructed with main vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. We then construct a third isosceles triangle $XZY$ similar to the first two, with main vertex $Z$ and "indirect". +We ask to demonstrate that point $Z$ belongs to the straight line $(AC)$.} \vspace*{2cm} -\emph{Rédaction du Monde} : \textcolor{orange}{On construit deux triangles isocèles semblables AXB et BYC de sommets principaux X et Y, tels que A, B et C soient alignés et que ces triangles soient « indirect ». Soit $\alpha$ l'angle au sommet $\widehat{AXB}$ = $\widehat{BYC}$. Le point Z du segment [AC] est équidistant des deux sommets X et Y.\\ -Sous quel angle voit-il ces deux sommets ?} +\emph{Editor of "Le Monde"}: \textcolor{orange}{We construct two similar isosceles triangles $AXB$ and $BYC$ with principal vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. The point Z of the line segment $[AC]$ is equidistant from the two vertices $X$ and $Y$.\\ +At what angle does he see these two vertices?} -\vspace*{2cm} Les constructions et leurs codes associés sont sur les deux pages suivantes, mais vous pouvez chercher avant de regarder. La programmation respecte (il me semble ...), mon raisonnement dans les deux cas. -\newpage +\vspace*{2cm} The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases. - \subsubsection{version revue "Tangente"} + \subsubsection{Revised version of "Tangente"} \begin{tkzexample}[] \begin{tikzpicture}[scale=.8,rotate=60] \tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y} @@ -47,8 +53,8 @@ Sous quel angle voit-il ces deux sommets ?} \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O) \end{tikzpicture} \end{tkzexample} -\newpage -\subsubsection{version "Le Monde"} + +\subsubsection{"Le Monde" version} \begin{tkzexample}[] \begin{tikzpicture}[scale=1.25] @@ -74,13 +80,13 @@ Sous quel angle voit-il ces deux sommets ?} \end{tikzpicture} \end{tkzexample} -\subsubsection{Hauteurs d'un triangle} +\subsubsection{Triangle altitudes} -Ce qui suit provient encore de l'excellent site \textbf{Descartes et les Mathématiques}. +The following is again from the excellent site \textbf{Descartes et les Mathématiques} (Descartes and the Mathematics). \url{http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html} -Les trois hauteurs d'un triangle sont concourantes au même point H. +The three altitudes of a triangle intersect at the same H-point. \begin{tkzexample}[latex=7cm] \begin{tikzpicture}[scale=.8] @@ -109,7 +115,7 @@ Les trois hauteurs d'un triangle sont concourantes au même point H. \end{tikzpicture} \end{tkzexample} -\subsubsection{Hauteurs - autre construction} +\subsubsection{Altitudes - other construction} \begin{tkzexample}[latex=7cm] \begin{tikzpicture}[scale=.75] @@ -140,10 +146,9 @@ Les trois hauteurs d'un triangle sont concourantes au même point H. \end{tikzpicture} \end{tkzexample} -\newpage \subsection{Different authors} -\subsubsection{ Square root of the integers } +\subsubsection{ Square root of the integers} How to get $1$, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass. \begin{tkzexample}[latex=7cm,small] @@ -159,38 +164,12 @@ How to get $1$, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass. \end{tkzexample} -\subsubsection{Circle and tangent} -We have a point A $(8,2)$, a circle with center A and radius=3cm and a line - $\delta$ $y=4$. The line intercepts the circle at B. We want to draw the tangent at the circle in B. - - -\begin{tkzexample}[] -\begin{tikzpicture} - \edef\alphaR{\fpeval{asin(2/3)}} - \edef\xB{8-3*cos(\alphaR)} - \tkzDrawX[noticks,label=$(d)$] - \tkzDefPoint["$A$" above right](8,2){A} - \tkzDefPoint[color=red,"$O$" above right](0,0){O} - \tkzDefPoint["$B$" above left](\xB,4){B} - \tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b} - \tkzDefPoint(1,0){i} - \tkzInterLL(B,b)(O,i) \tkzGetPoint{B'} - \tkzDrawSegment[line width=1pt](A,B) - \tkzHLine[color=red,style=dashed]{4} - \tkzText[above](12,4){$\delta$} - \tkzDrawCircle[R,color=blue,line width=.8pt](A,3 cm) - \tkzDrawPoint(B') - \tkzDrawLine(B,B') - \end{tikzpicture} -\end{tkzexample} - - \subsubsection{About right triangle} -We have a segment $[AB]$ and we want to determine a point $C$ such as $AC=8 cm$ and $ABC$ is a right triangle in $B$. +We have a segment $[AB]$ and we want to determine a point $C$ such that $AC=8$~cm and $ABC$ is a right triangle in $B$. \begin{tkzexample}[latex=7cm] -\begin{tikzpicture} +\begin{tikzpicture}[scale=.5] \tkzDefPoint["$A$" left](2,1){A} \tkzDefPoint(6,4){B} \tkzDrawSegment(A,B) @@ -211,7 +190,7 @@ We have a segment $[AB]$ and we want to determine a point $C$ such as $AC=8 cm$ \subsubsection{Archimedes} This is an ancient problem proved by the great Greek mathematician Archimedes . -The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and touches the semicircle at $B$. An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the segment$[AB]$ on a point $D$ . The two tangent lines intersect at the point $T$. +The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and touches the semicircle at $B$. An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the line segment $[AB]$ on a point $D$. The two tangent lines intersect at the point $T$. Prove that the line $(AT)$ bisects $(CD)$ @@ -235,7 +214,7 @@ Prove that the line $(AT)$ bisects $(CD)$ \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple : Dimitris Kapeta} +\subsubsection{Example: Dimitris Kapeta} You need in this example to use \tkzname{mkpos=.2} with \tkzcname{tkzMarkAngle} because the measure of $ \widehat{CAM}$ is too small. Another possiblity is to use \tkzcname{tkzFillAngle}. @@ -266,9 +245,9 @@ Another possiblity is to use \tkzcname{tkzFillAngle}. \end{tkzexample} -\subsubsection{Example : John Kitzmiller } +\subsubsection{Example 1: John Kitzmiller } -Prove $\bigtriangleup LKJ$ is equilateral +Prove that $\bigtriangleup LKJ$ is equilateral. \begin{tkzexample}[vbox,small] @@ -285,23 +264,26 @@ Prove $\bigtriangleup LKJ$ is equilateral \tkzInterLL(B,B')(A,A') \tkzGetPoint{L} \tkzLabelPoint[above](C){C} \tkzDrawPolygon(A,B,C) \tkzDrawSegments(A,J B,L C,K) - \tkzMarkAngles[fill= orange,size=1cm,opacity=.3](J,A,C K,C,B L,B,A) - \tkzLabelPoint[right](J){J} - \tkzLabelPoint[below](K){K} - \tkzLabelPoint[above left](L){L} - \tkzMarkAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L) - \tkzMarkAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L) + \tkzMarkAngles[size=1 cm](J,A,C K,C,B L,B,A) + \tkzMarkAngles[thick,size=1 cm](A,C,J C,B,K B,A,L) + \tkzMarkAngles[opacity=.5](A,C,J C,B,K B,A,L) + \tkzFillAngles[fill= orange,size=1 cm,opacity=.3](J,A,C K,C,B L,B,A) + \tkzFillAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L) + \tkzFillAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L) \tkzFillPolygon[color=yellow, opacity=.2](J,A,C) \tkzFillPolygon[color=yellow, opacity=.2](K,B,C) \tkzFillPolygon[color=yellow, opacity=.2](L,A,B) \tkzDrawSegments[line width=3pt,color=cyan,opacity=0.4](A,J C,K B,L) \tkzDrawSegments[line width=3pt,color=red,opacity=0.4](A,L B,K C,J) \tkzMarkSegments[mark=o](J,K K,L L,J) + \tkzLabelPoint[right](J){J} + \tkzLabelPoint[below](K){K} + \tkzLabelPoint[above left](L){L} \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple : John Kitzmiller } -Prove $\dfrac{AC}{CE}=\dfrac{BD}{DF} \qquad$ +\subsubsection{Example 2: John Kitzmiller } +Prove that $\dfrac{AC}{CE}=\dfrac{BD}{DF}$. Another interesting example from John, you can see how to use some extra options like \tkzname{decoration} and \tkzname{postaction} from \TIKZ\ with \tkzname{tkz-euclide}. @@ -327,8 +309,8 @@ Another interesting example from John, you can see how to use some extra options \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple : John Kitzmiller } -Prove $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector) +\subsubsection{Example 3: John Kitzmiller } +Prove that $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector). \begin{tkzexample}[vbox,small] \begin{tikzpicture}[scale=2] @@ -347,10 +329,13 @@ Prove $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](B,C P,A) \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](C,D A,D) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](A,B) - \tkzMarkAngles[size=0.7](B,A,C C,A,D) - \tkzMarkAngles[size=0.7, fill=green, opacity=0.5](B,A,C A,B,P) - \tkzMarkAngles[size=0.7, fill=yellow, opacity=0.3](B,P,A C,A,D) - \tkzMarkAngles[size=0.7, fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D) + \tkzMarkAngles[size=3mm](B,A,C C,A,D) + \tkzMarkAngles[size=3mm](B,A,C A,B,P) + \tkzMarkAngles[size=3mm](B,P,A C,A,D) + \tkzMarkAngles[size=3mm](B,A,C A,B,P B,P,A C,A,D) + \tkzFillAngles[fill=green, opacity=0.5](B,A,C A,B,P) + \tkzFillAngles[fill=yellow, opacity=0.3](B,P,A C,A,D) + \tkzFillAngles[fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D) \tkzLabelAngle[pos=1](B,A,C){1} \tkzLabelAngle[pos=1](C,A,D){2} \tkzLabelAngle[pos=1](A,B,P){3} \tkzLabelAngle[pos=1](B,P,A){4} \tkzMarkSegments[mark=|](A,B A,P) @@ -358,8 +343,8 @@ Prove $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector) \end{tkzexample} -\subsubsection{Exemple : author John Kitzmiller } -Prove $\overline{AG}\cong\overline{EF} \qquad$ (Detour) +\subsubsection{Example 4: author John Kitzmiller } +Prove that $\overline{AG}\cong\overline{EF} \qquad$ (Detour). \begin{tkzexample}[vbox,small] \begin{tikzpicture}[scale=2] @@ -370,10 +355,14 @@ Prove $\overline{AG}\cong\overline{EF} \qquad$ (Detour) \tkzFillPolygon[yellow, opacity=0.4](D,F,C) \tkzFillPolygon[blue, opacity=0.3](A,B,G) \tkzFillPolygon[blue, opacity=0.3](E,D,F) - \tkzMarkAngles[size=0.6,fill=green](B,G,A D,F,E) - \tkzMarkAngles[size=0.6,fill=orange](B,C,G D,C,F) - \tkzMarkAngles[size=0.6,fill=yellow](G,B,C F,D,C) - \tkzMarkAngles[size=0.6,fill=red](A,B,G E,D,F) + \tkzMarkAngles[size=0.5 cm](B,G,A D,F,E) + \tkzMarkAngles[size=0.5 cm](B,C,G D,C,F) + \tkzMarkAngles[size=0.5 cm](G,B,C F,D,C) + \tkzMarkAngles[size=0.5 cm](A,B,G E,D,F) + \tkzFillAngles[size=0.5 cm,fill=green](B,G,A D,F,E) + \tkzFillAngles[size=0.5 cm,fill=orange](B,C,G D,C,F) + \tkzFillAngles[size=0.5 cm,fill=yellow](G,B,C F,D,C) + \tkzFillAngles[size=0.5 cm,fill=red](A,B,G E,D,F) \tkzMarkSegments[mark=|](B,C D,C) \tkzMarkSegments[mark=s||](G,C F,C) \tkzMarkSegments[mark=o](A,G E,F) \tkzMarkSegments[mark=s](B,G D,F) \tkzDrawSegment[color=red](A,E) @@ -383,7 +372,7 @@ Prove $\overline{AG}\cong\overline{EF} \qquad$ (Detour) \end{tikzpicture} \end{tkzexample} -\subsubsection{Example from Indonesia} +\subsubsection{Example 1: from Indonesia} \begin{tkzexample}[vbox,small] \begin{tikzpicture}[scale=3] @@ -404,7 +393,7 @@ Prove $\overline{AG}\cong\overline{EF} \qquad$ (Detour) \end{tikzpicture} \end{tkzexample} -\subsubsection{Another example from Indonesia} +\subsubsection{Example 2: from Indonesia} \begin{tkzexample}[vbox,small] \begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5}, seg/.style={tkzdotted,color=gray}, diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex index a7ea9374430..bcbc555fd76 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex @@ -1,17 +1,17 @@ \section{Installation} -\tkzNamePack{tkz-euclide} and \tkzNamePack{tkz-base} are now on the server of the \tkzname{CTAN}\footnote{\tkzNamePack{tkz-base} and \tkzNamePack{tkz-euclide} are part of \NameDist{TeXLive} and \tkzname{tlmgr} allows you to install them. These packages are also part of \NameDist{MikTeX} under \NameSys{Windows}}. If you want to test a beta version, just put the following files in a texmf folder that your system can find. -You will have to check several points : +\tkzNamePack{tkz-euclide} and \tkzNamePack{tkz-base} are now on the server of the \tkzname{CTAN}\footnote{\tkzNamePack{tkz-base} and \tkzNamePack{tkz-euclide} are part of \NameDist{TeXLive} and \tkzname{tlmgr} allows you to install them. These packages are also part of \NameDist{MiKTeX} under \NameSys{Windows}.}. If you want to test a beta version, just put the following files in a texmf folder that your system can find. +You will have to check several points: \begin{itemize}\setlength{\itemsep}{5pt} \item The \tkzNamePack{tkz-base} and \tkzNamePack{tkz-euclide} folders must be located on a path recognized by \tkzname{latex}. -\item The \tkzNamePack{xfp} {footnote{\tkzNamePack{xfp}} replaces \tkzNamePack{fp}}, \tkzNamePack{numprint} , \tkzNamePack{tikz 3.00} must be installed as they are mandatory, for the proper functioning of \tkzNamePack{tkz-euclide}. +\item The \tkzNamePack{xfp}\footnote{\tkzNamePack{xfp} replaces \tkzNamePack{fp}.}, \tkzNamePack{numprint} and \tkzNamePack{tikz 3.00} must be installed as they are mandatory, for the proper functioning of \tkzNamePack{tkz-euclide}. \item This documentation and all examples were obtained with \tkzname{lualatex-dev} but \tkzname{pdflatex} should be suitable. \end{itemize} -\subsection{List of folder files \tkzname{tkzbase} et \tkzname{tkzeuclide}} +\subsection{List of folder files \tkzname{tkzbase} and \tkzname{tkzeuclide}} -In the folder \tkzname{base} : +In the folder \tkzname{base}: \begin{itemize} \item \tkzname{tkz-base.cfg} @@ -25,7 +25,6 @@ In the folder \tkzname{base} : \item \tkzname{tkz-tools-arith.tex} \item \tkzname{tkz-tools-base.tex} \item \tkzname{tkz-tools-BB.tex} -\item \tkzname{tkz-tools-math.tex} \item \tkzname{tkz-tools-misc.tex} \item \tkzname{tkz-tools-modules.tex} \item \tkzname{tkz-tools-print.tex} @@ -33,7 +32,7 @@ In the folder \tkzname{base} : \item \tkzname{tkz-tools-utilities.tex} \end{itemize} -In the \tkzname{euclide} : +In the folder \tkzname{euclide}: \begin{itemize} \item \tkzname{tkz-euclide.sty} @@ -44,6 +43,7 @@ In the \tkzname{euclide} : \item \tkzname{tkz-obj-eu-draw-circles.tex} \item \tkzname{tkz-obj-eu-draw-lines.tex} \item \tkzname{tkz-obj-eu-draw-polygons.tex} +\item \tkzname{tkz-obj-eu-draw-triangles.tex} \item \tkzname{tkz-obj-eu-lines.tex} \item \tkzname{tkz-obj-eu-points-by.tex} \item \tkzname{tkz-obj-eu-points-rnd.tex} @@ -52,6 +52,11 @@ In the \tkzname{euclide} : \item \tkzname{tkz-obj-eu-polygons.tex} \item \tkzname{tkz-obj-eu-protractor.tex} \item \tkzname{tkz-obj-eu-sectors.tex} +\item \tkzname{tkz-obj-eu-show.tex} +\item \tkzname{tkz-obj-eu-triangles.tex} +\item \tkzname{tkz-tools-angles.tex} +\item \tkzname{tkz-tools-intersections.tex} +\item \tkzname{tkz-tools-math.tex} \end{itemize} \tkzHandBomb\ Now \tkzname{tkz-euclide} loads all the files. \endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex index 70492509f7f..3f7619188db 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex @@ -4,14 +4,11 @@ It is possible to determine the coordinates of the points of intersection betwee The associated commands have no optional arguments and the user must determine the existence of the intersection points himself. -\subsection{Intersection de deux droites} - - \begin{NewMacroBox}{tkzInterLL}{\parg{$A,B$}\parg{$C,D$}} +\subsection{Intersection of two straight lines} +\begin{NewMacroBox}{tkzInterLL}{\parg{$A,B$}\parg{$C,D$}}% Defines the intersection point \tkzname{tkzPointResult} of the two lines $(AB)$ and $(CD)$. The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \tkzcname{tkzDefPoint}. - \end{NewMacroBox} -\medskip \subsubsection{Example of intersection between two straight lines} \begin{tkzexample}[latex=7cm,small] @@ -28,37 +25,36 @@ Defines the intersection point \tkzname{tkzPointResult} of the two lines $(AB)$ \end{tikzpicture} \end{tkzexample} -\subsection{Intersection of a straight line and a circle} % (fold) -\label{sub:intersection_d_une_droite_et_d_un_cercle} +\subsection{Intersection of a straight line and a circle} As before, the line is defined by a couple of points. The circle is also defined by a couple: \begin{itemize} \item $(O,C)$ which is a pair of points, the first is the centre and the second is any point on the circle. -\item $(O,r)$ The $r$ measure is the shelf measure. It is expressed soint en \emph{cm}, that is to say in \emph{pt}. +\item $(O,r)$ The $r$ measure is the radius measure. The unit can be the \emph{cm} or \emph{pt}. \end{itemize} -\begin{NewMacroBox}{tkzInterLC}{\oarg{options}\parg{$A,B$}\parg{$O,C$} or \parg{$O,r$} or \parg{$O,C,D$}} +\begin{NewMacroBox}{tkzInterLC}{\oarg{options}\parg{$A,B$}\parg{$O,C$} or \parg{$O,r$} or \parg{$O,C,D$}}% So the arguments are two couples. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule \TOline{N} {N} { (O,C) determines the circle} -\TOline{R} {N} { (O, 1 cm) ou (O, 120 pt)} +\TOline{R} {N} { (O, 1 cm) or (O, 120 pt)} \TOline{with nodes}{N} { (O,C,D) CD is a radius} \bottomrule \end{tabular} \medskip -The macro defines the intersection points $I$ and $J$ of the line $(AB)$ and the center circle $O$ with radius $r$ if they exist; otherwise, an error will be reported in the .log file. +The macro defines the intersection points $I$ and $J$ of the line $(AB)$ and the center circle $O$ with radius $r$ if they exist; otherwise, an error will be reported in the |.log| file. \end{NewMacroBox} \subsubsection{Simple example of a line-circle intersection} -In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points +In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points: \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] @@ -77,7 +73,7 @@ In the following example, the drawing of the circle uses two points and the inte \end{tkzexample} \subsubsection{More complex example of a line-circle intersection} -\url{http://gogeometry.com/problem/p190_tangent_circle} +Figure from \url{http://gogeometry.com/problem/p190_tangent_circle} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] @@ -104,8 +100,6 @@ In the following example, the drawing of the circle uses two points and the inte \end{tikzpicture} \end{tkzexample} - -\newpage \subsubsection{Circle defined by a center and a measure, and special cases} Let's look at some special cases like straight lines tangent to the circle. @@ -128,7 +122,7 @@ Let's look at some special cases like straight lines tangent to the circle. \end{tkzexample} \subsubsection{More complex example} -\tkzHandBomb\ Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of \tkzname{xfp} must be respected. You can see that I use the term \tkzname{pi} because \NamePack{xfp} works in radians!. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... \TEX \{ \dots \}. +\tkzHandBomb\ Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of \tkzname{xfp} must be respected. You can see that I use the term \tkzname{pi} because \NamePack{xfp} can work with radians. You can also work with degrees but in this case, you need to use specific commands like |sind| or |cosd|. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... \TEX \{ \dots \}. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.25] @@ -152,15 +146,15 @@ Let's look at some special cases like straight lines tangent to the circle. \end{tikzpicture} \end{tkzexample} -\subsubsection{Calculation of radius dimension} +\subsubsection{Calculation of radius example 1} With \tkzname{pgfmath} and \tkzcname{pgfmathsetmacro} The radius measurement may be the result of a calculation that is not done within the intersection macro, but before. A length can be calculated in several ways. It is possible of course, to use the module \tkzname{pgfmath} and the macro \tkzcname{pgfmathsetmacro}. In some cases, the results obtained are not precise enough, so the following calculation $0.0002 \div 0.0001$ gives $1.98$ with pgfmath while xfp will give $2$. -\subsubsection{Calculation of radius dimension 1} -With \tkzname{xfp} and \tkzcname{fpeval} +\subsubsection{Calculation of radius example 2} +With \tkzname{xfp} and \tkzcname{fpeval}: \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} @@ -177,10 +171,10 @@ With \tkzname{xfp} and \tkzcname{fpeval} \end{tikzpicture} \end{tkzexample} -\subsubsection{Calculation of radius dimension 2} +\subsubsection{Calculation of radius example 3} With \TEX\ and \tkzcname{tkzLength}. - This dimension was created with \tkzcname{newdimen}. 2 cm has been transformed into points. It is of course possible to use \TEX to calculate. + This dimension was created with \tkzcname{newdimen}. 2 cm has been transformed into points. It is of course possible to use \TEX\ to calculate. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} @@ -231,32 +225,26 @@ A Sangaku look! It is a question of proving that one can inscribe in a half-disc \end{tikzpicture} \end{tkzexample} -\clearpage \newpage \subsection{Intersection of two circles} The most frequent case is that of two circles defined by their center and a point, but as before the option \tkzname{R} allows to use the radius measurements. -\begin{NewMacroBox}{tkzInterCC}{\oarg{options}\parg{$O,A/r$}\parg{$O',A'/r'$}\marg{$I$}\marg{$J$}} - -\medskip -\begin{tabular}{lll} -\toprule -options & defect & definition \\ +\begin{NewMacroBox}{tkzInterCC}{\oarg{options}\parg{$O,A$}\parg{$O',A'$} or \parg{$O,r$}\parg{$O',r'$} or \parg{$O,A,B$} \parg{$O',C,D$}}% +\begin{tabular}{lll}% +options & default & definition \\ \midrule -\TOline{N} {N} {OA and O'A' are radii, O and O' are the centres} -\TOline{R} {N} {$r$ et $r'$ shave dimensions and measure the radii} -\TOline{with nodes} {N} {$r$ et $r'$ are dimensions and measure the radii} +\TOline{N} {N} {$OA$ and $O'A'$ are radii, $O$ and $O'$ are the centres} +\TOline{R} {N} {$r$ and $r'$ are dimensions and measure the radii} +\TOline{with nodes} {N} { in (A,A,C)(C,B,F) AC and BF give the radii. } +\bottomrule \end{tabular} \medskip - This macro defines the intersection point(s) $I$ and $J$ of the two center circles $O$ and $O'$. If the two circles do not have a common point then the macro ends with an error that is not handled. \\ It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInterCCR}. \end{NewMacroBox} - \subsubsection{Construction of an equilateral triangle} - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[trim left=-1cm,scale=.5] \tkzDefPoint(1,1){A} @@ -275,7 +263,6 @@ It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInte \end{tkzexample} \subsubsection{Example a mediator} - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} @@ -290,7 +277,6 @@ It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInte \end{tkzexample} \subsubsection{An isosceles triangle.} - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[rotate=120,scale=.75] \tkzDefPoint(1,2){A} @@ -345,26 +331,7 @@ It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInte \end{tikzpicture} \end{tkzexample} -\subsubsection{Angle trisection} - -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture} - \tikzset{arc/.style={color=gray,style=dashed}} - \tkzDefPoints{0/0/a,0/5/I,5/0/J} - \tkzDrawArc[angles](O,I)(0,90) - \tkzDrawArc[angles,/tikz/arc](I,O)(90,180) - \tkzDrawArc[angles,/tikz/arc](J,O)(-90,0) - \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} - \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} - \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} - \tkzDrawPoints(A,B,K) - \foreach \point in {I,A,B,J,K}{% - \tkzDrawSegment(O,\point)} -\end{tikzpicture} -\end{tkzexample} - - -\subsubsection{with the option \tkzimp{with nodes}} +\subsubsection{With the option \tkzimp{with nodes}} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/a,0/5/B,5/0/C} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex index 6ae71f7cb5f..45e4a3d3fdf 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex @@ -5,50 +5,65 @@ It is of course essential to draw straight lines, but before this can be done, i \subsection{Definition of straight lines} -\begin{NewMacroBox}{tkzDefLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} -The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \tkzcname{tkzGetPoint} or the macro \tkzcname{tkzGetPoints} must be used. +\begin{NewMacroBox}{tkzDefLine}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% +The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \tkzcname{tkzGetPoint} or the macro \tkzcname{tkzGetPoints} must be used. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & default & definition \\ +arguments & example & explication \\ \midrule -\TOline{mediator}{}{mediator. Two points are defined} -\TOline{perpendicular=through\ldots}{}{perpendicular to a straight line passing through a point} -\TOline{orthogonal=through\ldots}{}{see above } -\TOline{parallel=through\ldots}{}{parallel to a straight line passing through a point} -\TOline{bisector}{}{bisector of an angle defined by three points} -\TOline{bisector out}{}{Exterior Angle Bisector} -\TOline{tangent=at\ldots }{}{tangent to a circle at a given point} -\TOline{tangent=from\ldots}{}{tangent to a circle(O,A) passing through a given point} -\TOline{tangent=from with R\ldots}{}{tangent to a circle(O,r) passing through a given point} -\TOline{K}{1}{Coefficient for the perpendicular line} - \bottomrule +\TAline{\parg{pt1,pt2}}{\parg{A,B}} {[mediator](A,B)} +\TAline{\parg{pt1,pt2,pt3}}{\parg{A,B,C}} {[bisector](B,A,C)} +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\TOline{mediator}{}{two points are defined} +\TOline{perpendicular=through\dots}{mediator}{perpendicular to a straight line passing through a point} +\TOline{orthogonal=through\dots}{mediator}{see above } +\TOline{parallel=through\dots}{mediator}{parallel to a straight line passing through a point} +\TOline{bisector}{mediator}{bisector of an angle defined by three points} +\TOline{bisector out}{mediator}{Exterior Angle Bisector} +\TOline{K}{1}{coefficient for the perpendicular line} +\TOline{normed}{false}{normalizes the created segment} \end{tabular} \end{NewMacroBox} \subsubsection{Example with \tkzname{mediator}} \begin{tkzexample}[latex=5 cm,small] \begin{tikzpicture}[rotate=25] - \tkzInit - \tkzDefPoints{-2/0/A,1/2/B} - \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D} - \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D} - \tkzDefMidPoint(A,B) \tkzGetPoint{I} - \tkzFillPolygon[color=orange!30](A,C,B,D) - \tkzDrawSegments(A,B C,D) - \tkzMarkRightAngle(B,I,C) - \tkzDrawSegments(D,B D,A) - \tkzDrawSegments(C,B C,A) + \tkzDefPoints{-2/0/A,1/2/B} + \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D} + \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D} + \tkzDefMidPoint(A,B) \tkzGetPoint{I} + \tkzFillPolygon[color=orange!30](A,C,B,D) + \tkzDrawSegments(A,B C,D) + \tkzMarkRightAngle(B,I,C) + \tkzDrawSegments(D,B D,A) + \tkzDrawSegments(C,B C,A) \end{tikzpicture} \end{tkzexample} -\subsubsection{Example avec \tkzname{orthogonal} et \tkzname{parallel}} +\subsubsection{Example with \tkzname{bisector} and \tkzname{normed}} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[rotate=25,scale=.75] + \tkzDefPoints{0/0/C, 2/-3/A, 4/0/B} + \tkzDefLine[bisector,normed](B,A,C) \tkzGetPoint{a} + \tkzDrawLines[add= 0 and .5](A,B A,C) + \tkzShowLine[bisector,gap=4,size=2,color=red](B,A,C) + \tkzDrawLines[blue!50,dashed,add= 0 and 3](A,a) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example with \tkzname{orthogonal} and \tkzname{parallel}} \begin{tkzexample}[latex=5 cm,small] \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C} \tkzDrawLine(A,B) - \tkzLabelLine[pos=1.25,left](A,B){$(d_1)$} + \tkzLabelLine[pos=1.25,below left](A,B){$(d_1)$} \tkzDrawPoints(A,B,C) \tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c} \tkzDrawLine(C,c) @@ -57,111 +72,169 @@ options & default & definition \\ \tkzMarkRightAngle(C,I,B) \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'} \tkzDrawLine(C,c') - \tkzLabelLine[pos=1.25,left](C,c'){$(d_2)$} + \tkzLabelLine[pos=1.25,below left](C,c'){$(d_2)$} \tkzMarkRightAngle(I,C,c') \end{tikzpicture} \end{tkzexample} - -\newpage \subsubsection{An envelope} Based on a figure from O. Reboux with pst-eucl by D Rodriguez. \begin{tkzexample}[vbox,small] -\begin{tikzpicture}[scale=1] - \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] - \tkzClip - \tkzDefPoint(0,0){O} - \tkzDefPoint(132:4){A} - \tkzDefPoint(5,0){B} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:5){M} - \tkzDefLine[mediator](A,M) - \tkzDrawLine[color=magenta,add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} +\begin{tikzpicture}[scale=.75] + \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] % necessary + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:4){A} + \tkzDefPoint(5,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:5){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)} \end{tikzpicture} \end{tkzexample} -\subsubsection{A parable} +\subsubsection{A parabola} Based on a figure from O. Reboux with pst-eucl by D Rodriguez. It is not necessary to name the two points that define the mediator. \begin{tkzexample}[vbox,small] -\begin{tikzpicture}[scale=1.25] - \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] - \tkzClip - \tkzDefPoint(0,0){O} - \tkzDefPoint(132:5){A} - \tkzDefPoint(4,0){B} - \foreach \ang in {5,10,...,360}{% - \tkzDefPoint(\ang:4){M} - \tkzDefLine[mediator](A,M) - \tkzDrawLine[color=magenta, - add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} - \end{tikzpicture} +\begin{tikzpicture}[scale=.75] + \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:5){A} + \tkzDefPoint(4,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:4){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)} +\end{tikzpicture} \end{tkzexample} -\subsubsection{Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}} +%<----------------------------------------------------------------------------> +\subsection{Specific lines: Tangent to a circle} +Two constructions are proposed. The first one is the construction of a tangent to a circle at a given point of this circle and the second one is the construction of a tangent to a circle passing through a given point outside a disc. + +\begin{NewMacroBox}{tkzDefTangent}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,dim}}% +The parameter in brackets is the center of the circle or the center of the circle and a point on the circle or the center and the radius. This macro replaces the old one: \tkzcname{tkzTangent}. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2 or \parg{pt1,dim}} }{\parg{A,B} or \parg{A,2cm}} {$[AB]$ is radius $A$ is the center} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{at=pt}{at}{tangent to a point on the circle} +\TOline{from=pt} {at}{tangent to a circle passing through a point} +\TOline{from with R=pt} {at}{idem, but the circle is defined by center = radius} +\bottomrule +\end{tabular} +The tangent is not drawn. A second point of the tangent is given by \tkzname{tkzPointResult}. +\end{NewMacroBox} + +\subsubsection{Example of a tangent passing through a point on the circle } \begin{tkzexample}[latex=7cm,small] - \begin{tikzpicture}[scale=.5] +\begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){O} - \tkzDefPoint(6,6){E} - \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzDefPoint(6,6){E} + \tkzDefRandPointOn[circle=center O radius 3cm] \tkzGetPoint{A} - \tkzDefRandPointOn[circle=center O radius 4cm] - \tkzGetPoint{B} - \tkzDrawSegments(O,A O,B) - \tkzDrawCircle(O,A) - \tkzDefTangent[from with R=E](O,4cm) - \tkzGetSecondPoint{k} + \tkzDrawSegment(O,A) + \tkzDrawCircle(O,A) \tkzDefTangent[at=A](O) \tkzGetPoint{h} - \tkzDrawPoints(E) - \tkzDrawLine[add = .5 and .5](A,h) - \tkzDrawLine[add = .5 and .5](E,k) + \tkzDrawLine[add = 4 and 3](A,h) \tkzMarkRightAngle[fill=red!30](O,A,h) - \end{tikzpicture} +\end{tikzpicture} \end{tkzexample} +\subsubsection{Example of tangents passing through an external point } +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.8] + \tkzDefPoint(3,3){c} + \tkzDefPoint(6,3){a0} + \tkzRadius=1 cm + \tkzDrawCircle[R](c,\tkzRadius) + \foreach \an in {0,10,...,350}{ + \tkzDefPointBy[rotation=center c angle \an](a0) + \tkzGetPoint{a} + \tkzDefTangent[from with R = a](c,\tkzRadius) + \tkzGetPoints{e}{f} + \tkzDrawLines[color=magenta](a,f a,e) + \tkzDrawSegments(c,e c,f) + }% +\end{tikzpicture} +\end{tkzexample} +\subsubsection{Example of Andrew Mertz} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B} + \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R} + \tkzDrawCircle(C,R) + \tkzDefTangent[from = A](C,R) \tkzGetPoints{D}{E} + \tkzDefTangent[from = B](C,R) \tkzGetPoints{F}{G} + \tkzDrawSector[fill=blue!80!black,opacity=0.5](A,D)(E) + \tkzFillSector[color=red!80!black,opacity=0.5](B,F)(G) + \tkzInterCC(A,D)(B,F) \tkzGetSecondPoint{I} + \tkzDrawPoint[color=black](I) + \end{tikzpicture} +\end{tkzexample} +\url{http://www.texample.net/tikz/examples/} -\subsubsection{Drawing a tangent option \tkzimp{from}} - +\subsubsection{Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.5] - \tkzDefPoint(0,0){B} - \tkzDefPoint(0,8){A} - \tkzDefSquare(A,B) - \tkzGetPoints{C}{D} - \tkzDrawSquare(A,B) - \tkzClipPolygon(A,B,C,D) - \tkzDefPoint(4,8){F} - \tkzDefPoint(4,0){E} - \tkzDefPoint(4,4){Q} - \tkzFillPolygon[color = green](A,B,C,D) - \tkzDrawCircle[fill = orange](B,A) - \tkzDrawCircle[fill = purple](E,B) - \tkzDefTangent[from=B](F,A) - \tkzInterLL(F,tkzFirstPointResult)(C,D) - \tkzInterLL(A,tkzPointResult)(F,E) - \tkzDrawCircle[fill = yellow](tkzPointResult,Q) - \tkzDefPointBy[projection= onto B--A](tkzPointResult) - \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) + \tkzDefPoint(0,0){O} + \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzGetPoint{A} + \tkzDefTangent[at=A](O) + \tkzGetPoint{h} + \tkzDrawSegments(O,A) + \tkzDrawCircle(O,A) + \tkzDrawLine[add = 1 and 1](A,h) + \tkzMarkRightAngle[fill=red!30](O,A,h) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Drawing a tangent option \tkzimp{from}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){B} + \tkzDefPoint(0,8){A} + \tkzDefSquare(A,B) + \tkzGetPoints{C}{D} + \tkzDrawSquare(A,B) + \tkzClipPolygon(A,B,C,D) + \tkzDefPoint(4,8){F} + \tkzDefPoint(4,0){E} + \tkzDefPoint(4,4){Q} + \tkzFillPolygon[color = green](A,B,C,D) + \tkzDrawCircle[fill = orange](B,A) + \tkzDrawCircle[fill = purple](E,B) + \tkzDefTangent[from=B](F,A) + \tkzInterLL(F,tkzFirstPointResult)(C,D) + \tkzInterLL(A,tkzPointResult)(F,E) + \tkzDrawCircle[fill = yellow](tkzPointResult,Q) + \tkzDefPointBy[projection= onto B--A](tkzPointResult) + \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) \end{tikzpicture} \end{tkzexample} \section{Drawing, naming the lines} - -The following macros are simply used to draw, name lines - - +The following macros are simply used to draw, name lines. \subsection{Draw a straight line} - -To draw a normal straight line, just give a couple of points. You can use the \tkzname{add} option to extend the line.( This option is due to \tkzimp{Mark Wibrow} ). - -In the special case of lines defined in a triangle, the number of arguments is a list of three points (the vertices of the triangle). The second point is where the line will come from. The first and last points determine the target segment. The old method has therefore been slightly modified. So for \tkzcname{tkzDrawMedian}, instead of |(A,B)(C)| you have to write |(B,C,A)| where C is the point that will be linked to the middle of the segment |[A,B]|. - +To draw a normal straight line, just give a couple of points. You can use the \tkzname{add} option to extend the line (This option is due to \tkzimp{Mark Wibrow}, see the code below). \begin{tkzltxexample}[] \tikzset{% @@ -171,27 +244,27 @@ In the special case of lines defined in a triangle, the number of arguments is a \tikztonodes}}} \end{tkzltxexample} - \begin{NewMacroBox}{tkzDrawLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3} } +In the special case of lines defined in a triangle, the number of arguments is a list of three points (the vertices of the triangle). The second point is where the line will come from. The first and last points determine the target segment. The old method has therefore been slightly modified. So for \tkzcname{tkzDrawMedian}, instead of $(A,B)(C)$ you have to write $(B,C,A)$ where $C$ is the point that will be linked to the middle of the segment $[A,B]$. + +\begin{NewMacroBox}{tkzDrawLine}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% The arguments are a list of two points or three points. -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{median}{none}{ [median](A,B,C) median from B} -\TOline{altitude}{none}{[altitude](C,A,B) altitude from A} -\TOline{bisector}{none}{[bisector](B,C,A) bisector from C } -\TOline{none}{none}{ draw the straight line A,B } -\TOline{add= nb1 and nb2}{.2 and .2}{Extends the segment} +\TOline{median}{none}{[median](A,B,C) median from $B$} +\TOline{altitude}{none}{[altitude](C,A,B) altitude from $A$} +\TOline{bisector}{none}{[bisector](B,C,A) bisector from $C$} +\TOline{none}{none}{draw the straight line $(AB)$} +\TOline{add= nb1 and nb2}{.2 and .2}{extends the segment} \bottomrule \end{tabular} -\medskip -\tkzname{add} defines the length of the line passing through the points pt1 and pt2. Both numbers are percentages. The styles of \TIKZ\ are accessible for plots +\tkzname{add} defines the length of the line passing through the points pt1 and pt2. Both numbers are percentages. The styles of \TIKZ\ are accessible for plots. \end{NewMacroBox} -\subsubsection{Examples of right-hand plots with \tkzname{add}} - +\subsubsection{Examples with \tkzname{add}} \begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25] @@ -208,9 +281,8 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\newpage It is possible to draw several lines, but with the same options. -\begin{NewMacroBox}{tkzDrawLines}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +\begin{NewMacroBox}{tkzDrawLines}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}}% Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ\ are available for the draws. \end{NewMacroBox} @@ -243,7 +315,6 @@ Arguments are a list of pairs of points separated by spaces. The styles of \TI \end{tkzexample} \subsubsection{Medians in a triangle} - \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -256,7 +327,6 @@ Arguments are a list of pairs of points separated by spaces. The styles of \TI \end{tkzexample} \subsubsection{Altitudes in a triangle} - \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -272,7 +342,7 @@ Arguments are a list of pairs of points separated by spaces. The styles of \TI You have to give the angles in a straight line. \begin{tkzexample}[latex=7 cm,small] -\begin{tikzpicture}[scale=1.5] +\begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) \tkzSetUpLine[color=purple] @@ -282,32 +352,23 @@ You have to give the angles in a straight line. \end{tikzpicture} \end{tkzexample} - -\subsection{Add labels on a straight line \tkzcname{tkzLabelLine}} - - \begin{NewMacroBox}{tkzLabelLine}{\oarg{local options}\parg{pt1,pt2}\marg{label}} - - \begin{tabular}{lll} - \toprule - arguments & default & definition \\ - \midrule - \TAline{label}{}{example \tkzcname{tkzLabelLine(A,B)\{$\delta$\}}} - \bottomrule - \end{tabular} - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ +\subsection{Add labels on a straight line \tkzcname{tkzLabelLine}}% +\begin{NewMacroBox}{tkzLabelLine}{\oarg{local options}\parg{pt1,pt2}\marg{label}} +\begin{tabular}{lll}% +arguments & default & definition \\ \midrule -\TOline{pos}{.5}{pos est une option de \TIKZ\ mais essentielle dans ce cas} - \bottomrule +\TAline{label}{}{\tkzcname{tkzLabelLine(A,B)}\{\$\tkzcname{Delta}\$\}} +\bottomrule \end{tabular} -\medskip -As an option, and in addition to the \tkzname{pos}, you can use all styles of \TIKZ\ , especially the placement with \tkzname{above}, \tkzname{right}, \dots +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{pos}{.5}{\tkzname{pos} is an option for \TIKZ, but essential in this case\dots} +\end{tabular} - \end{NewMacroBox} +As an option, and in addition to the \tkzname{pos}, you can use all styles of \TIKZ, especially the placement with \tkzname{above}, \tkzname{right}, \dots +\end{NewMacroBox} \subsubsection{Example with \tkzcname{tkzLabelLine}} An important option is \tkzname{pos}, it's the one that allows you to place the label along the right. The value of \tkzname{pos} can be greater than 1 or negative. @@ -319,22 +380,18 @@ An important option is \tkzname{pos}, it's the one that allows you to place the \tkzGetPoint{c} \tkzDrawLines(A,B C,c) \tkzLabelLine[pos=1.25,blue,right](C,c){$(\delta)$} - \tkzLabelLine[pos=-0.25,red,left](C,c){encore $(\delta)$} + \tkzLabelLine[pos=-0.25,red,left](C,c){again $(\delta)$} \end{tikzpicture} \end{tkzexample} \section{Draw, Mark segments} - -There is, of course, a macro to simply draw a segment (it would be possible, as for a half line, to create a style with \tkzcname{add}) . - +There is, of course, a macro to simply draw a segment (it would be possible, as for a half line, to create a style with \tkzcname{add}). \subsection{Draw a segment \tkzcname{tkzDrawSegment}} - - - \begin{NewMacroBox}{tkzDrawSegment}{\oarg{local options}\parg{pt1,pt2}} -The arguments are a list of two points. The styles of \TIKZ are available for the drawings +\begin{NewMacroBox}{tkzDrawSegment}{\oarg{local options}\parg{pt1,pt2}}% +The arguments are a list of two points. The styles of \TIKZ\ are available for the drawings. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% argument & example & definition \\ \midrule \TAline{(pt1,pt2)}{(A,B)}{draw the segment $[A,B]$} @@ -342,12 +399,14 @@ argument & example & definition \\ \end{tabular} \medskip -\begin{tabular}{lll} -options & exemple & définition \\ +\begin{tabular}{lll}% +options & example & definition \\ \midrule -\TOline{options de TikZ}{}{all TikZ options are valid.} -\TOline{add}{}{add = kl and kr ; allows the segment to be extended to the left and right} -\TOline{dim}{}{dim = label,dim,option ; allows you to add dimensions to a figure.} +\TOline{\TIKZ\ options}{}{all \TIKZ\ options are valid.} +\TOline{add}{0 and 0}{add = $kl$ and $kr$, \dots} +\TOline{\dots}{\dots}{allows the segment to be extended to the left and right. } +\TOline{dim}{no default}{dim = \{label,dim,option\}, \dots} +\TOline{\dots}{\dots}{allows you to add dimensions to a figure.} \bottomrule \end{tabular} @@ -366,7 +425,7 @@ This is of course equivalent to \tkzcname{draw (A)--(B);} \end{tikzpicture} \end{tkzexample} -\subsubsection{Example of extending an option segment \tkzimp{add}} +\subsubsection{Example of extending an segment with option \tkzname{add}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} @@ -380,40 +439,34 @@ This is of course equivalent to \tkzcname{draw (A)--(B);} \end{tikzpicture} \end{tkzexample} -\subsubsection{Example of adding dimensions (technical figure) option \tkzimp{dim}} - \begin{tkzexample}[latex=7cm,small] - \begin{tikzpicture}[scale=2] - \pgfkeys{/pgf/number format/.cd,fixed,precision=2} - % Define the first two points - \tkzDefPoint(0,0){A} - \tkzDefPoint(3,0){B} - \tkzDefPoint(1,1){C} - % Draw the triangle and the points - \tkzDrawPolygon(A,B,C) - \tkzDrawPoints(A,B,C) - % Label the sides - \tkzCalcLength[cm](A,B)\tkzGetLength{ABl} - \tkzCalcLength[cm](B,C)\tkzGetLength{BCl} - \tkzCalcLength[cm](A,C)\tkzGetLength{ACl} - % add dim - \tkzDrawSegment[dim={\pgfmathprintnumber\BCl, - 6pt,transform shape}](C,B) - \tkzDrawSegment[dim={\pgfmathprintnumber\ACl, - 6pt,transform shape}](A,C) - \tkzDrawSegment[dim={\pgfmathprintnumber\ABl, - -6pt,transform shape}](A,B) - \end{tikzpicture} - \end{tkzexample} +\subsubsection{Example of adding dimensions with option \tkzname{dim}} +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=4] + \pgfkeys{/pgf/number format/.cd,fixed,precision=2} + % Define the first two points + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(1,1){C} + % Draw the triangle and the points + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + % Label the sides + \tkzCalcLength[cm](A,B)\tkzGetLength{ABl} + \tkzCalcLength[cm](B,C)\tkzGetLength{BCl} + \tkzCalcLength[cm](A,C)\tkzGetLength{ACl} + % add dim + \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,transform shape}](C,B) + \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,6pt,transform shape}](A,C) + \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,-6pt,transform shape}](A,B) +\end{tikzpicture} +\end{tkzexample} -\bigskip -If the options are the same we can plot several segments with the same macro. -\newpage \subsection{Drawing segments \tkzcname{tkzDrawSegments}} - \hypertarget{tdss}{} +If the options are the same we can plot several segments with the same macro. - \begin{NewMacroBox}{tkzDrawSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} -The arguments are a two-point couple list. The styles of \TIKZ are available for the plots +\begin{NewMacroBox}{tkzDrawSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}}% +The arguments are a two-point couple list. The styles of \TIKZ\ are available for the plots. \end{NewMacroBox} \begin{tkzexample}[latex=6cm,small] @@ -439,7 +492,7 @@ The arguments are a two-point couple list. The styles of \TIKZ are available for mark=at position .5 with {\arrow[thick]{#1}} }}} \tkzDefPoint(0,0){A} - \tkzDefPoint(4,0){B} + \tkzDefPoint(4,-4){B} \tkzDrawSegments[arr=stealth](A,B) \tkzDrawPoints(A,B) \end{tikzpicture} @@ -448,11 +501,11 @@ The arguments are a two-point couple list. The styles of \TIKZ are available for \subsection{Mark a segment \tkzcname{tkzMarkSegment}} \hypertarget{tms}{} - \begin{NewMacroBox}{tkzMarkSegment}{\oarg{local options}\parg{pt1,pt2}} + \begin{NewMacroBox}{tkzMarkSegment}{\oarg{local options}\parg{pt1,pt2}}% The macro allows you to place a mark on a segment. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule @@ -467,34 +520,27 @@ Possible marks are those provided by \TIKZ, but other marks have been created ba \end{NewMacroBox} \subsubsection{Several marks } -\begin{tkzexample}[latex=6cm,small] +\begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoint(2,1){A} \tkzDefPoint(6,4){B} \tkzDrawSegment(A,B) - \tkzMarkSegment[color=brown,size=2pt, - pos=0.4, mark=z](A,B) - \tkzMarkSegment[color=blue, - pos=0.2, mark=oo](A,B) - \tkzMarkSegment[pos=0.8, - mark=s,color=red](A,B) + \tkzMarkSegment[color=brown,size=2pt,pos=0.4, mark=z](A,B) + \tkzMarkSegment[color=blue,pos=0.2, mark=oo](A,B) + \tkzMarkSegment[pos=0.8,mark=s,color=red](A,B) \end{tikzpicture} \end{tkzexample} \subsubsection{Use of \tkzname{mark}} -\begin{tkzexample}[latex=6cm,small] +\begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoint(2,1){A} \tkzDefPoint(6,4){B} \tkzDrawSegment(A,B) - \tkzMarkSegment[color=gray, - pos=0.2,mark=s|](A,B) - \tkzMarkSegment[color=gray, - pos=0.4,mark=s||](A,B) - \tkzMarkSegment[color=brown, - pos=0.6,mark=||](A,B) - \tkzMarkSegment[color=red, - pos=0.8,mark=|||](A,B) + \tkzMarkSegment[color=gray,pos=0.2,mark=s|](A,B) + \tkzMarkSegment[color=gray,pos=0.4,mark=s||](A,B) + \tkzMarkSegment[color=brown,pos=0.6,mark=||](A,B) + \tkzMarkSegment[color=red,pos=0.8,mark=|||](A,B) \end{tikzpicture} \end{tkzexample} @@ -502,11 +548,11 @@ Possible marks are those provided by \TIKZ, but other marks have been created ba \subsection{Marking segments \tkzcname{tkzMarkSegments}} \hypertarget{tmss}{} -\begin{NewMacroBox}{tkzMarkSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +\begin{NewMacroBox}{tkzMarkSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}}% Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ\ are available for plots. \end{NewMacroBox} -\subsubsection{Marques pour un triangle isocèle} +\subsubsection{Marks for an isosceles triangle} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} @@ -518,8 +564,7 @@ Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ \end{tkzexample} \subsection{Another marking} - -\begin{tkzexample}[latex=7cm,small] +\begin{tkzexample}[latex=5cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B} \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P} @@ -538,30 +583,29 @@ Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ \end{tikzpicture} \end{tkzexample} -\newpage \hypertarget{tls}{} - \begin{NewMacroBox}{tkzLabelSegment}{\oarg{local options}\parg{pt1,pt2}\marg{label}} -This macro allows you to place a label along a segment or a line. The options are those of \TIKZ\ for example \tkzname{pos} +\begin{NewMacroBox}{tkzLabelSegment}{\oarg{local options}\parg{pt1,pt2}\marg{label}} +This macro allows you to place a label along a segment or a line. The options are those of \TIKZ\ for example \tkzname{pos}. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}%% argument & example & definition \\ \midrule \TAline{label}{\tkzcname{tkzLabelSegment(A,B)\{$5$\}}}{label text} -\TAline{(pt1,pt2)}{(A,B)}{label along $[A,B]$} +\TAline{(pt1,pt2)}{(A,B)}{label along $[AB]$} \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% options & default & definition \\ \midrule \TOline{pos}{.5}{label's position} \end{tabular} \end{NewMacroBox} - \subsubsection{Labels multiples} +\subsubsection{Multiple labels} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture} \tkzInit @@ -574,7 +618,6 @@ options & default & definition \\ \end{tkzexample} \subsubsection{Labels and right-angled triangle} - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[rotate=-60] \tikzset{label seg style/.append style = {% @@ -605,12 +648,11 @@ options & default & definition \\ \end{tkzexample} \hypertarget{tlss}{} - \begin{NewMacroBox}{tkzLabelSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} + \begin{NewMacroBox}{tkzLabelSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}}% The arguments are a two-point couple list. The styles of \TIKZ\ are available for plotting. \end{NewMacroBox} \subsubsection{Labels for an isosceles triangle} - \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex index 49e8abe71f1..e0946accd54 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex @@ -1,34 +1,59 @@ % !TEX TS-program = lualatex % encoding : utf8 -% doc de tkz-euclide.sty -% Created by Alain Matthes on 2020-01-02. -% Copyright (C) 2020 Alain Matthes +% Documentation of tkz-euclide +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. % -% This file may be distributed and/or modified +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. % -% 1. under the LaTeX Project Public License , either version 1.3 -% of this license or (at your option) any later version and/or -% 2. under the GNU Public License. -% -% See the file doc/generic/pgf/licenses/LICENSE for more details.% -% See http://www.latex-project.org/lppl.txt for details. +% This work consists of the files: +% TKZdoc-euclide-pointby.tex +% TKZdoc-euclide-presentation.tex +% TKZdoc-euclide-exemples.tex +% TKZdoc-euclide-rapporteur.tex +% TKZdoc-euclide-compass.tex +% TKZdoc-euclide-intersec.tex +% TKZdoc-euclide-tools.tex +% TKZdoc-euclide-arcs.tex +% TKZdoc-euclide-circles.tex +% TKZdoc-euclide-polygons.tex +% TKZdoc-euclide-triangles.tex +% TKZdoc-euclide-lines.tex +% TKZdoc-euclide-pointwith.tex +% TKZdoc-euclide-pointsSpc.tex +% TKZdoc-euclide-points.tex +% TKZdoc-euclide-installation.tex +% TKZdoc-euclide-angles.tex +% TKZdoc-euclide-config.tex +% TKZdoc-euclide-base.tex +% TKZdoc-euclide-FAQ.tex +% TKZdoc-euclide-show.tex +% TKZdoc-euclide-sectors.tex +% TKZdoc-euclide-rnd.tex +% TKZdoc-euclide-news.tex -% TKZdoc-euclide-main is the french doc of tkz-euclide \documentclass[DIV = 14, fontsize = 10, headinclude = false, index = totoc, footinclude = false, twoside, - headings = small - ]{tkz-doc} + headings = small]{tkz-doc} \usepackage{etoc} \gdef\tkznameofpack{tkz-euclide} -\gdef\tkzversionofpack{3.02c} -\gdef\tkzdateofpack{2020/02/06} +\gdef\tkzversionofpack{3.05c} +\gdef\tkzdateofpack{2020/03/03} \gdef\tkznameofdoc{doc-tkz-euclide} -\gdef\tkzversionofdoc{3.02c} -\gdef\tkzdateofdoc{2020/02/06} +\gdef\tkzversionofdoc{3.05c} +\gdef\tkzdateofdoc{2020/03/03} \gdef\tkzauthorofpack{Alain Matthes} \gdef\tkzadressofauthor{} \gdef\tkznamecollection{AlterMundus} @@ -41,17 +66,17 @@ \usepackage{tkz-euclide} \usepackage[colorlinks]{hyperref} \hypersetup{ - linkcolor=BrickRed, + linkcolor=Gray, citecolor=Green, filecolor=Mulberry, urlcolor=NavyBlue, - menucolor=BrickRed, + menucolor=Gray, runcolor=Mulberry, - linkbordercolor=BrickRed, + linkbordercolor=Gray, citebordercolor=Green, filebordercolor=Mulberry, urlbordercolor=NavyBlue, - menubordercolor=BrickRed, + menubordercolor=Gray, runbordercolor=Mulberry, pdfsubject={Euclidean Geometry}, pdfauthor={\tkzauthorofpack}, @@ -59,24 +84,28 @@ pdfcreator={\tkzengine} } \usepackage{tkzexample} -\usepackage{mathtools} +\usepackage{fontspec} +\setmainfont{texgyrepagella}% + [Extension = .otf , + UprightFont = *-regular, + ItalicFont = *-italic, + BoldFont = *-bold, + BoldItalicFont = *-bolditalic, + Ligatures=TeX, + Numbers={Lowercase,Monospaced}] \usepackage{unicode-math} -\usepackage{fourier-otf} -\setmainfont[Ligatures=TeX]{TeX Gyre Pagella} -\setmathfont{TeX Gyre Pagella Math} +\usepackage{fourier-otf,zorna} \usepackage{datetime,multicol,lscape} \usepackage[english]{babel} \usepackage[autolanguage]{numprint} -\usepackage{ulem} +\usepackage[normalem]{ulem} \usepackage{microtype} \usepackage{array,multirow,multido,booktabs} \usepackage{shortvrb,fancyvrb} -\renewcommand{\labelitemi}{\lefthand} -\AtBeginDocument{\MakeShortVerb{\|}} % link to shortvrb -\pdfcompresslevel=9 + +\renewcommand{\labelitemi}{--} \setlength\parindent{0pt} \RequirePackage{makeidx} -%\@twocolumnfalse \makeindex % \def\tkzref{\arabic{section}-\arabic{subsection}-\arabic{subsubsection}} % \renewenvironment{tkzexample}[1][]{% @@ -85,14 +114,37 @@ % \endVerbatimOut % } %<---------------------------------------------------------------------------> +\AtBeginDocument{\MakeShortVerb{\|}} % link to shortvrb \begin{document} -\author{\tkzauthorofpack} +\parindent=0pt +\author{\tkzauthorofpack} \title{\tkznameofpack} \date{\today} \clearpage \thispagestyle{empty} \maketitle +\null +\AddToShipoutPicture*{% +\setlength\unitlength{1mm} +\put(70,120){% +\begin{tikzpicture} + \node at (30pt,30pt){\fontsize{60}{60}\selectfont \zorna{c}}; + \node at (270pt,30pt){\fontsize{60}{60}\selectfont \zorna{d}}; + \node at (30pt,210pt){\fontsize{60}{60}\selectfont \zorna{a}}; + \node at (270pt,210pt){\fontsize{60}{60}\selectfont \zorna{b}}; + \draw[line width=2pt,double,color=MidnightBlue, + fill=myblue!10,opacity=.5] (0,0) rectangle (300pt,240pt); + \node[text width=240pt] at (150 pt,120 pt){% + \begin{center} + \color{MidnightBlue} + \fontsize{24}{48} + \selectfont tkz-euclide\\ + tool for \\ + Euclidean Geometry + \end{center}}; +\end{tikzpicture}} +} \clearpage \tkzSetUpColors[background=white,text=darkgray] @@ -100,46 +152,44 @@ \let\rmfamily\ttfamily \nameoffile{\tkznameofpack} \defoffile{\lefthand\ -The \tkzname{\tkznameofpack} is a set of convenient macros for drawing in a plane ( fundamental two-dimensional object) with a Cartesian coordinate system. It handles the more classic situations in Euclidean Geometry. \tkzname{\tkznameofpack} is built on top of PGF and its associated front-end \TIKZ\ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. It uses a Cartesian coordinate system orthogonal provided by the \tkzimp{tkz-base} package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.\\ +The \tkzname{\tkznameofpack} is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. \tkzname{\tkznameofpack} is built on top of PGF and its associated front-end \TIKZ\ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. It uses a Cartesian coordinate system orthogonal provided by the \tkzimp{tkz-base} package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.\\ Now the package needs the version 3.0 of \TIKZ. English is not my native language so there might be some errors. } - - - \presentation \vspace*{1cm} -\lefthand\ Firstly, I would like to thank \textbf{Till Tantau} for the beautiful LATEX package, namely \href{http://sourceforge.net/projects/pgf/}{Ti\emph{k}Z}. +\lefthand\ Firstly, I would like to thank \textbf{Till Tantau} for the beautiful \LaTeX{} package, namely \href{http://sourceforge.net/projects/pgf/}{\TIKZ}. \vspace*{12pt} -\lefthand\ I received much valuable advices, remarks, corrections and examples from \tkzimp{Jean-Côme Charpentier} , \tkzimp{Josselin Noirel}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor} , \tkzimp{David Arnold}, \tkzimp{Ulrike Fischer},\tkzimp{Stefan Kottwitz} \tkzimp{Christian Tellechea}, \tkzimp{Nicolas Kisselhoff},\tkzimp{David Arnold}, \tkzimp{Wolfgang Büchel}, \tkzimp{John Kitzmiller},\tkzimp{Dimitri Kapetas},\tkzimp{Gaétan Marris},\tkzimp{Mark Wibrow}, \tkzimp{Yve Combe} for his work on protractor, \tkzimp{Dimitri Kapetas}, \tkzimp{Gaétan Marris} and \tkzimp{Paul Gaborit} . +\lefthand\ I received much valuable advice, remarks, corrections and examples from \tkzimp{Jean-Côme Charpentier}, \tkzimp{Josselin Noirel}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor}, \tkzimp{David Arnold}, \tkzimp{Ulrike Fischer}, \tkzimp{Stefan Kottwitz}, \tkzimp{Christian Tellechea}, \tkzimp{Nicolas Kisselhoff}, \tkzimp{David Arnold}, \tkzimp{Wolfgang Büchel}, \tkzimp{John Kitzmiller}, \tkzimp{Dimitri Kapetas}, \tkzimp{Gaétan Marris}, \tkzimp{Mark Wibrow}, \tkzimp{Yves Combe} for his work on a protractor, \tkzimp{Paul Gaborit} and \tkzimp{Laurent} for all his corrections, remarks and questions. \vspace*{12pt} -\lefthand\ I would also like to thank Eric Weisstein, Creator of MathWorld ~: -\href{http://mathworld.wolfram.com/about/author.html}{MathWorld} +\lefthand\ I would also like to thank Eric Weisstein, creator of MathWorld: +\href{http://mathworld.wolfram.com/about/author.html}{MathWorld}. \vspace*{12pt} -\lefthand\ You can find some examples on my site~: -\href{http://altermundus.fr}{altermundus.fr} \hspace{2cm} under construction ! +\lefthand\ You can find some examples on my site: +\href{http://altermundus.fr}{altermundus.fr}. \hspace{2cm} under construction! \vfill -Please report typos or any other comments to this documentation to ~: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}. +Please report typos or any other comments to this documentation to: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}. -This file can be redistributed and/or modified under the terms of the LATEX +This file can be redistributed and/or modified under the terms of the \LaTeX{} Project Public License Distributed from \href{http://www.ctan.org/}{CTAN}\ archives. \clearpage \tableofcontents -\clearpage \newpage +\clearpage +\newpage \setlength{\parskip}{1ex plus 0.5ex minus 0.2ex} - \include{TKZdoc-euclide-presentation} \include{TKZdoc-euclide-installation} \include{TKZdoc-euclide-news} \include{TKZdoc-euclide-points} +\include{TKZdoc-euclide-pointsSpc} \include{TKZdoc-euclide-pointby} \include{TKZdoc-euclide-pointwith} \include{TKZdoc-euclide-rnd} @@ -151,6 +201,7 @@ Project Public License Distributed from \href{http://www.ctan.org/}{CTAN}\ arch \include{TKZdoc-euclide-angles} \include{TKZdoc-euclide-sectors} \include{TKZdoc-euclide-arcs} +\include{TKZdoc-euclide-tools} \include{TKZdoc-euclide-compass} \include{TKZdoc-euclide-show} \include{TKZdoc-euclide-rapporteur} @@ -158,8 +209,7 @@ Project Public License Distributed from \href{http://www.ctan.org/}{CTAN}\ arch \include{TKZdoc-euclide-config} \include{TKZdoc-euclide-base} \include{TKZdoc-euclide-FAQ} + \clearpage\newpage -\begin{multicols}{2} \small\printindex -\end{multicols} \end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex index b11a4622e08..f6b6d1068d0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex @@ -10,28 +10,31 @@ An important novelty is the recent replacement of the \tkzNamePack{fp} package b Here are some of the changes. \vspace{1cm} \begin{itemize}\setlength{\itemsep}{10pt} -\item Improved code and bug fixes. -\item With \tkzimp{tkz-euclide} loads all objects, so there's no need to place. \tkzcname{usetkzobj{all}}. -\item The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzcname{tkzInit} followed by \tkzcname{tkzClip}. -\item Added macros for the bounding box: \tkzcname{tkzSaveBB} \tkzcname{tkzClipBB} and so on. -\item Logically most macros accept TikZ options. So I removed the "duplicate" options when possible; thus the "label options" option is removed. -\item Random points are now in \tkzimp{tkz-euclide} and the macro \tkzcname{tkzGetRandPointOn} is replaced by \tkzcname{tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \tkzcname{tkzGetPoint}. +\item Improved code and bug fixes; -\item The options \tkzimp{end} and \tkzimp{start} which allowed to give a label to a straight line are removed. You now have to use the macro \tkzcname{tkzLabelLine} +\item With \tkzimp{tkz-euclide} loads all objects, so there's no need to place \tkzcname{usetkzobj\{all\}};\item The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzcname{tkzInit} followed by \tkzcname{tkzClip};\item Added macros for the bounding box: \tkzcname{tkzSaveBB} \tkzcname{tkzClipBB} and so on;\item Logically most macros accept \TIKZ\ options. So I removed the "duplicate" options when possible thus the "label options" option is removed; -\item Introduction of the libraries \NameLib{quotes} and \NameLib{angles} it allows to give a label to a point, even if I am not in favour of this practice. +\item Random points are now in \tkzname{\tkznameofpack} and the macro \tkzcname{tkzGetRandPointOn} is replaced by \tkzcname{tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \tkzcname{tkzGetPoint}; -\item The notion of vector disappears to draw a vector just pass "->" as an option to \tkzcname{tkzDrawSegment}. -\item Many macros still exist, but are obsolete and will disappear: +\item The options \tkzname{end} and \tkzname{start} which allowed to give a label to a straight line are removed. You now have to use the macro \tkzcname{tkzLabelLine}; + +\item Introduction of the libraries \NameLib{quotes} and \NameLib{angles}; it allows to give a label to a point, even if I am not in favour of this practice; + +\item The notion of vector disappears, to draw a vector just pass "->" as an option to \tkzcname{tkzDrawSegment}; + +\item Many macros still exist, but are obsolete and will disappear: \begin{itemize} - \item |\tkzDrawMedians| trace and create midpoints on the sides of a triangle. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with |\tkzSpcTriangle[median]| and then to choose the ones you are going to draw with |\tkzDrawSegments| or |\tkzDrawLines|. - \item |\tkzDrawMedians(A,B)(C)| is now spelled |\tkzDrawMedians(A,C,B)|. This defines the median from $C$. - \item Another example |\tkzDrawTriangle[equilateral]| was handy but it is better to get the third point with |\tkzDefTriangle[equilateral]| and then draw with |\tkzDrawPolygon|. + +\item |\tkzDrawMedians| trace and create midpoints on the sides of a triangle. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with |\tkzSpcTriangle[median]| and then to choose the ones you are going to draw with |\tkzDrawSegments| or |\tkzDrawLines|; + +\item |\tkzDrawMedians(A,B)(C)| is now spelled |\tkzDrawMedians(A,C,B)|. This defines the median from $C$; + +\item Another example |\tkzDrawTriangle[equilateral]| was handy but it is better to get the third point with |\tkzDefTriangle[equilateral]| and then draw with |\tkzDrawPolygon|; - \item |\tkzDefRandPointOn| replaced by |\tkzGetRandPointOn| - \item now |\tkzTangent| is |\tkzDefTangent| - \item You can use |global path name| if you want find intersection but it's very slow like in TikZ. +\item |\tkzDefRandPointOn| is replaced by |\tkzGetRandPointOn|;\item now |\tkzTangent| is replaced by |\tkzDefTangent|; + +\item You can use |global path name| if you want find intersection but it's very slow like in \TIKZ. \end{itemize} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex deleted file mode 100644 index 413087202ae..