summaryrefslogtreecommitdiff
path: root/Master/tlpkg/tlperl/lib/Math
diff options
context:
space:
mode:
authorSiep Kroonenberg <siepo@cybercomm.nl>2011-02-17 17:57:31 +0000
committerSiep Kroonenberg <siepo@cybercomm.nl>2011-02-17 17:57:31 +0000
commit320d8694fec25ed148613684543b5a0504a046ae (patch)
tree0ddcf933d3acd3c98a387fa2bf73d0554ca6e50d /Master/tlpkg/tlperl/lib/Math
parent779e71f16ca01a6244b632b95bdb461fec163b34 (diff)
New tlperl part XIV
git-svn-id: svn://tug.org/texlive/trunk@21436 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/tlpkg/tlperl/lib/Math')
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigFloat.pm4402
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigFloat/Trace.pm58
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigInt.pm5115
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigInt/Calc.pm2612
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigInt/CalcEmu.pm329
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigInt/FastCalc.pm125
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigInt/Trace.pm47
-rw-r--r--Master/tlpkg/tlperl/lib/Math/BigRat.pm2020
-rw-r--r--Master/tlpkg/tlperl/lib/Math/Complex.pm2093
-rw-r--r--Master/tlpkg/tlperl/lib/Math/Trig.pm768
10 files changed, 17569 insertions, 0 deletions
diff --git a/Master/tlpkg/tlperl/lib/Math/BigFloat.pm b/Master/tlpkg/tlperl/lib/Math/BigFloat.pm
new file mode 100644
index 00000000000..27d60b3143c
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigFloat.pm
@@ -0,0 +1,4402 @@
+package Math::BigFloat;
+
+#
+# Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
+#
+
+# The following hash values are internally used:
+# _e : exponent (ref to $CALC object)
+# _m : mantissa (ref to $CALC object)
+# _es : sign of _e
+# sign : +,-,+inf,-inf, or "NaN" if not a number
+# _a : accuracy
+# _p : precision
+
+$VERSION = '1.60';
+require 5.006;
+
+require Exporter;
+@ISA = qw/Math::BigInt/;
+@EXPORT_OK = qw/bpi/;
+
+use strict;
+# $_trap_inf/$_trap_nan are internal and should never be accessed from outside
+use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode
+ $upgrade $downgrade $_trap_nan $_trap_inf/;
+my $class = "Math::BigFloat";
+
+use overload
+'<=>' => sub { my $rc = $_[2] ?
+ ref($_[0])->bcmp($_[1],$_[0]) :
+ ref($_[0])->bcmp($_[0],$_[1]);
+ $rc = 1 unless defined $rc;
+ $rc <=> 0;
+ },
+# we need '>=' to get things like "1 >= NaN" right:
+'>=' => sub { my $rc = $_[2] ?
+ ref($_[0])->bcmp($_[1],$_[0]) :
+ ref($_[0])->bcmp($_[0],$_[1]);
+ # if there was a NaN involved, return false
+ return '' unless defined $rc;
+ $rc >= 0;
+ },
+'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint
+;
+
+##############################################################################
+# global constants, flags and assorted stuff
+
+# the following are public, but their usage is not recommended. Use the
+# accessor methods instead.
+
+# class constants, use Class->constant_name() to access
+# one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
+$round_mode = 'even';
+$accuracy = undef;
+$precision = undef;
+$div_scale = 40;
+
+$upgrade = undef;
+$downgrade = undef;
+# the package we are using for our private parts, defaults to:
+# Math::BigInt->config()->{lib}
+my $MBI = 'Math::BigInt::FastCalc';
+
+# are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
+$_trap_nan = 0;
+# the same for infinity
+$_trap_inf = 0;
+
+# constant for easier life
+my $nan = 'NaN';
+
+my $IMPORT = 0; # was import() called yet? used to make require work
+
+# some digits of accuracy for blog(undef,10); which we use in blog() for speed
+my $LOG_10 =
+ '2.3025850929940456840179914546843642076011014886287729760333279009675726097';
+my $LOG_10_A = length($LOG_10)-1;
+# ditto for log(2)
+my $LOG_2 =
+ '0.6931471805599453094172321214581765680755001343602552541206800094933936220';
+my $LOG_2_A = length($LOG_2)-1;
+my $HALF = '0.5'; # made into an object if nec.
+
+##############################################################################
+# the old code had $rnd_mode, so we need to support it, too
+
+sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
+sub FETCH { return $round_mode; }
+sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
+
+BEGIN
+ {
+ # when someone sets $rnd_mode, we catch this and check the value to see
+ # whether it is valid or not.
+ $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat';
+
+ # we need both of them in this package:
+ *as_int = \&as_number;
+ }
+
+##############################################################################
+
+{
+ # valid method aliases for AUTOLOAD
+ my %methods = map { $_ => 1 }
+ qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
+ fint facmp fcmp fzero fnan finf finc fdec ffac fneg
+ fceil ffloor frsft flsft fone flog froot fexp
+ /;
+ # valid methods that can be handed up (for AUTOLOAD)
+ my %hand_ups = map { $_ => 1 }
+ qw / is_nan is_inf is_negative is_positive is_pos is_neg
+ accuracy precision div_scale round_mode fabs fnot
+ objectify upgrade downgrade
+ bone binf bnan bzero
+ bsub
+ /;
+
+ sub _method_alias { exists $methods{$_[0]||''}; }
+ sub _method_hand_up { exists $hand_ups{$_[0]||''}; }
+}
+
+##############################################################################
+# constructors
+
+sub new
+ {
+ # create a new BigFloat object from a string or another bigfloat object.
+ # _e: exponent
+ # _m: mantissa
+ # sign => sign (+/-), or "NaN"
+
+ my ($class,$wanted,@r) = @_;
+
+ # avoid numify-calls by not using || on $wanted!
+ return $class->bzero() if !defined $wanted; # default to 0
+ return $wanted->copy() if UNIVERSAL::isa($wanted,'Math::BigFloat');
+
+ $class->import() if $IMPORT == 0; # make require work
+
+ my $self = {}; bless $self, $class;
+ # shortcut for bigints and its subclasses
+ if ((ref($wanted)) && UNIVERSAL::can( $wanted, "as_number"))
+ {
+ $self->{_m} = $wanted->as_number()->{value}; # get us a bigint copy
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ $self->{sign} = $wanted->sign();
+ return $self->bnorm();
+ }
+ # else: got a string or something maskerading as number (with overload)
+
+ # handle '+inf', '-inf' first
+ if ($wanted =~ /^[+-]?inf\z/)
+ {
+ return $downgrade->new($wanted) if $downgrade;
+
+ $self->{sign} = $wanted; # set a default sign for bstr()
+ return $self->binf($wanted);
+ }
+
+ # shortcut for simple forms like '12' that neither have trailing nor leading
+ # zeros
+ if ($wanted =~ /^([+-]?)([1-9][0-9]*[1-9])$/)
+ {
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ $self->{sign} = $1 || '+';
+ $self->{_m} = $MBI->_new($2);
+ return $self->round(@r) if !$downgrade;
+ }
+
+ my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split($wanted);
+ if (!ref $mis)
+ {
+ if ($_trap_nan)
+ {
+ require Carp;
+ Carp::croak ("$wanted is not a number initialized to $class");
+ }
+
+ return $downgrade->bnan() if $downgrade;
+
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ $self->{_m} = $MBI->_zero();
+ $self->{sign} = $nan;
+ }
+ else
+ {
+ # make integer from mantissa by adjusting exp, then convert to int
+ $self->{_e} = $MBI->_new($$ev); # exponent
+ $self->{_es} = $$es || '+';
+ my $mantissa = "$$miv$$mfv"; # create mant.
+ $mantissa =~ s/^0+(\d)/$1/; # strip leading zeros
+ $self->{_m} = $MBI->_new($mantissa); # create mant.
+
+ # 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
+ if (CORE::length($$mfv) != 0)
+ {
+ my $len = $MBI->_new( CORE::length($$mfv));
+ ($self->{_e}, $self->{_es}) =
+ _e_sub ($self->{_e}, $len, $self->{_es}, '+');
+ }
+ # we can only have trailing zeros on the mantissa if $$mfv eq ''
+ else
+ {
+ # Use a regexp to count the trailing zeros in $$miv instead of _zeros()
+ # because that is faster, especially when _m is not stored in base 10.
+ my $zeros = 0; $zeros = CORE::length($1) if $$miv =~ /[1-9](0*)$/;
+ if ($zeros != 0)
+ {
+ my $z = $MBI->_new($zeros);
+ # turn '120e2' into '12e3'
+ $MBI->_rsft ( $self->{_m}, $z, 10);
+ ($self->{_e}, $self->{_es}) =
+ _e_add ( $self->{_e}, $z, $self->{_es}, '+');
+ }
+ }
+ $self->{sign} = $$mis;
+
+ # for something like 0Ey, set y to 1, and -0 => +0
+ # Check $$miv for being '0' and $$mfv eq '', because otherwise _m could not
+ # have become 0. That's faster than to call $MBI->_is_zero().
+ $self->{sign} = '+', $self->{_e} = $MBI->_one()
+ if $$miv eq '0' and $$mfv eq '';
+
+ return $self->round(@r) if !$downgrade;
+ }
+ # if downgrade, inf, NaN or integers go down
+
+ if ($downgrade && $self->{_es} eq '+')
+ {
+ if ($MBI->_is_zero( $self->{_e} ))
+ {
+ return $downgrade->new($$mis . $MBI->_str( $self->{_m} ));
+ }
+ return $downgrade->new($self->bsstr());
+ }
+ $self->bnorm()->round(@r); # first normalize, then round
+ }
+
+sub copy
+ {
+ # if two arguments, the first one is the class to "swallow" subclasses
+ if (@_ > 1)
+ {
+ my $self = bless {
+ sign => $_[1]->{sign},
+ _es => $_[1]->{_es},
+ _m => $MBI->_copy($_[1]->{_m}),
+ _e => $MBI->_copy($_[1]->{_e}),
+ }, $_[0] if @_ > 1;
+
+ $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
+ $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
+ return $self;
+ }
+
+ my $self = bless {
+ sign => $_[0]->{sign},
+ _es => $_[0]->{_es},
+ _m => $MBI->_copy($_[0]->{_m}),
+ _e => $MBI->_copy($_[0]->{_e}),
+ }, ref($_[0]);
+
+ $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
+ $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
+ $self;
+ }
+
+sub _bnan
+ {
+ # used by parent class bone() to initialize number to NaN
+ my $self = shift;
+
+ if ($_trap_nan)
+ {
+ require Carp;
+ my $class = ref($self);
+ Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
+ }
+
+ $IMPORT=1; # call our import only once
+ $self->{_m} = $MBI->_zero();
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ }
+
+sub _binf
+ {
+ # used by parent class bone() to initialize number to +-inf
+ my $self = shift;
+
+ if ($_trap_inf)
+ {
+ require Carp;
+ my $class = ref($self);
+ Carp::croak ("Tried to set $self to +-inf in $class\::_binf()");
+ }
+
+ $IMPORT=1; # call our import only once
+ $self->{_m} = $MBI->_zero();
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ }
+
+sub _bone
+ {
+ # used by parent class bone() to initialize number to 1
+ my $self = shift;
+ $IMPORT=1; # call our import only once
+ $self->{_m} = $MBI->_one();
+ $self->{_e} = $MBI->_zero();
+ $self->{_es} = '+';
+ }
+
+sub _bzero
+ {
+ # used by parent class bone() to initialize number to 0
+ my $self = shift;
+ $IMPORT=1; # call our import only once
+ $self->{_m} = $MBI->_zero();
+ $self->{_e} = $MBI->_one();
+ $self->{_es} = '+';
+ }
+
+sub isa
+ {
+ my ($self,$class) = @_;
+ return if $class =~ /^Math::BigInt/; # we aren't one of these
+ UNIVERSAL::isa($self,$class);
+ }
+
+sub config
+ {
+ # return (later set?) configuration data as hash ref
+ my $class = shift || 'Math::BigFloat';
+
+ if (@_ == 1 && ref($_[0]) ne 'HASH')
+ {
+ my $cfg = $class->SUPER::config();
+ return $cfg->{$_[0]};
+ }
+
+ my $cfg = $class->SUPER::config(@_);
+
+ # now we need only to override the ones that are different from our parent
+ $cfg->{class} = $class;
+ $cfg->{with} = $MBI;
+ $cfg;
+ }
+
+##############################################################################
+# string conversation
+
+sub bstr
+ {
+ # (ref to BFLOAT or num_str ) return num_str
+ # Convert number from internal format to (non-scientific) string format.
+ # internal format is always normalized (no leading zeros, "-0" => "+0")
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
+ return 'inf'; # +inf
+ }
+
+ my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.';
+
+ # $x is zero?
+ my $not_zero = !($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
+ if ($not_zero)
+ {
+ $es = $MBI->_str($x->{_m});
+ $len = CORE::length($es);
+ my $e = $MBI->_num($x->{_e});
+ $e = -$e if $x->{_es} eq '-';
+ if ($e < 0)
+ {
+ $dot = '';
+ # if _e is bigger than a scalar, the following will blow your memory
+ if ($e <= -$len)
+ {
+ my $r = abs($e) - $len;
+ $es = '0.'. ('0' x $r) . $es; $cad = -($len+$r);
+ }
+ else
+ {
+ substr($es,$e,0) = '.'; $cad = $MBI->_num($x->{_e});
+ $cad = -$cad if $x->{_es} eq '-';
+ }
+ }
+ elsif ($e > 0)
+ {
+ # expand with zeros
+ $es .= '0' x $e; $len += $e; $cad = 0;
+ }
+ } # if not zero
+
+ $es = '-'.$es if $x->{sign} eq '-';
+ # if set accuracy or precision, pad with zeros on the right side
+ if ((defined $x->{_a}) && ($not_zero))
+ {
+ # 123400 => 6, 0.1234 => 4, 0.001234 => 4
+ my $zeros = $x->{_a} - $cad; # cad == 0 => 12340
+ $zeros = $x->{_a} - $len if $cad != $len;
+ $es .= $dot.'0' x $zeros if $zeros > 0;
+ }
+ elsif ((($x->{_p} || 0) < 0))
+ {
+ # 123400 => 6, 0.1234 => 4, 0.001234 => 6
+ my $zeros = -$x->{_p} + $cad;
+ $es .= $dot.'0' x $zeros if $zeros > 0;
+ }
+ $es;
+ }
+
+sub bsstr
+ {
+ # (ref to BFLOAT or num_str ) return num_str
+ # Convert number from internal format to scientific string format.
+ # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
+ return 'inf'; # +inf
+ }
+ my $sep = 'e'.$x->{_es};
+ my $sign = $x->{sign}; $sign = '' if $sign eq '+';
+ $sign . $MBI->_str($x->{_m}) . $sep . $MBI->_str($x->{_e});
+ }
+
+sub numify
+ {
+ # Make a number from a BigFloat object
+ # simple return a string and let Perl's atoi()/atof() handle the rest
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ $x->bsstr();
+ }
+
+##############################################################################
+# public stuff (usually prefixed with "b")
+
+sub bneg
+ {
+ # (BINT or num_str) return BINT
+ # negate number or make a negated number from string
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x if $x->modify('bneg');
+
+ # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
+ $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
+ $x;
+ }
+
+# tels 2001-08-04
+# XXX TODO this must be overwritten and return NaN for non-integer values
+# band(), bior(), bxor(), too
+#sub bnot
+# {
+# $class->SUPER::bnot($class,@_);
+# }
+
+sub bcmp
+ {
+ # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,@_);
+ }
+
+ return $upgrade->bcmp($x,$y) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if ($x->{sign} eq $y->{sign}) && ($x->{sign} =~ /^[+-]inf$/);
+ return +1 if $x->{sign} eq '+inf';
+ return -1 if $x->{sign} eq '-inf';
+ return -1 if $y->{sign} eq '+inf';
+ return +1;
+ }
+
+ # check sign for speed first
+ return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
+ return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
+
+ # shortcut
+ my $xz = $x->is_zero();
+ my $yz = $y->is_zero();
+ return 0 if $xz && $yz; # 0 <=> 0
+ return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
+ return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
+
+ # adjust so that exponents are equal
+ my $lxm = $MBI->_len($x->{_m});
+ my $lym = $MBI->_len($y->{_m});
+ # the numify somewhat limits our length, but makes it much faster
+ my ($xes,$yes) = (1,1);
+ $xes = -1 if $x->{_es} ne '+';
+ $yes = -1 if $y->{_es} ne '+';
+ my $lx = $lxm + $xes * $MBI->_num($x->{_e});
+ my $ly = $lym + $yes * $MBI->_num($y->{_e});
+ my $l = $lx - $ly; $l = -$l if $x->{sign} eq '-';
+ return $l <=> 0 if $l != 0;
+
+ # lengths (corrected by exponent) are equal
+ # so make mantissa equal length by padding with zero (shift left)
+ my $diff = $lxm - $lym;
+ my $xm = $x->{_m}; # not yet copy it
+ my $ym = $y->{_m};
+ if ($diff > 0)
+ {
+ $ym = $MBI->_copy($y->{_m});
+ $ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
+ }
+ elsif ($diff < 0)
+ {
+ $xm = $MBI->_copy($x->{_m});
+ $xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
+ }
+ my $rc = $MBI->_acmp($xm,$ym);
+ $rc = -$rc if $x->{sign} eq '-'; # -124 < -123
+ $rc <=> 0;
+ }
+
+sub bacmp
+ {
+ # Compares 2 values, ignoring their signs.
+ # Returns one of undef, <0, =0, >0. (suitable for sort)
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,@_);
+ }
+
+ return $upgrade->bacmp($x,$y) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ # handle +-inf and NaN's
+ if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/)
+ {
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if ($x->is_inf() && $y->is_inf());
+ return 1 if ($x->is_inf() && !$y->is_inf());
+ return -1;
+ }
+
+ # shortcut
+ my $xz = $x->is_zero();
+ my $yz = $y->is_zero();
+ return 0 if $xz && $yz; # 0 <=> 0
+ return -1 if $xz && !$yz; # 0 <=> +y
+ return 1 if $yz && !$xz; # +x <=> 0
+
+ # adjust so that exponents are equal
+ my $lxm = $MBI->_len($x->{_m});
+ my $lym = $MBI->_len($y->{_m});
+ my ($xes,$yes) = (1,1);
+ $xes = -1 if $x->{_es} ne '+';
+ $yes = -1 if $y->{_es} ne '+';
+ # the numify somewhat limits our length, but makes it much faster
+ my $lx = $lxm + $xes * $MBI->_num($x->{_e});
+ my $ly = $lym + $yes * $MBI->_num($y->{_e});
+ my $l = $lx - $ly;
+ return $l <=> 0 if $l != 0;
+
+ # lengths (corrected by exponent) are equal
+ # so make mantissa equal-length by padding with zero (shift left)
+ my $diff = $lxm - $lym;
+ my $xm = $x->{_m}; # not yet copy it
+ my $ym = $y->{_m};
+ if ($diff > 0)
+ {
+ $ym = $MBI->_copy($y->{_m});
+ $ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
+ }
+ elsif ($diff < 0)
+ {
+ $xm = $MBI->_copy($x->{_m});
+ $xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
+ }
+ $MBI->_acmp($xm,$ym);
+ }
+
+sub badd
+ {
+ # add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
+ # return result as BFLOAT
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('badd');
+
+ # inf and NaN handling
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # NaN first
+ return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+ {
+ # +inf++inf or -inf+-inf => same, rest is NaN
+ return $x if $x->{sign} eq $y->{sign};
+ return $x->bnan();
+ }
+ # +-inf + something => +inf; something +-inf => +-inf
+ $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
+ return $x;
+ }
+
+ return $upgrade->badd($x,$y,@r) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ $r[3] = $y; # no push!
+
+ # speed: no add for 0+y or x+0
+ return $x->bround(@r) if $y->is_zero(); # x+0
+ if ($x->is_zero()) # 0+y
+ {
+ # make copy, clobbering up x (modify in place!)
+ $x->{_e} = $MBI->_copy($y->{_e});
+ $x->{_es} = $y->{_es};
+ $x->{_m} = $MBI->_copy($y->{_m});
+ $x->{sign} = $y->{sign} || $nan;
+ return $x->round(@r);
+ }
+
+ # take lower of the two e's and adapt m1 to it to match m2
+ my $e = $y->{_e};
+ $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
+ $e = $MBI->_copy($e); # make copy (didn't do it yet)
+
+ my $es;
+
+ ($e,$es) = _e_sub($e, $x->{_e}, $y->{_es} || '+', $x->{_es});
+
+ my $add = $MBI->_copy($y->{_m});
+
+ if ($es eq '-') # < 0
+ {
+ $MBI->_lsft( $x->{_m}, $e, 10);
+ ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
+ }
+ elsif (!$MBI->_is_zero($e)) # > 0
+ {
+ $MBI->_lsft($add, $e, 10);
+ }
+ # else: both e are the same, so just leave them
+
+ if ($x->{sign} eq $y->{sign})
+ {
+ # add
+ $x->{_m} = $MBI->_add($x->{_m}, $add);
+ }
+ else
+ {
+ ($x->{_m}, $x->{sign}) =
+ _e_add($x->{_m}, $add, $x->{sign}, $y->{sign});
+ }
+
+ # delete trailing zeros, then round
+ $x->bnorm()->round(@r);
+ }
+
+# sub bsub is inherited from Math::BigInt!
+
+sub binc
+ {
+ # increment arg by one
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('binc');
+
+ if ($x->{_es} eq '-')
+ {
+ return $x->badd($self->bone(),@r); # digits after dot
+ }
+
+ if (!$MBI->_is_zero($x->{_e})) # _e == 0 for NaN, inf, -inf
+ {
+ # 1e2 => 100, so after the shift below _m has a '0' as last digit
+ $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
+ $x->{_e} = $MBI->_zero(); # normalize
+ $x->{_es} = '+';
+ # we know that the last digit of $x will be '1' or '9', depending on the
+ # sign
+ }
+ # now $x->{_e} == 0
+ if ($x->{sign} eq '+')
+ {
+ $MBI->_inc($x->{_m});
+ return $x->bnorm()->bround(@r);
+ }
+ elsif ($x->{sign} eq '-')
+ {
+ $MBI->_dec($x->{_m});
+ $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
+ return $x->bnorm()->bround(@r);
+ }
+ # inf, nan handling etc
+ $x->badd($self->bone(),@r); # badd() does round
+ }
+
+sub bdec
+ {
+ # decrement arg by one
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('bdec');
+
+ if ($x->{_es} eq '-')
+ {
+ return $x->badd($self->bone('-'),@r); # digits after dot
+ }
+
+ if (!$MBI->_is_zero($x->{_e}))
+ {
+ $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
+ $x->{_e} = $MBI->_zero(); # normalize
+ $x->{_es} = '+';
+ }
+ # now $x->{_e} == 0
+ my $zero = $x->is_zero();
+ # <= 0
+ if (($x->{sign} eq '-') || $zero)
+ {
+ $MBI->_inc($x->{_m});
+ $x->{sign} = '-' if $zero; # 0 => 1 => -1
+ $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
+ return $x->bnorm()->round(@r);
+ }
+ # > 0
+ elsif ($x->{sign} eq '+')
+ {
+ $MBI->_dec($x->{_m});
+ return $x->bnorm()->round(@r);
+ }
+ # inf, nan handling etc
+ $x->badd($self->bone('-'),@r); # does round
+ }
+
+sub DEBUG () { 0; }
+
+sub blog
+ {
+ my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('blog');
+
+ # $base > 0, $base != 1; if $base == undef default to $base == e
+ # $x >= 0
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters($a,$p,$r);
+
+ # also takes care of the "error in _find_round_parameters?" case
+ return $x->bnan() if $x->{sign} ne '+' || $x->is_zero();
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # P = undef
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ return $x->bzero(@params) if $x->is_one();
+ # base not defined => base == Euler's number e
+ if (defined $base)
+ {
+ # make object, since we don't feed it through objectify() to still get the
+ # case of $base == undef
+ $base = $self->new($base) unless ref($base);
+ # $base > 0; $base != 1
+ return $x->bnan() if $base->is_zero() || $base->is_one() ||
+ $base->{sign} ne '+';
+ # if $x == $base, we know the result must be 1.0
+ if ($x->bcmp($base) == 0)
+ {
+ $x->bone('+',@params);
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ return $x;
+ }
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+ local $Math::BigFloat::downgrade = undef;
+
+ # upgrade $x if $x is not a BigFloat (handle BigInt input)
+ # XXX TODO: rebless!
+ if (!$x->isa('Math::BigFloat'))
+ {
+ $x = Math::BigFloat->new($x);
+ $self = ref($x);
+ }
+
+ my $done = 0;
+
+ # If the base is defined and an integer, try to calculate integer result
+ # first. This is very fast, and in case the real result was found, we can
+ # stop right here.
+ if (defined $base && $base->is_int() && $x->is_int())
+ {
+ my $i = $MBI->_copy( $x->{_m} );
+ $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
+ my $int = Math::BigInt->bzero();
+ $int->{value} = $i;
+ $int->blog($base->as_number());
+ # if ($exact)
+ if ($base->as_number()->bpow($int) == $x)
+ {
+ # found result, return it
+ $x->{_m} = $int->{value};
+ $x->{_e} = $MBI->_zero();
+ $x->{_es} = '+';
+ $x->bnorm();
+ $done = 1;
+ }
+ }
+
+ if ($done == 0)
+ {
+ # base is undef, so base should be e (Euler's number), so first calculate the
+ # log to base e (using reduction by 10 (and probably 2)):
+ $self->_log_10($x,$scale);
+
+ # and if a different base was requested, convert it
+ if (defined $base)
+ {
+ $base = Math::BigFloat->new($base) unless $base->isa('Math::BigFloat');
+ # not ln, but some other base (don't modify $base)
+ $x->bdiv( $base->copy()->blog(undef,$scale), $scale );
+ }
+ }
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+
+ $x;
+ }
+
+sub _len_to_steps
+ {
+ # Given D (digits in decimal), compute N so that N! (N factorial) is
+ # at least D digits long. D should be at least 50.
+ my $d = shift;
+
+ # two constants for the Ramanujan estimate of ln(N!)
+ my $lg2 = log(2 * 3.14159265) / 2;
+ my $lg10 = log(10);
+
+ # D = 50 => N => 42, so L = 40 and R = 50
+ my $l = 40; my $r = $d;
+
+ # Otherwise this does not work under -Mbignum and we do not yet have "no bignum;" :(
+ $l = $l->numify if ref($l);
+ $r = $r->numify if ref($r);
+ $lg2 = $lg2->numify if ref($lg2);
+ $lg10 = $lg10->numify if ref($lg10);
+
+ # binary search for the right value (could this be written as the reverse of lg(n!)?)
+ while ($r - $l > 1)
+ {
+ my $n = int(($r - $l) / 2) + $l;
+ my $ramanujan =
+ int(($n * log($n) - $n + log( $n * (1 + 4*$n*(1+2*$n)) ) / 6 + $lg2) / $lg10);
+ $ramanujan > $d ? $r = $n : $l = $n;
+ }
+ $l;
+ }
+
+sub bnok
+ {
+ # Calculate n over k (binomial coefficient or "choose" function) as integer.
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bnok');
+
+ return $x->bnan() if $x->is_nan() || $y->is_nan();
+ return $x->binf() if $x->is_inf();
+
+ my $u = $x->as_int();
+ $u->bnok($y->as_int());
+
+ $x->{_m} = $u->{value};
+ $x->{_e} = $MBI->_zero();
+ $x->{_es} = '+';
+ $x->{sign} = '+';
+ $x->bnorm(@r);
+ }
+
+sub bexp
+ {
+ # Calculate e ** X (Euler's number to the power of X)
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('bexp');
+
+ return $x->binf() if $x->{sign} eq '+inf';
+ return $x->bzero() if $x->{sign} eq '-inf';
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters($a,$p,$r);
+
+ # also takes care of the "error in _find_round_parameters?" case
+ return $x if $x->{sign} eq 'NaN';
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # P = undef
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it's not enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ return $x->bone(@params) if $x->is_zero();
+
+ if (!$x->isa('Math::BigFloat'))
+ {
+ $x = Math::BigFloat->new($x);
+ $self = ref($x);
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+ local $Math::BigFloat::downgrade = undef;
+
+ my $x_org = $x->copy();
+
+ # We use the following Taylor series:
+
+ # x x^2 x^3 x^4
+ # e = 1 + --- + --- + --- + --- ...
+ # 1! 2! 3! 4!
+
+ # The difference for each term is X and N, which would result in:
+ # 2 copy, 2 mul, 2 add, 1 inc, 1 div operations per term
+
+ # But it is faster to compute exp(1) and then raising it to the
+ # given power, esp. if $x is really big and an integer because:
+
+ # * The numerator is always 1, making the computation faster
+ # * the series converges faster in the case of x == 1
+ # * We can also easily check when we have reached our limit: when the
+ # term to be added is smaller than "1E$scale", we can stop - f.i.
+ # scale == 5, and we have 1/40320, then we stop since 1/40320 < 1E-5.
+ # * we can compute the *exact* result by simulating bigrat math:
+
+ # 1 1 gcd(3,4) = 1 1*24 + 1*6 5
+ # - + - = ---------- = --
+ # 6 24 6*24 24
+
+ # We do not compute the gcd() here, but simple do:
+ # 1 1 1*24 + 1*6 30
+ # - + - = --------- = --
+ # 6 24 6*24 144
+
+ # In general:
+ # a c a*d + c*b and note that c is always 1 and d = (b*f)
+ # - + - = ---------
+ # b d b*d
+
+ # This leads to: which can be reduced by b to:
+ # a 1 a*b*f + b a*f + 1
+ # - + - = --------- = -------
+ # b b*f b*b*f b*f
+
+ # The first terms in the series are:
+
+ # 1 1 1 1 1 1 1 1 13700
+ # -- + -- + -- + -- + -- + --- + --- + ---- = -----
+ # 1 1 2 6 24 120 720 5040 5040
+
+ # Note that we cannot simple reduce 13700/5040 to 685/252, but must keep A and B!
+
+ if ($scale <= 75)
+ {
+ # set $x directly from a cached string form
+ $x->{_m} = $MBI->_new(
+ "27182818284590452353602874713526624977572470936999595749669676277240766303535476");
+ $x->{sign} = '+';
+ $x->{_es} = '-';
+ $x->{_e} = $MBI->_new(79);
+ }
+ else
+ {
+ # compute A and B so that e = A / B.
+
+ # After some terms we end up with this, so we use it as a starting point:
+ my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
+ my $F = $MBI->_new(42); my $step = 42;
+
+ # Compute how many steps we need to take to get $A and $B sufficiently big
+ my $steps = _len_to_steps($scale - 4);
+# print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
+ while ($step++ <= $steps)
+ {
+ # calculate $a * $f + 1
+ $A = $MBI->_mul($A, $F);
+ $A = $MBI->_inc($A);
+ # increment f
+ $F = $MBI->_inc($F);
+ }
+ # compute $B as factorial of $steps (this is faster than doing it manually)
+ my $B = $MBI->_fac($MBI->_new($steps));
+
+# print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
+
+ # compute A/B with $scale digits in the result (truncate, not round)
+ $A = $MBI->_lsft( $A, $MBI->_new($scale), 10);
+ $A = $MBI->_div( $A, $B );
+
+ $x->{_m} = $A;
+ $x->{sign} = '+';
+ $x->{_es} = '-';
+ $x->{_e} = $MBI->_new($scale);
+ }
+
+ # $x contains now an estimate of e, with some surplus digits, so we can round
+ if (!$x_org->is_one())
+ {
+ # raise $x to the wanted power and round it in one step:
+ $x->bpow($x_org, @params);
+ }
+ else
+ {
+ # else just round the already computed result
+ delete $x->{_a}; delete $x->{_p};
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+
+ $x; # return modified $x
+ }
+
+sub _log
+ {
+ # internal log function to calculate ln() based on Taylor series.
+ # Modifies $x in place.
+ my ($self,$x,$scale) = @_;
+
+ # in case of $x == 1, result is 0
+ return $x->bzero() if $x->is_one();
+
+ # XXX TODO: rewrite this in a similiar manner to bexp()
+
+ # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log
+
+ # u = x-1, v = x+1
+ # _ _
+ # Taylor: | u 1 u^3 1 u^5 |
+ # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
+ # |_ v 3 v^3 5 v^5 _|
+
+ # This takes much more steps to calculate the result and is thus not used
+ # u = x-1
+ # _ _
+ # Taylor: | u 1 u^2 1 u^3 |
+ # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
+ # |_ x 2 x^2 3 x^3 _|
+
+ my ($limit,$v,$u,$below,$factor,$two,$next,$over,$f);
+
+ $v = $x->copy(); $v->binc(); # v = x+1
+ $x->bdec(); $u = $x->copy(); # u = x-1; x = x-1
+ $x->bdiv($v,$scale); # first term: u/v
+ $below = $v->copy();
+ $over = $u->copy();
+ $u *= $u; $v *= $v; # u^2, v^2
+ $below->bmul($v); # u^3, v^3
+ $over->bmul($u);
+ $factor = $self->new(3); $f = $self->new(2);
+
+ my $steps = 0 if DEBUG;
+ $limit = $self->new("1E-". ($scale-1));
+ while (3 < 5)
+ {
+ # we calculate the next term, and add it to the last
+ # when the next term is below our limit, it won't affect the outcome
+ # anymore, so we stop
+
+ # calculating the next term simple from over/below will result in quite
+ # a time hog if the input has many digits, since over and below will
+ # accumulate more and more digits, and the result will also have many
+ # digits, but in the end it is rounded to $scale digits anyway. So if we
+ # round $over and $below first, we save a lot of time for the division
+ # (not with log(1.2345), but try log (123**123) to see what I mean. This
+ # can introduce a rounding error if the division result would be f.i.
+ # 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
+ # if we truncated $over and $below we might get 0.12345. Does this matter
+ # for the end result? So we give $over and $below 4 more digits to be
+ # on the safe side (unscientific error handling as usual... :+D
+
+ $next = $over->copy->bround($scale+4)->bdiv(
+ $below->copy->bmul($factor)->bround($scale+4),
+ $scale);
+
+## old version:
+## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
+
+ last if $next->bacmp($limit) <= 0;
+
+ delete $next->{_a}; delete $next->{_p};
+ $x->badd($next);
+ # calculate things for the next term
+ $over *= $u; $below *= $v; $factor->badd($f);
+ if (DEBUG)
+ {
+ $steps++; print "step $steps = $x\n" if $steps % 10 == 0;
+ }
+ }
+ print "took $steps steps\n" if DEBUG;
+ $x->bmul($f); # $x *= 2
+ }
+
+sub _log_10
+ {
+ # Internal log function based on reducing input to the range of 0.1 .. 9.99
+ # and then "correcting" the result to the proper one. Modifies $x in place.
+ my ($self,$x,$scale) = @_;
+
+ # Taking blog() from numbers greater than 10 takes a *very long* time, so we
+ # break the computation down into parts based on the observation that:
+ # blog(X*Y) = blog(X) + blog(Y)
+ # We set Y here to multiples of 10 so that $x becomes below 1 - the smaller
+ # $x is the faster it gets. Since 2*$x takes about 10 times as
+ # long, we make it faster by about a factor of 100 by dividing $x by 10.
+
+ # The same observation is valid for numbers smaller than 0.1, e.g. computing
+ # log(1) is fastest, and the further away we get from 1, the longer it takes.
+ # So we also 'break' this down by multiplying $x with 10 and subtract the
+ # log(10) afterwards to get the correct result.
+
+ # To get $x even closer to 1, we also divide by 2 and then use log(2) to
+ # correct for this. For instance if $x is 2.4, we use the formula:
+ # blog(2.4 * 2) == blog (1.2) + blog(2)
+ # and thus calculate only blog(1.2) and blog(2), which is faster in total
+ # than calculating blog(2.4).
+
+ # In addition, the values for blog(2) and blog(10) are cached.
+
+ # Calculate nr of digits before dot:
+ my $dbd = $MBI->_num($x->{_e});
+ $dbd = -$dbd if $x->{_es} eq '-';
+ $dbd += $MBI->_len($x->{_m});
+
+ # more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
+ # infinite recursion
+
+ my $calc = 1; # do some calculation?
+
+ # disable the shortcut for 10, since we need log(10) and this would recurse
+ # infinitely deep
+ if ($x->{_es} eq '+' && $MBI->_is_one($x->{_e}) && $MBI->_is_one($x->{_m}))
+ {
+ $dbd = 0; # disable shortcut
+ # we can use the cached value in these cases
+ if ($scale <= $LOG_10_A)
+ {
+ $x->bzero(); $x->badd($LOG_10); # modify $x in place
+ $calc = 0; # no need to calc, but round
+ }
+ # if we can't use the shortcut, we continue normally
+ }
+ else
+ {
+ # disable the shortcut for 2, since we maybe have it cached
+ if (($MBI->_is_zero($x->{_e}) && $MBI->_is_two($x->{_m})))
+ {
+ $dbd = 0; # disable shortcut
+ # we can use the cached value in these cases
+ if ($scale <= $LOG_2_A)
+ {
+ $x->bzero(); $x->badd($LOG_2); # modify $x in place
+ $calc = 0; # no need to calc, but round
+ }
+ # if we can't use the shortcut, we continue normally
+ }
+ }
+
+ # if $x = 0.1, we know the result must be 0-log(10)
+ if ($calc != 0 && $x->{_es} eq '-' && $MBI->_is_one($x->{_e}) &&
+ $MBI->_is_one($x->{_m}))
+ {
+ $dbd = 0; # disable shortcut
+ # we can use the cached value in these cases
+ if ($scale <= $LOG_10_A)
+ {
+ $x->bzero(); $x->bsub($LOG_10);
+ $calc = 0; # no need to calc, but round
+ }
+ }
+
+ return if $calc == 0; # already have the result
+
+ # default: these correction factors are undef and thus not used
+ my $l_10; # value of ln(10) to A of $scale
+ my $l_2; # value of ln(2) to A of $scale
+
+ my $two = $self->new(2);
+
+ # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
+ # so don't do this shortcut for 1 or 0
+ if (($dbd > 1) || ($dbd < 0))
+ {
+ # convert our cached value to an object if not already (avoid doing this
+ # at import() time, since not everybody needs this)
+ $LOG_10 = $self->new($LOG_10,undef,undef) unless ref $LOG_10;
+
+ #print "x = $x, dbd = $dbd, calc = $calc\n";
+ # got more than one digit before the dot, or more than one zero after the
+ # dot, so do:
+ # log(123) == log(1.23) + log(10) * 2
+ # log(0.0123) == log(1.23) - log(10) * 2
+
+ if ($scale <= $LOG_10_A)
+ {
+ # use cached value
+ $l_10 = $LOG_10->copy(); # copy for mul
+ }
+ else
+ {
+ # else: slower, compute and cache result
+ # also disable downgrade for this code path
+ local $Math::BigFloat::downgrade = undef;
+
+ # shorten the time to calculate log(10) based on the following:
+ # log(1.25 * 8) = log(1.25) + log(8)
+ # = log(1.25) + log(2) + log(2) + log(2)
+
+ # first get $l_2 (and possible compute and cache log(2))
+ $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
+ if ($scale <= $LOG_2_A)
+ {
+ # use cached value
+ $l_2 = $LOG_2->copy(); # copy() for the mul below
+ }
+ else
+ {
+ # else: slower, compute and cache result
+ $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
+ $LOG_2 = $l_2->copy(); # cache the result for later
+ # the copy() is for mul below
+ $LOG_2_A = $scale;
+ }
+
+ # now calculate log(1.25):
+ $l_10 = $self->new('1.25'); $self->_log($l_10, $scale); # scale+4, actually
+
+ # log(1.25) + log(2) + log(2) + log(2):
+ $l_10->badd($l_2);
+ $l_10->badd($l_2);
+ $l_10->badd($l_2);
+ $LOG_10 = $l_10->copy(); # cache the result for later
+ # the copy() is for mul below
+ $LOG_10_A = $scale;
+ }
+ $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1
+ $l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1)
+ my $dbd_sign = '+';
+ if ($dbd < 0)
+ {
+ $dbd = -$dbd;
+ $dbd_sign = '-';
+ }
+ ($x->{_e}, $x->{_es}) =
+ _e_sub( $x->{_e}, $MBI->_new($dbd), $x->{_es}, $dbd_sign); # 123 => 1.23
+
+ }
+
+ # Now: 0.1 <= $x < 10 (and possible correction in l_10)
+
+ ### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
+ ### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
+
+ $HALF = $self->new($HALF) unless ref($HALF);
+
+ my $twos = 0; # default: none (0 times)
+ while ($x->bacmp($HALF) <= 0) # X <= 0.5
+ {
+ $twos--; $x->bmul($two);
+ }
+ while ($x->bacmp($two) >= 0) # X >= 2
+ {
+ $twos++; $x->bdiv($two,$scale+4); # keep all digits
+ }
+ # $twos > 0 => did mul 2, < 0 => did div 2 (but we never did both)
+ # So calculate correction factor based on ln(2):
+ if ($twos != 0)
+ {
+ $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
+ if ($scale <= $LOG_2_A)
+ {
+ # use cached value
+ $l_2 = $LOG_2->copy(); # copy() for the mul below
+ }
+ else
+ {
+ # else: slower, compute and cache result
+ # also disable downgrade for this code path
+ local $Math::BigFloat::downgrade = undef;
+ $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
+ $LOG_2 = $l_2->copy(); # cache the result for later
+ # the copy() is for mul below
+ $LOG_2_A = $scale;
+ }
+ $l_2->bmul($twos); # * -2 => subtract, * 2 => add
+ }
+
+ $self->_log($x,$scale); # need to do the "normal" way
+ $x->badd($l_10) if defined $l_10; # correct it by ln(10)
+ $x->badd($l_2) if defined $l_2; # and maybe by ln(2)
+
+ # all done, $x contains now the result
+ $x;
+ }
+
+sub blcm
+ {
+ # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
+ # does not modify arguments, but returns new object
+ # Lowest Common Multiplicator
+
+ my ($self,@arg) = objectify(0,@_);
+ my $x = $self->new(shift @arg);
+ while (@arg) { $x = Math::BigInt::__lcm($x,shift @arg); }
+ $x;
+ }
+
+sub bgcd
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # does not modify arguments, but returns new object
+
+ my $y = shift;
+ $y = __PACKAGE__->new($y) if !ref($y);
+ my $self = ref($y);
+ my $x = $y->copy()->babs(); # keep arguments
+
+ return $x->bnan() if $x->{sign} !~ /^[+-]$/ # x NaN?
+ || !$x->is_int(); # only for integers now
+
+ while (@_)
+ {
+ my $t = shift; $t = $self->new($t) if !ref($t);
+ $y = $t->copy()->babs();
+
+ return $x->bnan() if $y->{sign} !~ /^[+-]$/ # y NaN?
+ || !$y->is_int(); # only for integers now
+
+ # greatest common divisor
+ while (! $y->is_zero())
+ {
+ ($x,$y) = ($y->copy(), $x->copy()->bmod($y));
+ }
+
+ last if $x->is_one();
+ }
+ $x;
+ }
+
+##############################################################################
+
+sub _e_add
+ {
+ # Internal helper sub to take two positive integers and their signs and
+ # then add them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
+ # output ($CALC,('+'|'-'))
+ my ($x,$y,$xs,$ys) = @_;
+
+ # if the signs are equal we can add them (-5 + -3 => -(5 + 3) => -8)
+ if ($xs eq $ys)
+ {
+ $x = $MBI->_add ($x, $y ); # a+b
+ # the sign follows $xs
+ return ($x, $xs);
+ }
+
+ my $a = $MBI->_acmp($x,$y);
+ if ($a > 0)
+ {
+ $x = $MBI->_sub ($x , $y); # abs sub
+ }
+ elsif ($a == 0)
+ {
+ $x = $MBI->_zero(); # result is 0
+ $xs = '+';
+ }
+ else # a < 0
+ {
+ $x = $MBI->_sub ( $y, $x, 1 ); # abs sub
+ $xs = $ys;
+ }
+ ($x,$xs);
+ }
+
+sub _e_sub
+ {
+ # Internal helper sub to take two positive integers and their signs and
+ # then subtract them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
+ # output ($CALC,('+'|'-'))
+ my ($x,$y,$xs,$ys) = @_;
+
+ # flip sign
+ $ys =~ tr/+-/-+/;
+ _e_add($x,$y,$xs,$ys); # call add (does subtract now)
+ }
+
+###############################################################################
+# is_foo methods (is_negative, is_positive are inherited from BigInt)
+
+sub is_int
+ {
+ # return true if arg (BFLOAT or num_str) is an integer
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ (($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
+ ($x->{_es} eq '+')) ? 1 : 0; # 1e-1 => no integer
+ }
+
+sub is_zero
+ {
+ # return true if arg (BFLOAT or num_str) is zero
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m})) ? 1 : 0;
+ }
+
+sub is_one
+ {
+ # return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
+ my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ $sign = '+' if !defined $sign || $sign ne '-';
+
+ ($x->{sign} eq $sign &&
+ $MBI->_is_zero($x->{_e}) &&
+ $MBI->_is_one($x->{_m}) ) ? 1 : 0;
+ }
+
+sub is_odd
+ {
+ # return true if arg (BFLOAT or num_str) is odd or false if even
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
+ ($MBI->_is_zero($x->{_e})) &&
+ ($MBI->_is_odd($x->{_m}))) ? 1 : 0;
+ }
+
+sub is_even
+ {
+ # return true if arg (BINT or num_str) is even or false if odd
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
+ ($x->{_es} eq '+') && # 123.45 isn't
+ ($MBI->_is_even($x->{_m}))) ? 1 : 0; # but 1200 is
+ }
+
+sub bmul
+ {
+ # multiply two numbers
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bmul');
+
+ return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
+ }
+
+ return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ # aEb * cEd = (a*c)E(b+d)
+ $MBI->_mul($x->{_m},$y->{_m});
+ ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
+
+ $r[3] = $y; # no push!
+
+ # adjust sign:
+ $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
+ $x->bnorm->round(@r);
+ }
+
+sub bmuladd
+ {
+ # multiply two numbers and add the third to the result
+
+ # set up parameters
+ my ($self,$x,$y,$z,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$z,@r) = objectify(3,@_);
+ }
+
+ return $x if $x->modify('bmuladd');
+
+ return $x->bnan() if (($x->{sign} eq $nan) ||
+ ($y->{sign} eq $nan) ||
+ ($z->{sign} eq $nan));
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
+ }
+
+ return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ # aEb * cEd = (a*c)E(b+d)
+ $MBI->_mul($x->{_m},$y->{_m});
+ ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
+
+ $r[3] = $y; # no push!
+
+ # adjust sign:
+ $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
+
+ # z=inf handling (z=NaN handled above)
+ $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
+
+ # take lower of the two e's and adapt m1 to it to match m2
+ my $e = $z->{_e};
+ $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
+ $e = $MBI->_copy($e); # make copy (didn't do it yet)
+
+ my $es;
+
+ ($e,$es) = _e_sub($e, $x->{_e}, $z->{_es} || '+', $x->{_es});
+
+ my $add = $MBI->_copy($z->{_m});
+
+ if ($es eq '-') # < 0
+ {
+ $MBI->_lsft( $x->{_m}, $e, 10);
+ ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
+ }
+ elsif (!$MBI->_is_zero($e)) # > 0
+ {
+ $MBI->_lsft($add, $e, 10);
+ }
+ # else: both e are the same, so just leave them
+
+ if ($x->{sign} eq $z->{sign})
+ {
+ # add
+ $x->{_m} = $MBI->_add($x->{_m}, $add);
+ }
+ else
+ {
+ ($x->{_m}, $x->{sign}) =
+ _e_add($x->{_m}, $add, $x->{sign}, $z->{sign});
+ }
+
+ # delete trailing zeros, then round
+ $x->bnorm()->round(@r);
+ }
+
+sub bdiv
+ {
+ # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
+ # (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
+
+ # set up parameters
+ my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bdiv');
+
+ return $self->_div_inf($x,$y)
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
+
+ # x== 0 # also: or y == 1 or y == -1
+ return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
+
+ # upgrade ?
+ return $upgrade->bdiv($upgrade->new($x),$y,$a,$p,$r) if defined $upgrade;
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my (@params,$scale);
+ ($x,@params) = $x->_find_round_parameters($a,$p,$r,$y);
+
+ return $x if $x->is_nan(); # error in _find_round_parameters?
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ my $rem; $rem = $self->bzero() if wantarray;
+
+ $y = $self->new($y) unless $y->isa('Math::BigFloat');
+
+ my $lx = $MBI->_len($x->{_m}); my $ly = $MBI->_len($y->{_m});
+ $scale = $lx if $lx > $scale;
+ $scale = $ly if $ly > $scale;
+ my $diff = $ly - $lx;
+ $scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx!
+
+ # already handled inf/NaN/-inf above:
+
+ # check that $y is not 1 nor -1 and cache the result:
+ my $y_not_one = !($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m}));
+
+ # flipping the sign of $y will also flip the sign of $x for the special
+ # case of $x->bsub($x); so we can catch it below:
+ my $xsign = $x->{sign};
+ $y->{sign} =~ tr/+-/-+/;
+
+ if ($xsign ne $x->{sign})
+ {
+ # special case of $x /= $x results in 1
+ $x->bone(); # "fixes" also sign of $y, since $x is $y
+ }
+ else
+ {
+ # correct $y's sign again
+ $y->{sign} =~ tr/+-/-+/;
+ # continue with normal div code:
+
+ # make copy of $x in case of list context for later reminder calculation
+ if (wantarray && $y_not_one)
+ {
+ $rem = $x->copy();
+ }
+
+ $x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+';
+
+ # check for / +-1 ( +/- 1E0)
+ if ($y_not_one)
+ {
+ # promote BigInts and it's subclasses (except when already a BigFloat)
+ $y = $self->new($y) unless $y->isa('Math::BigFloat');
+
+ # calculate the result to $scale digits and then round it
+ # a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
+ $MBI->_lsft($x->{_m},$MBI->_new($scale),10);
+ $MBI->_div ($x->{_m},$y->{_m}); # a/c
+
+ # correct exponent of $x
+ ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
+ # correct for 10**scale
+ ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $MBI->_new($scale), $x->{_es}, '+');
+ $x->bnorm(); # remove trailing 0's
+ }
+ } # ende else $x != $y
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ delete $x->{_a}; # clear before round
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ delete $x->{_p}; # clear before round
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+
+ if (wantarray)
+ {
+ if ($y_not_one)
+ {
+ $rem->bmod($y,@params); # copy already done
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $rem->{_a}; delete $rem->{_p};
+ }
+ return ($x,$rem);
+ }
+ $x;
+ }
+
+sub bmod
+ {
+ # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder
+
+ # set up parameters
+ my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bmod');
+
+ # handle NaN, inf, -inf
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ my ($d,$re) = $self->SUPER::_div_inf($x,$y);
+ $x->{sign} = $re->{sign};
+ $x->{_e} = $re->{_e};
+ $x->{_m} = $re->{_m};
+ return $x->round($a,$p,$r,$y);
+ }
+ if ($y->is_zero())
+ {
+ return $x->bnan() if $x->is_zero();
+ return $x;
+ }
+
+ return $x->bzero() if $x->is_zero()
+ || ($x->is_int() &&
+ # check that $y == +1 or $y == -1:
+ ($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m})));
+
+ my $cmp = $x->bacmp($y); # equal or $x < $y?
+ return $x->bzero($a,$p) if $cmp == 0; # $x == $y => result 0
+
+ # only $y of the operands negative?
+ my $neg = 0; $neg = 1 if $x->{sign} ne $y->{sign};
+
+ $x->{sign} = $y->{sign}; # calc sign first
+ return $x->round($a,$p,$r) if $cmp < 0 && $neg == 0; # $x < $y => result $x
+
+ my $ym = $MBI->_copy($y->{_m});
+
+ # 2e1 => 20
+ $MBI->_lsft( $ym, $y->{_e}, 10)
+ if $y->{_es} eq '+' && !$MBI->_is_zero($y->{_e});
+
+ # if $y has digits after dot
+ my $shifty = 0; # correct _e of $x by this
+ if ($y->{_es} eq '-') # has digits after dot
+ {
+ # 123 % 2.5 => 1230 % 25 => 5 => 0.5
+ $shifty = $MBI->_num($y->{_e}); # no more digits after dot
+ $MBI->_lsft($x->{_m}, $y->{_e}, 10);# 123 => 1230, $y->{_m} is already 25
+ }
+ # $ym is now mantissa of $y based on exponent 0
+
+ my $shiftx = 0; # correct _e of $x by this
+ if ($x->{_es} eq '-') # has digits after dot
+ {
+ # 123.4 % 20 => 1234 % 200
+ $shiftx = $MBI->_num($x->{_e}); # no more digits after dot
+ $MBI->_lsft($ym, $x->{_e}, 10); # 123 => 1230
+ }
+ # 123e1 % 20 => 1230 % 20
+ if ($x->{_es} eq '+' && !$MBI->_is_zero($x->{_e}))
+ {
+ $MBI->_lsft( $x->{_m}, $x->{_e},10); # es => '+' here
+ }
+
+ $x->{_e} = $MBI->_new($shiftx);
+ $x->{_es} = '+';
+ $x->{_es} = '-' if $shiftx != 0 || $shifty != 0;
+ $MBI->_add( $x->{_e}, $MBI->_new($shifty)) if $shifty != 0;
+
+ # now mantissas are equalized, exponent of $x is adjusted, so calc result
+
+ $x->{_m} = $MBI->_mod( $x->{_m}, $ym);
+
+ $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
+ $x->bnorm();
+
+ if ($neg != 0) # one of them negative => correct in place
+ {
+ my $r = $y - $x;
+ $x->{_m} = $r->{_m};
+ $x->{_e} = $r->{_e};
+ $x->{_es} = $r->{_es};
+ $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
+ $x->bnorm();
+ }
+
+ $x->round($a,$p,$r,$y); # round and return
+ }
+
+sub broot
+ {
+ # calculate $y'th root of $x
+
+ # set up parameters
+ my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('broot');
+
+ # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
+ return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
+ $y->{sign} !~ /^\+$/;
+
+ return $x if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my (@params,$scale);
+ ($x,@params) = $x->_find_round_parameters($a,$p,$r);
+
+ return $x if $x->is_nan(); # error in _find_round_parameters?
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r; # iound mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
+
+ # remember sign and make $x positive, since -4 ** (1/2) => -2
+ my $sign = 0; $sign = 1 if $x->{sign} eq '-'; $x->{sign} = '+';
+
+ my $is_two = 0;
+ if ($y->isa('Math::BigFloat'))
+ {
+ $is_two = ($y->{sign} eq '+' && $MBI->_is_two($y->{_m}) && $MBI->_is_zero($y->{_e}));
+ }
+ else
+ {
+ $is_two = ($y == 2);
+ }
+
+ # normal square root if $y == 2:
+ if ($is_two)
+ {
+ $x->bsqrt($scale+4);
+ }
+ elsif ($y->is_one('-'))
+ {
+ # $x ** -1 => 1/$x
+ my $u = $self->bone()->bdiv($x,$scale);
+ # copy private parts over
+ $x->{_m} = $u->{_m};
+ $x->{_e} = $u->{_e};
+ $x->{_es} = $u->{_es};
+ }
+ else
+ {
+ # calculate the broot() as integer result first, and if it fits, return
+ # it rightaway (but only if $x and $y are integer):
+
+ my $done = 0; # not yet
+ if ($y->is_int() && $x->is_int())
+ {
+ my $i = $MBI->_copy( $x->{_m} );
+ $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
+ my $int = Math::BigInt->bzero();
+ $int->{value} = $i;
+ $int->broot($y->as_number());
+ # if ($exact)
+ if ($int->copy()->bpow($y) == $x)
+ {
+ # found result, return it
+ $x->{_m} = $int->{value};
+ $x->{_e} = $MBI->_zero();
+ $x->{_es} = '+';
+ $x->bnorm();
+ $done = 1;
+ }
+ }
+ if ($done == 0)
+ {
+ my $u = $self->bone()->bdiv($y,$scale+4);
+ delete $u->{_a}; delete $u->{_p}; # otherwise it conflicts
+ $x->bpow($u,$scale+4); # el cheapo
+ }
+ }
+ $x->bneg() if $sign == 1;
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+sub bsqrt
+ {
+ # calculate square root
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('bsqrt');
+
+ return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
+ return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
+ return $x->round($a,$p,$r) if $x->is_zero() || $x->is_one();
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my (@params,$scale);
+ ($x,@params) = $x->_find_round_parameters($a,$p,$r);
+
+ return $x if $x->is_nan(); # error in _find_round_parameters?
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
+
+ my $i = $MBI->_copy( $x->{_m} );
+ $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
+ my $xas = Math::BigInt->bzero();
+ $xas->{value} = $i;
+
+ my $gs = $xas->copy()->bsqrt(); # some guess
+
+ if (($x->{_es} ne '-') # guess can't be accurate if there are
+ # digits after the dot
+ && ($xas->bacmp($gs * $gs) == 0)) # guess hit the nail on the head?
+ {
+ # exact result, copy result over to keep $x
+ $x->{_m} = $gs->{value}; $x->{_e} = $MBI->_zero(); $x->{_es} = '+';
+ $x->bnorm();
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # re-enable A and P, upgrade is taken care of by "local"
+ ${"$self\::accuracy"} = $ab; ${"$self\::precision"} = $pb;
+ return $x;
+ }
+
+ # sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
+ # of the result by multipyling the input by 100 and then divide the integer
+ # result of sqrt(input) by 10. Rounding afterwards returns the real result.
+
+ # The following steps will transform 123.456 (in $x) into 123456 (in $y1)
+ my $y1 = $MBI->_copy($x->{_m});
+
+ my $length = $MBI->_len($y1);
+
+ # Now calculate how many digits the result of sqrt(y1) would have
+ my $digits = int($length / 2);
+
+ # But we need at least $scale digits, so calculate how many are missing
+ my $shift = $scale - $digits;
+
+ # This happens if the input had enough digits
+ # (we take care of integer guesses above)
+ $shift = 0 if $shift < 0;
+
+ # Multiply in steps of 100, by shifting left two times the "missing" digits
+ my $s2 = $shift * 2;
+
+ # We now make sure that $y1 has the same odd or even number of digits than
+ # $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
+ # because we always must multiply by steps of 100 (sqrt(100) is 10) and not
+ # steps of 10. The length of $x does not count, since an even or odd number
+ # of digits before the dot is not changed by adding an even number of digits
+ # after the dot (the result is still odd or even digits long).
+ $s2++ if $MBI->_is_odd($x->{_e});
+
+ $MBI->_lsft( $y1, $MBI->_new($s2), 10);
+
+ # now take the square root and truncate to integer
+ $y1 = $MBI->_sqrt($y1);
+
+ # By "shifting" $y1 right (by creating a negative _e) we calculate the final
+ # result, which is than later rounded to the desired scale.
+
+ # calculate how many zeros $x had after the '.' (or before it, depending
+ # on sign of $dat, the result should have half as many:
+ my $dat = $MBI->_num($x->{_e});
+ $dat = -$dat if $x->{_es} eq '-';
+ $dat += $length;
+
+ if ($dat > 0)
+ {
+ # no zeros after the dot (e.g. 1.23, 0.49 etc)
+ # preserve half as many digits before the dot than the input had
+ # (but round this "up")
+ $dat = int(($dat+1)/2);
+ }
+ else
+ {
+ $dat = int(($dat)/2);
+ }
+ $dat -= $MBI->_len($y1);
+ if ($dat < 0)
+ {
+ $dat = abs($dat);
+ $x->{_e} = $MBI->_new( $dat );
+ $x->{_es} = '-';
+ }
+ else
+ {
+ $x->{_e} = $MBI->_new( $dat );
+ $x->{_es} = '+';
+ }
+ $x->{_m} = $y1;
+ $x->bnorm();
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+sub bfac
+ {
+ # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
+ # compute factorial number, modifies first argument
+
+ # set up parameters
+ my ($self,$x,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ ($self,$x,@r) = objectify(1,@_) if !ref($x);
+
+ # inf => inf
+ return $x if $x->modify('bfac') || $x->{sign} eq '+inf';
+
+ return $x->bnan()
+ if (($x->{sign} ne '+') || # inf, NaN, <0 etc => NaN
+ ($x->{_es} ne '+')); # digits after dot?
+
+ # use BigInt's bfac() for faster calc
+ if (! $MBI->_is_zero($x->{_e}))
+ {
+ $MBI->_lsft($x->{_m}, $x->{_e},10); # change 12e1 to 120e0
+ $x->{_e} = $MBI->_zero(); # normalize
+ $x->{_es} = '+';
+ }
+ $MBI->_fac($x->{_m}); # calculate factorial
+ $x->bnorm()->round(@r); # norm again and round result
+ }
+
+sub _pow
+ {
+ # Calculate a power where $y is a non-integer, like 2 ** 0.3
+ my ($x,$y,@r) = @_;
+ my $self = ref($x);
+
+ # if $y == 0.5, it is sqrt($x)
+ $HALF = $self->new($HALF) unless ref($HALF);
+ return $x->bsqrt(@r,$y) if $y->bcmp($HALF) == 0;
+
+ # Using:
+ # a ** x == e ** (x * ln a)
+
+ # u = y * ln x
+ # _ _
+ # Taylor: | u u^2 u^3 |
+ # x ** y = 1 + | --- + --- + ----- + ... |
+ # |_ 1 1*2 1*2*3 _|
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters(@r);
+
+ return $x if $x->is_nan(); # error in _find_round_parameters?
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # disable P
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+
+ my ($limit,$v,$u,$below,$factor,$next,$over);
+
+ $u = $x->copy()->blog(undef,$scale)->bmul($y);
+ $v = $self->bone(); # 1
+ $factor = $self->new(2); # 2
+ $x->bone(); # first term: 1
+
+ $below = $v->copy();
+ $over = $u->copy();
+
+ $limit = $self->new("1E-". ($scale-1));
+ #my $steps = 0;
+ while (3 < 5)
+ {
+ # we calculate the next term, and add it to the last
+ # when the next term is below our limit, it won't affect the outcome
+ # anymore, so we stop:
+ $next = $over->copy()->bdiv($below,$scale);
+ last if $next->bacmp($limit) <= 0;
+ $x->badd($next);
+ # calculate things for the next term
+ $over *= $u; $below *= $factor; $factor->binc();
+
+ last if $x->{sign} !~ /^[-+]$/;
+
+ #$steps++;
+ }
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+sub bpow
+ {
+ # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
+ # compute power of two numbers, second arg is used as integer
+ # modifies first argument
+
+ # set up parameters
+ my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bpow');
+
+ return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
+ return $x if $x->{sign} =~ /^[+-]inf$/;
+
+ # cache the result of is_zero
+ my $y_is_zero = $y->is_zero();
+ return $x->bone() if $y_is_zero;
+ return $x if $x->is_one() || $y->is_one();
+
+ my $x_is_zero = $x->is_zero();
+ return $x->_pow($y,$a,$p,$r) if !$x_is_zero && !$y->is_int(); # non-integer power
+
+ my $y1 = $y->as_number()->{value}; # make MBI part
+
+ # if ($x == -1)
+ if ($x->{sign} eq '-' && $MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
+ {
+ # if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
+ return $MBI->_is_odd($y1) ? $x : $x->babs(1);
+ }
+ if ($x_is_zero)
+ {
+ return $x if $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0)
+ # 0 ** -y => 1 / (0 ** y) => 1 / 0! (1 / 0 => +inf)
+ return $x->binf();
+ }
+
+ my $new_sign = '+';
+ $new_sign = $MBI->_is_odd($y1) ? '-' : '+' if $x->{sign} ne '+';
+
+ # calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
+ $x->{_m} = $MBI->_pow( $x->{_m}, $y1);
+ $x->{_e} = $MBI->_mul ($x->{_e}, $y1);
+
+ $x->{sign} = $new_sign;
+ $x->bnorm();
+ if ($y->{sign} eq '-')
+ {
+ # modify $x in place!
+ my $z = $x->copy(); $x->bone();
+ return scalar $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!)
+ }
+ $x->round($a,$p,$r,$y);
+ }
+
+sub bmodpow
+ {
+ # takes a very large number to a very large exponent in a given very
+ # large modulus, quickly, thanks to binary exponentation. Supports
+ # negative exponents.
+ my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
+
+ return $num if $num->modify('bmodpow');
+
+ # check modulus for valid values
+ return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf
+ || $mod->is_zero());
+
+ # check exponent for valid values
+ if ($exp->{sign} =~ /\w/)
+ {
+ # i.e., if it's NaN, +inf, or -inf...
+ return $num->bnan();
+ }
+
+ $num->bmodinv ($mod) if ($exp->{sign} eq '-');
+
+ # check num for valid values (also NaN if there was no inverse but $exp < 0)
+ return $num->bnan() if $num->{sign} !~ /^[+-]$/;
+
+ # $mod is positive, sign on $exp is ignored, result also positive
+
+ # XXX TODO: speed it up when all three numbers are integers
+ $num->bpow($exp)->bmod($mod);
+ }
+
+###############################################################################
+# trigonometric functions
+
+# helper function for bpi() and batan2(), calculates arcus tanges (1/x)
+
+sub _atan_inv
+ {
+ # return a/b so that a/b approximates atan(1/x) to at least limit digits
+ my ($self, $x, $limit) = @_;
+
+ # Taylor: x^3 x^5 x^7 x^9
+ # atan = x - --- + --- - --- + --- - ...
+ # 3 5 7 9
+
+ # 1 1 1 1
+ # atan 1/x = - - ------- + ------- - ------- + ...
+ # x x^3 * 3 x^5 * 5 x^7 * 7
+
+ # 1 1 1 1
+ # atan 1/x = - - --------- + ---------- - ----------- + ...
+ # 5 3 * 125 5 * 3125 7 * 78125
+
+ # Subtraction/addition of a rational:
+
+ # 5 7 5*3 +- 7*4
+ # - +- - = ----------
+ # 4 3 4*3
+
+ # Term: N N+1
+ #
+ # a 1 a * d * c +- b
+ # ----- +- ------------------ = ----------------
+ # b d * c b * d * c
+
+ # since b1 = b0 * (d-2) * c
+
+ # a 1 a * d +- b / c
+ # ----- +- ------------------ = ----------------
+ # b d * c b * d
+
+ # and d = d + 2
+ # and c = c * x * x
+
+ # u = d * c
+ # stop if length($u) > limit
+ # a = a * u +- b
+ # b = b * u
+ # d = d + 2
+ # c = c * x * x
+ # sign = 1 - sign
+
+ my $a = $MBI->_one();
+ my $b = $MBI->_copy($x);
+
+ my $x2 = $MBI->_mul( $MBI->_copy($x), $b); # x2 = x * x
+ my $d = $MBI->_new( 3 ); # d = 3
+ my $c = $MBI->_mul( $MBI->_copy($x), $x2); # c = x ^ 3
+ my $two = $MBI->_new( 2 );
+
+ # run the first step unconditionally
+ my $u = $MBI->_mul( $MBI->_copy($d), $c);
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_sub($a, $b);
+ $b = $MBI->_mul($b, $u);
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+
+ # a is now a * (d-3) * c
+ # b is now b * (d-2) * c
+
+ # run the second step unconditionally
+ $u = $MBI->_mul( $MBI->_copy($d), $c);
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_add($a, $b);
+ $b = $MBI->_mul($b, $u);
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+
+ # a is now a * (d-3) * (d-5) * c * c
+ # b is now b * (d-2) * (d-4) * c * c
+
+ # so we can remove c * c from both a and b to shorten the numbers involved:
+ $a = $MBI->_div($a, $x2);
+ $b = $MBI->_div($b, $x2);
+ $a = $MBI->_div($a, $x2);
+ $b = $MBI->_div($b, $x2);
+
+# my $step = 0;
+ my $sign = 0; # 0 => -, 1 => +
+ while (3 < 5)
+ {
+# $step++;
+# if (($i++ % 100) == 0)
+# {
+# print "a=",$MBI->_str($a),"\n";
+# print "b=",$MBI->_str($b),"\n";
+# }
+# print "d=",$MBI->_str($d),"\n";
+# print "x2=",$MBI->_str($x2),"\n";
+# print "c=",$MBI->_str($c),"\n";
+
+ my $u = $MBI->_mul( $MBI->_copy($d), $c);
+ # use _alen() for libs like GMP where _len() would be O(N^2)
+ last if $MBI->_alen($u) > $limit;
+ my ($bc,$r) = $MBI->_div( $MBI->_copy($b), $c);
+ if ($MBI->_is_zero($r))
+ {
+ # b / c is an integer, so we can remove c from all terms
+ # this happens almost every time:
+ $a = $MBI->_mul($a, $d);
+ $a = $MBI->_sub($a, $bc) if $sign == 0;
+ $a = $MBI->_add($a, $bc) if $sign == 1;
+ $b = $MBI->_mul($b, $d);
+ }
+ else
+ {
+ # b / c is not an integer, so we keep c in the terms
+ # this happens very rarely, for instance for x = 5, this happens only
+ # at the following steps:
+ # 1, 5, 14, 32, 72, 157, 340, ...
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_sub($a, $b) if $sign == 0;
+ $a = $MBI->_add($a, $b) if $sign == 1;
+ $b = $MBI->_mul($b, $u);
+ }
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+ $sign = 1 - $sign;
+
+ }
+
+# print "Took $step steps for ", $MBI->_str($x),"\n";
+# print "a=",$MBI->_str($a),"\n"; print "b=",$MBI->_str($b),"\n";
+ # return a/b so that a/b approximates atan(1/x)
+ ($a,$b);
+ }
+
+sub bpi
+ {
+ my ($self,$n) = @_;
+ if (@_ == 0)
+ {
+ $self = $class;
+ }
+ if (@_ == 1)
+ {
+ # called like Math::BigFloat::bpi(10);
+ $n = $self; $self = $class;
+ # called like Math::BigFloat->bpi();
+ $n = undef if $n eq 'Math::BigFloat';
+ }
+ $self = ref($self) if ref($self);
+ my $fallback = defined $n ? 0 : 1;
+ $n = 40 if !defined $n || $n < 1;
+
+ # after 黃見利 (Hwang Chien-Lih) (1997)
+ # pi/4 = 183 * atan(1/239) + 32 * atan(1/1023) – 68 * atan(1/5832)
+ # + 12 * atan(1/110443) - 12 * atan(1/4841182) - 100 * atan(1/6826318)
+
+ # a few more to prevent rounding errors
+ $n += 4;
+
+ my ($a,$b) = $self->_atan_inv( $MBI->_new(239),$n);
+ my ($c,$d) = $self->_atan_inv( $MBI->_new(1023),$n);
+ my ($e,$f) = $self->_atan_inv( $MBI->_new(5832),$n);
+ my ($g,$h) = $self->_atan_inv( $MBI->_new(110443),$n);
+ my ($i,$j) = $self->_atan_inv( $MBI->_new(4841182),$n);
+ my ($k,$l) = $self->_atan_inv( $MBI->_new(6826318),$n);
+
+ $MBI->_mul($a, $MBI->_new(732));
+ $MBI->_mul($c, $MBI->_new(128));
+ $MBI->_mul($e, $MBI->_new(272));
+ $MBI->_mul($g, $MBI->_new(48));
+ $MBI->_mul($i, $MBI->_new(48));
+ $MBI->_mul($k, $MBI->_new(400));
+
+ my $x = $self->bone(); $x->{_m} = $a; my $x_d = $self->bone(); $x_d->{_m} = $b;
+ my $y = $self->bone(); $y->{_m} = $c; my $y_d = $self->bone(); $y_d->{_m} = $d;
+ my $z = $self->bone(); $z->{_m} = $e; my $z_d = $self->bone(); $z_d->{_m} = $f;
+ my $u = $self->bone(); $u->{_m} = $g; my $u_d = $self->bone(); $u_d->{_m} = $h;
+ my $v = $self->bone(); $v->{_m} = $i; my $v_d = $self->bone(); $v_d->{_m} = $j;
+ my $w = $self->bone(); $w->{_m} = $k; my $w_d = $self->bone(); $w_d->{_m} = $l;
+ $x->bdiv($x_d, $n);
+ $y->bdiv($y_d, $n);
+ $z->bdiv($z_d, $n);
+ $u->bdiv($u_d, $n);
+ $v->bdiv($v_d, $n);
+ $w->bdiv($w_d, $n);
+
+ delete $x->{_a}; delete $y->{_a}; delete $z->{_a};
+ delete $u->{_a}; delete $v->{_a}; delete $w->{_a};
+ $x->badd($y)->bsub($z)->badd($u)->bsub($v)->bsub($w);
+
+ $x->bround($n-4);
+ delete $x->{_a} if $fallback == 1;
+ $x;
+ }
+
+sub bcos
+ {
+ # Calculate a cosinus of x.
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ # Taylor: x^2 x^4 x^6 x^8
+ # cos = 1 - --- + --- - --- + --- ...
+ # 2! 4! 6! 8!
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters(@r);
+
+ # constant object or error in _find_round_parameters?
+ return $x if $x->modify('bcos') || $x->is_nan();
+
+ return $x->bone(@r) if $x->is_zero();
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # disable P
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+
+ my $last = 0;
+ my $over = $x * $x; # X ^ 2
+ my $x2 = $over->copy(); # X ^ 2; difference between terms
+ my $sign = 1; # start with -=
+ my $below = $self->new(2); my $factorial = $self->new(3);
+ $x->bone(); delete $x->{_a}; delete $x->{_p};
+
+ my $limit = $self->new("1E-". ($scale-1));
+ #my $steps = 0;
+ while (3 < 5)
+ {
+ # we calculate the next term, and add it to the last
+ # when the next term is below our limit, it won't affect the outcome
+ # anymore, so we stop:
+ my $next = $over->copy()->bdiv($below,$scale);
+ last if $next->bacmp($limit) <= 0;
+
+ if ($sign == 0)
+ {
+ $x->badd($next);
+ }
+ else
+ {
+ $x->bsub($next);
+ }
+ $sign = 1-$sign; # alternate
+ # calculate things for the next term
+ $over->bmul($x2); # $x*$x
+ $below->bmul($factorial); $factorial->binc(); # n*(n+1)
+ $below->bmul($factorial); $factorial->binc(); # n*(n+1)
+ }
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+sub bsin
+ {
+ # Calculate a sinus of x.
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ # taylor: x^3 x^5 x^7 x^9
+ # sin = x - --- + --- - --- + --- ...
+ # 3! 5! 7! 9!
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters(@r);
+
+ # constant object or error in _find_round_parameters?
+ return $x if $x->modify('bsin') || $x->is_nan();
+
+ return $x->bzero(@r) if $x->is_zero();
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # disable P
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+
+ my $last = 0;
+ my $over = $x * $x; # X ^ 2
+ my $x2 = $over->copy(); # X ^ 2; difference between terms
+ $over->bmul($x); # X ^ 3 as starting value
+ my $sign = 1; # start with -=
+ my $below = $self->new(6); my $factorial = $self->new(4);
+ delete $x->{_a}; delete $x->{_p};
+
+ my $limit = $self->new("1E-". ($scale-1));
+ #my $steps = 0;
+ while (3 < 5)
+ {
+ # we calculate the next term, and add it to the last
+ # when the next term is below our limit, it won't affect the outcome
+ # anymore, so we stop:
+ my $next = $over->copy()->bdiv($below,$scale);
+ last if $next->bacmp($limit) <= 0;
+
+ if ($sign == 0)
+ {
+ $x->badd($next);
+ }
+ else
+ {
+ $x->bsub($next);
+ }
+ $sign = 1-$sign; # alternate
+ # calculate things for the next term
+ $over->bmul($x2); # $x*$x
+ $below->bmul($factorial); $factorial->binc(); # n*(n+1)
+ $below->bmul($factorial); $factorial->binc(); # n*(n+1)
+ }
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+sub batan2
+ {
+ # calculate arcus tangens of ($y/$x)
+
+ # set up parameters
+ my ($self,$y,$x,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$y,$x,@r) = objectify(2,@_);
+ }
+
+ return $y if $y->modify('batan2');
+
+ return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
+
+ # Y X
+ # 0 0 result is 0
+ # 0 +x result is 0
+ # ? inf result is 0
+ return $y->bzero(@r) if ($x->is_inf('+') && !$y->is_inf()) || ($y->is_zero() && $x->{sign} eq '+');
+
+ # Y X
+ # != 0 -inf result is +- pi
+ if ($x->is_inf() || $y->is_inf())
+ {
+ # calculate PI
+ my $pi = $self->bpi(@r);
+ if ($y->is_inf())
+ {
+ # upgrade to BigRat etc.
+ return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
+ if ($x->{sign} eq '-inf')
+ {
+ # calculate 3 pi/4
+ $MBI->_mul($pi->{_m}, $MBI->_new(3));
+ $MBI->_div($pi->{_m}, $MBI->_new(4));
+ }
+ elsif ($x->{sign} eq '+inf')
+ {
+ # calculate pi/4
+ $MBI->_div($pi->{_m}, $MBI->_new(4));
+ }
+ else
+ {
+ # calculate pi/2
+ $MBI->_div($pi->{_m}, $MBI->_new(2));
+ }
+ $y->{sign} = substr($y->{sign},0,1); # keep +/-
+ }
+ # modify $y in place
+ $y->{_m} = $pi->{_m};
+ $y->{_e} = $pi->{_e};
+ $y->{_es} = $pi->{_es};
+ # keep the sign of $y
+ return $y;
+ }
+
+ return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
+
+ # Y X
+ # 0 -x result is PI
+ if ($y->is_zero())
+ {
+ # calculate PI
+ my $pi = $self->bpi(@r);
+ # modify $y in place
+ $y->{_m} = $pi->{_m};
+ $y->{_e} = $pi->{_e};
+ $y->{_es} = $pi->{_es};
+ $y->{sign} = '+';
+ return $y;
+ }
+
+ # Y X
+ # +y 0 result is PI/2
+ # -y 0 result is -PI/2
+ if ($x->is_zero())
+ {
+ # calculate PI/2
+ my $pi = $self->bpi(@r);
+ # modify $y in place
+ $y->{_m} = $pi->{_m};
+ $y->{_e} = $pi->{_e};
+ $y->{_es} = $pi->{_es};
+ # -y => -PI/2, +y => PI/2
+ $MBI->_div($y->{_m}, $MBI->_new(2));
+ return $y;
+ }
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($y,@params) = $y->_find_round_parameters(@r);
+
+ # error in _find_round_parameters?
+ return $y if $y->is_nan();
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # disable P
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # inlined is_one() && is_one('-')
+ if ($MBI->_is_one($y->{_m}) && $MBI->_is_zero($y->{_e}))
+ {
+ # shortcut: 1 1 result is PI/4
+ # inlined is_one() && is_one('-')
+ if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
+ {
+ # 1,1 => PI/4
+ my $pi_4 = $self->bpi( $scale - 3);
+ # modify $y in place
+ $y->{_m} = $pi_4->{_m};
+ $y->{_e} = $pi_4->{_e};
+ $y->{_es} = $pi_4->{_es};
+ # 1 1 => +
+ # -1 1 => -
+ # 1 -1 => -
+ # -1 -1 => +
+ $y->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
+ $MBI->_div($y->{_m}, $MBI->_new(4));
+ return $y;
+ }
+ # shortcut: 1 int(X) result is _atan_inv(X)
+
+ # is integer
+ if ($x->{_es} eq '+')
+ {
+ my $x1 = $MBI->_copy($x->{_m});
+ $MBI->_lsft($x1, $x->{_e},10) unless $MBI->_is_zero($x->{_e});
+
+ my ($a,$b) = $self->_atan_inv($x1, $scale);
+ my $y_sign = $y->{sign};
+ # calculate A/B
+ $y->bone(); $y->{_m} = $a; my $y_d = $self->bone(); $y_d->{_m} = $b;
+ $y->bdiv($y_d, @r);
+ $y->{sign} = $y_sign;
+ return $y;
+ }
+ }
+
+ # handle all other cases
+ # X Y
+ # +x +y 0 to PI/2
+ # -x +y PI/2 to PI
+ # +x -y 0 to -PI/2
+ # -x -y -PI/2 to -PI
+
+ my $y_sign = $y->{sign};
+
+ # divide $x by $y
+ $y->bdiv($x, $scale) unless $x->is_one();
+ $y->batan(@r);
+
+ # restore sign
+ $y->{sign} = $y_sign;
+
+ $y;
+ }
+
+sub batan
+ {
+ # Calculate a arcus tangens of x.
+ my ($x,@r) = @_;
+ my $self = ref($x);
+
+ # taylor: x^3 x^5 x^7 x^9
+ # atan = x - --- + --- - --- + --- ...
+ # 3 5 7 9
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters(@r);
+
+ # constant object or error in _find_round_parameters?
+ return $x if $x->modify('batan') || $x->is_nan();
+
+ if ($x->{sign} =~ /^[+-]inf\z/)
+ {
+ # +inf result is PI/2
+ # -inf result is -PI/2
+ # calculate PI/2
+ my $pi = $self->bpi(@r);
+ # modify $x in place
+ $x->{_m} = $pi->{_m};
+ $x->{_e} = $pi->{_e};
+ $x->{_es} = $pi->{_es};
+ # -y => -PI/2, +y => PI/2
+ $x->{sign} = substr($x->{sign},0,1); # +inf => +
+ $MBI->_div($x->{_m}, $MBI->_new(2));
+ return $x;
+ }
+
+ return $x->bzero(@r) if $x->is_zero();
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # disable P
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it is not
+ # enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ # 1 or -1 => PI/4
+ # inlined is_one() && is_one('-')
+ if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
+ {
+ my $pi = $self->bpi($scale - 3);
+ # modify $x in place
+ $x->{_m} = $pi->{_m};
+ $x->{_e} = $pi->{_e};
+ $x->{_es} = $pi->{_es};
+ # leave the sign of $x alone (+1 => +PI/4, -1 => -PI/4)
+ $MBI->_div($x->{_m}, $MBI->_new(4));
+ return $x;
+ }
+
+ # This series is only valid if -1 < x < 1, so for other x we need to
+ # to calculate PI/2 - atan(1/x):
+ my $one = $MBI->_new(1);
+ my $pi = undef;
+ if ($x->{_es} eq '+' && ($MBI->_acmp($x->{_m},$one) >= 0))
+ {
+ # calculate PI/2
+ $pi = $self->bpi($scale - 3);
+ $MBI->_div($pi->{_m}, $MBI->_new(2));
+ # calculate 1/$x:
+ my $x_copy = $x->copy();
+ # modify $x in place
+ $x->bone(); $x->bdiv($x_copy,$scale);
+ }
+
+ # when user set globals, they would interfere with our calculation, so
+ # disable them and later re-enable them
+ no strict 'refs';
+ my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
+ my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
+ # we also need to disable any set A or P on $x (_find_round_parameters took
+ # them already into account), since these would interfere, too
+ delete $x->{_a}; delete $x->{_p};
+ # need to disable $upgrade in BigInt, to avoid deep recursion
+ local $Math::BigInt::upgrade = undef;
+
+ my $last = 0;
+ my $over = $x * $x; # X ^ 2
+ my $x2 = $over->copy(); # X ^ 2; difference between terms
+ $over->bmul($x); # X ^ 3 as starting value
+ my $sign = 1; # start with -=
+ my $below = $self->new(3);
+ my $two = $self->new(2);
+ delete $x->{_a}; delete $x->{_p};
+
+ my $limit = $self->new("1E-". ($scale-1));
+ #my $steps = 0;
+ while (3 < 5)
+ {
+ # we calculate the next term, and add it to the last
+ # when the next term is below our limit, it won't affect the outcome
+ # anymore, so we stop:
+ my $next = $over->copy()->bdiv($below,$scale);
+ last if $next->bacmp($limit) <= 0;
+
+ if ($sign == 0)
+ {
+ $x->badd($next);
+ }
+ else
+ {
+ $x->bsub($next);
+ }
+ $sign = 1-$sign; # alternate
+ # calculate things for the next term
+ $over->bmul($x2); # $x*$x
+ $below->badd($two); # n += 2
+ }
+
+ if (defined $pi)
+ {
+ my $x_copy = $x->copy();
+ # modify $x in place
+ $x->{_m} = $pi->{_m};
+ $x->{_e} = $pi->{_e};
+ $x->{_es} = $pi->{_es};
+ # PI/2 - $x
+ $x->bsub($x_copy);
+ }
+
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+ # restore globals
+ $$abr = $ab; $$pbr = $pb;
+ $x;
+ }
+
+###############################################################################
+# rounding functions
+
+sub bfround
+ {
+ # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
+ # $n == 0 means round to integer
+ # expects and returns normalized numbers!
+ my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
+
+ my ($scale,$mode) = $x->_scale_p(@_);
+ return $x if !defined $scale || $x->modify('bfround'); # no-op
+
+ # never round a 0, +-inf, NaN
+ if ($x->is_zero())
+ {
+ $x->{_p} = $scale if !defined $x->{_p} || $x->{_p} < $scale; # -3 < -2
+ return $x;
+ }
+ return $x if $x->{sign} !~ /^[+-]$/;
+
+ # don't round if x already has lower precision
+ return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p});
+
+ $x->{_p} = $scale; # remember round in any case
+ delete $x->{_a}; # and clear A
+ if ($scale < 0)
+ {
+ # round right from the '.'
+
+ return $x if $x->{_es} eq '+'; # e >= 0 => nothing to round
+
+ $scale = -$scale; # positive for simplicity
+ my $len = $MBI->_len($x->{_m}); # length of mantissa
+
+ # the following poses a restriction on _e, but if _e is bigger than a
+ # scalar, you got other problems (memory etc) anyway
+ my $dad = -(0+ ($x->{_es}.$MBI->_num($x->{_e}))); # digits after dot
+ my $zad = 0; # zeros after dot
+ $zad = $dad - $len if (-$dad < -$len); # for 0.00..00xxx style
+
+ # p rint "scale $scale dad $dad zad $zad len $len\n";
+ # number bsstr len zad dad
+ # 0.123 123e-3 3 0 3
+ # 0.0123 123e-4 3 1 4
+ # 0.001 1e-3 1 2 3
+ # 1.23 123e-2 3 0 2
+ # 1.2345 12345e-4 5 0 4
+
+ # do not round after/right of the $dad
+ return $x if $scale > $dad; # 0.123, scale >= 3 => exit
+
+ # round to zero if rounding inside the $zad, but not for last zero like:
+ # 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
+ return $x->bzero() if $scale < $zad;
+ if ($scale == $zad) # for 0.006, scale -3 and trunc
+ {
+ $scale = -$len;
+ }
+ else
+ {
+ # adjust round-point to be inside mantissa
+ if ($zad != 0)
+ {
+ $scale = $scale-$zad;
+ }
+ else
+ {
+ my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot
+ $scale = $dbd+$scale;
+ }
+ }
+ }
+ else
+ {
+ # round left from the '.'
+
+ # 123 => 100 means length(123) = 3 - $scale (2) => 1
+
+ my $dbt = $MBI->_len($x->{_m});
+ # digits before dot
+ my $dbd = $dbt + ($x->{_es} . $MBI->_num($x->{_e}));
+ # should be the same, so treat it as this
+ $scale = 1 if $scale == 0;
+ # shortcut if already integer
+ return $x if $scale == 1 && $dbt <= $dbd;
+ # maximum digits before dot
+ ++$dbd;
+
+ if ($scale > $dbd)
+ {
+ # not enough digits before dot, so round to zero
+ return $x->bzero;
+ }
+ elsif ( $scale == $dbd )
+ {
+ # maximum
+ $scale = -$dbt;
+ }
+ else
+ {
+ $scale = $dbd - $scale;
+ }
+ }
+ # pass sign to bround for rounding modes '+inf' and '-inf'
+ my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
+ $m->bround($scale,$mode);
+ $x->{_m} = $m->{value}; # get our mantissa back
+ $x->bnorm();
+ }
+
+sub bround
+ {
+ # accuracy: preserve $N digits, and overwrite the rest with 0's
+ my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
+
+ if (($_[0] || 0) < 0)
+ {
+ require Carp; Carp::croak ('bround() needs positive accuracy');
+ }
+
+ my ($scale,$mode) = $x->_scale_a(@_);
+ return $x if !defined $scale || $x->modify('bround'); # no-op
+
+ # scale is now either $x->{_a}, $accuracy, or the user parameter
+ # test whether $x already has lower accuracy, do nothing in this case
+ # but do round if the accuracy is the same, since a math operation might
+ # want to round a number with A=5 to 5 digits afterwards again
+ return $x if defined $x->{_a} && $x->{_a} < $scale;
+
+ # scale < 0 makes no sense
+ # scale == 0 => keep all digits
+ # never round a +-inf, NaN
+ return $x if ($scale <= 0) || $x->{sign} !~ /^[+-]$/;
+
+ # 1: never round a 0
+ # 2: if we should keep more digits than the mantissa has, do nothing
+ if ($x->is_zero() || $MBI->_len($x->{_m}) <= $scale)
+ {
+ $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale;
+ return $x;
+ }
+
+ # pass sign to bround for '+inf' and '-inf' rounding modes
+ my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
+
+ $m->bround($scale,$mode); # round mantissa
+ $x->{_m} = $m->{value}; # get our mantissa back
+ $x->{_a} = $scale; # remember rounding
+ delete $x->{_p}; # and clear P
+ $x->bnorm(); # del trailing zeros gen. by bround()
+ }
+
+sub bfloor
+ {
+ # return integer less or equal then $x
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('bfloor');
+
+ return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
+
+ # if $x has digits after dot
+ if ($x->{_es} eq '-')
+ {
+ $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
+ $x->{_e} = $MBI->_zero(); # trunc/norm
+ $x->{_es} = '+'; # abs e
+ $MBI->_inc($x->{_m}) if $x->{sign} eq '-'; # increment if negative
+ }
+ $x->round($a,$p,$r);
+ }
+
+sub bceil
+ {
+ # return integer greater or equal then $x
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->modify('bceil');
+ return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
+
+ # if $x has digits after dot
+ if ($x->{_es} eq '-')
+ {
+ $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
+ $x->{_e} = $MBI->_zero(); # trunc/norm
+ $x->{_es} = '+'; # abs e
+ $MBI->_inc($x->{_m}) if $x->{sign} eq '+'; # increment if positive
+ }
+ $x->round($a,$p,$r);
+ }
+
+sub brsft
+ {
+ # shift right by $y (divide by power of $n)
+
+ # set up parameters
+ my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('brsft');
+ return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
+
+ $n = 2 if !defined $n; $n = $self->new($n);
+
+ # negative amount?
+ return $x->blsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
+
+ # the following call to bdiv() will return either quo or (quo,reminder):
+ $x->bdiv($n->bpow($y),$a,$p,$r,$y);
+ }
+
+sub blsft
+ {
+ # shift left by $y (multiply by power of $n)
+
+ # set up parameters
+ my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('blsft');
+ return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
+
+ $n = 2 if !defined $n; $n = $self->new($n);
+
+ # negative amount?
+ return $x->brsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
+
+ $x->bmul($n->bpow($y),$a,$p,$r,$y);
+ }
+
+###############################################################################
+
+sub DESTROY
+ {
+ # going through AUTOLOAD for every DESTROY is costly, avoid it by empty sub
+ }
+
+sub AUTOLOAD
+ {
+ # make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
+ # or falling back to MBI::bxxx()
+ my $name = $AUTOLOAD;
+
+ $name =~ s/(.*):://; # split package
+ my $c = $1 || $class;
+ no strict 'refs';
+ $c->import() if $IMPORT == 0;
+ if (!_method_alias($name))
+ {
+ if (!defined $name)
+ {
+ # delayed load of Carp and avoid recursion
+ require Carp;
+ Carp::croak ("$c: Can't call a method without name");
+ }
+ if (!_method_hand_up($name))
+ {
+ # delayed load of Carp and avoid recursion
+ require Carp;
+ Carp::croak ("Can't call $c\-\>$name, not a valid method");
+ }
+ # try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
+ $name =~ s/^f/b/;
+ return &{"Math::BigInt"."::$name"}(@_);
+ }
+ my $bname = $name; $bname =~ s/^f/b/;
+ $c .= "::$name";
+ *{$c} = \&{$bname};
+ &{$c}; # uses @_
+ }
+
+sub exponent
+ {
+ # return a copy of the exponent
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ my $s = $x->{sign}; $s =~ s/^[+-]//;
+ return Math::BigInt->new($s); # -inf, +inf => +inf
+ }
+ Math::BigInt->new( $x->{_es} . $MBI->_str($x->{_e}));
+ }
+
+sub mantissa
+ {
+ # return a copy of the mantissa
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ my $s = $x->{sign}; $s =~ s/^[+]//;
+ return Math::BigInt->new($s); # -inf, +inf => +inf
+ }
+ my $m = Math::BigInt->new( $MBI->_str($x->{_m}));
+ $m->bneg() if $x->{sign} eq '-';
+
+ $m;
+ }
+
+sub parts
+ {
+ # return a copy of both the exponent and the mantissa
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//;
+ return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf
+ }
+ my $m = Math::BigInt->bzero();
+ $m->{value} = $MBI->_copy($x->{_m});
+ $m->bneg() if $x->{sign} eq '-';
+ ($m, Math::BigInt->new( $x->{_es} . $MBI->_num($x->{_e}) ));
+ }
+
+##############################################################################
+# private stuff (internal use only)
+
+sub import
+ {
+ my $self = shift;
+ my $l = scalar @_;
+ my $lib = ''; my @a;
+ my $lib_kind = 'try';
+ $IMPORT=1;
+ for ( my $i = 0; $i < $l ; $i++)
+ {
+ if ( $_[$i] eq ':constant' )
+ {
+ # This causes overlord er load to step in. 'binary' and 'integer'
+ # are handled by BigInt.
+ overload::constant float => sub { $self->new(shift); };
+ }
+ elsif ($_[$i] eq 'upgrade')
+ {
+ # this causes upgrading
+ $upgrade = $_[$i+1]; # or undef to disable
+ $i++;
+ }
+ elsif ($_[$i] eq 'downgrade')
+ {
+ # this causes downgrading
+ $downgrade = $_[$i+1]; # or undef to disable
+ $i++;
+ }
+ elsif ($_[$i] =~ /^(lib|try|only)\z/)
+ {
+ # alternative library
+ $lib = $_[$i+1] || ''; # default Calc
+ $lib_kind = $1; # lib, try or only
+ $i++;
+ }
+ elsif ($_[$i] eq 'with')
+ {
+ # alternative class for our private parts()
+ # XXX: no longer supported
+ # $MBI = $_[$i+1] || 'Math::BigInt';
+ $i++;
+ }
+ else
+ {
+ push @a, $_[$i];
+ }
+ }
+
+ $lib =~ tr/a-zA-Z0-9,://cd; # restrict to sane characters
+ # let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
+ my $mbilib = eval { Math::BigInt->config()->{lib} };
+ if ((defined $mbilib) && ($MBI eq 'Math::BigInt::Calc'))
+ {
+ # MBI already loaded
+ Math::BigInt->import( $lib_kind, "$lib,$mbilib", 'objectify');
+ }
+ else
+ {
+ # MBI not loaded, or with ne "Math::BigInt::Calc"
+ $lib .= ",$mbilib" if defined $mbilib;
+ $lib =~ s/^,//; # don't leave empty
+
+ # replacement library can handle lib statement, but also could ignore it
+
+ # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
+ # used in the same script, or eval inside import(). So we require MBI:
+ require Math::BigInt;
+ Math::BigInt->import( $lib_kind => $lib, 'objectify' );
+ }
+ if ($@)
+ {
+ require Carp; Carp::croak ("Couldn't load $lib: $! $@");
+ }
+ # find out which one was actually loaded
+ $MBI = Math::BigInt->config()->{lib};
+
+ # register us with MBI to get notified of future lib changes
+ Math::BigInt::_register_callback( $self, sub { $MBI = $_[0]; } );
+
+ $self->export_to_level(1,$self,@a); # export wanted functions
+ }
+
+sub bnorm
+ {
+ # adjust m and e so that m is smallest possible
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+ my $zeros = $MBI->_zeros($x->{_m}); # correct for trailing zeros
+ if ($zeros != 0)
+ {
+ my $z = $MBI->_new($zeros);
+ $x->{_m} = $MBI->_rsft ($x->{_m}, $z, 10);
+ if ($x->{_es} eq '-')
+ {
+ if ($MBI->_acmp($x->{_e},$z) >= 0)
+ {
+ $x->{_e} = $MBI->_sub ($x->{_e}, $z);
+ $x->{_es} = '+' if $MBI->_is_zero($x->{_e});
+ }
+ else
+ {
+ $x->{_e} = $MBI->_sub ( $MBI->_copy($z), $x->{_e});
+ $x->{_es} = '+';
+ }
+ }
+ else
+ {
+ $x->{_e} = $MBI->_add ($x->{_e}, $z);
+ }
+ }
+ else
+ {
+ # $x can only be 0Ey if there are no trailing zeros ('0' has 0 trailing
+ # zeros). So, for something like 0Ey, set y to 1, and -0 => +0
+ $x->{sign} = '+', $x->{_es} = '+', $x->{_e} = $MBI->_one()
+ if $MBI->_is_zero($x->{_m});
+ }
+
+ $x; # MBI bnorm is no-op, so dont call it
+ }
+
+##############################################################################
+
+sub as_hex
+ {
+ # return number as hexadecimal string (only for integers defined)
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+ return '0x0' if $x->is_zero();
+
+ return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
+
+ my $z = $MBI->_copy($x->{_m});
+ if (! $MBI->_is_zero($x->{_e})) # > 0
+ {
+ $MBI->_lsft( $z, $x->{_e},10);
+ }
+ $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
+ $z->as_hex();
+ }
+
+sub as_bin
+ {
+ # return number as binary digit string (only for integers defined)
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+ return '0b0' if $x->is_zero();
+
+ return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
+
+ my $z = $MBI->_copy($x->{_m});
+ if (! $MBI->_is_zero($x->{_e})) # > 0
+ {
+ $MBI->_lsft( $z, $x->{_e},10);
+ }
+ $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
+ $z->as_bin();
+ }
+
+sub as_oct
+ {
+ # return number as octal digit string (only for integers defined)
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+ return '0' if $x->is_zero();
+
+ return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
+
+ my $z = $MBI->_copy($x->{_m});
+ if (! $MBI->_is_zero($x->{_e})) # > 0
+ {
+ $MBI->_lsft( $z, $x->{_e},10);
+ }
+ $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
+ $z->as_oct();
+ }
+
+sub as_number
+ {
+ # return copy as a bigint representation of this BigFloat number
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x if $x->modify('as_number');
+
+ if (!$x->isa('Math::BigFloat'))
+ {
+ # if the object can as_number(), use it
+ return $x->as_number() if $x->can('as_number');
+ # otherwise, get us a float and then a number
+ $x = $x->can('as_float') ? $x->as_float() : $self->new(0+"$x");
+ }
+
+ my $z = $MBI->_copy($x->{_m});
+ if ($x->{_es} eq '-') # < 0
+ {
+ $MBI->_rsft( $z, $x->{_e},10);
+ }
+ elsif (! $MBI->_is_zero($x->{_e})) # > 0
+ {
+ $MBI->_lsft( $z, $x->{_e},10);
+ }
+ $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
+ $z;
+ }
+
+sub length
+ {
+ my $x = shift;
+ my $class = ref($x) || $x;
+ $x = $class->new(shift) unless ref($x);
+
+ return 1 if $MBI->_is_zero($x->{_m});
+
+ my $len = $MBI->_len($x->{_m});
+ $len += $MBI->_num($x->{_e}) if $x->{_es} eq '+';
+ if (wantarray())
+ {
+ my $t = 0;
+ $t = $MBI->_num($x->{_e}) if $x->{_es} eq '-';
+ return ($len, $t);
+ }
+ $len;
+ }
+
+1;
+__END__
+
+=head1 NAME
+
+Math::BigFloat - Arbitrary size floating point math package
+
+=head1 SYNOPSIS
+
+ use Math::BigFloat;
+
+ # Number creation
+ my $x = Math::BigFloat->new($str); # defaults to 0
+ my $y = $x->copy(); # make a true copy
+ my $nan = Math::BigFloat->bnan(); # create a NotANumber
+ my $zero = Math::BigFloat->bzero(); # create a +0
+ my $inf = Math::BigFloat->binf(); # create a +inf
+ my $inf = Math::BigFloat->binf('-'); # create a -inf
+ my $one = Math::BigFloat->bone(); # create a +1
+ my $mone = Math::BigFloat->bone('-'); # create a -1
+
+ my $pi = Math::BigFloat->bpi(100); # PI to 100 digits
+
+ # the following examples compute their result to 100 digits accuracy:
+ my $cos = Math::BigFloat->new(1)->bcos(100); # cosinus(1)
+ my $sin = Math::BigFloat->new(1)->bsin(100); # sinus(1)
+ my $atan = Math::BigFloat->new(1)->batan(100); # arcus tangens(1)
+
+ my $atan2 = Math::BigFloat->new( 1 )->batan2( 1 ,100); # batan(1)
+ my $atan2 = Math::BigFloat->new( 1 )->batan2( 8 ,100); # batan(1/8)
+ my $atan2 = Math::BigFloat->new( -2 )->batan2( 1 ,100); # batan(-2)
+
+ # Testing
+ $x->is_zero(); # true if arg is +0
+ $x->is_nan(); # true if arg is NaN
+ $x->is_one(); # true if arg is +1
+ $x->is_one('-'); # true if arg is -1
+ $x->is_odd(); # true if odd, false for even
+ $x->is_even(); # true if even, false for odd
+ $x->is_pos(); # true if >= 0
+ $x->is_neg(); # true if < 0
+ $x->is_inf(sign); # true if +inf, or -inf (default is '+')
+
+ $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
+ $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
+ $x->sign(); # return the sign, either +,- or NaN
+ $x->digit($n); # return the nth digit, counting from right
+ $x->digit(-$n); # return the nth digit, counting from left
+
+ # The following all modify their first argument. If you want to preserve
+ # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
+ # necessary when mixing $a = $b assignments with non-overloaded math.
+
+ # set
+ $x->bzero(); # set $i to 0
+ $x->bnan(); # set $i to NaN
+ $x->bone(); # set $x to +1
+ $x->bone('-'); # set $x to -1
+ $x->binf(); # set $x to inf
+ $x->binf('-'); # set $x to -inf
+
+ $x->bneg(); # negation
+ $x->babs(); # absolute value
+ $x->bnorm(); # normalize (no-op)
+ $x->bnot(); # two's complement (bit wise not)
+ $x->binc(); # increment x by 1
+ $x->bdec(); # decrement x by 1
+
+ $x->badd($y); # addition (add $y to $x)
+ $x->bsub($y); # subtraction (subtract $y from $x)
+ $x->bmul($y); # multiplication (multiply $x by $y)
+ $x->bdiv($y); # divide, set $x to quotient
+ # return (quo,rem) or quo if scalar
+
+ $x->bmod($y); # modulus ($x % $y)
+ $x->bpow($y); # power of arguments ($x ** $y)
+ $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
+ $x->blsft($y, $n); # left shift by $y places in base $n
+ $x->brsft($y, $n); # right shift by $y places in base $n
+ # returns (quo,rem) or quo if in scalar context
+
+ $x->blog(); # logarithm of $x to base e (Euler's number)
+ $x->blog($base); # logarithm of $x to base $base (f.i. 2)
+ $x->bexp(); # calculate e ** $x where e is Euler's number
+
+ $x->band($y); # bit-wise and
+ $x->bior($y); # bit-wise inclusive or
+ $x->bxor($y); # bit-wise exclusive or
+ $x->bnot(); # bit-wise not (two's complement)
+
+ $x->bsqrt(); # calculate square-root
+ $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
+ $x->bfac(); # factorial of $x (1*2*3*4*..$x)
+
+ $x->bround($N); # accuracy: preserve $N digits
+ $x->bfround($N); # precision: round to the $Nth digit
+
+ $x->bfloor(); # return integer less or equal than $x
+ $x->bceil(); # return integer greater or equal than $x
+
+ # The following do not modify their arguments:
+
+ bgcd(@values); # greatest common divisor
+ blcm(@values); # lowest common multiplicator
+
+ $x->bstr(); # return string
+ $x->bsstr(); # return string in scientific notation
+
+ $x->as_int(); # return $x as BigInt
+ $x->exponent(); # return exponent as BigInt
+ $x->mantissa(); # return mantissa as BigInt
+ $x->parts(); # return (mantissa,exponent) as BigInt
+
+ $x->length(); # number of digits (w/o sign and '.')
+ ($l,$f) = $x->length(); # number of digits, and length of fraction
+
+ $x->precision(); # return P of $x (or global, if P of $x undef)
+ $x->precision($n); # set P of $x to $n
+ $x->accuracy(); # return A of $x (or global, if A of $x undef)
+ $x->accuracy($n); # set A $x to $n
+
+ # these get/set the appropriate global value for all BigFloat objects
+ Math::BigFloat->precision(); # Precision
+ Math::BigFloat->accuracy(); # Accuracy
+ Math::BigFloat->round_mode(); # rounding mode
+
+=head1 DESCRIPTION
+
+All operators (including basic math operations) are overloaded if you
+declare your big floating point numbers as
+
+ $i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
+
+Operations with overloaded operators preserve the arguments, which is
+exactly what you expect.
+
+=head2 Canonical notation
+
+Input to these routines are either BigFloat objects, or strings of the
+following four forms:
+
+=over 2
+
+=item *
+
+C</^[+-]\d+$/>
+
+=item *
+
+C</^[+-]\d+\.\d*$/>
+
+=item *
+
+C</^[+-]\d+E[+-]?\d+$/>
+
+=item *
+
+C</^[+-]\d*\.\d+E[+-]?\d+$/>
+
+=back
+
+all with optional leading and trailing zeros and/or spaces. Additionally,
+numbers are allowed to have an underscore between any two digits.
+
+Empty strings as well as other illegal numbers results in 'NaN'.
+
+bnorm() on a BigFloat object is now effectively a no-op, since the numbers
+are always stored in normalized form. On a string, it creates a BigFloat
+object.
+
+=head2 Output
+
+Output values are BigFloat objects (normalized), except for bstr() and bsstr().
+
+The string output will always have leading and trailing zeros stripped and drop
+a plus sign. C<bstr()> will give you always the form with a decimal point,
+while C<bsstr()> (s for scientific) gives you the scientific notation.
+
+ Input bstr() bsstr()
+ '-0' '0' '0E1'
+ ' -123 123 123' '-123123123' '-123123123E0'
+ '00.0123' '0.0123' '123E-4'
+ '123.45E-2' '1.2345' '12345E-4'
+ '10E+3' '10000' '1E4'
+
+Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
+C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
+return either undef, <0, 0 or >0 and are suited for sort.
+
+Actual math is done by using the class defined with C<with => Class;> (which
+defaults to BigInts) to represent the mantissa and exponent.
+
+The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
+represent the result when input arguments are not numbers, as well as
+the result of dividing by zero.
+
+=head2 C<mantissa()>, C<exponent()> and C<parts()>
+
+C<mantissa()> and C<exponent()> return the said parts of the BigFloat
+as BigInts such that:
+
+ $m = $x->mantissa();
+ $e = $x->exponent();
+ $y = $m * ( 10 ** $e );
+ print "ok\n" if $x == $y;
+
+C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
+
+A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
+
+Currently the mantissa is reduced as much as possible, favouring higher
+exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
+This might change in the future, so do not depend on it.
+
+=head2 Accuracy vs. Precision
+
+See also: L<Rounding|Rounding>.
+
+Math::BigFloat supports both precision (rounding to a certain place before or
+after the dot) and accuracy (rounding to a certain number of digits). For a
+full documentation, examples and tips on these topics please see the large
+section about rounding in L<Math::BigInt>.
+
+Since things like C<sqrt(2)> or C<1 / 3> must presented with a limited
+accuracy lest a operation consumes all resources, each operation produces
+no more than the requested number of digits.
+
+If there is no gloabl precision or accuracy set, B<and> the operation in
+question was not called with a requested precision or accuracy, B<and> the
+input $x has no accuracy or precision set, then a fallback parameter will
+be used. For historical reasons, it is called C<div_scale> and can be accessed
+via:
+
+ $d = Math::BigFloat->div_scale(); # query
+ Math::BigFloat->div_scale($n); # set to $n digits
+
+The default value for C<div_scale> is 40.
+
+In case the result of one operation has more digits than specified,
+it is rounded. The rounding mode taken is either the default mode, or the one
+supplied to the operation after the I<scale>:
+
+ $x = Math::BigFloat->new(2);
+ Math::BigFloat->accuracy(5); # 5 digits max
+ $y = $x->copy()->bdiv(3); # will give 0.66667
+ $y = $x->copy()->bdiv(3,6); # will give 0.666667
+ $y = $x->copy()->bdiv(3,6,undef,'odd'); # will give 0.666667
+ Math::BigFloat->round_mode('zero');
+ $y = $x->copy()->bdiv(3,6); # will also give 0.666667
+
+Note that C<< Math::BigFloat->accuracy() >> and C<< Math::BigFloat->precision() >>
+set the global variables, and thus B<any> newly created number will be subject
+to the global rounding B<immediately>. This means that in the examples above, the
+C<3> as argument to C<bdiv()> will also get an accuracy of B<5>.
+
+It is less confusing to either calculate the result fully, and afterwards
+round it explicitly, or use the additional parameters to the math
+functions like so:
+
+ use Math::BigFloat;
+ $x = Math::BigFloat->new(2);
+ $y = $x->copy()->bdiv(3);
+ print $y->bround(5),"\n"; # will give 0.66667
+
+ or
+
+ use Math::BigFloat;
+ $x = Math::BigFloat->new(2);
+ $y = $x->copy()->bdiv(3,5); # will give 0.66667
+ print "$y\n";
+
+=head2 Rounding
+
+=over 2
+
+=item ffround ( +$scale )
+
+Rounds to the $scale'th place left from the '.', counting from the dot.
+The first digit is numbered 1.
+
+=item ffround ( -$scale )
+
+Rounds to the $scale'th place right from the '.', counting from the dot.
+
+=item ffround ( 0 )
+
+Rounds to an integer.
+
+=item fround ( +$scale )
+
+Preserves accuracy to $scale digits from the left (aka significant digits)
+and pads the rest with zeros. If the number is between 1 and -1, the
+significant digits count from the first non-zero after the '.'
+
+=item fround ( -$scale ) and fround ( 0 )
+
+These are effectively no-ops.
+
+=back
+
+All rounding functions take as a second parameter a rounding mode from one of
+the following: 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'.
+
+The default rounding mode is 'even'. By using
+C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
+mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
+no longer supported.
+The second parameter to the round functions then overrides the default
+temporarily.
+
+The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
+'trunc' as rounding mode to make it equivalent to:
+
+ $x = 2.5;
+ $y = int($x) + 2;
+
+You can override this by passing the desired rounding mode as parameter to
+C<as_number()>:
+
+ $x = Math::BigFloat->new(2.5);
+ $y = $x->as_number('odd'); # $y = 3
+
+=head1 METHODS
+
+Math::BigFloat supports all methods that Math::BigInt supports, except it
+calculates non-integer results when possible. Please see L<Math::BigInt>
+for a full description of each method. Below are just the most important
+differences:
+
+=head2 accuracy
+
+ $x->accuracy(5); # local for $x
+ CLASS->accuracy(5); # global for all members of CLASS
+ # Note: This also applies to new()!
+
+ $A = $x->accuracy(); # read out accuracy that affects $x
+ $A = CLASS->accuracy(); # read out global accuracy
+
+Set or get the global or local accuracy, aka how many significant digits the
+results have. If you set a global accuracy, then this also applies to new()!
+
+Warning! The accuracy I<sticks>, e.g. once you created a number under the
+influence of C<< CLASS->accuracy($A) >>, all results from math operations with
+that number will also be rounded.
+
+In most cases, you should probably round the results explicitly using one of
+L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
+to the math operation as additional parameter:
+
+ my $x = Math::BigInt->new(30000);
+ my $y = Math::BigInt->new(7);
+ print scalar $x->copy()->bdiv($y, 2); # print 4300
+ print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
+
+=head2 precision()
+
+ $x->precision(-2); # local for $x, round at the second digit right of the dot
+ $x->precision(2); # ditto, round at the second digit left of the dot
+
+ CLASS->precision(5); # Global for all members of CLASS
+ # This also applies to new()!
+ CLASS->precision(-5); # ditto
+
+ $P = CLASS->precision(); # read out global precision
+ $P = $x->precision(); # read out precision that affects $x
+
+Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
+set the number of digits each result should have, with L<precision> you
+set the place where to round!
+
+=head2 bexp()
+
+ $x->bexp($accuracy); # calculate e ** X
+
+Calculates the expression C<e ** $x> where C<e> is Euler's number.
+
+This method was added in v1.82 of Math::BigInt (April 2007).
+
+=head2 bnok()
+
+ $x->bnok($y); # x over y (binomial coefficient n over k)
+
+Calculates the binomial coefficient n over k, also called the "choose"
+function. The result is equivalent to:
+
+ ( n ) n!
+ | - | = -------
+ ( k ) k!(n-k)!
+
+This method was added in v1.84 of Math::BigInt (April 2007).
+
+=head2 bpi()
+
+ print Math::BigFloat->bpi(100), "\n";
+
+Calculate PI to N digits (including the 3 before the dot). The result is
+rounded according to the current rounding mode, which defaults to "even".
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bcos()
+
+ my $x = Math::BigFloat->new(1);
+ print $x->bcos(100), "\n";
+
+Calculate the cosinus of $x, modifying $x in place.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bsin()
+
+ my $x = Math::BigFloat->new(1);
+ print $x->bsin(100), "\n";
+
+Calculate the sinus of $x, modifying $x in place.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 batan2()
+
+ my $y = Math::BigFloat->new(2);
+ my $x = Math::BigFloat->new(3);
+ print $y->batan2($x), "\n";
+
+Calculate the arcus tanges of C<$y> divided by C<$x>, modifying $y in place.
+See also L<batan()>.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 batan()
+
+ my $x = Math::BigFloat->new(1);
+ print $x->batan(100), "\n";
+
+Calculate the arcus tanges of $x, modifying $x in place. See also L<batan2()>.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bmuladd()
+
+ $x->bmuladd($y,$z);
+
+Multiply $x by $y, and then add $z to the result.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head1 Autocreating constants
+
+After C<use Math::BigFloat ':constant'> all the floating point constants
+in the given scope are converted to C<Math::BigFloat>. This conversion
+happens at compile time.
+
+In particular
+
+ perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
+
+prints the value of C<2E-100>. Note that without conversion of
+constants the expression 2E-100 will be calculated as normal floating point
+number.
+
+Please note that ':constant' does not affect integer constants, nor binary
+nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to
+work.
+
+=head2 Math library
+
+Math with the numbers is done (by default) by a module called
+Math::BigInt::Calc. This is equivalent to saying:
+
+ use Math::BigFloat lib => 'Calc';
+
+You can change this by using:
+
+ use Math::BigFloat lib => 'GMP';
+
+B<Note>: General purpose packages should not be explicit about the library
+to use; let the script author decide which is best.