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex +++ /dev/null @@ -1,29 +0,0 @@ -\section{Utilisation des objets complémentaires} - -Ces objets complémentaires peuvent être des points, des segments, des droites. -Il est possible d'utiliser certains de ces objets sans charger complètement \tkzname{tkz-euclide} mais en utilisant la macro \tkzcname{usetkzobj}. Attention, il faut utiliser \tkzname{tkz-euclide} pour avoir la possibilité d'utiliser des outils comme les transformations ou encore les intersections. - -Voici la liste actuelle des objets et ceux qui sont chargés par défaut par \tkzname{tkz-base}. -\begin{NewMacroBox}{usetkzobj}{\marg{liste d'objets}} - -\begin{tabular}{lll} -options & & définition \\ -\midrule -\TAline{all} {absent} {tous les objets sont chargés} -\TAline{points}{présent}{définir, nommer, tracer des points } -\TAline{lines}{absent} {définir, nommer, tracer des droites} -\TAline{segments} {présent}{définir, nommer, tracer des segments} -\TAline{vectors} {absent}{définir, nommer, tracer des des vecteurs} -\TAline{circles} {absent}{définir, nommer, tracer des cercles} -\TAline{polygons}{absent}{définir, nommer, tracer des quadrilatères} -\TAline{arcs} {absent}{définir, nommer, tracer des arcs} -\TAline{sectors}{absent}{définir, nommer, tracer des secteurs} -\TAline{protractor}{absent}{tracer un rapporteur} -\TAline{marks}{présent}{définir, nommer, tracer des marques} -\end{tabular} - \end{NewMacroBox} - - -\subsubsection{\tkzcname{usetkzobj\{points,segments\}}} - -\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex index 35046719d0c..fdc4f91fb99 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex @@ -1,26 +1,26 @@ \section{Definition of points by transformation; \tkzcname{tkzDefPointBy} } These transformations are: -\begin{enumerate} - \item the translation; - \item l'homothety; +\begin{itemize} + \item translation; + \item homothety; \item orthogonal reflection or symmetry; \item central symmetry; \item orthogonal projection; \item rotation (degrees or radians); - \item inversion with respect to a circle -\end{enumerate} + \item inversion with respect to a circle. +\end{itemize} -The choice of transformations is made through the options. There are two macros, one for the transformation of a single point \tkzcname{tkzDefPointBy} and the other for the transformation of a list of points \tkzcname{tkzDefPointsBy}. By default the image of $A$ is $A'$. For example, we'll write~: +The choice of transformations is made through the options. There are two macros, one for the transformation of a single point \tkzcname{tkzDefPointBy} and the other for the transformation of a list of points \tkzcname{tkzDefPointsBy}. By default the image of $A$ is $A'$. For example, we'll write: \begin{tkzltxexample}[] -\tkzDefPointBy[translation= from A to A'](B) the result is in \tkzname{tkzPointResult}} +\tkzDefPointBy[translation= from A to A'](B) \end{tkzltxexample} - +The result is in \tkzname{tkzPointResult} \medskip -\begin{NewMacroBox}{tkzDefPointBy}{\oarg{local options}\parg{pt}} +\begin{NewMacroBox}{tkzDefPointBy}{\oarg{local options}\parg{pt}}% The argument is a simple existing point and its image is stored in \tkzname{tkzPointResult}. If you want to keep this point then the macro \tkzcname{tkzGetPoint\{M\}} allows you to assign the name \tkzname{M} to the point. -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & definition & examples \\ \midrule @@ -28,7 +28,7 @@ arguments & definition & examples \\ \bottomrule \end{tabular} -\begin{tabular}{lll} +\begin{tabular}{lll}% options & & examples \\ \midrule \TOline{translation}{= from \#1 to \#2}{[translation=from A to B](E)} @@ -37,7 +37,7 @@ options & & examples \\ \TOline{symmetry } {= center \#1}{[symmetry=center A](E)} \TOline{projection }{= onto \#1--\#2}{[projection=onto A--B](E)} \TOline{rotation } {= center \#1 angle \#2}{[rotation=center O angle 30](E)} -\TOline{rotation in rad}{= center \#1 angle \#2}{rotation=center O angle pi/3} +\TOline{rotation in rad}{= center \#1 angle \#2}{[rotation in rad=center O angle pi/3](E)} \TOline{inversion}{= center \#1 through \#2}{[inversion =center O through A](E)} \bottomrule \end{tabular} @@ -45,14 +45,26 @@ options & & examples \\ The image is only defined and not drawn. \end{NewMacroBox} -\subsection{Orthogonal reflection or symmetry } +\subsection{Examples of transformations} +\subsubsection{Example of translation} -\subsubsection{Example of reflection} +\subsection{Example of translation} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[>=latex] + \tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} + \tkzDefPoint(3,0){C} + \tkzDefPointBy[translation= from B to A](C) + \tkzGetPoint{D} + \tkzDrawPoints[teal](A,B,C,D) + \tkzLabelPoints[color=teal](A,B,C,D) + \tkzDrawSegments[orange,->](A,B D,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of reflection (orthogonal symmetry)} \begin{tkzexample}[vbox,small] \begin{tikzpicture}[scale=1] - \tkzInit[ymin=-4,ymax=6,xmin=-7,xmax=3] - \tkzClip \tkzDefPoints{1.5/-1.5/C,-4.5/2/D} \tkzDefPoint(-4,-2){O} \tkzDefPoint(-2,-2){A} @@ -69,56 +81,50 @@ The image is only defined and not drawn. \end{tikzpicture} \end{tkzexample} - -\subsection{Homothety} -\subsubsection{Example of homothety and projection} + +\subsubsection{Example of \tkzname{homothety} and \tkzname{projection}} \begin{tkzexample}[vbox,small] -\begin{tikzpicture}[scale=1.25] - \tkzInit \tkzClip - \tkzDefPoint(0,1){A} \tkzDefPoint(6,3){B} \tkzDefPoint(3,6){C} - \tkzDrawLines[add= 0 and .3](A,B A,C) +\begin{tikzpicture}[scale=1.2] + \tkzDefPoint(0,1){A} \tkzDefPoint(5,3){B} \tkzDefPoint(3,4){C} \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} \tkzDrawLine[add=0 and 0,color=magenta!50 ](A,a) \tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'} - \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k} - \tkzDrawSegment[blue](a',k) - \tkzDrawPoints(a,a',k,A) - \tkzDrawCircle(a',k) + \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k'} + \tkzDefPointBy[projection = onto A--B](a) \tkzGetPoint{k} + \tkzDrawLines[add= 0 and .3](A,k A,C) + \tkzDrawSegments[blue](a',k' a,k) + \tkzDrawPoints(a,a',k,k',A) + \tkzDrawCircles(a',k' a,k) \tkzLabelPoints(a,a',k,A) \end{tikzpicture} \end{tkzexample} -\subsection{The projection } \subsubsection{Example of projection} - \begin{tkzexample}[vbox,small] \begin{tikzpicture}[scale=1.5] - \tkzInit[xmin=-3,xmax=5,ymax=4] \tkzClip[space=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(0,4){B} - \tkzDrawTriangle[pythagore](B,A) \tkzGetPoint{C} + \tkzDefTriangle[pythagore](B,A) \tkzGetPoint{C} \tkzDefLine[bisector](B,C,A) \tkzGetPoint{c} \tkzInterLL(C,c)(A,B) \tkzGetPoint{D} - \tkzDrawSegment(C,D) - \tkzDrawCircle(D,A) \tkzDefPointBy[projection=onto B--C](D) \tkzGetPoint{G} \tkzInterLC(C,D)(D,A) \tkzGetPoints{E}{F} + \tkzDrawPolygon[teal](A,B,C) + \tkzDrawSegment(C,D) + \tkzDrawCircle(D,A) + \tkzDrawSegment[orange](D,G) + \tkzMarkRightAngle[fill=orange!20](D,G,B) \tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F) \tkzDrawPoints(B,D,E,G) \tkzLabelPoints[above right](B,D,E,G) \end{tikzpicture} \end{tkzexample} - - -\newpage -\subsection{Symmetry } \subsubsection{Example of symmetry} - \begin{tkzexample}[vbox,small] -\begin{tikzpicture}[scale=1.5] +\begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} \tkzDefPoint(2,2){B} @@ -134,84 +140,65 @@ The image is only defined and not drawn. \end{tikzpicture} \end{tkzexample} - -\newpage -\subsection{Rotation } \subsubsection{Example of rotation} - - -\begin{tkzexample}[latex=8cm,small] - \begin{tikzpicture}[scale=1] - \tkzInit +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=0.5] \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} \tkzDrawSegment(A,B) - \tkzDefPointBy[rotation=% - center A angle 60](B) + \tkzDefPointBy[rotation=center A angle 60](B) \tkzGetPoint{C} - \tkzDefPointBy[symmetry=% - center C](A) + \tkzDefPointBy[symmetry=center C](A) \tkzGetPoint{D} \tkzDrawSegment(A,tkzPointResult) \tkzDrawLine(B,D) - \tkzDrawArc[delta=10](A,B)(C) - \tkzDrawArc[delta=10](B,C)(A) - \tkzDrawArc[delta=10](C,D)(D) + \tkzDrawArc[orange,delta=10](A,B)(C) + \tkzDrawArc[orange,delta=10](B,C)(A) + \tkzDrawArc[orange,delta=10](C,D)(D) \tkzMarkRightAngle(D,B,A) \end{tikzpicture} \end{tkzexample} - -\subsection{Rotation in radian } \subsubsection{Example of rotation in radian} - -\begin{tkzexample}[latex=8cm,small] +\begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoint["$A$" left](1,5){A} \tkzDefPoint["$B$" right](5,2){B} \tkzDefPointBy[rotation in rad= center A angle pi/3](B) - \tkzGetPoint{C} - + \tkzGetPoint{C} \tkzDrawSegment(A,B) \tkzDrawPoints(A,B,C) \tkzCompass[color=red](A,C) - \tkzCompass[color=red](B,C) - + \tkzCompass[color=red](B,C) \tkzLabelPoints(C) \end{tikzpicture} \end{tkzexample} - -\newpage -\subsection{Inversion with respect to a circle } \subsubsection{Inversion of points} - - \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(1,0){A} - \tkzDrawCircle(O,A) \tkzDefPoint(-1.5,-1.5){z1} \tkzDefPoint(0.35,0){z2} - \tkzDrawPoints[color=black, - fill=red,size=4](O,z1,z2) \tkzDefPointBy[inversion =% center O through A](z1) \tkzGetPoint{Z1} \tkzDefPointBy[inversion =% center O through A](z2) - \tkzGetPoint{Z2} + \tkzGetPoint{Z2} + \tkzDrawCircle(O,A) \tkzDrawPoints[color=black, fill=red,size=4](Z1,Z2) \tkzDrawSegments(z1,Z1 z2,Z2) + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2) \tkzLabelPoints(O,A,z1,z2,Z1,Z2) \end{tikzpicture} \end{tkzexample} \subsubsection{Point Inversion: Orthogonal Circles} - \begin{tkzexample}[latex=8cm,small] \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} @@ -230,24 +217,29 @@ The image is only defined and not drawn. \end{tikzpicture} \end{tkzexample} -\newpage -\section{Transformation of multiple points; \tkzcname{tkzDefPointsBy} } - +\subsection{Transformation of multiple points; \tkzcname{tkzDefPointsBy} } Variant of the previous macro for defining multiple images. You must give the names of the images as arguments, or indicate that the names of the images are formed from the names of the antecedents, leaving the argument empty. \begin{tkzltxexample}[] -\tkzDefPointsBy[translation= from A to A'](B,C){} the images are B' and C'. -\tkzDefPointsBy[translation= from A to A'](B,C){D,E} the images are D and E -\tkzDefPointsBy[translation= from A to A'](B) the image is B'. +\tkzDefPointsBy[translation= from A to A'](B,C){} \end{tkzltxexample} +The images are $B'$ and $C'$. -\begin{NewMacroBox}{tkzDefPointsBy}{\oarg{local options}\parg{list of points}\marg{list of points}} -\begin{tabular}{lll} -\toprule -arguments & exemples & \\ +\begin{tkzltxexample}[] +\tkzDefPointsBy[translation= from A to A'](B,C){D,E} +\end{tkzltxexample} +The images are $D$ and $E$. + +\begin{tkzltxexample}[] +\tkzDefPointsBy[translation= from A to A'](B) +\end{tkzltxexample} +The image is $B'$. +\begin{NewMacroBox}{tkzDefPointsBy}{\oarg{local options}\parg{list of points}\marg{list of points}}% +\begin{tabular}{lll}% +arguments & examples & \\ \midrule -\TAline{\parg{liste de pts}\marg{list of pts}}{(A,B)\{E,F\}}{E is the image of A and F is the image of B.} \\ +\TAline{\parg{list of points}\marg{list of pts}}{(A,B)\{E,F\}}{$E$ is the image of $A$ and $F$ is the image of $B$.} \\ \bottomrule \end{tabular} @@ -255,9 +247,9 @@ arguments & exemples & \\ If the list of images is empty then the name of the image is the name of the antecedent to which " ' " is added. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & & exemples \\ +options & & examples \\ \midrule \TOline{translation = from \#1 to \#2}{}{[translation=from A to B](E)\{\}} \TOline{homothety = center \#1 ratio \#2}{}{[homothety=center A ratio .5](E)\{F\}} @@ -265,7 +257,7 @@ options & & exemples \\ \TOline{symmetry = center \#1}{}{[symmetry=center A](E)\{F\}} \TOline{projection = onto \#1--\#2}{}{[projection=onto A--B](E)\{F\}} \TOline{rotation = center \#1 angle \#2}{}{[rotation=center angle 30](E)\{F\}} -\TOline{rotation in rad = center \#1 angle \#2}{}{par exemple angle pi/3} +\TOline{rotation in rad = center \#1 angle \#2}{}{for instance angle pi/3} \bottomrule \end{tabular} @@ -273,11 +265,10 @@ options & & exemples \\ The points are only defined and not drawn. \end{NewMacroBox} -\subsection{Example de translation} - +\subsubsection{Example of translation} \begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture} - \tkzDefPoint(0,0){A} \tkzDefPoint(4,2){A'} +\begin{tikzpicture}[>=latex] + \tkzDefPoint(0,0){A} \tkzDefPoint(3,1){A'} \tkzDefPoint(3,0){B} \tkzDefPoint(1,2){C} \tkzDefPointsBy[translation= from A to A'](B,C){} \tkzDrawPolygon[color=blue](A,B,C) diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex index 9cea12304c8..cce1c9066f7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex @@ -2,25 +2,24 @@ Points can be specified in any of the following ways: \begin{itemize} -\item Cartesian coordinates -\item Polar coordinates -\item Named points -\item Relative points +\item Cartesian coordinates; +\item Polar coordinates; +\item Named points; +\item Relative points. \end{itemize} Even if it's possible, I think it's a bad idea to work directly with coordinates. Preferable is to use named points. A point is defined if it has a name linked to a unique pair of decimal numbers. - Let $(x,y)$ or $(a:d)$ i.e. ( $x$ abscissa, $y$ ordinate) or ($a$ angle : $d$ distance ). - This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are supposed to be (ortho)normed with unity equal to $1cm $ or something equivalent like $0.39370~in$. - Now by default if you use a grid or axes, the rectangle used is defined by the coordinate points~: $(0,0)$ et $(10,10)$. It's the macro \tkzcname{tkzInit} of the package \tkzNamePack{tkz-base} that creates this rectangle. Look at the following two codes and the result of their compilation: + Let $(x,y)$ or $(a:d)$ i.e. ($x$ abscissa, $y$ ordinate) or ($a$ angle: $d$ distance). + This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are supposed to be (ortho)normed with unity equal to $1$~cm or something equivalent like $0.39370$~in. + Now by default if you use a grid or axes, the rectangle used is defined by the coordinate points: $(0,0)$ and $(10,10)$. It's the macro \tkzcname{tkzInit} of the package \tkzNamePack{tkz-base} that creates this rectangle. Look at the following two codes and the result of their compilation: \begin{tkzexample}[latex=10cm,small] \begin{tikzpicture} - \tkzGrid - \tkzDefPoint(0,0){O} - \tkzDrawPoint[red](O) - \tkzShowBB[line width=2pt, - orange] +\tkzGrid +\tkzDefPoint(0,0){O} +\tkzDrawPoint[red](O) +\tkzShowBB[line width=2pt,teal] \end{tikzpicture} \end{tkzexample} @@ -31,7 +30,7 @@ A point is defined if it has a name linked to a unique pair of decimal numbers. \tkzDefPoint(5,5){A} \tkzDrawSegment[blue](O,A) \tkzDrawPoints[red](O,A) - \tkzShowBB[line width=2pt,orange] + \tkzShowBB[line width=2pt,teal] \end{tikzpicture} \end{tkzexample} @@ -40,13 +39,8 @@ A point is defined if it has a name linked to a unique pair of decimal numbers. $y$-direction. A point in polar coordinates requires an angle $\alpha$, in degrees, - and distance from the origin, $d$. Unlike Cartesian coordinates, the - distance does not have a default dimensional unit, so one must be - supplied. The \tikz{} syntax for a point specified in polar - coordinates is $(\alpha:r\:dim)$, where {\em dim} is a dimensional - unit such as \texttt{cm}, \texttt{pt}, \texttt{in}, or any other - \TeX-based unit. Other than syntax and the required dimensional unit, - this follows usual mathematical usage. + and a distance $d$ from the origin with a dimensional + unit by default it's the \texttt{cm}. \begin{minipage}[b]{0.5\textwidth} @@ -59,7 +53,8 @@ A point is defined if it has a name linked to a unique pair of decimal numbers. \tkzDefPoint(3,4){A} \tkzDrawPoints(O,A) \tkzLabelPoint(A){$A_1 (x_1,y_1)$} - \tkzShowPointCoord[xlabel=$x_1$,ylabel=$y_1$](A) + \tkzShowPointCoord[xlabel=$x_1$, + ylabel=$y_1$](A) \tkzLabelPoints(O,I) \tkzLabelPoints[left](J) \tkzDrawPoints[shape=cross](I,J) @@ -74,14 +69,14 @@ A point is defined if it has a name linked to a unique pair of decimal numbers. \tkzDefPoints{0/0/O,1/0/I,0/1/J} \tkzDefPoint(40:4){P} \tkzDrawXY[noticks,>=triangle 45] - \tkzDrawSegment[dim={$r$, + \tkzDrawSegment[dim={$d$, 16pt,above=6pt}](O,P) \tkzDrawPoints(O,P) \tkzMarkAngle[mark=none,->](I,O,P) \tkzFillAngle[fill=blue!20, opacity=.5](I,O,P) \tkzLabelAngle[pos=1.25](I,O,P){$\alpha$} - \tkzLabelPoint(P){$P (\alpha : r )$} + \tkzLabelPoint(P){$P (\alpha : d )$} \tkzDrawPoints[shape=cross](I,J) \tkzLabelPoints(O,I) \tkzLabelPoints[left](J) @@ -89,51 +84,47 @@ A point is defined if it has a name linked to a unique pair of decimal numbers. \end{tkzexample} \end{minipage}% -The \tkzNameMacro{tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on \tkzNameMacro{coordinate}, a macro of \TIKZ\ . It can use \TIKZ-specific options such as \IoptName{TikZ}{shift}. If calculations are required then the \tkzNamePack{xfp} package is chosen. We can use Cartesian or polar coordinates. +The \tkzNameMacro{tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on \tkzNameMacro{coordinate}, a macro of \TIKZ. It can use \TIKZ-specific options such as \tkzname{shift}. If calculations are required then the \tkzNamePack{xfp} package is chosen. We can use Cartesian or polar coordinates. \subsection{Defining a named point \tkzcname{tkzDefPoint}} -\begin{NewMacroBox}{tkzDefPoint}{\oarg{local options}\parg{x,y}\marg{name} ou \parg{a:r}\marg{name}} - -\begin{tabular}{lll} -\toprule -arguments & défaut & définition \\ +\begin{NewMacroBox}{tkzDefPoint}{\oarg{local options}\parg{$x,y$}\marg{name} or \parg{$\alpha$:$d$}\marg{name}}% +\begin{tabular}{lll}% +arguments & default & definition \\ \midrule -\TAline{(x,y)}{no default}{x et y sont deux dimensions, par défaut en cm.} -\TAline{(a:d)}{no default}{a est un angle en degré, d une dimension} -\TAline{\{name\}}{no default}{Nom attribué au point : $A$, $T_a$ ,$P1$ etc ...} +\TAline{($x,y$)}{no default}{$x$ and $y$ are two dimensions, by default in cm.} +\TAline{($\alpha$:$d$)}{no default}{$\alpha$ is an angle in degrees, $d$ is a dimension} +\TAline{\{name\}}{no default}{Name assigned to the point: $A$, $T_a$ ,$P1$ etc ...} \bottomrule \end{tabular} \medskip -{Les arguments obligatoires de cette macro sont deux dimensions exprimées avec des décimaux, dans le premier cas ce sont deux mesures de longueur, dans le second ce sont une mesure de longueur et la mesure d'un angle en degré} +The obligatory arguments of this macro are two dimensions expressed with decimals, in the first case they are two measures of length, in the second case they are a measure of length and the measure of an angle in degrees. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{label} {no default} {permet de placer un label à une distance prédéfinie} -\TOline{shift} {no default} {Ajoute (x,y) ou (a:d) à toutes les coordonnées} - \bottomrule +\TOline{label} {no default} {allows you to place a label at a predefined distance} +\TOline{shift} {no default} {adds $(x,y)$ or $(\alpha:d)$ to all coordinates} \end{tabular} - \end{NewMacroBox} - \subsubsection{Cartesian coordinates } +\subsubsection{Cartesian coordinates } - \begin{tkzexample}[latex=7cm,small] - \begin{tikzpicture} - \tkzInit[xmax=5,ymax=5] - \tkzDefPoint(0,0){A} - \tkzDefPoint(4,0){B} - \tkzDefPoint(0,3){C} - \tkzDrawPolygon(A,B,C) - \tkzDrawPoints(A,B,C) - \end{tikzpicture} - \end{tkzexample} - - \subsubsection{Calculations with \tkzNamePack{xfp}} +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefPoint(0,3){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Calculations with \tkzNamePack{xfp}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] @@ -159,7 +150,7 @@ options & default & definition \\ \end{tkzexample} \subsubsection{Calculations and coordinates} -You must follow the syntax of \tkzNamePack{fxp} here. It is always possible to go through \tkzNamePack{pgfmath} but in this case, the coordinates must be calculated before using the macro \tkzcname{tkzDefPoint}. +You must follow the syntax of \tkzNamePack{xfp} here. It is always possible to go through \tkzNamePack{pgfmath} but in this case, the coordinates must be calculated before using the macro \tkzcname{tkzDefPoint}. \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.5] @@ -171,8 +162,7 @@ You must follow the syntax of \tkzNamePack{fxp} here. It is always possible to g \subsubsection{Relative points} - -First, we can use the \tkzNameEnv{scope} environment from \TIKZ\ .. +First, we can use the \tkzNameEnv{scope} environment from \TIKZ. In the following example, we have a way to define an equilateral triangle. \begin{tkzexample}[latex=7cm,small] @@ -193,26 +183,24 @@ In the following example, we have a way to define an equilateral triangle. \end{tkzexample} %<---------------------------------------------------------------------------> -\subsection{Point relative to another : \tkzcname{tkzDefShiftPoint}} -\begin{NewMacroBox}{tkzDefShiftPoint}{\oarg{Point}\parg{x,y}\marg{name} ou \parg{a:d}\marg{name}} -\begin{tabular}{lll} +\subsection{Point relative to another: \tkzcname{tkzDefShiftPoint}} +\begin{NewMacroBox}{tkzDefShiftPoint}{\oarg{Point}\parg{$x,y$}\marg{name} or \parg{$\alpha$:$d$}\marg{name}}% +\begin{tabular}{lll}% arguments & default & definition \\ \midrule -\TAline{(x,y)}{no default}{x and y are two dimensions, by default in cm.} -\TAline{(a:d)}{no default}{a is an angle in degrees, d is a dimension} +\TAline{($x,y$)}{no default}{$x$ and $y$ are two dimensions, by default in cm.} +\TAline{($\alpha$:$d$)}{no default}{$\alpha$ is an angle in degrees, $d$ is a dimension} \midrule options & default & definition \\ \midrule \TOline{[pt]} {no default} {\tkzcname{tkzDefShiftPoint}[A](0:4)\{B\}} -\bottomrule \end{tabular} - \end{NewMacroBox} \subsubsection{Isosceles triangle with \tkzcname{tkzDefShiftPoint}} -This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex A and angle at vertex of $30^{\circ} $. +This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex $A$ and angle at vertex of $30^{\circ} $. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[rotate=-30] @@ -220,29 +208,26 @@ This macro allows you to place one point relative to another. This is equivalent \tkzDefShiftPoint[A](0:4){B} \tkzDefShiftPoint[A](30:4){C} \tkzDrawSegments(A,B B,C C,A) - \tkzMarkSegments[mark=|, - color=red](A,B A,C) + \tkzMarkSegments[mark=|,color=red](A,B A,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) \end{tikzpicture} \end{tkzexample} - - \subsubsection{Equilateral triangle} Let's see how to get an equilateral triangle (there is much simpler) - \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} - \tkzDefShiftPoint[A](30:4){B} - \tkzDefShiftPoint[A](-30:4){C} + \tkzDefShiftPoint[A](30:3){B} + \tkzDefShiftPoint[A](-30:3){C} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) + \tkzMarkSegments[mark=|,color=red](A,B A,C B,C) \end{tikzpicture} \end{tkzexample} @@ -251,22 +236,21 @@ There's a simpler way \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){A} - \tkzDefPoint(60:3){B} - \tkzDefShiftPointCoord[B](30:4){C} - \tkzDefShiftPointCoord[A](30:4){D} + \tkzDefPoint(30:3){B} + \tkzDefShiftPointCoord[B](10:2){C} + \tkzDefShiftPointCoord[A](10:2){D} \tkzDrawPolygon(A,...,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} \end{tkzexample} %<---------------------------------------------------------------------------> +\subsection{Definition of multiple points: \tkzcname{tkzDefPoints}} -\subsection{Definition of multiple points : \tkzcname{tkzDefPoints}} - -\begin{NewMacroBox}{tkzDefPoints}{\oarg{local options}\marg{$x_1/y_1/n_1,x_2/y_2/n_2$, ...}} -$x_i$ et $y_i$ are the coordinates of a referenced point $n_i$ +\begin{NewMacroBox}{tkzDefPoints}{\oarg{local options}\marg{$x_1/y_1/n_1,x_2/y_2/n_2$, ...}}% +$x_i$ and $y_i$ are the coordinates of a referenced point $n_i$ -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & default & example \\ \midrule @@ -274,19 +258,14 @@ arguments & default & example \\ \end{tabular} \medskip -\begin{tabular}{lll} -\toprule +\begin{tabular}{lll}% options & default & definition \\ \midrule -\TOline{label} {no default} {allows you to place a label at a predefined distance} -\TOline{shift} {no default} {Adds (x,y) or (a:d) to all coordinates} - \bottomrule +\TOline{shift} {no default} {Adds $(x,y)$ or $(\alpha:d)$ to all coordinates} \end{tabular} - \end{NewMacroBox} \subsection{Create a triangle} - \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,4/0/B,4/3/C} @@ -305,19 +284,17 @@ Note here the syntax for drawing the polygon. \end{tikzpicture} \end{tkzexample} -\newpage \section{Special points} The introduction of the dots was done in \tkzname{tkz-base}, the most important macro being \tkzcname{tkzDefPoint}. Here are some special points. - %<---------------------------------------------------------------------------> \subsection{Middle of a segment \tkzcname{tkzDefMidPoint}} It is a question of determining the middle of a segment. -\begin{NewMacroBox}{tkzDefMidPoint}{\parg{pt1,pt2}} +\begin{NewMacroBox}{tkzDefMidPoint}{\parg{pt1,pt2}}% The result is in \tkzname{tkzPointResult}. We can access it with \tkzcname{tkzGetPoint}. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & default & definition \\ \midrule @@ -326,7 +303,7 @@ arguments & default & definition \\ \end{NewMacroBox} \subsubsection{Use of \tkzcname{tkzDefMidPoint}} -Review the use of \tkzcname{tkzDefPoint} in \NamePack{tkz-base}. +Review the use of \tkzcname{tkzDefPoint} in \tkzNamePack{tkz-base}. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} @@ -341,18 +318,18 @@ Review the use of \tkzcname{tkzDefPoint} in \NamePack{tkz-base}. \subsection{Barycentric coordinates } $pt_1$, $pt_2$, \dots, $pt_n$ being $n$ points, they define $n$ vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, \dots, $\overrightarrow{v_n}$ with the origin of the referential as the common endpoint. $\alpha_1$, $\alpha_2$, -\dots $\alpha_n$ is $n$ numbers, the vector obtained by : +\dots $\alpha_n$ are $n$ numbers, the vector obtained by: \begin{align*} \frac{\alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \cdots + \alpha_n \overrightarrow{v_n}}{\alpha_1 + \alpha_2 + \cdots + \alpha_n} \end{align*} defines a single point. -\begin{NewMacroBox}{tkzDefBarycentricPoint}{\parg{pt1=$\alpha_1$,pt2=$\alpha_2$,\ldots}} -\begin{tabular}{lll} +\begin{NewMacroBox}{tkzDefBarycentricPoint}{\parg{pt1=$\alpha_1$,pt2=$\alpha_2$,\dots}}% +\begin{tabular}{lll}% arguments & default & definition \\ \midrule -\TAline{(pt1=$\alpha_1$,pt2=$\alpha_2$,\ldots)}{no default}{Each point has a assigned weight} +\TAline{(pt1=$\alpha_1$,pt2=$\alpha_2$,\dots)}{no default}{Each point has a assigned weight} \bottomrule \end{tabular} @@ -362,7 +339,7 @@ You need at least two points. \subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with two points} -In the following example, we obtain the barycentre of points A and B with coefficients 1 and 2, in other words: +In the following example, we obtain the barycentre of points $A$ and $B$ with coefficients $1$ and $2$, in other words: \[ \overrightarrow{AI}= \frac{2}{3}\overrightarrow{AB} \] @@ -380,8 +357,7 @@ In the following example, we obtain the barycentre of points A and B with coeffi \end{tkzexample} \subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with three points} - -This time M is simply the centre of gravity of the triangle. For reasons of simplification and homogeneity, there is also \tkzcname{tkzCentroid} +This time $M$ is simply the centre of gravity of the triangle. For reasons of simplification and homogeneity, there is also \tkzcname{tkzCentroid}. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.8] \tkzDefPoint(2,1){A} @@ -430,441 +406,6 @@ The centres of the two homotheties in which two circles correspond are called ex \end{tikzpicture} \end{tkzexample} -\clearpage \newpage -\section{Special points relating to a triangle} - -\subsection{Triangle center : \tkzcname{tkzDefTriangleCenter}} - -This macro allows you to define the center of a triangle. - - -\begin{NewMacroBox}{tkzDefTriangleCenter}{\oarg{local options}\parg{A,B,C}} -\tkzHandBomb\ Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzcname{tkzGetPoint} to get the center you are looking for. You can use \tkzname{tkzPointResult} if it is not necessary to keep the results. - -\medskip -\begin{tabular}{lll} -\toprule -arguments & default & definition \\ - -\midrule -\TAline{(pt1,pt2,pt3)}{no default}{three points} -\midrule -options & default & definition \\ -\midrule -\TOline{ortho} {circum}{Intersection of the altitudes of a triangle} -\TOline{centroid} {circum}{centre of gravity. Intersection of the medians } -\TOline{circum}{circum}{circle center circumscribed} -\TOline{in} {circum}{centre du cercle inscrit dans à un triangle } -\TOline{ex} {circum}{center of a circle exinscribed to a triangle } -\TOline{euler}{circum}{centre of Euler's circle } -\TOline{symmedian} {circum}{Lemoine's point or symmedian centre or Grebe's point } -\TOline{spieker} {circum}{Spieker Circle Center} -\TOline{nagel}{circum}{Nagel Centre} -\TOline{mittenpunkt} {circum}{or else MiddlePoint center} -\TOline{feuerbach}{circum}{Feuerbach Point} - -\end{tabular} -\end{NewMacroBox} - -\subsubsection{\IoptName{tkzDefTriangleCenter}{ortho}} - The intersection H of the three altitudes of a triangle is called the orthocenter. - - -\begin{tkzexample}[latex=5cm,small] -\begin{tikzpicture} - \tkzDefPoint(0,0){A} - \tkzDefPoint(5,1){B} - \tkzDefPoint(1,4){C} - \tkzClipPolygon(A,B,C) - \tkzDefTriangleCenter[ortho](B,C,A) - \tkzGetPoint{H} - \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,H) - \tkzDrawLines[add=0 and 1](A,Ha B,Hb C,Hc) - \tkzLabelPoint(H){$H$} - \tkzAutoLabelPoints[center=H](A,B,C) - \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{\IoptName{tkzDefTriangleCenter}{centroid}} - -\begin{tkzexample}[latex=5cm,small] -\begin{tikzpicture}[scale=.75] - \tkzDefPoints{-1/1/A,5/1/B} - \tkzDefEquilateral(A,B) - \tkzGetPoint{C} - \tkzDefTriangleCenter[centroid](A,B,C) - \tkzGetPoint{G} - \tkzDrawPolygon[color=brown](A,B,C) - \tkzDrawPoints(A,B,C,G) - \tkzDrawLines[add = 0 and 2/3](A,G B,G C,G) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{\IoptName{tkzDefTriangleCenter}{circum}} - -\begin{tkzexample}[latex=6cm,small] - \begin{tikzpicture} - \tkzDefPoints{0/1/A,3/2/B,1/4/C} - \tkzDefTriangleCenter[circum](A,B,C) - \tkzGetPoint{G} - \tkzDrawPolygon[color=brown](A,B,C) - \tkzDrawCircle(G,A) - \tkzDrawPoints(A,B,C,G) - \end{tikzpicture} -\end{tkzexample} - - -\subsubsection{\IoptName{tkzDefTriangleCenter}{in}} - In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. - The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A, or the excenter of A.