+
+Note: The keyword 'lib' will warn when the requested library could not be
+loaded. To suppress the warning use 'try' instead:
+
+ use Math::BigFloat try => 'GMP';
+
+If your script works with huge numbers and Calc is too slow for them,
+you can also for the loading of one of these libraries and if none
+of them can be used, the code will die:
+
+ use Math::BigFloat only => 'GMP,Pari';
+
+The following would first try to find Math::BigInt::Foo, then
+Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
+
+ use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
+
+See the respective low-level library documentation for further details.
+
+Please note that Math::BigFloat does B<not> use the denoted library itself,
+but it merely passes the lib argument to Math::BigInt. So, instead of the need
+to do:
+
+ use Math::BigInt lib => 'GMP';
+ use Math::BigFloat;
+
+you can roll it all into one line:
+
+ use Math::BigFloat lib => 'GMP';
+
+It is also possible to just require Math::BigFloat:
+
+ require Math::BigFloat;
+
+This will load the necessary things (like BigInt) when they are needed, and
+automatically.
+
+See L<Math::BigInt> for more details than you ever wanted to know about using
+a different low-level library.
+
+=head2 Using Math::BigInt::Lite
+
+For backwards compatibility reasons it is still possible to
+request a different storage class for use with Math::BigFloat:
+
+ use Math::BigFloat with => 'Math::BigInt::Lite';
+
+However, this request is ignored, as the current code now uses the low-level
+math libary for directly storing the number parts.
+
+=head1 EXPORTS
+
+C<Math::BigFloat> exports nothing by default, but can export the C<bpi()> method:
+
+ use Math::BigFloat qw/bpi/;
+
+ print bpi(10), "\n";
+
+=head1 BUGS
+
+Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.
+
+=head1 CAVEATS
+
+Do not try to be clever to insert some operations in between switching
+libraries:
+
+ require Math::BigFloat;
+ my $matter = Math::BigFloat->bone() + 4; # load BigInt and Calc
+ Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
+ my $anti_matter = Math::BigFloat->bone()+4; # now use Pari
+
+This will create objects with numbers stored in two different backend libraries,
+and B<VERY BAD THINGS> will happen when you use these together:
+
+ my $flash_and_bang = $matter + $anti_matter; # Don't do this!
+
+=over 1
+
+=item stringify, bstr()
+
+Both stringify and bstr() now drop the leading '+'. The old code would return
+'+1.23', the new returns '1.23'. See the documentation in L<Math::BigInt> for
+reasoning and details.
+
+=item bdiv
+
+The following will probably not print what you expect:
+
+ print $c->bdiv(123.456),"\n";
+
+It prints both quotient and reminder since print works in list context. Also,
+bdiv() will modify $c, so be careful. You probably want to use
+
+ print $c / 123.456,"\n";
+ print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c
+
+instead.
+
+=item brsft
+
+The following will probably not print what you expect:
+
+ my $c = Math::BigFloat->new('3.14159');
+ print $c->brsft(3,10),"\n"; # prints 0.00314153.1415
+
+It prints both quotient and remainder, since print calls C<brsft()> in list
+context. Also, C<< $c->brsft() >> will modify $c, so be careful.
+You probably want to use
+
+ print scalar $c->copy()->brsft(3,10),"\n";
+ # or if you really want to modify $c
+ print scalar $c->brsft(3,10),"\n";
+
+instead.
+
+=item Modifying and =
+
+Beware of:
+
+ $x = Math::BigFloat->new(5);
+ $y = $x;
+
+It will not do what you think, e.g. making a copy of $x. Instead it just makes
+a second reference to the B<same> object and stores it in $y. Thus anything
+that modifies $x will modify $y (except overloaded math operators), and vice
+versa. See L<Math::BigInt> for details and how to avoid that.
+
+=item bpow
+
+C<bpow()> now modifies the first argument, unlike the old code which left
+it alone and only returned the result. This is to be consistent with
+C<badd()> etc. The first will modify $x, the second one won't:
+
+ print bpow($x,$i),"\n"; # modify $x
+ print $x->bpow($i),"\n"; # ditto
+ print $x ** $i,"\n"; # leave $x alone
+
+=item precision() vs. accuracy()
+
+A common pitfall is to use L<precision()> when you want to round a result to
+a certain number of digits:
+
+ use Math::BigFloat;
+
+ Math::BigFloat->precision(4); # does not do what you think it does
+ my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
+ print "$x\n"; # print "12000"
+ my $y = Math::BigFloat->new(3); # rounds $y to "0"!
+ print "$y\n"; # print "0"
+ $z = $x / $y; # 12000 / 0 => NaN!
+ print "$z\n";
+ print $z->precision(),"\n"; # 4
+
+Replacing L<precision> with L<accuracy> is probably not what you want, either:
+
+ use Math::BigFloat;
+
+ Math::BigFloat->accuracy(4); # enables global rounding:
+ my $x = Math::BigFloat->new(123456); # rounded immediately to "12350"
+ print "$x\n"; # print "123500"
+ my $y = Math::BigFloat->new(3); # rounded to "3
+ print "$y\n"; # print "3"
+ print $z = $x->copy()->bdiv($y),"\n"; # 41170
+ print $z->accuracy(),"\n"; # 4
+
+What you want to use instead is:
+
+ use Math::BigFloat;
+
+ my $x = Math::BigFloat->new(123456); # no rounding
+ print "$x\n"; # print "123456"
+ my $y = Math::BigFloat->new(3); # no rounding
+ print "$y\n"; # print "3"
+ print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
+ print $z->accuracy(),"\n"; # undef
+
+In addition to computing what you expected, the last example also does B<not>
+"taint" the result with an accuracy or precision setting, which would
+influence any further operation.
+
+=back
+
+=head1 SEE ALSO
+
+L<Math::BigInt>, L<Math::BigRat> and L<Math::Big> as well as
+L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
+
+The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
+because they solve the autoupgrading/downgrading issue, at least partly.
+
+The package at L<http://search.cpan.org/~tels/Math-BigInt> contains
+more documentation including a full version history, testcases, empty
+subclass files and benchmarks.
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 AUTHORS
+
+Mark Biggar, overloaded interface by Ilya Zakharevich.
+Completely rewritten by Tels L<http://bloodgate.com> in 2001 - 2006, and still
+at it in 2007.
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/BigFloat/Trace.pm b/Master/tlpkg/tlperl/lib/Math/BigFloat/Trace.pm
new file mode 100644
index 00000000000..871b2a969e8
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigFloat/Trace.pm
@@ -0,0 +1,58 @@
+#!/usr/bin/perl -w
+
+package Math::BigFloat::Trace;
+
+require 5.005_02;
+use strict;
+
+use Exporter;
+use Math::BigFloat;
+use vars qw($VERSION @ISA $PACKAGE @EXPORT_OK
+ $accuracy $precision $round_mode $div_scale);
+
+@ISA = qw(Exporter Math::BigFloat);
+
+$VERSION = 0.01;
+
+use overload; # inherit overload from BigFloat
+
+# Globals
+$accuracy = $precision = undef;
+$round_mode = 'even';
+$div_scale = 40;
+
+sub new
+{
+ my $proto = shift;
+ my $class = ref($proto) || $proto;
+
+ my $value = shift;
+ my $a = $accuracy; $a = $_[0] if defined $_[0];
+ my $p = $precision; $p = $_[1] if defined $_[1];
+ my $self = Math::BigFloat->new($value,$a,$p,$round_mode);
+
+# remember, downgrading may return a BigInt, so don't meddle with class
+# bless $self,$class;
+
+ print "MBF new '$value' => '$self' (",ref($self),")";
+ return $self;
+}
+
+sub import
+ {
+ print "MBF import ",join(' ',@_);
+ my $self = shift;
+
+ # we catch the constants, the rest goes go BigFloat
+ my @a = ();
+ foreach (@_)
+ {
+ push @a, $_ if $_ ne ':constant';
+ }
+ overload::constant float => sub { $self->new(shift); };
+
+ Math::BigFloat->import(@a); # need it for subclasses
+# $self->export_to_level(1,$self,@_); # need this ?
+ }
+
+1;
diff --git a/Master/tlpkg/tlperl/lib/Math/BigInt.pm b/Master/tlpkg/tlperl/lib/Math/BigInt.pm
new file mode 100644
index 00000000000..f97e4380798
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigInt.pm
@@ -0,0 +1,5115 @@
+package Math::BigInt;
+
+#
+# "Mike had an infinite amount to do and a negative amount of time in which
+# to do it." - Before and After
+#
+
+# The following hash values are used:
+# value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
+# sign : +,-,NaN,+inf,-inf
+# _a : accuracy
+# _p : precision
+# _f : flags, used by MBF to flag parts of a float as untouchable
+
+# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
+# underlying lib might change the reference!
+
+my $class = "Math::BigInt";
+use 5.006;
+
+$VERSION = '1.89_01';
+
+@ISA = qw(Exporter);
+@EXPORT_OK = qw(objectify bgcd blcm);
+
+# _trap_inf and _trap_nan are internal and should never be accessed from the
+# outside
+use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode
+ $upgrade $downgrade $_trap_nan $_trap_inf/;
+use strict;
+
+# Inside overload, the first arg is always an object. If the original code had
+# it reversed (like $x = 2 * $y), then the third paramater is true.
+# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
+# no difference, but in some cases it does.
+
+# For overloaded ops with only one argument we simple use $_[0]->copy() to
+# preserve the argument.
+
+# Thus inheritance of overload operators becomes possible and transparent for
+# our subclasses without the need to repeat the entire overload section there.
+
+use overload
+'=' => sub { $_[0]->copy(); },
+
+# some shortcuts for speed (assumes that reversed order of arguments is routed
+# to normal '+' and we thus can always modify first arg. If this is changed,
+# this breaks and must be adjusted.)
+'+=' => sub { $_[0]->badd($_[1]); },
+'-=' => sub { $_[0]->bsub($_[1]); },
+'*=' => sub { $_[0]->bmul($_[1]); },
+'/=' => sub { scalar $_[0]->bdiv($_[1]); },
+'%=' => sub { $_[0]->bmod($_[1]); },
+'^=' => sub { $_[0]->bxor($_[1]); },
+'&=' => sub { $_[0]->band($_[1]); },
+'|=' => sub { $_[0]->bior($_[1]); },
+
+'**=' => sub { $_[0]->bpow($_[1]); },
+'<<=' => sub { $_[0]->blsft($_[1]); },
+'>>=' => sub { $_[0]->brsft($_[1]); },
+
+# not supported by Perl yet
+'..' => \&_pointpoint,
+
+'<=>' => sub { my $rc = $_[2] ?
+ ref($_[0])->bcmp($_[1],$_[0]) :
+ $_[0]->bcmp($_[1]);
+ $rc = 1 unless defined $rc;
+ $rc <=> 0;
+ },
+# we need '>=' to get things like "1 >= NaN" right:
+'>=' => sub { my $rc = $_[2] ?
+ ref($_[0])->bcmp($_[1],$_[0]) :
+ $_[0]->bcmp($_[1]);
+ # if there was a NaN involved, return false
+ return '' unless defined $rc;
+ $rc >= 0;
+ },
+'cmp' => sub {
+ $_[2] ?
+ "$_[1]" cmp $_[0]->bstr() :
+ $_[0]->bstr() cmp "$_[1]" },
+
+'cos' => sub { $_[0]->copy->bcos(); },
+'sin' => sub { $_[0]->copy->bsin(); },
+'atan2' => sub { $_[2] ?
+ ref($_[0])->new($_[1])->batan2($_[0]) :
+ $_[0]->copy()->batan2($_[1]) },
+
+# are not yet overloadable
+#'hex' => sub { print "hex"; $_[0]; },
+#'oct' => sub { print "oct"; $_[0]; },
+
+# log(N) is log(N, e), where e is Euler's number
+'log' => sub { $_[0]->copy()->blog($_[1], undef); },
+'exp' => sub { $_[0]->copy()->bexp($_[1]); },
+'int' => sub { $_[0]->copy(); },
+'neg' => sub { $_[0]->copy()->bneg(); },
+'abs' => sub { $_[0]->copy()->babs(); },
+'sqrt' => sub { $_[0]->copy()->bsqrt(); },
+'~' => sub { $_[0]->copy()->bnot(); },
+
+# for subtract it's a bit tricky to not modify b: b-a => -a+b
+'-' => sub { my $c = $_[0]->copy; $_[2] ?
+ $c->bneg()->badd( $_[1]) :
+ $c->bsub( $_[1]) },
+'+' => sub { $_[0]->copy()->badd($_[1]); },
+'*' => sub { $_[0]->copy()->bmul($_[1]); },
+
+'/' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
+ },
+'%' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
+ },
+'**' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
+ },
+'<<' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
+ },
+'>>' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
+ },
+'&' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
+ },
+'|' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
+ },
+'^' => sub {
+ $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
+ },
+
+# can modify arg of ++ and --, so avoid a copy() for speed, but don't
+# use $_[0]->bone(), it would modify $_[0] to be 1!
+'++' => sub { $_[0]->binc() },
+'--' => sub { $_[0]->bdec() },
+
+# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
+'bool' => sub {
+ # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
+ # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-(
+ my $t = undef;
+ $t = 1 if !$_[0]->is_zero();
+ $t;
+ },
+
+# the original qw() does not work with the TIESCALAR below, why?
+# Order of arguments unsignificant
+'""' => sub { $_[0]->bstr(); },
+'0+' => sub { $_[0]->numify(); }
+;
+
+##############################################################################
+# global constants, flags and accessory
+
+# These vars are public, but their direct usage is not recommended, use the
+# accessor methods instead
+
+$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
+$accuracy = undef;
+$precision = undef;
+$div_scale = 40;
+
+$upgrade = undef; # default is no upgrade
+$downgrade = undef; # default is no downgrade
+
+# These are internally, and not to be used from the outside at all
+
+$_trap_nan = 0; # are NaNs ok? set w/ config()
+$_trap_inf = 0; # are infs ok? set w/ config()
+my $nan = 'NaN'; # constants for easier life
+
+my $CALC = 'Math::BigInt::FastCalc'; # module to do the low level math
+ # default is FastCalc.pm
+my $IMPORT = 0; # was import() called yet?
+ # used to make require work
+my %WARN; # warn only once for low-level libs
+my %CAN; # cache for $CALC->can(...)
+my %CALLBACKS; # callbacks to notify on lib loads
+my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
+
+##############################################################################
+# the old code had $rnd_mode, so we need to support it, too
+
+$rnd_mode = 'even';
+sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
+sub FETCH { return $round_mode; }
+sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
+
+BEGIN
+ {
+ # tie to enable $rnd_mode to work transparently
+ tie $rnd_mode, 'Math::BigInt';
+
+ # set up some handy alias names
+ *as_int = \&as_number;
+ *is_pos = \&is_positive;
+ *is_neg = \&is_negative;
+ }
+
+##############################################################################
+
+sub round_mode
+ {
+ no strict 'refs';
+ # make Class->round_mode() work
+ my $self = shift;
+ my $class = ref($self) || $self || __PACKAGE__;
+ if (defined $_[0])
+ {
+ my $m = shift;
+ if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
+ {
+ require Carp; Carp::croak ("Unknown round mode '$m'");
+ }
+ return ${"${class}::round_mode"} = $m;
+ }
+ ${"${class}::round_mode"};
+ }
+
+sub upgrade
+ {
+ no strict 'refs';
+ # make Class->upgrade() work
+ my $self = shift;
+ my $class = ref($self) || $self || __PACKAGE__;
+ # need to set new value?
+ if (@_ > 0)
+ {
+ return ${"${class}::upgrade"} = $_[0];
+ }
+ ${"${class}::upgrade"};
+ }
+
+sub downgrade
+ {
+ no strict 'refs';
+ # make Class->downgrade() work
+ my $self = shift;
+ my $class = ref($self) || $self || __PACKAGE__;
+ # need to set new value?
+ if (@_ > 0)
+ {
+ return ${"${class}::downgrade"} = $_[0];
+ }
+ ${"${class}::downgrade"};
+ }
+
+sub div_scale
+ {
+ no strict 'refs';
+ # make Class->div_scale() work
+ my $self = shift;
+ my $class = ref($self) || $self || __PACKAGE__;
+ if (defined $_[0])
+ {
+ if ($_[0] < 0)
+ {
+ require Carp; Carp::croak ('div_scale must be greater than zero');
+ }
+ ${"${class}::div_scale"} = $_[0];
+ }
+ ${"${class}::div_scale"};
+ }
+
+sub accuracy
+ {
+ # $x->accuracy($a); ref($x) $a
+ # $x->accuracy(); ref($x)
+ # Class->accuracy(); class
+ # Class->accuracy($a); class $a
+
+ my $x = shift;
+ my $class = ref($x) || $x || __PACKAGE__;
+
+ no strict 'refs';
+ # need to set new value?
+ if (@_ > 0)
+ {
+ my $a = shift;
+ # convert objects to scalars to avoid deep recursion. If object doesn't
+ # have numify(), then hopefully it will have overloading for int() and
+ # boolean test without wandering into a deep recursion path...
+ $a = $a->numify() if ref($a) && $a->can('numify');
+
+ if (defined $a)
+ {
+ # also croak on non-numerical
+ if (!$a || $a <= 0)
+ {
+ require Carp;
+ Carp::croak ('Argument to accuracy must be greater than zero');
+ }
+ if (int($a) != $a)
+ {
+ require Carp;
+ Carp::croak ('Argument to accuracy must be an integer');
+ }
+ }
+ if (ref($x))
+ {
+ # $object->accuracy() or fallback to global
+ $x->bround($a) if $a; # not for undef, 0
+ $x->{_a} = $a; # set/overwrite, even if not rounded
+ delete $x->{_p}; # clear P
+ $a = ${"${class}::accuracy"} unless defined $a; # proper return value
+ }
+ else
+ {
+ ${"${class}::accuracy"} = $a; # set global A
+ ${"${class}::precision"} = undef; # clear global P
+ }
+ return $a; # shortcut
+ }
+
+ my $a;
+ # $object->accuracy() or fallback to global
+ $a = $x->{_a} if ref($x);
+ # but don't return global undef, when $x's accuracy is 0!
+ $a = ${"${class}::accuracy"} if !defined $a;
+ $a;
+ }
+
+sub precision
+ {
+ # $x->precision($p); ref($x) $p
+ # $x->precision(); ref($x)
+ # Class->precision(); class
+ # Class->precision($p); class $p
+
+ my $x = shift;
+ my $class = ref($x) || $x || __PACKAGE__;
+
+ no strict 'refs';
+ if (@_ > 0)
+ {
+ my $p = shift;
+ # convert objects to scalars to avoid deep recursion. If object doesn't
+ # have numify(), then hopefully it will have overloading for int() and
+ # boolean test without wandering into a deep recursion path...
+ $p = $p->numify() if ref($p) && $p->can('numify');
+ if ((defined $p) && (int($p) != $p))
+ {
+ require Carp; Carp::croak ('Argument to precision must be an integer');
+ }
+ if (ref($x))
+ {
+ # $object->precision() or fallback to global
+ $x->bfround($p) if $p; # not for undef, 0
+ $x->{_p} = $p; # set/overwrite, even if not rounded
+ delete $x->{_a}; # clear A
+ $p = ${"${class}::precision"} unless defined $p; # proper return value
+ }
+ else
+ {
+ ${"${class}::precision"} = $p; # set global P
+ ${"${class}::accuracy"} = undef; # clear global A
+ }
+ return $p; # shortcut
+ }
+
+ my $p;
+ # $object->precision() or fallback to global
+ $p = $x->{_p} if ref($x);
+ # but don't return global undef, when $x's precision is 0!
+ $p = ${"${class}::precision"} if !defined $p;
+ $p;
+ }
+
+sub config
+ {
+ # return (or set) configuration data as hash ref
+ my $class = shift || 'Math::BigInt';
+
+ no strict 'refs';
+ if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH')))
+ {
+ # try to set given options as arguments from hash
+
+ my $args = $_[0];
+ if (ref($args) ne 'HASH')
+ {
+ $args = { @_ };
+ }
+ # these values can be "set"
+ my $set_args = {};
+ foreach my $key (
+ qw/trap_inf trap_nan
+ upgrade downgrade precision accuracy round_mode div_scale/
+ )
+ {
+ $set_args->{$key} = $args->{$key} if exists $args->{$key};
+ delete $args->{$key};
+ }
+ if (keys %$args > 0)
+ {
+ require Carp;
+ Carp::croak ("Illegal key(s) '",
+ join("','",keys %$args),"' passed to $class\->config()");
+ }
+ foreach my $key (keys %$set_args)
+ {
+ if ($key =~ /^trap_(inf|nan)\z/)
+ {
+ ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
+ next;
+ }
+ # use a call instead of just setting the $variable to check argument
+ $class->$key($set_args->{$key});
+ }
+ }
+
+ # now return actual configuration
+
+ my $cfg = {
+ lib => $CALC,
+ lib_version => ${"${CALC}::VERSION"},
+ class => $class,
+ trap_nan => ${"${class}::_trap_nan"},
+ trap_inf => ${"${class}::_trap_inf"},
+ version => ${"${class}::VERSION"},
+ };
+ foreach my $key (qw/
+ upgrade downgrade precision accuracy round_mode div_scale
+ /)
+ {
+ $cfg->{$key} = ${"${class}::$key"};
+ };
+ if (@_ == 1 && (ref($_[0]) ne 'HASH'))
+ {
+ # calls of the style config('lib') return just this value
+ return $cfg->{$_[0]};
+ }
+ $cfg;
+ }
+
+sub _scale_a
+ {
+ # select accuracy parameter based on precedence,
+ # used by bround() and bfround(), may return undef for scale (means no op)
+ my ($x,$scale,$mode) = @_;
+
+ $scale = $x->{_a} unless defined $scale;
+
+ no strict 'refs';
+ my $class = ref($x);
+
+ $scale = ${ $class . '::accuracy' } unless defined $scale;
+ $mode = ${ $class . '::round_mode' } unless defined $mode;
+
+ if (defined $scale)
+ {
+ $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
+ $scale = int($scale);
+ }
+
+ ($scale,$mode);
+ }
+
+sub _scale_p
+ {
+ # select precision parameter based on precedence,
+ # used by bround() and bfround(), may return undef for scale (means no op)
+ my ($x,$scale,$mode) = @_;
+
+ $scale = $x->{_p} unless defined $scale;
+
+ no strict 'refs';
+ my $class = ref($x);
+
+ $scale = ${ $class . '::precision' } unless defined $scale;
+ $mode = ${ $class . '::round_mode' } unless defined $mode;
+
+ if (defined $scale)
+ {
+ $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
+ $scale = int($scale);
+ }
+
+ ($scale,$mode);
+ }
+
+##############################################################################
+# constructors
+
+sub copy
+ {
+ # if two arguments, the first one is the class to "swallow" subclasses
+ if (@_ > 1)
+ {
+ my $self = bless {
+ sign => $_[1]->{sign},
+ value => $CALC->_copy($_[1]->{value}),
+ }, $_[0] if @_ > 1;
+
+ $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
+ $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
+ return $self;
+ }
+
+ my $self = bless {
+ sign => $_[0]->{sign},
+ value => $CALC->_copy($_[0]->{value}),
+ }, ref($_[0]);
+
+ $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
+ $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
+ $self;
+ }
+
+sub new
+ {
+ # create a new BigInt object from a string or another BigInt object.
+ # see hash keys documented at top
+
+ # the argument could be an object, so avoid ||, && etc on it, this would
+ # cause costly overloaded code to be called. The only allowed ops are
+ # ref() and defined.
+
+ my ($class,$wanted,$a,$p,$r) = @_;
+
+ # avoid numify-calls by not using || on $wanted!
+ return $class->bzero($a,$p) if !defined $wanted; # default to 0
+ return $class->copy($wanted,$a,$p,$r)
+ if ref($wanted) && $wanted->isa($class); # MBI or subclass
+
+ $class->import() if $IMPORT == 0; # make require work
+
+ my $self = bless {}, $class;
+
+ # shortcut for "normal" numbers
+ if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
+ {
+ $self->{sign} = $1 || '+';
+
+ if ($wanted =~ /^[+-]/)
+ {
+ # remove sign without touching wanted to make it work with constants
+ my $t = $wanted; $t =~ s/^[+-]//;
+ $self->{value} = $CALC->_new($t);
+ }
+ else
+ {
+ $self->{value} = $CALC->_new($wanted);
+ }
+ no strict 'refs';
+ if ( (defined $a) || (defined $p)
+ || (defined ${"${class}::precision"})
+ || (defined ${"${class}::accuracy"})
+ )
+ {
+ $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
+ }
+ return $self;
+ }
+
+ # handle '+inf', '-inf' first
+ if ($wanted =~ /^[+-]?inf\z/)
+ {
+ $self->{sign} = $wanted; # set a default sign for bstr()
+ return $self->binf($wanted);
+ }
+ # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
+ my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
+ if (!ref $mis)
+ {
+ if ($_trap_nan)
+ {
+ require Carp; Carp::croak("$wanted is not a number in $class");
+ }
+ $self->{value} = $CALC->_zero();
+ $self->{sign} = $nan;
+ return $self;
+ }
+ if (!ref $miv)
+ {
+ # _from_hex or _from_bin
+ $self->{value} = $mis->{value};
+ $self->{sign} = $mis->{sign};
+ return $self; # throw away $mis
+ }
+ # make integer from mantissa by adjusting exp, then convert to bigint
+ $self->{sign} = $$mis; # store sign
+ $self->{value} = $CALC->_zero(); # for all the NaN cases
+ my $e = int("$$es$$ev"); # exponent (avoid recursion)
+ if ($e > 0)
+ {
+ my $diff = $e - CORE::length($$mfv);
+ if ($diff < 0) # Not integer
+ {
+ if ($_trap_nan)
+ {
+ require Carp; Carp::croak("$wanted not an integer in $class");
+ }
+ #print "NOI 1\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
+ $self->{sign} = $nan;
+ }
+ else # diff >= 0
+ {
+ # adjust fraction and add it to value
+ #print "diff > 0 $$miv\n";
+ $$miv = $$miv . ($$mfv . '0' x $diff);
+ }
+ }
+ else
+ {
+ if ($$mfv ne '') # e <= 0
+ {
+ # fraction and negative/zero E => NOI
+ if ($_trap_nan)
+ {
+ require Carp; Carp::croak("$wanted not an integer in $class");
+ }
+ #print "NOI 2 \$\$mfv '$$mfv'\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
+ $self->{sign} = $nan;
+ }
+ elsif ($e < 0)
+ {
+ # xE-y, and empty mfv
+ #print "xE-y\n";
+ $e = abs($e);
+ if ($$miv !~ s/0{$e}$//) # can strip so many zero's?
+ {
+ if ($_trap_nan)
+ {
+ require Carp; Carp::croak("$wanted not an integer in $class");
+ }
+ #print "NOI 3\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
+ $self->{sign} = $nan;
+ }
+ }
+ }
+ $self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
+ $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
+ # if any of the globals is set, use them to round and store them inside $self
+ # do not round for new($x,undef,undef) since that is used by MBF to signal
+ # no rounding
+ $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
+ $self;
+ }
+
+sub bnan
+ {
+ # create a bigint 'NaN', if given a BigInt, set it to 'NaN'
+ my $self = shift;
+ $self = $class if !defined $self;
+ if (!ref($self))
+ {
+ my $c = $self; $self = {}; bless $self, $c;
+ }
+ no strict 'refs';
+ if (${"${class}::_trap_nan"})
+ {
+ require Carp;
+ Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
+ }
+ $self->import() if $IMPORT == 0; # make require work
+ return if $self->modify('bnan');
+ if ($self->can('_bnan'))
+ {
+ # use subclass to initialize
+ $self->_bnan();
+ }
+ else
+ {
+ # otherwise do our own thing
+ $self->{value} = $CALC->_zero();
+ }
+ $self->{sign} = $nan;
+ delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly
+ $self;
+ }
+
+sub binf
+ {
+ # create a bigint '+-inf', if given a BigInt, set it to '+-inf'
+ # the sign is either '+', or if given, used from there
+ my $self = shift;
+ my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
+ $self = $class if !defined $self;
+ if (!ref($self))
+ {
+ my $c = $self; $self = {}; bless $self, $c;
+ }
+ no strict 'refs';
+ if (${"${class}::_trap_inf"})
+ {
+ require Carp;
+ Carp::croak ("Tried to set $self to +-inf in $class\::binf()");
+ }
+ $self->import() if $IMPORT == 0; # make require work
+ return if $self->modify('binf');
+ if ($self->can('_binf'))
+ {
+ # use subclass to initialize
+ $self->_binf();
+ }
+ else
+ {
+ # otherwise do our own thing
+ $self->{value} = $CALC->_zero();
+ }
+ $sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf
+ $self->{sign} = $sign;
+ ($self->{_a},$self->{_p}) = @_; # take over requested rounding
+ $self;
+ }
+
+sub bzero
+ {
+ # create a bigint '+0', if given a BigInt, set it to 0
+ my $self = shift;
+ $self = __PACKAGE__ if !defined $self;
+
+ if (!ref($self))
+ {
+ my $c = $self; $self = {}; bless $self, $c;
+ }
+ $self->import() if $IMPORT == 0; # make require work
+ return if $self->modify('bzero');
+
+ if ($self->can('_bzero'))
+ {
+ # use subclass to initialize
+ $self->_bzero();
+ }
+ else
+ {
+ # otherwise do our own thing
+ $self->{value} = $CALC->_zero();
+ }
+ $self->{sign} = '+';
+ if (@_ > 0)
+ {
+ if (@_ > 3)
+ {
+ # call like: $x->bzero($a,$p,$r,$y);
+ ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
+ }
+ else
+ {
+ $self->{_a} = $_[0]
+ if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
+ $self->{_p} = $_[1]
+ if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
+ }
+ }
+ $self;
+ }
+
+sub bone
+ {
+ # create a bigint '+1' (or -1 if given sign '-'),
+ # if given a BigInt, set it to +1 or -1, respectively
+ my $self = shift;
+ my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
+ $self = $class if !defined $self;
+
+ if (!ref($self))
+ {
+ my $c = $self; $self = {}; bless $self, $c;
+ }
+ $self->import() if $IMPORT == 0; # make require work
+ return if $self->modify('bone');
+
+ if ($self->can('_bone'))
+ {
+ # use subclass to initialize
+ $self->_bone();
+ }
+ else
+ {
+ # otherwise do our own thing
+ $self->{value} = $CALC->_one();
+ }
+ $self->{sign} = $sign;
+ if (@_ > 0)
+ {
+ if (@_ > 3)
+ {
+ # call like: $x->bone($sign,$a,$p,$r,$y);
+ ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
+ }
+ else
+ {
+ # call like: $x->bone($sign,$a,$p,$r);
+ $self->{_a} = $_[0]
+ if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
+ $self->{_p} = $_[1]
+ if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
+ }
+ }
+ $self;
+ }
+
+##############################################################################
+# string conversation
+
+sub bsstr
+ {
+ # (ref to BFLOAT or num_str ) return num_str
+ # Convert number from internal format to scientific string format.
+ # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
+ return 'inf'; # +inf
+ }
+ my ($m,$e) = $x->parts();
+ #$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt
+ # 'e+' because E can only be positive in BigInt
+ $m->bstr() . 'e+' . $CALC->_str($e->{value});
+ }
+
+sub bstr
+ {
+ # make a string from bigint object
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
+ return 'inf'; # +inf
+ }
+ my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
+ $es.$CALC->_str($x->{value});
+ }
+
+sub numify
+ {
+ # Make a "normal" scalar from a BigInt object
+ my $x = shift; $x = $class->new($x) unless ref $x;
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/;
+ my $num = $CALC->_num($x->{value});
+ return -$num if $x->{sign} eq '-';
+ $num;
+ }
+
+##############################################################################
+# public stuff (usually prefixed with "b")
+
+sub sign
+ {
+ # return the sign of the number: +/-/-inf/+inf/NaN
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ $x->{sign};
+ }
+
+sub _find_round_parameters
+ {
+ # After any operation or when calling round(), the result is rounded by
+ # regarding the A & P from arguments, local parameters, or globals.
+
+ # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
+
+ # This procedure finds the round parameters, but it is for speed reasons
+ # duplicated in round. Otherwise, it is tested by the testsuite and used
+ # by fdiv().
+
+ # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
+ # were requested/defined (locally or globally or both)
+
+ my ($self,$a,$p,$r,@args) = @_;
+ # $a accuracy, if given by caller
+ # $p precision, if given by caller
+ # $r round_mode, if given by caller
+ # @args all 'other' arguments (0 for unary, 1 for binary ops)
+
+ my $c = ref($self); # find out class of argument(s)
+ no strict 'refs';
+
+ # convert to normal scalar for speed and correctness in inner parts
+ $a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
+ $p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);
+
+ # now pick $a or $p, but only if we have got "arguments"
+ if (!defined $a)
+ {
+ foreach ($self,@args)
+ {
+ # take the defined one, or if both defined, the one that is smaller
+ $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
+ }
+ }
+ if (!defined $p)
+ {
+ # even if $a is defined, take $p, to signal error for both defined
+ foreach ($self,@args)
+ {
+ # take the defined one, or if both defined, the one that is bigger
+ # -2 > -3, and 3 > 2
+ $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
+ }
+ }
+ # if still none defined, use globals (#2)
+ $a = ${"$c\::accuracy"} unless defined $a;
+ $p = ${"$c\::precision"} unless defined $p;
+
+ # A == 0 is useless, so undef it to signal no rounding
+ $a = undef if defined $a && $a == 0;
+
+ # no rounding today?
+ return ($self) unless defined $a || defined $p; # early out
+
+ # set A and set P is an fatal error
+ return ($self->bnan()) if defined $a && defined $p; # error
+
+ $r = ${"$c\::round_mode"} unless defined $r;
+ if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
+ {
+ require Carp; Carp::croak ("Unknown round mode '$r'");
+ }
+
+ $a = int($a) if defined $a;
+ $p = int($p) if defined $p;
+
+ ($self,$a,$p,$r);
+ }
+
+sub round
+ {
+ # Round $self according to given parameters, or given second argument's
+ # parameters or global defaults
+
+ # for speed reasons, _find_round_parameters is embeded here:
+
+ my ($self,$a,$p,$r,@args) = @_;
+ # $a accuracy, if given by caller
+ # $p precision, if given by caller
+ # $r round_mode, if given by caller
+ # @args all 'other' arguments (0 for unary, 1 for binary ops)
+
+ my $c = ref($self); # find out class of argument(s)
+ no strict 'refs';
+
+ # now pick $a or $p, but only if we have got "arguments"
+ if (!defined $a)
+ {
+ foreach ($self,@args)
+ {
+ # take the defined one, or if both defined, the one that is smaller
+ $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
+ }
+ }
+ if (!defined $p)
+ {
+ # even if $a is defined, take $p, to signal error for both defined
+ foreach ($self,@args)
+ {
+ # take the defined one, or if both defined, the one that is bigger
+ # -2 > -3, and 3 > 2
+ $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
+ }
+ }
+ # if still none defined, use globals (#2)
+ $a = ${"$c\::accuracy"} unless defined $a;
+ $p = ${"$c\::precision"} unless defined $p;
+
+ # A == 0 is useless, so undef it to signal no rounding
+ $a = undef if defined $a && $a == 0;
+
+ # no rounding today?
+ return $self unless defined $a || defined $p; # early out
+
+ # set A and set P is an fatal error
+ return $self->bnan() if defined $a && defined $p;
+
+ $r = ${"$c\::round_mode"} unless defined $r;
+ if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
+ {
+ require Carp; Carp::croak ("Unknown round mode '$r'");
+ }
+
+ # now round, by calling either fround or ffround:
+ if (defined $a)
+ {
+ $self->bround(int($a),$r) if !defined $self->{_a} || $self->{_a} >= $a;
+ }
+ else # both can't be undefined due to early out
+ {
+ $self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p;
+ }
+ # bround() or bfround() already callled bnorm() if nec.
+ $self;
+ }
+
+sub bnorm
+ {
+ # (numstr or BINT) return BINT
+ # Normalize number -- no-op here
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+ $x;
+ }
+
+sub babs
+ {
+ # (BINT or num_str) return BINT
+ # make number absolute, or return absolute BINT from string
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x if $x->modify('babs');
+ # post-normalized abs for internal use (does nothing for NaN)
+ $x->{sign} =~ s/^-/+/;
+ $x;
+ }
+
+sub bneg
+ {
+ # (BINT or num_str) return BINT
+ # negate number or make a negated number from string
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x if $x->modify('bneg');
+
+ # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
+ $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
+ $x;
+ }
+
+sub bcmp
+ {
+ # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
+ # (BINT or num_str, BINT or num_str) return cond_code
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,@_);
+ }
+
+ return $upgrade->bcmp($x,$y) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
+ return +1 if $x->{sign} eq '+inf';
+ return -1 if $x->{sign} eq '-inf';
+ return -1 if $y->{sign} eq '+inf';
+ return +1;
+ }
+ # check sign for speed first
+ return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
+ return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
+
+ # have same sign, so compare absolute values. Don't make tests for zero here
+ # because it's actually slower than testin in Calc (especially w/ Pari et al)
+
+ # post-normalized compare for internal use (honors signs)
+ if ($x->{sign} eq '+')
+ {
+ # $x and $y both > 0
+ return $CALC->_acmp($x->{value},$y->{value});
+ }
+
+ # $x && $y both < 0
+ $CALC->_acmp($y->{value},$x->{value}); # swaped acmp (lib returns 0,1,-1)
+ }
+
+sub bacmp
+ {
+ # Compares 2 values, ignoring their signs.
+ # Returns one of undef, <0, =0, >0. (suitable for sort)
+ # (BINT, BINT) return cond_code
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,@_);
+ }
+
+ return $upgrade->bacmp($x,$y) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
+ return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
+ return -1;
+ }
+ $CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1
+ }
+
+sub badd
+ {
+ # add second arg (BINT or string) to first (BINT) (modifies first)
+ # return result as BINT
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('badd');
+ return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ $r[3] = $y; # no push!
+ # inf and NaN handling
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # NaN first
+ return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+ {
+ # +inf++inf or -inf+-inf => same, rest is NaN
+ return $x if $x->{sign} eq $y->{sign};
+ return $x->bnan();
+ }
+ # +-inf + something => +inf
+ # something +-inf => +-inf
+ $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
+ return $x;
+ }
+
+ my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
+
+ if ($sx eq $sy)
+ {
+ $x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add
+ }
+ else
+ {
+ my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare
+ if ($a > 0)
+ {
+ $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
+ $x->{sign} = $sy;
+ }
+ elsif ($a == 0)
+ {
+ # speedup, if equal, set result to 0
+ $x->{value} = $CALC->_zero();
+ $x->{sign} = '+';
+ }
+ else # a < 0
+ {
+ $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
+ }
+ }
+ $x->round(@r);
+ }
+
+sub bsub
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # subtract second arg from first, modify first
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bsub');
+
+ return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
+ ((!$x->isa($self)) || (!$y->isa($self)));
+
+ return $x->round(@r) if $y->is_zero();
+
+ # To correctly handle the lone special case $x->bsub($x), we note the sign
+ # of $x, then flip the sign from $y, and if the sign of $x did change, too,
+ # then we caught the special case:
+ my $xsign = $x->{sign};
+ $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
+ if ($xsign ne $x->{sign})
+ {
+ # special case of $x->bsub($x) results in 0
+ return $x->bzero(@r) if $xsign =~ /^[+-]$/;
+ return $x->bnan(); # NaN, -inf, +inf
+ }
+ $x->badd($y,@r); # badd does not leave internal zeros
+ $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
+ $x; # already rounded by badd() or no round nec.
+ }
+
+sub binc
+ {
+ # increment arg by one
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ return $x if $x->modify('binc');
+
+ if ($x->{sign} eq '+')
+ {
+ $x->{value} = $CALC->_inc($x->{value});
+ return $x->round($a,$p,$r);
+ }
+ elsif ($x->{sign} eq '-')
+ {
+ $x->{value} = $CALC->_dec($x->{value});
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
+ return $x->round($a,$p,$r);
+ }
+ # inf, nan handling etc
+ $x->badd($self->bone(),$a,$p,$r); # badd does round
+ }
+
+sub bdec
+ {
+ # decrement arg by one
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ return $x if $x->modify('bdec');
+
+ if ($x->{sign} eq '-')
+ {
+ # x already < 0
+ $x->{value} = $CALC->_inc($x->{value});
+ }
+ else
+ {
+ return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf or NaN
+ # >= 0
+ if ($CALC->_is_zero($x->{value}))
+ {
+ # == 0
+ $x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1
+ }
+ else
+ {
+ # > 0
+ $x->{value} = $CALC->_dec($x->{value});
+ }
+ }
+ $x->round(@r);
+ }
+
+sub blog
+ {
+ # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
+ # $base of $x)
+
+ # set up parameters
+ my ($self,$x,$base,@r) = (undef,@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$base,@r) = objectify(1,ref($x),@_);
+ }
+
+ return $x if $x->modify('blog');
+
+ $base = $self->new($base) if defined $base && !ref $base;
+
+ # inf, -inf, NaN, <0 => NaN
+ return $x->bnan()
+ if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
+
+ return $upgrade->blog($upgrade->new($x),$base,@r) if
+ defined $upgrade;
+
+ # fix for bug #24969:
+ # the default base is e (Euler's number) which is not an integer
+ if (!defined $base)
+ {
+ require Math::BigFloat;
+ my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
+ # modify $x in place
+ $x->{value} = $u->{value};
+ $x->{sign} = $u->{sign};
+ return $x;
+ }
+
+ my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
+ return $x->bnan() unless defined $rc; # not possible to take log?
+ $x->{value} = $rc;
+ $x->round(@r);
+ }
+
+sub bnok
+ {
+ # Calculate n over k (binomial coefficient or "choose" function) as integer.
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bnok');
+ return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
+ return $x->binf() if $x->{sign} eq '+inf';
+
+ # k > n or k < 0 => 0
+ my $cmp = $x->bacmp($y);
+ return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/;
+ # k == n => 1
+ return $x->bone(@r) if $cmp == 0;
+
+ if ($CALC->can('_nok'))
+ {
+ $x->{value} = $CALC->_nok($x->{value},$y->{value});
+ }
+ else
+ {
+ # ( 7 ) 7! 7*6*5 * 4*3*2*1 7 * 6 * 5
+ # ( - ) = --------- = --------------- = ---------
+ # ( 3 ) 3! (7-3)! 3*2*1 * 4*3*2*1 3 * 2 * 1
+
+ # compute n - k + 2 (so we start with 5 in the example above)
+ my $z = $x - $y;
+ if (!$z->is_one())
+ {
+ $z->binc();
+ my $r = $z->copy(); $z->binc();
+ my $d = $self->new(2);
+ while ($z->bacmp($x) <= 0) # f < x ?
+ {
+ $r->bmul($z); $r->bdiv($d);
+ $z->binc(); $d->binc();
+ }
+ $x->{value} = $r->{value}; $x->{sign} = '+';
+ }
+ else { $x->bone(); }
+ }
+ $x->round(@r);
+ }
+
+sub bexp
+ {
+ # Calculate e ** $x (Euler's number to the power of X), truncated to
+ # an integer value.
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ return $x if $x->modify('bexp');
+
+ # inf, -inf, NaN, <0 => NaN
+ return $x->bnan() if $x->{sign} eq 'NaN';
+ return $x->bone() if $x->is_zero();
+ return $x if $x->{sign} eq '+inf';
+ return $x->bzero() if $x->{sign} eq '-inf';
+
+ my $u;
+ {
+ # run through Math::BigFloat unless told otherwise
+ require Math::BigFloat unless defined $upgrade;
+ local $upgrade = 'Math::BigFloat' unless defined $upgrade;
+ # calculate result, truncate it to integer
+ $u = $upgrade->bexp($upgrade->new($x),@r);
+ }
+
+ if (!defined $upgrade)
+ {
+ $u = $u->as_int();
+ # modify $x in place
+ $x->{value} = $u->{value};
+ $x->round(@r);
+ }
+ else { $x = $u; }
+ }
+
+sub blcm
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # does not modify arguments, but returns new object
+ # Lowest Common Multiplicator
+
+ my $y = shift; my ($x);
+ if (ref($y))
+ {
+ $x = $y->copy();
+ }
+ else
+ {
+ $x = $class->new($y);
+ }
+ my $self = ref($x);
+ while (@_)
+ {
+ my $y = shift; $y = $self->new($y) if !ref ($y);
+ $x = __lcm($x,$y);
+ }
+ $x;
+ }
+
+sub bgcd
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # does not modify arguments, but returns new object
+ # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)
+
+ my $y = shift;
+ $y = $class->new($y) if !ref($y);
+ my $self = ref($y);
+ my $x = $y->copy()->babs(); # keep arguments
+ return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
+
+ while (@_)
+ {
+ $y = shift; $y = $self->new($y) if !ref($y);
+ return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
+ $x->{value} = $CALC->_gcd($x->{value},$y->{value});
+ last if $CALC->_is_one($x->{value});
+ }
+ $x;
+ }
+
+sub bnot
+ {
+ # (num_str or BINT) return BINT
+ # represent ~x as twos-complement number
+ # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
+ my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('bnot');
+ $x->binc()->bneg(); # binc already does round
+ }
+
+##############################################################################
+# is_foo test routines
+# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
+
+sub is_zero
+ {
+ # return true if arg (BINT or num_str) is zero (array '+', '0')
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
+ $CALC->_is_zero($x->{value});
+ }
+
+sub is_nan
+ {
+ # return true if arg (BINT or num_str) is NaN
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ $x->{sign} eq $nan ? 1 : 0;
+ }
+
+sub is_inf
+ {
+ # return true if arg (BINT or num_str) is +-inf
+ my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ if (defined $sign)
+ {
+ $sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
+ $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
+ return $x->{sign} =~ /^$sign$/ ? 1 : 0;
+ }
+ $x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
+ }
+
+sub is_one
+ {
+ # return true if arg (BINT or num_str) is +1, or -1 if sign is given
+ my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ $sign = '+' if !defined $sign || $sign ne '-';
+
+ return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
+ $CALC->_is_one($x->{value});
+ }
+
+sub is_odd
+ {
+ # return true when arg (BINT or num_str) is odd, false for even
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
+ $CALC->_is_odd($x->{value});
+ }
+
+sub is_even
+ {
+ # return true when arg (BINT or num_str) is even, false for odd
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
+ $CALC->_is_even($x->{value});
+ }
+
+sub is_positive
+ {
+ # return true when arg (BINT or num_str) is positive (>= 0)
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 1 if $x->{sign} eq '+inf'; # +inf is positive
+
+ # 0+ is neither positive nor negative
+ ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
+ }
+
+sub is_negative
+ {
+ # return true when arg (BINT or num_str) is negative (< 0)
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ $x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not
+ }
+
+sub is_int
+ {
+ # return true when arg (BINT or num_str) is an integer
+ # always true for BigInt, but different for BigFloats
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
+ }
+
+###############################################################################
+
+sub bmul
+ {
+ # multiply the first number by the second number
+ # (BINT or num_str, BINT or num_str) return BINT
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bmul');
+
+ return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
+ }
+
+ return $upgrade->bmul($x,$upgrade->new($y),@r)
+ if defined $upgrade && !$y->isa($self);
+
+ $r[3] = $y; # no push here
+
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
+
+ $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
+
+ $x->round(@r);
+ }
+
+sub bmuladd
+ {
+ # multiply two numbers and then add the third to the result
+ # (BINT or num_str, BINT or num_str, BINT or num_str) return BINT
+
+ # set up parameters
+ my ($self,$x,$y,$z,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$z,@r) = objectify(3,@_);
+ }
+
+ return $x if $x->modify('bmuladd');
+
+ return $x->bnan() if ($x->{sign} eq $nan) ||
+ ($y->{sign} eq $nan) ||
+ ($z->{sign} eq $nan);
+
+ # inf handling of x and y
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
+ }
+ # inf handling x*y and z
+ if (($z->{sign} =~ /^[+-]inf$/))
+ {
+ # something +-inf => +-inf
+ $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
+ }
+
+ return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r)
+ if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self));
+
+ # TODO: what if $y and $z have A or P set?
+ $r[3] = $z; # no push here
+
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
+
+ $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
+
+ my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs
+
+ if ($sx eq $sz)
+ {
+ $x->{value} = $CALC->_add($x->{value},$z->{value}); # same sign, abs add
+ }
+ else
+ {
+ my $a = $CALC->_acmp ($z->{value},$x->{value}); # absolute compare
+ if ($a > 0)
+ {
+ $x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap
+ $x->{sign} = $sz;
+ }
+ elsif ($a == 0)
+ {
+ # speedup, if equal, set result to 0
+ $x->{value} = $CALC->_zero();
+ $x->{sign} = '+';
+ }
+ else # a < 0
+ {
+ $x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
+ }
+ }
+ $x->round(@r);
+ }
+
+sub _div_inf
+ {
+ # helper function that handles +-inf cases for bdiv()/bmod() to reuse code
+ my ($self,$x,$y) = @_;
+
+ # NaN if x == NaN or y == NaN or x==y==0
+ return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
+ if (($x->is_nan() || $y->is_nan()) ||
+ ($x->is_zero() && $y->is_zero()));
+
+ # +-inf / +-inf == NaN, reminder also NaN
+ if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
+ }
+ # x / +-inf => 0, remainder x (works even if x == 0)
+ if ($y->{sign} =~ /^[+-]inf$/)
+ {
+ my $t = $x->copy(); # bzero clobbers up $x
+ return wantarray ? ($x->bzero(),$t) : $x->bzero()
+ }
+
+ # 5 / 0 => +inf, -6 / 0 => -inf
+ # +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf
+ # exception: -8 / 0 has remainder -8, not 8
+ # exception: -inf / 0 has remainder -inf, not inf
+ if ($y->is_zero())
+ {
+ # +-inf / 0 => special case for -inf
+ return wantarray ? ($x,$x->copy()) : $x if $x->is_inf();
+ if (!$x->is_zero() && !$x->is_inf())
+ {
+ my $t = $x->copy(); # binf clobbers up $x
+ return wantarray ?
+ ($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
+ }
+ }
+
+ # last case: +-inf / ordinary number
+ my $sign = '+inf';
+ $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
+ $x->{sign} = $sign;
+ return wantarray ? ($x,$self->bzero()) : $x;
+ }
+
+sub bdiv
+ {
+ # (dividend: BINT or num_str, divisor: BINT or num_str) return
+ # (BINT,BINT) (quo,rem) or BINT (only rem)
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bdiv');
+
+ return $self->_div_inf($x,$y)
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
+
+ return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
+ if defined $upgrade;
+
+ $r[3] = $y; # no push!
+
+ # calc new sign and in case $y == +/- 1, return $x
+ my $xsign = $x->{sign}; # keep
+ $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+');
+
+ if (wantarray)
+ {
+ my $rem = $self->bzero();
+ ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value});
+ $rem->{_a} = $x->{_a};
+ $rem->{_p} = $x->{_p};
+ $x->round(@r);
+ if (! $CALC->_is_zero($rem->{value}))
+ {
+ $rem->{sign} = $y->{sign};
+ $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
+ }
+ else
+ {
+ $rem->{sign} = '+'; # dont leave -0
+ }
+ $rem->round(@r);
+ return ($x,$rem);
+ }
+
+ $x->{value} = $CALC->_div($x->{value},$y->{value});
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value});
+
+ $x->round(@r);
+ }
+
+###############################################################################
+# modulus functions
+
+sub bmod
+ {
+ # modulus (or remainder)
+ # (BINT or num_str, BINT or num_str) return BINT
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bmod');
+ $r[3] = $y; # no push!
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
+ {
+ my ($d,$r) = $self->_div_inf($x,$y);
+ $x->{sign} = $r->{sign};
+ $x->{value} = $r->{value};
+ return $x->round(@r);
+ }
+
+ # calc new sign and in case $y == +/- 1, return $x
+ $x->{value} = $CALC->_mod($x->{value},$y->{value});
+ if (!$CALC->_is_zero($x->{value}))
+ {
+ $x->{value} = $CALC->_sub($y->{value},$x->{value},1) # $y-$x
+ if ($x->{sign} ne $y->{sign});
+ $x->{sign} = $y->{sign};
+ }
+ else
+ {
+ $x->{sign} = '+'; # dont leave -0
+ }
+ $x->round(@r);
+ }
+
+sub bmodinv
+ {
+ # Modular inverse. given a number which is (hopefully) relatively
+ # prime to the modulus, calculate its inverse using Euclid's
+ # alogrithm. If the number is not relatively prime to the modulus
+ # (i.e. their gcd is not one) then NaN is returned.
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (undef,@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bmodinv');
+
+ return $x->bnan()
+ if ($y->{sign} ne '+' # -, NaN, +inf, -inf
+ || $x->is_zero() # or num == 0
+ || $x->{sign} !~ /^[+-]$/ # or num NaN, inf, -inf
+ );
+
+ # put least residue into $x if $x was negative, and thus make it positive
+ $x->bmod($y) if $x->{sign} eq '-';
+
+ my $sign;
+ ($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value});
+ return $x->bnan() if !defined $x->{value}; # in case no GCD found
+ return $x if !defined $sign; # already real result
+ $x->{sign} = $sign; # flip/flop see below
+ $x->bmod($y); # calc real result
+ $x;
+ }
+
+sub bmodpow
+ {
+ # takes a very large number to a very large exponent in a given very
+ # large modulus, quickly, thanks to binary exponentation. Supports
+ # negative exponents.
+ my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
+
+ return $num if $num->modify('bmodpow');
+
+ # check modulus for valid values
+ return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf
+ || $mod->is_zero());
+
+ # check exponent for valid values
+ if ($exp->{sign} =~ /\w/)
+ {
+ # i.e., if it's NaN, +inf, or -inf...
+ return $num->bnan();
+ }
+
+ $num->bmodinv ($mod) if ($exp->{sign} eq '-');
+
+ # check num for valid values (also NaN if there was no inverse but $exp < 0)
+ return $num->bnan() if $num->{sign} !~ /^[+-]$/;
+
+ # $mod is positive, sign on $exp is ignored, result also positive
+ $num->{value} = $CALC->_modpow($num->{value},$exp->{value},$mod->{value});
+ $num;
+ }
+
+###############################################################################
+
+sub bfac
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # compute factorial number from $x, modify $x in place
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf
+ return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
+
+ $x->{value} = $CALC->_fac($x->{value});
+ $x->round(@r);
+ }
+
+sub bpow
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
+ # modifies first argument
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bpow');
+
+ return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+ {
+ # +-inf ** +-inf
+ return $x->bnan();
+ }
+ # +-inf ** Y
+ if ($x->{sign} =~ /^[+-]inf/)
+ {
+ # +inf ** 0 => NaN
+ return $x->bnan() if $y->is_zero();
+ # -inf ** -1 => 1/inf => 0
+ return $x->bzero() if $y->is_one('-') && $x->is_negative();
+
+ # +inf ** Y => inf
+ return $x if $x->{sign} eq '+inf';
+
+ # -inf ** Y => -inf if Y is odd
+ return $x if $y->is_odd();
+ return $x->babs();
+ }
+ # X ** +-inf
+
+ # 1 ** +inf => 1
+ return $x if $x->is_one();
+
+ # 0 ** inf => 0
+ return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
+
+ # 0 ** -inf => inf
+ return $x->binf() if $x->is_zero();
+
+ # -1 ** -inf => NaN
+ return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
+
+ # -X ** -inf => 0
+ return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
+
+ # -1 ** inf => NaN
+ return $x->bnan() if $x->{sign} eq '-';
+
+ # X ** inf => inf
+ return $x->binf() if $y->{sign} =~ /^[+]/;
+ # X ** -inf => 0
+ return $x->bzero();
+ }
+
+ return $upgrade->bpow($upgrade->new($x),$y,@r)
+ if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-');
+
+ $r[3] = $y; # no push!
+
+ # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
+
+ my $new_sign = '+';
+ $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
+
+ # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
+ return $x->binf()
+ if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
+ # 1 ** -y => 1 / (1 ** |y|)
+ # so do test for negative $y after above's clause
+ return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
+
+ $x->{value} = $CALC->_pow($x->{value},$y->{value});
+ $x->{sign} = $new_sign;
+ $x->{sign} = '+' if $CALC->_is_zero($y->{value});
+ $x->round(@r);
+ }
+
+sub blsft
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # compute x << y, base n, y >= 0
+
+ # set up parameters
+ my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$n,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('blsft');
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+ return $x->round(@r) if $y->is_zero();
+
+ $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+
+ $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
+ $x->round(@r);
+ }
+
+sub brsft
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # compute x >> y, base n, y >= 0
+
+ # set up parameters
+ my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$n,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('brsft');
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+ return $x->round(@r) if $y->is_zero();
+ return $x->bzero(@r) if $x->is_zero(); # 0 => 0
+
+ $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+
+ # this only works for negative numbers when shifting in base 2
+ if (($x->{sign} eq '-') && ($n == 2))
+ {
+ return $x->round(@r) if $x->is_one('-'); # -1 => -1
+ if (!$y->is_one())
+ {
+ # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
+ # but perhaps there is a better emulation for two's complement shift...
+ # if $y != 1, we must simulate it by doing:
+ # convert to bin, flip all bits, shift, and be done
+ $x->binc(); # -3 => -2
+ my $bin = $x->as_bin();
+ $bin =~ s/^-0b//; # strip '-0b' prefix
+ $bin =~ tr/10/01/; # flip bits
+ # now shift
+ if ($y >= CORE::length($bin))
+ {
+ $bin = '0'; # shifting to far right creates -1
+ # 0, because later increment makes
+ # that 1, attached '-' makes it '-1'
+ # because -1 >> x == -1 !
+ }
+ else
+ {
+ $bin =~ s/.{$y}$//; # cut off at the right side
+ $bin = '1' . $bin; # extend left side by one dummy '1'
+ $bin =~ tr/10/01/; # flip bits back
+ }
+ my $res = $self->new('0b'.$bin); # add prefix and convert back
+ $res->binc(); # remember to increment
+ $x->{value} = $res->{value}; # take over value
+ return $x->round(@r); # we are done now, magic, isn't?
+ }
+ # x < 0, n == 2, y == 1
+ $x->bdec(); # n == 2, but $y == 1: this fixes it
+ }
+
+ $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
+ $x->round(@r);
+ }
+
+sub band
+ {
+ #(BINT or num_str, BINT or num_str) return BINT
+ # compute x & y
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('band');
+
+ $r[3] = $y; # no push!
+
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+
+ my $sx = $x->{sign} eq '+' ? 1 : -1;
+ my $sy = $y->{sign} eq '+' ? 1 : -1;
+
+ if ($sx == 1 && $sy == 1)
+ {
+ $x->{value} = $CALC->_and($x->{value},$y->{value});
+ return $x->round(@r);
+ }
+
+ if ($CAN{signed_and})
+ {
+ $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
+ return $x->round(@r);
+ }
+
+ require $EMU_LIB;
+ __emu_band($self,$x,$y,$sx,$sy,@r);
+ }
+
+sub bior
+ {
+ #(BINT or num_str, BINT or num_str) return BINT
+ # compute x | y
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bior');
+ $r[3] = $y; # no push!
+
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+
+ my $sx = $x->{sign} eq '+' ? 1 : -1;
+ my $sy = $y->{sign} eq '+' ? 1 : -1;
+
+ # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
+
+ # don't use lib for negative values
+ if ($sx == 1 && $sy == 1)
+ {
+ $x->{value} = $CALC->_or($x->{value},$y->{value});
+ return $x->round(@r);
+ }
+
+ # if lib can do negative values, let it handle this
+ if ($CAN{signed_or})
+ {
+ $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
+ return $x->round(@r);
+ }
+
+ require $EMU_LIB;
+ __emu_bior($self,$x,$y,$sx,$sy,@r);
+ }
+
+sub bxor
+ {
+ #(BINT or num_str, BINT or num_str) return BINT
+ # compute x ^ y
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('bxor');
+ $r[3] = $y; # no push!
+
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+
+ my $sx = $x->{sign} eq '+' ? 1 : -1;
+ my $sy = $y->{sign} eq '+' ? 1 : -1;
+
+ # don't use lib for negative values
+ if ($sx == 1 && $sy == 1)
+ {
+ $x->{value} = $CALC->_xor($x->{value},$y->{value});
+ return $x->round(@r);
+ }
+
+ # if lib can do negative values, let it handle this
+ if ($CAN{signed_xor})
+ {
+ $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
+ return $x->round(@r);
+ }
+
+ require $EMU_LIB;
+ __emu_bxor($self,$x,$y,$sx,$sy,@r);
+ }
+
+sub length
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ my $e = $CALC->_len($x->{value});
+ wantarray ? ($e,0) : $e;
+ }
+
+sub digit
+ {
+ # return the nth decimal digit, negative values count backward, 0 is right
+ my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ $n = $n->numify() if ref($n);
+ $CALC->_digit($x->{value},$n||0);
+ }
+
+sub _trailing_zeros
+ {
+ # return the amount of trailing zeros in $x (as scalar)
+ my $x = shift;
+ $x = $class->new($x) unless ref $x;
+
+ return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
+
+ $CALC->_zeros($x->{value}); # must handle odd values, 0 etc
+ }
+
+sub bsqrt
+ {
+ # calculate square root of $x
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('bsqrt');
+
+ return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
+ return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
+
+ return $upgrade->bsqrt($x,@r) if defined $upgrade;
+
+ $x->{value} = $CALC->_sqrt($x->{value});
+ $x->round(@r);
+ }
+
+sub broot
+ {
+ # calculate $y'th root of $x
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ $y = $self->new(2) unless defined $y;
+
+ # objectify is costly, so avoid it
+ if ((!ref($x)) || (ref($x) ne ref($y)))
+ {
+ ($self,$x,$y,@r) = objectify(2,$self || $class,@_);
+ }
+
+ return $x if $x->modify('broot');
+
+ # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
+ return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
+ $y->{sign} !~ /^\+$/;
+
+ return $x->round(@r)
+ if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
+
+ return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
+
+ $x->{value} = $CALC->_root($x->{value},$y->{value});
+ $x->round(@r);
+ }
+
+sub exponent
+ {
+ # return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf
+ return $self->new($s);
+ }
+ return $self->bone() if $x->is_zero();
+
+ # 12300 => 2 trailing zeros => exponent is 2
+ $self->new( $CALC->_zeros($x->{value}) );
+ }
+
+sub mantissa
+ {
+ # return the mantissa (compatible to Math::BigFloat, e.g. reduced)
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/)
+ {
+ # for NaN, +inf, -inf: keep the sign
+ return $self->new($x->{sign});
+ }
+ my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
+
+ # that's a bit inefficient:
+ my $zeros = $CALC->_zeros($m->{value});
+ $m->brsft($zeros,10) if $zeros != 0;
+ $m;
+ }
+
+sub parts
+ {
+ # return a copy of both the exponent and the mantissa
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ ($x->mantissa(),$x->exponent());
+ }
+
+##############################################################################
+# rounding functions
+
+sub bfround
+ {
+ # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
+ # $n == 0 || $n == 1 => round to integer
+ my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
+
+ my ($scale,$mode) = $x->_scale_p(@_);
+
+ return $x if !defined $scale || $x->modify('bfround'); # no-op
+
+ # no-op for BigInts if $n <= 0
+ $x->bround( $x->length()-$scale, $mode) if $scale > 0;
+
+ delete $x->{_a}; # delete to save memory
+ $x->{_p} = $scale; # store new _p
+ $x;
+ }
+
+sub _scan_for_nonzero
+ {
+ # internal, used by bround() to scan for non-zeros after a '5'
+ my ($x,$pad,$xs,$len) = @_;
+
+ return 0 if $len == 1; # "5" is trailed by invisible zeros
+ my $follow = $pad - 1;
+ return 0 if $follow > $len || $follow < 1;
+
+ # use the string form to check whether only '0's follow or not
+ substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
+ }
+
+sub fround
+ {
+ # Exists to make life easier for switch between MBF and MBI (should we
+ # autoload fxxx() like MBF does for bxxx()?)
+ my $x = shift; $x = $class->new($x) unless ref $x;
+ $x->bround(@_);
+ }
+
+sub bround
+ {
+ # accuracy: +$n preserve $n digits from left,
+ # -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
+ # no-op for $n == 0
+ # and overwrite the rest with 0's, return normalized number
+ # do not return $x->bnorm(), but $x
+
+ my $x = shift; $x = $class->new($x) unless ref $x;
+ my ($scale,$mode) = $x->_scale_a(@_);
+ return $x if !defined $scale || $x->modify('bround'); # no-op
+
+ if ($x->is_zero() || $scale == 0)
+ {
+ $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
+ return $x;
+ }
+ return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
+
+ # we have fewer digits than we want to scale to
+ my $len = $x->length();
+ # convert $scale to a scalar in case it is an object (put's a limit on the
+ # number length, but this would already limited by memory constraints), makes
+ # it faster
+ $scale = $scale->numify() if ref ($scale);
+
+ # scale < 0, but > -len (not >=!)
+ if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
+ {
+ $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
+ return $x;
+ }
+
+ # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
+ my ($pad,$digit_round,$digit_after);
+ $pad = $len - $scale;
+ $pad = abs($scale-1) if $scale < 0;
+
+ # do not use digit(), it is very costly for binary => decimal
+ # getting the entire string is also costly, but we need to do it only once
+ my $xs = $CALC->_str($x->{value});
+ my $pl = -$pad-1;
+
+ # pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
+ # pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
+ $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
+ $pl++; $pl ++ if $pad >= $len;
+ $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
+
+ # in case of 01234 we round down, for 6789 up, and only in case 5 we look
+ # closer at the remaining digits of the original $x, remember decision
+ my $round_up = 1; # default round up
+ $round_up -- if
+ ($mode eq 'trunc') || # trunc by round down
+ ($digit_after =~ /[01234]/) || # round down anyway,
+ # 6789 => round up
+ ($digit_after eq '5') && # not 5000...0000
+ ($x->_scan_for_nonzero($pad,$xs,$len) == 0) &&
+ (
+ ($mode eq 'even') && ($digit_round =~ /[24680]/) ||
+ ($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
+ ($mode eq '+inf') && ($x->{sign} eq '-') ||
+ ($mode eq '-inf') && ($x->{sign} eq '+') ||
+ ($mode eq 'zero') # round down if zero, sign adjusted below
+ );
+ my $put_back = 0; # not yet modified
+
+ if (($pad > 0) && ($pad <= $len))
+ {
+ substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...'
+ $put_back = 1; # need to put back
+ }
+ elsif ($pad > $len)
+ {
+ $x->bzero(); # round to '0'
+ }
+
+ if ($round_up) # what gave test above?
+ {
+ $put_back = 1; # need to put back
+ $pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
+
+ # we modify directly the string variant instead of creating a number and
+ # adding it, since that is faster (we already have the string)
+ my $c = 0; $pad ++; # for $pad == $len case
+ while ($pad <= $len)
+ {
+ $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
+ substr($xs,-$pad,1) = $c; $pad++;
+ last if $c != 0; # no overflow => early out
+ }
+ $xs = '1'.$xs if $c == 0;
+
+ }
+ $x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
+
+ $x->{_a} = $scale if $scale >= 0;
+ if ($scale < 0)
+ {
+ $x->{_a} = $len+$scale;
+ $x->{_a} = 0 if $scale < -$len;
+ }
+ $x;
+ }
+
+sub bfloor
+ {
+ # return integer less or equal then number; no-op since it's already integer
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ $x->round(@r);
+ }
+
+sub bceil
+ {
+ # return integer greater or equal then number; no-op since it's already int
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ $x->round(@r);
+ }
+
+sub as_number
+ {
+ # An object might be asked to return itself as bigint on certain overloaded
+ # operations. This does exactly this, so that sub classes can simple inherit
+ # it or override with their own integer conversion routine.
+ $_[0]->copy();
+ }
+
+sub as_hex
+ {
+ # return as hex string, with prefixed 0x
+ my $x = shift; $x = $class->new($x) if !ref($x);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+ my $s = '';
+ $s = $x->{sign} if $x->{sign} eq '-';
+ $s . $CALC->_as_hex($x->{value});
+ }
+
+sub as_bin
+ {
+ # return as binary string, with prefixed 0b
+ my $x = shift; $x = $class->new($x) if !ref($x);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+ my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
+ return $s . $CALC->_as_bin($x->{value});
+ }
+
+sub as_oct
+ {
+ # return as octal string, with prefixed 0
+ my $x = shift; $x = $class->new($x) if !ref($x);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+ my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
+ return $s . $CALC->_as_oct($x->{value});
+ }
+
+##############################################################################
+# private stuff (internal use only)
+
+sub objectify
+ {
+ # check for strings, if yes, return objects instead
+
+ # the first argument is number of args objectify() should look at it will
+ # return $count+1 elements, the first will be a classname. This is because
+ # overloaded '""' calls bstr($object,undef,undef) and this would result in
+ # useless objects being created and thrown away. So we cannot simple loop
+ # over @_. If the given count is 0, all arguments will be used.
+
+ # If the second arg is a ref, use it as class.
+ # If not, try to use it as classname, unless undef, then use $class
+ # (aka Math::BigInt). The latter shouldn't happen,though.
+
+ # caller: gives us:
+ # $x->badd(1); => ref x, scalar y
+ # Class->badd(1,2); => classname x (scalar), scalar x, scalar y
+ # Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y
+ # Math::BigInt::badd(1,2); => scalar x, scalar y
+ # In the last case we check number of arguments to turn it silently into
+ # $class,1,2. (We can not take '1' as class ;o)
+ # badd($class,1) is not supported (it should, eventually, try to add undef)
+ # currently it tries 'Math::BigInt' + 1, which will not work.
+
+ # some shortcut for the common cases
+ # $x->unary_op();
+ return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
+
+ my $count = abs(shift || 0);
+
+ my (@a,$k,$d); # resulting array, temp, and downgrade
+ if (ref $_[0])
+ {
+ # okay, got object as first
+ $a[0] = ref $_[0];
+ }
+ else
+ {
+ # nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
+ $a[0] = $class;
+ $a[0] = shift if $_[0] =~ /^[A-Z].*::/; # classname as first?
+ }
+
+ no strict 'refs';
+ # disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats
+ if (defined ${"$a[0]::downgrade"})
+ {
+ $d = ${"$a[0]::downgrade"};
+ ${"$a[0]::downgrade"} = undef;
+ }
+
+ my $up = ${"$a[0]::upgrade"};
+ # print STDERR "# Now in objectify, my class is today $a[0], count = $count\n";
+ if ($count == 0)
+ {
+ while (@_)
+ {
+ $k = shift;
+ if (!ref($k))
+ {
+ $k = $a[0]->new($k);
+ }
+ elsif (!defined $up && ref($k) ne $a[0])
+ {
+ # foreign object, try to convert to integer
+ $k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
+ }
+ push @a,$k;
+ }
+ }
+ else
+ {
+ while ($count > 0)
+ {
+ $count--;
+ $k = shift;
+ if (!ref($k))
+ {
+ $k = $a[0]->new($k);
+ }
+ elsif (!defined $up && ref($k) ne $a[0])
+ {
+ # foreign object, try to convert to integer
+ $k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
+ }
+ push @a,$k;
+ }
+ push @a,@_; # return other params, too
+ }
+ if (! wantarray)
+ {
+ require Carp; Carp::croak ("$class objectify needs list context");
+ }
+ ${"$a[0]::downgrade"} = $d;
+ @a;
+ }
+
+sub _register_callback
+ {
+ my ($class,$callback) = @_;
+
+ if (ref($callback) ne 'CODE')
+ {
+ require Carp;
+ Carp::croak ("$callback is not a coderef");
+ }
+ $CALLBACKS{$class} = $callback;
+ }
+
+sub import
+ {
+ my $self = shift;
+
+ $IMPORT++; # remember we did import()
+ my @a; my $l = scalar @_;
+ my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die
+ for ( my $i = 0; $i < $l ; $i++ )
+ {
+ if ($_[$i] eq ':constant')
+ {
+ # this causes overlord er load to step in
+ overload::constant
+ integer => sub { $self->new(shift) },
+ binary => sub { $self->new(shift) };
+ }
+ elsif ($_[$i] eq 'upgrade')
+ {
+ # this causes upgrading
+ $upgrade = $_[$i+1]; # or undef to disable
+ $i++;
+ }
+ elsif ($_[$i] =~ /^(lib|try|only)\z/)
+ {
+ # this causes a different low lib to take care...
+ $CALC = $_[$i+1] || '';
+ # lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
+ $warn_or_die = 1 if $_[$i] eq 'lib';
+ $warn_or_die = 2 if $_[$i] eq 'only';
+ $i++;
+ }
+ else
+ {
+ push @a, $_[$i];
+ }
+ }
+ # any non :constant stuff is handled by our parent, Exporter
+ if (@a > 0)
+ {
+ require Exporter;
+
+ $self->SUPER::import(@a); # need it for subclasses
+ $self->export_to_level(1,$self,@a); # need it for MBF
+ }
+
+ # try to load core math lib
+ my @c = split /\s*,\s*/,$CALC;
+ foreach (@c)
+ {
+ $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
+ }
+ push @c, \'FastCalc', \'Calc' # if all fail, try these
+ if $warn_or_die < 2; # but not for "only"
+ $CALC = ''; # signal error
+ foreach my $l (@c)
+ {
+ # fallback libraries are "marked" as \'string', extract string if nec.
+ my $lib = $l; $lib = $$l if ref($l);
+
+ next if ($lib || '') eq '';
+ $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
+ $lib =~ s/\.pm$//;
+ if ($] < 5.006)
+ {
+ # Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
+ # used in the same script, or eval("") inside import().
+ my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
+ my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm
+ require File::Spec;
+ $file = File::Spec->catfile (@parts, $file);
+ eval { require "$file"; $lib->import( @c ); }
+ }
+ else
+ {
+ eval "use $lib qw/@c/;";
+ }
+ if ($@ eq '')
+ {
+ my $ok = 1;
+ # loaded it ok, see if the api_version() is high enough
+ if ($lib->can('api_version') && $lib->api_version() >= 1.0)
+ {
+ $ok = 0;
+ # api_version matches, check if it really provides anything we need
+ for my $method (qw/
+ one two ten
+ str num
+ add mul div sub dec inc
+ acmp len digit is_one is_zero is_even is_odd
+ is_two is_ten
+ zeros new copy check
+ from_hex from_oct from_bin as_hex as_bin as_oct
+ rsft lsft xor and or
+ mod sqrt root fac pow modinv modpow log_int gcd
+ /)
+ {
+ if (!$lib->can("_$method"))
+ {
+ if (($WARN{$lib}||0) < 2)
+ {
+ require Carp;
+ Carp::carp ("$lib is missing method '_$method'");
+ $WARN{$lib} = 1; # still warn about the lib
+ }
+ $ok++; last;
+ }
+ }
+ }
+ if ($ok == 0)
+ {
+ $CALC = $lib;
+ if ($warn_or_die > 0 && ref($l))
+ {
+ require Carp;
+ my $msg = "Math::BigInt: couldn't load specified math lib(s), fallback to $lib";
+ Carp::carp ($msg) if $warn_or_die == 1;
+ Carp::croak ($msg) if $warn_or_die == 2;
+ }
+ last; # found a usable one, break
+ }
+ else
+ {
+ if (($WARN{$lib}||0) < 2)
+ {
+ my $ver = eval "\$$lib\::VERSION" || 'unknown';
+ require Carp;
+ Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
+ $WARN{$lib} = 2; # never warn again
+ }
+ }
+ }
+ }
+ if ($CALC eq '')
+ {
+ require Carp;
+ if ($warn_or_die == 2)
+ {
+ Carp::croak ("Couldn't load specified math lib(s) and fallback disallowed");
+ }
+ else
+ {
+ Carp::croak ("Couldn't load any math lib(s), not even fallback to Calc.pm");
+ }
+ }
+
+ # notify callbacks
+ foreach my $class (keys %CALLBACKS)
+ {
+ &{$CALLBACKS{$class}}($CALC);
+ }
+
+ # Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
+ # functions
+
+ %CAN = ();
+ for my $method (qw/ signed_and signed_or signed_xor /)
+ {
+ $CAN{$method} = $CALC->can("_$method") ? 1 : 0;
+ }
+
+ # import done
+ }
+
+sub from_hex
+ {
+ # create a bigint from a hexadecimal string
+ my ($self, $hs) = @_;
+
+ my $rc = __from_hex($hs);
+
+ return $self->bnan() unless defined $rc;
+
+ $rc;
+ }
+
+sub from_bin
+ {
+ # create a bigint from a hexadecimal string
+ my ($self, $bs) = @_;
+
+ my $rc = __from_bin($bs);
+
+ return $self->bnan() unless defined $rc;
+
+ $rc;
+ }
+
+sub from_oct
+ {
+ # create a bigint from a hexadecimal string
+ my ($self, $os) = @_;
+
+ my $x = $self->bzero();
+
+ # strip underscores
+ $os =~ s/([0-7])_([0-7])/$1$2/g;
+ $os =~ s/([0-7])_([0-7])/$1$2/g;
+
+ return $x->bnan() if $os !~ /^[\-\+]?0[0-7]+\z/;
+
+ my $sign = '+'; $sign = '-' if $os =~ /^-/;
+
+ $os =~ s/^[+-]//; # strip sign
+ $x->{value} = $CALC->_from_oct($os);
+ $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0'
+ $x;
+ }
+
+sub __from_hex
+ {
+ # internal
+ # convert a (ref to) big hex string to BigInt, return undef for error
+ my $hs = shift;
+
+ my $x = Math::BigInt->bzero();
+
+ # strip underscores
+ $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
+ $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
+
+ return $x->bnan() if $hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;
+
+ my $sign = '+'; $sign = '-' if $hs =~ /^-/;
+
+ $hs =~ s/^[+-]//; # strip sign
+ $x->{value} = $CALC->_from_hex($hs);
+ $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0'
+ $x;
+ }
+
+sub __from_bin
+ {
+ # internal
+ # convert a (ref to) big binary string to BigInt, return undef for error
+ my $bs = shift;
+
+ my $x = Math::BigInt->bzero();
+
+ # strip underscores
+ $bs =~ s/([01])_([01])/$1$2/g;
+ $bs =~ s/([01])_([01])/$1$2/g;
+ return $x->bnan() if $bs !~ /^[+-]?0b[01]+$/;
+
+ my $sign = '+'; $sign = '-' if $bs =~ /^\-/;
+ $bs =~ s/^[+-]//; # strip sign
+
+ $x->{value} = $CALC->_from_bin($bs);
+ $x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0'
+ $x;
+ }
+
+sub _split
+ {
+ # input: num_str; output: undef for invalid or
+ # (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value)
+ # Internal, take apart a string and return the pieces.
+ # Strip leading/trailing whitespace, leading zeros, underscore and reject
+ # invalid input.
+ my $x = shift;
+
+ # strip white space at front, also extranous leading zeros
+ $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
+ $x =~ s/^\s+//; # but this will
+ $x =~ s/\s+$//g; # strip white space at end
+
+ # shortcut, if nothing to split, return early
+ if ($x =~ /^[+-]?[0-9]+\z/)
+ {
+ $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
+ return (\$sign, \$x, \'', \'', \0);
+ }
+
+ # invalid starting char?
+ return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
+
+ return __from_hex($x) if $x =~ /^[\-\+]?0x/; # hex string
+ return __from_bin($x) if $x =~ /^[\-\+]?0b/; # binary string
+
+ # strip underscores between digits
+ $x =~ s/([0-9])_([0-9])/$1$2/g;
+ $x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3
+
+ # some possible inputs:
+ # 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
+ # .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
+
+ my ($m,$e,$last) = split /[Ee]/,$x;
+ return if defined $last; # last defined => 1e2E3 or others
+ $e = '0' if !defined $e || $e eq "";
+
+ # sign,value for exponent,mantint,mantfrac
+ my ($es,$ev,$mis,$miv,$mfv);
+ # valid exponent?
+ if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
+ {
+ $es = $1; $ev = $2;
+ # valid mantissa?
+ return if $m eq '.' || $m eq '';
+ my ($mi,$mf,$lastf) = split /\./,$m;
+ return if defined $lastf; # lastf defined => 1.2.3 or others
+ $mi = '0' if !defined $mi;
+ $mi .= '0' if $mi =~ /^[\-\+]?$/;
+ $mf = '0' if !defined $mf || $mf eq '';
+ if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
+ {
+ $mis = $1||'+'; $miv = $2;
+ return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros
+ $mfv = $1;
+ # handle the 0e999 case here
+ $ev = 0 if $miv eq '0' && $mfv eq '';
+ return (\$mis,\$miv,\$mfv,\$es,\$ev);
+ }
+ }
+ return; # NaN, not a number
+ }
+
+##############################################################################
+# internal calculation routines (others are in Math::BigInt::Calc etc)
+
+sub __lcm
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # does modify first argument
+ # LCM
+
+ my ($x,$ty) = @_;
+ return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
+ my $method = ref($x) . '::bgcd';
+ no strict 'refs';
+ $x * $ty / &$method($x,$ty);
+ }
+
+###############################################################################
+# trigonometric functions
+
+sub bpi
+ {
+ # Calculate PI to N digits. Unless upgrading is in effect, returns the
+ # result truncated to an integer, that is, always returns '3'.
+ my ($self,$n) = @_;
+ if (@_ == 1)
+ {
+ # called like Math::BigInt::bpi(10);
+ $n = $self; $self = $class;
+ }
+ $self = ref($self) if ref($self);
+
+ return $upgrade->new($n) if defined $upgrade;
+
+ # hard-wired to "3"
+ $self->new(3);
+ }
+
+sub bcos
+ {
+ # Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
+ # result truncated to an integer.
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('bcos');
+
+ return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
+
+ return $upgrade->new($x)->bcos(@r) if defined $upgrade;
+
+ require Math::BigFloat;
+ # calculate the result and truncate it to integer
+ my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
+
+ $x->bone() if $t->is_one();
+ $x->bzero() if $t->is_zero();
+ $x->round(@r);
+ }
+
+sub bsin
+ {
+ # Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
+ # result truncated to an integer.
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('bsin');
+
+ return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
+
+ return $upgrade->new($x)->bsin(@r) if defined $upgrade;
+
+ require Math::BigFloat;
+ # calculate the result and truncate it to integer
+ my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
+
+ $x->bone() if $t->is_one();
+ $x->bzero() if $t->is_zero();
+ $x->round(@r);
+ }
+
+sub batan2
+ {
+ # calculate arcus tangens of ($y/$x)
+
+ # set up parameters
+ my ($self,$y,$x,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$y,$x,@r) = objectify(2,@_);
+ }
+
+ return $y if $y->modify('batan2');
+
+ return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
+
+ # Y X
+ # != 0 -inf result is +- pi
+ if ($x->is_inf() || $y->is_inf())
+ {
+ # upgrade to BigFloat etc.
+ return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
+ if ($y->is_inf())
+ {
+ if ($x->{sign} eq '-inf')
+ {
+ # calculate 3 pi/4 => 2.3.. => 2
+ $y->bone( substr($y->{sign},0,1) );
+ $y->bmul($self->new(2));
+ }
+ elsif ($x->{sign} eq '+inf')
+ {
+ # calculate pi/4 => 0.7 => 0
+ $y->bzero();
+ }
+ else
+ {
+ # calculate pi/2 => 1.5 => 1
+ $y->bone( substr($y->{sign},0,1) );
+ }
+ }
+ else
+ {
+ if ($x->{sign} eq '+inf')
+ {
+ # calculate pi/4 => 0.7 => 0
+ $y->bzero();
+ }
+ else
+ {
+ # PI => 3.1415.. => 3
+ $y->bone( substr($y->{sign},0,1) );
+ $y->bmul($self->new(3));
+ }
+ }
+ return $y;
+ }
+
+ return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
+
+ require Math::BigFloat;
+ my $r = Math::BigFloat->new($y)->batan2(Math::BigFloat->new($x),@r)->as_int();
+
+ $x->{value} = $r->{value};
+ $x->{sign} = $r->{sign};
+
+ $x;
+ }
+
+sub batan
+ {
+ # Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
+ # result truncated to an integer.
+ my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+ return $x if $x->modify('batan');
+
+ return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
+
+ return $upgrade->new($x)->batan(@r) if defined $upgrade;
+
+ # calculate the result and truncate it to integer
+ my $t = Math::BigFloat->new($x)->batan(@r);
+
+ $x->{value} = $CALC->_new( $x->as_int()->bstr() );
+ $x->round(@r);
+ }
+
+###############################################################################
+# this method returns 0 if the object can be modified, or 1 if not.
+# We use a fast constant sub() here, to avoid costly calls. Subclasses
+# may override it with special code (f.i. Math::BigInt::Constant does so)
+
+sub modify () { 0; }
+
+1;
+__END__
+
+=pod
+
+=head1 NAME
+
+Math::BigInt - Arbitrary size integer/float math package
+
+=head1 SYNOPSIS
+
+ use Math::BigInt;
+
+ # or make it faster with huge numbers: install (optional)
+ # Math::BigInt::GMP and always use (it will fall back to
+ # pure Perl if the GMP library is not installed):
+ # (See also the L<MATH LIBRARY> section!)
+
+ # will warn if Math::BigInt::GMP cannot be found
+ use Math::BigInt lib => 'GMP';
+
+ # to supress the warning use this:
+ # use Math::BigInt try => 'GMP';
+
+ # dies if GMP cannot be loaded:
+ # use Math::BigInt only => 'GMP';
+
+ my $str = '1234567890';
+ my @values = (64,74,18);
+ my $n = 1; my $sign = '-';
+
+ # Number creation
+ my $x = Math::BigInt->new($str); # defaults to 0
+ my $y = $x->copy(); # make a true copy
+ my $nan = Math::BigInt->bnan(); # create a NotANumber
+ my $zero = Math::BigInt->bzero(); # create a +0
+ my $inf = Math::BigInt->binf(); # create a +inf
+ my $inf = Math::BigInt->binf('-'); # create a -inf
+ my $one = Math::BigInt->bone(); # create a +1
+ my $mone = Math::BigInt->bone('-'); # create a -1
+
+ my $pi = Math::BigInt->bpi(); # returns '3'
+ # see Math::BigFloat::bpi()
+
+ $h = Math::BigInt->new('0x123'); # from hexadecimal
+ $b = Math::BigInt->new('0b101'); # from binary
+ $o = Math::BigInt->from_oct('0101'); # from octal
+
+ # Testing (don't modify their arguments)
+ # (return true if the condition is met, otherwise false)
+
+ $x->is_zero(); # if $x is +0
+ $x->is_nan(); # if $x is NaN
+ $x->is_one(); # if $x is +1
+ $x->is_one('-'); # if $x is -1
+ $x->is_odd(); # if $x is odd
+ $x->is_even(); # if $x is even
+ $x->is_pos(); # if $x >= 0
+ $x->is_neg(); # if $x < 0
+ $x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+')
+ $x->is_int(); # if $x is an integer (not a float)
+
+ # comparing and digit/sign extraction
+ $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
+ $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
+ $x->sign(); # return the sign, either +,- or NaN
+ $x->digit($n); # return the nth digit, counting from right
+ $x->digit(-$n); # return the nth digit, counting from left
+
+ # The following all modify their first argument. If you want to preserve
+ # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
+ # necessary when mixing $a = $b assignments with non-overloaded math.
+
+ $x->bzero(); # set $x to 0
+ $x->bnan(); # set $x to NaN
+ $x->bone(); # set $x to +1
+ $x->bone('-'); # set $x to -1
+ $x->binf(); # set $x to inf
+ $x->binf('-'); # set $x to -inf
+
+ $x->bneg(); # negation
+ $x->babs(); # absolute value
+ $x->bnorm(); # normalize (no-op in BigInt)
+ $x->bnot(); # two's complement (bit wise not)
+ $x->binc(); # increment $x by 1
+ $x->bdec(); # decrement $x by 1
+
+ $x->badd($y); # addition (add $y to $x)
+ $x->bsub($y); # subtraction (subtract $y from $x)
+ $x->bmul($y); # multiplication (multiply $x by $y)
+ $x->bdiv($y); # divide, set $x to quotient
+ # return (quo,rem) or quo if scalar
+
+ $x->bmuladd($y,$z); # $x = $x * $y + $z
+
+ $x->bmod($y); # modulus (x % y)
+ $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
+ $x->bmodinv($mod); # the inverse of $x in the given modulus $mod
+
+ $x->bpow($y); # power of arguments (x ** y)
+ $x->blsft($y); # left shift in base 2
+ $x->brsft($y); # right shift in base 2
+ # returns (quo,rem) or quo if in scalar context
+ $x->blsft($y,$n); # left shift by $y places in base $n
+ $x->brsft($y,$n); # right shift by $y places in base $n
+ # returns (quo,rem) or quo if in scalar context
+
+ $x->band($y); # bitwise and
+ $x->bior($y); # bitwise inclusive or
+ $x->bxor($y); # bitwise exclusive or
+ $x->bnot(); # bitwise not (two's complement)
+
+ $x->bsqrt(); # calculate square-root
+ $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
+ $x->bfac(); # factorial of $x (1*2*3*4*..$x)
+
+ $x->bnok($y); # x over y (binomial coefficient n over k)
+
+ $x->blog(); # logarithm of $x to base e (Euler's number)
+ $x->blog($base); # logarithm of $x to base $base (f.i. 2)
+ $x->bexp(); # calculate e ** $x where e is Euler's number
+
+ $x->round($A,$P,$mode); # round to accuracy or precision using mode $mode
+ $x->bround($n); # accuracy: preserve $n digits
+ $x->bfround($n); # $n > 0: round $nth digits,
+ # $n < 0: round to the $nth digit after the
+ # dot, no-op for BigInts
+
+ # The following do not modify their arguments in BigInt (are no-ops),
+ # but do so in BigFloat:
+
+ $x->bfloor(); # return integer less or equal than $x
+ $x->bceil(); # return integer greater or equal than $x
+
+ # The following do not modify their arguments:
+
+ # greatest common divisor (no OO style)
+ my $gcd = Math::BigInt::bgcd(@values);
+ # lowest common multiplicator (no OO style)
+ my $lcm = Math::BigInt::blcm(@values);
+
+ $x->length(); # return number of digits in number
+ ($xl,$f) = $x->length(); # length of number and length of fraction part,
+ # latter is always 0 digits long for BigInts
+
+ $x->exponent(); # return exponent as BigInt
+ $x->mantissa(); # return (signed) mantissa as BigInt
+ $x->parts(); # return (mantissa,exponent) as BigInt
+ $x->copy(); # make a true copy of $x (unlike $y = $x;)
+ $x->as_int(); # return as BigInt (in BigInt: same as copy())
+ $x->numify(); # return as scalar (might overflow!)
+
+ # conversation to string (do not modify their argument)
+ $x->bstr(); # normalized string (e.g. '3')
+ $x->bsstr(); # norm. string in scientific notation (e.g. '3E0')
+ $x->as_hex(); # as signed hexadecimal string with prefixed 0x
+ $x->as_bin(); # as signed binary string with prefixed 0b
+ $x->as_oct(); # as signed octal string with prefixed 0
+
+
+ # precision and accuracy (see section about rounding for more)
+ $x->precision(); # return P of $x (or global, if P of $x undef)
+ $x->precision($n); # set P of $x to $n
+ $x->accuracy(); # return A of $x (or global, if A of $x undef)
+ $x->accuracy($n); # set A $x to $n
+
+ # Global methods
+ Math::BigInt->precision(); # get/set global P for all BigInt objects
+ Math::BigInt->accuracy(); # get/set global A for all BigInt objects
+ Math::BigInt->round_mode(); # get/set global round mode, one of
+ # 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
+ Math::BigInt->config(); # return hash containing configuration
+
+=head1 DESCRIPTION
+
+All operators (including basic math operations) are overloaded if you
+declare your big integers as
+
+ $i = new Math::BigInt '123_456_789_123_456_789';
+
+Operations with overloaded operators preserve the arguments which is
+exactly what you expect.
+
+=over 2
+
+=item Input
+
+Input values to these routines may be any string, that looks like a number
+and results in an integer, including hexadecimal and binary numbers.
+
+Scalars holding numbers may also be passed, but note that non-integer numbers
+may already have lost precision due to the conversation to float. Quote
+your input if you want BigInt to see all the digits:
+
+ $x = Math::BigInt->new(12345678890123456789); # bad
+ $x = Math::BigInt->new('12345678901234567890'); # good
+
+You can include one underscore between any two digits.
+
+This means integer values like 1.01E2 or even 1000E-2 are also accepted.
+Non-integer values result in NaN.
+
+Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b")
+are accepted, too. Please note that octal numbers are not recognized
+by new(), so the following will print "123":
+
+ perl -MMath::BigInt -le 'print Math::BigInt->new("0123")'
+
+To convert an octal number, use from_oct();
+
+ perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")'
+
+Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
+results in 'NaN'. This might change in the future, so use always the following
+explicit forms to get a zero or NaN:
+
+ $zero = Math::BigInt->bzero();
+ $nan = Math::BigInt->bnan();
+
+C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers
+are always stored in normalized form. If passed a string, creates a BigInt
+object from the input.
+
+=item Output
+
+Output values are BigInt objects (normalized), except for the methods which
+return a string (see L<SYNOPSIS>).
+
+Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
+C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>)
+return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort.
+
+=back
+
+=head1 METHODS
+
+Each of the methods below (except config(), accuracy() and precision())
+accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R>
+are C<accuracy>, C<precision> and C<round_mode>. Please see the section about
+L<ACCURACY and PRECISION> for more information.
+
+=head2 config()
+
+ use Data::Dumper;
+
+ print Dumper ( Math::BigInt->config() );
+ print Math::BigInt->config()->{lib},"\n";
+
+Returns a hash containing the configuration, e.g. the version number, lib
+loaded etc. The following hash keys are currently filled in with the
+appropriate information.
+
+ key Description
+ Example
+ ============================================================
+ lib Name of the low-level math library
+ Math::BigInt::Calc
+ lib_version Version of low-level math library (see 'lib')
+ 0.30
+ class The class name of config() you just called
+ Math::BigInt
+ upgrade To which class math operations might be upgraded
+ Math::BigFloat
+ downgrade To which class math operations might be downgraded
+ undef
+ precision Global precision
+ undef
+ accuracy Global accuracy
+ undef
+ round_mode Global round mode
+ even
+ version version number of the class you used
+ 1.61
+ div_scale Fallback accuracy for div
+ 40
+ trap_nan If true, traps creation of NaN via croak()
+ 1
+ trap_inf If true, traps creation of +inf/-inf via croak()
+ 1
+
+The following values can be set by passing C<config()> a reference to a hash:
+
+ trap_inf trap_nan
+ upgrade downgrade precision accuracy round_mode div_scale
+
+Example:
+
+ $new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
+
+=head2 accuracy()
+
+ $x->accuracy(5); # local for $x
+ CLASS->accuracy(5); # global for all members of CLASS
+ # Note: This also applies to new()!
+
+ $A = $x->accuracy(); # read out accuracy that affects $x
+ $A = CLASS->accuracy(); # read out global accuracy
+
+Set or get the global or local accuracy, aka how many significant digits the
+results have. If you set a global accuracy, then this also applies to new()!
+
+Warning! The accuracy I<sticks>, e.g. once you created a number under the
+influence of C<< CLASS->accuracy($A) >>, all results from math operations with
+that number will also be rounded.
+
+In most cases, you should probably round the results explicitly using one of
+L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
+to the math operation as additional parameter:
+
+ my $x = Math::BigInt->new(30000);
+ my $y = Math::BigInt->new(7);
+ print scalar $x->copy()->bdiv($y, 2); # print 4300
+ print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
+
+Please see the section about L<ACCURACY AND PRECISION> for further details.
+
+Value must be greater than zero. Pass an undef value to disable it:
+
+ $x->accuracy(undef);
+ Math::BigInt->accuracy(undef);
+
+Returns the current accuracy. For C<$x->accuracy()> it will return either the
+local accuracy, or if not defined, the global. This means the return value
+represents the accuracy that will be in effect for $x:
+
+ $y = Math::BigInt->new(1234567); # unrounded
+ print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
+ $x = Math::BigInt->new(123456); # $x will be automatically rounded!
+ print "$x $y\n"; # '123500 1234567'
+ print $x->accuracy(),"\n"; # will be 4
+ print $y->accuracy(),"\n"; # also 4, since global is 4
+ print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
+ print $x->accuracy(),"\n"; # still 4
+ print $y->accuracy(),"\n"; # 5, since global is 5
+
+Note: Works also for subclasses like Math::BigFloat. Each class has it's own
+globals separated from Math::BigInt, but it is possible to subclass
+Math::BigInt and make the globals of the subclass aliases to the ones from
+Math::BigInt.
+
+=head2 precision()
+
+ $x->precision(-2); # local for $x, round at the second digit right of the dot
+ $x->precision(2); # ditto, round at the second digit left of the dot
+
+ CLASS->precision(5); # Global for all members of CLASS
+ # This also applies to new()!
+ CLASS->precision(-5); # ditto
+
+ $P = CLASS->precision(); # read out global precision
+ $P = $x->precision(); # read out precision that affects $x
+
+Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
+set the number of digits each result should have, with L<precision> you
+set the place where to round!
+
+C<precision()> sets or gets the global or local precision, aka at which digit
+before or after the dot to round all results. A set global precision also
+applies to all newly created numbers!
+
+In Math::BigInt, passing a negative number precision has no effect since no
+numbers have digits after the dot. In L<Math::BigFloat>, it will round all
+results to P digits after the dot.
+
+Please see the section about L<ACCURACY AND PRECISION> for further details.
+
+Pass an undef value to disable it:
+
+ $x->precision(undef);
+ Math::BigInt->precision(undef);
+
+Returns the current precision. For C<$x->precision()> it will return either the
+local precision of $x, or if not defined, the global. This means the return
+value represents the prevision that will be in effect for $x:
+
+ $y = Math::BigInt->new(1234567); # unrounded
+ print Math::BigInt->precision(4),"\n"; # set 4, print 4
+ $x = Math::BigInt->new(123456); # will be automatically rounded
+ print $x; # print "120000"!
+
+Note: Works also for subclasses like L<Math::BigFloat>. Each class has its
+own globals separated from Math::BigInt, but it is possible to subclass
+Math::BigInt and make the globals of the subclass aliases to the ones from
+Math::BigInt.
+
+=head2 brsft()
+
+ $x->brsft($y,$n);
+
+Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
+2, but others work, too.
+
+Right shifting usually amounts to dividing $x by $n ** $y and truncating the
+result:
+
+
+ $x = Math::BigInt->new(10);
+ $x->brsft(1); # same as $x >> 1: 5
+ $x = Math::BigInt->new(1234);
+ $x->brsft(2,10); # result 12
+
+There is one exception, and that is base 2 with negative $x:
+
+
+ $x = Math::BigInt->new(-5);
+ print $x->brsft(1);
+
+This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
+result).
+
+=head2 new()
+
+ $x = Math::BigInt->new($str,$A,$P,$R);
+
+Creates a new BigInt object from a scalar or another BigInt object. The
+input is accepted as decimal, hex (with leading '0x') or binary (with leading
+'0b').
+
+See L<Input> for more info on accepted input formats.
+
+=head2 from_oct()
+
+ $x = Math::BigInt->from_oct("0775"); # input is octal
+
+=head2 from_hex()
+
+ $x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal
+
+=head2 from_bin()
+
+ $x = Math::BigInt->from_oct("0x10011"); # input is binary
+
+=head2 bnan()
+
+ $x = Math::BigInt->bnan();
+
+Creates a new BigInt object representing NaN (Not A Number).
+If used on an object, it will set it to NaN:
+
+ $x->bnan();
+
+=head2 bzero()
+
+ $x = Math::BigInt->bzero();
+
+Creates a new BigInt object representing zero.
+If used on an object, it will set it to zero:
+
+ $x->bzero();
+
+=head2 binf()
+
+ $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing infinity. The optional argument is
+either '-' or '+', indicating whether you want infinity or minus infinity.
+If used on an object, it will set it to infinity:
+
+ $x->binf();
+ $x->binf('-');
+
+=head2 bone()
+
+ $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing one. The optional argument is
+either '-' or '+', indicating whether you want one or minus one.
+If used on an object, it will set it to one:
+
+ $x->bone(); # +1
+ $x->bone('-'); # -1
+
+=head2 is_one()/is_zero()/is_nan()/is_inf()
+
+
+ $x->is_zero(); # true if arg is +0
+ $x->is_nan(); # true if arg is NaN
+ $x->is_one(); # true if arg is +1
+ $x->is_one('-'); # true if arg is -1
+ $x->is_inf(); # true if +inf
+ $x->is_inf('-'); # true if -inf (sign is default '+')
+
+These methods all test the BigInt for being one specific value and return
+true or false depending on the input. These are faster than doing something
+like:
+
+ if ($x == 0)
+
+=head2 is_pos()/is_neg()/is_positive()/is_negative()
+
+ $x->is_pos(); # true if > 0
+ $x->is_neg(); # true if < 0
+
+The methods return true if the argument is positive or negative, respectively.
+C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
+C<-inf> is negative. A C<zero> is neither positive nor negative.
+
+These methods are only testing the sign, and not the value.
+
+C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and
+C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
+introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
+in v1.68.
+
+=head2 is_odd()/is_even()/is_int()
+
+ $x->is_odd(); # true if odd, false for even
+ $x->is_even(); # true if even, false for odd
+ $x->is_int(); # true if $x is an integer
+
+The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
+C<-inf> are not integers and are neither odd nor even.
+
+In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.
+
+=head2 bcmp()
+
+ $x->bcmp($y);
+
+Compares $x with $y and takes the sign into account.
+Returns -1, 0, 1 or undef.
+
+=head2 bacmp()
+
+ $x->bacmp($y);
+
+Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef.
+
+=head2 sign()
+
+ $x->sign();
+
+Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
+
+If you want $x to have a certain sign, use one of the following methods:
+
+ $x->babs(); # '+'
+ $x->babs()->bneg(); # '-'
+ $x->bnan(); # 'NaN'
+ $x->binf(); # '+inf'
+ $x->binf('-'); # '-inf'
+
+=head2 digit()
+
+ $x->digit($n); # return the nth digit, counting from right
+
+If C<$n> is negative, returns the digit counting from left.
+
+=head2 bneg()
+
+ $x->bneg();
+
+Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
+and '-inf', respectively. Does nothing for NaN or zero.
+
+=head2 babs()
+
+ $x->babs();
+
+Set the number to its absolute value, e.g. change the sign from '-' to '+'
+and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
+numbers.
+
+=head2 bnorm()
+
+ $x->bnorm(); # normalize (no-op)
+
+=head2 bnot()
+
+ $x->bnot();
+
+Two's complement (bitwise not). This is equivalent to
+
+ $x->binc()->bneg();
+
+but faster.
+
+=head2 binc()
+
+ $x->binc(); # increment x by 1
+
+=head2 bdec()
+
+ $x->bdec(); # decrement x by 1
+
+=head2 badd()
+
+ $x->badd($y); # addition (add $y to $x)
+
+=head2 bsub()
+
+ $x->bsub($y); # subtraction (subtract $y from $x)
+
+=head2 bmul()
+
+ $x->bmul($y); # multiplication (multiply $x by $y)
+
+=head2 bmuladd()
+
+ $x->bmuladd($y,$z);
+
+Multiply $x by $y, and then add $z to the result,
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bdiv()
+
+ $x->bdiv($y); # divide, set $x to quotient
+ # return (quo,rem) or quo if scalar
+
+=head2 bmod()
+
+ $x->bmod($y); # modulus (x % y)
+
+=head2 bmodinv()
+
+ num->bmodinv($mod); # modular inverse
+
+Returns the inverse of C<$num> in the given modulus C<$mod>. 'C<NaN>' is
+returned unless C<$num> is relatively prime to C<$mod>, i.e. unless
+C<bgcd($num, $mod)==1>.
+
+=head2 bmodpow()
+
+ $num->bmodpow($exp,$mod); # modular exponentation
+ # ($num**$exp % $mod)
+
+Returns the value of C<$num> taken to the power C<$exp> in the modulus
+C<$mod> using binary exponentation. C<bmodpow> is far superior to
+writing
+
+ $num ** $exp % $mod
+
+because it is much faster - it reduces internal variables into
+the modulus whenever possible, so it operates on smaller numbers.
+
+C<bmodpow> also supports negative exponents.
+
+ bmodpow($num, -1, $mod)
+
+is exactly equivalent to
+
+ bmodinv($num, $mod)
+
+=head2 bpow()
+
+ $x->bpow($y); # power of arguments (x ** y)
+
+=head2 blog()
+
+ $x->blog($base, $accuracy); # logarithm of x to the base $base
+
+If C<$base> is not defined, Euler's number (e) is used:
+
+ print $x->blog(undef, 100); # log(x) to 100 digits
+
+=head2 bexp()
+
+ $x->bexp($accuracy); # calculate e ** X
+
+Calculates the expression C<e ** $x> where C<e> is Euler's number.
+
+This method was added in v1.82 of Math::BigInt (April 2007).
+
+See also L<blog()>.
+
+=head2 bnok()
+
+ $x->bnok($y); # x over y (binomial coefficient n over k)
+
+Calculates the binomial coefficient n over k, also called the "choose"
+function. The result is equivalent to:
+
+ ( n ) n!
+ | - | = -------
+ ( k ) k!(n-k)!
+
+This method was added in v1.84 of Math::BigInt (April 2007).
+
+=head2 bpi()
+
+ print Math::BigInt->bpi(100), "\n"; # 3
+
+Returns PI truncated to an integer, with the argument being ignored. This means
+under BigInt this always returns C<3>.
+
+If upgrading is in effect, returns PI, rounded to N digits with the
+current rounding mode:
+
+ use Math::BigFloat;
+ use Math::BigInt upgrade => Math::BigFloat;
+ print Math::BigInt->bpi(3), "\n"; # 3.14
+ print Math::BigInt->bpi(100), "\n"; # 3.1415....
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bcos()
+
+ my $x = Math::BigInt->new(1);
+ print $x->bcos(100), "\n";
+
+Calculate the cosinus of $x, modifying $x in place.
+
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 bsin()
+
+ my $x = Math::BigInt->new(1);
+ print $x->bsin(100), "\n";
+
+Calculate the sinus of $x, modifying $x in place.
+
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 batan2()
+
+ my $x = Math::BigInt->new(1);
+ my $y = Math::BigInt->new(1);
+ print $y->batan2($x), "\n";
+
+Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place.
+
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 batan()
+
+ my $x = Math::BigFloat->new(0.5);
+ print $x->batan(100), "\n";
+
+Calculate the arcus tangens of $x, modifying $x in place.
+
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 blsft()
+
+ $x->blsft($y); # left shift in base 2
+ $x->blsft($y,$n); # left shift, in base $n (like 10)
+
+=head2 brsft()
+
+ $x->brsft($y); # right shift in base 2
+ $x->brsft($y,$n); # right shift, in base $n (like 10)
+
+=head2 band()
+
+ $x->band($y); # bitwise and
+
+=head2 bior()
+
+ $x->bior($y); # bitwise inclusive or
+
+=head2 bxor()
+
+ $x->bxor($y); # bitwise exclusive or
+
+=head2 bnot()
+
+ $x->bnot(); # bitwise not (two's complement)
+
+=head2 bsqrt()
+
+ $x->bsqrt(); # calculate square-root
+
+=head2 broot()
+
+ $x->broot($N);
+
+Calculates the N'th root of C<$x>.
+
+=head2 bfac()
+
+ $x->bfac(); # factorial of $x (1*2*3*4*..$x)
+
+=head2 round()
+
+ $x->round($A,$P,$round_mode);
+
+Round $x to accuracy C<$A> or precision C<$P> using the round mode
+C<$round_mode>.
+
+=head2 bround()
+
+ $x->bround($N); # accuracy: preserve $N digits
+
+=head2 bfround()
+
+ $x->bfround($N);
+
+If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to
+the Nth digit after the dot. Since BigInts are integers, the case N < 0
+is a no-op for them.
+
+Examples:
+
+ Input N Result
+ ===================================================
+ 123456.123456 3 123500
+ 123456.123456 2 123450
+ 123456.123456 -2 123456.12
+ 123456.123456 -3 123456.123
+
+=head2 bfloor()
+
+ $x->bfloor();
+
+Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
+
+=head2 bceil()
+
+ $x->bceil();
+
+Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
+
+=head2 bgcd()
+
+ bgcd(@values); # greatest common divisor (no OO style)
+
+=head2 blcm()
+
+ blcm(@values); # lowest common multiplicator (no OO style)
+
+head2 length()
+
+ $x->length();
+ ($xl,$fl) = $x->length();
+
+Returns the number of digits in the decimal representation of the number.
+In list context, returns the length of the integer and fraction part. For
+BigInt's, the length of the fraction part will always be 0.
+
+=head2 exponent()
+
+ $x->exponent();
+
+Return the exponent of $x as BigInt.
+
+=head2 mantissa()
+
+ $x->mantissa();
+
+Return the signed mantissa of $x as BigInt.
+
+=head2 parts()
+
+ $x->parts(); # return (mantissa,exponent) as BigInt
+
+=head2 copy()
+
+ $x->copy(); # make a true copy of $x (unlike $y = $x;)
+
+=head2 as_int()/as_number()
+
+ $x->as_int();
+
+Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
+C<copy()>.
+
+C<as_number()> is an alias to this method. C<as_number> was introduced in
+v1.22, while C<as_int()> was only introduced in v1.68.
+
+=head2 bstr()
+
+ $x->bstr();
+
+Returns a normalized string representation of C<$x>.
+
+=head2 bsstr()
+
+ $x->bsstr(); # normalized string in scientific notation
+
+=head2 as_hex()
+
+ $x->as_hex(); # as signed hexadecimal string with prefixed 0x
+
+=head2 as_bin()
+
+ $x->as_bin(); # as signed binary string with prefixed 0b
+
+=head2 as_oct()
+
+ $x->as_oct(); # as signed octal string with prefixed 0
+
+=head2 numify()
+
+ print $x->numify();
+
+This returns a normal Perl scalar from $x. It is used automatically
+whenever a scalar is needed, for instance in array index operations.
+
+This loses precision, to avoid this use L<as_int()> instead.
+
+=head2 modify()
+
+ $x->modify('bpowd');
+
+This method returns 0 if the object can be modified with the given
+peration, or 1 if not.
+
+This is used for instance by L<Math::BigInt::Constant>.
+
+=head2 upgrade()/downgrade()
+
+Set/get the class for downgrade/upgrade operations. Thuis is used
+for instance by L<bignum>. The defaults are '', thus the following
+operation will create a BigInt, not a BigFloat:
+
+ my $i = Math::BigInt->new(123);
+ my $f = Math::BigFloat->new('123.1');
+
+ print $i + $f,"\n"; # print 246
+
+=head2 div_scale()
+
+Set/get the number of digits for the default precision in divide
+operations.
+
+=head2 round_mode()
+
+Set/get the current round mode.
+
+=head1 ACCURACY and PRECISION
+
+Since version v1.33, Math::BigInt and Math::BigFloat have full support for
+accuracy and precision based rounding, both automatically after every
+operation, as well as manually.
+
+This section describes the accuracy/precision handling in Math::Big* as it
+used to be and as it is now, complete with an explanation of all terms and
+abbreviations.
+
+Not yet implemented things (but with correct description) are marked with '!',
+things that need to be answered are marked with '?'.
+
+In the next paragraph follows a short description of terms used here (because
+these may differ from terms used by others people or documentation).
+
+During the rest of this document, the shortcuts A (for accuracy), P (for
+precision), F (fallback) and R (rounding mode) will be used.
+
+=head2 Precision P
+
+A fixed number of digits before (positive) or after (negative)
+the decimal point. For example, 123.45 has a precision of -2. 0 means an
+integer like 123 (or 120). A precision of 2 means two digits to the left
+of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
+numbers with zeros before the decimal point may have different precisions,
+because 1200 can have p = 0, 1 or 2 (depending on what the inital value
+was). It could also have p < 0, when the digits after the decimal point
+are zero.
+
+The string output (of floating point numbers) will be padded with zeros:
+
+ Initial value P A Result String
+ ------------------------------------------------------------
+ 1234.01 -3 1000 1000
+ 1234 -2 1200 1200
+ 1234.5 -1 1230 1230
+ 1234.001 1 1234 1234.0
+ 1234.01 0 1234 1234
+ 1234.01 2 1234.01 1234.01
+ 1234.01 5 1234.01 1234.01000
+
+For BigInts, no padding occurs.
+
+=head2 Accuracy A
+
+Number of significant digits. Leading zeros are not counted. A
+number may have an accuracy greater than the non-zero digits
+when there are zeros in it or trailing zeros. For example, 123.456 has
+A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.
+
+The string output (of floating point numbers) will be padded with zeros:
+
+ Initial value P A Result String
+ ------------------------------------------------------------
+ 1234.01 3 1230 1230
+ 1234.01 6 1234.01 1234.01
+ 1234.1 8 1234.1 1234.1000
+
+For BigInts, no padding occurs.
+
+=head2 Fallback F
+
+When both A and P are undefined, this is used as a fallback accuracy when
+dividing numbers.
+
+=head2 Rounding mode R
+
+When rounding a number, different 'styles' or 'kinds'
+of rounding are possible. (Note that random rounding, as in
+Math::Round, is not implemented.)
+
+=over 2
+
+=item 'trunc'
+
+truncation invariably removes all digits following the
+rounding place, replacing them with zeros. Thus, 987.65 rounded
+to tens (P=1) becomes 980, and rounded to the fourth sigdig
+becomes 987.6 (A=4). 123.456 rounded to the second place after the
+decimal point (P=-2) becomes 123.46.
+
+All other implemented styles of rounding attempt to round to the
+"nearest digit." If the digit D immediately to the right of the
+rounding place (skipping the decimal point) is greater than 5, the
+number is incremented at the rounding place (possibly causing a
+cascade of incrementation): e.g. when rounding to units, 0.9 rounds
+to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
+truncated at the rounding place: e.g. when rounding to units, 0.4
+rounds to 0, and -19.4 rounds to -19.
+
+However the results of other styles of rounding differ if the
+digit immediately to the right of the rounding place (skipping the
+decimal point) is 5 and if there are no digits, or no digits other
+than 0, after that 5. In such cases:
+
+=item 'even'
+
+rounds the digit at the rounding place to 0, 2, 4, 6, or 8
+if it is not already. E.g., when rounding to the first sigdig, 0.45
+becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
+
+=item 'odd'
+
+rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
+it is not already. E.g., when rounding to the first sigdig, 0.45
+becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.
+
+=item '+inf'
+
+round to plus infinity, i.e. always round up. E.g., when
+rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
+and 0.4501 also becomes 0.5.
+
+=item '-inf'
+
+round to minus infinity, i.e. always round down. E.g., when
+rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
+but 0.4501 becomes 0.5.
+
+=item 'zero'
+
+round to zero, i.e. positive numbers down, negative ones up.
+E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
+becomes -0.5, but 0.4501 becomes 0.5.
+
+=item 'common'
+
+round up if the digit immediately to the right of the rounding place
+is 5 or greater, otherwise round down. E.g., 0.15 becomes 0.2 and
+0.149 becomes 0.1.