[3] Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) - - \medskip - We get the centre of the inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. - -\begin{tkzexample}[latex=6cm,small] -\begin{tikzpicture} - \tkzDefPoints{0/1/A,3/2/B,1/4/C} - \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} - \tkzDefPointBy[projection=onto A--C](I) - \tkzGetPoint{Ib} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,I) - \tkzDrawLines[add = 0 and 2/3](A,I B,I C,I) - \tkzDrawCircle(I,Ib) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{\IoptName{tkzDefTriangleCenter}{ex}} - - -An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. -(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) - - - We get the centre of an inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. - -\begin{tkzexample}[latex=8cm,small] -\begin{tikzpicture}[scale=.5] - \tkzDefPoints{0/1/A,3/2/B,1/4/C} - \tkzDefCircle[ex](B,C,A) - \tkzGetFirstPoint{J_c} - \tkzGetSecondPoint{Tc} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,J_c) - \tkzDrawCircle[red](J_c,Tc) - \tkzDrawLines[add=1.5 and 0](A,C B,C) - \tkzLabelPoints(J_c) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{Utilisation de \IoptName{tkzDefTriangleCenter}{euler} } -This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. -The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet $H_A$, $H_B$, and $H_C$ dropped from the vertices of any reference triangle ABC on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints $M_A$, $M_B$, $M_C$ of the sides of ABC. By Feuerbach's theorem, the nine-point circle also passes through the midpoints $E_A$, $E_B$, and $E_C$ of the segments that join the vertices and the orthocenter H. These points are commonly referred to as the Euler points. (\url{http://mathworld.wolfram.com/Nine-PointCircle.html}) - -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture}[scale=1] - \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[medial, - name=M](A,B,C){_A,_B,_C} - \tkzDefTriangleCenter[euler](A,B,C) - \tkzGetPoint{N} % I= N nine points - \tkzDefTriangleCenter[ortho](A,B,C) - \tkzGetPoint{H} - \tkzDefMidPoint(A,H) \tkzGetPoint{E_A} - \tkzDefMidPoint(C,H) \tkzGetPoint{E_C} - \tkzDefMidPoint(B,H) \tkzGetPoint{E_B} - \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawCircle(N,E_A) - \tkzDrawSegments[blue](A,H_A B,H_B C,H_C) - \tkzDrawPoints(A,B,C,N,H) - \tkzDrawPoints[red](M_A,M_B,M_C) - \tkzDrawPoints[blue]( H_A,H_B,H_C) - \tkzDrawPoints[green](E_A,E_B,E_C) - \tkzAutoLabelPoints[center=N, - font=\scriptsize](A,B,C,% - M_A,M_B,M_C,% - H_A,H_B,H_C,% - E_A,E_B,E_C) - \tkzLabelPoints[font=\scriptsize](H,N) - \tkzMarkSegments[mark=s|,size=3pt, - color=blue,line width=1pt](B,E_B E_B,H) -\end{tikzpicture} -\end{tkzexample} - - -\subsubsection{Using option \IoptName{tkzDefTriangleCenter}{symmedian}} - -\begin{tkzexample}[latex=6cm,small] -\begin{tikzpicture} - \tkzDefPoint(0,0){A} - \tkzDefPoint(5,0){B} - \tkzDefPoint(1,4){C} - \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K} - \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G} - \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} - \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c} - \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c} - \tkzDrawPolygon[color=blue](A,B,C) - \tkzDrawPoints(A,B,C,K) - \tkzDrawLines[add = 0 and 2/3,blue](A,K B,K C,K) - \tkzDrawSegments[red,dashed](A,Ma B,Mb C,Mc) - \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic) - \tkzDrawLine(G,I) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{Using option \IoptName{tkzDefTriangleCenter}{nagel}} - -Let$ Ta$ be the point at which the $Ja$ excircle meets the side BC of a triangle $ABC$, and define Tband Tc similarly. Then the lines $ATa$, $BTb$, and $CTc$ concur in the Nagel point $Na$. -\href{http://mathworld.wolfram.com/NagelPoint.html}{Weisstein, Eric W. "Nagel point." From MathWorld--A Wolfram Web Resource. } - - -\begin{tkzexample}[latex=8cm,small] - \begin{tikzpicture}[scale=.5] - \tkzDefPoints{0/0/A,6/0/B,4/6/C} - \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} - \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} - \tkzDrawPoints(Ja,Jb,Jc,Ta,Tb,Tc) - \tkzLabelPoints(Ja,Jb,Jc,Ta,Tb,Tc) - \tkzDrawPolygon[blue](A,B,C) - \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na} - \tkzDrawPoints[blue](B,C,A) - \tkzDrawPoints[red](Na) - \tkzLabelPoints[blue](B,C,A) - \tkzLabelPoints[red](Na) - \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc) - \tkzShowBB\tkzClipBB - \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) - \tkzDrawCircles[ex,gray](A,B,C C,A,B B,C,A) - \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) - \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Tb,A Jc,Tc,B) - \end{tikzpicture} -\end{tkzexample} - - -\subsubsection{Option Triangle "mittenpunkt"} -\begin{tkzexample}[latex=8cm,small] -\begin{tikzpicture}[scale=.5] - \tkzDefPoints{0/0/A,6/0/B,4/6/C} - \tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc} - \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} - \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} - \tkzDefTriangleCenter[mittenpunkt](A,B,C) - \tkzGetPoint{Mi} - \tkzDrawPoints(Ma,Mb,Mc,Ja,Jb,Jc) - \tkzClipBB - \tkzDrawPolygon[blue](A,B,C) - \tkzDrawLines[add=0 and 1](Ja,Ma - Jb,Mb Jc,Mc) - \tkzDrawLines[add=1 and 1](A,B A,C B,C) - \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) - \tkzDrawPoints[blue](B,C,A) - \tkzDrawPoints[red](Mi) - \tkzLabelPoints[red](Mi) - \tkzLabelPoints[left](Mb) - \tkzLabelPoints(Ma,Mc,Jb,Jc) - \tkzLabelPoints[above left](Ja,Jc) - \tkzShowBB -\end{tikzpicture} -\end{tkzexample} -%<---------------------------------------------------------------------------> -%<---------------------------------------------------------------------------> -\clearpage \newpage -\section{Draw a point} -\subsubsection{Drawing points \tkzcname{tkzDrawPoint}} \hypertarget{tdrp}{} - -\begin{NewMacroBox}{tkzDrawPoint}{\oarg{local options}\parg{name}} -\begin{tabular}{lll} -arguments & default & definition \\ -\midrule -\TAline{name of point} {no default} {Only one point name is accepted} -\bottomrule -\end{tabular} - -\medskip -The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling. - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ -\midrule -\TOline{shape} {circle}{Possible \tkzname{cross} ou \tkzname{cross out}} -\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} -\TOline{color} {black}{the default color can be changed } -\bottomrule -\end{tabular} - -\medskip -{We can create other forms such as \tkzname{cross}} -\end{NewMacroBox} - -\subsubsection{Example of point drawings} -Note that \tkzname{scale} does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file. - - -\begin{tkzexample}[latex=5cm,small] - \begin{tikzpicture}[scale=.5] - \tkzDefPoint(1,3){A} - \tkzDefPoint(4,1){B} - \tkzDefPoint(0,0){O} - \tkzDrawPoint[color=red](A) - \tkzDrawPoint[fill=blue!20,draw=blue](B) - \tkzDrawPoint[color=green](O) - \end{tikzpicture} -\end{tkzexample} - -It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points. - -\hypertarget{tdrps}{} -\begin{NewMacroBox}{tkzDrawPoints}{\oarg{local options}\parg{liste}} -\begin{tabular}{lll} -arguments & default & definition \\ -\midrule -\TAline{points list}{no default}{example \tkzcname{tkzDrawPoints(A,B,C)}} -\bottomrule -\end{tabular} - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ -\midrule -\TOline{shape} {circle}{Possible \tkzname{cross} ou \tkzname{cross out}} -\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} -\TOline{color} {black}{the default color can be changed } -\bottomrule -\end{tabular} - -\medskip -\tkzHandBomb\ Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro. -\end{NewMacroBox} - -\subsubsection{First example} - -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture} - \tkzDefPoint(1,3){A} - \tkzDefPoint(4,1){B} - \tkzDefPoint(0,0){C} - \tkzDrawPoints[size=6,color=red, - fill=red!50](A,B,C) -\end{tikzpicture} -\end{tkzexample} - -\subsubsection{Second example} - -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture}[scale=.5] - \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B} - \tkzDefPoint[label=below:$\mathcal{C}$, - shift={(2,3)}](-30:5.5){E} - \begin{scope}[shift=(A)] - \tkzDefPoint(30:5){C} - \end{scope} - \tkzCalcLength[cm](A,B)\tkzGetLength{rAB} - \tkzDrawCircle[R](A,\rAB cm) - \tkzDrawSegment(A,B) - \tkzDrawPoints(A,B,C) - \tkzLabelPoints(B,C) - \tkzLabelPoints[above](A) -\end{tikzpicture} -\end{tkzexample} - -\section{Point on line or circle} -\subsection{Point on a line} - -\begin{NewMacroBox}{tkzDefPointOnLine}{\oarg{local options}\parg{A,B}} -\begin{tabular}{lll} -arguments & default & definition \\ -\midrule -\TAline{pt1,pt2} {no default} {Two points to define a line} -\bottomrule -\end{tabular} - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ -\midrule -\TOline{pos=nb} {}{nb is a decimal } -\bottomrule -\end{tabular} - -\medskip - -\end{NewMacroBox} - -\subsubsection{Use of option \tkzname{pos} 1} -\begin{tkzexample}[latex=9cm,small] - \begin{tikzpicture} - \tkzDefPoints{0/0/A,4/0/B} - \tkzDrawLine[red](A,B) - \tkzDefPointOnLine[pos=1.2](A,B) - \tkzGetPoint{P} - \tkzDefPointOnLine[pos=-0.2](A,B) - \tkzGetPoint{R} - \tkzDefPointOnLine[pos=0.5](A,B) - \tkzGetPoint{S} - \tkzDrawPoints(A,B,P) - \tkzLabelPoints(A,B) - \tkzLabelPoint[above](P){pos=$1.2$} - \tkzLabelPoint[above](R){pos=$-.2$} - \tkzLabelPoint[above](S){pos=$.5$} - \tkzDrawPoints(A,B,P,R,S) - \tkzLabelPoints(A,B) - \end{tikzpicture} -\end{tkzexample} - -\subsection{Point on a circle} - -\begin{NewMacroBox}{tkzDefPointOnCircle}{\oarg{local options}\parg{A,B}} -\begin{tabular}{lll} -arguments & default & definition \\ -\midrule -\TAline{pt1,pt2} {no default} {Two points to define a line} -\bottomrule -\end{tabular} - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ -\midrule -\TOline{angle} {0}{angle formed with the abscissa axis} -\TOline{center} {tkzPointResult}{circle center} -\TOline{radius} {|\tkzLengthResult pt|}{radius circle} -\bottomrule -\end{tabular} - - -\end{NewMacroBox} - -\begin{tkzexample}[latex=7cm,small] -\begin{tikzpicture} - \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} - \tkzDefPointOnCircle[angle=90,center=B, - radius=1 cm] - \tkzGetPoint{I} - \tkzDrawCircle[R,teal](B,1cm) - \tkzDrawPoint[teal](I) - \tkzDefCircle[circum](A,B,C) - \tkzGetPoint{G} \tkzGetLength{rG} - \tkzDefPointOnCircle[angle=30,center=G, - radius=\rG pt] - \tkzGetPoint{J} - \tkzDrawPoints(A,B,C) - \tkzDrawCircle(G,J) - \tkzDrawPoint(G) - \tkzDrawPoint[red](J) -\end{tikzpicture} -\end{tkzexample} - - \endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointsSpc.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointsSpc.tex new file mode 100644 index 00000000000..f2bdf788cee --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointsSpc.tex @@ -0,0 +1,413 @@ +\section{Special points relating to a triangle} + +\subsection{Triangle center: \tkzcname{tkzDefTriangleCenter}} + +This macro allows you to define the center of a triangle. + + +\begin{NewMacroBox}{tkzDefTriangleCenter}{\oarg{local options}\parg{A,B,C}}% +\tkzHandBomb\ Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzcname{tkzGetPoint} to get the center you are looking for. You can use \tkzname{tkzPointResult} if it is not necessary to keep the results. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & default & definition \\ + +\midrule +\TAline{(pt1,pt2,pt3)}{no default}{three points} +\midrule +options & default & definition \\ +\midrule +\TOline{ortho} {circum}{intersection of the altitudes of a triangle} +\TOline{centroid} {circum}{centre of gravity. Intersection of the medians } +\TOline{circum}{circum}{circle center circumscribed} +\TOline{in} {circum}{center of the circle inscribed in a triangle } +\TOline{ex} {circum}{center of a circle exinscribed to a triangle } +\TOline{euler}{circum}{center of Euler's circle } +\TOline{symmedian} {circum}{Lemoine's point or symmedian centre or Grebe's point } +\TOline{spieker} {circum}{Spieker Circle Center} +\TOline{nagel}{circum}{Nagel Center} +\TOline{mittenpunkt} {circum}{also called the middlespoint} +\TOline{feuerbach}{circum}{Feuerbach Point} + +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Option \tkzname{ortho} or \tkzname{orthic}} + The intersection $H$ of the three altitudes of a triangle is called the orthocenter. + +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,1){B} + \tkzDefPoint(1,4){C} + \tkzClipPolygon(A,B,C) + \tkzDefTriangleCenter[ortho](B,C,A) + \tkzGetPoint{H} + \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,H) + \tkzDrawLines[add=0 and 1](A,Ha B,Hb C,Hc) + \tkzLabelPoint(H){$H$} + \tkzAutoLabelPoints[center=H](A,B,C) + \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{centroid}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{-1/1/A,5/1/B} + \tkzDefEquilateral(A,B) + \tkzGetPoint{C} + \tkzDefTriangleCenter[centroid](A,B,C) + \tkzGetPoint{G} + \tkzDrawPolygon[color=brown](A,B,C) + \tkzDrawPoints(A,B,C,G) + \tkzDrawLines[add = 0 and 2/3](A,G B,G C,G) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{circum}} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[circum](A,B,C) + \tkzGetPoint{G} + \tkzDrawPolygon[color=brown](A,B,C) + \tkzDrawCircle(G,A) + \tkzDrawPoints(A,B,C,G) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{in}} +In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. +The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex $A$, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex $A$, or the excenter of $A$. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) + + \medskip + We get the centre of the inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} + \tkzDefPointBy[projection=onto A--C](I) + \tkzGetPoint{Ib} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,I) + \tkzDrawLines[add = 0 and 2/3](A,I B,I C,I) + \tkzDrawCircle(I,Ib) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{ex}} +An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. +(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) + + + We get the centre of an inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. + +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[ex](B,C,A) + \tkzGetPoint{J_c} + \tkzDefPointBy[projection=onto A--B](J_c) + \tkzGetPoint{Tc} + %or + % \tkzDefCircle[ex](B,C,A) + % \tkzGetFirstPoint{J_c} + % \tkzGetSecondPoint{Tc} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,J_c) + \tkzDrawCircle[red](J_c,Tc) + \tkzDrawLines[add=1.5 and 0](A,C B,C) + \tkzLabelPoints(J_c) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{euler}} +This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. +The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet $H_A$, $H_B$, and $H_C$ dropped from the vertices of any reference triangle $ABC$ on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints $M_A$, $M_B$, $M_C$ of the sides of $ABC$. By Feuerbach's theorem, the nine-point circle also passes through the midpoints $E_A$, $E_B$, and $E_C$ of the segments that join the vertices and the orthocenter $H$. These points are commonly referred to as the Euler points. (\url{http://mathworld.wolfram.com/Nine-PointCircle.html}) + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial, + name=M](A,B,C){_A,_B,_C} + \tkzDefTriangleCenter[euler](A,B,C) + \tkzGetPoint{N} % I= N nine points + \tkzDefTriangleCenter[ortho](A,B,C) + \tkzGetPoint{H} + \tkzDefMidPoint(A,H) \tkzGetPoint{E_A} + \tkzDefMidPoint(C,H) \tkzGetPoint{E_C} + \tkzDefMidPoint(B,H) \tkzGetPoint{E_B} + \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle(N,E_A) + \tkzDrawSegments[blue](A,H_A B,H_B C,H_C) + \tkzDrawPoints(A,B,C,N,H) + \tkzDrawPoints[red](M_A,M_B,M_C) + \tkzDrawPoints[blue]( H_A,H_B,H_C) + \tkzDrawPoints[green](E_A,E_B,E_C) + \tkzAutoLabelPoints[center=N, + font=\scriptsize](A,B,C,% + M_A,M_B,M_C,% + H_A,H_B,H_C,% + E_A,E_B,E_C) + \tkzLabelPoints[font=\scriptsize](H,N) + \tkzMarkSegments[mark=s|,size=3pt, + color=blue,line width=1pt](B,E_B E_B,H) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Option \tkzname{symmedian}} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(1,4){C} + \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K} + \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G} + \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} + \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c} + \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawLines[add = 0 and 2/3,blue](A,K B,K C,K) + \tkzDrawSegments[red,dashed](A,Ma B,Mb C,Mc) + \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic) + \tkzDrawLine[add=2 and 2](G,I) + \tkzDrawPoints(A,B,C,K,G,I) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Option \tkzname{nagel}} +Let $Ta$ be the point at which the excircle with center $Ja$ meets the side $BC$ of a triangle $ABC$, and define $Tb$ and $Tc$ similarly. Then the lines $ATa$, $BTb$, and $CTc$ concur in the Nagel point $Na$. +\href{http://mathworld.wolfram.com/NagelPoint.html}{Weisstein, Eric W. "Nagel point." From MathWorld--A Wolfram Web Resource. } + + +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,4/6/C} + \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} + \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} + \tkzDrawPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzLabelPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzDrawPolygon[blue](A,B,C) + \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na} + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Na) + \tkzLabelPoints[blue](B,C,A) + \tkzLabelPoints[red](Na) + \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc) + \tkzShowBB\tkzClipBB + \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) + \tkzDrawCircles[ex,gray](A,B,C C,A,B B,C,A) + \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) + \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C + Jb,Tb,A Jc,Tc,B) + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Option \tkzname{mittenpunkt}} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,4/6/C} + \tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc} + \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} + \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} + \tkzDefTriangleCenter[mittenpunkt](A,B,C) + \tkzGetPoint{Mi} + \tkzDrawPoints(Ma,Mb,Mc,Ja,Jb,Jc) + \tkzClipBB + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawLines[add=0 and 1](Ja,Ma + Jb,Mb Jc,Mc) + \tkzDrawLines[add=1 and 1](A,B A,C B,C) + \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Mi) + \tkzLabelPoints[red](Mi) + \tkzLabelPoints[left](Mb) + \tkzLabelPoints(Ma,Mc,Jb,Jc) + \tkzLabelPoints[above left](Ja,Jc) + \tkzShowBB +\end{tikzpicture} +\end{tkzexample} +%<----------------------------------------------------------------------> +%<----------------------------------------------------------------------> +\section{Draw a point} +\subsubsection{Drawing points \tkzcname{tkzDrawPoint}} \hypertarget{tdrp}{} + +\begin{NewMacroBox}{tkzDrawPoint}{\oarg{local options}\parg{name}}% +\begin{tabular}{lll}% +arguments & default & definition \\ +\midrule +\TAline{name of point} {no default} {Only one point name is accepted} +\bottomrule +\end{tabular} + +\medskip +The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling. + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{shape} {circle}{Possible \tkzname{cross} or \tkzname{cross out}} +\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} +\TOline{color} {black}{the default color can be changed } +\bottomrule +\end{tabular} + +\medskip +{We can create other forms such as \tkzname{cross}} +\end{NewMacroBox} + +\subsubsection{Example of point drawings} +Note that \tkzname{scale} does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file. + + +\begin{tkzexample}[latex=5cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(1,3){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(0,0){O} + \tkzDrawPoint[color=red](A) + \tkzDrawPoint[fill=blue!20,draw=blue](B) + \tkzDrawPoint[color=green](O) + \end{tikzpicture} +\end{tkzexample} + +It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points. + +\hypertarget{tdrps}{} +\begin{NewMacroBox}{tkzDrawPoints}{\oarg{local options}\parg{liste}}% +\begin{tabular}{lll}% +arguments & default & definition \\ +\midrule +\TAline{points list}{no default}{example \tkzcname{tkzDrawPoints(A,B,C)}} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{shape} {circle}{Possible \tkzname{cross} or \tkzname{cross out}} +\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} +\TOline{color} {black}{the default color can be changed } +\bottomrule +\end{tabular} + +\medskip +\tkzHandBomb\ Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro. +\end{NewMacroBox} + +\subsubsection{First example} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(1,3){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(0,0){C} + \tkzDrawPoints[size=6,color=red, + fill=red!50](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Second example} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B} + \tkzDefPoint[label=below:$\mathcal{C}$, + shift={(2,3)}](-30:5.5){E} + \begin{scope}[shift=(A)] + \tkzDefPoint(30:5){C} + \end{scope} + \tkzCalcLength[cm](A,B)\tkzGetLength{rAB} + \tkzDrawCircle[R](A,\rAB cm) + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above](A) +\end{tikzpicture} +\end{tkzexample} + +\section{Point on line or circle} +\subsection{Point on a line} + +\begin{NewMacroBox}{tkzDefPointOnLine}{\oarg{local options}\parg{A,B}}% +\begin{tabular}{lll}% +arguments & default & definition \\ +\midrule +\TAline{pt1,pt2} {no default} {Two points to define a line} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{pos=nb} {}{nb is a decimal } +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Use of option \tkzname{pos}} +\begin{tkzexample}[latex=9cm,small] + \begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B} + \tkzDrawLine[red](A,B) + \tkzDefPointOnLine[pos=1.2](A,B) + \tkzGetPoint{P} + \tkzDefPointOnLine[pos=-0.2](A,B) + \tkzGetPoint{R} + \tkzDefPointOnLine[pos=0.5](A,B) + \tkzGetPoint{S} + \tkzDrawPoints(A,B,P) + \tkzLabelPoints(A,B) + \tkzLabelPoint[above](P){pos=$1.2$} + \tkzLabelPoint[above](R){pos=$-.2$} + \tkzLabelPoint[above](S){pos=$.5$} + \tkzDrawPoints(A,B,P,R,S) + \tkzLabelPoints(A,B) + \end{tikzpicture} +\end{tkzexample} + +\subsection{Point on a circle} + +\begin{NewMacroBox}{tkzDefPointOnCircle}{\oarg{local options}}% +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{angle} {0}{angle formed with the abscissa axis} +\TOline{center} {|tkzPointResult|}{circle center required} +\TOline{radius} {|\BS tkzLengthResult|}{radius circle} +\end{tabular} +\end{NewMacroBox} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} + \tkzDefPointOnCircle[angle=90,center=B,radius=1 cm] + \tkzGetPoint{I} + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{G} \tkzGetLength{rG} + \tkzDefPointOnCircle[angle=30,center=G,radius=\rG pt] + \tkzGetPoint{J} + \tkzDrawCircle[R,teal](B,1cm) + \tkzDrawPoint[teal](I) + \tkzDrawPoints(A,B,C) + \tkzDrawCircle(G,J) + \tkzDrawPoints(G,J) + \tkzDrawPoint[red](J) + \tkzLabelPoints(G,J) +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex index 98c1ef0c6dc..8af18810030 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex @@ -2,21 +2,21 @@ \subsection{\tkzcname{tkzDefPointWith}} There are several possibilities to create points that meet certain vector conditions. -This can be done with \tkzcname{tkzDefPointWith}. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point ( with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in \tkzcname{tkzPointResult}. The macro \tkzNameMacro{tkzGetPoint} allows you to retrieve the point and name it differently. +This can be done with \tkzcname{tkzDefPointWith}. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point (with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in \tkzname{tkzPointResult}. The macro \tkzNameMacro{tkzGetPoint} allows you to retrieve the point and name it differently. There are options to define the distance between the given point and the obtained point. In the general case this distance is the distance between the 2 points given as arguments if the option is of the "normed" type then the distance between the given point and the obtained point is 1 cm. Then the $K$ option allows to obtain multiples. -\begin{NewMacroBox}{tkzDefPointWith}{\parg{pt1,pt2}} +\begin{NewMacroBox}{tkzDefPointWith}{\parg{pt1,pt2}}% It is in fact the definition of a point meeting vectorial conditions. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & definition & explication \\ \midrule -\TAline{(pt1,pt2)} {point couple}{the result is a point in \tkzcname{tkzPointResult} } \\ +\TAline{(pt1,pt2)} {point couple}{the result is a point in \tkzname{tkzPointResult} } \\ \bottomrule \end{tabular} @@ -24,23 +24,21 @@ arguments & definition & explication \\ \medskip In what follows, it is assumed that the point is recovered by \tkzNameMacro{tkzGetPoint\{C\}} -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & exemple & explication \\ +options & example & explication \\ \midrule -\TOline{orthogonal}{[orthogonal](A,B)}{$AC=AB$ et $\overrightarrow{AC} \perp \overrightarrow{AB}$} -\TOline{orthogonal normed}{[orthogonal normed](A,B)}{$AC=1$ et $\overrightarrow{AC} \perp \overrightarrow{AB}$} +\TOline{orthogonal}{[orthogonal](A,B)}{$AC=AB$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$} +\TOline{orthogonal normed}{[orthogonal normed](A,B)}{$AC=1$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$} \TOline{linear}{[linear](A,B)}{$\overrightarrow{AC}=K \times \overrightarrow{AB}$} -\TOline{linear normed}{[linear normed](A,B)}{$AC=K$ et $\overrightarrow{AC}=k\times \overrightarrow{AB}$ } +\TOline{linear normed}{[linear normed](A,B)}{$AC=K$ and $\overrightarrow{AC}=k\times \overrightarrow{AB}$ } \TOline{colinear= at \#1}{[colinear= at C](A,B)}{$\overrightarrow{CD}= \overrightarrow{AB}$ } \TOline{colinear normed= at \#1}{[colinear normed= at C](A,B)}{$\overrightarrow{CD}= \overrightarrow{AB}$ } \TOline{K}{[linear](A,B),K=2}{$\overrightarrow{AC}=2\times \overrightarrow{AB}$} - \bottomrule \end{tabular} - \end{NewMacroBox} -\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{colinear at}} +\subsubsection{Option \tkzname{colinear at}} $(\overrightarrow{AB}=\overrightarrow{CD})$ \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1.2, @@ -56,7 +54,7 @@ options & exemple & explication \\ \end{tkzexample} -\subsubsection{colinear at} +\subsubsection{Option \tkzname{colinear at} with $K$} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[vect/.style={->, @@ -74,8 +72,7 @@ options & exemple & explication \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{colinear $K=\frac{\sqrt{2}}{2}$} - +\subsubsection{Option \tkzname{colinear at} with $K=\frac{\sqrt{2}}{2}$} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[vect/.style={->, shorten >=3pt,>=latex'}] @@ -89,17 +86,18 @@ options & exemple & explication \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{orthogonal}} -$K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle positif. AB=AC puisque $|K|=1$ +\subsubsection{Option \tkzname{orthogonal}} +AB=AC since $K=1$. \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} - \tkzDefPointWith[orthogonal,K=-1](A,B) + \tkzDefPointWith[orthogonal,K=1](A,B) \tkzGetPoint{C} \tkzDrawPoints[color=red](A,B,C) - \tkzLabelPoints[right=3pt](A,B,C) + \tkzLabelPoints[right=3pt](B,C) + \tkzLabelPoints[below=3pt](A) \tkzDrawSegments[vect](A,B A,C) \tkzMarkRightAngle(B,A,C) \end{tikzpicture} @@ -107,7 +105,9 @@ $K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle -\subsubsection{ orthogonal simple} +\subsubsection{Option \tkzname{orthogonal} with $K=-1$} +OK=OI since $\lvert K \rvert=1$ then OI=OJ=OK. + \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoint(1,2){O} @@ -124,7 +124,7 @@ $K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle \end{tikzpicture} \end{tkzexample} -\subsubsection{advanced orthogonal} +\subsubsection{Option \tkzname{orthogonal} more complicated example} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,6/0/B} @@ -147,7 +147,7 @@ $K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle \end{tikzpicture} \end{tkzexample} -\subsubsection{segment colinear and orthogonal} +\subsubsection{Options \tkzname{colinear} and \tkzname{orthogonal}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] @@ -163,8 +163,8 @@ $K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{orthogonal normed}, K=1} -AC=1 +\subsubsection{Option \tkzname{orthogonal normed}, $K=1$} +$AC=1$. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.2, @@ -178,8 +178,8 @@ AC=1 \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{orthogonal normed} K=2} -$K=2$ donc AC=2. +\subsubsection{Option \tkzname{orthogonal normed} and $K=2$} +$K=2$ therefore $AC=2$. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.2, @@ -195,8 +195,9 @@ $K=2$ donc AC=2. \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{linear} } - Ici $K=0.5$ +\subsubsection{Option \tkzname{linear}} +Here $K=0.5$. + This amounts to applying a homothety or a multiplication of a vector by a real. Here is the middle of $[AB]$. \begin{tkzexample}[latex=7cm,small] @@ -210,8 +211,8 @@ This amounts to applying a homothety or a multiplication of a vector by a real. \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{linear normed}} -In the following example AC=1 and C belongs to $(AB)$. +\subsubsection{Option \tkzname{linear normed}} +In the following example $AC=1$ and $C$ belongs to $(AB)$. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.2] @@ -233,19 +234,19 @@ In the following example AC=1 and C belongs to $(AB)$. \subsection{\tkzcname{tkzGetVectxy} } -Retrieving the coordinates of a vector +Retrieving the coordinates of a vector. -\begin{NewMacroBox}{tkzGetVectxy}{\parg{$A,B$}\var{text}} -Allows to obtain the coordinates of a vector +\begin{NewMacroBox}{tkzGetVectxy}{\parg{$A,B$}\var{text}}% +Allows to obtain the coordinates of a vector. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -arguments & example & explication \\ +arguments & example & explication \\ \midrule -\TAline{(point)\{name of macro\}} {\tkzcname{tkzGetVectxy}(A,B)\{V\}}{\tkzcname{Vx},\tkzcname{Vy} : coordinates of $\overrightarrow{AB}$} +\TAline{(point)\{name of macro\}} {\tkzcname{tkzGetVectxy}(A,B)\{V\}}{\tkzcname{Vx},\tkzcname{Vy}: coordinates of $\overrightarrow{AB}$} \end{tabular} \end{NewMacroBox} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex index fe50b39e2cf..d63e31fdea0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex @@ -1,25 +1,21 @@ \section{Definition of polygons} - \subsection{Defining the points of a square} \label{def_square} - We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons. - - \begin{NewMacroBox}{tkzDefSquare}{\parg{pt1,pt2}} +We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons. +\begin{NewMacroBox}{tkzDefSquare}{\parg{pt1,pt2}}% The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction. The results are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}.\\ -We can rename them with \tkzcname{tkzGetPoints} +We can rename them with \tkzcname{tkzGetPoints}. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule Arguments & example & explication \\ \midrule -\TAline{\parg{pt1,pt2}}{\tkzcname{tkzDefSquare}\parg{A,B}}{The square is defined in the direct direction} -\bottomrule - \end{tabular} +\TAline{\parg{pt1,pt2}}{\tkzcname{tkzDefSquare}\parg{A,B}}{The square is defined in the direct direction.} +\end{tabular} \end{NewMacroBox} \subsubsection{Using \tkzcname{tkzDefSquare} with two points} - Note the inversion of the first two points and the result. \begin{tkzexample}[latex=4cm,small] @@ -34,7 +30,7 @@ Note the inversion of the first two points and the result. \end{tikzpicture} \end{tkzexample} - We may only need one point to draw an isosceles right-angled triangle so we use \tkzcname{tkzGetFirstPoint} or \tkzcname{tkzGetSecondPoint} + We may only need one point to draw an isosceles right-angled triangle so we use \tkzcname{tkzGetFirstPoint} or \tkzcname{tkzGetSecondPoint}. \subsubsection{Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle} \begin{tkzexample}[latex=7cm,small] @@ -74,11 +70,11 @@ Note the inversion of the first two points and the result. \subsection{Defining the points of a parallelogram} It is a matter of completing three points in order to obtain a parallelogram. - \begin{NewMacroBox}{tkzDefParallelogram}{\parg{pt1,pt2,pt3}} +\begin{NewMacroBox}{tkzDefParallelogram}{\parg{pt1,pt2,pt3}}% From three points, another point is obtained such that the four taken in order form a parallelogram. The result is in \tkzname{tkzPointResult}. \\ We can rename it with the name \tkzcname{tkzGetPoint}... -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & default & definition \\ \midrule @@ -143,26 +139,24 @@ Explanation of the definition of a parallelogram \subsection{Drawing a square} - - \begin{NewMacroBox}{tkzDrawSquare}{\oarg{local options}\parg{pt1,pt2}} +\begin{NewMacroBox}{tkzDrawSquare}{\oarg{local options}\parg{pt1,pt2}}% The macro draws a square but not the vertices. It is possible to color the inside. The order of the points is that of the direct direction of the trigonometric circle. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2}}{|\tkzcname{tkzDrawSquare}|\parg{A,B}}{|\tkzcname{tkzGetPoints\{C\}\{D\}}|} \bottomrule - \end{tabular} +\end{tabular} \medskip - \begin{tabular}{lll} - options & example & explication \\ - \midrule - \TOline{Options TikZ}{|red,line width=1pt|}{} - \bottomrule - \end{tabular} +\begin{tabular}{lll}% +options & example & explication \\ +\midrule +\TOline{Options TikZ}{|red,line width=1pt|}{} +\end{tabular} \end{NewMacroBox} \subsubsection{The idea is to inscribe two squares in a semi-circle.} @@ -188,37 +182,33 @@ arguments & example & explication \\ \end{tkzexample} \subsection{The golden rectangle} - \begin{NewMacroBox}{tkzDefGoldRectangle}{\parg{point,point}} + \begin{NewMacroBox}{tkzDefGoldRectangle}{\parg{point,point}}% The macro determines a rectangle whose size ratio is the number $\Phi$. The created points are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}. They can be obtained with the macro \tkzcname{tkzGetPoints}. The following macro is used to draw the rectangle. -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & example & explication \\ \midrule -\TAline{\parg{pt1,pt2}}{\parg{A,B}}{Si C et D sont créés alors $AB/BC=\Phi$} +\TAline{\parg{pt1,pt2}}{\parg{A,B}}{If C and D are created then $AB/BC=\Phi$.} \end{tabular} \end{NewMacroBox} \begin{NewMacroBox}{tkzDrawGoldRectangle}{\oarg{local options}\parg{point,point}} -\begin{tabular}{lll} +\begin{tabular}{lll}% arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2}}{\parg{A,B}}{Draws the golden rectangle based on the segment $[AB]$} - \end{tabular} +\end{tabular} \medskip - \begin{tabular}{lll} - options & example & explication \\ - \midrule - \TOline{Options TikZ}{|red,line width=1pt|}{} - \bottomrule - \end{tabular} - +\begin{tabular}{lll}% +options & example & explication \\ +\midrule +\TOline{Options TikZ}{|red,line width=1pt|}{} +\end{tabular} \end{NewMacroBox} -% \subsubsection{Golden Rectangles} - \begin{tkzexample}[latex=6 cm,small] \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -230,11 +220,10 @@ arguments & example & explication \\ \end{tkzexample} \subsection{Drawing a polygon} + \begin{NewMacroBox}{tkzDrawPolygon}{\oarg{local options}\parg{points list}}% +Just give a list of points and the macro plots the polygon using the \TIKZ\ options present. You can replace $(A,B,C,D,E)$ by $(A,...,E)$ and $(P_1,P_2,P_3,P_4,P_5)$ by $(P_1,P...,P_5)$ - \begin{NewMacroBox}{tkzDrawPolygon}{\oarg{local options}\parg{liste de points}} -Just give a list of points and the macro plots the polygon using the \TIKZ\ options present. - -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule arguments & example & explication \\ \midrule @@ -242,7 +231,7 @@ arguments & example & explication \\ \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & example \\ \midrule @@ -250,7 +239,7 @@ options & default & example \\ \end{tabular} \end{NewMacroBox} -\subsubsection{Draw a polygon 1} +\subsubsection{\tkzcname{tkzDrawPolygon}} \begin{tkzexample}[latex=7cm, small] \begin{tikzpicture} [rotate=18,scale=1.5] @@ -262,21 +251,62 @@ options & default & example \\ \tkzDrawSegments[style=dashed](A,C B,D) \end{tikzpicture}\end{tkzexample} - +\subsection{Drawing a polygonal chain} + \begin{NewMacroBox}{tkzDrawPolySeg}{\oarg{local options}\parg{points list}}% +Just give a list of points and the macro plots the polygonal chain using the \TIKZ\ options present. + +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2,pt3,...}}{|\BS tkzDrawPolySeg[gray,dashed](A,B,C)|}{Drawing a triangle} + \end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & example \\ +\midrule +\TOline{Options TikZ}{...}{|\BS tkzDrawPolySeg[red,line width=2pt](A,B,C)|} + \end{tabular} +\end{NewMacroBox} + +\subsubsection{Polygonal chain} + +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,6/0/B,3/4/C,2/2/D} + \tkzDrawPolySeg(A,...,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Polygonal chain: index notation} + +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture} +\foreach \pt in {1,2,...,8} {% +\tkzDefPoint(\pt*20:3){P_\pt}} +\tkzDrawPolySeg(P_1,P_...,P_8) +\tkzDrawPoints(P_1,P_...,P_8) +\end{tikzpicture} +\end{tkzexample} + \subsection{Clip a polygon} - \begin{NewMacroBox}{tkzClipPolygon}{\oarg{local options}\parg{points list}} + \begin{NewMacroBox}{tkzClipPolygon}{\oarg{local options}\parg{points list}}% This macro makes it possible to contain the different plots in the designated polygon. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & example & explication \\ +arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2}}{\parg{A,B}}{} %\bottomrule \end{tabular} \end{NewMacroBox} -\subsubsection{Simple Example} + +\subsubsection{\tkzcname{tkzClipPolygon}} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture}[scale=1.25] \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] @@ -290,7 +320,7 @@ options & example & explication \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{Example Sangaku in a square} +\subsubsection{Example: use of "Clip" for Sangaku in a square} \begin{tkzexample}[latex=7cm, small] \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -315,20 +345,20 @@ options & example & explication \\ \end{tkzexample} \subsection{Color a polygon} - \begin{NewMacroBox}{tkzFillPolygon}{\oarg{local options}\parg{points list}} + \begin{NewMacroBox}{tkzFillPolygon}{\oarg{local options}\parg{points list}}% You can color by drawing the polygon, but in this case you color the inside of the polygon without drawing it. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & example & explication \\ +arguments & example & explication \\ \midrule \TAline{\parg{pt1,pt2,\dots}}{\parg{A,B,\dots}}{} %\bottomrule \end{tabular} \end{NewMacroBox} -\subsubsection{Color a polygon} +\subsubsection{\tkzcname{tkzFillPolygon}} \begin{tkzexample}[latex=7cm, small] \begin{tikzpicture}[scale=0.7] \tkzInit[xmin=-3,xmax=6,ymin=-1,ymax=6] @@ -348,4 +378,52 @@ options & example & explication \\ \tkzLabelAngle[pos = 1.5](A,O,B){$\alpha$} \end{tikzpicture} \end{tkzexample} + +\subsection{Regular polygon} + \begin{NewMacroBox}{tkzDefRegPolygon}{\oarg{local options}\parg{pt1,pt2}}% +From the number of sides, depending on the options, this macro determines a regular polygon according to its center or one side. + +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{O,A}}{with option "center", $O$ is the center of the polygon.} +\TAline{\parg{pt1,pt2}}{\parg{A,B}}{with option "side", $[AB]$ is a side.} + \end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & example \\ +\midrule +\TOline{name}{P}{The vertices are named $P1$,$P2$,\dots} +\TOline{sides}{5}{number of sides.} +\TOline{center}{center}{The first point is the center.} +\TOline{side}{center}{The two points are vertices.} +\TOline{Options TikZ}{...}{} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Option \tkzname{center}} +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture} + \tkzDefPoints{0/0/P0,0/0/Q0,2/0/P1} + \tkzDefMidPoint(P0,P1) \tkzGetPoint{Q1} + \tkzDefRegPolygon[center,sides=7](P0,P1) + \tkzDefMidPoint(P1,P2) \tkzGetPoint{Q1} + \tkzDefRegPolygon[center,sides=7,name=Q](P0,Q1) + \tkzDrawPolygon(P1,P...,P7) + \tkzFillPolygon[gray!20](Q0,Q1,P2,Q2) + \foreach \j in {1,...,7} {\tkzDrawSegment[black](P0,Q\j)} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{side}} +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{-4/0/A, -1/0/B} + \tkzDefRegPolygon[side,sides=5,name=P](A,B) + \tkzDrawPolygon[thick](P1,P...,P5) +\end{tikzpicture} +\end{tkzexample} \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex index d3a282366d1..44aa4cd0078 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex @@ -1,26 +1,40 @@ \section{Presentation and Overview} -\subsection{Why tkz-euclide ?} -My initial goal was to provide myself and other mathematics teachers with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. -Of course, tkz-euclide is for math teachers who use latex and makes it possible to easily create correct drawings by means of LaTeX. +\begin{tkzexample}[latex=5cm,small] + \begin{tikzpicture}[scale=.25] + \tkzDefPoints{00/0/A,12/0/B,6/12*sind(60)/C} + \foreach \density in {20,30,...,240}{% + \tkzDrawPolygon[fill=teal!\density](A,B,C) + \pgfnodealias{X}{A} + \tkzDefPointWith[linear,K=.15](A,B) \tkzGetPoint{A} + \tkzDefPointWith[linear,K=.15](B,C) \tkzGetPoint{B} + \tkzDefPointWith[linear,K=.15](C,X) \tkzGetPoint{C}} + \end{tikzpicture} +\end{tkzexample} + +\vspace*{12pt} + +\subsection{Why \tkzname{\tkznameofpack}? } +My initial goal was to provide other mathematics teachers and myself with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. +Of course, \tkzname{\tkznameofpack} is for math teachers who use \LATEX\ and makes it possible to easily create correct drawings by means of \LATEX. It appeared that the simplest method was to reproduce the one used to obtain construction by hand. -To describe a construction, you must of course define the objects but also the actions that you perform. It seemed to me that a syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of LaTeX. -The objects of course are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label. +To describe a construction, you must, of course, define the objects but also the actions that you perform. It seemed to me that syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of \LaTeX. +The objects, of course, are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label. The syntax is perhaps too verbose but it is, I believe, easily accessible. -As a result, the students like teachers were able to easily access this tool +As a result, the students like teachers were able to easily access this tool. -\subsection{tkz-euclide vs TikZ} +\subsection{\tkzname{\tkznameofpack} vs \tkzname{\TIKZ } } -I love programming with TikZ and without TikZ I would never have had the idea to create tkz-euclide but never forget that behind it there is TikZ and that it is always possible to insert code from TikZ. tkz-euclide doesn't prevent you from using TikZ. +I love programming with \TIKZ, and without \TIKZ\ I would never have had the idea to create \tkzname{\tkznameofpack} but never forget that behind it there is \TIKZ\ and that it is always possible to insert code from \TIKZ. \tkzname{\tkznameofpack} doesn't prevent you from using \TIKZ. That said, I don't think mixing syntax is a good thing. -There is no need to compare TikZ and tkz-euclide. The latter is not addressed to the same audience as Tikz. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want. +There is no need to compare \TIKZ\ and \tkzname{\tkznameofpack}. The latter is not addressed to the same audience as \TIKZ. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want. \subsection{How it works} -\subsubsection{Example Part I gold triangle} +\subsubsection{Example Part I: gold triangle} \begin{center} \begin{tikzpicture} @@ -50,25 +64,33 @@ There is no need to compare TikZ and tkz-euclide. The latter is not addressed t Let's analyze the figure \begin{enumerate} - \item CBD and DBE are isosceles triangles; BC=BE and BD is a bisector of the angle CBE.From this we deduce that the CBD and DBE angles are equal and have the same measure $\alpha$. - \[\widehat{BAC} +\widehat{ABC} + \widehat{BCA}=180^\circ \text{in the triangle} BAC\] - \[3\alpha + \widehat{BCA}=180^\circ \text{in the triangle} CBD\] + \item $CBD$ and $DBE$ are isosceles triangles; + + \item $BC=BE$ and $(BD)$ is a bisector of the angle $CBE$; + + \item From this we deduce that the $CBD$ and $DBE$ angles are equal and have the same measure $\alpha$ + \[\widehat{BAC} +\widehat{ABC} + \widehat{BCA}=180^\circ \ \text{in the triangle}\ BAC \] + \[3\alpha + \widehat{BCA}=180^\circ\ \text{in the triangle}\ CBD\] then - \[\alpha + 2\widehat{BCA}=180^\circ \] soit + \[\alpha + 2\widehat{BCA}=180^\circ \] + or \[\widehat{BCA}=90^\circ -\alpha/2 \] - finally \[\widehat{CBD}=\alpha=36^\circ \] - the triangle CBD is a "gold" triangle + + \item Finally \[\widehat{CBD}=\alpha=36^\circ \] + the triangle $CBD$ is a "gold" triangle. \end{enumerate} -How construct a gold triangle or an angle of $36^\circ$ ? +\vspace*{24pt} +How construct a gold triangle or an angle of $36^\circ$? -\begin{itemize} - \item We place the fixed points $C$ and $D$.|\tkzDefPoint(0,0){C}| and |\tkzDefPoint(4,0){D}|. - \item We construct a square $CDef$ and we construct the midpoint $m$ of $Cf$. - We can do all of this with a compass and a rule. - \item Then we trace an arc with center m through e. This arc cross the line $Cf$ at $n$ - \item Now the two arcs with center $C$ et $D$ and radius $Cn$ define the point $B$. -\end{itemize} +\begin{enumerate} + \item We place the fixed points $C$ and $D$. |\tkzDefPoint(0,0){C}| and |\tkzDefPoint(4,0){D}|; + \item We construct a square $CDef$ and we construct the midpoint $m$ of $[Cf]$; + + We can do all of this with a compass and a rule; + \item Then we trace an arc with center $m$ through $e$. This arc cross the line $(Cf)$ at $n$; + \item Now the two arcs with center $C$ and $D$ and radius $Cn$ define the point $B$. +\end{enumerate} \begin{minipage}{.4\textwidth} @@ -144,13 +166,13 @@ After building the golden triangle $BCD$, we build the point $A$ by noticing tha \tkzDrawPolygon(B,C,D) \tkzDrawSegments(D,A A,B C,E) \tkzDrawArc[delta=10](B,C)(E) - \tkzDrawPoints(A,...,F) \tkzMarkRightAngle[fill=blue!20](B,F,C) \tkzFillAngles[fill=blue!10](C,B,D E,A,D) \tkzMarkAngles(C,B,D E,A,D) \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} \tkzLabelPoints[below](A,C,D,E) \tkzLabelPoints[above right](B,F) + \tkzDrawPoints(A,...,F) \end{tikzpicture} \end{center} @@ -186,9 +208,9 @@ After building the golden triangle $BCD$, we build the point $A$ by noticing tha \end{tikzpicture} \end{tkzexample} -\subsubsection{Example Part II two others methods gold and euclide triangle} +\subsubsection{Example Part II: two others methods gold and euclide triangle} -tkz-euclide knows how to define a "gold" or "euclide" triangle. We can define BCD and BCA comme des triangles d'or +\tkzname{\tkznameofpack} knows how to define a "gold" or "euclide" triangle. We can define $BCD$ and $BCA$ like gold triangles. \begin{center} @@ -196,9 +218,9 @@ tkz-euclide knows how to define a "gold" or "euclide" triangle. We can define BC \begin{tikzpicture} \tkzDefPoint(0,0){C} \tkzDefPoint(4,0){D} - \tkzDefTriangle[gold](C,D) + \tkzDefTriangle[euclide](C,D) \tkzGetPoint{B} - \tkzDefTriangle[gold](B,C) + \tkzDefTriangle[euclide](B,C) \tkzGetPoint{A} \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E} \tkzInterLL(B,D)(C,E) \tkzGetPoint{F} @@ -218,7 +240,7 @@ tkz-euclide knows how to define a "gold" or "euclide" triangle. We can define BC \end{tkzexample} \end{center} -Voici une dernière méthode qui utilise des rotations +Here is a final method that uses rotations: \begin{center} \begin{tkzexample}[code only,small] @@ -268,8 +290,8 @@ $IB=a$, $AI=1$ % calculation \tkzDefPointBy[homothety=center A ratio 10 ](I) \tkzGetPoint{B} \tkzDefMidPoint(A,B) \tkzGetPoint{M} - \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{i} - \tkzInterLC(I,i)(M,B) \tkzGetSecondPoint{C} + \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H} + \tkzInterLC(I,H)(M,B) \tkzGetSecondPoint{C} \tkzDrawSegment[style=orange](I,C) \tkzDrawArc(M,B)(A) \tkzDrawSegment[dim={$1$,-16pt,}](A,I) @@ -281,16 +303,16 @@ $IB=a$, $AI=1$ \tkzLabelPoints[above right](I,M) \tkzLabelPoints[above left](C) \tkzLabelPoint[right](B){$B(10,0)$} - \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} + \tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$} \end{tikzpicture} -\emph{Commentaires} +\emph{Comments} \begin{itemize} \item The Preamble - Let us first look at the preamble. If you need it, you have to load \tkzname{xcolor} before \tkzname{tkz-euclide}, that is, before \TIKZ\ . \TIKZ\ may cause problems with the active characters , but... + Let us first look at the preamble. If you need it, you have to load \tkzname{xcolor} before \tkzname{tkz-euclide}, that is, before \TIKZ. \TIKZ\ may cause problems with the active characters, but... provides a library in its latest version that's supposed to solve these problems \NameLib{babel}. \begin{tkzltxexample}[] @@ -303,16 +325,15 @@ $IB=a$, $AI=1$ The following code consists of several parts: - \item Definition of fixed points: the first part includes the definitions of the points necessary for the construction, these are the fixed points. The macros \tkzcname{tkkzInit} and \tkzcname{tkkzClip} in most cases are not necessary. + \item Definition of fixed points: the first part includes the definitions of the points necessary for the construction, these are the fixed points. The macros \tkzcname{tkzInit} and \tkzcname{tkzClip} in most cases are not necessary. \begin{tkzltxexample}[] - \tkzDefPoint(0,0){O} + \tkzDefPoint(0,0){A} \tkzDefPoint(1,0){I} - \tkzDefPoint(10,0){B} \end{tkzltxexample} \item The second part is dedicated to the creation of new points from the fixed points; - a $B$ point is placed at $10 cm$ from $A$. The middle of $[AB]$ is defined by $M$ and then the orthogonal line to the $(AB)$ line is searched for at the $I$ point. Then we look for the intersection of this line with the semi-circle of center $M$ passing through $A$. + a $B$ point is placed at $10$~cm from $A$. The middle of $[AB]$ is defined by $M$ and then the orthogonal line to the $(AB)$ line is searched for at the $I$ point. Then we look for the intersection of this line with the semi-circle of center $M$ passing through $A$. \begin{tkzltxexample}[] \tkzDefPointBy[homothety=center A ratio 10 ](I) @@ -328,10 +349,10 @@ The following code consists of several parts: \item The third one includes the different drawings; \begin{tkzltxexample}[] - \tkzDrawSegment[style=dashed](I,H) + \tkzDrawSegment[style=orange](I,H) \tkzDrawPoints(O,I,A,B,M) \tkzDrawArc(M,A)(O) - \tkzDrawSegment[dim={$1$,-16pt,}](O,I) % voir la documentation pour l'usage de dim + \tkzDrawSegment[dim={$1$,-16pt,}](O,I) \tkzDrawSegment[dim={$a/2$,-10pt,}](I,M) \tkzDrawSegment[dim={$a/2$,-16pt,}](M,A) \end{tkzltxexample} @@ -362,9 +383,8 @@ The following code consists of several parts: % calculation \tkzDefPointBy[homothety=center A ratio 10 ](I) \tkzGetPoint{B} \tkzDefMidPoint(A,B) \tkzGetPoint{M} - \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{i} - \tkzInterLC(I,i)(M,B) \tkzGetSecondPoint{C} - + \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H} + \tkzInterLC(I,H)(M,B) \tkzGetSecondPoint{C} \tkzDrawSegment[style=orange](I,C) \tkzDrawArc(M,B)(A) \tkzDrawSegment[dim={$1$,-16pt,}](A,I) @@ -376,30 +396,29 @@ The following code consists of several parts: \tkzLabelPoints[above right](I,M) \tkzLabelPoints[above left](C) \tkzLabelPoint[right](B){$B(10,0)$} - \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} + \tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$} \end{tikzpicture} \end{tkzexample} \end{itemize} -\newpage \subsection{The Elements of tkz code} -In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with tkz-euclide. +In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with \tkzname{\tkznameofpack}. The primitive objects are points. You can refer to a point at any time using the name given when defining it. (it is possible to assign a different name later on). \medskip -In general, tkz-euclide macros have a name beginning with tkz. There are four main categories starting with~: -|\tkzDef...| |\tkzDraw...| |\tkzMark...| et |\tkzLabel...| +In general, \tkzname{\tkznameofpack} macros have a name beginning with tkz. There are four main categories starting with: +|\tkzDef...| |\tkzDraw...| |\tkzMark...| and |\tkzLabel...| -Among the first category, |\tkzDefPoint| allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro DefTriangle |\tkzDefTriangle|. +Among the first category, |\tkzDefPoint| allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro |\tkzDefTriangle|. This macro makes it possible to associate to a pair of points a third point in order to define a certain triangle |\tkzDefTriangle(A,B)|. The obtained point is referenced |tkzPointResult| and it is possible to choose another reference with |\tkzGetPoint{C}| for example. Parentheses are used to pass arguments. In |(A,B)| $A$ and $B$ are the points with which a third will be defined. However, in |{C}| we use braces to retrieve the new point. -In order to choose a certain type of triangle among the following choices : - |equilateral|, |halftone|, |pythagoras|, |school|, |golden or sublime|, |euclide|, |gold|, |cheops|... - and |two angles| you just have to choose between hooks, for example~: +In order to choose a certain type of triangle among the following choices: + |equilateral|, |half|, |pythagoras|, |school|, |golden or sublime|, |euclide|, |gold|, |cheops|... + and |two angles| you just have to choose between hooks, for example: |\tkzDefTriangle[euclide](A,B) \tkzGetPoint{C}| @@ -434,20 +453,92 @@ In order to choose a certain type of triangle among the following choices : \end{minipage} -\subsection{Conventions} +\subsection{Notations and conventions} + +I deliberately chose to use the geometric French and personal conventions to describe the geometric objects represented. The objects defined and represented by \tkzname{\tkznameofpack} are points, lines and circles located in a plane. They are the primary objects of Euclidean geometry from which we will construct figures. + +According to \tkzimp{Euclidian} these figures will only illustrate pure ideas produced by our brain. +Thus a point has no dimension and therefore no real existence. In the same way the line has no width and therefore no existence in the real world. The objects that we are going to consider are only representations of ideal mathematical objects. \tkzname{\tkznameofpack} will follow the steps of the ancient Greeks to obtain geometrical constructions using the ruler and the compass. + +Here are the notations that will be used: + + +\begin{itemize} +\item The points are represented geometrically either by a small disc or by the intersection of two lines (two straight lines, a straight line and a circle or two circles). In this case, the point is represented by a cross. + +\begin{tkzexample}[latex=6cm, small] + \begin{tikzpicture} + \tkzDefPoints{0/0/A,4/2/B} + \tkzDrawPoints(A,B) + \tkzLabelPoints(A,B) + \end{tikzpicture} +\end{tkzexample} + +or else + +\begin{tkzexample}[latex=6cm, small] + \begin{tikzpicture} + \tkzSetUpPoint[shape=cross, color=red] + \tkzDefPoints{0/0/A,4/2/B} + \tkzDrawPoints(A,B) + \tkzLabelPoints(A,B) + \end{tikzpicture} + \end{tkzexample} -For this documentation, I used the geometric French and personal conventions for naming the points: +The existence of a point being established, we can give it a label which will be a capital letter (with some exceptions) of the Latin alphabet such as $A$, $B$ or $C$. For example: \begin{itemize} \item $O$ is a center for a circle, a rotation, etc.; \item $M$ defined a midpoint; \item $H$ defined the foot of an altitude; \item $P'$ is the image of $P$ by a transformation ; -\item $a$ defined an angle (degree), $r$ the length of a radius, $d$ a length (or dimension); -\item ($x_1$,$y_1$) coordinates of the point $A_1$, ($x_A$,$y_A$) coordinates of the point $A$; -\item $[AB]$ a line segment, $(AB)$ a line. \end{itemize} -\subsection{How to use the tkz-euclide package ?} +It is important to note that the reference name of a point in the code may be different from the label to designate it in the text. So we can define a point A and give it as label $P$. In particular the style will be different, point A will be labeled $A$. + +\begin{tkzexample}[latex=6cm, small] + \begin{tikzpicture} + \tkzDefPoints{0/0/A} + \tkzDrawPoints(A) + \tkzLabelPoint(A){$P$} + \end{tikzpicture} +\end{tkzexample} + +Exceptions: some points such as the middle of the sides of a triangle share a characteristic, so it is normal that their names also share a common character. We will designate these points by $M_a$, $M_b$ and $M_c$ or $M_A$, $M_B$ and $M_C$. + +In the code, these points will be referred to as: M\_A, M\_B and M\_C. + +Another exception relates to intermediate construction points which will not be labelled. They will often be designated by a lowercase letter in the code. + +\item The line segments are designated by two points representing their ends in square brackets: $[AB]$. + +\item The straight lines are in Euclidean geometry defined by two points so $A$ and $B$ define the straight line $(AB)$. We can also designate this stright line using the Greek alphabet and name it $(\delta)$ or $(\Delta)$. It is also possible to designate the straight line with lowercase letters such as $d$ and $d'$. + +\item The semi-straight line is designated as follows $[AB)$. + + +\item Relation between the straight lines. Two perpendicular $(AB)$ and $(CD)$ lines will be written $(AB) \perp (CD)$ and if they are parallel we will write $(AB) \parallelslant (CD)$. + +\item The lengths of the sides of triangle ABC are $AB$, $AC$ and $BC$. The numbers are also designated by a lowercase letter so we will write: $AB=c$, $AC=b$ and $BC=a$. The letter $a$ is also used to represent an angle, and $r$ is frequently used to represent a radius, $d$ a diameter, $l$ a length, $d$ a distance. + +\item Polygons are designated afterwards by their vertices so $ABC$ is a triangle, $EFGH$ a quadrilateral. + +\item Angles are generally measured in degrees (ex $60^\circ$) and in an equilateral $ABC$ triangle we will write $\widehat{ABC}=\widehat{B}=60^\circ$. + +\item The arcs are designated by their extremities. For example if $A$ and $B$ are two points of the same circle then $\widearc{AB}$. + + +\item Circles are noted either $\mathcal{C}$ if there is no possible confusion or $\mathcal{C}$ $(O~;~A)$ for a circle with center $O$ and passing through the point $A$ or $\mathcal{C}$ $(O~;~1)$ for a circle with center O and radius 1 cm. + +\item Name of the particular lines of a triangle: I used the terms bisector, bisector out, mediator (sometimes called perpendicular bisectors), altitude, median and symmedian. + +\item ($x_1$,$y_1$) coordinates of the point $A_1$, ($x_A$,$y_A$) coordinates of the point $A$. + +\end{itemize} + + + + +\subsection{How to use the \tkzname{\tkznameofpack} package ?} \subsubsection{Let's look at a classic example} In order to show the right way, we will see how to build an equilateral triangle. Several possibilities are open to us, we are going to follow the steps of Euclid. @@ -456,14 +547,14 @@ In order to show the right way, we will see how to build an equilateral triangle \begin{verbatim} \documentclass{standalone} \end{verbatim} -\item Then load the tkz-euclide package: +\item Then load the \tkzname{\tkznameofpack} package: \begin{verbatim} \usepackage{tkz-euclide} \end{verbatim} - You don't need to load \TIKZ\ because the tkz-euclide package works on top of TikZ and loads it. + You don't need to load \TIKZ\ because the \tkzname{\tkznameofpack} package works on top of TikZ and loads it. \item {\color{red} \bomb \sout{|\BS usetkzobj{all}| }} - With the new version 3.02 you don't need this line anymore. All objects are now loaded. + With the new version 3.03 you don't need this line anymore. All objects are now loaded. \item Start the document and open a TikZ picture environment: \begin{verbatim} \begin{document} @@ -476,31 +567,32 @@ In order to show the right way, we will see how to build an equilateral triangle \tkzDefPoint(5,2){B} \end{verbatim} -\item Two points define two circles, let's use these circles : +\item Two points define two circles, let's use these circles: circle with center $A$ through $B$ and circle with center $B$ through $A$. These two circles have two points in common. \begin{verbatim} \tkzInterCC(A,B)(B,A) \end{verbatim} -we can get the points of intersection with +We can get the points of intersection with \begin{verbatim} \tkzGetPoints{C}{D} \end{verbatim} \item All the necessary points are obtained, we can move on to the final steps including the plots. \begin{verbatim} +\tkzDrawCircles[gray,dashed](A,B B,A) \tkzDrawPolygon(A,B,C)% The triangle \end{verbatim} -\item Draw all points A,B,C and D : +\item Draw all points $A$, $B$, $C$ and $D$: \begin{verbatim} \tkzDrawPoints(A,...,D) \end{verbatim} \item The final step, we print labels to the points and use options for positioning:\\ \begin{verbatim} -\tkzLabelPoints[below left](A) -\tkzLabelPoints(B,D) -\tkzLabelPoint (above] (C){$C$} +\tkzLabelSegments[swap](A,B){$c$} +\tkzLabelPoints(A,B,D) +\tkzLabelPoints[above](C) \end{verbatim} \item We finally close both environments \begin{verbatim} @@ -533,12 +625,12 @@ we can get the points of intersection with \end{itemize} -\subsubsection{"Set, Calculate, Draw, Mark, Label"} -The title could have been : \texttt{Separation of Calculus and Drawings} +\subsubsection{\tkzname{Set, Calculate, Draw, Mark, Label}} +The title could have been: \texttt{Separation of Calculus and Drawings} -When a document is prepared using the LaTeX system, the source code of the document can be divided into two parts: the document body and the preamble. +When a document is prepared using the \LATEX\ system, the source code of the document can be divided into two parts: the document body and the preamble. Under this methodology, publications can be structured, styled and typeset with minimal effort. -I propose a similar methodology for creating figures with tkz-euclide. +I propose a similar methodology for creating figures with \tkzname{\tkznameofpack}. The first part defines the fixed points, the second part allows the creation of new points. These are the two main parts. All that is left to do is to draw, mark and label. diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex index a528e9bb576..ebd7f3fd804 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex @@ -1,25 +1,20 @@ -\section{Rapporteurs} +\section{Protractor} +Based on an idea by Yves Combe, the following macro allows you to draw a protractor. +The operating principle is even simpler. Just name a half-line (a ray). The protractor will be placed on the origin $O$, the direction of the half-line is given by $A$. The angle is measured in the direct direction of the trigonometric circle. - -D'après une idée de Yves Combe., la macro suivante permet de dessiner un rapporteur. - - -\begin{NewMacroBox}{tkzProtractor}{\oarg{local options}\parg{$O,A$}} - -\medskip -\begin{tabular}{lll} -\toprule -options & défaut & définition \\ +\begin{NewMacroBox}{tkzProtractor}{\oarg{local options}\parg{$O,A$}}% +\begin{tabular}{lll}% +options & default & definition \\ \midrule -\TOline{lw} {0.4 pt} { épaisseur des lignes} -\TOline{scale} {1} { ratio : permet d'ajuster la taille du rapporteur} \TOline{return} {false} { sens indirect du cercle trigonométrique} +\TOline{lw} {0.4 pt} {line thickness} +\TOline{scale} {1} {ratio: adjusts the size of the protractor} +\TOline{return} {false} {trigonometric circle indirect} \end{tabular} \end{NewMacroBox} -\subsection{Le rapporteur circulaire} - -Mesure dans le sens direct +\subsection{The circular protractor} +Measuring in the forward direction \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.5] @@ -33,7 +28,7 @@ Mesure dans le sens direct \end{tikzpicture} \end{tkzexample} -\subsection{Le rapporteur circulaire, transparent et retourné} +\subsection{The circular protractor, transparent and returned} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.5] diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex index 37e0fdb6bad..47a5bd70f0e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex @@ -4,32 +4,29 @@ %<---------------------------------------------------------------------------> At the moment there are four possibilities: \begin{enumerate} - \item point in a rectangle, - \item on a segment, - \item on a straight line, + \item point in a rectangle; + \item on a segment; + \item on a straight line; \item on a circle. \end{enumerate} \subsection{Obtaining random points} -This is the new version that replaces \tkzcname{tkzGetRandPointOn} -\begin{NewMacroBox}{tkzDefRandPointOn}{\oarg{local options}} -{The result is a point with a random position that can be named with the macro \tkzcname{tkzGetPoint}. It is possible to use \tkzname{tkzPointResult} if it is not necessary to retain the results..} - +This is the new version that replaces \tkzcname{tkzGetRandPointOn}. +\begin{NewMacroBox}{tkzDefRandPointOn}{\oarg{local options}}% +{The result is a point with a random position that can be named with the macro \tkzcname{tkzGetPoint}. It is possible to use \tkzname{tkzPointResult} if it is not necessary to retain the results.} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule \TOline{rectangle=pt1 and pt2} {}{[rectangle=A and B]} \TOline{segment= pt1--pt2} {}{[segment=A--B]} \TOline{line=pt1--pt2}{}{[line=A--B]} -\TOline{circle =center pt1 radius dim}{}{[circle = center A radius 2cm]} +\TOline{circle =center pt1 radius dim}{}{[circle = center A radius 2 cm]} \TOline{circle through=center pt1 through pt2}{}{[circle through= center A through B]} \TOline{disk through=center pt1 through pt2}{}{[disk through=center A through B]} - \bottomrule \end{tabular} - \end{NewMacroBox} \subsection{Random point in a rectangle} @@ -65,10 +62,10 @@ options & default & definition \\ \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} - \tkzDefRandPointOn[line = A--B]\tkzGetPoint{a} - \tkzDefRandPointOn[line = C--D]\tkzGetPoint{d} - \tkzDrawPoints(A,B,C,D,a,d) - \tkzLabelPoints(A,B,C,D,a,d) + \tkzDefRandPointOn[line = A--B]\tkzGetPoint{E} + \tkzDefRandPointOn[line = C--D]\tkzGetPoint{F} + \tkzDrawPoints(A,...,F) + \tkzLabelPoints(A,...,F) \end{tikzpicture} \end{tkzexample} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex index e615d1c0a09..030af8917f5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex @@ -1,29 +1,24 @@ -\section{Les secteurs} - +\section{Sectors} \subsection{\tkzcname{tkzDrawSector}} -\begin{NewMacroBox}{tkzDrawSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} -\tkzHandBomb\ Attention les arguments varient en fonction des options. - -\medskip -\begin{tabular}{lll} -\toprule -options & default & definition \\ +\tkzHandBomb\ Attention the arguments vary according to the options. +\begin{NewMacroBox}{tkzDrawSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}}% +\begin{tabular}{lll}% +options & default & definition \\ \midrule -\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} -\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } -\TOline{R}{towards}{On donne le rayon et deux angles} -\TOline{R with nodes}{towards}{On donne le rayon et deux points} +\TOline{towards}{towards}{$O$ is the center and the arc from $A$ to $(OB)$} +\TOline{rotate} {towards}{the arc starts from $A$ and the angle determines its length } +\TOline{R}{towards}{We give the radius and two angles} +\TOline{R with nodes}{towards}{We give the radius and two points} \bottomrule \end{tabular} \medskip -Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés +You have to add, of course, all the styles of \TIKZ\ for tracings... \medskip - -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & arguments & exemple \\ +options & arguments & example \\ \midrule \TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzDrawSector(O,A)(B)}} \TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzDrawSector[rotate,color=red](O,A)(90)}} @@ -33,10 +28,10 @@ options & arguments & exemple \\ \end{tabular} \end{NewMacroBox} -Quelques exemples : +Here are a few examples: -\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{towards}} -Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{fill} en option. +\subsubsection{\tkzcname{tkzDrawSector} and \tkzname{towards}} +There's no need to put \tkzname{towards}. You can use \tkzname{fill} as an option. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] @@ -53,8 +48,7 @@ Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{f \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{rotate}} - +\subsubsection{\tkzcname{tkzDrawSector} and \tkzname{rotate}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=2] \tkzDefPoint(0,0){O} @@ -66,7 +60,7 @@ Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{f \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R}} +\subsubsection{\tkzcname{tkzDrawSector} and \tkzname{R}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} @@ -82,7 +76,7 @@ Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{f \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R}} +\subsubsection{\tkzcname{tkzDrawSector} and \tkzname{R}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} @@ -100,7 +94,7 @@ Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{f \end{tikzpicture} \end{tkzexample} -\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R with nodes}} +\subsubsection{\tkzcname{tkzDrawSector} and \tkzname{R with nodes}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} [scale=.5] \tkzDefPoint(-1,-2){A} @@ -128,41 +122,36 @@ Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{f \end{tikzpicture} \end{tkzexample} -\subsection{\tkzcname{tkzFillSector}} -\begin{NewMacroBox}{tkzFillSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} -\tkzHandBomb\ Attention les arguments varient en fonction des options. - -\medskip - -\begin{tabular}{lll} -\toprule -options & default & definition \\ +\subsection{\tkzcname{tkzFillSector}} +\tkzHandBomb\ Attention the arguments vary according to the options. +\begin{NewMacroBox}{tkzFillSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}}% +\begin{tabular}{lll}% +options & default & definition \\ \midrule -\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} -\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } -\TOline{R}{towards}{On donne le rayon et deux angles} -\TOline{R with nodes}{towards}{On donne le rayon et deux points} +\TOline{towards}{towards}{$O$ is the center and the arc from $A$ to $(OB)$} +\TOline{rotate} {towards}{the arc starts from A and the angle determines its length } +\TOline{R}{towards}{We give the radius and two angles} +\TOline{R with nodes}{towards}{We give the radius and two points} \bottomrule \end{tabular} \medskip -Il faut ajouter bien sûr tous les styles de \TIKZ pour les tracés +Of course, you have to add all the styles of \TIKZ\ for the tracings... \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & arguments & exemple \\ +options & arguments & example \\ \midrule \TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzFillSector(O,A)(B)}} \TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzFillSector[rotate,color=red](O,A)(90)}} \TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzFillSector[R,color=blue](O,2 cm)(30,90)}} \TOline{R with nodes}{\parg{pt,$r$}\parg{pt,pt}}{\tkzcname{tkzFillSector[R with nodes](O,2 cm)(A,B)}} -\bottomrule \end{tabular} \end{NewMacroBox} -\subsubsection{\tkzcname{tkzFillSector} et \tkzname{towards}} -Il est inutile de mettre \tkzname{towards} et vous remarquerez que les contours ne sont pas tracés,seule la surface est colorée. +\subsubsection{\tkzcname{tkzFillSector} and \tkzname{towards}} +It is useless to put \tkzname{towards} and you will notice that the contours are not drawn, only the surface is colored. \begin{tkzexample}[latex=5.75cm,small] \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){O} @@ -179,7 +168,7 @@ Il est inutile de mettre \tkzname{towards} et vous remarquerez que les contours \end{tkzexample} -\subsubsection{\tkzcname{tkzFillSector} et \tkzname{rotate}} +\subsubsection{\tkzcname{tkzFillSector} and \tkzname{rotate}} \begin{tkzexample}[latex=5.75cm,small] \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A} @@ -188,35 +177,29 @@ Il est inutile de mettre \tkzname{towards} et vous remarquerez que les contours \end{tikzpicture} \end{tkzexample} -\newpage -\subsection{\tkzcname{tkzClipSector}} -\begin{NewMacroBox}{tkzClipSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} -\tkzHandBomb\ Attention les arguments varient en fonction des options. - -\medskip - -\begin{tabular}{lll} -\toprule -options & default & definition \\ +\subsection{\tkzcname{tkzClipSector}} +\tkzHandBomb\ Attention the arguments vary according to the options. +\begin{NewMacroBox}{tkzClipSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}}% +\begin{tabular}{lll}% +options & default & definition \\ \midrule -\TOline{towards}{towards}{O est le centre et le secteur part de A vers (OB)} -\TOline{rotate} {towards}{le secteur part de A et l'angle détermine son amplitude } -\TOline{R}{towards}{On donne le rayon et deux angles} +\TOline{towards}{towards}{$O$ is the centre and the sector starts from $A$ to $(OB)$} +\TOline{rotate} {towards}{The sector starts from $A$ and the angle determines its amplitude. } +\TOline{R}{towards}{We give the radius and two angles} \bottomrule \end{tabular} \medskip -Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés +You have to add, of course, all the styles of \TIKZ\ for tracings... \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & arguments & exemple \\ +options & arguments & example \\ \midrule \TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzClipSector(O,A)(B)}} \TOline{rotate} {\parg{pt,pt}\parg{angle}}{\tkzcname{tkzClipSector[rotate](O,A)(90)}} \TOline{R}{\parg{pt,$r$}\parg{angle 1,angle 2}}{\tkzcname{tkzClipSector[R](O,2 cm)(30,90)}} -\bottomrule \end{tabular} \end{NewMacroBox} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex index 0d45ff22309..f52a7494307 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex @@ -1,33 +1,32 @@ \section{The Show} -\subsection{Montrer les constructions de certaines lignes \tkzcname{tkzShowLine}} +\subsection{Show the constructions of some lines \tkzcname{tkzShowLine}} - \begin{NewMacroBox}{tkzShowLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} -Ces constructions concernent les médiatrices, les droites perpendiculaires ou parallèles passant par un point donné et les bissectrices. Les arguments sont donc des listes de deux ou bien de trois points. Plusieurs options permettent l'ajustement des constructions. L'idée de cette macro revient à \tkzimp{Yves Combe} + \begin{NewMacroBox}{tkzShowLine}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% +These constructions concern mediatrices, perpendicular or parallel lines passing through a given point and bisectors. The arguments are therefore lists of two or three points. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule -options & default & definition \\ +options & default & definition \\ \midrule -\TOline{mediator}{mediator}{affiche les constructions d'une médiatrice} -\TOline{perpendicular}{mediator}{constructions pour une perpendiculaire} +\TOline{mediator}{mediator}{displays the constructions of a mediator} +\TOline{perpendicular}{mediator}{constructions for a perpendicular} \TOline{orthogonal}{mediator}{idem} -\TOline{bisector}{mediator}{constructions pour une bissectrice} -\TOline{K}{1}{cercle inscrit dans à un triangle } -\TOline{length}{1}{ en cm, longueur d'un arc} -\TOline{ratio} {.5}{rapport entre les longueurs des arcs} -\TOline{gap}{2}{placement le point de construction} -\TOline{size}{1}{rayon d'un arc (voir bissectrice)} +\TOline{bisector}{mediator}{constructions for a bisector} +\TOline{K}{1}{circle within a triangle } +\TOline{length}{1}{in cm, length of a arc} +\TOline{ratio} {.5}{arc length ratio} +\TOline{gap}{2}{placing the point of construction} +\TOline{size}{1}{radius of an arc (see bisector)} \bottomrule \end{tabular} -Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés +You have to add, of course, all the styles of \TIKZ\ for tracings\dots \end{NewMacroBox} -\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{parallel}} - +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{parallel}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C} @@ -38,8 +37,7 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{perpendicular}} - +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{perpendicular}} \begin{tkzexample}[latex=5cm,small] \begin{tikzpicture} \tkzDefPoints{0/0/A, 3/2/B, 2/2/C} @@ -47,13 +45,12 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés \tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B) \tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h} \tkzMarkRightAngle[fill=lightgray](A,h,C) -\tkzDrawLines[add=1 and 1](A,B C,c) +\tkzDrawLines[add=.5 and .5](A,B C,c) \tkzDrawPoints(A,B,C,h,c) \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{bisector}} - +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{bisector}} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture}[scale=1.25] \tkzDefPoints{0/0/A, 4/2/B, 1/4/C} @@ -73,7 +70,7 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés \end{tikzpicture} \end{tkzexample} -\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{mediator}} +\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{mediator}} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture} \tkzDefPoint(2,2){A} @@ -87,30 +84,28 @@ Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés \end{tikzpicture} \end{tkzexample} -\subsection{Constructions de certaines transformations \addbs{tkzShowTransformation}} - - \begin{NewMacroBox}{tkzShowTransformation}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} -Ces constructions concernent les symétries orthogonales, les symétries centrales, les projections orthogonales et les translations. Plusieurs options permettent l'ajustement des constructions. L'idée de cette macro revient à \tkzimp{Yves Combe} +\subsection{Constructions of certain transformations \addbs{tkzShowTransformation}} +\begin{NewMacroBox}{tkzShowTransformation}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}% +These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}. - \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{reflection= over pt1--pt2}{reflection}{constructions d'une symétrie orthogonale} -\TOline{symmetry=center pt}{reflection}{constructions d'une symétrie centrale} -\TOline{projection=onto pt1--pt2}{reflection}{constructions d'une projection} -\TOline{translation=from pt1 to pt2}{reflection}{constructions d'une translation} -\TOline{K}{1}{cercle inscrit dans à un triangle } -\TOline{length}{1}{longueur d'un arc} -\TOline{ratio} {.5}{rapport entre les longueurs des arcs} -\TOline{gap}{2}{placement le point de construction} -\TOline{size}{1}{rayon d'un arc (voir bissectrice)} +\TOline{reflection= over pt1--pt2}{reflection}{constructions of orthogonal symmetry} +\TOline{symmetry=center pt}{reflection}{constructions of central symmetry} +\TOline{projection=onto pt1--pt2}{reflection}{constructions of a projection} +\TOline{translation=from pt1 to pt2}{reflection}{constructions of a translation} +\TOline{K}{1}{circle within a triangle } +\TOline{length}{1}{arc length} +\TOline{ratio} {.5}{arc length ratio} +\TOline{gap}{2}{placing the point of construction} +\TOline{size}{1}{radius of an arc (see bisector)} \end{tabular} \end{NewMacroBox} -\subsubsection{Exemple d'utilisation de \tkzcname{tkzShowTransformation}} +\subsubsection{Example of the use of \tkzcname{tkzShowTransformation}} \begin{tkzexample}[latex=6cm,small] @@ -143,9 +138,9 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{Autre exemple d'utilisation de \tkzcname{tkzShowTransformation}} +\subsubsection{Another example of the use of \tkzcname{tkzShowTransformation}} -Vous retouverez cette figure, mais sans les traits de construction +You'll find this figure again, but without the construction features. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.6] \tkzDefPoints{0/0/A,8/0/B,3.5/10/I} @@ -168,37 +163,35 @@ Vous retouverez cette figure, mais sans les traits de construction \end{tikzpicture} \end{tkzexample} -%<---------------------------------------------------------------------------> -\section{Différents points} -%<---------------------------------------------------------------------------> +%<----------------------------------------------------------------------> +\section{Different points} +%<----------------------------------------------------------------------> \subsection{\tkzcname{tkzDefEquiPoints}} -Cette macro permet d'obtenir deux points d'une droite équidistants d'un point donné. +This macro makes it possible to obtain two points on a straight line equidistant from a given point. -\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}} -\begin{tabular}{lll} -arguments & défaut & définition \\ +\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}}% +\begin{tabular}{lll}% +arguments & default & definition \\ \midrule -\TAline{(pt1,pt2)}{no default}{liste non ordonnée de deux points} +\TAline{(pt1,pt2)}{no default}{unordered list of two items} \bottomrule \end{tabular} \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule \\ options & default & definition \\ \midrule -\TOline{dist} {2 cm} {moitié de la distance entre les deux points} -\TOline{from=pt} {no default} {point de référence} -\TOline{show} {false} {si true affiche les traces de compas} -\TOline{/compass/delta} {0} {taille des traces de compas } +\TOline{dist} {2 cm} {half the distance between the two points} +\TOline{from=pt} {no default} {reference point} +\TOline{show} {false} {if true displays compass traces} +\TOline{/compass/delta} {0} {compass trace size } \end{tabular} \end{NewMacroBox} - -\subsubsection{Utilisation de \tkzcname{tkzDefEquiPoints} avec des options} - +\subsubsection{Using \tkzcname{tkzDefEquiPoints} with options} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture} \tkzSetUpCompass[color=purple,line width=1pt] diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-tools.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-tools.tex new file mode 100644 index 00000000000..819b57dc772 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-tools.tex @@ -0,0 +1,205 @@ +\section{Miscellaneous tools} +\subsection{Duplicate a segment} +This involves constructing a segment on a given half-line of the same length as a given segment. + +\begin{NewMacroBox}{tkzDuplicateSegment}{\parg{pt1,pt2}\parg{pt3,pt4}\marg{pt5}}% +This involves creating a segment on a given half-line of the same length as a given segment . It is in fact the definition of a point. +\tkzcname{tkzDuplicateSegment} is the new name of \tkzcname{tkzDuplicateLen}. +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ + +\midrule +\TAline{(pt1,pt2)(pt3,pt4)\{pt5\}} {\tkzcname{tkzDuplicateSegment}(A,B)(E,F)\{C\}}{AC=EF and $C \in [AB)$} \\ +\bottomrule +\end{tabular} + +\medskip +The macro \tkzcname{tkzDuplicateLength} is identical to this one. +\end{NewMacroBox} + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,-3){B} + \tkzDefPoint(2,5){C} + \tkzDrawSegments[red](A,B A,C) + \tkzDuplicateSegment(A,B)(A,C) + \tkzGetPoint{D} + \tkzDrawSegment[green](A,D) + \tkzDrawPoints[color=red](A,B,C,D) + \tkzLabelPoints[above right=3pt](A,B,C,D) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Proportion of gold with \tkzcname{tkzDuplicateSegment}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=-90,scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(10,0){B} + \tkzDefMidPoint(A,B) + \tkzGetPoint{I} + \tkzDefPointWith[orthogonal,K=-.75](B,A) + \tkzGetPoint{C} + \tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D} + \tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E} + \tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M} + \tkzDrawArc[orange,delta=10](D,E)(B) + \tkzDrawArc[orange,delta=10](A,M)(E) + \tkzDrawLines(A,B B,C A,D) + \tkzDrawArc[orange,delta=10](B,D)(I) + \tkzDrawPoints(A,B,D,C,M,I,N) + \tkzLabelPoints(A,B,D,C,M,I,N) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Segment length \tkzcname{tkzCalcLength}} +There's an option in \TIKZ\ named \tkzname{veclen}. This option + is used to calculate AB if A and B are two points. + +The only problem for me is that the version of \TIKZ\ is not accurate enough in some cases. My version uses the \tkzNamePack{xfp} package and is slower, but more accurate. + +\begin{NewMacroBox}{tkzCalcLength}{\oarg{local options}\parg{pt1,pt2}\marg{name of macro}}% +The result is stored in a macro. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{(pt1,pt2)\{name of macro\}} {\tkzcname{tkzCalcLength}(A,B)\{dAB\}}{\tkzcname{dAB} gives $AB$ in pt} +\bottomrule +\end{tabular} + +\medskip +Only one option + +\begin{tabular}{lll}% + +\toprule + options & default & example \\ +\midrule +\TOline{cm} {false}{\tkzcname{tkzCalcLength}[cm](A,B)\{dAB\} \tkzcname{dAB} gives $AB$ in cm} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Compass square construction} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDrawLine[add= .6 and .2](A,B) + \tkzCalcLength[cm](A,B)\tkzGetLength{dAB} + \tkzDefLine[perpendicular=through A](A,B) + \tkzDrawLine(A,tkzPointResult) \tkzGetPoint{D} + \tkzShowLine[orthogonal=through A,gap=2](A,B) + \tkzMarkRightAngle(B,A,D) + \tkzVecKOrth[-1](B,A)\tkzGetPoint{C} + \tkzCompasss(A,D D,C) + \tkzDrawArc[R](B,\dAB)(80,110) + \tkzDrawPoints(A,B,C,D) + \tkzDrawSegments[color=gray,style=dashed](B,C C,D) + \tkzLabelPoints(A,B,C,D) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Transformation from pt to cm} +Not sure if this is necessary and it is only a division by 28.45274 and a multiplication by the same number. The macros are: + +\begin{NewMacroBox}{tkzpttocm}{\parg{nombre}\marg{name of macro}}% +\begin{tabular}{lll}% +arguments & example & explication \\ +\midrule +\TAline{(number){name of macro}} {\tkzcname{tkzpttocm}(120)\{len\}}{\tkzcname{len} gives a number of \tkzname{cm}} +\bottomrule +\end{tabular} + +\medskip +You'll have to use \tkzcname{len} along with \tkzname{cm}. The result is stored in a macro. +\end{NewMacroBox} + +\subsection{Transformation from cm to pt} +\begin{NewMacroBox}{tkzcmtopt}{\parg{nombre}\marg{name of macro}}% +\begin{tabular}{lll}% +arguments & example & explication \\ +\midrule +\TAline{(nombre)\{name of macro\}}{\tkzcname{tkzcmtopt}(5)\{len\}}{\tkzcname{len} length in \tkzname{pt}} +\bottomrule +\end{tabular} + +\medskip +The result is stored in a macro. The result can be used with \tkzcname{len} \tkzname{pt}. +\end{NewMacroBox} + +\subsubsection{Example} +The macro \tkzcname{tkzDefCircle[radius](A,B)} defines the radius that we retrieve with \tkzcname{tkzGetLength}, but this result is in \tkzname{pt}. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,-4){B} + \tkzDefCircle[through](A,B) + \tkzGetLength{rABpt} + \tkzpttocm(\rABpt){rABcm} + \tkzDrawCircle(A,B) + \tkzDrawPoints(A,B) + \tkzLabelPoints(A,B) + \tkzDrawSegment[dashed](A,B) + \tkzLabelSegment(A,B){$\pgfmathprintnumber{\rABcm}$} +\end{tikzpicture} +\end{tkzexample} + +\subsection{Get point coordinates} +%<--------------------------------------------------------------------------–> +% Coordonnées d'un point +% result in #2x and #2y #1 is the point and we get its coordinates +% use either $A$ one point \tkzGetPointCoord(A){V} then \Vx = xA and \Vy = yA +% in cm +% tkzGetPointCoord with [#1] cm or pt ?? todo +%<--------------------------------------------------------------------------–> +\begin{NewMacroBox}{tkzGetPointCoord}{\parg{$A$}\marg{name of macro}}% +\begin{tabular}{lll}% +arguments & example & explication \\ +\midrule +\TAline{(point)\{name of macro\}} {\tkzcname{tkzGetPointCoord}(A)\{A\}}{\tkzcname{Ax} and \tkzcname{Ay} give coordinates for $A$} +\end{tabular} + +\medskip +Stores in two macros the coordinates of a point. If the name of the macro is \tkzname{p}, then \tkzcname{px} and \tkzcname{py} give the coordinates of the chosen point with the cm as unit. +\end{NewMacroBox} + +\subsubsection{Coordinate transfer with \tkzcname{tkzGetPointCoord}} + +\begin{tkzexample}[width=8cm,small] +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=3] + \tkzGrid[sub,orange] + \tkzAxeXY + \tkzDefPoint(1,0){A} + \tkzDefPoint(4,2){B} + \tkzGetPointCoord(A){a} + \tkzGetPointCoord(B){b} + \tkzDefPoint(\ax,\ay){C} + \tkzDefPoint(\bx,\by){D} + \tkzDrawPoints[color=red](C,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Sum of vectors with \tkzcname{tkzGetPointCoord}} +\begin{tkzexample}[width=6cm,small] +\begin{tikzpicture}[>=latex] + \tkzDefPoint(1,4){a} + \tkzDefPoint(3,2){b} + \tkzDefPoint(1,1){c} + \tkzDrawSegment[->,red](a,b) + \tkzGetPointCoord(c){c} + \draw[color=blue,->](a) -- ([shift=(b)]\cx,\cy) ; + \draw[color=purple,->](b) -- ([shift=(b)]\cx,\cy) ; + \tkzDrawSegment[->,blue](a,c) + \tkzDrawSegment[->,purple](b,c) +\end{tikzpicture} +\end{tkzexample} + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex index 13cf231e458..038e93892cb 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex @@ -1,46 +1,46 @@ -\section{Les triangles} +\section{Triangles} -\subsection{Définition des triangles \tkzcname{tkzDefTriangle}} -Les macros suivantes vont permettre de définir ou de construire un triangle à partir \tkzname{au moins} de deux points. +\subsection{Definition of triangles \tkzcname{tkzDefTriangle}} +The following macros will allow you to define or construct a triangle from \tkzname{at least} two points. - Pour le moment, il est possible de définir les triangles suivants : + At the moment, it is possible to define the following triangles: \begin{itemize} -\item \tkzname{two angles} détermine un triangle connaissant deux angles, -\item \tkzname{equilateral} détermine un triangle équilatéral, -\item \tkzname{half} détermine un triangle rectangle tel que le rapport des mesures des deux côtés adjacents à l'angle droit soit égal à $2$, -\item \tkzname{pythagore} détermine un triangle rectangle dont les mesures des côtés sont proportionnelles à 3, 4 et 5, -\item \tkzname{school} détermine un triangle rectangle dont les angles sont 30, 60 et 90 degrés, -\item \tkzname{golden} détermine un triangle rectangle tel que le rapport des mesures des deux côtés adjacents à l'angle droit soit égal $\Phi=1,618034$, J'ai choisi comme dénomination « triangle doré » car il rpovient du rectangle d'or et j'ai conservé la dénomination « triangle d'or » ou encore « triangle d'Euclide » pour le triangle isocèle dont les angles à la base sont de 72 degrés, +\item \tkzname{two angles} determines a triangle with two angles; +\item \tkzname{equilateral} determines an equilateral triangle; +\item \tkzname{half} determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to $2$; +\item \tkzname{pythagore} determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5; +\item \tkzname{school} determines a right-angled triangle whose angles are 30, 60 and 90 degrees; +\item \tkzname{golden} determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi=1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees; -\item \tkzname{gold} ou \tkzname{euclide} pour le triangle d'or, +\item \tkzname{euclide} or \tkzname{gold} for the gold triangle; -\item \tkzname{cheops} détermine un troisième point tel que le triangle soit isocèle dont les mesures des côtés sont proportionnelles à $2$, $\Phi$ et $\Phi$. +\item \tkzname{cheops} determines a third point such that the triangle is isosceles with side measurements proportional to $2$, $\Phi$ and $\Phi$. \end{itemize} -\begin{NewMacroBox}{tkzDefTriangle}{\oarg{local options}\parg{A,B}} -les points sont ordonnés car le triangle est construit en suivant le sens direct du cercle trigonométrique. Cette macro est soit utilisée en partenariat avec \tkzcname{tkzGetPoint} soit en utilisant \tkzname{tkzPointResult} s'il n'est pas nécessaire de conserver le nom. - +\begin{NewMacroBox}{tkzDefTriangle}{\oarg{local options}\parg{A,B}}% +The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \tkzcname{tkzGetPoint} or by using \tkzname{tkzPointResult} if it is not necessary to keep the name. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{two angles= \#1 and \#2}{no defaut}{triangle connaissant deux angles} -\TOline{equilateral} {no defaut}{triangle équilatéral } -\TOline{pythagore}{no defaut}{proportionnel au triangle de pythagore 3-4-5} -\TOline{school} {no defaut}{ angles de 30, 60 et 90 degrés } -\TOline{gold}{no defaut}{ angles de 72, 72 et 36 degrés, $A$ est le sommet } -\TOline{euclide} {no defaut}{identique au précédent mais $[AB]$ est la base} -\TOline{golden} {no defaut}{rectangle en B et $AB/AC = \Phi$} -\TOline{cheops} {no defaut}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\TOline{two angles= \#1 and \#2}{no defaut}{triangle knowing two angles} +\TOline{equilateral} {no defaut}{equilateral triangle } +\TOline{pythagore}{no defaut}{proportional to the pythagorean triangle 3-4-5} +\TOline{school} {no defaut}{angles of 30, 60 and 90 degrees } +\TOline{gold}{no defaut}{angles of 72, 72 and 36 degrees, $A$ is the apex} +\TOline{euclide} {no defaut}{same as above but $[AB]$ is the base} +\TOline{golden} {no defaut}{B rectangle and $AB/AC = \Phi$} +\TOline{cheops} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.