+
+=back
+
+The handling of A & P in MBI/MBF (the old core code shipped with Perl
+versions <= 5.7.2) is like this:
+
+=over 2
+
+=item Precision
+
+ * ffround($p) is able to round to $p number of digits after the decimal
+ point
+ * otherwise P is unused
+
+=item Accuracy (significant digits)
+
+ * fround($a) rounds to $a significant digits
+ * only fdiv() and fsqrt() take A as (optional) paramater
+ + other operations simply create the same number (fneg etc), or more (fmul)
+ of digits
+ + rounding/truncating is only done when explicitly calling one of fround
+ or ffround, and never for BigInt (not implemented)
+ * fsqrt() simply hands its accuracy argument over to fdiv.
+ * the documentation and the comment in the code indicate two different ways
+ on how fdiv() determines the maximum number of digits it should calculate,
+ and the actual code does yet another thing
+ POD:
+ max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
+ Comment:
+ result has at most max(scale, length(dividend), length(divisor)) digits
+ Actual code:
+ scale = max(scale, length(dividend)-1,length(divisor)-1);
+ scale += length(divisor) - length(dividend);
+ So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
+ Actually, the 'difference' added to the scale is calculated from the
+ number of "significant digits" in dividend and divisor, which is derived
+ by looking at the length of the mantissa. Which is wrong, since it includes
+ the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
+ again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
+ assumption that 124 has 3 significant digits, while 120/7 will get you
+ '17', not '17.1' since 120 is thought to have 2 significant digits.
+ The rounding after the division then uses the remainder and $y to determine
+ wether it must round up or down.
+ ? I have no idea which is the right way. That's why I used a slightly more
+ ? simple scheme and tweaked the few failing testcases to match it.
+
+=back
+
+This is how it works now:
+
+=over 2
+
+=item Setting/Accessing
+
+ * You can set the A global via C<< Math::BigInt->accuracy() >> or
+ C<< Math::BigFloat->accuracy() >> or whatever class you are using.
+ * You can also set P globally by using C<< Math::SomeClass->precision() >>
+ likewise.
+ * Globals are classwide, and not inherited by subclasses.
+ * to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
+ * to undefine P, use C<< Math::SomeClass->precision(undef); >>
+ * Setting C<< Math::SomeClass->accuracy() >> clears automatically
+ C<< Math::SomeClass->precision() >>, and vice versa.
+ * To be valid, A must be > 0, P can have any value.
+ * If P is negative, this means round to the P'th place to the right of the
+ decimal point; positive values mean to the left of the decimal point.
+ P of 0 means round to integer.
+ * to find out the current global A, use C<< Math::SomeClass->accuracy() >>
+ * to find out the current global P, use C<< Math::SomeClass->precision() >>
+ * use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local
+ setting of C<< $x >>.
+ * Please note that C<< $x->accuracy() >> respective C<< $x->precision() >>
+ return eventually defined global A or P, when C<< $x >>'s A or P is not
+ set.
+
+=item Creating numbers
+
+ * When you create a number, you can give the desired A or P via:
+ $x = Math::BigInt->new($number,$A,$P);
+ * Only one of A or P can be defined, otherwise the result is NaN
+ * If no A or P is give ($x = Math::BigInt->new($number) form), then the
+ globals (if set) will be used. Thus changing the global defaults later on
+ will not change the A or P of previously created numbers (i.e., A and P of
+ $x will be what was in effect when $x was created)
+ * If given undef for A and P, B<no> rounding will occur, and the globals will
+ B<not> be used. This is used by subclasses to create numbers without
+ suffering rounding in the parent. Thus a subclass is able to have its own
+ globals enforced upon creation of a number by using
+ C<< $x = Math::BigInt->new($number,undef,undef) >>:
+
+ use Math::BigInt::SomeSubclass;
+ use Math::BigInt;
+
+ Math::BigInt->accuracy(2);
+ Math::BigInt::SomeSubClass->accuracy(3);
+ $x = Math::BigInt::SomeSubClass->new(1234);
+
+ $x is now 1230, and not 1200. A subclass might choose to implement
+ this otherwise, e.g. falling back to the parent's A and P.
+
+=item Usage
+
+ * If A or P are enabled/defined, they are used to round the result of each
+ operation according to the rules below
+ * Negative P is ignored in Math::BigInt, since BigInts never have digits
+ after the decimal point
+ * Math::BigFloat uses Math::BigInt internally, but setting A or P inside
+ Math::BigInt as globals does not tamper with the parts of a BigFloat.
+ A flag is used to mark all Math::BigFloat numbers as 'never round'.
+
+=item Precedence
+
+ * It only makes sense that a number has only one of A or P at a time.
+ If you set either A or P on one object, or globally, the other one will
+ be automatically cleared.
+ * If two objects are involved in an operation, and one of them has A in
+ effect, and the other P, this results in an error (NaN).
+ * A takes precedence over P (Hint: A comes before P).
+ If neither of them is defined, nothing is used, i.e. the result will have
+ as many digits as it can (with an exception for fdiv/fsqrt) and will not
+ be rounded.
+ * There is another setting for fdiv() (and thus for fsqrt()). If neither of
+ A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
+ If either the dividend's or the divisor's mantissa has more digits than
+ the value of F, the higher value will be used instead of F.
+ This is to limit the digits (A) of the result (just consider what would
+ happen with unlimited A and P in the case of 1/3 :-)
+ * fdiv will calculate (at least) 4 more digits than required (determined by
+ A, P or F), and, if F is not used, round the result
+ (this will still fail in the case of a result like 0.12345000000001 with A
+ or P of 5, but this can not be helped - or can it?)
+ * Thus you can have the math done by on Math::Big* class in two modi:
+ + never round (this is the default):
+ This is done by setting A and P to undef. No math operation
+ will round the result, with fdiv() and fsqrt() as exceptions to guard
+ against overflows. You must explicitly call bround(), bfround() or
+ round() (the latter with parameters).
+ Note: Once you have rounded a number, the settings will 'stick' on it
+ and 'infect' all other numbers engaged in math operations with it, since
+ local settings have the highest precedence. So, to get SaferRound[tm],
+ use a copy() before rounding like this:
+
+ $x = Math::BigFloat->new(12.34);
+ $y = Math::BigFloat->new(98.76);
+ $z = $x * $y; # 1218.6984
+ print $x->copy()->fround(3); # 12.3 (but A is now 3!)
+ $z = $x * $y; # still 1218.6984, without
+ # copy would have been 1210!
+
+ + round after each op:
+ After each single operation (except for testing like is_zero()), the
+ method round() is called and the result is rounded appropriately. By
+ setting proper values for A and P, you can have all-the-same-A or
+ all-the-same-P modes. For example, Math::Currency might set A to undef,
+ and P to -2, globally.
+
+ ?Maybe an extra option that forbids local A & P settings would be in order,
+ ?so that intermediate rounding does not 'poison' further math?
+
+=item Overriding globals
+
+ * you will be able to give A, P and R as an argument to all the calculation
+ routines; the second parameter is A, the third one is P, and the fourth is
+ R (shift right by one for binary operations like badd). P is used only if
+ the first parameter (A) is undefined. These three parameters override the
+ globals in the order detailed as follows, i.e. the first defined value
+ wins:
+ (local: per object, global: global default, parameter: argument to sub)
+ + parameter A
+ + parameter P
+ + local A (if defined on both of the operands: smaller one is taken)
+ + local P (if defined on both of the operands: bigger one is taken)
+ + global A
+ + global P
+ + global F
+ * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
+ arguments (A and P) instead of one
+
+=item Local settings
+
+ * You can set A or P locally by using C<< $x->accuracy() >> or
+ C<< $x->precision() >>
+ and thus force different A and P for different objects/numbers.
+ * Setting A or P this way immediately rounds $x to the new value.
+ * C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.
+
+=item Rounding
+
+ * the rounding routines will use the respective global or local settings.
+ fround()/bround() is for accuracy rounding, while ffround()/bfround()
+ is for precision
+ * the two rounding functions take as the second parameter one of the
+ following rounding modes (R):
+ 'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
+ * you can set/get the global R by using C<< Math::SomeClass->round_mode() >>
+ or by setting C<< $Math::SomeClass::round_mode >>
+ * after each operation, C<< $result->round() >> is called, and the result may
+ eventually be rounded (that is, if A or P were set either locally,
+ globally or as parameter to the operation)
+ * to manually round a number, call C<< $x->round($A,$P,$round_mode); >>
+ this will round the number by using the appropriate rounding function
+ and then normalize it.
+ * rounding modifies the local settings of the number:
+
+ $x = Math::BigFloat->new(123.456);
+ $x->accuracy(5);
+ $x->bround(4);
+
+ Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
+ will be 4 from now on.
+
+=item Default values
+
+ * R: 'even'
+ * F: 40
+ * A: undef
+ * P: undef
+
+=item Remarks
+
+ * The defaults are set up so that the new code gives the same results as
+ the old code (except in a few cases on fdiv):
+ + Both A and P are undefined and thus will not be used for rounding
+ after each operation.
+ + round() is thus a no-op, unless given extra parameters A and P
+
+=back
+
+=head1 Infinity and Not a Number
+
+While BigInt has extensive handling of inf and NaN, certain quirks remain.
+
+=over 2
+
+=item oct()/hex()
+
+These perl routines currently (as of Perl v.5.8.6) cannot handle passed
+inf.
+
+ te@linux:~> perl -wle 'print 2 ** 3333'
+ inf
+ te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
+ 1
+ te@linux:~> perl -wle 'print oct(2 ** 3333)'
+ 0
+ te@linux:~> perl -wle 'print hex(2 ** 3333)'
+ Illegal hexadecimal digit 'i' ignored at -e line 1.
+ 0
+
+The same problems occur if you pass them Math::BigInt->binf() objects. Since
+overloading these routines is not possible, this cannot be fixed from BigInt.
+
+=item ==, !=, <, >, <=, >= with NaNs
+
+BigInt's bcmp() routine currently returns undef to signal that a NaN was
+involved in a comparison. However, the overload code turns that into
+either 1 or '' and thus operations like C<< NaN != NaN >> might return
+wrong values.
+
+=item log(-inf)
+
+C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then
+log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real
+infinity "overshadows" it, so the number might as well just be infinity.
+However, the result is a complex number, and since BigInt/BigFloat can only
+have real numbers as results, the result is NaN.
+
+=item exp(), cos(), sin(), atan2()
+
+These all might have problems handling infinity right.
+
+=back
+
+=head1 INTERNALS
+
+The actual numbers are stored as unsigned big integers (with seperate sign).
+
+You should neither care about nor depend on the internal representation; it
+might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
+instead relying on the internal representation.
+
+=head2 MATH LIBRARY
+
+Math with the numbers is done (by default) by a module called
+C<Math::BigInt::Calc>. This is equivalent to saying:
+
+ use Math::BigInt try => 'Calc';
+
+You can change this backend library by using:
+
+ use Math::BigInt try => 'GMP';
+
+B<Note>: General purpose packages should not be explicit about the library
+to use; let the script author decide which is best.
+
+If your script works with huge numbers and Calc is too slow for them,
+you can also for the loading of one of these libraries and if none
+of them can be used, the code will die:
+
+ use Math::BigInt only => 'GMP,Pari';
+
+The following would first try to find Math::BigInt::Foo, then
+Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
+
+ use Math::BigInt try => 'Foo,Math::BigInt::Bar';
+
+The library that is loaded last will be used. Note that this can be
+overwritten at any time by loading a different library, and numbers
+constructed with different libraries cannot be used in math operations
+together.
+
+=head3 What library to use?
+
+B<Note>: General purpose packages should not be explicit about the library
+to use; let the script author decide which is best.
+
+L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big
+numbers much faster than Calc, however it is slower when dealing with very
+small numbers (less than about 20 digits) and when converting very large
+numbers to decimal (for instance for printing, rounding, calculating their
+length in decimal etc).
+
+So please select carefully what libary you want to use.
+
+Different low-level libraries use different formats to store the numbers.
+However, you should B<NOT> depend on the number having a specific format
+internally.
+
+See the respective math library module documentation for further details.
+
+=head2 SIGN
+
+The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
+
+A sign of 'NaN' is used to represent the result when input arguments are not
+numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
+minus infinity. You will get '+inf' when dividing a positive number by 0, and
+'-inf' when dividing any negative number by 0.
+
+=head2 mantissa(), exponent() and parts()
+
+C<mantissa()> and C<exponent()> return the said parts of the BigInt such
+that:
+
+ $m = $x->mantissa();
+ $e = $x->exponent();
+ $y = $m * ( 10 ** $e );
+ print "ok\n" if $x == $y;
+
+C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
+in one go. Both the returned mantissa and exponent have a sign.
+
+Currently, for BigInts C<$e> is always 0, except +inf and -inf, where it is
+C<+inf>; and for NaN, where it is C<NaN>; and for C<$x == 0>, where it is C<1>
+(to be compatible with Math::BigFloat's internal representation of a zero as
+C<0E1>).
+
+C<$m> is currently just a copy of the original number. The relation between
+C<$e> and C<$m> will stay always the same, though their real values might
+change.
+
+=head1 EXAMPLES
+
+ use Math::BigInt;
+
+ sub bint { Math::BigInt->new(shift); }
+
+ $x = Math::BigInt->bstr("1234") # string "1234"
+ $x = "$x"; # same as bstr()
+ $x = Math::BigInt->bneg("1234"); # BigInt "-1234"
+ $x = Math::BigInt->babs("-12345"); # BigInt "12345"
+ $x = Math::BigInt->bnorm("-0.00"); # BigInt "0"
+ $x = bint(1) + bint(2); # BigInt "3"
+ $x = bint(1) + "2"; # ditto (auto-BigIntify of "2")
+ $x = bint(1); # BigInt "1"
+ $x = $x + 5 / 2; # BigInt "3"
+ $x = $x ** 3; # BigInt "27"
+ $x *= 2; # BigInt "54"
+ $x = Math::BigInt->new(0); # BigInt "0"
+ $x--; # BigInt "-1"
+ $x = Math::BigInt->badd(4,5) # BigInt "9"
+ print $x->bsstr(); # 9e+0
+
+Examples for rounding:
+
+ use Math::BigFloat;
+ use Test;
+
+ $x = Math::BigFloat->new(123.4567);
+ $y = Math::BigFloat->new(123.456789);
+ Math::BigFloat->accuracy(4); # no more A than 4
+
+ ok ($x->copy()->fround(),123.4); # even rounding
+ print $x->copy()->fround(),"\n"; # 123.4
+ Math::BigFloat->round_mode('odd'); # round to odd
+ print $x->copy()->fround(),"\n"; # 123.5
+ Math::BigFloat->accuracy(5); # no more A than 5
+ Math::BigFloat->round_mode('odd'); # round to odd
+ print $x->copy()->fround(),"\n"; # 123.46
+ $y = $x->copy()->fround(4),"\n"; # A = 4: 123.4
+ print "$y, ",$y->accuracy(),"\n"; # 123.4, 4
+
+ Math::BigFloat->accuracy(undef); # A not important now
+ Math::BigFloat->precision(2); # P important
+ print $x->copy()->bnorm(),"\n"; # 123.46
+ print $x->copy()->fround(),"\n"; # 123.46
+
+Examples for converting:
+
+ my $x = Math::BigInt->new('0b1'.'01' x 123);
+ print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
+
+=head1 Autocreating constants
+
+After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
+and binary constants in the given scope are converted to C<Math::BigInt>.
+This conversion happens at compile time.
+
+In particular,
+
+ perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
+
+prints the integer value of C<2**100>. Note that without conversion of
+constants the expression 2**100 will be calculated as perl scalar.
+
+Please note that strings and floating point constants are not affected,
+so that
+
+ use Math::BigInt qw/:constant/;
+
+ $x = 1234567890123456789012345678901234567890
+ + 123456789123456789;
+ $y = '1234567890123456789012345678901234567890'
+ + '123456789123456789';
+
+do not work. You need an explicit Math::BigInt->new() around one of the
+operands. You should also quote large constants to protect loss of precision:
+
+ use Math::BigInt;
+
+ $x = Math::BigInt->new('1234567889123456789123456789123456789');
+
+Without the quotes Perl would convert the large number to a floating point
+constant at compile time and then hand the result to BigInt, which results in
+an truncated result or a NaN.
+
+This also applies to integers that look like floating point constants:
+
+ use Math::BigInt ':constant';
+
+ print ref(123e2),"\n";
+ print ref(123.2e2),"\n";
+
+will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
+to get this to work.
+
+=head1 PERFORMANCE
+
+Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
+must be made in the second case. For long numbers, the copy can eat up to 20%
+of the work (in the case of addition/subtraction, less for
+multiplication/division). If $y is very small compared to $x, the form
+$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
+more time then the actual addition.
+
+With a technique called copy-on-write, the cost of copying with overload could
+be minimized or even completely avoided. A test implementation of COW did show
+performance gains for overloaded math, but introduced a performance loss due
+to a constant overhead for all other operations. So Math::BigInt does currently
+not COW.
+
+The rewritten version of this module (vs. v0.01) is slower on certain
+operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
+does now more work and handles much more cases. The time spent in these
+operations is usually gained in the other math operations so that code on
+the average should get (much) faster. If they don't, please contact the author.
+
+Some operations may be slower for small numbers, but are significantly faster
+for big numbers. Other operations are now constant (O(1), like C<bneg()>,
+C<babs()> etc), instead of O(N) and thus nearly always take much less time.
+These optimizations were done on purpose.
+
+If you find the Calc module to slow, try to install any of the replacement
+modules and see if they help you.
+
+=head2 Alternative math libraries
+
+You can use an alternative library to drive Math::BigInt. See the section
+L<MATH LIBRARY> for more information.
+
+For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
+
+=head2 SUBCLASSING
+
+=head1 Subclassing Math::BigInt
+
+The basic design of Math::BigInt allows simple subclasses with very little
+work, as long as a few simple rules are followed:
+
+=over 2
+
+=item *
+
+The public API must remain consistent, i.e. if a sub-class is overloading
+addition, the sub-class must use the same name, in this case badd(). The
+reason for this is that Math::BigInt is optimized to call the object methods
+directly.
+
+=item *
+
+The private object hash keys like C<$x->{sign}> may not be changed, but
+additional keys can be added, like C<$x->{_custom}>.
+
+=item *
+
+Accessor functions are available for all existing object hash keys and should
+be used instead of directly accessing the internal hash keys. The reason for
+this is that Math::BigInt itself has a pluggable interface which permits it
+to support different storage methods.
+
+=back
+
+More complex sub-classes may have to replicate more of the logic internal of
+Math::BigInt if they need to change more basic behaviors. A subclass that
+needs to merely change the output only needs to overload C<bstr()>.
+
+All other object methods and overloaded functions can be directly inherited
+from the parent class.
+
+At the very minimum, any subclass will need to provide its own C<new()> and can
+store additional hash keys in the object. There are also some package globals
+that must be defined, e.g.:
+
+ # Globals
+ $accuracy = undef;
+ $precision = -2; # round to 2 decimal places
+ $round_mode = 'even';
+ $div_scale = 40;
+
+Additionally, you might want to provide the following two globals to allow
+auto-upgrading and auto-downgrading to work correctly:
+
+ $upgrade = undef;
+ $downgrade = undef;
+
+This allows Math::BigInt to correctly retrieve package globals from the
+subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
+t/Math/BigFloat/SubClass.pm completely functional subclass examples.
+
+Don't forget to
+
+ use overload;
+
+in your subclass to automatically inherit the overloading from the parent. If
+you like, you can change part of the overloading, look at Math::String for an
+example.
+
+=head1 UPGRADING
+
+When used like this:
+
+ use Math::BigInt upgrade => 'Foo::Bar';
+
+certain operations will 'upgrade' their calculation and thus the result to
+the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
+
+ use Math::BigInt upgrade => 'Math::BigFloat';
+
+As a shortcut, you can use the module C<bignum>:
+
+ use bignum;
+
+Also good for oneliners:
+
+ perl -Mbignum -le 'print 2 ** 255'
+
+This makes it possible to mix arguments of different classes (as in 2.5 + 2)
+as well es preserve accuracy (as in sqrt(3)).
+
+Beware: This feature is not fully implemented yet.
+
+=head2 Auto-upgrade
+
+The following methods upgrade themselves unconditionally; that is if upgrade
+is in effect, they will always hand up their work:
+
+=over 2
+
+=item bsqrt()
+
+=item div()
+
+=item blog()
+
+=item bexp()
+
+=back
+
+Beware: This list is not complete.
+
+All other methods upgrade themselves only when one (or all) of their
+arguments are of the class mentioned in $upgrade (This might change in later
+versions to a more sophisticated scheme):
+
+=head1 EXPORTS
+
+C<Math::BigInt> exports nothing by default, but can export the following methods:
+
+ bgcd
+ blcm
+
+=head1 CAVEATS
+
+Some things might not work as you expect them. Below is documented what is
+known to be troublesome:
+
+=over 1
+
+=item bstr(), bsstr() and 'cmp'
+
+Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
+drop the leading '+'. The old code would return '+3', the new returns '3'.
+This is to be consistent with Perl and to make C<cmp> (especially with
+overloading) to work as you expect. It also solves problems with C<Test.pm>,
+because its C<ok()> uses 'eq' internally.
+
+Mark Biggar said, when asked about to drop the '+' altogether, or make only
+C<cmp> work:
+
+ I agree (with the first alternative), don't add the '+' on positive
+ numbers. It's not as important anymore with the new internal
+ form for numbers. It made doing things like abs and neg easier,
+ but those have to be done differently now anyway.
+
+So, the following examples will now work all as expected:
+
+ use Test;
+ BEGIN { plan tests => 1 }
+ use Math::BigInt;
+
+ my $x = new Math::BigInt 3*3;
+ my $y = new Math::BigInt 3*3;
+
+ ok ($x,3*3);
+ print "$x eq 9" if $x eq $y;
+ print "$x eq 9" if $x eq '9';
+ print "$x eq 9" if $x eq 3*3;
+
+Additionally, the following still works:
+
+ print "$x == 9" if $x == $y;
+ print "$x == 9" if $x == 9;
+ print "$x == 9" if $x == 3*3;
+
+There is now a C<bsstr()> method to get the string in scientific notation aka
+C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
+for comparison, but Perl will represent some numbers as 100 and others
+as 1e+308. If in doubt, convert both arguments to Math::BigInt before
+comparing them as strings:
+
+ use Test;
+ BEGIN { plan tests => 3 }
+ use Math::BigInt;
+
+ $x = Math::BigInt->new('1e56'); $y = 1e56;
+ ok ($x,$y); # will fail
+ ok ($x->bsstr(),$y); # okay
+ $y = Math::BigInt->new($y);
+ ok ($x,$y); # okay
+
+Alternatively, simple use C<< <=> >> for comparisons, this will get it
+always right. There is not yet a way to get a number automatically represented
+as a string that matches exactly the way Perl represents it.
+
+See also the section about L<Infinity and Not a Number> for problems in
+comparing NaNs.
+
+=item int()
+
+C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a
+Perl scalar:
+
+ $x = Math::BigInt->new(123);
+ $y = int($x); # BigInt 123
+ $x = Math::BigFloat->new(123.45);
+ $y = int($x); # BigInt 123
+
+In all Perl versions you can use C<as_number()> or C<as_int> for the same
+effect:
+
+ $x = Math::BigFloat->new(123.45);
+ $y = $x->as_number(); # BigInt 123
+ $y = $x->as_int(); # ditto
+
+This also works for other subclasses, like Math::String.
+
+If you want a real Perl scalar, use C<numify()>:
+
+ $y = $x->numify(); # 123 as scalar
+
+This is seldom necessary, though, because this is done automatically, like
+when you access an array:
+
+ $z = $array[$x]; # does work automatically
+
+=item length
+
+The following will probably not do what you expect:
+
+ $c = Math::BigInt->new(123);
+ print $c->length(),"\n"; # prints 30
+
+It prints both the number of digits in the number and in the fraction part
+since print calls C<length()> in list context. Use something like:
+
+ print scalar $c->length(),"\n"; # prints 3
+
+=item bdiv
+
+The following will probably not do what you expect:
+
+ print $c->bdiv(10000),"\n";
+
+It prints both quotient and remainder since print calls C<bdiv()> in list
+context. Also, C<bdiv()> will modify $c, so be careful. You probably want
+to use
+
+ print $c / 10000,"\n";
+ print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c
+
+instead.
+
+The quotient is always the greatest integer less than or equal to the
+real-valued quotient of the two operands, and the remainder (when it is
+nonzero) always has the same sign as the second operand; so, for
+example,
+
+ 1 / 4 => ( 0, 1)
+ 1 / -4 => (-1,-3)
+ -3 / 4 => (-1, 1)
+ -3 / -4 => ( 0,-3)
+ -11 / 2 => (-5,1)
+ 11 /-2 => (-5,-1)
+
+As a consequence, the behavior of the operator % agrees with the
+behavior of Perl's built-in % operator (as documented in the perlop
+manpage), and the equation
+
+ $x == ($x / $y) * $y + ($x % $y)
+
+holds true for any $x and $y, which justifies calling the two return
+values of bdiv() the quotient and remainder. The only exception to this rule
+are when $y == 0 and $x is negative, then the remainder will also be
+negative. See below under "infinity handling" for the reasoning behind this.
+
+Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
+not change BigInt's way to do things. This is because under 'use integer' Perl
+will do what the underlying C thinks is right and this is different for each
+system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
+the author to implement it ;)
+
+=item infinity handling
+
+Here are some examples that explain the reasons why certain results occur while
+handling infinity:
+
+The following table shows the result of the division and the remainder, so that
+the equation above holds true. Some "ordinary" cases are strewn in to show more
+clearly the reasoning:
+
+ A / B = C, R so that C * B + R = A
+ =========================================================
+ 5 / 8 = 0, 5 0 * 8 + 5 = 5
+ 0 / 8 = 0, 0 0 * 8 + 0 = 0
+ 0 / inf = 0, 0 0 * inf + 0 = 0
+ 0 /-inf = 0, 0 0 * -inf + 0 = 0
+ 5 / inf = 0, 5 0 * inf + 5 = 5
+ 5 /-inf = 0, 5 0 * -inf + 5 = 5
+ -5/ inf = 0, -5 0 * inf + -5 = -5
+ -5/-inf = 0, -5 0 * -inf + -5 = -5
+ inf/ 5 = inf, 0 inf * 5 + 0 = inf
+ -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
+ inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
+ -inf/ -5 = inf, 0 inf * -5 + 0 = -inf
+ 5/ 5 = 1, 0 1 * 5 + 0 = 5
+ -5/ -5 = 1, 0 1 * -5 + 0 = -5
+ inf/ inf = 1, 0 1 * inf + 0 = inf
+ -inf/-inf = 1, 0 1 * -inf + 0 = -inf
+ inf/-inf = -1, 0 -1 * -inf + 0 = inf
+ -inf/ inf = -1, 0 1 * -inf + 0 = -inf
+ 8/ 0 = inf, 8 inf * 0 + 8 = 8
+ inf/ 0 = inf, inf inf * 0 + inf = inf
+ 0/ 0 = NaN
+
+These cases below violate the "remainder has the sign of the second of the two
+arguments", since they wouldn't match up otherwise.
+
+ A / B = C, R so that C * B + R = A
+ ========================================================
+ -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
+ -8/ 0 = -inf, -8 -inf * 0 + 8 = -8
+
+=item Modifying and =
+
+Beware of:
+
+ $x = Math::BigFloat->new(5);
+ $y = $x;
+
+It will not do what you think, e.g. making a copy of $x. Instead it just makes
+a second reference to the B<same> object and stores it in $y. Thus anything
+that modifies $x (except overloaded operators) will modify $y, and vice versa.
+Or in other words, C<=> is only safe if you modify your BigInts only via
+overloaded math. As soon as you use a method call it breaks:
+
+ $x->bmul(2);
+ print "$x, $y\n"; # prints '10, 10'
+
+If you want a true copy of $x, use:
+
+ $y = $x->copy();
+
+You can also chain the calls like this, this will make first a copy and then
+multiply it by 2:
+
+ $y = $x->copy()->bmul(2);
+
+See also the documentation for overload.pm regarding C<=>.
+
+=item bpow
+
+C<bpow()> (and the rounding functions) now modifies the first argument and
+returns it, unlike the old code which left it alone and only returned the
+result. This is to be consistent with C<badd()> etc. The first three will
+modify $x, the last one won't:
+
+ print bpow($x,$i),"\n"; # modify $x
+ print $x->bpow($i),"\n"; # ditto
+ print $x **= $i,"\n"; # the same
+ print $x ** $i,"\n"; # leave $x alone
+
+The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
+
+=item Overloading -$x
+
+The following:
+
+ $x = -$x;
+
+is slower than
+
+ $x->bneg();
+
+since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
+needs to preserve $x since it does not know that it later will get overwritten.
+This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
+
+=item Mixing different object types
+
+In Perl you will get a floating point value if you do one of the following:
+
+ $float = 5.0 + 2;
+ $float = 2 + 5.0;
+ $float = 5 / 2;
+
+With overloaded math, only the first two variants will result in a BigFloat:
+
+ use Math::BigInt;
+ use Math::BigFloat;
+
+ $mbf = Math::BigFloat->new(5);
+ $mbi2 = Math::BigInteger->new(5);
+ $mbi = Math::BigInteger->new(2);
+
+ # what actually gets called:
+ $float = $mbf + $mbi; # $mbf->badd()
+ $float = $mbf / $mbi; # $mbf->bdiv()
+ $integer = $mbi + $mbf; # $mbi->badd()
+ $integer = $mbi2 / $mbi; # $mbi2->bdiv()
+ $integer = $mbi2 / $mbf; # $mbi2->bdiv()
+
+This is because math with overloaded operators follows the first (dominating)
+operand, and the operation of that is called and returns thus the result. So,
+Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
+the result should be a Math::BigFloat or the second operant is one.
+
+To get a Math::BigFloat you either need to call the operation manually,
+make sure the operands are already of the proper type or casted to that type
+via Math::BigFloat->new():
+
+ $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
+
+Beware of simple "casting" the entire expression, this would only convert
+the already computed result:
+
+ $float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!
+
+Beware also of the order of more complicated expressions like:
+
+ $integer = ($mbi2 + $mbi) / $mbf; # int / float => int
+ $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
+
+If in doubt, break the expression into simpler terms, or cast all operands
+to the desired resulting type.
+
+Scalar values are a bit different, since:
+
+ $float = 2 + $mbf;
+ $float = $mbf + 2;
+
+will both result in the proper type due to the way the overloaded math works.
+
+This section also applies to other overloaded math packages, like Math::String.
+
+One solution to you problem might be autoupgrading|upgrading. See the
+pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
+
+=item bsqrt()
+
+C<bsqrt()> works only good if the result is a big integer, e.g. the square
+root of 144 is 12, but from 12 the square root is 3, regardless of rounding
+mode. The reason is that the result is always truncated to an integer.
+
+If you want a better approximation of the square root, then use:
+
+ $x = Math::BigFloat->new(12);
+ Math::BigFloat->precision(0);
+ Math::BigFloat->round_mode('even');
+ print $x->copy->bsqrt(),"\n"; # 4
+
+ Math::BigFloat->precision(2);
+ print $x->bsqrt(),"\n"; # 3.46
+ print $x->bsqrt(3),"\n"; # 3.464
+
+=item brsft()
+
+For negative numbers in base see also L<brsft|brsft>.
+
+=back
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 SEE ALSO
+
+L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
+L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
+
+The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
+because they solve the autoupgrading/downgrading issue, at least partly.
+
+The package at
+L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
+more documentation including a full version history, testcases, empty
+subclass files and benchmarks.
+
+=head1 AUTHORS
+
+Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
+Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2006
+and still at it in 2007.
+
+Many people contributed in one or more ways to the final beast, see the file
+CREDITS for an (incomplete) list. If you miss your name, please drop me a
+mail. Thank you!
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/BigInt/Calc.pm b/Master/tlpkg/tlperl/lib/Math/BigInt/Calc.pm
new file mode 100644
index 00000000000..52e33d232ae
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigInt/Calc.pm
@@ -0,0 +1,2612 @@
+package Math::BigInt::Calc;
+
+use 5.006;
+use strict;
+# use warnings; # dont use warnings for older Perls
+
+our $VERSION = '0.52';
+
+# Package to store unsigned big integers in decimal and do math with them
+
+# Internally the numbers are stored in an array with at least 1 element, no
+# leading zero parts (except the first) and in base 1eX where X is determined
+# automatically at loading time to be the maximum possible value
+
+# todo:
+# - fully remove funky $# stuff in div() (maybe - that code scares me...)
+
+# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used
+# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms
+# BS2000, some Crays need USE_DIV instead.
+# The BEGIN block is used to determine which of the two variants gives the
+# correct result.
+
+# Beware of things like:
+# $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE;
+# This works on x86, but fails on ARM (SA1100, iPAQ) due to whoknows what
+# reasons. So, use this instead (slower, but correct):
+# $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car;
+
+##############################################################################
+# global constants, flags and accessory
+
+# announce that we are compatible with MBI v1.83 and up
+sub api_version () { 2; }
+
+# constants for easier life
+my ($BASE,$BASE_LEN,$RBASE,$MAX_VAL);
+my ($AND_BITS,$XOR_BITS,$OR_BITS);
+my ($AND_MASK,$XOR_MASK,$OR_MASK);
+
+sub _base_len
+ {
+ # Set/get the BASE_LEN and assorted other, connected values.
+ # Used only by the testsuite, the set variant is used only by the BEGIN
+ # block below:
+ shift;
+
+ my ($b, $int) = @_;
+ if (defined $b)
+ {
+ # avoid redefinitions
+ undef &_mul;
+ undef &_div;
+
+ if ($] >= 5.008 && $int && $b > 7)
+ {
+ $BASE_LEN = $b;
+ *_mul = \&_mul_use_div_64;
+ *_div = \&_div_use_div_64;
+ $BASE = int("1e".$BASE_LEN);
+ $MAX_VAL = $BASE-1;
+ return $BASE_LEN unless wantarray;
+ return ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL, $BASE);
+ }
+
+ # find whether we can use mul or div in mul()/div()
+ $BASE_LEN = $b+1;
+ my $caught = 0;
+ while (--$BASE_LEN > 5)
+ {
+ $BASE = int("1e".$BASE_LEN);
+ $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL
+ $caught = 0;
+ $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1
+ $caught += 2 if (int($BASE / $BASE) != 1); # should be 1
+ last if $caught != 3;
+ }
+ $BASE = int("1e".$BASE_LEN);
+ $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL
+ $MAX_VAL = $BASE-1;
+
+ # ($caught & 1) != 0 => cannot use MUL
+ # ($caught & 2) != 0 => cannot use DIV
+ if ($caught == 2) # 2
+ {
+ # must USE_MUL since we cannot use DIV
+ *_mul = \&_mul_use_mul;
+ *_div = \&_div_use_mul;
+ }
+ else # 0 or 1
+ {
+ # can USE_DIV instead
+ *_mul = \&_mul_use_div;
+ *_div = \&_div_use_div;
+ }
+ }
+ return $BASE_LEN unless wantarray;
+ return ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL, $BASE);
+ }
+
+sub _new
+ {
+ # (ref to string) return ref to num_array
+ # Convert a number from string format (without sign) to internal base
+ # 1ex format. Assumes normalized value as input.
+ my $il = length($_[1])-1;
+
+ # < BASE_LEN due len-1 above
+ return [ int($_[1]) ] if $il < $BASE_LEN; # shortcut for short numbers
+
+ # this leaves '00000' instead of int 0 and will be corrected after any op
+ [ reverse(unpack("a" . ($il % $BASE_LEN+1)
+ . ("a$BASE_LEN" x ($il / $BASE_LEN)), $_[1])) ];
+ }
+
+BEGIN
+ {
+ # from Daniel Pfeiffer: determine largest group of digits that is precisely
+ # multipliable with itself plus carry
+ # Test now changed to expect the proper pattern, not a result off by 1 or 2
+ my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3
+ do
+ {
+ $num = ('9' x ++$e) + 0;
+ $num *= $num + 1.0;
+ } while ("$num" =~ /9{$e}0{$e}/); # must be a certain pattern
+ $e--; # last test failed, so retract one step
+ # the limits below brush the problems with the test above under the rug:
+ # the test should be able to find the proper $e automatically
+ $e = 5 if $^O =~ /^uts/; # UTS get's some special treatment
+ $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work
+ # there, but we play safe)
+
+ my $int = 0;
+ if ($e > 7)
+ {
+ use integer;
+ my $e1 = 7;
+ $num = 7;
+ do
+ {
+ $num = ('9' x ++$e1) + 0;
+ $num *= $num + 1;
+ } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern
+ $e1--; # last test failed, so retract one step
+ if ($e1 > 7)
+ {
+ $int = 1; $e = $e1;
+ }
+ }
+
+ __PACKAGE__->_base_len($e,$int); # set and store
+
+ use integer;
+ # find out how many bits _and, _or and _xor can take (old default = 16)
+ # I don't think anybody has yet 128 bit scalars, so let's play safe.
+ local $^W = 0; # don't warn about 'nonportable number'
+ $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15;
+
+ # find max bits, we will not go higher than numberofbits that fit into $BASE
+ # to make _and etc simpler (and faster for smaller, slower for large numbers)
+ my $max = 16;
+ while (2 ** $max < $BASE) { $max++; }
+ {
+ no integer;
+ $max = 16 if $] < 5.006; # older Perls might not take >16 too well
+ }
+ my ($x,$y,$z);
+ do {
+ $AND_BITS++;
+ $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x;
+ $z = (2 ** $AND_BITS) - 1;
+ } while ($AND_BITS < $max && $x == $z && $y == $x);
+ $AND_BITS --; # retreat one step
+ do {
+ $XOR_BITS++;
+ $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0;
+ $z = (2 ** $XOR_BITS) - 1;
+ } while ($XOR_BITS < $max && $x == $z && $y == $x);
+ $XOR_BITS --; # retreat one step
+ do {
+ $OR_BITS++;
+ $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x;
+ $z = (2 ** $OR_BITS) - 1;
+ } while ($OR_BITS < $max && $x == $z && $y == $x);
+ $OR_BITS --; # retreat one step
+
+ $AND_MASK = __PACKAGE__->_new( ( 2 ** $AND_BITS ));
+ $XOR_MASK = __PACKAGE__->_new( ( 2 ** $XOR_BITS ));
+ $OR_MASK = __PACKAGE__->_new( ( 2 ** $OR_BITS ));
+
+ # We can compute the approximate lenght no faster than the real length:
+ *_alen = \&_len;
+ }
+
+###############################################################################
+
+sub _zero
+ {
+ # create a zero
+ [ 0 ];
+ }
+
+sub _one
+ {
+ # create a one
+ [ 1 ];
+ }
+
+sub _two
+ {
+ # create a two (used internally for shifting)
+ [ 2 ];
+ }
+
+sub _ten
+ {
+ # create a 10 (used internally for shifting)
+ [ 10 ];
+ }
+
+sub _1ex
+ {
+ # create a 1Ex
+ my $rem = $_[1] % $BASE_LEN; # remainder
+ my $parts = $_[1] / $BASE_LEN; # parts
+
+ # 000000, 000000, 100
+ [ (0) x $parts, '1' . ('0' x $rem) ];
+ }
+
+sub _copy
+ {
+ # make a true copy
+ [ @{$_[1]} ];
+ }
+
+# catch and throw away
+sub import { }
+
+##############################################################################
+# convert back to string and number
+
+sub _str
+ {
+ # (ref to BINT) return num_str
+ # Convert number from internal base 100000 format to string format.
+ # internal format is always normalized (no leading zeros, "-0" => "+0")
+ my $ar = $_[1];
+
+ my $l = scalar @$ar; # number of parts
+ if ($l < 1) # should not happen
+ {
+ require Carp;
+ Carp::croak("$_[1] has no elements");
+ }
+
+ my $ret = "";
+ # handle first one different to strip leading zeros from it (there are no
+ # leading zero parts in internal representation)
+ $l --; $ret .= int($ar->[$l]); $l--;
+ # Interestingly, the pre-padd method uses more time
+ # the old grep variant takes longer (14 vs. 10 sec)
+ my $z = '0' x ($BASE_LEN-1);
+ while ($l >= 0)
+ {
+ $ret .= substr($z.$ar->[$l],-$BASE_LEN); # fastest way I could think of
+ $l--;
+ }
+ $ret;
+ }
+
+sub _num
+ {
+ # Make a number (scalar int/float) from a BigInt object
+ my $x = $_[1];
+
+ return 0+$x->[0] if scalar @$x == 1; # below $BASE
+ my $fac = 1;
+ my $num = 0;
+ foreach (@$x)
+ {
+ $num += $fac*$_; $fac *= $BASE;
+ }
+ $num;
+ }
+
+##############################################################################
+# actual math code
+
+sub _add
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # routine to add two base 1eX numbers
+ # stolen from Knuth Vol 2 Algorithm A pg 231
+ # there are separate routines to add and sub as per Knuth pg 233
+ # This routine clobbers up array x, but not y.
+
+ my ($c,$x,$y) = @_;
+
+ return $x if (@$y == 1) && $y->[0] == 0; # $x + 0 => $x
+ if ((@$x == 1) && $x->[0] == 0) # 0 + $y => $y->copy
+ {
+ # twice as slow as $x = [ @$y ], but nec. to retain $x as ref :(
+ @$x = @$y; return $x;
+ }
+
+ # for each in Y, add Y to X and carry. If after that, something is left in
+ # X, foreach in X add carry to X and then return X, carry
+ # Trades one "$j++" for having to shift arrays
+ my $i; my $car = 0; my $j = 0;
+ for $i (@$y)
+ {
+ $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
+ $j++;
+ }
+ while ($car != 0)
+ {
+ $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++;
+ }
+ $x;
+ }
+
+sub _inc
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # Add 1 to $x, modify $x in place
+ my ($c,$x) = @_;
+
+ for my $i (@$x)
+ {
+ return $x if (($i += 1) < $BASE); # early out
+ $i = 0; # overflow, next
+ }
+ push @$x,1 if (($x->[-1] || 0) == 0); # last overflowed, so extend
+ $x;
+ }
+
+sub _dec
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # Sub 1 from $x, modify $x in place
+ my ($c,$x) = @_;
+
+ my $MAX = $BASE-1; # since MAX_VAL based on BASE
+ for my $i (@$x)
+ {
+ last if (($i -= 1) >= 0); # early out
+ $i = $MAX; # underflow, next
+ }
+ pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0)
+ $x;
+ }
+
+sub _sub
+ {
+ # (ref to int_num_array, ref to int_num_array, swap)
+ # subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
+ # subtract Y from X by modifying x in place
+ my ($c,$sx,$sy,$s) = @_;
+
+ my $car = 0; my $i; my $j = 0;
+ if (!$s)
+ {
+ for $i (@$sx)
+ {
+ last unless defined $sy->[$j] || $car;
+ $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++;
+ }
+ # might leave leading zeros, so fix that
+ return __strip_zeros($sx);
+ }
+ for $i (@$sx)
+ {
+ # we can't do an early out if $x is < than $y, since we
+ # need to copy the high chunks from $y. Found by Bob Mathews.
+ #last unless defined $sy->[$j] || $car;
+ $sy->[$j] += $BASE
+ if $car = (($sy->[$j] = $i-($sy->[$j]||0) - $car) < 0);
+ $j++;
+ }
+ # might leave leading zeros, so fix that
+ __strip_zeros($sy);
+ }
+
+sub _mul_use_mul
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # multiply two numbers in internal representation
+ # modifies first arg, second need not be different from first
+ my ($c,$xv,$yv) = @_;
+
+ if (@$yv == 1)
+ {
+ # shortcut for two very short numbers (improved by Nathan Zook)
+ # works also if xv and yv are the same reference, and handles also $x == 0
+ if (@$xv == 1)
+ {
+ if (($xv->[0] *= $yv->[0]) >= $BASE)
+ {
+ $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE;
+ };
+ return $xv;
+ }
+ # $x * 0 => 0
+ if ($yv->[0] == 0)
+ {
+ @$xv = (0);
+ return $xv;
+ }
+ # multiply a large number a by a single element one, so speed up
+ my $y = $yv->[0]; my $car = 0;
+ foreach my $i (@$xv)
+ {
+ $i = $i * $y + $car; $car = int($i * $RBASE); $i -= $car * $BASE;
+ }
+ push @$xv, $car if $car != 0;
+ return $xv;
+ }
+ # shortcut for result $x == 0 => result = 0
+ return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
+
+ # since multiplying $x with $x fails, make copy in this case
+ $yv = [@$xv] if $xv == $yv; # same references?
+
+ my @prod = (); my ($prod,$car,$cty,$xi,$yi);
+
+ for $xi (@$xv)
+ {
+ $car = 0; $cty = 0;
+
+ # slow variant
+# for $yi (@$yv)
+# {
+# $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
+# $prod[$cty++] =
+# $prod - ($car = int($prod * RBASE)) * $BASE; # see USE_MUL
+# }
+# $prod[$cty] += $car if $car; # need really to check for 0?
+# $xi = shift @prod;
+
+ # faster variant
+ # looping through this if $xi == 0 is silly - so optimize it away!
+ $xi = (shift @prod || 0), next if $xi == 0;
+ for $yi (@$yv)
+ {
+ $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
+## this is actually a tad slower
+## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here
+ $prod[$cty++] =
+ $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL
+ }
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ }
+ push @$xv, @prod;
+ # can't have leading zeros
+# __strip_zeros($xv);
+ $xv;
+ }
+
+sub _mul_use_div_64
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # multiply two numbers in internal representation
+ # modifies first arg, second need not be different from first
+ # works for 64 bit integer with "use integer"
+ my ($c,$xv,$yv) = @_;
+
+ use integer;
+ if (@$yv == 1)
+ {
+ # shortcut for two small numbers, also handles $x == 0
+ if (@$xv == 1)
+ {
+ # shortcut for two very short numbers (improved by Nathan Zook)
+ # works also if xv and yv are the same reference, and handles also $x == 0
+ if (($xv->[0] *= $yv->[0]) >= $BASE)
+ {
+ $xv->[0] =
+ $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
+ };
+ return $xv;
+ }
+ # $x * 0 => 0
+ if ($yv->[0] == 0)
+ {
+ @$xv = (0);
+ return $xv;
+ }
+ # multiply a large number a by a single element one, so speed up
+ my $y = $yv->[0]; my $car = 0;
+ foreach my $i (@$xv)
+ {
+ #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE;
+ $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
+ }
+ push @$xv, $car if $car != 0;
+ return $xv;
+ }
+ # shortcut for result $x == 0 => result = 0
+ return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
+
+ # since multiplying $x with $x fails, make copy in this case
+ $yv = [@$xv] if $xv == $yv; # same references?
+
+ my @prod = (); my ($prod,$car,$cty,$xi,$yi);
+ for $xi (@$xv)
+ {
+ $car = 0; $cty = 0;
+ # looping through this if $xi == 0 is silly - so optimize it away!
+ $xi = (shift @prod || 0), next if $xi == 0;
+ for $yi (@$yv)
+ {
+ $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
+ $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
+ }
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ }
+ push @$xv, @prod;
+ $xv;
+ }
+
+sub _mul_use_div
+ {
+ # (ref to int_num_array, ref to int_num_array)
+ # multiply two numbers in internal representation
+ # modifies first arg, second need not be different from first
+ my ($c,$xv,$yv) = @_;
+
+ if (@$yv == 1)
+ {
+ # shortcut for two small numbers, also handles $x == 0
+ if (@$xv == 1)
+ {
+ # shortcut for two very short numbers (improved by Nathan Zook)
+ # works also if xv and yv are the same reference, and handles also $x == 0
+ if (($xv->[0] *= $yv->[0]) >= $BASE)
+ {
+ $xv->[0] =
+ $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE;
+ };
+ return $xv;
+ }
+ # $x * 0 => 0
+ if ($yv->[0] == 0)
+ {
+ @$xv = (0);
+ return $xv;
+ }
+ # multiply a large number a by a single element one, so speed up
+ my $y = $yv->[0]; my $car = 0;
+ foreach my $i (@$xv)
+ {
+ $i = $i * $y + $car; $car = int($i / $BASE); $i -= $car * $BASE;
+ # This (together with use integer;) does not work on 32-bit Perls
+ #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
+ }
+ push @$xv, $car if $car != 0;
+ return $xv;
+ }
+ # shortcut for result $x == 0 => result = 0
+ return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
+
+ # since multiplying $x with $x fails, make copy in this case
+ $yv = [@$xv] if $xv == $yv; # same references?
+
+ my @prod = (); my ($prod,$car,$cty,$xi,$yi);
+ for $xi (@$xv)
+ {
+ $car = 0; $cty = 0;
+ # looping through this if $xi == 0 is silly - so optimize it away!
+ $xi = (shift @prod || 0), next if $xi == 0;
+ for $yi (@$yv)
+ {
+ $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
+ $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE;
+ }
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ }
+ push @$xv, @prod;
+ # can't have leading zeros
+# __strip_zeros($xv);
+ $xv;
+ }
+
+sub _div_use_mul
+ {
+ # ref to array, ref to array, modify first array and return remainder if
+ # in list context
+
+ # see comments in _div_use_div() for more explanations
+
+ my ($c,$x,$yorg) = @_;
+
+ # the general div algorithmn here is about O(N*N) and thus quite slow, so
+ # we first check for some special cases and use shortcuts to handle them.
+
+ # This works, because we store the numbers in a chunked format where each
+ # element contains 5..7 digits (depending on system).
+
+ # if both numbers have only one element:
+ if (@$x == 1 && @$yorg == 1)
+ {
+ # shortcut, $yorg and $x are two small numbers
+ if (wantarray)
+ {
+ my $r = [ $x->[0] % $yorg->[0] ];
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return ($x,$r);
+ }
+ else
+ {
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return $x;
+ }
+ }
+
+ # if x has more than one, but y has only one element:
+ if (@$yorg == 1)
+ {
+ my $rem;
+ $rem = _mod($c,[ @$x ],$yorg) if wantarray;
+
+ # shortcut, $y is < $BASE
+ my $j = scalar @$x; my $r = 0;
+ my $y = $yorg->[0]; my $b;
+ while ($j-- > 0)
+ {
+ $b = $r * $BASE + $x->[$j];
+ $x->[$j] = int($b/$y);
+ $r = $b % $y;
+ }
+ pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ return ($x,$rem) if wantarray;
+ return $x;
+ }
+
+ # now x and y have more than one element
+
+ # check whether y has more elements than x, if yet, the result will be 0
+ if (@$yorg > @$x)
+ {
+ my $rem;
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to original array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
+ }
+ # check whether the numbers have the same number of elements, in that case
+ # the result will fit into one element and can be computed efficiently
+ if (@$yorg == @$x)
+ {
+ my $rem;
+ # if $yorg has more digits than $x (it's leading element is longer than
+ # the one from $x), the result will also be 0:
+ if (length(int($yorg->[-1])) > length(int($x->[-1])))
+ {
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to org array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x;
+ }
+ # now calculate $x / $yorg
+ if (length(int($yorg->[-1])) == length(int($x->[-1])))
+ {
+ # same length, so make full compare
+
+ my $a = 0; my $j = scalar @$x - 1;
+ # manual way (abort if unequal, good for early ne)
+ while ($j >= 0)
+ {
+ last if ($a = $x->[$j] - $yorg->[$j]); $j--;
+ }
+ # $a contains the result of the compare between X and Y
+ # a < 0: x < y, a == 0: x == y, a > 0: x > y
+ if ($a <= 0)
+ {
+ $rem = [ 0 ]; # a = 0 => x == y => rem 0
+ $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x
+ splice(@$x,1); # keep single element
+ $x->[0] = 0; # if $a < 0
+ $x->[0] = 1 if $a == 0; # $x == $y
+ return ($x,$rem) if wantarray;
+ return $x;
+ }
+ # $x >= $y, so proceed normally
+ }
+ }
+
+ # all other cases:
+
+ my $y = [ @$yorg ]; # always make copy to preserve
+
+ my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);
+
+ $car = $bar = $prd = 0;
+ if (($dd = int($BASE/($y->[-1]+1))) != 1)
+ {
+ for $xi (@$x)
+ {
+ $xi = $xi * $dd + $car;
+ $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL
+ }
+ push(@$x, $car); $car = 0;
+ for $yi (@$y)
+ {
+ $yi = $yi * $dd + $car;
+ $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL
+ }
+ }
+ else
+ {
+ push(@$x, 0);
+ }
+ @q = (); ($v2,$v1) = @$y[-2,-1];
+ $v2 = 0 unless $v2;
+ while ($#$x > $#$y)
+ {
+ ($u2,$u1,$u0) = @$x[-3..-1];
+ $u2 = 0 unless $u2;
+ #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
+ # if $v1 == 0;
+ $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
+ --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
+ if ($q)
+ {
+ ($car, $bar) = (0,0);
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $prd = $q * $y->[$yi] + $car;
+ $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL
+ $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ }
+ if ($x->[-1] < $car + $bar)
+ {
+ $car = 0; --$q;
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $x->[$xi] -= $BASE
+ if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ }
+ }
+ }
+ pop(@$x);
+ unshift(@q, $q);
+ }
+ if (wantarray)
+ {
+ @d = ();
+ if ($dd != 1)
+ {
+ $car = 0;
+ for $xi (reverse @$x)
+ {
+ $prd = $car * $BASE + $xi;
+ $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
+ unshift(@d, $tmp);
+ }
+ }
+ else
+ {
+ @d = @$x;
+ }
+ @$x = @q;
+ my $d = \@d;
+ __strip_zeros($x);
+ __strip_zeros($d);
+ return ($x,$d);
+ }
+ @$x = @q;
+ __strip_zeros($x);
+ $x;
+ }
+
+sub _div_use_div_64
+ {
+ # ref to array, ref to array, modify first array and return remainder if
+ # in list context
+ # This version works on 64 bit integers
+ my ($c,$x,$yorg) = @_;
+
+ use integer;
+ # the general div algorithmn here is about O(N*N) and thus quite slow, so
+ # we first check for some special cases and use shortcuts to handle them.
+
+ # This works, because we store the numbers in a chunked format where each
+ # element contains 5..7 digits (depending on system).
+
+ # if both numbers have only one element:
+ if (@$x == 1 && @$yorg == 1)
+ {
+ # shortcut, $yorg and $x are two small numbers
+ if (wantarray)
+ {
+ my $r = [ $x->[0] % $yorg->[0] ];
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return ($x,$r);
+ }
+ else
+ {
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return $x;
+ }
+ }
+ # if x has more than one, but y has only one element:
+ if (@$yorg == 1)
+ {
+ my $rem;
+ $rem = _mod($c,[ @$x ],$yorg) if wantarray;
+
+ # shortcut, $y is < $BASE
+ my $j = scalar @$x; my $r = 0;
+ my $y = $yorg->[0]; my $b;
+ while ($j-- > 0)
+ {
+ $b = $r * $BASE + $x->[$j];
+ $x->[$j] = int($b/$y);
+ $r = $b % $y;
+ }
+ pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ return ($x,$rem) if wantarray;
+ return $x;
+ }
+ # now x and y have more than one element
+
+ # check whether y has more elements than x, if yet, the result will be 0
+ if (@$yorg > @$x)
+ {
+ my $rem;
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to original array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
+ }
+ # check whether the numbers have the same number of elements, in that case
+ # the result will fit into one element and can be computed efficiently
+ if (@$yorg == @$x)
+ {
+ my $rem;
+ # if $yorg has more digits than $x (it's leading element is longer than
+ # the one from $x), the result will also be 0:
+ if (length(int($yorg->[-1])) > length(int($x->[-1])))
+ {
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to org array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x;
+ }
+ # now calculate $x / $yorg
+
+ if (length(int($yorg->[-1])) == length(int($x->[-1])))
+ {
+ # same length, so make full compare
+
+ my $a = 0; my $j = scalar @$x - 1;
+ # manual way (abort if unequal, good for early ne)
+ while ($j >= 0)
+ {
+ last if ($a = $x->[$j] - $yorg->[$j]); $j--;
+ }
+ # $a contains the result of the compare between X and Y
+ # a < 0: x < y, a == 0: x == y, a > 0: x > y
+ if ($a <= 0)
+ {
+ $rem = [ 0 ]; # a = 0 => x == y => rem 0
+ $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x
+ splice(@$x,1); # keep single element
+ $x->[0] = 0; # if $a < 0
+ $x->[0] = 1 if $a == 0; # $x == $y
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x;
+ }
+ # $x >= $y, so proceed normally
+
+ }
+ }
+
+ # all other cases:
+
+ my $y = [ @$yorg ]; # always make copy to preserve
+
+ my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);
+
+ $car = $bar = $prd = 0;
+ if (($dd = int($BASE/($y->[-1]+1))) != 1)
+ {
+ for $xi (@$x)
+ {
+ $xi = $xi * $dd + $car;
+ $xi -= ($car = int($xi / $BASE)) * $BASE;
+ }
+ push(@$x, $car); $car = 0;
+ for $yi (@$y)
+ {
+ $yi = $yi * $dd + $car;
+ $yi -= ($car = int($yi / $BASE)) * $BASE;
+ }
+ }
+ else
+ {
+ push(@$x, 0);
+ }
+
+ # @q will accumulate the final result, $q contains the current computed
+ # part of the final result
+
+ @q = (); ($v2,$v1) = @$y[-2,-1];
+ $v2 = 0 unless $v2;
+ while ($#$x > $#$y)
+ {
+ ($u2,$u1,$u0) = @$x[-3..-1];
+ $u2 = 0 unless $u2;
+ #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
+ # if $v1 == 0;
+ $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
+ --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
+ if ($q)
+ {
+ ($car, $bar) = (0,0);
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $prd = $q * $y->[$yi] + $car;
+ $prd -= ($car = int($prd / $BASE)) * $BASE;
+ $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ }
+ if ($x->[-1] < $car + $bar)
+ {
+ $car = 0; --$q;
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $x->[$xi] -= $BASE
+ if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ }
+ }
+ }
+ pop(@$x); unshift(@q, $q);
+ }
+ if (wantarray)
+ {
+ @d = ();
+ if ($dd != 1)
+ {
+ $car = 0;
+ for $xi (reverse @$x)
+ {
+ $prd = $car * $BASE + $xi;
+ $car = $prd - ($tmp = int($prd / $dd)) * $dd;
+ unshift(@d, $tmp);
+ }
+ }
+ else
+ {
+ @d = @$x;
+ }
+ @$x = @q;
+ my $d = \@d;
+ __strip_zeros($x);
+ __strip_zeros($d);
+ return ($x,$d);
+ }
+ @$x = @q;
+ __strip_zeros($x);
+ $x;
+ }
+
+sub _div_use_div
+ {
+ # ref to array, ref to array, modify first array and return remainder if
+ # in list context
+ my ($c,$x,$yorg) = @_;
+
+ # the general div algorithmn here is about O(N*N) and thus quite slow, so
+ # we first check for some special cases and use shortcuts to handle them.
+
+ # This works, because we store the numbers in a chunked format where each
+ # element contains 5..7 digits (depending on system).
+
+ # if both numbers have only one element:
+ if (@$x == 1 && @$yorg == 1)
+ {
+ # shortcut, $yorg and $x are two small numbers
+ if (wantarray)
+ {
+ my $r = [ $x->[0] % $yorg->[0] ];
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return ($x,$r);
+ }
+ else
+ {
+ $x->[0] = int($x->[0] / $yorg->[0]);
+ return $x;
+ }
+ }
+ # if x has more than one, but y has only one element:
+ if (@$yorg == 1)
+ {
+ my $rem;
+ $rem = _mod($c,[ @$x ],$yorg) if wantarray;
+
+ # shortcut, $y is < $BASE
+ my $j = scalar @$x; my $r = 0;
+ my $y = $yorg->[0]; my $b;
+ while ($j-- > 0)
+ {
+ $b = $r * $BASE + $x->[$j];
+ $x->[$j] = int($b/$y);
+ $r = $b % $y;
+ }
+ pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ return ($x,$rem) if wantarray;
+ return $x;
+ }
+ # now x and y have more than one element
+
+ # check whether y has more elements than x, if yet, the result will be 0
+ if (@$yorg > @$x)
+ {
+ my $rem;
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to original array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
+ }
+ # check whether the numbers have the same number of elements, in that case
+ # the result will fit into one element and can be computed efficiently
+ if (@$yorg == @$x)
+ {
+ my $rem;
+ # if $yorg has more digits than $x (it's leading element is longer than
+ # the one from $x), the result will also be 0:
+ if (length(int($yorg->[-1])) > length(int($x->[-1])))
+ {
+ $rem = [@$x] if wantarray; # make copy
+ splice (@$x,1); # keep ref to org array
+ $x->[0] = 0; # set to 0
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x;
+ }
+ # now calculate $x / $yorg
+
+ if (length(int($yorg->[-1])) == length(int($x->[-1])))
+ {
+ # same length, so make full compare
+
+ my $a = 0; my $j = scalar @$x - 1;
+ # manual way (abort if unequal, good for early ne)
+ while ($j >= 0)
+ {
+ last if ($a = $x->[$j] - $yorg->[$j]); $j--;
+ }
+ # $a contains the result of the compare between X and Y
+ # a < 0: x < y, a == 0: x == y, a > 0: x > y
+ if ($a <= 0)
+ {
+ $rem = [ 0 ]; # a = 0 => x == y => rem 0
+ $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x
+ splice(@$x,1); # keep single element
+ $x->[0] = 0; # if $a < 0
+ $x->[0] = 1 if $a == 0; # $x == $y
+ return ($x,$rem) if wantarray; # including remainder?
+ return $x;
+ }
+ # $x >= $y, so proceed normally
+
+ }
+ }
+
+ # all other cases:
+
+ my $y = [ @$yorg ]; # always make copy to preserve
+
+ my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);
+
+ $car = $bar = $prd = 0;
+ if (($dd = int($BASE/($y->[-1]+1))) != 1)
+ {
+ for $xi (@$x)
+ {
+ $xi = $xi * $dd + $car;
+ $xi -= ($car = int($xi / $BASE)) * $BASE;
+ }
+ push(@$x, $car); $car = 0;
+ for $yi (@$y)
+ {
+ $yi = $yi * $dd + $car;
+ $yi -= ($car = int($yi / $BASE)) * $BASE;
+ }
+ }
+ else
+ {
+ push(@$x, 0);
+ }
+
+ # @q will accumulate the final result, $q contains the current computed
+ # part of the final result
+
+ @q = (); ($v2,$v1) = @$y[-2,-1];
+ $v2 = 0 unless $v2;
+ while ($#$x > $#$y)
+ {
+ ($u2,$u1,$u0) = @$x[-3..-1];
+ $u2 = 0 unless $u2;
+ #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
+ # if $v1 == 0;
+ $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1));
+ --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2);
+ if ($q)
+ {
+ ($car, $bar) = (0,0);
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $prd = $q * $y->[$yi] + $car;
+ $prd -= ($car = int($prd / $BASE)) * $BASE;
+ $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ }
+ if ($x->[-1] < $car + $bar)
+ {
+ $car = 0; --$q;
+ for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
+ {
+ $x->[$xi] -= $BASE
+ if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ }
+ }
+ }
+ pop(@$x); unshift(@q, $q);
+ }
+ if (wantarray)
+ {
+ @d = ();
+ if ($dd != 1)
+ {
+ $car = 0;
+ for $xi (reverse @$x)
+ {
+ $prd = $car * $BASE + $xi;
+ $car = $prd - ($tmp = int($prd / $dd)) * $dd;
+ unshift(@d, $tmp);
+ }
+ }
+ else
+ {
+ @d = @$x;
+ }
+ @$x = @q;
+ my $d = \@d;
+ __strip_zeros($x);
+ __strip_zeros($d);
+ return ($x,$d);
+ }
+ @$x = @q;
+ __strip_zeros($x);
+ $x;
+ }
+
+##############################################################################
+# testing
+
+sub _acmp
+ {
+ # internal absolute post-normalized compare (ignore signs)
+ # ref to array, ref to array, return <0, 0, >0
+ # arrays must have at least one entry; this is not checked for
+ my ($c,$cx,$cy) = @_;
+
+ # shortcut for short numbers
+ return (($cx->[0] <=> $cy->[0]) <=> 0)
+ if scalar @$cx == scalar @$cy && scalar @$cx == 1;
+
+ # fast comp based on number of array elements (aka pseudo-length)
+ my $lxy = (scalar @$cx - scalar @$cy)
+ # or length of first element if same number of elements (aka difference 0)
+ ||
+ # need int() here because sometimes the last element is '00018' vs '18'
+ (length(int($cx->[-1])) - length(int($cy->[-1])));
+ return -1 if $lxy < 0; # already differs, ret
+ return 1 if $lxy > 0; # ditto
+
+ # manual way (abort if unequal, good for early ne)
+ my $a; my $j = scalar @$cx;
+ while (--$j >= 0)
+ {
+ last if ($a = $cx->[$j] - $cy->[$j]);
+ }
+ $a <=> 0;
+ }
+
+sub _len
+ {
+ # compute number of digits in base 10
+
+ # int() because add/sub sometimes leaves strings (like '00005') instead of
+ # '5' in this place, thus causing length() to report wrong length
+ my $cx = $_[1];
+
+ (@$cx-1)*$BASE_LEN+length(int($cx->[-1]));
+ }
+
+sub _digit
+ {
+ # return the nth digit, negative values count backward
+ # zero is rightmost, so _digit(123,0) will give 3
+ my ($c,$x,$n) = @_;
+
+ my $len = _len('',$x);
+
+ $n = $len+$n if $n < 0; # -1 last, -2 second-to-last
+ $n = abs($n); # if negative was too big
+ $len--; $n = $len if $n > $len; # n to big?
+
+ my $elem = int($n / $BASE_LEN); # which array element
+ my $digit = $n % $BASE_LEN; # which digit in this element
+ $elem = '0' x $BASE_LEN . @$x[$elem]; # get element padded with 0's
+ substr($elem,-$digit-1,1);
+ }
+
+sub _zeros
+ {
+ # return amount of trailing zeros in decimal
+ # check each array elem in _m for having 0 at end as long as elem == 0
+ # Upon finding a elem != 0, stop
+ my $x = $_[1];
+
+ return 0 if scalar @$x == 1 && $x->[0] == 0;
+
+ my $zeros = 0; my $elem;
+ foreach my $e (@$x)
+ {
+ if ($e != 0)
+ {
+ $elem = "$e"; # preserve x
+ $elem =~ s/.*?(0*$)/$1/; # strip anything not zero
+ $zeros *= $BASE_LEN; # elems * 5
+ $zeros += length($elem); # count trailing zeros
+ last; # early out
+ }
+ $zeros ++; # real else branch: 50% slower!
+ }
+ $zeros;
+ }
+
+##############################################################################
+# _is_* routines
+
+sub _is_zero
+ {
+ # return true if arg is zero
+ (((scalar @{$_[1]} == 1) && ($_[1]->[0] == 0))) <=> 0;
+ }
+
+sub _is_even
+ {
+ # return true if arg is even
+ (!($_[1]->[0] & 1)) <=> 0;
+ }
+
+sub _is_odd
+ {
+ # return true if arg is even
+ (($_[1]->[0] & 1)) <=> 0;
+ }
+
+sub _is_one
+ {
+ # return true if arg is one
+ (scalar @{$_[1]} == 1) && ($_[1]->[0] == 1) <=> 0;
+ }
+
+sub _is_two
+ {
+ # return true if arg is two
+ (scalar @{$_[1]} == 1) && ($_[1]->[0] == 2) <=> 0;
+ }
+
+sub _is_ten
+ {
+ # return true if arg is ten
+ (scalar @{$_[1]} == 1) && ($_[1]->[0] == 10) <=> 0;
+ }
+
+sub __strip_zeros
+ {
+ # internal normalization function that strips leading zeros from the array
+ # args: ref to array
+ my $s = shift;
+
+ my $cnt = scalar @$s; # get count of parts
+ my $i = $cnt-1;
+ push @$s,0 if $i < 0; # div might return empty results, so fix it
+
+ return $s if @$s == 1; # early out
+
+ #print "strip: cnt $cnt i $i\n";
+ # '0', '3', '4', '0', '0',
+ # 0 1 2 3 4
+ # cnt = 5, i = 4
+ # i = 4
+ # i = 3
+ # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
+ # >= 1: skip first part (this can be zero)
+ while ($i > 0) { last if $s->[$i] != 0; $i--; }
+ $i++; splice @$s,$i if ($i < $cnt); # $i cant be 0
+ $s;
+ }
+
+###############################################################################
+# check routine to test internal state for corruptions
+
+sub _check
+ {
+ # used by the test suite
+ my $x = $_[1];
+
+ return "$x is not a reference" if !ref($x);
+
+ # are all parts are valid?
+ my $i = 0; my $j = scalar @$x; my ($e,$try);
+ while ($i < $j)
+ {
+ $e = $x->[$i]; $e = 'undef' unless defined $e;
+ $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)";
+ last if $e !~ /^[+]?[0-9]+$/;
+ $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)";
+ last if "$e" !~ /^[+]?[0-9]+$/;
+ $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)";
+ last if '' . "$e" !~ /^[+]?[0-9]+$/;
+ $try = ' < 0 || >= $BASE; '."($x, $e)";
+ last if $e <0 || $e >= $BASE;
+ # this test is disabled, since new/bnorm and certain ops (like early out
+ # in add/sub) are allowed/expected to leave '00000' in some elements
+ #$try = '=~ /^00+/; '."($x, $e)";
+ #last if $e =~ /^00+/;
+ $i++;
+ }
+ return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j;
+ 0;
+ }
+
+
+###############################################################################
+
+sub _mod
+ {
+ # if possible, use mod shortcut
+ my ($c,$x,$yo) = @_;
+
+ # slow way since $y to big
+ if (scalar @$yo > 1)
+ {
+ my ($xo,$rem) = _div($c,$x,$yo);
+ return $rem;
+ }
+
+ my $y = $yo->[0];
+ # both are single element arrays
+ if (scalar @$x == 1)
+ {
+ $x->[0] %= $y;
+ return $x;
+ }
+
+ # @y is a single element, but @x has more than one element
+ my $b = $BASE % $y;
+ if ($b == 0)
+ {
+ # when BASE % Y == 0 then (B * BASE) % Y == 0
+ # (B * BASE) % $y + A % Y => A % Y
+ # so need to consider only last element: O(1)
+ $x->[0] %= $y;
+ }
+ elsif ($b == 1)
+ {
+ # else need to go through all elements: O(N), but loop is a bit simplified
+ my $r = 0;
+ foreach (@$x)
+ {
+ $r = ($r + $_) % $y; # not much faster, but heh...
+ #$r += $_ % $y; $r %= $y;
+ }
+ $r = 0 if $r == $y;
+ $x->[0] = $r;
+ }
+ else
+ {
+ # else need to go through all elements: O(N)
+ my $r = 0; my $bm = 1;
+ foreach (@$x)
+ {
+ $r = ($_ * $bm + $r) % $y;
+ $bm = ($bm * $b) % $y;
+
+ #$r += ($_ % $y) * $bm;
+ #$bm *= $b;
+ #$bm %= $y;
+ #$r %= $y;
+ }
+ $r = 0 if $r == $y;
+ $x->[0] = $r;
+ }
+ splice (@$x,1); # keep one element of $x
+ $x;
+ }
+
+##############################################################################
+# shifts
+
+sub _rsft
+ {
+ my ($c,$x,$y,$n) = @_;
+
+ if ($n != 10)
+ {
+ $n = _new($c,$n); return _div($c,$x, _pow($c,$n,$y));
+ }
+
+ # shortcut (faster) for shifting by 10)
+ # multiples of $BASE_LEN
+ my $dst = 0; # destination
+ my $src = _num($c,$y); # as normal int
+ my $xlen = (@$x-1)*$BASE_LEN+length(int($x->[-1])); # len of x in digits
+ if ($src >= $xlen or ($src == $xlen and ! defined $x->[1]))
+ {
+ # 12345 67890 shifted right by more than 10 digits => 0
+ splice (@$x,1); # leave only one element
+ $x->[0] = 0; # set to zero
+ return $x;
+ }
+ my $rem = $src % $BASE_LEN; # remainder to shift
+ $src = int($src / $BASE_LEN); # source
+ if ($rem == 0)
+ {
+ splice (@$x,0,$src); # even faster, 38.4 => 39.3
+ }
+ else
+ {
+ my $len = scalar @$x - $src; # elems to go
+ my $vd; my $z = '0'x $BASE_LEN;
+ $x->[scalar @$x] = 0; # avoid || 0 test inside loop
+ while ($dst < $len)
+ {
+ $vd = $z.$x->[$src];
+ $vd = substr($vd,-$BASE_LEN,$BASE_LEN-$rem);
+ $src++;
+ $vd = substr($z.$x->[$src],-$rem,$rem) . $vd;
+ $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN;
+ $x->[$dst] = int($vd);
+ $dst++;
+ }
+ splice (@$x,$dst) if $dst > 0; # kill left-over array elems
+ pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0
+ } # else rem == 0
+ $x;
+ }
+
+sub _lsft
+ {
+ my ($c,$x,$y,$n) = @_;
+
+ if ($n != 10)
+ {
+ $n = _new($c,$n); return _mul($c,$x, _pow($c,$n,$y));
+ }
+
+ # shortcut (faster) for shifting by 10) since we are in base 10eX
+ # multiples of $BASE_LEN:
+ my $src = scalar @$x; # source
+ my $len = _num($c,$y); # shift-len as normal int
+ my $rem = $len % $BASE_LEN; # remainder to shift
+ my $dst = $src + int($len/$BASE_LEN); # destination
+ my $vd; # further speedup
+ $x->[$src] = 0; # avoid first ||0 for speed
+ my $z = '0' x $BASE_LEN;
+ while ($src >= 0)
+ {
+ $vd = $x->[$src]; $vd = $z.$vd;
+ $vd = substr($vd,-$BASE_LEN+$rem,$BASE_LEN-$rem);
+ $vd .= $src > 0 ? substr($z.$x->[$src-1],-$BASE_LEN,$rem) : '0' x $rem;
+ $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN;
+ $x->[$dst] = int($vd);
+ $dst--; $src--;
+ }
+ # set lowest parts to 0
+ while ($dst >= 0) { $x->[$dst--] = 0; }
+ # fix spurios last zero element
+ splice @$x,-1 if $x->[-1] == 0;
+ $x;
+ }
+
+sub _pow
+ {
+ # power of $x to $y
+ # ref to array, ref to array, return ref to array
+ my ($c,$cx,$cy) = @_;
+
+ if (scalar @$cy == 1 && $cy->[0] == 0)
+ {
+ splice (@$cx,1); $cx->[0] = 1; # y == 0 => x => 1
+ return $cx;
+ }
+ if ((scalar @$cx == 1 && $cx->[0] == 1) || # x == 1
+ (scalar @$cy == 1 && $cy->[0] == 1)) # or y == 1
+ {
+ return $cx;
+ }
+ if (scalar @$cx == 1 && $cx->[0] == 0)
+ {
+ splice (@$cx,1); $cx->[0] = 0; # 0 ** y => 0 (if not y <= 0)
+ return $cx;
+ }
+
+ my $pow2 = _one();
+
+ my $y_bin = _as_bin($c,$cy); $y_bin =~ s/^0b//;
+ my $len = length($y_bin);
+ while (--$len > 0)
+ {
+ _mul($c,$pow2,$cx) if substr($y_bin,$len,1) eq '1'; # is odd?
+ _mul($c,$cx,$cx);
+ }
+
+ _mul($c,$cx,$pow2);
+ $cx;
+ }
+
+sub _nok
+ {
+ # n over k
+ # ref to array, return ref to array
+ my ($c,$n,$k) = @_;
+
+ # ( 7 ) 7! 7*6*5 * 4*3*2*1 7 * 6 * 5
+ # ( - ) = --------- = --------------- = ---------
+ # ( 3 ) 3! (7-3)! 3*2*1 * 4*3*2*1 3 * 2 * 1
+
+ # compute n - k + 2 (so we start with 5 in the example above)
+ my $x = _copy($c,$n);
+
+ _sub($c,$n,$k);
+ if (!_is_one($c,$n))
+ {
+ _inc($c,$n);
+ my $f = _copy($c,$n); _inc($c,$f); # n = 5, f = 6, d = 2
+ my $d = _two($c);
+ while (_acmp($c,$f,$x) <= 0) # f < n ?
+ {
+ # n = (n * f / d) == 5 * 6 / 2 => n == 3
+ $n = _mul($c,$n,$f); $n = _div($c,$n,$d);
+ # f = 7, d = 3
+ _inc($c,$f); _inc($c,$d);
+ }
+ }
+ else
+ {
+ # keep ref to $n and set it to 1
+ splice (@$n,1); $n->[0] = 1;
+ }
+ $n;
+ }
+
+my @factorials = (
+ 1,
+ 1,
+ 2,
+ 2*3,
+ 2*3*4,
+ 2*3*4*5,
+ 2*3*4*5*6,
+ 2*3*4*5*6*7,
+);
+
+sub _fac
+ {
+ # factorial of $x
+ # ref to array, return ref to array
+ my ($c,$cx) = @_;
+
+ if ((@$cx == 1) && ($cx->[0] <= 7))
+ {
+ $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc.
+ return $cx;
+ }
+
+ if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000
+ ($cx->[0] >= 12 && $cx->[0] < 7000))
+ {
+
+ # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j)
+ # See http://blogten.blogspot.com/2007/01/calculating-n.html
+ # The above series can be expressed as factors:
+ # k * k - (j - i) * 2
+ # We cache k*k, and calculate (j * j) as the sum of the first j odd integers
+
+ # This will not work when N exceeds the storage of a Perl scalar, however,
+ # in this case the algorithm would be way to slow to terminate, anyway.
+
+ # As soon as the last element of $cx is 0, we split it up and remember
+ # how many zeors we got so far. The reason is that n! will accumulate
+ # zeros at the end rather fast.
+ my $zero_elements = 0;
+
+ # If n is even, set n = n -1
+ my $k = _num($c,$cx); my $even = 1;
+ if (($k & 1) == 0)
+ {
+ $even = $k; $k --;
+ }
+ # set k to the center point
+ $k = ($k + 1) / 2;
+# print "k $k even: $even\n";
+ # now calculate k * k
+ my $k2 = $k * $k;
+ my $odd = 1; my $sum = 1;
+ my $i = $k - 1;
+ # keep reference to x
+ my $new_x = _new($c, $k * $even);
+ @$cx = @$new_x;
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+# print STDERR "x = ", _str($c,$cx),"\n";
+ my $BASE2 = int(sqrt($BASE))-1;
+ my $j = 1;
+ while ($j <= $i)
+ {
+ my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++;
+ while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2))
+ {
+ $m *= ($k2 - $sum);
+ $odd += 2; $sum += $odd; $j++;
+# print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1);
+ }
+ if ($m < $BASE)
+ {
+ _mul($c,$cx,[$m]);
+ }
+ else
+ {
+ _mul($c,$cx,$c->_new($m));
+ }
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+# print STDERR "Calculate $k2 - $sum = $m (x = ", _str($c,$cx),")\n";
+ }
+ # multiply in the zeros again
+ unshift @$cx, (0) x $zero_elements;
+ return $cx;
+ }
+
+ # go forward until $base is exceeded
+ # limit is either $x steps (steps == 100 means a result always too high) or
+ # $base.
+ my $steps = 100; $steps = $cx->[0] if @$cx == 1;
+ my $r = 2; my $cf = 3; my $step = 2; my $last = $r;
+ while ($r*$cf < $BASE && $step < $steps)
+ {
+ $last = $r; $r *= $cf++; $step++;
+ }
+ if ((@$cx == 1) && $step == $cx->[0])
+ {
+ # completely done, so keep reference to $x and return
+ $cx->[0] = $r;
+ return $cx;
+ }
+
+ # now we must do the left over steps
+ my $n; # steps still to do
+ if (scalar @$cx == 1)
+ {
+ $n = $cx->[0];
+ }
+ else
+ {
+ $n = _copy($c,$cx);
+ }
+
+ # Set $cx to the last result below $BASE (but keep ref to $x)
+ $cx->[0] = $last; splice (@$cx,1);
+ # As soon as the last element of $cx is 0, we split it up and remember
+ # how many zeors we got so far. The reason is that n! will accumulate
+ # zeros at the end rather fast.
+ my $zero_elements = 0;
+
+ # do left-over steps fit into a scalar?
+ if (ref $n eq 'ARRAY')
+ {
+ # No, so use slower inc() & cmp()
+ # ($n is at least $BASE here)
+ my $base_2 = int(sqrt($BASE)) - 1;
+ #print STDERR "base_2: $base_2\n";
+ while ($step < $base_2)
+ {
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+ my $b = $step * ($step + 1); $step += 2;
+ _mul($c,$cx,[$b]);
+ }
+ $step = [$step];
+ while (_acmp($c,$step,$n) <= 0)
+ {
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+ _mul($c,$cx,$step); _inc($c,$step);
+ }
+ }
+ else
+ {
+ # Yes, so we can speed it up slightly
+
+# print "# left over steps $n\n";
+
+ my $base_4 = int(sqrt(sqrt($BASE))) - 2;
+ #print STDERR "base_4: $base_4\n";
+ my $n4 = $n - 4;
+ while ($step < $n4 && $step < $base_4)
+ {
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+ my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2;
+ _mul($c,$cx,[$b]);
+ }
+ my $base_2 = int(sqrt($BASE)) - 1;
+ my $n2 = $n - 2;
+ #print STDERR "base_2: $base_2\n";
+ while ($step < $n2 && $step < $base_2)
+ {
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+ my $b = $step * ($step + 1); $step += 2;
+ _mul($c,$cx,[$b]);
+ }
+ # do what's left over
+ while ($step <= $n)
+ {
+ _mul($c,$cx,[$step]); $step++;
+ if ($cx->[0] == 0)
+ {
+ $zero_elements ++; shift @$cx;
+ }
+ }
+ }
+ # multiply in the zeros again
+ unshift @$cx, (0) x $zero_elements;
+ $cx; # return result
+ }
+
+#############################################################################
+
+sub _log_int
+ {
+ # calculate integer log of $x to base $base
+ # ref to array, ref to array - return ref to array
+ my ($c,$x,$base) = @_;
+
+ # X == 0 => NaN
+ return if (scalar @$x == 1 && $x->[0] == 0);
+ # BASE 0 or 1 => NaN
+ return if (scalar @$base == 1 && $base->[0] < 2);
+ my $cmp = _acmp($c,$x,$base); # X == BASE => 1
+ if ($cmp == 0)
+ {
+ splice (@$x,1); $x->[0] = 1;
+ return ($x,1)
+ }
+ # X < BASE
+ if ($cmp < 0)
+ {
+ splice (@$x,1); $x->[0] = 0;
+ return ($x,undef);
+ }
+
+ my $x_org = _copy($c,$x); # preserve x
+ splice(@$x,1); $x->[0] = 1; # keep ref to $x
+
+ # Compute a guess for the result based on:
+ # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) )
+ my $len = _len($c,$x_org);
+ my $log = log($base->[-1]) / log(10);
+
+ # for each additional element in $base, we add $BASE_LEN to the result,
+ # based on the observation that log($BASE,10) is BASE_LEN and
+ # log(x*y) == log(x) + log(y):
+ $log += ((scalar @$base)-1) * $BASE_LEN;
+
+ # calculate now a guess based on the values obtained above:
+ my $res = int($len / $log);
+
+ $x->[0] = $res;
+ my $trial = _pow ($c, _copy($c, $base), $x);
+ my $a = _acmp($c,$trial,$x_org);
+
+# print STDERR "# trial ", _str($c,$x)," was: $a (0 = exact, -1 too small, +1 too big)\n";
+
+ # found an exact result?
+ return ($x,1) if $a == 0;
+
+ if ($a > 0)
+ {
+ # or too big
+ _div($c,$trial,$base); _dec($c, $x);
+ while (($a = _acmp($c,$trial,$x_org)) > 0)
+ {
+# print STDERR "# big _log_int at ", _str($c,$x), "\n";
+ _div($c,$trial,$base); _dec($c, $x);
+ }
+ # result is now exact (a == 0), or too small (a < 0)
+ return ($x, $a == 0 ? 1 : 0);
+ }
+
+ # else: result was to small
+ _mul($c,$trial,$base);
+
+ # did we now get the right result?
+ $a = _acmp($c,$trial,$x_org);
+
+ if ($a == 0) # yes, exactly
+ {
+ _inc($c, $x);
+ return ($x,1);
+ }
+ return ($x,0) if $a > 0;
+
+ # Result still too small (we should come here only if the estimate above
+ # was very off base):
+
+ # Now let the normal trial run obtain the real result
+ # Simple loop that increments $x by 2 in each step, possible overstepping
+ # the real result
+
+ my $base_mul = _mul($c, _copy($c,$base), $base); # $base * $base
+
+ while (($a = _acmp($c,$trial,$x_org)) < 0)
+ {
+# print STDERR "# small _log_int at ", _str($c,$x), "\n";
+ _mul($c,$trial,$base_mul); _add($c, $x, [2]);
+ }
+
+ my $exact = 1;
+ if ($a > 0)
+ {
+ # overstepped the result
+ _dec($c, $x);
+ _div($c,$trial,$base);
+ $a = _acmp($c,$trial,$x_org);
+ if ($a > 0)
+ {
+ _dec($c, $x);
+ }
+ $exact = 0 if $a != 0; # a = -1 => not exact result, a = 0 => exact
+ }
+
+ ($x,$exact); # return result
+ }
+
+# for debugging:
+ use constant DEBUG => 0;
+ my $steps = 0;
+ sub steps { $steps };
+
+sub _sqrt
+ {
+ # square-root of $x in place
+ # Compute a guess of the result (by rule of thumb), then improve it via
+ # Newton's method.
+ my ($c,$x) = @_;
+
+ if (scalar @$x == 1)
+ {
+ # fits into one Perl scalar, so result can be computed directly
+ $x->[0] = int(sqrt($x->[0]));
+ return $x;
+ }
+ my $y = _copy($c,$x);
+ # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess
+ # since our guess will "grow"
+ my $l = int((_len($c,$x)-1) / 2);
+
+ my $lastelem = $x->[-1]; # for guess
+ my $elems = scalar @$x - 1;
+ # not enough digits, but could have more?
+ if ((length($lastelem) <= 3) && ($elems > 1))
+ {
+ # right-align with zero pad
+ my $len = length($lastelem) & 1;
+ print "$lastelem => " if DEBUG;
+ $lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN);
+ # former odd => make odd again, or former even to even again
+ $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len;
+ print "$lastelem\n" if DEBUG;
+ }
+
+ # construct $x (instead of _lsft($c,$x,$l,10)
+ my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5)
+ $l = int($l / $BASE_LEN);
+ print "l = $l " if DEBUG;
+
+ splice @$x,$l; # keep ref($x), but modify it
+
+ # we make the first part of the guess not '1000...0' but int(sqrt($lastelem))
+ # that gives us:
+ # 14400 00000 => sqrt(14400) => guess first digits to be 120
+ # 144000 000000 => sqrt(144000) => guess 379
+
+ print "$lastelem (elems $elems) => " if DEBUG;
+ $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even?
+ my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345
+ $r -= 1 if $elems & 1 == 0; # 70 => 7
+
+ # padd with zeros if result is too short
+ $x->[$l--] = int(substr($g . '0' x $r,0,$r+1));
+ print "now ",$x->[-1] if DEBUG;
+ print " would have been ", int('1' . '0' x $r),"\n" if DEBUG;
+
+ # If @$x > 1, we could compute the second elem of the guess, too, to create
+ # an even better guess. Not implemented yet. Does it improve performance?
+ $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero
+
+ print "start x= ",_str($c,$x),"\n" if DEBUG;
+ my $two = _two();
+ my $last = _zero();
+ my $lastlast = _zero();
+ $steps = 0 if DEBUG;
+ while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0)
+ {
+ $steps++ if DEBUG;
+ $lastlast = _copy($c,$last);
+ $last = _copy($c,$x);
+ _add($c,$x, _div($c,_copy($c,$y),$x));
+ _div($c,$x, $two );
+ print " x= ",_str($c,$x),"\n" if DEBUG;
+ }
+ print "\nsteps in sqrt: $steps, " if DEBUG;
+ _dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0; # overshot?
+ print " final ",$x->[-1],"\n" if DEBUG;
+ $x;
+ }
+
+sub _root
+ {
+ # take n'th root of $x in place (n >= 3)
+ my ($c,$x,$n) = @_;
+
+ if (scalar @$x == 1)
+ {
+ if (scalar @$n > 1)
+ {
+ # result will always be smaller than 2 so trunc to 1 at once
+ $x->[0] = 1;
+ }
+ else
+ {
+ # fits into one Perl scalar, so result can be computed directly
+ # cannot use int() here, because it rounds wrongly (try
+ # (81 ** 3) ** (1/3) to see what I mean)
+ #$x->[0] = int( $x->[0] ** (1 / $n->[0]) );
+ # round to 8 digits, then truncate result to integer
+ $x->[0] = int ( sprintf ("%.8f", $x->[0] ** (1 / $n->[0]) ) );
+ }
+ return $x;
+ }
+
+ # we know now that X is more than one element long
+
+ # if $n is a power of two, we can repeatedly take sqrt($X) and find the
+ # proper result, because sqrt(sqrt($x)) == root($x,4)
+ my $b = _as_bin($c,$n);
+ if ($b =~ /0b1(0+)$/)
+ {
+ my $count = CORE::length($1); # 0b100 => len('00') => 2
+ my $cnt = $count; # counter for loop
+ unshift (@$x, 0); # add one element, together with one
+ # more below in the loop this makes 2
+ while ($cnt-- > 0)
+ {
+ # 'inflate' $X by adding one element, basically computing
+ # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for result
+ # since len(sqrt($X)) approx == len($x) / 2.
+ unshift (@$x, 0);
+ # calculate sqrt($x), $x is now one element to big, again. In the next
+ # round we make that two, again.
+ _sqrt($c,$x);
+ }
+ # $x is now one element to big, so truncate result by removing it
+ splice (@$x,0,1);
+ }
+ else
+ {
+ # trial computation by starting with 2,4,8,16 etc until we overstep
+ my $step;
+ my $trial = _two();
+
+ # while still to do more than X steps
+ do
+ {
+ $step = _two();
+ while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0)
+ {
+ _mul ($c, $step, [2]);
+ _add ($c, $trial, $step);
+ }
+
+ # hit exactly?
+ if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) == 0)
+ {
+ @$x = @$trial; # make copy while preserving ref to $x
+ return $x;
+ }
+ # overstepped, so go back on step
+ _sub($c, $trial, $step);
+ } while (scalar @$step > 1 || $step->[0] > 128);
+
+ # reset step to 2
+ $step = _two();
+ # add two, because $trial cannot be exactly the result (otherwise we would
+ # alrady have found it)
+ _add($c, $trial, $step);
+
+ # and now add more and more (2,4,6,8,10 etc)
+ while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0)
+ {
+ _add ($c, $trial, $step);
+ }
+
+ # hit not exactly? (overstepped)
+ if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0)
+ {
+ _dec($c,$trial);
+ }
+
+ # hit not exactly? (overstepped)
+ # 80 too small, 81 slightly too big, 82 too big
+ if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0)
+ {
+ _dec ($c, $trial);
+ }
+
+ @$x = @$trial; # make copy while preserving ref to $x
+ return $x;
+ }
+ $x;
+ }
+
+##############################################################################
+# binary stuff
+
+sub _and
+ {
+ my ($c,$x,$y) = @_;
+
+ # the shortcut makes equal, large numbers _really_ fast, and makes only a
+ # very small performance drop for small numbers (e.g. something with less
+ # than 32 bit) Since we optimize for large numbers, this is enabled.
+ return $x if _acmp($c,$x,$y) == 0; # shortcut
+
+ my $m = _one(); my ($xr,$yr);
+ my $mask = $AND_MASK;
+
+ my $x1 = $x;
+ my $y1 = _copy($c,$y); # make copy
+ $x = _zero();
+ my ($b,$xrr,$yrr);
+ use integer;
+ while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
+ {
+ ($x1, $xr) = _div($c,$x1,$mask);
+ ($y1, $yr) = _div($c,$y1,$mask);
+
+ # make ints() from $xr, $yr
+ # this is when the AND_BITS are greater than $BASE and is slower for
+ # small (<256 bits) numbers, but faster for large numbers. Disabled
+ # due to KISS principle
+
+# $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
+# $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
+# _add($c,$x, _mul($c, _new( $c, ($xrr & $yrr) ), $m) );
+
+ # 0+ due to '&' doesn't work in strings
+ _add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) );
+ _mul($c,$m,$mask);
+ }
+ $x;
+ }
+
+sub _xor
+ {
+ my ($c,$x,$y) = @_;
+
+ return _zero() if _acmp($c,$x,$y) == 0; # shortcut (see -and)
+
+ my $m = _one(); my ($xr,$yr);
+ my $mask = $XOR_MASK;
+
+ my $x1 = $x;
+ my $y1 = _copy($c,$y); # make copy
+ $x = _zero();
+ my ($b,$xrr,$yrr);
+ use integer;
+ while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
+ {
+ ($x1, $xr) = _div($c,$x1,$mask);
+ ($y1, $yr) = _div($c,$y1,$mask);
+ # make ints() from $xr, $yr (see _and())
+ #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
+ #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
+ #_add($c,$x, _mul($c, _new( $c, ($xrr ^ $yrr) ), $m) );
+
+ # 0+ due to '^' doesn't work in strings
+ _add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) );
+ _mul($c,$m,$mask);
+ }
+ # the loop stops when the shorter of the two numbers is exhausted
+ # the remainder of the longer one will survive bit-by-bit, so we simple
+ # multiply-add it in
+ _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
+ _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
+
+ $x;
+ }
+
+sub _or
+ {
+ my ($c,$x,$y) = @_;
+
+ return $x if _acmp($c,$x,$y) == 0; # shortcut (see _and)
+
+ my $m = _one(); my ($xr,$yr);
+ my $mask = $OR_MASK;
+
+ my $x1 = $x;
+ my $y1 = _copy($c,$y); # make copy
+ $x = _zero();
+ my ($b,$xrr,$yrr);
+ use integer;
+ while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
+ {
+ ($x1, $xr) = _div($c,$x1,$mask);
+ ($y1, $yr) = _div($c,$y1,$mask);
+ # make ints() from $xr, $yr (see _and())
+# $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
+# $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
+# _add($c,$x, _mul($c, _new( $c, ($xrr | $yrr) ), $m) );
+
+ # 0+ due to '|' doesn't work in strings
+ _add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) );
+ _mul($c,$m,$mask);
+ }
+ # the loop stops when the shorter of the two numbers is exhausted
+ # the remainder of the longer one will survive bit-by-bit, so we simple
+ # multiply-add it in
+ _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
+ _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
+
+ $x;
+ }
+
+sub _as_hex
+ {
+ # convert a decimal number to hex (ref to array, return ref to string)
+ my ($c,$x) = @_;
+
+ # fits into one element (handle also 0x0 case)
+ return sprintf("0x%x",$x->[0]) if @$x == 1;
+
+ my $x1 = _copy($c,$x);
+
+ my $es = '';
+ my ($xr, $h, $x10000);
+ if ($] >= 5.006)
+ {
+ $x10000 = [ 0x10000 ]; $h = 'h4';
+ }
+ else
+ {
+ $x10000 = [ 0x1000 ]; $h = 'h3';
+ }
+ while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
+ {
+ ($x1, $xr) = _div($c,$x1,$x10000);
+ $es .= unpack($h,pack('V',$xr->[0]));
+ }
+ $es = reverse $es;
+ $es =~ s/^[0]+//; # strip leading zeros
+ '0x' . $es; # return result prepended with 0x
+ }
+
+sub _as_bin
+ {
+ # convert a decimal number to bin (ref to array, return ref to string)
+ my ($c,$x) = @_;
+
+ # fits into one element (and Perl recent enough), handle also 0b0 case
+ # handle zero case for older Perls
+ if ($] <= 5.005 && @$x == 1 && $x->[0] == 0)
+ {
+ my $t = '0b0'; return $t;
+ }
+ if (@$x == 1 && $] >= 5.006)
+ {
+ my $t = sprintf("0b%b",$x->[0]);
+ return $t;
+ }
+ my $x1 = _copy($c,$x);
+
+ my $es = '';
+ my ($xr, $b, $x10000);
+ if ($] >= 5.006)
+ {
+ $x10000 = [ 0x10000 ]; $b = 'b16';
+ }
+ else
+ {
+ $x10000 = [ 0x1000 ]; $b = 'b12';
+ }
+ while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero()
+ {
+ ($x1, $xr) = _div($c,$x1,$x10000);
+ $es .= unpack($b,pack('v',$xr->[0]));
+ }
+ $es = reverse $es;
+ $es =~ s/^[0]+//; # strip leading zeros
+ '0b' . $es; # return result prepended with 0b
+ }
+
+sub _as_oct
+ {
+ # convert a decimal number to octal (ref to array, return ref to string)
+ my ($c,$x) = @_;
+
+ # fits into one element (handle also 0 case)
+ return sprintf("0%o",$x->[0]) if @$x == 1;
+
+ my $x1 = _copy($c,$x);
+
+ my $es = '';
+ my $xr;
+ my $x1000 = [ 0100000 ];
+ while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
+ {
+ ($x1, $xr) = _div($c,$x1,$x1000);
+ $es .= reverse sprintf("%05o", $xr->[0]);
+ }
+ $es = reverse $es;
+ $es =~ s/^[0]+//; # strip leading zeros
+ '0' . $es; # return result prepended with 0
+ }
+
+sub _from_oct
+ {
+ # convert a octal number to decimal (string, return ref to array)
+ my ($c,$os) = @_;
+
+ # for older Perls, play safe
+ my $m = [ 0100000 ];
+ my $d = 5; # 5 digits at a time
+
+ my $mul = _one();
+ my $x = _zero();
+
+ my $len = int( (length($os)-1)/$d ); # $d digit parts, w/o the '0'
+ my $val; my $i = -$d;
+ while ($len >= 0)
+ {
+ $val = substr($os,$i,$d); # get oct digits
+ $val = CORE::oct($val);
+ $i -= $d; $len --;
+ my $adder = [ $val ];
+ _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0;
+ _mul ($c, $mul, $m ) if $len >= 0; # skip last mul
+ }
+ $x;
+ }
+
+sub _from_hex
+ {
+ # convert a hex number to decimal (string, return ref to array)
+ my ($c,$hs) = @_;
+
+ my $m = _new($c, 0x10000000); # 28 bit at a time (<32 bit!)
+ my $d = 7; # 7 digits at a time
+ if ($] <= 5.006)
+ {
+ # for older Perls, play safe
+ $m = [ 0x10000 ]; # 16 bit at a time (<32 bit!)
+ $d = 4; # 4 digits at a time
+ }
+
+ my $mul = _one();
+ my $x = _zero();
+
+ my $len = int( (length($hs)-2)/$d ); # $d digit parts, w/o the '0x'
+ my $val; my $i = -$d;
+ while ($len >= 0)
+ {
+ $val = substr($hs,$i,$d); # get hex digits
+ $val =~ s/^0x// if $len == 0; # for last part only because
+ $val = CORE::hex($val); # hex does not like wrong chars
+ $i -= $d; $len --;
+ my $adder = [ $val ];
+ # if the resulting number was to big to fit into one element, create a
+ # two-element version (bug found by Mark Lakata - Thanx!)
+ if (CORE::length($val) > $BASE_LEN)
+ {
+ $adder = _new($c,$val);
+ }
+ _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0;
+ _mul ($c, $mul, $m ) if $len >= 0; # skip last mul
+ }
+ $x;
+ }
+
+sub _from_bin
+ {
+ # convert a hex number to decimal (string, return ref to array)
+ my ($c,$bs) = @_;
+
+ # instead of converting X (8) bit at a time, it is faster to "convert" the
+ # number to hex, and then call _from_hex.
+
+ my $hs = $bs;
+ $hs =~ s/^[+-]?0b//; # remove sign and 0b
+ my $l = length($hs); # bits
+ $hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0
+ my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex
+
+ $c->_from_hex($h);
+ }
+
+##############################################################################
+# special modulus functions
+
+sub _modinv
+ {
+ # modular inverse
+ my ($c,$x,$y) = @_;
+
+ my $u = _zero($c); my $u1 = _one($c);
+ my $a = _copy($c,$y); my $b = _copy($c,$x);
+
+ # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the
+ # result ($u) at the same time. See comments in BigInt for why this works.
+ my $q;
+ ($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1
+ my $sign = 1;
+ while (!_is_zero($c,$b))
+ {
+ my $t = _add($c, # step 2:
+ _mul($c,_copy($c,$u1), $q) , # t = u1 * q
+ $u ); # + u
+ $u = $u1; # u = u1, u1 = t
+ $u1 = $t;
+ $sign = -$sign;
+ ($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1
+ }
+
+ # if the gcd is not 1, then return NaN
+ return (undef,undef) unless _is_one($c,$a);
+
+ ($u1, $sign == 1 ? '+' : '-');
+ }
+
+sub _modpow
+ {
+ # modulus of power ($x ** $y) % $z
+ my ($c,$num,$exp,$mod) = @_;
+
+ # in the trivial case,
+ if (_is_one($c,$mod))
+ {
+ splice @$num,0,1; $num->[0] = 0;
+ return $num;
+ }
+ if ((scalar @$num == 1) && (($num->[0] == 0) || ($num->[0] == 1)))
+ {
+ $num->[0] = 1;
+ return $num;
+ }
+
+# $num = _mod($c,$num,$mod); # this does not make it faster
+
+ my $acc = _copy($c,$num); my $t = _one();
+
+ my $expbin = _as_bin($c,$exp); $expbin =~ s/^0b//;
+ my $len = length($expbin);
+ while (--$len >= 0)
+ {
+ if ( substr($expbin,$len,1) eq '1') # is_odd
+ {
+ _mul($c,$t,$acc);
+ $t = _mod($c,$t,$mod);
+ }
+ _mul($c,$acc,$acc);
+ $acc = _mod($c,$acc,$mod);
+ }
+ @$num = @$t;
+ $num;
+ }
+
+sub _gcd
+ {
+ # greatest common divisor
+ my ($c,$x,$y) = @_;
+
+ while ( (scalar @$y != 1) || ($y->[0] != 0) ) # while ($y != 0)
+ {
+ my $t = _copy($c,$y);
+ $y = _mod($c, $x, $y);
+ $x = $t;
+ }
+ $x;
+ }
+
+##############################################################################
+##############################################################################
+
+1;
+__END__
+
+=head1 NAME
+
+Math::BigInt::Calc - Pure Perl module to support Math::BigInt
+
+=head1 SYNOPSIS
+
+Provides support for big integer calculations. Not intended to be used by other
+modules. Other modules which sport the same functions can also be used to support
+Math::BigInt, like Math::BigInt::GMP or Math::BigInt::Pari.
+
+=head1 DESCRIPTION
+
+In order to allow for multiple big integer libraries, Math::BigInt was
+rewritten to use library modules for core math routines. Any module which
+follows the same API as this can be used instead by using the following:
+
+ use Math::BigInt lib => 'libname';
+
+'libname' is either the long name ('Math::BigInt::Pari'), or only the short
+version like 'Pari'.
+
+=head1 STORAGE
+
+=head1 METHODS
+
+The following functions MUST be defined in order to support the use by
+Math::BigInt v1.70 or later:
+
+ api_version() return API version, 1 for v1.70, 2 for v1.83
+ _new(string) return ref to new object from ref to decimal string
+ _zero() return a new object with value 0
+ _one() return a new object with value 1
+ _two() return a new object with value 2
+ _ten() return a new object with value 10
+
+ _str(obj) return ref to a string representing the object
+ _num(obj) returns a Perl integer/floating point number
+ NOTE: because of Perl numeric notation defaults,
+ the _num'ified obj may lose accuracy due to
+ machine-dependent floating point size limitations
+
+ _add(obj,obj) Simple addition of two objects
+ _mul(obj,obj) Multiplication of two objects
+ _div(obj,obj) Division of the 1st object by the 2nd
+ In list context, returns (result,remainder).
+ NOTE: this is integer math, so no
+ fractional part will be returned.
+ The second operand will be not be 0, so no need to
+ check for that.
+ _sub(obj,obj) Simple subtraction of 1 object from another
+ a third, optional parameter indicates that the params
+ are swapped. In this case, the first param needs to
+ be preserved, while you can destroy the second.
+ sub (x,y,1) => return x - y and keep x intact!
+ _dec(obj) decrement object by one (input is guaranteed to be > 0)
+ _inc(obj) increment object by one
+
+
+ _acmp(obj,obj) <=> operator for objects (return -1, 0 or 1)
+
+ _len(obj) returns count of the decimal digits of the object
+ _digit(obj,n) returns the n'th decimal digit of object
+
+ _is_one(obj) return true if argument is 1
+ _is_two(obj) return true if argument is 2
+ _is_ten(obj) return true if argument is 10
+ _is_zero(obj) return true if argument is 0
+ _is_even(obj) return true if argument is even (0,2,4,6..)
+ _is_odd(obj) return true if argument is odd (1,3,5,7..)
+
+ _copy return a ref to a true copy of the object
+
+ _check(obj) check whether internal representation is still intact
+ return 0 for ok, otherwise error message as string
+
+ _from_hex(str) return new object from a hexadecimal string
+ _from_bin(str) return new object from a binary string
+ _from_oct(str) return new object from an octal string
+
+ _as_hex(str) return string containing the value as
+ unsigned hex string, with the '0x' prepended.
+ Leading zeros must be stripped.
+ _as_bin(str) Like as_hex, only as binary string containing only
+ zeros and ones. Leading zeros must be stripped and a
+ '0b' must be prepended.
+
+ _rsft(obj,N,B) shift object in base B by N 'digits' right
+ _lsft(obj,N,B) shift object in base B by N 'digits' left
+
+ _xor(obj1,obj2) XOR (bit-wise) object 1 with object 2
+ Note: XOR, AND and OR pad with zeros if size mismatches
+ _and(obj1,obj2) AND (bit-wise) object 1 with object 2
+ _or(obj1,obj2) OR (bit-wise) object 1 with object 2
+
+ _mod(obj1,obj2) Return remainder of div of the 1st by the 2nd object
+ _sqrt(obj) return the square root of object (truncated to int)
+ _root(obj) return the n'th (n >= 3) root of obj (truncated to int)
+ _fac(obj) return factorial of object 1 (1*2*3*4..)
+ _pow(obj1,obj2) return object 1 to the power of object 2
+ return undef for NaN
+ _zeros(obj) return number of trailing decimal zeros
+ _modinv return inverse modulus
+ _modpow return modulus of power ($x ** $y) % $z
+ _log_int(X,N) calculate integer log() of X in base N
+ X >= 0, N >= 0 (return undef for NaN)
+ returns (RESULT, EXACT) where EXACT is:
+ 1 : result is exactly RESULT
+ 0 : result was truncated to RESULT
+ undef : unknown whether result is exactly RESULT
+ _gcd(obj,obj) return Greatest Common Divisor of two objects
+
+The following functions are REQUIRED for an api_version of 2 or greater:
+
+ _1ex($x) create the number 1Ex where x >= 0
+ _alen(obj) returns approximate count of the decimal digits of the
+ object. This estimate MUST always be greater or equal
+ to what _len() returns.
+ _nok(n,k) calculate n over k (binomial coefficient)
+
+The following functions are optional, and can be defined if the underlying lib
+has a fast way to do them. If undefined, Math::BigInt will use pure Perl (hence
+slow) fallback routines to emulate these:
+
+ _signed_or
+ _signed_and
+ _signed_xor
+
+Input strings come in as unsigned but with prefix (i.e. as '123', '0xabc'
+or '0b1101').
+
+So the library needs only to deal with unsigned big integers. Testing of input
+parameter validity is done by the caller, so you need not worry about
+underflow (f.i. in C<_sub()>, C<_dec()>) nor about division by zero or similar
+cases.
+
+The first parameter can be modified, that includes the possibility that you
+return a reference to a completely different object instead. Although keeping
+the reference and just changing its contents is preferred over creating and
+returning a different reference.
+
+Return values are always references to objects, strings, or true/false for
+comparison routines.
+
+=head1 WRAP YOUR OWN
+
+If you want to port your own favourite c-lib for big numbers to the
+Math::BigInt interface, you can take any of the already existing modules as
+a rough guideline. You should really wrap up the latest BigInt and BigFloat
+testsuites with your module, and replace in them any of the following:
+
+ use Math::BigInt;
+
+by this:
+
+ use Math::BigInt lib => 'yourlib';
+
+This way you ensure that your library really works 100% within Math::BigInt.
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 AUTHORS
+
+Original math code by Mark Biggar, rewritten by Tels L<http://bloodgate.com/>
+in late 2000.
+Seperated from BigInt and shaped API with the help of John Peacock.
+
+Fixed, speed-up, streamlined and enhanced by Tels 2001 - 2007.
+
+=head1 SEE ALSO
+
+L<Math::BigInt>, L<Math::BigFloat>,
+L<Math::BigInt::GMP>, L<Math::BigInt::FastCalc> and L<Math::BigInt::Pari>.
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/BigInt/CalcEmu.pm b/Master/tlpkg/tlperl/lib/Math/BigInt/CalcEmu.pm
new file mode 100644
index 00000000000..5810f5db9f7
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigInt/CalcEmu.pm
@@ -0,0 +1,329 @@
+package Math::BigInt::CalcEmu;
+
+use 5.006002;
+use strict;
+# use warnings; # dont use warnings for older Perls
+use vars qw/$VERSION/;
+
+$VERSION = '0.05';
+
+package Math::BigInt;
+
+# See SYNOPSIS below.
+
+my $CALC_EMU;
+
+BEGIN
+ {
+ $CALC_EMU = Math::BigInt->config()->{'lib'};
+ # register us with MBI to get notified of future lib changes
+ Math::BigInt::_register_callback( __PACKAGE__, sub { $CALC_EMU = $_[0]; } );
+ }
+
+sub __emu_band
+ {
+ my ($self,$x,$y,$sx,$sy,@r) = @_;
+
+ return $x->bzero(@r) if $y->is_zero() || $x->is_zero();
+
+ my $sign = 0; # sign of result
+ $sign = 1 if $sx == -1 && $sy == -1;
+
+ my ($bx,$by);
+
+ if ($sx == -1) # if x is negative
+ {
+ # two's complement: inc and flip all "bits" in $bx
+ $bx = $x->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $bx =~ s/-?0x//;
+ $bx =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $bx = $x->as_hex(); # get binary representation
+ $bx =~ s/-?0x//;
+ $bx =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ if ($sy == -1) # if y is negative
+ {
+ # two's complement: inc and flip all "bits" in $by
+ $by = $y->copy()->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $by =~ s/-?0x//;
+ $by =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $by = $y->as_hex(); # get binary representation
+ $by =~ s/-?0x//;
+ $by =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ # now we have bit-strings from X and Y, reverse them for padding
+ $bx = reverse $bx;
+ $by = reverse $by;
+
+ # padd the shorter string
+ my $xx = "\x00"; $xx = "\x0f" if $sx == -1;
+ my $yy = "\x00"; $yy = "\x0f" if $sy == -1;
+ my $diff = CORE::length($bx) - CORE::length($by);
+ if ($diff > 0)
+ {
+ # if $yy eq "\x00", we can cut $bx, otherwise we need to padd $by
+ $by .= $yy x $diff;
+ }
+ elsif ($diff < 0)
+ {
+ # if $xx eq "\x00", we can cut $by, otherwise we need to padd $bx
+ $bx .= $xx x abs($diff);
+ }
+
+ # and the strings together
+ my $r = $bx & $by;
+
+ # and reverse the result again
+ $bx = reverse $r;
+
+ # One of $x or $y was negative, so need to flip bits in the result.
+ # In both cases (one or two of them negative, or both positive) we need
+ # to get the characters back.
+ if ($sign == 1)
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/0123456789abcdef/;
+ }
+ else
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/fedcba9876543210/;
+ }
+
+ # leading zeros will be stripped by _from_hex()
+ $bx = '0x' . $bx;
+ $x->{value} = $CALC_EMU->_from_hex( $bx );
+
+ # calculate sign of result
+ $x->{sign} = '+';
+ $x->{sign} = '-' if $sign == 1 && !$x->is_zero();
+
+ $x->bdec() if $sign == 1;
+
+ $x->round(@r);
+ }
+
+sub __emu_bior
+ {
+ my ($self,$x,$y,$sx,$sy,@r) = @_;
+
+ return $x->round(@r) if $y->is_zero();
+
+ my $sign = 0; # sign of result
+ $sign = 1 if ($sx == -1) || ($sy == -1);
+
+ my ($bx,$by);
+
+ if ($sx == -1) # if x is negative
+ {
+ # two's complement: inc and flip all "bits" in $bx
+ $bx = $x->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $bx =~ s/-?0x//;
+ $bx =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $bx = $x->as_hex(); # get binary representation
+ $bx =~ s/-?0x//;
+ $bx =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ if ($sy == -1) # if y is negative
+ {
+ # two's complement: inc and flip all "bits" in $by
+ $by = $y->copy()->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $by =~ s/-?0x//;
+ $by =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $by = $y->as_hex(); # get binary representation
+ $by =~ s/-?0x//;
+ $by =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ # now we have bit-strings from X and Y, reverse them for padding
+ $bx = reverse $bx;
+ $by = reverse $by;
+
+ # padd the shorter string
+ my $xx = "\x00"; $xx = "\x0f" if $sx == -1;
+ my $yy = "\x00"; $yy = "\x0f" if $sy == -1;
+ my $diff = CORE::length($bx) - CORE::length($by);
+ if ($diff > 0)
+ {
+ $by .= $yy x $diff;
+ }
+ elsif ($diff < 0)
+ {
+ $bx .= $xx x abs($diff);
+ }
+
+ # or the strings together
+ my $r = $bx | $by;
+
+ # and reverse the result again
+ $bx = reverse $r;
+
+ # one of $x or $y was negative, so need to flip bits in the result
+ # in both cases (one or two of them negative, or both positive) we need
+ # to get the characters back.