} +\bottomrule \end{tabular} \medskip -\tkzcname{tkzGetPoint} permet de stocker le point sinon \tkzname{tkzPointResult} permet une utilisation immédiate. +\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use. \end{NewMacroBox} -\subsubsection{triangle doré (golden)} +\subsubsection{Option \tkzname{golden}} \begin{tkzexample}[latex=6 cm,small] \begin{tikzpicture}[scale=.8] \tkzInit[xmax=5,ymax=3] \tkzClip[space=.5] @@ -52,7 +52,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{triangle équilatéral}\label{def_equilateral} +\subsubsection{Option \tkzname{equilateral}} \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){A} @@ -68,7 +68,7 @@ options & default & definition \\ \end{tikzpicture} \end{tkzexample} -\subsubsection{triangle d'or (euclide)} +\subsubsection{Option \tkzname{gold} or \tkzname{euclide} } \begin{tkzexample}[latex=7 cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -82,33 +82,32 @@ options & default & definition \\ \end{tkzexample} \newpage -\subsection{Tracé des triangles} - \begin{NewMacroBox}{tkzDrawTriangle}{\oarg{local options}\parg{A,B}} -Macro semblable à la macro précédente mais les côtés sont tracés. +\subsection{Drawing of triangles} + \begin{NewMacroBox}{tkzDrawTriangle}{\oarg{local options}\parg{A,B}}% +Macro similar to the previous macro but the sides are drawn. \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{two angles= \#1 and \#2}{no defaut}{triangle connaissant deux angles} -\TOline{equilateral} {no defaut}{triangle équilatéral } -\TOline{pythagore}{no defaut}{proportionnel au triangle de pythagore 3-4-5} -\TOline{school} {no defaut}{les angles sont 30, 60 et 90 degrés } -\TOline{gold}{no defaut}{les angles sont 72, 72 et 36 degrés, $A$ est le sommet } -\TOline{euclide} {no defaut}{identique au précédent mais $[AB]$ est la base} -\TOline{golden} {no defaut}{rectangle en B et $AB/AC = \Phi$} -\TOline{cheops} {no defaut}{isocèle en C et $AC/AB = \frac{\Phi}{2}$} +\TOline{two angles= \#1 and \#2}{equilateral}{triangle knowing two angles} +\TOline{equilateral} {equilateral}{equilateral triangle } +\TOline{pythagore}{equilateral}{proportional to the pythagorean triangle 3-4-5} +\TOline{school} {equilateral}{the angles are 30, 60 and 90 degrees } +\TOline{gold}{equilateral}{the angles are 72, 72 and 36 degrees, $A$ is the vertex } +\TOline{euclide} {equilateral}{identical to the previous one but $[AB]$ is the base} +\TOline{golden} {equilateral}{B rectangle and $AB/AC = \Phi$} +\TOline{cheops} {equilateral}{isosceles in C and $AC/AB = \frac{\Phi}{2}$} \bottomrule \end{tabular} \medskip -Dans toutes ses définitions, les dimensions du triangle dépendent des deux points de départ. +In all its definitions, the dimensions of the triangle depend on the two starting points. \end{NewMacroBox} - -\subsubsection{triangle de Pythagore} -Ce triangle a des côtés dont les longueurs sont proportionnelles à 3, 4 et 5. +\subsubsection{Option \tkzname{pythagore}} +This triangle has sides whose lengths are proportional to 3, 4 and 5. \begin{tkzexample}[latex=6 cm,small] \begin{tikzpicture} @@ -120,53 +119,76 @@ Ce triangle a des côtés dont les longueurs sont proportionnelles à 3, 4 et 5. \end{tkzexample} - \subsubsection{triangle 30 60 90 (school)} - Les angles font 30, 60 et 90 degrés. +\subsubsection{Option \tkzname{school}} +The angles are 30, 60 and 90 degrees. \begin{tkzexample}[latex=6 cm,small] \begin{tikzpicture} -\tkzInit[ymin=-2.5,ymax=0,xmin=-5,xmax=0] -\tkzClip[space=.5] -\begin{scope}[rotate=-180] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDrawTriangle[school,fill=red!30](A,B) - \tkzMarkRightAngles(B,A,tkzPointResult) -\end{scope} + \tkzMarkRightAngles(tkzPointResult,B,A) \end{tikzpicture} \end{tkzexample} +\subsubsection{Option \tkzname{golden}} +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,-10){M} + \tkzDefPoint(3,-10){N} + \tkzDrawTriangle[golden,color=brown](M,N) +\end{tikzpicture} +\end{tkzexample} -\section{Triangles spécifiques avec \tkzcname{tkzDefSpcTriangle}} +\subsubsection{Option \tkzname{gold}} +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(5,-5){I} + \tkzDefPoint(8,-5){J} + \tkzDrawTriangle[gold,color=blue!50](I,J) +\end{tikzpicture} +\end{tkzexample} -Les centres de certains triangles ont été définis dans la section "points", ici il s'agit de déterminer les trois sommets de triangles spécifiques. +\subsubsection{Option \tkzname{euclide}} +\begin{tkzexample}[latex=6 cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(10,-5){K} + \tkzDefPoint(13,-5){L} + \tkzDrawTriangle[euclide,color=blue,fill=blue!10](K,L) + \end{tikzpicture} +\end{tkzexample} + + +\section{Specific triangles with \tkzcname{tkzDefSpcTriangle}} + +The centers of some triangles have been defined in the "points" section, here it is a question of determining the three vertices of specific triangles. \begin{NewMacroBox}{tkzDefSpcTriangle}{\oarg{local options}\parg{A,B,C}} The order of the points is important! \medskip -\begin{tabular}{lll} +\begin{tabular}{lll}% \toprule options & default & definition \\ \midrule -\TOline{in or incentral}{centroid}{triangle connaissant deux angles} -\TOline{ex or excentral} {centroid}{triangle équilatéral } -\TOline{extouch}{centroid}{proportionnel au triangle de pythagore 3-4-5} -\TOline{intouch or contact} {centroid}{ angles de 30, 60 et 90 degrés } -\TOline{centroid or medial}{centroid}{ angles de 72, 72 et 36 degrés, $A$ est le sommet } -\TOline{orthic} {centroid}{identique au précédent mais $[AB]$ est la base} -\TOline{feuerbach} {centroid}{rectangle en B et $AB/AC = \Phi$} -\TOline{euler} {centroid}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} -\TOline{tangential} {centroid}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} -\TOline{name} {no defaut}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\TOline{in or incentral}{centroid}{two-angled triangle} +\TOline{ex or excentral} {centroid}{equilateral triangle } +\TOline{extouch}{centroid}{proportional to the pythagorean triangle 3-4-5} +\TOline{intouch or contact} {centroid}{ 30, 60 and 90 degree angles } +\TOline{centroid or medial}{centroid}{ angles of 72, 72 and 36 degrees, $A$ is the vertex } +\TOline{orthic} {centroid}{same as above but $[AB]$ is the base} +\TOline{feuerbach} {centroid}{B rectangle and $AB/AC = \Phi$} +\TOline{euler} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.} +\TOline{tangential} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.} +\TOline{name} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.} \midrule \end{tabular} \medskip -\tkzcname{tkzGetPoint} permet de stocker le point sinon \tkzname{tkzPointResult} permet une utilisation immédiate. +\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use. \end{NewMacroBox} -\subsubsection{\tkzcname{tkzDefSpcTriangle} option "medial" ou "centroid"} +\subsubsection{Option \tkzname{medial} or \tkzname{centroid} } The geometric centroid of the polygon vertices of a triangle is the point $G$ (sometimes also denoted $M$) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle.\\ \href{http://mathworld.wolfram.com/TriangleCentroid.html}{Weisstein, Eric W. "Centroid triangle" From MathWorld--A Wolfram Web Resource.} @@ -189,8 +211,9 @@ In the following example, we obtain the Euler circle which passes through the pr \end{tikzpicture} \end{tkzexample} -\subsubsection{Option : "in" ou "incentral"} -The Incentral triangle is the triangle whose vertices are determined by +\subsubsection{Option \tkzname{in} or \tkzname{incentral} } + +The incentral triangle is the triangle whose vertices are determined by the intersections of the reference triangle’s angle bisectors with the respective opposite sides.\\ \href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Incentral triangle" From MathWorld--A Wolfram Web Resource.} @@ -199,66 +222,66 @@ respective opposite sides.\\ \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoints{ 0/0/A,5/0/B,1/3/C} - \tkzDefSpcTriangle[in,name=I](A,B,C){a,b,c} + \tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c} \tkzInCenter(A,B,C)\tkzGetPoint{I} \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](Ia,Ib,Ic) - \tkzDrawPoints(A,B,C,I,Ia,Ib,Ic) + \tkzDrawPolygon[blue](I_a,I_b,I_c) + \tkzDrawPoints(A,B,C,I,I_a,I_b,I_c) \tkzDrawCircle[in](A,B,C) - \tkzDrawSegments[dashed](A,Ia B,Ib C,Ic) - \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% -(Ia,Ib,Ic) - \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% -(A,B,C) -(A,B,C,Ia,Ib,Ic) + \tkzDrawSegments[dashed](A,I_a B,I_b C,I_c) + \tkzAutoLabelPoints[center=I, + blue,font=\scriptsize](I_a,I_b,I_c) + \tkzAutoLabelPoints[center=I,red, + font=\scriptsize](A,B,C,I_a,I_b,I_c) \end{tikzpicture} \end{tkzexample} -\subsubsection{Option : "ex" ou "Excentral"} -The excentral triangle of a triangle $ABC$ is the triangle $JaJbJc$ with vertices corresponding to the excenters of $ABC$. +\subsubsection{Option \tkzname{ex} or \tkzname{excentral} } + +The excentral triangle of a triangle $ABC$ is the triangle $J_aJ_bJ_c$ with vertices corresponding to the excenters of $ABC$. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.6] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c} - \tkzDefSpcTriangle[extouch,name=T](A,B,C){a,b,c} + \tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c} \tkzDrawPolygon[blue](A,B,C) - \tkzDrawPolygon[red](Ja,Jb,Jc) + \tkzDrawPolygon[red](J_a,J_b,J_c) \tkzDrawPoints(A,B,C) - \tkzDrawPoints[red](Ja,Jb,Jc) + \tkzDrawPoints[red](J_a,J_b,J_c) \tkzLabelPoints(A,B,C) - \tkzLabelPoints[red](Jb,Jc) - \tkzLabelPoints[red,above](Ja) + \tkzLabelPoints[red](J_b,J_c) + \tkzLabelPoints[red,above](J_a) \tkzClipBB \tkzShowBB - \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) + \tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c) \end{tikzpicture} \end{tkzexample} -\subsubsection{Option : "intouch"} -The contact triangle of a triangle ABC, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.\\ +\subsubsection{Option \tkzname{intouch}} +The contact triangle of a triangle $ABC$, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.\\ \href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Contact triangle" From MathWorld--A Wolfram Web Resource.} We obtain the intersections of the bisectors with the sides. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[intouch,name=x](A,B,C){a,b,c} + \tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c} \tkzInCenter(A,B,C)\tkzGetPoint{I} \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](xa,xb,xc) + \tkzDrawPolygon[blue](X_a,X_b,X_c) \tkzDrawPoints[red](A,B,C) - \tkzDrawPoints[blue](xa,xb,xc) + \tkzDrawPoints[blue](X_a,X_b,X_c) \tkzDrawCircle[in](A,B,C) \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% -(xa,xb,xc) +(X_a,X_b,X_c) \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% (A,B,C) \end{tikzpicture} \end{tkzexample} -\subsubsection{Option : "extouch"} -The extouch triangle $TaTbTc$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $Ja$, $Jb$, and $Jc$. The points $Ta$, $Tb$, and $Tc$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.\\ +\subsubsection{Option \tkzname{extouch}} +The extouch triangle $T_aT_bT_c$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $J_a$, $J_b$, and $J_c$. The points $T_a$, $T_b$, and $T_c$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.\\ \href{http://mathworld.wolfram.com/ExtouchTriangle.html}{Weisstein, Eric W. "Extouch triangle" From MathWorld--A Wolfram Web Resource.} We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles. @@ -267,32 +290,32 @@ We obtain the points of contact of the exinscribed circles as well as the triang \begin{tikzpicture}[scale=.7] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefSpcTriangle[excentral, - name=J](A,B,C){a,b,c} + name=J](A,B,C){_a,_b,_c} \tkzDefSpcTriangle[extouch, - name=T](A,B,C){a,b,c} + name=T](A,B,C){_a,_b,_c} \tkzDefTriangleCenter[nagel](A,B,C) -\tkzGetPoint{Na} +\tkzGetPoint{N_a} \tkzDefTriangleCenter[centroid](A,B,C) \tkzGetPoint{G} -\tkzDrawPoints[blue](Ja,Jb,Jc) +\tkzDrawPoints[blue](J_a,J_b,J_c) \tkzClipBB \tkzShowBB -\tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c) \tkzDrawLines[add=1 and 1](A,B B,C C,A) -\tkzDrawSegments[gray](A,Ta B,Tb C,Tc) -\tkzDrawSegments[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawSegments[gray](A,T_a B,T_b C,T_c) +\tkzDrawSegments[gray](J_a,T_a J_b,T_b J_c,T_c) \tkzDrawPolygon[blue](A,B,C) -\tkzDrawPolygon[red](Ta,Tb,Tc) -\tkzDrawPoints(A,B,C,Na) -\tkzLabelPoints(Na) +\tkzDrawPolygon[red](T_a,T_b,T_c) +\tkzDrawPoints(A,B,C,N_a) +\tkzLabelPoints(N_a) \tkzAutoLabelPoints[center=Na,blue](A,B,C) \tkzAutoLabelPoints[center=G,red, - dist=.4](Ta,Tb,Tc) -\tkzMarkRightAngles[fill=gray!15](Ja,Ta,B - Jb,Tb,C Jc,Tc,A) + dist=.4](T_a,T_b,T_c) +\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B + J_b,T_b,C J_c,T_c,A) \end{tikzpicture} \end{tkzexample} -\subsubsection{Option : "feuerbach"} +\subsubsection{Option \tkzname{feuerbach}} The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.\\ \href{http://mathworld.wolfram.com/FeuerbachTriangle.html}{Weisstein, Eric W. "Feuerbach triangle" From MathWorld--A Wolfram Web Resource.} @@ -322,8 +345,8 @@ The Feuerbach triangle is the triangle formed by the three points of tangency of \end{tikzpicture} \end{tkzexample} -\subsubsection{Option Triangle "tangential"} -The tangential triangle is the triangle $T_AT_BT_C $formed by the lines tangent to the circumcircle of a given triangle ABC at its vertices. It is therefore antipedal triangle of ABC with respect to the circumcenter O.\\ +\subsubsection{Option \tkzname{tangential}} +The tangential triangle is the triangle $T_aT_bT_c$ formed by the lines tangent to the circumcircle of a given triangle $ABC$ at its vertices. It is therefore antipedal triangle of $ABC$ with respect to the circumcenter $O$.\\ \href{http://mathworld.wolfram.com/TangentialTriangle.html}{Weisstein, Eric W. "Tangential Triangle." From MathWorld--A Wolfram Web Resource. } @@ -331,21 +354,21 @@ The tangential triangle is the triangle $T_AT_BT_C $formed by the lines tangent \begin{tikzpicture}[scale=.5,rotate=80] \tkzDefPoints{0/0/A,6/0/B,1.8/4/C} \tkzDefSpcTriangle[tangential, - name=T](A,B,C){a,b,c} + name=T](A,B,C){_a,_b,_c} \tkzDrawPolygon[red](A,B,C) - \tkzDrawPolygon[blue](Ta,Tb,Tc) + \tkzDrawPolygon[blue](T_a,T_b,T_c) \tkzDrawPoints[red](A,B,C) - \tkzDrawPoints[blue](Ta,Tb,Tc) + \tkzDrawPoints[blue](T_a,T_b,T_c) \tkzDefCircle[circum](A,B,C) \tkzGetPoint{O} \tkzDrawCircle(O,A) \tkzLabelPoints[red](A,B,C) - \tkzLabelPoints[blue](Ta,Tb,Tc) + \tkzLabelPoints[blue](T_a,T_b,T_c) \end{tikzpicture} \end{tkzexample} - \subsubsection{Option Triangle "euler"} -The Euler triangle of a triangle ABC is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter H with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle. +\subsubsection{Option \tkzname{euler}} +The Euler triangle of a triangle $ABC$ is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter $H$ with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle. \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[rotate=90,scale=1.25] diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty index 5c86e5c0af9..74ab4a29873 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty @@ -1,30 +1,78 @@ -% tkz-euclide.sty -% Copyright 2020 by Alain Matthes +% tkz-euclide.sty (utf8 encoding) +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. % -% This file may be distributed and/or modified +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. % -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. +% This work consists of the files: +% tkz-euclide.sty +% tkz-obj-eu-angles.tex +% tkz-obj-eu-arcs.tex +% tkz-obj-eu-circles.tex +% tkz-obj-eu-compass.tex +% tkz-obj-eu-draw-circles.tex +% tkz-obj-eu-draw-lines.tex +% tkz-obj-eu-draw-polygons.tex +% tkz-obj-eu-lines.tex +% tkz-obj-eu-points-by.tex +% tkz-obj-eu-points-rnd.tex +% tkz-obj-eu-points-with.tex +% tkz-obj-eu-points.tex +% tkz-obj-eu-polygons.tex +% tkz-obj-eu-protractor.tex +% tkz-obj-eu-sectors.tex +% tkz-obj-eu-show.tex +% tkz-obj-eu-triangles.tex +% tkz-tools-angles.tex +% tkz-tools-intersections.tex +% tkz-tools-math.tex + %<------------------------------------------------------------–> -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-euclide.sty} +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-euclide.sty} \NeedsTeXFormat{LaTeX2e} -\ProvidesPackage{tkz-euclide}[2020/01/24 3.02c for euclidan geometry ] +\ProvidesPackage{tkz-euclide}[2020/03/03 3.05c for euclidan geometry ] \RequirePackage{tkz-base} \makeatletter -\@ifpackagelater{tkz-base}{2020/01/24}{% +\@ifpackagelater{tkz-base}{2020/03/03}{% % Package is new enough }{% \PackageError{tkz-euclide}{Package tkz-base is too old , you need a recent version}% } \makeatother -\DeclareOption*{}%% Ne rien faire quand une option est inconnue +\DeclareOption*{} \ProcessOptions %<----------------------------------------------------------–> % Initialisation %<----------------------------------------------------------–> \input{tkz-tools-intersections} \input{tkz-tools-angles} -\usetkzobj{eu-angles,eu-arcs,eu-compass,eu-circles,eu-draw-circles,eu-lines,eu-draw-lines,eu-points,eu-points-by,eu-points-rnd,eu-points-with,eu-draw-polygons,eu-polygons,eu-protractor,eu-sectors,eu-show,eu-triangles} +\usetkzobj{% + eu-angles,% + eu-arcs,% + eu-compass,% + eu-circles,% + eu-draw-circles,% + eu-draw-lines,% + eu-draw-polygons,% + eu-draw-triangles,% + eu-lines,% + eu-points,% + eu-points-by,% + eu-points-rnd,% + eu-points-with,% + eu-polygons,% + eu-protractor,% + eu-sectors,% + eu-show,% + eu-triangles} \endinput diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex index bce07ea8a97..2347745e0b0 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex @@ -1,11 +1,21 @@ % tkz-tool-eu-angles.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-tool-eu-angles.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-tool-eu-angles.tex} \makeatletter %<--------------------------------------------------------------------------–> \newdimen\tkz@arcsize% from julian julian@d-and-j.net @@ -27,8 +37,7 @@ \endgroup } %<--------------------------------------------------------------------------–> -% Mark an angle -%<--------------------------------------------------------------------------–> +% Mark an angle modi 3.03 suppression de \tkz@mksize, %<--------------------------------------------------------------------------–> % \tkzMarkAngle(B, A, C) % @@ -83,7 +92,7 @@ \tkzNormalizeAngle(\tkz@dirOne,\tkz@dirTwo) % les marques, aucune si mktype = none -\def\tkz@mymark{\pgfsetplotmarksize{\tkz@mksize}\pgfuseplotmark{\tkz@markang}} +\def\tkz@mymark{\pgfuseplotmark{\tkz@markang}} % draw the arcs \begin{scope}[decoration= {markings, mark=at position \tkz@mkpos with {\tkz@mymark}}] @@ -91,8 +100,7 @@ \tkzDrawArcRAN[#1,fill=none,postaction={decorate}]% (#3,\tkz@size)(\tkz@FirstAngle,\tkz@SecondAngle) \else - \ifx\tkz@arc\tkz@arcdouble - + \ifx\tkz@arc\tkz@arcdouble \tkzDrawArcRAN[#1,fill=none](#3,\tkz@size-1.5\pgflinewidth)% (\tkz@FirstAngle,\tkz@SecondAngle) \tkzPathArcRAN[#1,fill=none,postaction={decorate}]% diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex index c8ef72c3e6f..e58b01e25ae 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex @@ -1,42 +1,53 @@ % tkz-obj-eu-arcs.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-arcs.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/23} +\typeout{2020/03/23 3.05c tkz-obj-eu-arcs.tex} \makeatletter %<------------------------------ Arcs -------------------------------------– % options : delta % \def\tkz@delta{0} % \tikzset{arc style/.style={#1}} % \pgfkeys{/tikz/.cd,delta/.code={\def\tkz@delta{#1}}} - +\tikzset{arc style/.style={gray,thin}} \gdef\tkz@numa{0} \pgfkeys{/tkzdrawarc/.cd, - type/.is choice, - type/towards/.code = \def\tkz@numa{0}, - type/rotate/.code = \def\tkz@numa{1}, - type/angles/.code = \def\tkz@numa{2}, - type/R/.code = \def\tkz@numa{3}, - type/R with nodes/.code = \def\tkz@numa{4}, - towards/.style = {type=towards}, - rotate/.style = {type=rotate}, - R/.style = {type=R}, - angles/.style = {type=angles}, - R with nodes/.style = {type=R with nodes}, - diameter/.code = {}, - arc/.code = {}, - size/.code = {}, - mark/.code = {}, - mkpos/.code = {}, - mksize/.code = {}, - mkcolor/.code = {}, - type/.default = towards, - delta/.store in = \tkz@delta, - delta = 0, - /tkzdrawarc/.search also = {/tikz} + type/.is choice, + type/towards/.code = \def\tkz@numa{0}, + type/rotate/.code = \def\tkz@numa{1}, + type/angles/.code = \def\tkz@numa{2}, + type/R/.code = \def\tkz@numa{3}, + type/R with nodes/.code = \def\tkz@numa{4}, + towards/.style = {type=towards}, + rotate/.style = {type=rotate}, + R/.style = {type=R}, + angles/.style = {type=angles}, + R with nodes/.style = {type=R with nodes}, + diameter/.code = {}, + arc/.code = {}, + size/.code = {}, + mark/.code = {}, + mkpos/.code = {}, + mksize/.code = {}, + mkcolor/.code = {}, + type/.default = towards, + delta/.store in = \tkz@delta, + delta = 0, + /tkzdrawarc/.search also = {/tikz} } \def\tkzDrawArc{\pgfutil@ifnextchar[{\tkz@DrawArc}{\tkz@DrawArc[]}} \def\tkz@DrawArc[#1](#2,#3)(#4){% @@ -66,7 +77,7 @@ \tkzCalcLength(#2,#3)\tkzGetLength{tkz@radius} \tkzFindSlopeAngle(#2,#3)\tkzGetAngle{tkz@FirstAngle} \tkzFindSlopeAngle(#2,#4)\tkzGetAngle{tkz@SecondAngle} - \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@FirstAngle,\tkz@SecondAngle) + \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@FirstAngle,\tkz@SecondAngle) \endgroup } %<--------------------------------------------------------------------------–> @@ -78,15 +89,15 @@ \tkz@DrawArcRotate[]}} \def\tkz@DrawArcRotate[#1](#2,#3)(#4){% \begingroup - \tkzCalcLength(#2,#3) \tkzGetLength{tkz@radius} - \tkzFindSlopeAngle(#2,#3) \tkzGetAngle{tkz@FirstA} + \tkzCalcLength(#2,#3) \tkzGetLength{tkz@radius} + \tkzFindSlopeAngle(#2,#3) \tkzGetAngle{tkz@FirstA} \pgfmathadd{\tkz@FirstA}{#4} \edef\tkz@SecondA{\pgfmathresult} \pgfmathgreaterthan{#4}{0} \ifdim\pgfmathresult pt=1 pt\relax% - \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@FirstA,\tkz@SecondA) + \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@FirstA,\tkz@SecondA) \else - \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@SecondA,\tkz@FirstA) + \tkz@DrawArcRAngles[#1](#2,\tkz@radius pt)(\tkz@SecondA,\tkz@FirstA) \fi \endgroup } @@ -103,6 +114,32 @@ \endgroup } %<--------------------------------------------------------------------------–> +% Degree #2 center #4 - #3 radius from #5 (degree) to #6(degree) +%<--------------------------------------------------------------------------–> +\def\tkzDrawArcRwithNodes{\pgfutil@ifnextchar[{\tkz@DrawArcRwithNodes}{% + \tkz@DrawArcRwithNodes[]}} +\def\tkz@DrawArcRwithNodes[#1](#2,#3,#4)(#5,#6){% +\begingroup + \tkzCalcLength(#3,#4) + \tkzFindSlopeAngle(#2,#5)\tkzGetAngle{tkz@FirstAngle} + \tkzFindSlopeAngle(#2,#6)\tkzGetAngle{tkz@SecondAngle} + \tkz@DrawArcRAngles[#1](#2,\tkzLengthResult)(\tkz@FirstAngle,\tkz@SecondAngle) +\endgroup +} +%<--------------------------------------------------------------------------–> +% Nodes R #2 center #3 radius en cm from #4(node) to #5(node) +% \tkzDrawArcR(O,2 cm)(A,B) +%<--------------------------------------------------------------------------–> +\def\tkzDrawArcR{\pgfutil@ifnextchar[{\tkz@DrawArcR}{\tkz@DrawArcR[]}} +\def\tkz@DrawArcR[#1](#2,#3)(#4,#5){% +\begingroup + \tkzFindSlopeAngle(#2,#4)\tkzGetAngle{tkz@FirstAngle} + \tkzFindSlopeAngle(#2,#5)\tkzGetAngle{tkz@SecondAngle} + \tkz@DrawArcRAngles[#1](#2,#3)(\tkz@FirstAngle,\tkz@SecondAngle) +\endgroup +} +%<--------------------------------------------------------------------------–> +%<--------------------------------------------------------------------------–> % #1 center #2 radius #4 first angle (degree) #5 second angle (degree) % angles 0 .. 180 or -180 .. 0 %<--------------------------------------------------------------------------–> @@ -117,51 +154,26 @@ \ifdim\pgfmathresult pt=1 pt\relax% \pgfmathgreaterthan{\tkz@FirstAngle}{\tkz@SecondAngle} \ifdim\pgfmathresult pt=1 pt\relax% - \pgfmathsubtract{\tkz@FirstAngle}{360} - \edef\tkz@FirstAngle{\pgfmathresult}% - \fi + \pgfmathsubtract{\tkz@FirstAngle}{360} + \edef\tkz@FirstAngle{\pgfmathresult}% + \fi \else \pgfmathgreaterthan{\tkz@FirstAngle}{\tkz@SecondAngle} \ifdim\pgfmathresult pt=1 pt\relax% - \pgfmathadd{\tkz@SecondAngle}{360} - \edef\tkz@SecondAngle{\pgfmathresult}% - \fi + \pgfmathadd{\tkz@SecondAngle}{360} + \edef\tkz@SecondAngle{\pgfmathresult}% + \fi \fi \pgfmathsubtract{\tkz@FirstAngle}{\tkz@delta} \edef\tkz@FirstAngle{\pgfmathresult}% \pgfmathadd{\tkz@SecondAngle}{\tkz@delta} \edef\tkz@SecondAngle{\pgfmathresult} - \draw[shift = {(#2)},compass style,/tkzdrawarc/.cd,#1]% + \draw[shift = {(#2)},arc style,/tkzdrawarc/.cd,#1]% (\tkz@FirstAngle:#3) arc (\tkz@FirstAngle:\tkz@SecondAngle:#3); \endgroup } %<--------------------------------------------------------------------------–> -% Degree #2 center #4 - #3 radius from #5 (degree) to #6(degree) -%<--------------------------------------------------------------------------–> -\def\tkzDrawArcRwithNodes{\pgfutil@ifnextchar[{\tkz@DrawArcRwithNodes}{% - \tkz@DrawArcRwithNodes[]}} -\def\tkz@DrawArcRwithNodes[#1](#2,#3,#4)(#5,#6){% -\begingroup - \tkzCalcLength(#3,#4) - \tkzFindSlopeAngle(#2,#5)\tkzGetAngle{tkz@FirstAngle} - \tkzFindSlopeAngle(#2,#6)\tkzGetAngle{tkz@SecondAngle} - \tkz@DrawArcRAngles[#1](#2,\tkzLengthResult)% - (\tkz@FirstAngle,\tkz@SecondAngle) -\endgroup -} -%<--------------------------------------------------------------------------–> -% Nodes R #2 center #3 radius en cm from #4(node) to #5(node) -% \tkzDrawArcR(O,2 cm)(A,B) -%<--------------------------------------------------------------------------–> -\def\tkzDrawArcR{\pgfutil@ifnextchar[{\tkz@DrawArcR}{\tkz@DrawArcR[]}} -\def\tkz@DrawArcR[#1](#2,#3)(#4,#5){% -\begingroup - \tkzFindSlopeAngle(#2,#4)\tkzGetAngle{tkz@FirstAngle} - \tkzFindSlopeAngle(#2,#5)\tkzGetAngle{tkz@SecondAngle} - \tkz@DrawArcRAngles[#1](#2,#3)(\tkz@FirstAngle,\tkz@SecondAngle) -\endgroup -} -%<--------------------------------------------------------------------------–> + \makeatother \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex index 9a3a726658b..901cb72348d 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex @@ -1,12 +1,21 @@ % tkz-obj-eu-circles.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. % -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-circles.tex} +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-circles.tex} \makeatletter %<--------------------------------------------------------------------------–> % tkzCircle center and one point diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex index dd1c46863a0..50cda7b15b5 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-compass.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-compass.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-compass.tex} \makeatletter %<--------------------------------------------------------------------------–> % Author Alain Matthes @@ -16,24 +26,22 @@ %<--------------------------------------------------------------------------–> % Setup Compass %<--------------------------------------------------------------------------–> -\pgfkeys{% - tkzsucompass/.cd, +\pgfkeys{tkzsucompass/.cd, line width/.code = {\global\edef\tkz@compass@lw{#1}}, color/.code = {\global\edef\tkz@compass@color{#1}}, style/.code = {\global\edef\tkz@compass@style{#1}}, } %<--------------------------------------------------------------------------–> -%<--------------------------------------------------------------------------–> -\def\tkzSetUpCompass{\pgfutil@ifnextchar[{\tkzActivOff\tkz@SetUpCompass}{% - \tkzActivOff\tkz@SetUpCompass[]}} +\def\tkzSetUpCompass{\pgfutil@ifnextchar[{\tkz@SetUpCompass}{% remove tkzActivOff 3.03 + \tkz@SetUpCompass[]}} %<--------------------------------------------------------------------------–> \def\tkz@SetUpCompass[#1]{% -\pgfkeys{% - tkzsucompass/.cd, +\pgfkeys{tkzsucompass/.cd, line width = \tkz@euc@compasswidth, color = \tkz@euc@compasscolor, - style = \tkz@euc@compassstyle - } + style = \tkz@euc@compassstyle, + /tkzsucompass/.search also = {/tikz} +} \pgfqkeys{/tkzsucompass}{#1} \tikzset{compass style/.style={color = \tkz@compass@color, line width = \tkz@compass@lw, @@ -56,7 +64,7 @@ /tkzcompass/length/.code = {\def\tkz@length{#1}}, /tkzcompass/ratio/.code = {\def\tkz@ratio{#1}}, /tkzcompass/.unknown/.code = {\let\searchname=\pgfkeyscurrentname - \pgfkeysalso{\searchname/.try=#1, + \pgfkeysalso{\searchname/.try=#1, /tikz/\searchname/.retry=#1}} } @@ -70,15 +78,14 @@ ratio = .5 } \pgfkeys{tkzcompass/.cd,#1} - \tkzCalcLength(#2,#3)\tkzGetLength{tkz@tempLen} +\tkzCalcLength(#2,#3)\tkzGetLength{tkz@tempLen} \ifnum\tkz@delta=0 % \pgfmathsetmacro{\tkz@delta}{min(deg(\tkz@length cm/ \tkz@tempLen pt),180)/2} \fi - \tkzFindSlopeAngle(#2,#3)\tkzGetAngle{tkz@angle}% - \draw[shift ={(#2)},/tkzcompass/.cd,compass style,#1]% - (\tkz@angle-\tkz@delta:\tkz@tempLen pt)% - arc (\tkz@angle-\tkz@delta:\tkz@angle+\tkz@delta:\tkz@tempLen pt); - %}; +\tkzFindSlopeAngle(#2,#3)\tkzGetAngle{tkz@angle}% +\draw[shift ={(#2)},/tkzcompass/.cd,compass style,#1]% + (\tkz@angle-\tkz@delta:\tkz@tempLen pt)% + arc (\tkz@angle-\tkz@delta:\tkz@angle+\tkz@delta:\tkz@tempLen pt); \endgroup} %<--------------------------------------------------------------------------–> \def\tkz@multiCompass#1 #2\@nil{% diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex index f8a0a055582..1b05f579afc 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex @@ -1,12 +1,21 @@ % tkz-obj-eu-draw-circles.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. % -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-draw-circles.tex} +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-draw-circles.tex} \makeatletter %for compatibility %<--------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex index d837c35a1d7..3df6a484c2f 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-draw-lines.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-draw-lines.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-draw-lines.tex} \makeatletter \def\tkz@numdl{0} \pgfkeys{/tkzdrawl/.cd, @@ -225,12 +235,12 @@ color/.code = {\xdef\tkz@line@color{#1}}, style/.code = {\xdef\tkz@line@style{#1}}, add/.code args = {#1 and #2} {\xdef\tkz@line@left{#1}% - \xdef\tkz@line@right{#2}% - } + \xdef\tkz@line@right{#2}}, + /tkzsuline/.search also={/tikz}% } %<--------------------------------------------------------------------------–> -\def\tkzSetUpLine{\pgfutil@ifnextchar[{\tkzActivOff\tkz@SetUpLine}{% - \tkzActivOff\tkz@SetUpLine[]}} +\def\tkzSetUpLine{\pgfutil@ifnextchar[{\tkz@SetUpLine}{% remove tkzActivOff 3.03 + \tkz@SetUpLine[]}} \def\tkz@SetUpLine[#1]{% \pgfkeys{% tkzsuline/.cd, @@ -291,10 +301,10 @@ color/.store in = \tkz@mkcolor, mark/.store in = \tkz@markseg, size/.store in = \tkz@mksize, - size = 4pt, - color = \tkz@mk@color, - pos = .5, - mark = |, + size = 4pt, + color = \tkz@mk@color, + pos = .5, + mark = |, /@tkzmarkoptions/.search also={/tikz}, } \def\tkzMarkSegment{\pgfutil@ifnextchar[{\tkz@MarkSegment}{\tkz@MarkSegment[]}} @@ -350,8 +360,7 @@ \next#2\@nil } %<--------------------------------------------------------------------------–> -\def\tkzLabelSegments{\pgfutil@ifnextchar[{\tkz@LabelSegments}{% - \tkz@LabelSegments[]}} +\def\tkzLabelSegments{\pgfutil@ifnextchar[{\tkz@LabelSegments}{\tkz@LabelSegments[]}} \def\tkz@LabelSegments[#1](#2)#3{% \def\tkz@optls{#1} \def\tkz@labelseg{#3} @@ -363,14 +372,15 @@ %<--------------------------------------------------------------------------–> % PolySeg %<--------------------------------------------------------------------------–> -\def\tkzDrawPolySeg{\pgfutil@ifnextchar[{\tkz@DrawPolySeg}{% - \tkz@DrawPolySeg[]}} +\def\tkzDrawPolySeg{\pgfutil@ifnextchar[{\tkz@DrawPolySeg}{\tkz@DrawPolySeg[]}} \def\tkz@DrawPolySeg[#1](#2,#3){% \begingroup \draw[line style,#1] (#2) - \foreach \po in {#3}{--(\po)};% + \foreach \pt in {#2,#3}{--(\pt)};% \endgroup } + + %<--------------------------------------------------------------------------–> % add dim % \draw[dim={5cm,7pt,}] (A) -- (B); diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex index 6b3764ccc35..a960baa49bb 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-polygons.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-polygons.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-polygons.tex} \makeatletter %<--------------------------------------------------------------------------–> % Polygon diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-triangles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-triangles.tex new file mode 100644 index 00000000000..bc0d6b10f25 --- /dev/null +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-triangles.tex @@ -0,0 +1,66 @@ +% tkz-obj-eu-draw-triangles.tex +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +%<--------------------------------------------------------------------------–> +% Draw Triangles +%<--------------------------------------------------------------------------–> + +\def\tkz@numdtr{0} +\pgfkeys{/drawtriangle/.cd, + equilateral/.code = {\def\tkz@numdtr{0}}, + half/.code = {\def\tkz@numdtr{1}}, + pythagore/.code = {\def\tkz@numdtr{2}}, + school/.code = {\def\tkz@numdtr{3}}, + golden/.code = {\def\tkz@numdtr{4}}, + sublime/.code = {\def\tkz@numdtr{4}}, + euclide/.code = {\def\tkz@numdtr{5}}, + gold/.code = {\def\tkz@numdtr{6}}, + cheops/.code = {\def\tkz@numdtr{7}}, + two angles/.code args = {#1 and #2}{\def\tkz@numdtr{8}% + \def\tkz@alpha{#1}% + \def\tkz@beta{#2}}, + equilateral, + /drawtriangle/.search also={/tikz} +} + +\def\tkzDrawTriangle{\pgfutil@ifnextchar[{\tkz@DrawTriangle}{% + \tkz@DrawTriangle[]}} +\def\tkz@DrawTriangle[#1](#2,#3){% +\begingroup +\pgfkeys{/drawtriangle/.cd,equilateral} +\pgfqkeys{/drawtriangle}{#1} +\ifcase\tkz@numdtr% + \tkzDefEquilateral(#2,#3) +\or% 1 + \tkzDefTwoOne(#2,#3) +\or% 2 + \tkzDefPythagore(#2,#3) +\or% 3 + \tkzDefSchoolTriangle(#2,#3) +\or% 4 + \tkzDefGoldenTriangle(#2,#3) +\or% 5 + \tkzDefEuclideTriangle(#2,#3) +\or% 6 + \tkzDefGoldTriangle(#2,#3) +\or% 7 + \tkzDefCheopsTriangle(#2,#3) +\or% 8 + \tkzDefTwoAnglesTriangle(#2,#3) +\fi + \draw[/drawtriangle/.cd,line style,#1] (#2)--(#3)--(tkzPointResult)--cycle; +\endgroup +} + diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex index 5246f68455a..de4323a8b0c 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-lines.