+ if ($sign == 1)
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/0123456789abcdef/;
+ }
+ else
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/fedcba9876543210/;
+ }
+
+ # leading zeros will be stripped by _from_hex()
+ $bx = '0x' . $bx;
+ $x->{value} = $CALC_EMU->_from_hex( $bx );
+
+ # calculate sign of result
+ $x->{sign} = '+';
+ $x->{sign} = '-' if $sign == 1 && !$x->is_zero();
+
+ # if one of X or Y was negative, we need to decrement result
+ $x->bdec() if $sign == 1;
+
+ $x->round(@r);
+ }
+
+sub __emu_bxor
+ {
+ my ($self,$x,$y,$sx,$sy,@r) = @_;
+
+ return $x->round(@r) if $y->is_zero();
+
+ my $sign = 0; # sign of result
+ $sign = 1 if $x->{sign} ne $y->{sign};
+
+ my ($bx,$by);
+
+ if ($sx == -1) # if x is negative
+ {
+ # two's complement: inc and flip all "bits" in $bx
+ $bx = $x->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $bx =~ s/-?0x//;
+ $bx =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $bx = $x->as_hex(); # get binary representation
+ $bx =~ s/-?0x//;
+ $bx =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ if ($sy == -1) # if y is negative
+ {
+ # two's complement: inc and flip all "bits" in $by
+ $by = $y->copy()->binc()->as_hex(); # -1 => 0, -2 => 1, -3 => 2 etc
+ $by =~ s/-?0x//;
+ $by =~ tr/0123456789abcdef/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ else
+ {
+ $by = $y->as_hex(); # get binary representation
+ $by =~ s/-?0x//;
+ $by =~ tr/fedcba9876543210/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/;
+ }
+ # now we have bit-strings from X and Y, reverse them for padding
+ $bx = reverse $bx;
+ $by = reverse $by;
+
+ # padd the shorter string
+ my $xx = "\x00"; $xx = "\x0f" if $sx == -1;
+ my $yy = "\x00"; $yy = "\x0f" if $sy == -1;
+ my $diff = CORE::length($bx) - CORE::length($by);
+ if ($diff > 0)
+ {
+ $by .= $yy x $diff;
+ }
+ elsif ($diff < 0)
+ {
+ $bx .= $xx x abs($diff);
+ }
+
+ # xor the strings together
+ my $r = $bx ^ $by;
+
+ # and reverse the result again
+ $bx = reverse $r;
+
+ # one of $x or $y was negative, so need to flip bits in the result
+ # in both cases (one or two of them negative, or both positive) we need
+ # to get the characters back.
+ if ($sign == 1)
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/0123456789abcdef/;
+ }
+ else
+ {
+ $bx =~ tr/\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00/fedcba9876543210/;
+ }
+
+ # leading zeros will be stripped by _from_hex()
+ $bx = '0x' . $bx;
+ $x->{value} = $CALC_EMU->_from_hex( $bx );
+
+ # calculate sign of result
+ $x->{sign} = '+';
+ $x->{sign} = '-' if $sx != $sy && !$x->is_zero();
+
+ $x->bdec() if $sign == 1;
+
+ $x->round(@r);
+ }
+
+##############################################################################
+##############################################################################
+
+1;
+__END__
+
+=head1 NAME
+
+Math::BigInt::CalcEmu - Emulate low-level math with BigInt code
+
+=head1 SYNOPSIS
+
+ use Math::BigInt::CalcEmu;
+
+=head1 DESCRIPTION
+
+Contains routines that emulate low-level math functions in BigInt, e.g.
+optional routines the low-level math package does not provide on its own.
+
+Will be loaded on demand and called automatically by BigInt.
+
+Stuff here is really low-priority to optimize, since it is far better to
+implement the operation in the low-level math libary directly, possible even
+using a call to the native lib.
+
+=head1 METHODS
+
+=head2 __emu_bxor
+
+=head2 __emu_band
+
+=head2 __emu_bior
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 AUTHORS
+
+(c) Tels http://bloodgate.com 2003, 2004 - based on BigInt code by
+Tels from 2001-2003.
+
+=head1 SEE ALSO
+
+L<Math::BigInt>, L<Math::BigFloat>, L<Math::BigInt::BitVect>,
+L<Math::BigInt::GMP> and L<Math::BigInt::Pari>.
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/BigInt/FastCalc.pm b/Master/tlpkg/tlperl/lib/Math/BigInt/FastCalc.pm
new file mode 100644
index 00000000000..2b4aea58dc2
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigInt/FastCalc.pm
@@ -0,0 +1,125 @@
+package Math::BigInt::FastCalc;
+
+use 5.006;
+use strict;
+# use warnings; # dont use warnings for older Perls
+
+use DynaLoader;
+use Math::BigInt::Calc;
+
+use vars qw/@ISA $VERSION $BASE $BASE_LEN/;
+
+@ISA = qw(DynaLoader);
+
+$VERSION = '0.19';
+
+bootstrap Math::BigInt::FastCalc $VERSION;
+
+##############################################################################
+# global constants, flags and accessory
+
+# announce that we are compatible with MBI v1.70 and up
+sub api_version () { 1; }
+
+BEGIN
+ {
+ # use Calc to override the methods that we do not provide in XS
+
+ for my $method (qw/
+ str
+ add sub mul div
+ rsft lsft
+ mod modpow modinv
+ gcd
+ pow root sqrt log_int fac nok
+ digit check
+ from_hex from_bin from_oct as_hex as_bin as_oct
+ zeros base_len
+ xor or and
+ alen 1ex
+ /)
+ {
+ no strict 'refs';
+ *{'Math::BigInt::FastCalc::_' . $method} = \&{'Math::BigInt::Calc::_' . $method};
+ }
+ my ($AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN_SMALL, $MAX_VAL);
+
+ # store BASE_LEN and BASE to later pass it to XS code
+ ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN_SMALL, $MAX_VAL, $BASE) =
+ Math::BigInt::Calc::_base_len();
+
+ }
+
+sub import
+ {
+ _set_XS_BASE($BASE, $BASE_LEN);
+ }
+
+##############################################################################
+##############################################################################
+
+1;
+__END__
+=pod
+
+=head1 NAME
+
+Math::BigInt::FastCalc - Math::BigInt::Calc with some XS for more speed
+
+=head1 SYNOPSIS
+
+Provides support for big integer calculations. Not intended to be used by
+other modules. Other modules which sport the same functions can also be used
+to support Math::BigInt, like L<Math::BigInt::GMP> or L<Math::BigInt::Pari>.
+
+=head1 DESCRIPTION
+
+In order to allow for multiple big integer libraries, Math::BigInt was
+rewritten to use library modules for core math routines. Any module which
+follows the same API as this can be used instead by using the following:
+
+ use Math::BigInt lib => 'libname';
+
+'libname' is either the long name ('Math::BigInt::Pari'), or only the short
+version like 'Pari'. To use this library:
+
+ use Math::BigInt lib => 'FastCalc';
+
+Note that from L<Math::BigInt> v1.76 onwards, FastCalc will be loaded
+automatically, if possible.
+
+=head1 STORAGE
+
+FastCalc works exactly like Calc, in stores the numbers in decimal form,
+chopped into parts.
+
+=head1 METHODS
+
+The following functions are now implemented in FastCalc.xs:
+
+ _is_odd _is_even _is_one _is_zero
+ _is_two _is_ten
+ _zero _one _two _ten
+ _acmp _len _num
+ _inc _dec
+ __strip_zeros _copy
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 AUTHORS
+
+Original math code by Mark Biggar, rewritten by Tels L<http://bloodgate.com/>
+in late 2000.
+Seperated from BigInt and shaped API with the help of John Peacock.
+Fixed, sped-up and enhanced by Tels http://bloodgate.com 2001-2003.
+Further streamlining (api_version 1 etc.) by Tels 2004-2007.
+
+=head1 SEE ALSO
+
+L<Math::BigInt>, L<Math::BigFloat>,
+L<Math::BigInt::GMP>, L<Math::BigInt::FastCalc> and L<Math::BigInt::Pari>.
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/BigInt/Trace.pm b/Master/tlpkg/tlperl/lib/Math/BigInt/Trace.pm
new file mode 100644
index 00000000000..4733d226343
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigInt/Trace.pm
@@ -0,0 +1,47 @@
+#!/usr/bin/perl -w
+
+package Math::BigInt::Trace;
+
+require 5.005_02;
+use strict;
+
+use Exporter;
+use Math::BigInt;
+use vars qw($VERSION @ISA $PACKAGE @EXPORT_OK
+ $accuracy $precision $round_mode $div_scale);
+
+@ISA = qw(Exporter Math::BigInt);
+
+$VERSION = 0.01;
+
+use overload; # inherit overload from BigInt
+
+# Globals
+$accuracy = $precision = undef;
+$round_mode = 'even';
+$div_scale = 40;
+
+sub new
+{
+ my $proto = shift;
+ my $class = ref($proto) || $proto;
+
+ my $value = shift;
+ my $a = $accuracy; $a = $_[0] if defined $_[0];
+ my $p = $precision; $p = $_[1] if defined $_[1];
+ my $self = Math::BigInt->new($value,$a,$p,$round_mode);
+ bless $self,$class;
+ print "MBI new '$value' => '$self' (",ref($self),")";
+ return $self;
+}
+
+sub import
+ {
+ print "MBI import ",join(' ',@_);
+ my $self = shift;
+ Math::BigInt::import($self,@_); # need it for subclasses
+# $self->export_to_level(1,$self,@_); # need this ?
+ @_ = ();
+ }
+
+1;
diff --git a/Master/tlpkg/tlperl/lib/Math/BigRat.pm b/Master/tlpkg/tlperl/lib/Math/BigRat.pm
new file mode 100644
index 00000000000..2460d1c7d4e
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/BigRat.pm
@@ -0,0 +1,2020 @@
+
+#
+# "Tax the rat farms." - Lord Vetinari
+#
+
+# The following hash values are used:
+# sign : +,-,NaN,+inf,-inf
+# _d : denominator
+# _n : numeraotr (value = _n/_d)
+# _a : accuracy
+# _p : precision
+# You should not look at the innards of a BigRat - use the methods for this.
+
+package Math::BigRat;
+
+# anythig older is untested, and unlikely to work
+use 5.006;
+use strict;
+
+use Math::BigFloat;
+use vars qw($VERSION @ISA $upgrade $downgrade
+ $accuracy $precision $round_mode $div_scale $_trap_nan $_trap_inf);
+
+@ISA = qw(Math::BigFloat);
+
+$VERSION = '0.24';
+$VERSION = eval $VERSION;
+
+use overload; # inherit overload from Math::BigFloat
+
+BEGIN
+ {
+ *objectify = \&Math::BigInt::objectify; # inherit this from BigInt
+ *AUTOLOAD = \&Math::BigFloat::AUTOLOAD; # can't inherit AUTOLOAD
+ # we inherit these from BigFloat because currently it is not possible
+ # that MBF has a different $MBI variable than we, because MBF also uses
+ # Math::BigInt::config->('lib'); (there is always only one library loaded)
+ *_e_add = \&Math::BigFloat::_e_add;
+ *_e_sub = \&Math::BigFloat::_e_sub;
+ *as_int = \&as_number;
+ *is_pos = \&is_positive;
+ *is_neg = \&is_negative;
+ }
+
+##############################################################################
+# Global constants and flags. Access these only via the accessor methods!
+
+$accuracy = $precision = undef;
+$round_mode = 'even';
+$div_scale = 40;
+$upgrade = undef;
+$downgrade = undef;
+
+# These are internally, and not to be used from the outside at all!
+
+$_trap_nan = 0; # are NaNs ok? set w/ config()
+$_trap_inf = 0; # are infs ok? set w/ config()
+
+# the package we are using for our private parts, defaults to:
+# Math::BigInt->config()->{lib}
+my $MBI = 'Math::BigInt::Calc';
+
+my $nan = 'NaN';
+my $class = 'Math::BigRat';
+
+sub isa
+ {
+ return 0 if $_[1] =~ /^Math::Big(Int|Float)/; # we aren't
+ UNIVERSAL::isa(@_);
+ }
+
+##############################################################################
+
+sub _new_from_float
+ {
+ # turn a single float input into a rational number (like '0.1')
+ my ($self,$f) = @_;
+
+ return $self->bnan() if $f->is_nan();
+ return $self->binf($f->{sign}) if $f->{sign} =~ /^[+-]inf$/;
+
+ $self->{_n} = $MBI->_copy( $f->{_m} ); # mantissa
+ $self->{_d} = $MBI->_one();
+ $self->{sign} = $f->{sign} || '+';
+ if ($f->{_es} eq '-')
+ {
+ # something like Math::BigRat->new('0.1');
+ # 1 / 1 => 1/10
+ $MBI->_lsft ( $self->{_d}, $f->{_e} ,10);
+ }
+ else
+ {
+ # something like Math::BigRat->new('10');
+ # 1 / 1 => 10/1
+ $MBI->_lsft ( $self->{_n}, $f->{_e} ,10) unless
+ $MBI->_is_zero($f->{_e});
+ }
+ $self;
+ }
+
+sub new
+ {
+ # create a Math::BigRat
+ my $class = shift;
+
+ my ($n,$d) = @_;
+
+ my $self = { }; bless $self,$class;
+
+ # input like (BigInt) or (BigFloat):
+ if ((!defined $d) && (ref $n) && (!$n->isa('Math::BigRat')))
+ {
+ if ($n->isa('Math::BigFloat'))
+ {
+ $self->_new_from_float($n);
+ }
+ if ($n->isa('Math::BigInt'))
+ {
+ # TODO: trap NaN, inf
+ $self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
+ $self->{_d} = $MBI->_one(); # d => 1
+ $self->{sign} = $n->{sign};
+ }
+ if ($n->isa('Math::BigInt::Lite'))
+ {
+ # TODO: trap NaN, inf
+ $self->{sign} = '+'; $self->{sign} = '-' if $$n < 0;
+ $self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = N
+ $self->{_d} = $MBI->_one(); # d => 1
+ }
+ return $self->bnorm(); # normalize (120/1 => 12/10)
+ }
+
+ # input like (BigInt,BigInt) or (BigLite,BigLite):
+ if (ref($d) && ref($n))
+ {
+ # do N first (for $self->{sign}):
+ if ($n->isa('Math::BigInt'))
+ {
+ # TODO: trap NaN, inf
+ $self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
+ $self->{sign} = $n->{sign};
+ }
+ elsif ($n->isa('Math::BigInt::Lite'))
+ {
+ # TODO: trap NaN, inf
+ $self->{sign} = '+'; $self->{sign} = '-' if $$n < 0;
+ $self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = $n
+ }
+ else
+ {
+ require Carp;
+ Carp::croak(ref($n) . " is not a recognized object format for Math::BigRat->new");
+ }
+ # now D:
+ if ($d->isa('Math::BigInt'))
+ {
+ # TODO: trap NaN, inf
+ $self->{_d} = $MBI->_copy($d->{value}); # "mantissa" = D
+ # +/+ or -/- => +, +/- or -/+ => -
+ $self->{sign} = $d->{sign} ne $self->{sign} ? '-' : '+';
+ }
+ elsif ($d->isa('Math::BigInt::Lite'))
+ {
+ # TODO: trap NaN, inf
+ $self->{_d} = $MBI->_new(abs($$d)); # "mantissa" = D
+ my $ds = '+'; $ds = '-' if $$d < 0;
+ # +/+ or -/- => +, +/- or -/+ => -
+ $self->{sign} = $ds ne $self->{sign} ? '-' : '+';
+ }
+ else
+ {
+ require Carp;
+ Carp::croak(ref($d) . " is not a recognized object format for Math::BigRat->new");
+ }
+ return $self->bnorm(); # normalize (120/1 => 12/10)
+ }
+ return $n->copy() if ref $n; # already a BigRat
+
+ if (!defined $n)
+ {
+ $self->{_n} = $MBI->_zero(); # undef => 0
+ $self->{_d} = $MBI->_one();
+ $self->{sign} = '+';
+ return $self;
+ }
+
+ # string input with / delimiter
+ if ($n =~ /\s*\/\s*/)
+ {
+ return $class->bnan() if $n =~ /\/.*\//; # 1/2/3 isn't valid
+ return $class->bnan() if $n =~ /\/\s*$/; # 1/ isn't valid
+ ($n,$d) = split (/\//,$n);
+ # try as BigFloats first
+ if (($n =~ /[\.eE]/) || ($d =~ /[\.eE]/))
+ {
+ local $Math::BigFloat::accuracy = undef;
+ local $Math::BigFloat::precision = undef;
+
+ # one of them looks like a float
+ my $nf = Math::BigFloat->new($n,undef,undef);
+ $self->{sign} = '+';
+ return $self->bnan() if $nf->is_nan();
+
+ $self->{_n} = $MBI->_copy( $nf->{_m} ); # get mantissa
+
+ # now correct $self->{_n} due to $n
+ my $f = Math::BigFloat->new($d,undef,undef);
+ return $self->bnan() if $f->is_nan();
+ $self->{_d} = $MBI->_copy( $f->{_m} );
+
+ # calculate the difference between nE and dE
+ my $diff_e = $nf->exponent()->bsub( $f->exponent);
+ if ($diff_e->is_negative())
+ {
+ # < 0: mul d with it
+ $MBI->_lsft( $self->{_d}, $MBI->_new( $diff_e->babs()), 10);
+ }
+ elsif (!$diff_e->is_zero())
+ {
+ # > 0: mul n with it
+ $MBI->_lsft( $self->{_n}, $MBI->_new( $diff_e), 10);
+ }
+ }
+ else
+ {
+ # both d and n look like (big)ints
+
+ $self->{sign} = '+'; # no sign => '+'
+ $self->{_n} = undef;
+ $self->{_d} = undef;
+ if ($n =~ /^([+-]?)0*([0-9]+)\z/) # first part ok?
+ {
+ $self->{sign} = $1 || '+'; # no sign => '+'
+ $self->{_n} = $MBI->_new($2 || 0);
+ }
+
+ if ($d =~ /^([+-]?)0*([0-9]+)\z/) # second part ok?
+ {
+ $self->{sign} =~ tr/+-/-+/ if ($1 || '') eq '-'; # negate if second part neg.
+ $self->{_d} = $MBI->_new($2 || 0);
+ }
+
+ if (!defined $self->{_n} || !defined $self->{_d})
+ {
+ $d = Math::BigInt->new($d,undef,undef) unless ref $d;
+ $n = Math::BigInt->new($n,undef,undef) unless ref $n;
+
+ if ($n->{sign} =~ /^[+-]$/ && $d->{sign} =~ /^[+-]$/)
+ {
+ # both parts are ok as integers (wierd things like ' 1e0'
+ $self->{_n} = $MBI->_copy($n->{value});
+ $self->{_d} = $MBI->_copy($d->{value});
+ $self->{sign} = $n->{sign};
+ $self->{sign} =~ tr/+-/-+/ if $d->{sign} eq '-'; # -1/-2 => 1/2
+ return $self->bnorm();
+ }
+
+ $self->{sign} = '+'; # a default sign
+ return $self->bnan() if $n->is_nan() || $d->is_nan();
+
+ # handle inf cases:
+ if ($n->is_inf() || $d->is_inf())
+ {
+ if ($n->is_inf())
+ {
+ return $self->bnan() if $d->is_inf(); # both are inf => NaN
+ my $s = '+'; # '+inf/+123' or '-inf/-123'
+ $s = '-' if substr($n->{sign},0,1) ne $d->{sign};
+ # +-inf/123 => +-inf
+ return $self->binf($s);
+ }
+ # 123/inf => 0
+ return $self->bzero();
+ }
+ }
+ }
+
+ return $self->bnorm();
+ }
+
+ # simple string input
+ if (($n =~ /[\.eE]/) && $n !~ /^0x/)
+ {
+ # looks like a float, quacks like a float, so probably is a float
+ $self->{sign} = 'NaN';
+ local $Math::BigFloat::accuracy = undef;
+ local $Math::BigFloat::precision = undef;
+ $self->_new_from_float(Math::BigFloat->new($n,undef,undef));
+ }
+ else
+ {
+ # for simple forms, use $MBI directly
+ if ($n =~ /^([+-]?)0*([0-9]+)\z/)
+ {
+ $self->{sign} = $1 || '+';
+ $self->{_n} = $MBI->_new($2 || 0);
+ $self->{_d} = $MBI->_one();
+ }
+ else
+ {
+ my $n = Math::BigInt->new($n,undef,undef);
+ $self->{_n} = $MBI->_copy($n->{value});
+ $self->{_d} = $MBI->_one();
+ $self->{sign} = $n->{sign};
+ return $self->bnan() if $self->{sign} eq 'NaN';
+ return $self->binf($self->{sign}) if $self->{sign} =~ /^[+-]inf$/;
+ }
+ }
+ $self->bnorm();
+ }
+
+sub copy
+ {
+ # if two arguments, the first one is the class to "swallow" subclasses
+ my ($c,$x) = @_;
+
+ if (scalar @_ == 1)
+ {
+ $x = $_[0];
+ $c = ref($x);
+ }
+ return unless ref($x); # only for objects
+
+ my $self = bless {}, $c;
+
+ $self->{sign} = $x->{sign};
+ $self->{_d} = $MBI->_copy($x->{_d});
+ $self->{_n} = $MBI->_copy($x->{_n});
+ $self->{_a} = $x->{_a} if defined $x->{_a};
+ $self->{_p} = $x->{_p} if defined $x->{_p};
+ $self;
+ }
+
+##############################################################################
+
+sub config
+ {
+ # return (later set?) configuration data as hash ref
+ my $class = shift || 'Math::BigRat';
+
+ if (@_ == 1 && ref($_[0]) ne 'HASH')
+ {
+ my $cfg = $class->SUPER::config();
+ return $cfg->{$_[0]};
+ }
+
+ my $cfg = $class->SUPER::config(@_);
+
+ # now we need only to override the ones that are different from our parent
+ $cfg->{class} = $class;
+ $cfg->{with} = $MBI;
+ $cfg;
+ }
+
+##############################################################################
+
+sub bstr
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
+ {
+ my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
+ return $s;
+ }
+
+ my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # '+3/2' => '3/2'
+
+ return $s . $MBI->_str($x->{_n}) if $MBI->_is_one($x->{_d});
+ $s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
+ }
+
+sub bsstr
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
+ {
+ my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
+ return $s;
+ }
+
+ my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # +3 vs 3
+ $s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
+ }
+
+sub bnorm
+ {
+ # reduce the number to the shortest form
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ # Both parts must be objects of whatever we are using today.
+ if ( my $c = $MBI->_check($x->{_n}) )
+ {
+ require Carp; Carp::croak ("n did not pass the self-check ($c) in bnorm()");
+ }
+ if ( my $c = $MBI->_check($x->{_d}) )
+ {
+ require Carp; Carp::croak ("d did not pass the self-check ($c) in bnorm()");
+ }
+
+ # no normalize for NaN, inf etc.
+ return $x if $x->{sign} !~ /^[+-]$/;
+
+ # normalize zeros to 0/1
+ if ($MBI->_is_zero($x->{_n}))
+ {
+ $x->{sign} = '+'; # never leave a -0
+ $x->{_d} = $MBI->_one() unless $MBI->_is_one($x->{_d});
+ return $x;
+ }
+
+ return $x if $MBI->_is_one($x->{_d}); # no need to reduce
+
+ # reduce other numbers
+ my $gcd = $MBI->_copy($x->{_n});
+ $gcd = $MBI->_gcd($gcd,$x->{_d});
+
+ if (!$MBI->_is_one($gcd))
+ {
+ $x->{_n} = $MBI->_div($x->{_n},$gcd);
+ $x->{_d} = $MBI->_div($x->{_d},$gcd);
+ }
+ $x;
+ }
+
+##############################################################################
+# sign manipulation
+
+sub bneg
+ {
+ # (BRAT or num_str) return BRAT
+ # negate number or make a negated number from string
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x if $x->modify('bneg');
+
+ # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
+ $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_n}));
+ $x;
+ }
+
+##############################################################################
+# special values
+
+sub _bnan
+ {
+ # used by parent class bnan() to initialize number to NaN
+ my $self = shift;
+
+ if ($_trap_nan)
+ {
+ require Carp;
+ my $class = ref($self);
+ # "$self" below will stringify the object, this blows up if $self is a
+ # partial object (happens under trap_nan), so fix it beforehand
+ $self->{_d} = $MBI->_zero() unless defined $self->{_d};
+ $self->{_n} = $MBI->_zero() unless defined $self->{_n};
+ Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
+ }
+ $self->{_n} = $MBI->_zero();
+ $self->{_d} = $MBI->_zero();
+ }
+
+sub _binf
+ {
+ # used by parent class bone() to initialize number to +inf/-inf
+ my $self = shift;
+
+ if ($_trap_inf)
+ {
+ require Carp;
+ my $class = ref($self);
+ # "$self" below will stringify the object, this blows up if $self is a
+ # partial object (happens under trap_nan), so fix it beforehand
+ $self->{_d} = $MBI->_zero() unless defined $self->{_d};
+ $self->{_n} = $MBI->_zero() unless defined $self->{_n};
+ Carp::croak ("Tried to set $self to inf in $class\::_binf()");
+ }
+ $self->{_n} = $MBI->_zero();
+ $self->{_d} = $MBI->_zero();
+ }
+
+sub _bone
+ {
+ # used by parent class bone() to initialize number to +1/-1
+ my $self = shift;
+ $self->{_n} = $MBI->_one();
+ $self->{_d} = $MBI->_one();
+ }
+
+sub _bzero
+ {
+ # used by parent class bzero() to initialize number to 0
+ my $self = shift;
+ $self->{_n} = $MBI->_zero();
+ $self->{_d} = $MBI->_one();
+ }
+
+##############################################################################
+# mul/add/div etc
+
+sub badd
+ {
+ # add two rational numbers
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ # +inf + +inf => +inf, -inf + -inf => -inf
+ return $x->binf(substr($x->{sign},0,1))
+ if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
+
+ # +inf + -inf or -inf + +inf => NaN
+ return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+
+ # 1 1 gcd(3,4) = 1 1*3 + 1*4 7
+ # - + - = --------- = --
+ # 4 3 4*3 12
+
+ # we do not compute the gcd() here, but simple do:
+ # 5 7 5*3 + 7*4 43
+ # - + - = --------- = --
+ # 4 3 4*3 12
+
+ # and bnorm() will then take care of the rest
+
+ # 5 * 3
+ $x->{_n} = $MBI->_mul( $x->{_n}, $y->{_d});
+
+ # 7 * 4
+ my $m = $MBI->_mul( $MBI->_copy( $y->{_n} ), $x->{_d} );
+
+ # 5 * 3 + 7 * 4
+ ($x->{_n}, $x->{sign}) = _e_add( $x->{_n}, $m, $x->{sign}, $y->{sign});
+
+ # 4 * 3
+ $x->{_d} = $MBI->_mul( $x->{_d}, $y->{_d});
+
+ # normalize result, and possible round
+ $x->bnorm()->round(@r);
+ }
+
+sub bsub
+ {
+ # subtract two rational numbers
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ # flip sign of $x, call badd(), then flip sign of result
+ $x->{sign} =~ tr/+-/-+/
+ unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
+ $x->badd($y,@r); # does norm and round
+ $x->{sign} =~ tr/+-/-+/
+ unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
+ $x;
+ }
+
+sub bmul
+ {
+ # multiply two rational numbers
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x->bnan() if ($x->{sign} eq 'NaN' || $y->{sign} eq 'NaN');
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
+ # result will always be +-inf:
+ # +inf * +/+inf => +inf, -inf * -/-inf => +inf
+ # +inf * -/-inf => -inf, -inf * +/+inf => -inf
+ return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
+ return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
+ return $x->binf('-');
+ }
+
+ # x== 0 # also: or y == 1 or y == -1
+ return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
+
+ # XXX TODO:
+ # According to Knuth, this can be optimized by doing gcd twice (for d and n)
+ # and reducing in one step. This would save us the bnorm() at the end.
+
+ # 1 2 1 * 2 2 1
+ # - * - = ----- = - = -
+ # 4 3 4 * 3 12 6
+
+ $x->{_n} = $MBI->_mul( $x->{_n}, $y->{_n});
+ $x->{_d} = $MBI->_mul( $x->{_d}, $y->{_d});
+
+ # compute new sign
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
+
+ $x->bnorm()->round(@r);
+ }
+
+sub bdiv
+ {
+ # (dividend: BRAT or num_str, divisor: BRAT or num_str) return
+ # (BRAT,BRAT) (quo,rem) or BRAT (only rem)
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $self->_div_inf($x,$y)
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
+
+ # x== 0 # also: or y == 1 or y == -1
+ return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
+
+ # XXX TODO: list context, upgrade
+ # According to Knuth, this can be optimized by doing gcd twice (for d and n)
+ # and reducing in one step. This would save us the bnorm() at the end.
+
+ # 1 1 1 3
+ # - / - == - * -
+ # 4 3 4 1
+
+ $x->{_n} = $MBI->_mul( $x->{_n}, $y->{_d});
+ $x->{_d} = $MBI->_mul( $x->{_d}, $y->{_n});
+
+ # compute new sign
+ $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
+
+ $x->bnorm()->round(@r);
+ $x;
+ }
+
+sub bmod
+ {
+ # compute "remainder" (in Perl way) of $x / $y
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $self->_div_inf($x,$y)
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
+
+ return $x if $x->is_zero(); # 0 / 7 = 0, mod 0
+
+ # compute $x - $y * floor($x/$y), keeping the sign of $x
+
+ # copy x to u, make it positive and then do a normal division ($u/$y)
+ my $u = bless { sign => '+' }, $self;
+ $u->{_n} = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d} );
+ $u->{_d} = $MBI->_mul( $MBI->_copy($x->{_d}), $y->{_n} );
+
+ # compute floor(u)
+ if (! $MBI->_is_one($u->{_d}))
+ {
+ $u->{_n} = $MBI->_div($u->{_n},$u->{_d}); # 22/7 => 3/1 w/ truncate
+ # no need to set $u->{_d} to 1, since below we set it to $y->{_d} anyway
+ }
+
+ # now compute $y * $u
+ $u->{_d} = $MBI->_copy($y->{_d}); # 1 * $y->{_d}, see floor above
+ $u->{_n} = $MBI->_mul($u->{_n},$y->{_n});
+
+ my $xsign = $x->{sign}; $x->{sign} = '+'; # remember sign and make x positive
+ # compute $x - $u
+ $x->bsub($u);
+ $x->{sign} = $xsign; # put sign back
+
+ $x->bnorm()->round(@r);
+ }
+
+##############################################################################
+# bdec/binc
+
+sub bdec
+ {
+ # decrement value (subtract 1)
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
+
+ if ($x->{sign} eq '-')
+ {
+ $x->{_n} = $MBI->_add( $x->{_n}, $x->{_d}); # -5/2 => -7/2
+ }
+ else
+ {
+ if ($MBI->_acmp($x->{_n},$x->{_d}) < 0) # n < d?
+ {
+ # 1/3 -- => -2/3
+ $x->{_n} = $MBI->_sub( $MBI->_copy($x->{_d}), $x->{_n});
+ $x->{sign} = '-';
+ }
+ else
+ {
+ $x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # 5/2 => 3/2
+ }
+ }
+ $x->bnorm()->round(@r);
+ }
+
+sub binc
+ {
+ # increment value (add 1)
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
+
+ if ($x->{sign} eq '-')
+ {
+ if ($MBI->_acmp($x->{_n},$x->{_d}) < 0)
+ {
+ # -1/3 ++ => 2/3 (overflow at 0)
+ $x->{_n} = $MBI->_sub( $MBI->_copy($x->{_d}), $x->{_n});
+ $x->{sign} = '+';
+ }
+ else
+ {
+ $x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # -5/2 => -3/2
+ }
+ }
+ else
+ {
+ $x->{_n} = $MBI->_add($x->{_n},$x->{_d}); # 5/2 => 7/2
+ }
+ $x->bnorm()->round(@r);
+ }
+
+##############################################################################
+# is_foo methods (the rest is inherited)
+
+sub is_int
+ {
+ # return true if arg (BRAT or num_str) is an integer
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
+ $MBI->_is_one($x->{_d}); # x/y && y != 1 => no integer
+ 0;
+ }
+
+sub is_zero
+ {
+ # return true if arg (BRAT or num_str) is zero
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 1 if $x->{sign} eq '+' && $MBI->_is_zero($x->{_n});
+ 0;
+ }
+
+sub is_one
+ {
+ # return true if arg (BRAT or num_str) is +1 or -1 if signis given
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ my $sign = $_[2] || ''; $sign = '+' if $sign ne '-';
+ return 1
+ if ($x->{sign} eq $sign && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}));
+ 0;
+ }
+
+sub is_odd
+ {
+ # return true if arg (BFLOAT or num_str) is odd or false if even
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
+ ($MBI->_is_one($x->{_d}) && $MBI->_is_odd($x->{_n})); # x/2 is not, but 3/1
+ 0;
+ }
+
+sub is_even
+ {
+ # return true if arg (BINT or num_str) is even or false if odd
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
+ return 1 if ($MBI->_is_one($x->{_d}) # x/3 is never
+ && $MBI->_is_even($x->{_n})); # but 4/1 is
+ 0;
+ }
+
+##############################################################################
+# parts() and friends
+
+sub numerator
+ {
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ # NaN, inf, -inf
+ return Math::BigInt->new($x->{sign}) if ($x->{sign} !~ /^[+-]$/);
+
+ my $n = Math::BigInt->new($MBI->_str($x->{_n})); $n->{sign} = $x->{sign};
+ $n;
+ }
+
+sub denominator
+ {
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ # NaN
+ return Math::BigInt->new($x->{sign}) if $x->{sign} eq 'NaN';
+ # inf, -inf
+ return Math::BigInt->bone() if $x->{sign} !~ /^[+-]$/;
+
+ Math::BigInt->new($MBI->_str($x->{_d}));
+ }
+
+sub parts
+ {
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ my $c = 'Math::BigInt';
+
+ return ($c->bnan(),$c->bnan()) if $x->{sign} eq 'NaN';
+ return ($c->binf(),$c->binf()) if $x->{sign} eq '+inf';
+ return ($c->binf('-'),$c->binf()) if $x->{sign} eq '-inf';
+
+ my $n = $c->new( $MBI->_str($x->{_n}));
+ $n->{sign} = $x->{sign};
+ my $d = $c->new( $MBI->_str($x->{_d}));
+ ($n,$d);
+ }
+
+sub length
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $nan unless $x->is_int();
+ $MBI->_len($x->{_n}); # length(-123/1) => length(123)
+ }
+
+sub digit
+ {
+ my ($self,$x,$n) = ref($_[0]) ? (undef,$_[0],$_[1]) : objectify(1,@_);
+
+ return $nan unless $x->is_int();
+ $MBI->_digit($x->{_n},$n || 0); # digit(-123/1,2) => digit(123,2)
+ }
+
+##############################################################################
+# special calc routines
+
+sub bceil
+ {
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
+ $MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
+
+ $x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
+ $x->{_d} = $MBI->_one(); # d => 1
+ $x->{_n} = $MBI->_inc($x->{_n})
+ if $x->{sign} eq '+'; # +22/7 => 4/1
+ $x->{sign} = '+' if $MBI->_is_zero($x->{_n}); # -0 => 0
+ $x;
+ }
+
+sub bfloor
+ {
+ my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+
+ return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
+ $MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
+
+ $x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
+ $x->{_d} = $MBI->_one(); # d => 1
+ $x->{_n} = $MBI->_inc($x->{_n})
+ if $x->{sign} eq '-'; # -22/7 => -4/1
+ $x;
+ }
+
+sub bfac
+ {
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ # if $x is not an integer
+ if (($x->{sign} ne '+') || (!$MBI->_is_one($x->{_d})))
+ {
+ return $x->bnan();
+ }
+
+ $x->{_n} = $MBI->_fac($x->{_n});
+ # since _d is 1, we don't need to reduce/norm the result
+ $x->round(@r);
+ }
+
+sub bpow
+ {
+ # power ($x ** $y)
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->{sign} =~ /^[+-]inf$/; # -inf/+inf ** x
+ return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
+ return $x->bone(@r) if $y->is_zero();
+ return $x->round(@r) if $x->is_one() || $y->is_one();
+
+ if ($x->{sign} eq '-' && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}))
+ {
+ # if $x == -1 and odd/even y => +1/-1
+ return $y->is_odd() ? $x->round(@r) : $x->babs()->round(@r);
+ # my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
+ }
+ # 1 ** -y => 1 / (1 ** |y|)
+ # so do test for negative $y after above's clause
+
+ return $x->round(@r) if $x->is_zero(); # 0**y => 0 (if not y <= 0)
+
+ # shortcut if y == 1/N (is then sqrt() respective broot())
+ if ($MBI->_is_one($y->{_n}))
+ {
+ return $x->bsqrt(@r) if $MBI->_is_two($y->{_d}); # 1/2 => sqrt
+ return $x->broot($MBI->_str($y->{_d}),@r); # 1/N => root(N)
+ }
+
+ # shortcut y/1 (and/or x/1)
+ if ($MBI->_is_one($y->{_d}))
+ {
+ # shortcut for x/1 and y/1
+ if ($MBI->_is_one($x->{_d}))
+ {
+ $x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # x/1 ** y/1 => (x ** y)/1
+ if ($y->{sign} eq '-')
+ {
+ # 0.2 ** -3 => 1/(0.2 ** 3)
+ ($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
+ }
+ # correct sign; + ** + => +
+ if ($x->{sign} eq '-')
+ {
+ # - * - => +, - * - * - => -
+ $x->{sign} = '+' if $MBI->_is_even($y->{_n});
+ }
+ return $x->round(@r);
+ }
+ # x/z ** y/1
+ $x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # 5/2 ** y/1 => 5 ** y / 2 ** y
+ $x->{_d} = $MBI->_pow($x->{_d},$y->{_n});
+ if ($y->{sign} eq '-')
+ {
+ # 0.2 ** -3 => 1/(0.2 ** 3)
+ ($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
+ }
+ # correct sign; + ** + => +
+ if ($x->{sign} eq '-')
+ {
+ # - * - => +, - * - * - => -
+ $x->{sign} = '+' if $MBI->_is_even($y->{_n});
+ }
+ return $x->round(@r);
+ }
+
+# print STDERR "# $x $y\n";
+
+ # otherwise:
+
+ # n/d n ______________
+ # a/b = -\/ (a/b) ** d
+
+ # (a/b) ** n == (a ** n) / (b ** n)
+ $MBI->_pow($x->{_n}, $y->{_n} );
+ $MBI->_pow($x->{_d}, $y->{_n} );
+
+ return $x->broot($MBI->_str($y->{_d}),@r); # n/d => root(n)
+ }
+
+sub blog
+ {
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,$class,@_);
+ }
+
+ # blog(1,Y) => 0
+ return $x->bzero() if $x->is_one() && $y->{sign} eq '+';
+
+ # $x <= 0 => NaN
+ return $x->bnan() if $x->is_zero() || $x->{sign} ne '+' || $y->{sign} ne '+';
+
+ if ($x->is_int() && $y->is_int())
+ {
+ return $self->new($x->as_number()->blog($y->as_number(),@r));
+ }
+
+ # do it with floats
+ $x->_new_from_float( $x->_as_float()->blog(Math::BigFloat->new("$y"),@r) );
+ }
+
+sub bexp
+ {
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,$class,@_);
+ }
+
+ return $x->binf(@r) if $x->{sign} eq '+inf';
+ return $x->bzero(@r) if $x->{sign} eq '-inf';
+
+ # we need to limit the accuracy to protect against overflow
+ my $fallback = 0;
+ my ($scale,@params);
+ ($x,@params) = $x->_find_round_parameters(@r);
+
+ # also takes care of the "error in _find_round_parameters?" case
+ return $x if $x->{sign} eq 'NaN';
+
+ # no rounding at all, so must use fallback
+ if (scalar @params == 0)
+ {
+ # simulate old behaviour
+ $params[0] = $self->div_scale(); # and round to it as accuracy
+ $params[1] = undef; # P = undef
+ $scale = $params[0]+4; # at least four more for proper round
+ $params[2] = $r[2]; # round mode by caller or undef
+ $fallback = 1; # to clear a/p afterwards
+ }
+ else
+ {
+ # the 4 below is empirical, and there might be cases where it's not enough...
+ $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
+ }
+
+ return $x->bone(@params) if $x->is_zero();
+
+ # See the comments in Math::BigFloat on how this algorithm works.
+ # Basically we calculate A and B (where B is faculty(N)) so that A/B = e
+
+ my $x_org = $x->copy();
+ if ($scale <= 75)
+ {
+ # set $x directly from a cached string form
+ $x->{_n} = $MBI->_new("90933395208605785401971970164779391644753259799242");
+ $x->{_d} = $MBI->_new("33452526613163807108170062053440751665152000000000");
+ $x->{sign} = '+';
+ }
+ else
+ {
+ # compute A and B so that e = A / B.
+
+ # After some terms we end up with this, so we use it as a starting point:
+ my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
+ my $F = $MBI->_new(42); my $step = 42;
+
+ # Compute how many steps we need to take to get $A and $B sufficiently big
+ my $steps = Math::BigFloat::_len_to_steps($scale - 4);
+# print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
+ while ($step++ <= $steps)
+ {
+ # calculate $a * $f + 1
+ $A = $MBI->_mul($A, $F);
+ $A = $MBI->_inc($A);
+ # increment f
+ $F = $MBI->_inc($F);
+ }
+ # compute $B as factorial of $steps (this is faster than doing it manually)
+ my $B = $MBI->_fac($MBI->_new($steps));
+
+# print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
+
+ $x->{_n} = $A;
+ $x->{_d} = $B;
+ $x->{sign} = '+';
+ }
+
+ # $x contains now an estimate of e, with some surplus digits, so we can round
+ if (!$x_org->is_one())
+ {
+ # raise $x to the wanted power and round it in one step:
+ $x->bpow($x_org, @params);
+ }
+ else
+ {
+ # else just round the already computed result
+ delete $x->{_a}; delete $x->{_p};
+ # shortcut to not run through _find_round_parameters again
+ if (defined $params[0])
+ {
+ $x->bround($params[0],$params[2]); # then round accordingly
+ }
+ else
+ {
+ $x->bfround($params[1],$params[2]); # then round accordingly
+ }
+ }
+ if ($fallback)
+ {
+ # clear a/p after round, since user did not request it
+ delete $x->{_a}; delete $x->{_p};
+ }
+
+ $x;
+ }
+
+sub bnok
+ {
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,$class,@_);
+ }
+
+ # do it with floats
+ $x->_new_from_float( $x->_as_float()->bnok(Math::BigFloat->new("$y"),@r) );
+ }
+
+sub _float_from_part
+ {
+ my $x = shift;
+
+ my $f = Math::BigFloat->bzero();
+ $f->{_m} = $MBI->_copy($x);
+ $f->{_e} = $MBI->_zero();
+
+ $f;
+ }
+
+sub _as_float
+ {
+ my $x = shift;
+
+ local $Math::BigFloat::upgrade = undef;
+ local $Math::BigFloat::accuracy = undef;
+ local $Math::BigFloat::precision = undef;
+ # 22/7 => 3.142857143..
+
+ my $a = $x->accuracy() || 0;
+ if ($a != 0 || !$MBI->_is_one($x->{_d}))
+ {
+ # n/d
+ return scalar Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}))->bdiv( $MBI->_str($x->{_d}), $x->accuracy());
+ }
+ # just n
+ Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}));
+ }
+
+sub broot
+ {
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ if ($x->is_int() && $y->is_int())
+ {
+ return $self->new($x->as_number()->broot($y->as_number(),@r));
+ }
+
+ # do it with floats
+ $x->_new_from_float( $x->_as_float()->broot($y->_as_float(),@r) )->bnorm()->bround(@r);
+ }
+
+sub bmodpow
+ {
+ # set up parameters
+ my ($self,$x,$y,$m,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,$m,@r) = objectify(3,@_);
+ }
+
+ # $x or $y or $m are NaN or +-inf => NaN
+ return $x->bnan()
+ if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/ ||
+ $m->{sign} !~ /^[+-]$/;
+
+ if ($x->is_int() && $y->is_int() && $m->is_int())
+ {
+ return $self->new($x->as_number()->bmodpow($y->as_number(),$m,@r));
+ }
+
+ warn ("bmodpow() not fully implemented");
+ $x->bnan();
+ }
+
+sub bmodinv
+ {
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ # $x or $y are NaN or +-inf => NaN
+ return $x->bnan()
+ if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/;
+
+ if ($x->is_int() && $y->is_int())
+ {
+ return $self->new($x->as_number()->bmodinv($y->as_number(),@r));
+ }
+
+ warn ("bmodinv() not fully implemented");
+ $x->bnan();
+ }
+
+sub bsqrt
+ {
+ my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+
+ return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
+ return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
+ return $x->round(@r) if $x->is_zero() || $x->is_one();
+
+ local $Math::BigFloat::upgrade = undef;
+ local $Math::BigFloat::downgrade = undef;
+ local $Math::BigFloat::precision = undef;
+ local $Math::BigFloat::accuracy = undef;
+ local $Math::BigInt::upgrade = undef;
+ local $Math::BigInt::precision = undef;
+ local $Math::BigInt::accuracy = undef;
+
+ $x->{_n} = _float_from_part( $x->{_n} )->bsqrt();
+ $x->{_d} = _float_from_part( $x->{_d} )->bsqrt();
+
+ # XXX TODO: we probably can optimze this:
+
+ # if sqrt(D) was not integer
+ if ($x->{_d}->{_es} ne '+')
+ {
+ $x->{_n}->blsft($x->{_d}->exponent()->babs(),10); # 7.1/4.51 => 7.1/45.1
+ $x->{_d} = $MBI->_copy( $x->{_d}->{_m} ); # 7.1/45.1 => 71/45.1
+ }
+ # if sqrt(N) was not integer
+ if ($x->{_n}->{_es} ne '+')
+ {
+ $x->{_d}->blsft($x->{_n}->exponent()->babs(),10); # 71/45.1 => 710/45.1
+ $x->{_n} = $MBI->_copy( $x->{_n}->{_m} ); # 710/45.1 => 710/451
+ }
+
+ # convert parts to $MBI again
+ $x->{_n} = $MBI->_lsft( $MBI->_copy( $x->{_n}->{_m} ), $x->{_n}->{_e}, 10)
+ if ref($x->{_n}) ne $MBI && ref($x->{_n}) ne 'ARRAY';
+ $x->{_d} = $MBI->_lsft( $MBI->_copy( $x->{_d}->{_m} ), $x->{_d}->{_e}, 10)
+ if ref($x->{_d}) ne $MBI && ref($x->{_d}) ne 'ARRAY';
+
+ $x->bnorm()->round(@r);
+ }
+
+sub blsft
+ {
+ my ($self,$x,$y,$b,@r) = objectify(3,@_);
+
+ $b = 2 unless defined $b;
+ $b = $self->new($b) unless ref ($b);
+ $x->bmul( $b->copy()->bpow($y), @r);
+ $x;
+ }
+
+sub brsft
+ {
+ my ($self,$x,$y,$b,@r) = objectify(3,@_);
+
+ $b = 2 unless defined $b;
+ $b = $self->new($b) unless ref ($b);
+ $x->bdiv( $b->copy()->bpow($y), @r);
+ $x;
+ }
+
+##############################################################################
+# round
+
+sub round
+ {
+ $_[0];
+ }
+
+sub bround
+ {
+ $_[0];
+ }
+
+sub bfround
+ {
+ $_[0];
+ }
+
+##############################################################################
+# comparing
+
+sub bcmp
+ {
+ # compare two signed numbers
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,@_);
+ }
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
+ return +1 if $x->{sign} eq '+inf';
+ return -1 if $x->{sign} eq '-inf';
+ return -1 if $y->{sign} eq '+inf';
+ return +1;
+ }
+ # check sign for speed first
+ return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
+ return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
+
+ # shortcut
+ my $xz = $MBI->_is_zero($x->{_n});
+ my $yz = $MBI->_is_zero($y->{_n});
+ return 0 if $xz && $yz; # 0 <=> 0
+ return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
+ return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
+
+ my $t = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d});
+ my $u = $MBI->_mul( $MBI->_copy($y->{_n}), $x->{_d});
+
+ my $cmp = $MBI->_acmp($t,$u); # signs are equal
+ $cmp = -$cmp if $x->{sign} eq '-'; # both are '-' => reverse
+ $cmp;
+ }
+
+sub bacmp
+ {
+ # compare two numbers (as unsigned)
+
+ # set up parameters
+ my ($self,$x,$y) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y) = objectify(2,$class,@_);
+ }
+
+ if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
+ {
+ # handle +-inf and NaN
+ return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
+ return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
+ return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
+ return -1;
+ }
+
+ my $t = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d});
+ my $u = $MBI->_mul( $MBI->_copy($y->{_n}), $x->{_d});
+ $MBI->_acmp($t,$u); # ignore signs
+ }
+
+##############################################################################
+# output conversation
+
+sub numify
+ {
+ # convert 17/8 => float (aka 2.125)
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, NaN, etc
+
+ # N/1 => N
+ my $neg = ''; $neg = '-' if $x->{sign} eq '-';
+ return $neg . $MBI->_num($x->{_n}) if $MBI->_is_one($x->{_d});
+
+ $x->_as_float()->numify() + 0.0;
+ }
+
+sub as_number
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ # NaN, inf etc
+ return Math::BigInt->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
+
+ my $u = Math::BigInt->bzero();
+ $u->{sign} = $x->{sign};
+ $u->{value} = $MBI->_div( $MBI->_copy($x->{_n}), $x->{_d}); # 22/7 => 3
+ $u;
+ }
+
+sub as_float
+ {
+ # return N/D as Math::BigFloat
+
+ # set up parameters
+ my ($self,$x,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ ($self,$x,@r) = objectify(1,$class,@_) unless ref $_[0];
+
+ # NaN, inf etc
+ return Math::BigFloat->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
+
+ my $u = Math::BigFloat->bzero();
+ $u->{sign} = $x->{sign};
+ # n
+ $u->{_m} = $MBI->_copy($x->{_n});
+ $u->{_e} = $MBI->_zero();
+ $u->bdiv( $MBI->_str($x->{_d}), @r);
+ # return $u
+ $u;
+ }
+
+sub as_bin
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x unless $x->is_int();
+
+ my $s = $x->{sign}; $s = '' if $s eq '+';
+ $s . $MBI->_as_bin($x->{_n});
+ }
+
+sub as_hex
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x unless $x->is_int();
+
+ my $s = $x->{sign}; $s = '' if $s eq '+';
+ $s . $MBI->_as_hex($x->{_n});
+ }
+
+sub as_oct
+ {
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ return $x unless $x->is_int();
+
+ my $s = $x->{sign}; $s = '' if $s eq '+';
+ $s . $MBI->_as_oct($x->{_n});
+ }
+
+##############################################################################
+
+sub from_hex
+ {
+ my $class = shift;
+
+ $class->new(@_);
+ }
+
+sub from_bin
+ {
+ my $class = shift;
+
+ $class->new(@_);
+ }
+
+sub from_oct
+ {
+ my $class = shift;
+
+ my @parts;
+ for my $c (@_)
+ {
+ push @parts, Math::BigInt->from_oct($c);
+ }
+ $class->new ( @parts );
+ }
+
+##############################################################################
+# import
+
+sub import
+ {
+ my $self = shift;
+ my $l = scalar @_;
+ my $lib = ''; my @a;
+ my $try = 'try';
+
+ for ( my $i = 0; $i < $l ; $i++)
+ {
+ if ( $_[$i] eq ':constant' )
+ {
+ # this rest causes overlord er load to step in
+ overload::constant float => sub { $self->new(shift); };
+ }
+# elsif ($_[$i] eq 'upgrade')
+# {
+# # this causes upgrading
+# $upgrade = $_[$i+1]; # or undef to disable
+# $i++;
+# }
+ elsif ($_[$i] eq 'downgrade')
+ {
+ # this causes downgrading
+ $downgrade = $_[$i+1]; # or undef to disable
+ $i++;
+ }
+ elsif ($_[$i] =~ /^(lib|try|only)\z/)
+ {
+ $lib = $_[$i+1] || ''; # default Calc
+ $try = $1; # lib, try or only
+ $i++;
+ }
+ elsif ($_[$i] eq 'with')
+ {
+ # this argument is no longer used
+ #$MBI = $_[$i+1] || 'Math::BigInt::Calc'; # default Math::BigInt::Calc
+ $i++;
+ }
+ else
+ {
+ push @a, $_[$i];
+ }
+ }
+ require Math::BigInt;
+
+ # let use Math::BigInt lib => 'GMP'; use Math::BigRat; still have GMP
+ if ($lib ne '')
+ {
+ my @c = split /\s*,\s*/, $lib;
+ foreach (@c)
+ {
+ $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
+ }
+ $lib = join(",", @c);
+ }
+ my @import = ('objectify');
+ push @import, $try => $lib if $lib ne '';
+
+ # MBI already loaded, so feed it our lib arguments
+ Math::BigInt->import( @import );
+
+ $MBI = Math::BigFloat->config()->{lib};
+
+ # register us with MBI to get notified of future lib changes
+ Math::BigInt::_register_callback( $self, sub { $MBI = $_[0]; } );
+
+ # any non :constant stuff is handled by our parent, Exporter (loaded
+ # by Math::BigFloat, even if @_ is empty, to give it a chance
+ $self->SUPER::import(@a); # for subclasses
+ $self->export_to_level(1,$self,@a); # need this, too
+ }
+
+1;
+
+__END__
+
+=head1 NAME
+
+Math::BigRat - Arbitrary big rational numbers
+
+=head1 SYNOPSIS
+
+ use Math::BigRat;
+
+ my $x = Math::BigRat->new('3/7'); $x += '5/9';
+
+ print $x->bstr(),"\n";
+ print $x ** 2,"\n";
+
+ my $y = Math::BigRat->new('inf');
+ print "$y ", ($y->is_inf ? 'is' : 'is not') , " infinity\n";
+
+ my $z = Math::BigRat->new(144); $z->bsqrt();
+
+=head1 DESCRIPTION
+
+Math::BigRat complements Math::BigInt and Math::BigFloat by providing support
+for arbitrary big rational numbers.
+
+=head2 MATH LIBRARY
+
+You can change the underlying module that does the low-level
+math operations by using:
+
+ use Math::BigRat try => 'GMP';
+
+Note: This needs Math::BigInt::GMP installed.
+
+The following would first try to find Math::BigInt::Foo, then
+Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
+
+ use Math::BigRat try => 'Foo,Math::BigInt::Bar';
+
+If you want to get warned when the fallback occurs, replace "try" with
+"lib":
+
+ use Math::BigRat lib => 'Foo,Math::BigInt::Bar';
+
+If you want the code to die instead, replace "try" with
+"only":
+
+ use Math::BigRat only => 'Foo,Math::BigInt::Bar';
+
+=head1 METHODS
+
+Any methods not listed here are derived from Math::BigFloat (or
+Math::BigInt), so make sure you check these two modules for further
+information.
+
+=head2 new()
+
+ $x = Math::BigRat->new('1/3');
+
+Create a new Math::BigRat object. Input can come in various forms:
+
+ $x = Math::BigRat->new(123); # scalars
+ $x = Math::BigRat->new('inf'); # infinity
+ $x = Math::BigRat->new('123.3'); # float
+ $x = Math::BigRat->new('1/3'); # simple string
+ $x = Math::BigRat->new('1 / 3'); # spaced
+ $x = Math::BigRat->new('1 / 0.1'); # w/ floats
+ $x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
+ $x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
+ $x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
+
+ # You can also give D and N as different objects:
+ $x = Math::BigRat->new(
+ Math::BigInt->new(-123),
+ Math::BigInt->new(7),
+ ); # => -123/7
+
+=head2 numerator()
+
+ $n = $x->numerator();
+
+Returns a copy of the numerator (the part above the line) as signed BigInt.
+
+=head2 denominator()
+
+ $d = $x->denominator();
+
+Returns a copy of the denominator (the part under the line) as positive BigInt.
+
+=head2 parts()
+
+ ($n,$d) = $x->parts();
+
+Return a list consisting of (signed) numerator and (unsigned) denominator as
+BigInts.
+
+=head2 numify()
+
+ my $y = $x->numify();
+
+Returns the object as a scalar. This will lose some data if the object
+cannot be represented by a normal Perl scalar (integer or float), so
+use L<as_int()> or L<as_float()> instead.
+
+This routine is automatically used whenever a scalar is required:
+
+ my $x = Math::BigRat->new('3/1');
+ @array = (0,1,2,3);
+ $y = $array[$x]; # set $y to 3
+
+=head2 as_int()/as_number()
+
+ $x = Math::BigRat->new('13/7');
+ print $x->as_int(),"\n"; # '1'
+
+Returns a copy of the object as BigInt, truncated to an integer.
+
+C<as_number()> is an alias for C<as_int()>.
+
+=head2 as_float()
+
+ $x = Math::BigRat->new('13/7');
+ print $x->as_float(),"\n"; # '1'
+
+ $x = Math::BigRat->new('2/3');
+ print $x->as_float(5),"\n"; # '0.66667'
+
+Returns a copy of the object as BigFloat, preserving the
+accuracy as wanted, or the default of 40 digits.
+
+This method was added in v0.22 of Math::BigRat (April 2008).
+
+=head2 as_hex()
+
+ $x = Math::BigRat->new('13');
+ print $x->as_hex(),"\n"; # '0xd'
+
+Returns the BigRat as hexadecimal string. Works only for integers.
+
+=head2 as_bin()
+
+ $x = Math::BigRat->new('13');
+ print $x->as_bin(),"\n"; # '0x1101'
+
+Returns the BigRat as binary string. Works only for integers.
+
+=head2 as_oct()
+
+ $x = Math::BigRat->new('13');
+ print $x->as_oct(),"\n"; # '015'
+
+Returns the BigRat as octal string. Works only for integers.
+
+=head2 from_hex()/from_bin()/from_oct()
+
+ my $h = Math::BigRat->from_hex('0x10');
+ my $b = Math::BigRat->from_bin('0b10000000');
+ my $o = Math::BigRat->from_oct('020');
+
+Create a BigRat from an hexadecimal, binary or octal number
+in string form.
+
+=head2 length()
+
+ $len = $x->length();
+
+Return the length of $x in digitis for integer values.
+
+=head2 digit()
+
+ print Math::BigRat->new('123/1')->digit(1); # 1
+ print Math::BigRat->new('123/1')->digit(-1); # 3
+
+Return the N'ths digit from X when X is an integer value.
+
+=head2 bnorm()
+
+ $x->bnorm();
+
+Reduce the number to the shortest form. This routine is called
+automatically whenever it is needed.