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-lines.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-lines.tex} \makeatletter %<--------------------------------------------------------------------------–> % les lignes @@ -26,7 +36,8 @@ K = 1, normed/.is if = tkz@line@normed, normed/.default = true, - normed = false + normed = false, + mediator } \def\tkzDefLine{\pgfutil@ifnextchar[{\tkz@DefLine}{\tkz@DefLine[]}} @@ -53,70 +64,86 @@ %<--------------------------------------------------------------------------–> % tkzLineLL revoir out !! %<--------------------------------------------------------------------------–> -\def\tkzDefLineLL(#1,#2){% +\def\tkzDefLineLL{\pgfutil@ifnextchar[{\tkz@DefLineLL}{% + \tkz@DefLineLL[1]}} +\def\tkz@DefLineLL[#1](#2,#3){% \begingroup - \pgfpointdiff{\pgfpointanchor{#1}{center}}{\pgfpointanchor{#2}{center}}% + \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}% \pgf@xa=\pgf@x\relax%% \pgf@ya=\pgf@y\relax%% \pgfinterruptboundingbox - \path[coordinate](\tkz@through)--++(\pgf@xa,\pgf@ya)% + \path[coordinate](\tkz@through)--++(\tkz@koeff\pgf@xa,\tkz@koeff\pgf@ya)% coordinate (tkzPointResult); \endpgfinterruptboundingbox - \iftkz@line@normed - \tkzVecKNorm(\tkz@through,tkzPointResult) - \fi + \iftkz@line@normed + \tkzVecKNorm(\tkz@through,tkzPointResult) + \fi \endgroup}% %<--------------------------------------------------------------------------–> % tkzOrthLine %<--------------------------------------------------------------------------–> \def\tkzDefOrthLine{\pgfutil@ifnextchar[{\tkz@DefOrthLine}{% \tkz@DefOrthLine[1]}} -\def\tkz@DefOrthLine[#1](#2,#3)(#4){% +\def\tkz@DefOrthLine[#1](#2,#3){% \begingroup - \tkzVecKOrth(#2,#3) + \tkzDefPointWith(#2,#3) \pgfnodealias{tkz@OLtmp}{tkzPointResult} - \tkz@VecKCoLinear[#1](#2,tkz@OLtmp,#4) + \tkz@VecKCoLinear[\tkz@koeff](#2,tkz@OLtmp,\tkz@through) \iftkz@line@normed \pgfinterruptboundingbox \tkzVecKNorm(\tkz@through,tkzPointResult) \endpgfinterruptboundingbox \fi -\endgroup -} +\endgroup}% %<--------------------------------------------------------------------------–> % tkzMediatorLine %<--------------------------------------------------------------------------–> -\def\tkzDefMediatorLine(#1,#2){% new 2020 +\def\tkzDefMediatorLine{\pgfutil@ifnextchar[{\tkz@DefMediatorLine}{% + \tkz@DefMediatorLine[1]}} + +\def\tkz@DefMediatorLine[#1](#2,#3){% new 2020 \begingroup - \tkzDefEquilateral(#1,#2) + \tkzDefEquilateral(#2,#3) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} - \tkzDefEquilateral(#2,#1) - \pgfnodealias{tkzSecondPointResult}{tkzPointResult} - \iftkz@line@normed - \tkzDefMidPoint(#1,#2) - \pgfnodealias{tkz@mid}{tkzPointResult} - \pgfinterruptboundingbox - \tkzVecKNorm(tkz@mid,tkzFirstPointResult) - \pgfnodealias{tkzFirstPointResult}{tkzPointResult} - \tkzVecKNorm(tkz@mid,tkzSecondPointResult) - \pgfnodealias{tkzSecondPointResult}{tkzPointResult} - \endpgfinterruptboundingbox -\fi -\endgroup -} + \tkzDefEquilateral(#3,#2) + \pgfnodealias{tkzSecondPointResult}{tkzPointResult} + \ifx\tkz@koeff=1 % + \else + \tkzDefMidPoint(#2,#3) + \pgfnodealias{tkz@mid}{tkzPointResult} + \tkz@VecK[\tkz@koeff](tkz@mid,tkzFirstPointResult) + \pgfnodealias{tkzFirstPointResult}{tkzPointResult} + \tkz@VecK[\tkz@koeff](tkz@mid,tkzSecondPointResult) + \pgfnodealias{tkzSecondPointResult}{tkzPointResult} + \fi + \iftkz@line@normed + \tkzDefMidPoint(#2,#3) + \pgfnodealias{tkz@mid}{tkzPointResult} + \pgfinterruptboundingbox + \tkzVecKNorm[\tkz@koeff](tkz@mid,tkzFirstPointResult) + \pgfnodealias{tkzFirstPointResult}{tkzPointResult} + \tkzVecKNorm[\tkz@koeff](tkz@mid,tkzSecondPointResult) + \pgfnodealias{tkzSecondPointResult}{tkzPointResult} + \endpgfinterruptboundingbox + \fi +\endgroup} % autre possibilité %<--------------------------------------------------------------------------–> -% BisectorLine % pb avec un angle plat +% BisectorLine %<--------------------------------------------------------------------------–> \def\tkzDefBisectorLine(#1,#2,#3){% \begingroup \pgfinterruptboundingbox - \tkzDuplicateLength(#2,#1)(#2,#3) + \tkzDuplicateSegment(#2,#1)(#2,#3) \pgfnodealias{bi@tmp}{tkzPointResult} \tkzDefEquilateral(bi@tmp,#1) + \ifx\tkz@koeff=1 % + \else + \tkzVecK[\tkz@koeff](#2,tkzPointResult) + \fi \iftkz@line@normed - \tkzVecKNorm(#2,tkzPointResult) + \tkzVecKNorm[\tkz@koeff](#2,tkzPointResult) \fi \endpgfinterruptboundingbox \endgroup @@ -132,8 +159,12 @@ \tkzDefMidPoint(#1,out@tmp) \pgfnodealias{out@pt1}{tkzPointResult} \tkzURotateAngle(#2,90)(out@pt1) + \ifx\tkz@koeff=1 % + \else + \tkzVecK[\tkz@koeff](#2,tkzPointResult) + \fi \iftkz@line@normed - \tkzVecKNorm(#2,tkzPointResult) + \tkzVecKNorm[\tkz@koeff](#2,tkzPointResult) \fi \endpgfinterruptboundingbox \endgroup @@ -148,6 +179,13 @@ \tkzDefMidPoint(#1,#3) \pgfnodealias{sym@pt2}{tkzPointResult} \tkzUSymOrth(#2,sym@pt1)(sym@pt2) + \ifx\tkz@koeff=1 % + \else + \tkzVecK[\tkz@koeff](#2,tkzPointResult) + \fi + \iftkz@line@normed + \tkzVecKNorm[\tkz@koeff](#2,tkzPointResult) + \fi \endgroup } %<-------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex index 2ab31570ac9..6e63182107a 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex @@ -1,11 +1,20 @@ % tkz-tools-eu-points-by.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-tools-eu-points-by.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-tools-eu-points-by.tex} \makeatletter %<--------------------------------------------------------------------------–> % Transformations Géométriques @@ -148,7 +157,9 @@ inversion/.code args={center #1 through #2}{% {\pgfpointanchor{\PointCS}{center}}% \tkz@ax=\pgf@x% \tkz@ay=\pgf@y% + \pgfinterruptboundingbox \path(#1)--++(-\tkz@ax,-\tkz@ay)coordinate (\tkz@pointtsf); + \endpgfinterruptboundingbox } \endgroup } @@ -183,15 +194,16 @@ inversion/.code args={center #1 through #2}{% %<--------------------------------------------------------------------------–> \def\tkzUSymOrth(#1,#2)(#3){% \begingroup - \pgfpointdiff{\pgfpointanchor{#1}{center}}% - {\pgfpointanchor{#2}{center}}% - \tkz@ax =\pgf@y% - \tkz@ay =\pgf@x% - \path[coordinate]% - (#3)--++(-\tkz@ax,\tkz@ay) coordinate (tkz@point); - \tkzInterLL(#1,#2)(#3,tkz@point) - \pgfnodealias{tkzPointofSym}{tkzPointResult} - \tkz@VecK[2](#3,tkzPointofSym) + \pgfpointdiff{\pgfpointanchor{#1}{center}}% + {\pgfpointanchor{#2}{center}}% + \tkz@ax =\pgf@y% + \tkz@ay =\pgf@x% + \pgfinterruptboundingbox + \path[coordinate] (#3)--++(-\tkz@ax,\tkz@ay) coordinate (tkz@point); + \endpgfinterruptboundingbox + \tkzInterLL(#1,#2)(#3,tkz@point) + \pgfnodealias{tkzPointofSym}{tkzPointResult} + \tkz@VecK[2](#3,tkzPointofSym) \endgroup } @@ -257,8 +269,10 @@ inversion/.code args={center #1 through #2}{% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \pgfmathparse{#2}\edef\tkz@coeff{\pgfmathresult}% + \pgfinterruptboundingbox \path[coordinate](#1)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya)% coordinate(\tkz@pointtsf); + \endpgfinterruptboundingbox } \endgroup } @@ -270,8 +284,10 @@ inversion/.code args={center #1 through #2}{% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \pgfmathparse{#2}\edef\tkz@coeff{\pgfmathresult}% + \pgfinterruptboundingbox \path[coordinate](#1)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya)% coordinate(tkzPointResult); + \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> @@ -298,7 +314,9 @@ inversion/.code args={center #1 through #2}{% {#2} \tkz@bx\pgf@x% \tkz@by\pgf@y% + \pgfinterruptboundingbox \path[coordinate](\tkz@bx,\tkz@by)coordinate(\tkz@pointtsf);% + \endpgfinterruptboundingbox } \endgroup } @@ -316,7 +334,9 @@ inversion/.code args={center #1 through #2}{% {#2} \tkz@bx\pgf@x% \tkz@by\pgf@y% - \path (\tkz@bx,\tkz@by) coordinate (tkzPointResult);% + \pgfinterruptboundingbox + \path (\tkz@bx,\tkz@by) coordinate (tkzPointResult);% + \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> @@ -345,7 +365,9 @@ inversion/.code args={center #1 through #2}{% {\tkz@Angle} \tkz@bx\pgf@x% \tkz@by\pgf@y% - \path[coordinate](\tkz@bx,\tkz@by)coordinate(\tkz@pointtsf); + \pgfinterruptboundingbox + \path[coordinate](\tkz@bx,\tkz@by)coordinate(\tkz@pointtsf); + \endpgfinterruptboundingbox } \endgroup } @@ -365,7 +387,9 @@ inversion/.code args={center #1 through #2}{% {\tkz@Angle} \tkz@bx\pgf@x% \tkz@by\pgf@y% - \path[coordinate](\tkz@bx,\tkz@by)coordinate(tkzPointResult); + \pgfinterruptboundingbox + \path[coordinate](\tkz@bx,\tkz@by)coordinate(tkzPointResult); + \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> @@ -381,16 +405,18 @@ inversion/.code args={center #1 through #2}{% \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi - \tkzCalcLength[cm](#1,\PointIP)\tkzGetLength{tkz@lnb}% - \edef\tkz@lnc{\fpeval{1/\tkz@lnb}} + \tkzCalcLength[cm](#1,#2)\tkzGetLength{tkz@lna} + \tkzCalcLength[cm](#1,\PointIP)\tkzGetLength{tkz@lnb} + \edef\tkz@lnc{\tkz@lna/\tkz@lnb*\tkz@lna} \tkzVecKNorm[\tkz@lnb](#1,\PointIP) } \endgroup } \def\tkzUInversePoint(#1,#2)(#3){% \begingroup + \tkzCalcLength[cm](#1,#2)\tkzGetLength{tkz@lna}% \tkzCalcLength[cm](#1,#3)\tkzGetLength{tkz@lnb}% - \edef\tkz@lnc{\fpeval{1/\tkz@lnb}} + \edef\tkz@lnc{\fpeval{\tkz@lna/\tkz@lnb*\tkz@lna}} \tkzVecKNorm[\tkz@lnc](#1,#3) \endgroup } diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex index d11902126dd..30f20fc8b84 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex @@ -1,13 +1,20 @@ % tkz-obj-eu-points-rnd.tex -% Copyright 2020 by Alain Matthes +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. % -% This file may be distributed and/or modified -% -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-points-rnd.tex} +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-points-rnd.tex} %<--------------------------------------------------------------------------–> \makeatletter %<-------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex index 6e235de7b3d..8d239713c7f 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex @@ -1,11 +1,20 @@ % tkz-obj-eu-points-with.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-points-with.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-points-with.tex} \makeatletter %<--------------------------------------------------------------------------–> % Vectors @@ -72,28 +81,33 @@ linear/.code = {\def\tkz@numv{2}}, orthogonal normed/.code = {\def\tkz@numv{3}}, linear normed/.code = {\def\tkz@numv{4}}, - colinear normed/.code args = {at#1}{\def\tkz@numv{5}\def\tkz@frompoint{#1}}, - K/.code = {\pgfmathparse{#1}\def\tkz@ratio{\pgfmathresult}}, + colinear normed/.code args = {at #1}{\def\tkz@numv{5}\def\tkz@frompoint{#1}}, + K/.code = {\edef\tkz@coeff{\fpeval{#1}}}, K = 1, + normed/.is if = tkz@line@normed, + normed/.default = true, + normed = false, orthogonal } -\def\tkzDefPointWith[#1](#2,#3){% +\def\tkzDefPointWith{\pgfutil@ifnextchar[{\tkz@DefPointWith}{\tkz@DefPointWith[]}} + +\def\tkz@DefPointWith[#1](#2,#3){% \begingroup \pgfkeys{/@pointwith/.cd,K=1} \pgfqkeys{/@pointwith}{#1} \ifcase\tkz@numv% % first case 0 - \tkz@DefVectorColinearat[\tkz@ratio](#2,#3) + \tkz@DefVectorColinearat[\tkz@coeff](#2,#3) \or% 1 - \tkz@VecKOrth[\tkz@ratio](#2,#3) + \tkz@VecKOrth[\tkz@coeff](#2,#3) \or% 2 - \tkz@VecK[\tkz@ratio](#2,#3) + \tkz@VecK[\tkz@coeff](#2,#3) \or% 3 - \tkz@VecKOrthNorm[\tkz@ratio](#2,#3) + \tkz@VecKOrthNorm[\tkz@coeff](#2,#3) \or% 4 - \tkz@VecKNorm[\tkz@ratio](#2,#3) + \tkz@VecKNorm[\tkz@coeff](#2,#3) \or% 5 - \tkz@VecKColinearNorm[\tkz@ratio](#2,#3) + \tkz@VecKColinearNorm[\tkz@coeff](#2,#3) \fi \endgroup } @@ -102,33 +116,39 @@ %<--------------------------------------------------------------------------–> % tkz@numv 0 \def\tkz@DefVectorColinearat[#1](#2,#3){% +\iftkz@line@normed + \tkz@VecKColinearNorm[#1](#2,#3) +\else \begingroup \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}% \pgf@xa=\pgf@x\relax% \pgf@ya=\pgf@y\relax% \pgfinterruptboundingbox - \path (\tkz@frompoint)--++(\tkz@ratio\pgf@xa,\tkz@ratio\pgf@ya) coordinate (tkzPointResult); + \path (\tkz@frompoint)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult); \endpgfinterruptboundingbox \endgroup +\fi } %<--------------------------------------------------------------------------–> -% tkzVector K Orth coeff dans #1 -% v(AN) perp v(AB) v(AB) v(AN) sens direct cercle trigo -% ||v(AN)||=||v(AB)|| +% tkzVector K Orth coeff dans #1 +% v(AN) perp v(AB) (v(AB) , v(AN) ) sens direct cercle trigo +% ||v(AN)||=||v(AB)|| %<--------------------------------------------------------------------------–> % tkz@numv 1 \def\tkzVecKOrth{\pgfutil@ifnextchar[{\tkz@VecKOrth}{\tkz@VecKOrth[1]}} \def\tkz@VecKOrth[#1](#2,#3){% +\iftkz@line@normed + \tkz@VecKOrthNorm[#1](#2,#3) +\else \begingroup \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}% \pgf@xa=-\pgf@y% \pgf@ya=\pgf@x% - \pgfmathparse{#1} - \let\tkz@coeff\pgfmathresult \pgfinterruptboundingbox \path (#2)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult); \endpgfinterruptboundingbox \endgroup +\fi }% %<--------------------------------------------------------------------------–> @@ -138,6 +158,9 @@ % tkz@numv 2 \def\tkzVecK{\pgfutil@ifnextchar[{\tkz@VecK}{\tkz@VecK[1]}} \def\tkz@VecK[#1](#2,#3){% +\iftkz@line@normed + \tkz@VecKNorm[#1](#2,#3) +\else \begingroup \pgfpointdiff{\pgfpointanchor{#2}{center}}% {\pgfpointanchor{#3}{center}}% @@ -147,8 +170,9 @@ \let\tkz@coeff\pgfmathresult \pgfinterruptboundingbox \path (#2)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya) coordinate (tkzPointResult); - \endpgfinterruptboundingbox + \endpgfinterruptboundingbox \endgroup +\fi }% %<--------------------------------------------------------------------------–> % tkzVecKOrthNorm coeff dans #1 @@ -171,7 +195,6 @@ \endpgfinterruptboundingbox \endgroup }% - %<--------------------------------------------------------------------------–> % VectorNormalised ou K*VectorNormalised % A-->#2 B-->#3 N-->#4 v(AB) devient v(AN) tq ||v(AN)||=1 si #1=1 @@ -211,14 +234,12 @@ \endpgfinterruptboundingbox \endgroup }% - %<--------------------------------------------------------------------------–> -% VecKCoLinear CN = K x AB #1 pt #2 pt #3 pt #4 nb #5 pt result +% VecKCoLinear CN = K x AB #1 pt #2 pt #3 pt #4 nb #5 pt result % il faut modifier cette macro : on supprime #3 pour la colinéarité % Il suffit d'utiliser Replicate ou Duplicate coeff dans #1 % v(CD)=#1 x v(AB) #1 le coeff; #2-->A #3-->B #4-->C %<--------------------------------------------------------------------------–> - \def\tkz@VecKCoLinear[#1](#2,#3,#4){% \begingroup \pgfpointdiff{\pgfpointanchor{#2}{center}}% @@ -242,7 +263,6 @@ \endpgfinterruptboundingbox \endgroup }% - %<-------------------------------------------------------------------------–> \makeatother \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex index 774faae9219..b6d8d45318a 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex @@ -1,11 +1,20 @@ % tkz-obj-eu-points.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-points.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-points.tex} \makeatletter %add ExCenter %<--------------------------------------------------------------------------–> @@ -151,22 +160,19 @@ %<--------------------------------------------------------------------------–> \def\tkzOrthoCenter(#1,#2,#3){% H orthocentre \begingroup + \pgfinterruptboundingbox \tkzUProjection(#1,#2)(#3) \pgfnodealias{ort@pta}{tkzPointResult} \tkzUProjection(#1,#3)(#2) \pgfnodealias{ort@ptb}{tkzPointResult} \tkzInterLL(#2,ort@ptb)(#3,ort@pta) + \endpgfinterruptboundingbox \endgroup } \let\tkzDefOrthoCenter\tkzOrthoCenter %<--------------------------------------------------------------------------–> -% GravityCenter +% GravityCenter modif 3.03 %<--------------------------------------------------------------------------–> -% \def\tkzCentroid(#1,#2,#3){% -% \begingroup -% \path[coordinate](barycentric cs:#1=1,#2=1,#3=1)coordinate (tkzPointResult); -% \endgroup -% } \def\tkzCentroid(#1,#2,#3){% \begingroup \pgf@process{\pgfpointanchor{#1}{center}}% @@ -184,8 +190,9 @@ \advance\tkz@cy by\tkz@by\relax% \divide\tkz@cx by3\relax% \divide\tkz@cy by3\relax - \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkz@cx}{\tkz@cy}} - %\path[coordinate](barycentric cs:#1=1,#2=1,#3=1)coordinate (tkzPointResult); + \pgfinterruptboundingbox + \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkz@cx}{\tkz@cy}} + \endpgfinterruptboundingbox \endgroup } \let\tkzBaryCenter\tkzCentroid diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex index b9b29a666e3..d92acc32498 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-polygons.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-polygons.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-polygons.tex} +% bug in regular polygon side 2020/03/03 \makeatletter %<--------------------------------------------------------------------------–> % Polygon @@ -36,10 +46,10 @@ \def\tkzDefGoldRectangle(#1,#2){ \begingroup - \tkzVecKOrth[-\tkzInvPhi](#2,#1) - \pgfnodealias{tkzFirstPointResult}{tkzPointResult} - \tkzVecKOrth[\tkzInvPhi](#1,#2) - \pgfnodealias{tkzSecondPointResult}{tkzPointResult} + \tkzDefPointWith[K=-\tkzInvPhi](#2,#1) + \pgfnodealias{tkzFirstPointResult}{tkzPointResult} + \tkzDefPointWith[K=\tkzInvPhi](#1,#2) + \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } \def\tkzDrawGoldRectangle{\pgfutil@ifnextchar[{\tkz@DrawGoldRectangle}{% @@ -50,14 +60,13 @@ \pgfkeys{/defregpoly/.cd, name/.store in = \tkz@regpolname, sides/.store in = \tkz@regpolsides, - center/.code = \def\tkz@numregpol{0}, - side/.code = \def\tkz@numregpol{1}, - center, - name = P, - sides = 5 + center/.code = \def\tkz@numregpol{0}, + side/.code = \def\tkz@numregpol{1}, + name/.default = P, + sides/.default = 5, + center } -\def\tkzDefRegPolygon{\pgfutil@ifnextchar[{\tkz@DefRegPolygon}{% - \tkz@DefRegPolygon[]}} +\def\tkzDefRegPolygon{\pgfutil@ifnextchar[{\tkz@DefRegPolygon}{\tkz@DefRegPolygon[]}} \def\tkz@DefRegPolygon[#1](#2,#3){% \begingroup \pgfqkeys{/defregpoly}{#1} @@ -85,7 +94,7 @@ \pgfmathsetmacro{\tkz@regangleside}{(180-\tkz@regangle)/2} \tkzDefMidPoint(#1,#2) \pgfnodealias{tkz@tempPt}{tkzPointResult} -\tkzCalcLength[cm](tkz@tempPt,B) \tkzGetLength{tkz@len} +\tkzCalcLength[cm](tkz@tempPt,#1) \tkzGetLength{tkz@len} \pgfmathsetmacro{\tkz@inscriberadius}{% \tkz@len*tan(90*(\tkz@regpolsides-2)/\tkz@regpolsides)} \tkzDefPointWith[orthogonal normed,K=\tkz@inscriberadius](tkz@tempPt,#2) diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex index b1426b206c3..bfd37bc1ef0 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex @@ -1,11 +1,20 @@ % tkz-obj-eu-protractor.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} - \typeout{2020/01/24 3.02c tkz-obj-eu-protractor.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} + \typeout{2020/03/03 3.05c tkz-obj-eu-protractor.tex} \makeatletter %<--------------------------------------------------------------------------–> % !!! idea from Y. Combe !!! @@ -45,7 +54,6 @@ \draw [>=stealth',->, thick,black] (0:2.5) arc(0:32:2.5); \draw [>=stealth',->, thick,black] (0:2) arc(0:32:2); \draw [>=stealth',->, thick,black] (0:1.5) arc(0:32:1.5); -\tkzActivOn } \def\FullProtractorReturn{% @@ -94,8 +102,9 @@ \tkz@@extractxy{#2} \global\tkz@ax\pgf@x \global\tkz@ay\pgf@y - \tkzFindSlopeAngle(#2,#3)\tkzGetAngle{cmdMO@Rap@rotate}% -\iftkz@RappReturn + \tkzFindSlopeAngle(#2,#3) + \tkzGetAngle{cmdMO@Rap@rotate}% + \iftkz@RappReturn \global\let\tkz@@Protractor\FullProtractorReturn \fi \pgfmathsetlengthmacro{\MO@lw}{\cmdMO@Rap@lw * \cmdMO@Rap@scale} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex index 24fc8456736..fad5b8e70b2 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex @@ -1,11 +1,20 @@ % tkz-obj-eu-sectors.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-sectors.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-sectors.tex} \makeatletter %<----------------------- Sectors ------------------------------–> \tikzset{sstyle/.style={#1}} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex index d1eb78b30e5..40a39c87e30 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex @@ -1,11 +1,20 @@ %tkz-obj-eu-show.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-show.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-show.tex} \makeatletter %<--------------------------------------------------------------------------–> % finding specific points in a triangle @@ -140,7 +149,7 @@ gap = -1, size = 1} \pgfkeys{show/.cd,#1} - \tkzVecKOrth(#2,#3) + \tkzDefPointWith(#2,#3) \pgfnodealias{tkz@OLtmp}{tkzPointResult} \tkz@VecKCoLinear[1](#2,tkz@OLtmp,#4) \pgfnodealias{tkzPointCo}{tkzPointResult} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex index 5fe6b5d069f..48fa5b973f1 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex @@ -1,11 +1,21 @@ % tkz-obj-eu-triangles.tex -% Copyright 2019 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-obj-eu-triangles.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. + +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-obj-eu-triangles.tex} \makeatletter %<--------------------------------------------------------------------------–> % Triangle Equilateral @@ -36,17 +46,17 @@ \def\tkzDefTwoOne(#1,#2){ \begingroup - \tkzVecKOrth[-.5](#2,#1) + \tkzDefPointWith[K=-.5](#2,#1) \endgroup } \def\tkzDefPythagore(#1,#2){ \begingroup - \tkzVecKOrth[-0.75](#2,#1) + \tkzDefPointWith[K=-.75](#2,#1) \endgroup } \def\tkzDefSchoolTriangle(#1,#2){ \begingroup - \tkzVecKOrth[-1](#2,#1) + \tkzDefPointWith[K=-1](#2,#1) \pgfnodealias{tkz@a}{tkzPointResult} \tkzURotateAngle(#1,30)(#2) \tkzInterLL(#1,tkzPointResult)(#2,tkz@a) @@ -65,13 +75,13 @@ } \def\tkzDefGoldenTriangle(#1,#2){ \begingroup - \tkzVecKOrth[-\tkzInvPhi](#2,#1) + \tkzDefPointWith[K=-\tkzInvPhi](#2,#1) \endgroup } \def\tkzDefCheopsTriangle(#1,#2){ \begingroup -\tkzDefMidPoint(#1,#2) - \tkzVecKOrth[-\tkzSqrtPhi](tkzPointResult,#1) + \tkzDefMidPoint(#1,#2) + \tkzDefPointWith[K=-\tkzSqrtPhi](tkzPointResult,#1) \endgroup } \def\tkzDefTwoAnglesTriangle(#1,#2){ @@ -127,61 +137,11 @@ \or% 7 \tkzDefCheopsTriangle(#2,#3) \or% 8 - \tkzDefTwoAnglesTriangle(#2,#3) \fi + \tkzDefTwoAnglesTriangle(#2,#3) + \fi \endgroup } %<--------------------------------------------------------------------------–> -% Draw Triangles -%<--------------------------------------------------------------------------–> - -\def\tkz@numdtr{0} -\pgfkeys{/drawtriangle/.cd, - equilateral/.code = {\def\tkz@numdtr{0}}, - half/.code = {\def\tkz@numdtr{1}}, - pythagore/.code = {\def\tkz@numdtr{2}}, - school/.code = {\def\tkz@numdtr{3}}, - golden/.code = {\def\tkz@numdtr{4}}, - sublime/.code = {\def\tkz@numdtr{4}}, - euclide/.code = {\def\tkz@numdtr{5}}, - gold/.code = {\def\tkz@numdtr{6}}, - cheops/.code = {\def\tkz@numdtr{7}}, - two angles/.code args = {#1 and #2}{\def\tkz@numdtr{8}% - \def\tkz@alpha{#1}% - \def\tkz@beta{#2}}, - equilateral, - /drawtriangle/.search also={/tikz} -} - -\def\tkzDrawTriangle{\pgfutil@ifnextchar[{\tkz@DrawTriangle}{% - \tkz@DrawTriangle[]}} -\def\tkz@DrawTriangle[#1](#2,#3){% -\begingroup -\pgfkeys{/drawtriangle/.cd,equilateral} -\pgfqkeys{/drawtriangle}{#1} -\ifcase\tkz@numdtr% - \tkzDefEquilateral(#2,#3) -\or% 1 - \tkzDefTwoOne(#2,#3) -\or% 2 - \tkzDefPythagore(#2,#3) -\or% 3 - \tkzDefSchoolTriangle(#2,#3) -\or% 4 - \tkzDefGoldenTriangle(#2,#3) -\or% 5 - \tkzDefEuclideTriangle(#2,#3) -\or% 6 - \tkzDefGoldTriangle(#2,#3) -\or% 7 - \tkzDefCheopsTriangle(#2,#3) -\or% 8 - \tkzDefTwoAnglesTriangle(#2,#3) -\fi - \draw[/drawtriangle/.cd,line style,#1] (#2)--(#3)--(tkzPointResult)--cycle; -\endgroup -} - -%<--------------------------------------------------------------------------–> % les triangles sspécifiques %<--------------------------------------------------------------------------–> @@ -250,16 +210,15 @@ %<--------------------------------------------------------------------------– %<--------------------------------------------------------------------------–> \def\@DefIncentralTriangle(#1,#2,#3)(#4,#5){% - \def\tkz@tmp{#5}% +\def\tkz@tmp{#5}% \tkz@recuplast(#3) \tkzDefBisectorLine(#2,#1,\tkz@last) - \tkzInterLL(#2,\tkz@last)(#1,tkzPointResult) - \pgfnodealias{#4}{tkzPointResult} + \tkzInterLL(#2,\tkz@last)(#1,tkzPointResult) + \pgfnodealias{#4}{tkzPointResult} \ifx\tkz@tmp\tkz@stop\else\@DefIncentralTriangle(#2,#3)(#5)\fi \pgfnodealias{\tkz@pttr@name#4}{#4} } - \def\tkzDefIncentralTriangle{\pgfutil@ifnextchar[{% \tkz@DefIncentralTriangle}{% \tkz@DefIncentralTriangle[]}} @@ -397,12 +356,14 @@ \let\tkzDefMedialTriangle\tkzDefCentroidTriangle \let\tkzDefMidpointTriangle\tkzDefCentroidTriangle %<--------------------------------------------------------------------------–> -% Orthic Triangle H Ha Hb Hc +% Orthic Triangle H Ha Hb Hc modif 3.03 %<--------------------------------------------------------------------------–> \def\@DefOrthicTriangle(#1,#2,#3)(#4,#5){% \def\tkz@tmp{#5}% \tkz@recuplast(#3) - \tkzUProjection(#2,\tkz@last)(#1) + \pgfinterruptboundingbox + \tkzUProjection(#2,\tkz@last)(#1) + \endpgfinterruptboundingbox \pgfnodealias{#4}{tkzPointResult} \ifx\tkz@tmp\tkz@stop\else\@DefOrthicTriangle(#2,#3)(#5)\fi \pgfnodealias{\tkz@pttr@name#4}{#4} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex index 85595fe4ca8..9a88ffeaaca 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex @@ -1,11 +1,20 @@ % tkz-tools-angles.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-tools-angles.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-tools-angles.tex} \makeatletter %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex index 7bb8810796e..58a8e6e6c0e 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex @@ -1,11 +1,20 @@ % tkz-tools-intersections.tex -% Copyright 2020 by Alain Matthes -% This file may be distributed and/or modified -% 1. under the LaTeX Project Public License and/or -% 2. under the GNU Public License. -\def\fileversion{3.02c} -\def\filedate{2020/01/24} -\typeout{2020/01/24 3.02c tkz-tools-intersections.tex} +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-tools-intersections.tex} \makeatletter %<--------------------------------------------------------------------------–> % intersection de deux lignes diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-math.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-math.tex new file mode 100644 index 00000000000..97bc6c698a4 --- /dev/null +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-math.tex @@ -0,0 +1,126 @@ +% tkz-tools-math.tex +% Copyright 2020 Alain Matthes +% This work may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.3 +% of this license or (at your option) any later version. +% The latest version of this license is in +% http://www.latex-project.org/lppl.txt +% and version 1.3 or later is part of all distributions of LaTeX +% version 2005/12/01 or later. +% +% This work has the LPPL maintenance status “maintained”. +% +% The Current Maintainer of this work is Alain Matthes. +% utf8 encoding +\def\fileversion{3.05c} +\def\filedate{2020/03/03} +\typeout{2020/03/03 3.05c tkz-tools-math.tex} +\makeatletter +%<--------------------------------------------------------------------------> +% \tkzpointnormalised normalise un point A-->A' tq ||v(OA')=1|| +% équivalent de \pgfpointnormalised avec fp +% example +% \tkzpointnormalised{% +% \pgfpointdiff{\pgfpointanchor{A}{center}} +% {\pgfpointanchor{B}{center}}} + +% or +% \pgf@x=1 cm +% \pgf@y=12 cm +% \tkzpointnormalised{} +%<-------------------------------------------------------------------------- +\def\tkzpointnormalised#1{% +\pgf@process{#1}% +\edef\tkz@den{\fpeval{sqrt((\pgf@x)^2+(\pgf@y)^2)}} +\edef\tkz@coordx{\fpeval{\pgf@x/\tkz@den}} +\edef\tkz@coordx{\fpeval{round(\tkz@coordx,5)}} +\edef\tkz@coordy{\fpeval{\pgf@y/\tkz@den}} +\edef\tkz@coordy{\fpeval{round(\tkz@coordy,5)}} +\pgf@x = \tkz@coordx pt +\pgf@y = \tkz@coordy pt +} +%<--------------------------------------------------------------------------> +% restaure and save length +\def\tkz@save@length{% +\global\let\tkz@temp@length\tkzLengthResult}% +\def\tkz@restore@length{% + \global\let\tkzLengthResult\tkz@temp@length }% +%<--------------------------------------------------------------------------> +% \tkzCalcLength Distance entre deux points en pt ou en cm avec xfp +% \veclen mais avec fp +% option cm le résultat est en cm sinon en pt +%<--------------------------------------------------------------------------> +\pgfkeys{tkzcalclen/.cd, + cm/.is if = tkzLengthIncm, + cm/.default = true} + +\def\tkzCalcLength{\pgfutil@ifnextchar[{\tkz@CalcLength}{\tkz@CalcLength[]}} +\def\tkz@CalcLength[#1](#2,#3){% +\pgfkeys{tkzcalclen/.cd, cm = false} +\pgfqkeys{/tkzcalclen}{#1}% +\begingroup +\tkz@@CalcLength(#2,#3){tkzLengthResult} +\iftkzLengthIncm + \pgfmathparse{\tkz@xfpMathLen pt/1cm} + \edef\tkz@xfpMathLen{\fpeval{round(\pgfmathresult,5)}} + \global\let\tkzLengthResult\tkz@xfpMathLen +\fi +\endgroup +}% +\def\tkz@@CalcLength(#1,#2)#3{% +\pgfpointdiff{\pgfpointanchor{#1}{center}}% + {\pgfpointanchor{#2}{center}}% +\edef\tkz@xfpMathLen{\fpeval{sqrt((\pgf@x)^2+(\pgf@y)^2)}} +\edef\tkz@xfpMathLen{\fpeval{round(\tkz@xfpMathLen,5)}} +\global\expandafter\edef\csname #3\endcsname{\tkz@xfpMathLen} +} +%<--------------------------------------------------------------------------> +\def\tkzGetLength#1{% +\global\expandafter\edef\csname #1\endcsname{\tkzLengthResult}} +%<--------------------------------------------------------------------------> +% \tkzpttocm passage de pt cm div par 28.45274 +%<--------------------------------------------------------------------------> +\def\tkzpttocm(#1)#2{% +\begingroup + \pgfmathparse{#1/1cm} + \edef\tkz@mathresult{\fpeval{round(\pgfmathresult,5)}} + \global\let\tkz@mathresult\tkz@mathresult + \global\expandafter\edef\csname #2\endcsname{\tkz@mathresult}% +\endgroup +}% +%<--------------------------------------------------------------------------> +% \tkzcmtopt passage de cm pt mul par 28.45274 +%<-------------------------------------------------------------------------- +\def\tkzcmtopt(#1)#2{% +\begingroup + \pgfmathparse{#1/1pt} + \edef\tkz@mathresult{\fpeval{round(\pgfmathresult,5)}} + \global\let\tkz@mathresult\tkz@mathresult + \global\expandafter\edef\csname #2\endcsname{\tkz@mathresult}% +\endgroup +}% +%<--------------------------------------------------------------------------> +% Slope +%<--------------------------------------------------------------------------> +\def\tkzFindSlope{\tkz@FindSlope} +\def\tkz@FindSlope(#1,#2)#3{% +\begingroup + \tkzpointnormalised{\pgfpointdiff{\pgfpointanchor{#1}{center}}% + {\pgfpointanchor{#2}{center}}} + \edef\tkz@Slope{\fpeval{\pgfmath@tonumber{\pgf@y}/\pgfmath@tonumber{\pgf@x}}} + \edef\tkz@Slope{\fpeval{round(\tkz@Slope,5)}} + \global\expandafter\edef\csname #3\endcsname{\tkz@Slope}% +\endgroup +} +% Schrodinger's cat idea 03/01/20 +\tikzset{xfp/.code={% +\pgfmathdeclarefunction*{veclen}{2}{% +\begingroup% + \pgfmath@x##1pt\relax% + \pgfmath@y##2pt\relax% + \edef\tkz@xfpMathLen{\fpeval{sqrt((\pgf@x)^2+(\pgf@y)^2)}} + \pgfmath@returnone\tkz@xfpMathLen pt% +\endgroup% +}}} + \makeatother +\endinput
\ No newline at end of file |