+
+=head2 bfac()
+
+ $x->bfac();
+
+Calculates the factorial of $x. For instance:
+
+ print Math::BigRat->new('3/1')->bfac(),"\n"; # 1*2*3
+ print Math::BigRat->new('5/1')->bfac(),"\n"; # 1*2*3*4*5
+
+Works currently only for integers.
+
+=head2 bround()/round()/bfround()
+
+Are not yet implemented.
+
+=head2 bmod()
+
+ use Math::BigRat;
+ my $x = Math::BigRat->new('7/4');
+ my $y = Math::BigRat->new('4/3');
+ print $x->bmod($y);
+
+Set $x to the remainder of the division of $x by $y.
+
+=head2 bneg()
+
+ $x->bneg();
+
+Used to negate the object in-place.
+
+=head2 is_one()
+
+ print "$x is 1\n" if $x->is_one();
+
+Return true if $x is exactly one, otherwise false.
+
+=head2 is_zero()
+
+ print "$x is 0\n" if $x->is_zero();
+
+Return true if $x is exactly zero, otherwise false.
+
+=head2 is_pos()/is_positive()
+
+ print "$x is >= 0\n" if $x->is_positive();
+
+Return true if $x is positive (greater than or equal to zero), otherwise
+false. Please note that '+inf' is also positive, while 'NaN' and '-inf' aren't.
+
+C<is_positive()> is an alias for C<is_pos()>.
+
+=head2 is_neg()/is_negative()
+
+ print "$x is < 0\n" if $x->is_negative();
+
+Return true if $x is negative (smaller than zero), otherwise false. Please
+note that '-inf' is also negative, while 'NaN' and '+inf' aren't.
+
+C<is_negative()> is an alias for C<is_neg()>.
+
+=head2 is_int()
+
+ print "$x is an integer\n" if $x->is_int();
+
+Return true if $x has a denominator of 1 (e.g. no fraction parts), otherwise
+false. Please note that '-inf', 'inf' and 'NaN' aren't integer.
+
+=head2 is_odd()
+
+ print "$x is odd\n" if $x->is_odd();
+
+Return true if $x is odd, otherwise false.
+
+=head2 is_even()
+
+ print "$x is even\n" if $x->is_even();
+
+Return true if $x is even, otherwise false.
+
+=head2 bceil()
+
+ $x->bceil();
+
+Set $x to the next bigger integer value (e.g. truncate the number to integer
+and then increment it by one).
+
+=head2 bfloor()
+
+ $x->bfloor();
+
+Truncate $x to an integer value.
+
+=head2 bsqrt()
+
+ $x->bsqrt();
+
+Calculate the square root of $x.
+
+=head2 broot()
+
+ $x->broot($n);
+
+Calculate the N'th root of $x.
+
+=head2 badd()/bmul()/bsub()/bdiv()/bdec()/binc()
+
+Please see the documentation in L<Math::BigInt>.
+
+=head2 copy()
+
+ my $z = $x->copy();
+
+Makes a deep copy of the object.
+
+Please see the documentation in L<Math::BigInt> for further details.
+
+=head2 bstr()/bsstr()
+
+ my $x = Math::BigInt->new('8/4');
+ print $x->bstr(),"\n"; # prints 1/2
+ print $x->bsstr(),"\n"; # prints 1/2
+
+Return a string representating this object.
+
+=head2 bacmp()/bcmp()
+
+Used to compare numbers.
+
+Please see the documentation in L<Math::BigInt> for further details.
+
+=head2 blsft()/brsft()
+
+Used to shift numbers left/right.
+
+Please see the documentation in L<Math::BigInt> for further details.
+
+=head2 bpow()
+
+ $x->bpow($y);
+
+Compute $x ** $y.
+
+Please see the documentation in L<Math::BigInt> for further details.
+
+=head2 bexp()
+
+ $x->bexp($accuracy); # calculate e ** X
+
+Calculates two integers A and B so that A/B is equal to C<e ** $x>, where C<e> is
+Euler's number.
+
+This method was added in v0.20 of Math::BigRat (May 2007).
+
+See also L<blog()>.
+
+=head2 bnok()
+
+ $x->bnok($y); # x over y (binomial coefficient n over k)
+
+Calculates the binomial coefficient n over k, also called the "choose"
+function. The result is equivalent to:
+
+ ( n ) n!
+ | - | = -------
+ ( k ) k!(n-k)!
+
+This method was added in v0.20 of Math::BigRat (May 2007).
+
+=head2 config()
+
+ use Data::Dumper;
+
+ print Dumper ( Math::BigRat->config() );
+ print Math::BigRat->config()->{lib},"\n";
+
+Returns a hash containing the configuration, e.g. the version number, lib
+loaded etc. The following hash keys are currently filled in with the
+appropriate information.
+
+ key RO/RW Description
+ Example
+ ============================================================
+ lib RO Name of the Math library
+ Math::BigInt::Calc
+ lib_version RO Version of 'lib'
+ 0.30
+ class RO The class of config you just called
+ Math::BigRat
+ version RO version number of the class you used
+ 0.10
+ upgrade RW To which class numbers are upgraded
+ undef
+ downgrade RW To which class numbers are downgraded
+ undef
+ precision RW Global precision
+ undef
+ accuracy RW Global accuracy
+ undef
+ round_mode RW Global round mode
+ even
+ div_scale RW Fallback accuracy for div
+ 40
+ trap_nan RW Trap creation of NaN (undef = no)
+ undef
+ trap_inf RW Trap creation of +inf/-inf (undef = no)
+ undef
+
+By passing a reference to a hash you may set the configuration values. This
+works only for values that a marked with a C<RW> above, anything else is
+read-only.
+
+=head2 objectify()
+
+This is an internal routine that turns scalars into objects.
+
+=head1 BUGS
+
+Some things are not yet implemented, or only implemented half-way:
+
+=over 2
+
+=item inf handling (partial)
+
+=item NaN handling (partial)
+
+=item rounding (not implemented except for bceil/bfloor)
+
+=item $x ** $y where $y is not an integer
+
+=item bmod(), blog(), bmodinv() and bmodpow() (partial)
+
+=back
+
+=head1 LICENSE
+
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+
+=head1 SEE ALSO
+
+L<Math::BigFloat> and L<Math::Big> as well as L<Math::BigInt::BitVect>,
+L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
+
+See L<http://search.cpan.org/search?dist=bignum> for a way to use
+Math::BigRat.
+
+The package at L<http://search.cpan.org/search?dist=Math%3A%3ABigRat>
+may contain more documentation and examples as well as testcases.
+
+=head1 AUTHORS
+
+(C) by Tels L<http://bloodgate.com/> 2001 - 2009.
+
+Currently maintained by Jonathan "Duke" Leto <jonathan@leto.net> L<http://leto.net>
+
+=cut
diff --git a/Master/tlpkg/tlperl/lib/Math/Complex.pm b/Master/tlpkg/tlperl/lib/Math/Complex.pm
new file mode 100644
index 00000000000..8475a2b5d09
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/Complex.pm
@@ -0,0 +1,2093 @@
+#
+# Complex numbers and associated mathematical functions
+# -- Raphael Manfredi Since Sep 1996
+# -- Jarkko Hietaniemi Since Mar 1997
+# -- Daniel S. Lewart Since Sep 1997
+#
+
+package Math::Complex;
+
+use strict;
+
+use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf $ExpInf);
+
+$VERSION = 1.56;
+
+use Config;
+
+BEGIN {
+ my %DBL_MAX =
+ (
+ 4 => '1.70141183460469229e+38',
+ 8 => '1.7976931348623157e+308',
+ # AFAICT the 10, 12, and 16-byte long doubles
+ # all have the same maximum.
+ 10 => '1.1897314953572317650857593266280070162E+4932',
+ 12 => '1.1897314953572317650857593266280070162E+4932',
+ 16 => '1.1897314953572317650857593266280070162E+4932',
+ );
+ my $nvsize = $Config{nvsize} ||
+ ($Config{uselongdouble} && $Config{longdblsize}) ||
+ $Config{doublesize};
+ die "Math::Complex: Could not figure out nvsize\n"
+ unless defined $nvsize;
+ die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n"
+ unless defined $DBL_MAX{$nvsize};
+ my $DBL_MAX = eval $DBL_MAX{$nvsize};
+ die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n"
+ unless defined $DBL_MAX;
+ my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this.
+ if ($^O eq 'unicosmk') {
+ $Inf = $DBL_MAX;
+ } else {
+ local $SIG{FPE} = { };
+ local $!;
+ # We do want an arithmetic overflow, Inf INF inf Infinity.
+ for my $t (
+ 'exp(99999)', # Enough even with 128-bit long doubles.
+ 'inf',
+ 'Inf',
+ 'INF',
+ 'infinity',
+ 'Infinity',
+ 'INFINITY',
+ '1e99999',
+ ) {
+ local $^W = 0;
+ my $i = eval "$t+1.0";
+ if (defined $i && $i > $BIGGER_THAN_THIS) {
+ $Inf = $i;
+ last;
+ }
+ }
+ $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough.
+ die "Math::Complex: Could not get Infinity"
+ unless $Inf > $BIGGER_THAN_THIS;
+ $ExpInf = exp(99999);
+ }
+ # print "# On this machine, Inf = '$Inf'\n";
+}
+
+use Scalar::Util qw(set_prototype);
+
+use warnings;
+no warnings 'syntax'; # To avoid the (_) warnings.
+
+BEGIN {
+ # For certain functions that we override, in 5.10 or better
+ # we can set a smarter prototype that will handle the lexical $_
+ # (also a 5.10+ feature).
+ if ($] >= 5.010000) {
+ set_prototype \&abs, '_';
+ set_prototype \&cos, '_';
+ set_prototype \&exp, '_';
+ set_prototype \&log, '_';
+ set_prototype \&sin, '_';
+ set_prototype \&sqrt, '_';
+ }
+}
+
+my $i;
+my %LOGN;
+
+# Regular expression for floating point numbers.
+# These days we could use Scalar::Util::lln(), I guess.
+my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
+
+require Exporter;
+
+@ISA = qw(Exporter);
+
+my @trig = qw(
+ pi
+ tan
+ csc cosec sec cot cotan
+ asin acos atan
+ acsc acosec asec acot acotan
+ sinh cosh tanh
+ csch cosech sech coth cotanh
+ asinh acosh atanh
+ acsch acosech asech acoth acotanh
+ );
+
+@EXPORT = (qw(
+ i Re Im rho theta arg
+ sqrt log ln
+ log10 logn cbrt root
+ cplx cplxe
+ atan2
+ ),
+ @trig);
+
+my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
+
+@EXPORT_OK = @pi;
+
+%EXPORT_TAGS = (
+ 'trig' => [@trig],
+ 'pi' => [@pi],
+);
+
+use overload
+ '+' => \&_plus,
+ '-' => \&_minus,
+ '*' => \&_multiply,
+ '/' => \&_divide,
+ '**' => \&_power,
+ '==' => \&_numeq,
+ '<=>' => \&_spaceship,
+ 'neg' => \&_negate,
+ '~' => \&_conjugate,
+ 'abs' => \&abs,
+ 'sqrt' => \&sqrt,
+ 'exp' => \&exp,
+ 'log' => \&log,
+ 'sin' => \&sin,
+ 'cos' => \&cos,
+ 'tan' => \&tan,
+ 'atan2' => \&atan2,
+ '""' => \&_stringify;
+
+#
+# Package "privates"
+#
+
+my %DISPLAY_FORMAT = ('style' => 'cartesian',
+ 'polar_pretty_print' => 1);
+my $eps = 1e-14; # Epsilon
+
+#
+# Object attributes (internal):
+# cartesian [real, imaginary] -- cartesian form
+# polar [rho, theta] -- polar form
+# c_dirty cartesian form not up-to-date
+# p_dirty polar form not up-to-date
+# display display format (package's global when not set)
+#
+
+# Die on bad *make() arguments.
+
+sub _cannot_make {
+ die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
+}
+
+sub _make {
+ my $arg = shift;
+ my ($p, $q);
+
+ if ($arg =~ /^$gre$/) {
+ ($p, $q) = ($1, 0);
+ } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
+ ($p, $q) = ($1 || 0, $2);
+ } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
+ ($p, $q) = ($1, $2 || 0);
+ }
+
+ if (defined $p) {
+ $p =~ s/^\+//;
+ $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
+ $q =~ s/^\+//;
+ $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
+ }
+
+ return ($p, $q);
+}
+
+sub _emake {
+ my $arg = shift;
+ my ($p, $q);
+
+ if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
+ ($p, $q) = ($1, $2 || 0);
+ } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
+ ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
+ } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
+ ($p, $q) = ($1, 0);
+ } elsif ($arg =~ /^\s*$gre\s*$/) {
+ ($p, $q) = ($1, 0);
+ }
+
+ if (defined $p) {
+ $p =~ s/^\+//;
+ $q =~ s/^\+//;
+ $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
+ $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
+ }
+
+ return ($p, $q);
+}
+
+#
+# ->make
+#
+# Create a new complex number (cartesian form)
+#
+sub make {
+ my $self = bless {}, shift;
+ my ($re, $im);
+ if (@_ == 0) {
+ ($re, $im) = (0, 0);
+ } elsif (@_ == 1) {
+ return (ref $self)->emake($_[0])
+ if ($_[0] =~ /^\s*\[/);
+ ($re, $im) = _make($_[0]);
+ } elsif (@_ == 2) {
+ ($re, $im) = @_;
+ }
+ if (defined $re) {
+ _cannot_make("real part", $re) unless $re =~ /^$gre$/;
+ }
+ $im ||= 0;
+ _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
+ $self->_set_cartesian([$re, $im ]);
+ $self->display_format('cartesian');
+
+ return $self;
+}
+
+#
+# ->emake
+#
+# Create a new complex number (exponential form)
+#
+sub emake {
+ my $self = bless {}, shift;
+ my ($rho, $theta);
+ if (@_ == 0) {
+ ($rho, $theta) = (0, 0);
+ } elsif (@_ == 1) {
+ return (ref $self)->make($_[0])
+ if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
+ ($rho, $theta) = _emake($_[0]);
+ } elsif (@_ == 2) {
+ ($rho, $theta) = @_;
+ }
+ if (defined $rho && defined $theta) {
+ if ($rho < 0) {
+ $rho = -$rho;
+ $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
+ }
+ }
+ if (defined $rho) {
+ _cannot_make("rho", $rho) unless $rho =~ /^$gre$/;
+ }
+ $theta ||= 0;
+ _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
+ $self->_set_polar([$rho, $theta]);
+ $self->display_format('polar');
+
+ return $self;
+}
+
+sub new { &make } # For backward compatibility only.
+
+#
+# cplx
+#
+# Creates a complex number from a (re, im) tuple.
+# This avoids the burden of writing Math::Complex->make(re, im).
+#
+sub cplx {
+ return __PACKAGE__->make(@_);
+}
+
+#
+# cplxe
+#
+# Creates a complex number from a (rho, theta) tuple.
+# This avoids the burden of writing Math::Complex->emake(rho, theta).
+#
+sub cplxe {
+ return __PACKAGE__->emake(@_);
+}
+
+#
+# pi
+#
+# The number defined as pi = 180 degrees
+#
+sub pi () { 4 * CORE::atan2(1, 1) }
+
+#
+# pi2
+#
+# The full circle
+#
+sub pi2 () { 2 * pi }
+
+#
+# pi4
+#
+# The full circle twice.
+#
+sub pi4 () { 4 * pi }
+
+#
+# pip2
+#
+# The quarter circle
+#
+sub pip2 () { pi / 2 }
+
+#
+# pip4
+#
+# The eighth circle.
+#
+sub pip4 () { pi / 4 }
+
+#
+# _uplog10
+#
+# Used in log10().
+#
+sub _uplog10 () { 1 / CORE::log(10) }
+
+#
+# i
+#
+# The number defined as i*i = -1;
+#
+sub i () {
+ return $i if ($i);
+ $i = bless {};
+ $i->{'cartesian'} = [0, 1];
+ $i->{'polar'} = [1, pip2];
+ $i->{c_dirty} = 0;
+ $i->{p_dirty} = 0;
+ return $i;
+}
+
+#
+# _ip2
+#
+# Half of i.
+#
+sub _ip2 () { i / 2 }
+
+#
+# Attribute access/set routines
+#
+
+sub _cartesian {$_[0]->{c_dirty} ?
+ $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
+sub _polar {$_[0]->{p_dirty} ?
+ $_[0]->_update_polar : $_[0]->{'polar'}}
+
+sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
+ $_[0]->{'cartesian'} = $_[1] }
+sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
+ $_[0]->{'polar'} = $_[1] }
+
+#
+# ->_update_cartesian
+#
+# Recompute and return the cartesian form, given accurate polar form.
+#
+sub _update_cartesian {
+ my $self = shift;
+ my ($r, $t) = @{$self->{'polar'}};
+ $self->{c_dirty} = 0;
+ return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
+}
+
+#
+#
+# ->_update_polar
+#
+# Recompute and return the polar form, given accurate cartesian form.
+#
+sub _update_polar {
+ my $self = shift;
+ my ($x, $y) = @{$self->{'cartesian'}};
+ $self->{p_dirty} = 0;
+ return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
+ return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
+ CORE::atan2($y, $x)];
+}
+
+#
+# (_plus)
+#
+# Computes z1+z2.
+#
+sub _plus {
+ my ($z1, $z2, $regular) = @_;
+ my ($re1, $im1) = @{$z1->_cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ unless (defined $regular) {
+ $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
+ return $z1;
+ }
+ return (ref $z1)->make($re1 + $re2, $im1 + $im2);
+}
+
+#
+# (_minus)
+#
+# Computes z1-z2.
+#
+sub _minus {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = @{$z1->_cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = @{$z2->_cartesian};
+ unless (defined $inverted) {
+ $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
+ return $z1;
+ }
+ return $inverted ?
+ (ref $z1)->make($re2 - $re1, $im2 - $im1) :
+ (ref $z1)->make($re1 - $re2, $im1 - $im2);
+
+}
+
+#
+# (_multiply)
+#
+# Computes z1*z2.
+#
+sub _multiply {
+ my ($z1, $z2, $regular) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->_polar};
+ my ($r2, $t2) = @{$z2->_polar};
+ my $t = $t1 + $t2;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ unless (defined $regular) {
+ $z1->_set_polar([$r1 * $r2, $t]);
+ return $z1;
+ }
+ return (ref $z1)->emake($r1 * $r2, $t);
+ } else {
+ my ($x1, $y1) = @{$z1->_cartesian};
+ if (ref $z2) {
+ my ($x2, $y2) = @{$z2->_cartesian};
+ return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
+ } else {
+ return (ref $z1)->make($x1*$z2, $y1*$z2);
+ }
+ }
+}
+
+#
+# _divbyzero
+#
+# Die on division by zero.
+#
+sub _divbyzero {
+ my $mess = "$_[0]: Division by zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the divisor ";
+ $mess .= "$_[1] " unless ("$_[1]" eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (_divide)
+#
+# Computes z1/z2.
+#
+sub _divide {
+ my ($z1, $z2, $inverted) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->_polar};
+ my ($r2, $t2) = @{$z2->_polar};
+ my $t;
+ if ($inverted) {
+ _divbyzero "$z2/0" if ($r1 == 0);
+ $t = $t2 - $t1;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z1)->emake($r2 / $r1, $t);
+ } else {
+ _divbyzero "$z1/0" if ($r2 == 0);
+ $t = $t1 - $t2;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z1)->emake($r1 / $r2, $t);
+ }
+ } else {
+ my ($d, $x2, $y2);
+ if ($inverted) {
+ ($x2, $y2) = @{$z1->_cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z2/0" if $d == 0;
+ return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
+ } else {
+ my ($x1, $y1) = @{$z1->_cartesian};
+ if (ref $z2) {
+ ($x2, $y2) = @{$z2->_cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z1/0" if $d == 0;
+ my $u = ($x1*$x2 + $y1*$y2)/$d;
+ my $v = ($y1*$x2 - $x1*$y2)/$d;
+ return (ref $z1)->make($u, $v);
+ } else {
+ _divbyzero "$z1/0" if $z2 == 0;
+ return (ref $z1)->make($x1/$z2, $y1/$z2);
+ }
+ }
+ }
+}
+
+#
+# (_power)
+#
+# Computes z1**z2 = exp(z2 * log z1)).
+#
+sub _power {
+ my ($z1, $z2, $inverted) = @_;
+ if ($inverted) {
+ return 1 if $z1 == 0 || $z2 == 1;
+ return 0 if $z2 == 0 && Re($z1) > 0;
+ } else {
+ return 1 if $z2 == 0 || $z1 == 1;
+ return 0 if $z1 == 0 && Re($z2) > 0;
+ }
+ my $w = $inverted ? &exp($z1 * &log($z2))
+ : &exp($z2 * &log($z1));
+ # If both arguments cartesian, return cartesian, else polar.
+ return $z1->{c_dirty} == 0 &&
+ (not ref $z2 or $z2->{c_dirty} == 0) ?
+ cplx(@{$w->_cartesian}) : $w;
+}
+
+#
+# (_spaceship)
+#
+# Computes z1 <=> z2.
+# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
+#
+sub _spaceship {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ my $sgn = $inverted ? -1 : 1;
+ return $sgn * ($re1 <=> $re2) if $re1 != $re2;
+ return $sgn * ($im1 <=> $im2);
+}
+
+#
+# (_numeq)
+#
+# Computes z1 == z2.
+#
+# (Required in addition to _spaceship() because of NaNs.)
+sub _numeq {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
+}
+
+#
+# (_negate)
+#
+# Computes -z.
+#
+sub _negate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->_polar};
+ $t = ($t <= 0) ? $t + pi : $t - pi;
+ return (ref $z)->emake($r, $t);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ return (ref $z)->make(-$re, -$im);
+}
+
+#
+# (_conjugate)
+#
+# Compute complex's _conjugate.
+#
+sub _conjugate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->_polar};
+ return (ref $z)->emake($r, -$t);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ return (ref $z)->make($re, -$im);
+}
+
+#
+# (abs)
+#
+# Compute or set complex's norm (rho).
+#
+sub abs {
+ my ($z, $rho) = @_ ? @_ : $_;
+ unless (ref $z) {
+ if (@_ == 2) {
+ $_[0] = $_[1];
+ } else {
+ return CORE::abs($z);
+ }
+ }
+ if (defined $rho) {
+ $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ return $rho;
+ } else {
+ return ${$z->_polar}[0];
+ }
+}
+
+sub _theta {
+ my $theta = $_[0];
+
+ if ($$theta > pi()) { $$theta -= pi2 }
+ elsif ($$theta <= -pi()) { $$theta += pi2 }
+}
+
+#
+# arg
+#
+# Compute or set complex's argument (theta).
+#
+sub arg {
+ my ($z, $theta) = @_;
+ return $z unless ref $z;
+ if (defined $theta) {
+ _theta(\$theta);
+ $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ } else {
+ $theta = ${$z->_polar}[1];
+ _theta(\$theta);
+ }
+ return $theta;
+}
+
+#
+# (sqrt)
+#
+# Compute sqrt(z).
+#
+# It is quite tempting to use wantarray here so that in list context
+# sqrt() would return the two solutions. This, however, would
+# break things like
+#
+# print "sqrt(z) = ", sqrt($z), "\n";
+#
+# The two values would be printed side by side without no intervening
+# whitespace, quite confusing.
+# Therefore if you want the two solutions use the root().
+#
+sub sqrt {
+ my ($z) = @_ ? $_[0] : $_;
+ my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
+ return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
+ if $im == 0;
+ my ($r, $t) = @{$z->_polar};
+ return (ref $z)->emake(CORE::sqrt($r), $t/2);
+}
+
+#
+# cbrt
+#
+# Compute cbrt(z) (cubic root).
+#
+# Why are we not returning three values? The same answer as for sqrt().
+#
+sub cbrt {
+ my ($z) = @_;
+ return $z < 0 ?
+ -CORE::exp(CORE::log(-$z)/3) :
+ ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
+ unless ref $z;
+ my ($r, $t) = @{$z->_polar};
+ return 0 if $r == 0;
+ return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
+}
+
+#
+# _rootbad
+#
+# Die on bad root.
+#
+sub _rootbad {
+ my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# root
+#
+# Computes all nth root for z, returning an array whose size is n.
+# `n' must be a positive integer.
+#
+# The roots are given by (for k = 0..n-1):
+#
+# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
+#
+sub root {
+ my ($z, $n, $k) = @_;
+ _rootbad($n) if ($n < 1 or int($n) != $n);
+ my ($r, $t) = ref $z ?
+ @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
+ my $theta_inc = pi2 / $n;
+ my $rho = $r ** (1/$n);
+ my $cartesian = ref $z && $z->{c_dirty} == 0;
+ if (@_ == 2) {
+ my @root;
+ for (my $i = 0, my $theta = $t / $n;
+ $i < $n;
+ $i++, $theta += $theta_inc) {
+ my $w = cplxe($rho, $theta);
+ # Yes, $cartesian is loop invariant.
+ push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
+ }
+ return @root;
+ } elsif (@_ == 3) {
+ my $w = cplxe($rho, $t / $n + $k * $theta_inc);
+ return $cartesian ? cplx(@{$w->_cartesian}) : $w;
+ }
+}
+
+#
+# Re
+#
+# Return or set Re(z).
+#
+sub Re {
+ my ($z, $Re) = @_;
+ return $z unless ref $z;
+ if (defined $Re) {
+ $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->_cartesian}[0];
+ }
+}
+
+#
+# Im
+#
+# Return or set Im(z).
+#
+sub Im {
+ my ($z, $Im) = @_;
+ return 0 unless ref $z;
+ if (defined $Im) {
+ $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->_cartesian}[1];
+ }
+}
+
+#
+# rho
+#
+# Return or set rho(w).
+#
+sub rho {
+ Math::Complex::abs(@_);
+}
+
+#
+# theta
+#
+# Return or set theta(w).
+#
+sub theta {
+ Math::Complex::arg(@_);
+}
+
+#
+# (exp)
+#
+# Computes exp(z).
+#
+sub exp {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::exp($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return (ref $z)->emake(CORE::exp($x), $y);
+}
+
+#
+# _logofzero
+#
+# Die on logarithm of zero.
+#
+sub _logofzero {
+ my $mess = "$_[0]: Logarithm of zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the argument ";
+ $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (log)
+#
+# Compute log(z).
+#
+sub log {
+ my ($z) = @_ ? @_ : $_;
+ unless (ref $z) {
+ _logofzero("log") if $z == 0;
+ return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
+ }
+ my ($r, $t) = @{$z->_polar};
+ _logofzero("log") if $r == 0;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z)->make(CORE::log($r), $t);
+}
+
+#
+# ln
+#
+# Alias for log().
+#
+sub ln { Math::Complex::log(@_) }
+
+#
+# log10
+#
+# Compute log10(z).
+#
+
+sub log10 {
+ return Math::Complex::log($_[0]) * _uplog10;
+}
+
+#
+# logn
+#
+# Compute logn(z,n) = log(z) / log(n)
+#
+sub logn {
+ my ($z, $n) = @_;
+ $z = cplx($z, 0) unless ref $z;
+ my $logn = $LOGN{$n};
+ $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
+ return &log($z) / $logn;
+}
+
+#
+# (cos)
+#
+# Compute cos(z) = (exp(iz) + exp(-iz))/2.
+#
+sub cos {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::cos($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ my $ey = CORE::exp($y);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : Inf();
+ return (ref $z)->make($cx * ($ey + $ey_1)/2,
+ $sx * ($ey_1 - $ey)/2);
+}
+
+#
+# (sin)
+#
+# Compute sin(z) = (exp(iz) - exp(-iz))/2.
+#
+sub sin {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::sin($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ my $ey = CORE::exp($y);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : Inf();
+ return (ref $z)->make($sx * ($ey + $ey_1)/2,
+ $cx * ($ey - $ey_1)/2);
+}
+
+#
+# tan
+#
+# Compute tan(z) = sin(z) / cos(z).
+#
+sub tan {
+ my ($z) = @_;
+ my $cz = &cos($z);
+ _divbyzero "tan($z)", "cos($z)" if $cz == 0;
+ return &sin($z) / $cz;
+}
+
+#
+# sec
+#
+# Computes the secant sec(z) = 1 / cos(z).
+#
+sub sec {
+ my ($z) = @_;
+ my $cz = &cos($z);
+ _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csc
+#
+# Computes the cosecant csc(z) = 1 / sin(z).
+#
+sub csc {
+ my ($z) = @_;
+ my $sz = &sin($z);
+ _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosec
+#
+# Alias for csc().
+#
+sub cosec { Math::Complex::csc(@_) }
+
+#
+# cot
+#
+# Computes cot(z) = cos(z) / sin(z).
+#
+sub cot {
+ my ($z) = @_;
+ my $sz = &sin($z);
+ _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
+ return &cos($z) / $sz;
+}
+
+#
+# cotan
+#
+# Alias for cot().
+#
+sub cotan { Math::Complex::cot(@_) }
+
+#
+# acos
+#
+# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
+#
+sub acos {
+ my $z = $_[0];
+ return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
+ if (! ref $z) && CORE::abs($z) <= 1;
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return 0 if $x == 1 && $y == 0;
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
+ my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return (ref $z)->make($u, $v);
+}
+
+#
+# asin
+#
+# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
+#
+sub asin {
+ my $z = $_[0];
+ return CORE::atan2($z, CORE::sqrt(1-$z*$z))
+ if (! ref $z) && CORE::abs($z) <= 1;
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return 0 if $x == 0 && $y == 0;
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
+ my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return (ref $z)->make($u, $v);
+}
+
+#
+# atan
+#
+# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
+#
+sub atan {
+ my ($z) = @_;
+ return CORE::atan2($z, 1) unless ref $z;
+ my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
+ return 0 if $x == 0 && $y == 0;
+ _divbyzero "atan(i)" if ( $z == i);
+ _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
+ my $log = &log((i + $z) / (i - $z));
+ return _ip2 * $log;
+}
+
+#
+# asec
+#
+# Computes the arc secant asec(z) = acos(1 / z).
+#
+sub asec {
+ my ($z) = @_;
+ _divbyzero "asec($z)", $z if ($z == 0);
+ return acos(1 / $z);
+}
+
+#
+# acsc
+#
+# Computes the arc cosecant acsc(z) = asin(1 / z).
+#
+sub acsc {
+ my ($z) = @_;
+ _divbyzero "acsc($z)", $z if ($z == 0);
+ return asin(1 / $z);
+}
+
+#
+# acosec
+#
+# Alias for acsc().
+#
+sub acosec { Math::Complex::acsc(@_) }
+
+#
+# acot
+#
+# Computes the arc cotangent acot(z) = atan(1 / z)
+#
+sub acot {
+ my ($z) = @_;
+ _divbyzero "acot(0)" if $z == 0;
+ return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
+ unless ref $z;
+ _divbyzero "acot(i)" if ($z - i == 0);
+ _logofzero "acot(-i)" if ($z + i == 0);
+ return atan(1 / $z);
+}
+
+#
+# acotan
+#
+# Alias for acot().
+#
+sub acotan { Math::Complex::acot(@_) }
+
+#
+# cosh
+#
+# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
+#
+sub cosh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ $ex = CORE::exp($z);
+ return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
+ }
+ my ($x, $y) = @{$z->_cartesian};
+ $ex = CORE::exp($x);
+ my $ex_1 = $ex ? 1 / $ex : Inf();
+ return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
+ CORE::sin($y) * ($ex - $ex_1)/2);
+}
+
+#
+# sinh
+#
+# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
+#
+sub sinh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ return 0 if $z == 0;
+ $ex = CORE::exp($z);
+ return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
+ }
+ my ($x, $y) = @{$z->_cartesian};
+ my $cy = CORE::cos($y);
+ my $sy = CORE::sin($y);
+ $ex = CORE::exp($x);
+ my $ex_1 = $ex ? 1 / $ex : Inf();
+ return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
+ CORE::sin($y) * ($ex + $ex_1)/2);
+}
+
+#
+# tanh
+#
+# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
+#
+sub tanh {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
+ my $sz = sinh($z);
+ return 1 if $cz == $sz;
+ return -1 if $cz == -$sz;
+ return $sz / $cz;
+}
+
+#
+# sech
+#
+# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
+#
+sub sech {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csch
+#
+# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
+#
+sub csch {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosech
+#
+# Alias for csch().
+#
+sub cosech { Math::Complex::csch(@_) }
+
+#
+# coth
+#
+# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
+#
+sub coth {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "coth($z)", "sinh($z)" if $sz == 0;
+ my $cz = cosh($z);
+ return 1 if $cz == $sz;
+ return -1 if $cz == -$sz;
+ return $cz / $sz;
+}
+
+#
+# cotanh
+#
+# Alias for coth().
+#
+sub cotanh { Math::Complex::coth(@_) }
+
+#
+# acosh
+#
+# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
+#
+sub acosh {
+ my ($z) = @_;
+ unless (ref $z) {
+ $z = cplx($z, 0);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ if ($im == 0) {
+ return CORE::log($re + CORE::sqrt($re*$re - 1))
+ if $re >= 1;
+ return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
+ if CORE::abs($re) < 1;
+ }
+ my $t = &sqrt($z * $z - 1) + $z;
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
+ $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
+ if $t == 0;
+ my $u = &log($t);
+ $u->Im(-$u->Im) if $re < 0 && $im == 0;
+ return $re < 0 ? -$u : $u;
+}
+
+#
+# asinh
+#
+# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
+#
+sub asinh {
+ my ($z) = @_;
+ unless (ref $z) {
+ my $t = $z + CORE::sqrt($z*$z + 1);
+ return CORE::log($t) if $t;
+ }
+ my $t = &sqrt($z * $z + 1) + $z;
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
+ $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
+ if $t == 0;
+ return &log($t);
+}
+
+#
+# atanh
+#
+# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
+#
+sub atanh {
+ my ($z) = @_;
+ unless (ref $z) {
+ return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
+ _logofzero 'atanh(-1)' if (1 + $z == 0);
+ return 0.5 * &log((1 + $z) / (1 - $z));
+}
+
+#
+# asech
+#
+# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
+#
+sub asech {
+ my ($z) = @_;
+ _divbyzero 'asech(0)', "$z" if ($z == 0);
+ return acosh(1 / $z);
+}
+
+#
+# acsch
+#
+# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
+#
+sub acsch {
+ my ($z) = @_;
+ _divbyzero 'acsch(0)', $z if ($z == 0);
+ return asinh(1 / $z);
+}
+
+#
+# acosech
+#
+# Alias for acosh().
+#
+sub acosech { Math::Complex::acsch(@_) }
+
+#
+# acoth
+#
+# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
+#
+sub acoth {
+ my ($z) = @_;
+ _divbyzero 'acoth(0)' if ($z == 0);
+ unless (ref $z) {
+ return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
+ _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
+ return &log((1 + $z) / ($z - 1)) / 2;
+}
+
+#
+# acotanh
+#
+# Alias for acot().
+#
+sub acotanh { Math::Complex::acoth(@_) }
+
+#
+# (atan2)
+#
+# Compute atan(z1/z2), minding the right quadrant.
+#
+sub atan2 {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1, $re2, $im2);
+ if ($inverted) {
+ ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ } else {
+ ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ }
+ if ($im1 || $im2) {
+ # In MATLAB the imaginary parts are ignored.
+ # warn "atan2: Imaginary parts ignored";
+ # http://documents.wolfram.com/mathematica/functions/ArcTan
+ # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
+ my $s = $z1 * $z1 + $z2 * $z2;
+ _divbyzero("atan2") if $s == 0;
+ my $i = &i;
+ my $r = $z2 + $z1 * $i;
+ return -$i * &log($r / &sqrt( $s ));
+ }
+ return CORE::atan2($re1, $re2);
+}
+
+#
+# display_format
+# ->display_format
+#
+# Set (get if no argument) the display format for all complex numbers that
+# don't happen to have overridden it via ->display_format
+#
+# When called as an object method, this actually sets the display format for
+# the current object.
+#
+# Valid object formats are 'c' and 'p' for cartesian and polar. The first
+# letter is used actually, so the type can be fully spelled out for clarity.
+#
+sub display_format {
+ my $self = shift;
+ my %display_format = %DISPLAY_FORMAT;
+
+ if (ref $self) { # Called as an object method
+ if (exists $self->{display_format}) {
+ my %obj = %{$self->{display_format}};
+ @display_format{keys %obj} = values %obj;
+ }
+ }
+ if (@_ == 1) {
+ $display_format{style} = shift;
+ } else {
+ my %new = @_;
+ @display_format{keys %new} = values %new;
+ }
+
+ if (ref $self) { # Called as an object method
+ $self->{display_format} = { %display_format };
+ return
+ wantarray ?
+ %{$self->{display_format}} :
+ $self->{display_format}->{style};
+ }
+
+ # Called as a class method
+ %DISPLAY_FORMAT = %display_format;
+ return
+ wantarray ?
+ %DISPLAY_FORMAT :
+ $DISPLAY_FORMAT{style};
+}
+
+#
+# (_stringify)
+#
+# Show nicely formatted complex number under its cartesian or polar form,
+# depending on the current display format:
+#
+# . If a specific display format has been recorded for this object, use it.
+# . Otherwise, use the generic current default for all complex numbers,
+# which is a package global variable.
+#
+sub _stringify {
+ my ($z) = shift;
+
+ my $style = $z->display_format;
+
+ $style = $DISPLAY_FORMAT{style} unless defined $style;
+
+ return $z->_stringify_polar if $style =~ /^p/i;
+ return $z->_stringify_cartesian;
+}
+
+#
+# ->_stringify_cartesian
+#
+# Stringify as a cartesian representation 'a+bi'.
+#
+sub _stringify_cartesian {
+ my $z = shift;
+ my ($x, $y) = @{$z->_cartesian};
+ my ($re, $im);
+
+ my %format = $z->display_format;
+ my $format = $format{format};
+
+ if ($x) {
+ if ($x =~ /^NaN[QS]?$/i) {
+ $re = $x;
+ } else {
+ if ($x =~ /^-?\Q$Inf\E$/oi) {
+ $re = $x;
+ } else {
+ $re = defined $format ? sprintf($format, $x) : $x;
+ }
+ }
+ } else {
+ undef $re;
+ }
+
+ if ($y) {
+ if ($y =~ /^(NaN[QS]?)$/i) {
+ $im = $y;
+ } else {
+ if ($y =~ /^-?\Q$Inf\E$/oi) {
+ $im = $y;
+ } else {
+ $im =
+ defined $format ?
+ sprintf($format, $y) :
+ ($y == 1 ? "" : ($y == -1 ? "-" : $y));
+ }
+ }
+ $im .= "i";
+ } else {
+ undef $im;
+ }
+
+ my $str = $re;
+
+ if (defined $im) {
+ if ($y < 0) {
+ $str .= $im;
+ } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
+ $str .= "+" if defined $re;
+ $str .= $im;
+ }
+ } elsif (!defined $re) {
+ $str = "0";
+ }
+
+ return $str;
+}
+
+
+#
+# ->_stringify_polar
+#
+# Stringify as a polar representation '[r,t]'.
+#
+sub _stringify_polar {
+ my $z = shift;
+ my ($r, $t) = @{$z->_polar};
+ my $theta;
+
+ my %format = $z->display_format;
+ my $format = $format{format};
+
+ if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
+ $theta = $t;
+ } elsif ($t == pi) {
+ $theta = "pi";
+ } elsif ($r == 0 || $t == 0) {
+ $theta = defined $format ? sprintf($format, $t) : $t;
+ }
+
+ return "[$r,$theta]" if defined $theta;
+
+ #
+ # Try to identify pi/n and friends.
+ #
+
+ $t -= int(CORE::abs($t) / pi2) * pi2;
+
+ if ($format{polar_pretty_print} && $t) {
+ my ($a, $b);
+ for $a (2..9) {
+ $b = $t * $a / pi;
+ if ($b =~ /^-?\d+$/) {
+ $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
+ $theta = "${b}pi/$a";
+ last;
+ }
+ }
+ }
+
+ if (defined $format) {
+ $r = sprintf($format, $r);
+ $theta = sprintf($format, $theta) unless defined $theta;
+ } else {
+ $theta = $t unless defined $theta;
+ }
+
+ return "[$r,$theta]";
+}
+
+sub Inf {
+ return $Inf;
+}
+
+1;
+__END__
+
+=pod
+
+=head1 NAME
+
+Math::Complex - complex numbers and associated mathematical functions
+
+=head1 SYNOPSIS
+
+ use Math::Complex;
+
+ $z = Math::Complex->make(5, 6);
+ $t = 4 - 3*i + $z;
+ $j = cplxe(1, 2*pi/3);
+
+=head1 DESCRIPTION
+
+This package lets you create and manipulate complex numbers. By default,
+I<Perl> limits itself to real numbers, but an extra C<use> statement brings
+full complex support, along with a full set of mathematical functions
+typically associated with and/or extended to complex numbers.
+
+If you wonder what complex numbers are, they were invented to be able to solve
+the following equation:
+
+ x*x = -1
+
+and by definition, the solution is noted I<i> (engineers use I<j> instead since
+I<i> usually denotes an intensity, but the name does not matter). The number
+I<i> is a pure I<imaginary> number.
+
+The arithmetics with pure imaginary numbers works just like you would expect
+it with real numbers... you just have to remember that
+
+ i*i = -1
+
+so you have:
+
+ 5i + 7i = i * (5 + 7) = 12i
+ 4i - 3i = i * (4 - 3) = i
+ 4i * 2i = -8
+ 6i / 2i = 3
+ 1 / i = -i
+
+Complex numbers are numbers that have both a real part and an imaginary
+part, and are usually noted:
+
+ a + bi
+
+where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
+arithmetic with complex numbers is straightforward. You have to
+keep track of the real and the imaginary parts, but otherwise the
+rules used for real numbers just apply:
+
+ (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
+ (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
+
+A graphical representation of complex numbers is possible in a plane
+(also called the I<complex plane>, but it's really a 2D plane).
+The number
+
+ z = a + bi
+
+is the point whose coordinates are (a, b). Actually, it would
+be the vector originating from (0, 0) to (a, b). It follows that the addition
+of two complex numbers is a vectorial addition.
+
+Since there is a bijection between a point in the 2D plane and a complex
+number (i.e. the mapping is unique and reciprocal), a complex number
+can also be uniquely identified with polar coordinates:
+
+ [rho, theta]
+
+where C<rho> is the distance to the origin, and C<theta> the angle between
+the vector and the I<x> axis. There is a notation for this using the
+exponential form, which is:
+
+ rho * exp(i * theta)
+
+where I<i> is the famous imaginary number introduced above. Conversion
+between this form and the cartesian form C<a + bi> is immediate:
+
+ a = rho * cos(theta)
+ b = rho * sin(theta)
+
+which is also expressed by this formula:
+
+ z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
+
+In other words, it's the projection of the vector onto the I<x> and I<y>
+axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
+the I<argument> of the complex number. The I<norm> of C<z> is
+marked here as C<abs(z)>.
+
+The polar notation (also known as the trigonometric representation) is
+much more handy for performing multiplications and divisions of
+complex numbers, whilst the cartesian notation is better suited for
+additions and subtractions. Real numbers are on the I<x> axis, and
+therefore I<y> or I<theta> is zero or I<pi>.
+
+All the common operations that can be performed on a real number have
+been defined to work on complex numbers as well, and are merely
+I<extensions> of the operations defined on real numbers. This means
+they keep their natural meaning when there is no imaginary part, provided
+the number is within their definition set.
+
+For instance, the C<sqrt> routine which computes the square root of
+its argument is only defined for non-negative real numbers and yields a
+non-negative real number (it is an application from B<R+> to B<R+>).
+If we allow it to return a complex number, then it can be extended to
+negative real numbers to become an application from B<R> to B<C> (the
+set of complex numbers):
+
+ sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
+
+It can also be extended to be an application from B<C> to B<C>,
+whilst its restriction to B<R> behaves as defined above by using
+the following definition:
+
+ sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
+
+Indeed, a negative real number can be noted C<[x,pi]> (the modulus
+I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
+number) and the above definition states that
+
+ sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
+
+which is exactly what we had defined for negative real numbers above.
+The C<sqrt> returns only one of the solutions: if you want the both,
+use the C<root> function.
+
+All the common mathematical functions defined on real numbers that
+are extended to complex numbers share that same property of working
+I<as usual> when the imaginary part is zero (otherwise, it would not
+be called an extension, would it?).
+
+A I<new> operation possible on a complex number that is
+the identity for real numbers is called the I<conjugate>, and is noted
+with a horizontal bar above the number, or C<~z> here.
+
+ z = a + bi
+ ~z = a - bi
+
+Simple... Now look:
+
+ z * ~z = (a + bi) * (a - bi) = a*a + b*b
+
+We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
+distance to the origin, also known as:
+
+ rho = abs(z) = sqrt(a*a + b*b)
+
+so
+
+ z * ~z = abs(z) ** 2
+
+If z is a pure real number (i.e. C<b == 0>), then the above yields:
+
+ a * a = abs(a) ** 2
+
+which is true (C<abs> has the regular meaning for real number, i.e. stands
+for the absolute value). This example explains why the norm of C<z> is
+noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
+is the regular C<abs> we know when the complex number actually has no
+imaginary part... This justifies I<a posteriori> our use of the C<abs>
+notation for the norm.
+
+=head1 OPERATIONS
+
+Given the following notations:
+
+ z1 = a + bi = r1 * exp(i * t1)
+ z2 = c + di = r2 * exp(i * t2)
+ z = <any complex or real number>
+
+the following (overloaded) operations are supported on complex numbers:
+
+ z1 + z2 = (a + c) + i(b + d)
+ z1 - z2 = (a - c) + i(b - d)
+ z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
+ z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
+ z1 ** z2 = exp(z2 * log z1)
+ ~z = a - bi
+ abs(z) = r1 = sqrt(a*a + b*b)
+ sqrt(z) = sqrt(r1) * exp(i * t/2)
+ exp(z) = exp(a) * exp(i * b)
+ log(z) = log(r1) + i*t
+ sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
+ cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
+ atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
+
+The definition used for complex arguments of atan2() is
+
+ -i log((x + iy)/sqrt(x*x+y*y))
+
+Note that atan2(0, 0) is not well-defined.
+
+The following extra operations are supported on both real and complex
+numbers:
+
+ Re(z) = a
+ Im(z) = b
+ arg(z) = t
+ abs(z) = r
+
+ cbrt(z) = z ** (1/3)
+ log10(z) = log(z) / log(10)
+ logn(z, n) = log(z) / log(n)
+
+ tan(z) = sin(z) / cos(z)
+
+ csc(z) = 1 / sin(z)
+ sec(z) = 1 / cos(z)
+ cot(z) = 1 / tan(z)
+
+ asin(z) = -i * log(i*z + sqrt(1-z*z))
+ acos(z) = -i * log(z + i*sqrt(1-z*z))
+ atan(z) = i/2 * log((i+z) / (i-z))
+
+ acsc(z) = asin(1 / z)
+ asec(z) = acos(1 / z)
+ acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
+
+ sinh(z) = 1/2 (exp(z) - exp(-z))
+ cosh(z) = 1/2 (exp(z) + exp(-z))
+ tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
+
+ csch(z) = 1 / sinh(z)
+ sech(z) = 1 / cosh(z)
+ coth(z) = 1 / tanh(z)
+
+ asinh(z) = log(z + sqrt(z*z+1))
+ acosh(z) = log(z + sqrt(z*z-1))
+ atanh(z) = 1/2 * log((1+z) / (1-z))
+
+ acsch(z) = asinh(1 / z)
+ asech(z) = acosh(1 / z)
+ acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
+
+I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
+I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
+I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
+I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
+C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
+returns only one of the solutions: if you want all three, use the
+C<root> function.
+
+The I<root> function is available to compute all the I<n>
+roots of some complex, where I<n> is a strictly positive integer.
+There are exactly I<n> such roots, returned as a list. Getting the
+number mathematicians call C<j> such that:
+
+ 1 + j + j*j = 0;
+
+is a simple matter of writing:
+
+ $j = ((root(1, 3))[1];
+
+The I<k>th root for C<z = [r,t]> is given by:
+
+ (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
+
+You can return the I<k>th root directly by C<root(z, n, k)>,
+indexing starting from I<zero> and ending at I<n - 1>.
+
+The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
+defined. In order to ensure its restriction to real numbers is conform
+to what you would expect, the comparison is run on the real part of
+the complex number first, and imaginary parts are compared only when
+the real parts match.
+
+=head1 CREATION
+
+To create a complex number, use either:
+
+ $z = Math::Complex->make(3, 4);
+ $z = cplx(3, 4);
+
+if you know the cartesian form of the number, or
+
+ $z = 3 + 4*i;
+
+if you like. To create a number using the polar form, use either:
+
+ $z = Math::Complex->emake(5, pi/3);
+ $x = cplxe(5, pi/3);
+
+instead. The first argument is the modulus, the second is the angle
+(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
+notation for complex numbers in the polar form).
+
+It is possible to write:
+
+ $x = cplxe(-3, pi/4);
+
+but that will be silently converted into C<[3,-3pi/4]>, since the
+modulus must be non-negative (it represents the distance to the origin
+in the complex plane).
+
+It is also possible to have a complex number as either argument of the
+C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
+the argument will be used.
+
+ $z1 = cplx(-2, 1);
+ $z2 = cplx($z1, 4);
+
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand a single (string) argument of the forms
+
+ 2-3i
+ -3i
+ [2,3]
+ [2,-3pi/4]
+ [2]
+
+in which case the appropriate cartesian and exponential components
+will be parsed from the string and used to create new complex numbers.
+The imaginary component and the theta, respectively, will default to zero.
+
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand the case of no arguments: this means plain zero or (0, 0).
+
+=head1 DISPLAYING
+
+When printed, a complex number is usually shown under its cartesian
+style I<a+bi>, but there are legitimate cases where the polar style
+I<[r,t]> is more appropriate. The process of converting the complex
+number into a string that can be displayed is known as I<stringification>.
+
+By calling the class method C<Math::Complex::display_format> and
+supplying either C<"polar"> or C<"cartesian"> as an argument, you
+override the default display style, which is C<"cartesian">. Not
+supplying any argument returns the current settings.
+
+This default can be overridden on a per-number basis by calling the
+C<display_format> method instead. As before, not supplying any argument
+returns the current display style for this number. Otherwise whatever you
+specify will be the new display style for I<this> particular number.
+
+For instance:
+
+ use Math::Complex;
+
+ Math::Complex::display_format('polar');
+ $j = (root(1, 3))[1];
+ print "j = $j\n"; # Prints "j = [1,2pi/3]"
+ $j->display_format('cartesian');
+ print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
+
+The polar style attempts to emphasize arguments like I<k*pi/n>
+(where I<n> is a positive integer and I<k> an integer within [-9, +9]),
+this is called I<polar pretty-printing>.
+
+For the reverse of stringifying, see the C<make> and C<emake>.
+
+=head2 CHANGED IN PERL 5.6
+
+The C<display_format> class method and the corresponding
+C<display_format> object method can now be called using
+a parameter hash instead of just a one parameter.
+
+The old display format style, which can have values C<"cartesian"> or
+C<"polar">, can be changed using the C<"style"> parameter.
+
+ $j->display_format(style => "polar");
+
+The one parameter calling convention also still works.
+
+ $j->display_format("polar");
+
+There are two new display parameters.
+
+The first one is C<"format">, which is a sprintf()-style format string
+to be used for both numeric parts of the complex number(s). The is
+somewhat system-dependent but most often it corresponds to C<"%.15g">.
+You can revert to the default by setting the C<format> to C<undef>.
+
+ # the $j from the above example
+
+ $j->display_format('format' => '%.5f');
+ print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
+ $j->display_format('format' => undef);
+ print "j = $j\n"; # Prints "j = -0.5+0.86603i"
+
+Notice that this affects also the return values of the
+C<display_format> methods: in list context the whole parameter hash
+will be returned, as opposed to only the style parameter value.
+This is a potential incompatibility with earlier versions if you
+have been calling the C<display_format> method in list context.
+
+The second new display parameter is C<"polar_pretty_print">, which can
+be set to true or false, the default being true. See the previous
+section for what this means.
+
+=head1 USAGE
+
+Thanks to overloading, the handling of arithmetics with complex numbers
+is simple and almost transparent.
+
+Here are some examples:
+
+ use Math::Complex;
+
+ $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
+ print "j = $j, j**3 = ", $j ** 3, "\n";
+ print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
+
+ $z = -16 + 0*i; # Force it to be a complex
+ print "sqrt($z) = ", sqrt($z), "\n";
+
+ $k = exp(i * 2*pi/3);
+ print "$j - $k = ", $j - $k, "\n";
+
+ $z->Re(3); # Re, Im, arg, abs,
+ $j->arg(2); # (the last two aka rho, theta)
+ # can be used also as mutators.
+
+=head1 CONSTANTS
+
+=head2 PI
+
+The constant C<pi> and some handy multiples of it (pi2, pi4,
+and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
+exported:
+
+ use Math::Complex ':pi';
+ $third_of_circle = pi2 / 3;
+
+=head2 Inf
+
+The floating point infinity can be exported as a subroutine Inf():
+
+ use Math::Complex qw(Inf sinh);
+ my $AlsoInf = Inf() + 42;
+ my $AnotherInf = sinh(1e42);
+ print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
+
+Note that the stringified form of infinity varies between platforms:
+it can be for example any of
+
+ inf
+ infinity
+ INF
+ 1.#INF
+
+or it can be something else.
+
+Also note that in some platforms trying to use the infinity in
+arithmetic operations may result in Perl crashing because using
+an infinity causes SIGFPE or its moral equivalent to be sent.
+The way to ignore this is
+
+ local $SIG{FPE} = sub { };
+
+=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
+
+The division (/) and the following functions
+
+ log ln log10 logn
+ tan sec csc cot
+ atan asec acsc acot
+ tanh sech csch coth
+ atanh asech acsch acoth
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
+be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
+C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
+C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
+cannot be C<-i> (the negative imaginary unit). For the C<tan>,
+C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
+is any integer. atan2(0, 0) is undefined, and if the complex arguments
+are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
+
+Note that because we are operating on approximations of real numbers,
+these errors can happen when merely `too close' to the singularities
+listed above.
+
+=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
+
+The C<make> and C<emake> accept both real and complex arguments.
+When they cannot recognize the arguments they will die with error
+messages like the following
+
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::emake: Cannot take rho of ...
+ Math::Complex::emake: Cannot take theta of ...
+
+=head1 BUGS
+
+Saying C<use Math::Complex;> exports many mathematical routines in the
+caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
+This is construed as a feature by the Authors, actually... ;-)
+
+All routines expect to be given real or complex numbers. Don't attempt to
+use BigFloat, since Perl has currently no rule to disambiguate a '+'
+operation (for instance) between two overloaded entities.
+
+In Cray UNICOS there is some strange numerical instability that results
+in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
+The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
+Whatever it is, it does not manifest itself anywhere else where Perl runs.
+
+=head1 SEE ALSO
+
+L<Math::Trig>
+
+=head1 AUTHORS
+
+Daniel S. Lewart <F<lewart!at!uiuc.edu>>
+Jarkko Hietaniemi <F<jhi!at!iki.fi>>
+Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>
+
+=head1 LICENSE
+
+This library is free software; you can redistribute it and/or modify
+it under the same terms as Perl itself.
+
+=cut
+
+1;
+
+# eof
diff --git a/Master/tlpkg/tlperl/lib/Math/Trig.pm b/Master/tlpkg/tlperl/lib/Math/Trig.pm
new file mode 100644
index 00000000000..b7767bebccb
--- /dev/null
+++ b/Master/tlpkg/tlperl/lib/Math/Trig.pm
@@ -0,0 +1,768 @@
+#
+# Trigonometric functions, mostly inherited from Math::Complex.
+# -- Jarkko Hietaniemi, since April 1997
+# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
+#
+
+require Exporter;
+package Math::Trig;
+
+use 5.005;
+use strict;
+
+use Math::Complex 1.56;
+use Math::Complex qw(:trig :pi);
+
+use vars qw($VERSION $PACKAGE @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
+
+@ISA = qw(Exporter);
+
+$VERSION = 1.20;
+
+my @angcnv = qw(rad2deg rad2grad
+ deg2rad deg2grad
+ grad2rad grad2deg);
+
+my @areal = qw(asin_real acos_real);
+
+@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
+ @angcnv, @areal);
+
+my @rdlcnv = qw(cartesian_to_cylindrical
+ cartesian_to_spherical
+ cylindrical_to_cartesian
+ cylindrical_to_spherical
+ spherical_to_cartesian
+ spherical_to_cylindrical);
+
+my @greatcircle = qw(
+ great_circle_distance
+ great_circle_direction
+ great_circle_bearing
+ great_circle_waypoint
+ great_circle_midpoint
+ great_circle_destination
+ );
+
+my @pi = qw(pi pi2 pi4 pip2 pip4);
+
+@EXPORT_OK = (@rdlcnv, @greatcircle, @pi, 'Inf');
+
+# See e.g. the following pages:
+# http://www.movable-type.co.uk/scripts/LatLong.html
+# http://williams.best.vwh.net/avform.htm
+
+%EXPORT_TAGS = ('radial' => [ @rdlcnv ],
+ 'great_circle' => [ @greatcircle ],
+ 'pi' => [ @pi ]);
+
+sub _DR () { pi2/360 }
+sub _RD () { 360/pi2 }
+sub _DG () { 400/360 }
+sub _GD () { 360/400 }
+sub _RG () { 400/pi2 }
+sub _GR () { pi2/400 }
+
+#
+# Truncating remainder.
+#
+
+sub _remt ($$) {
+ # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
+ $_[0] - $_[1] * int($_[0] / $_[1]);
+}
+
+#
+# Angle conversions.
+#
+
+sub rad2rad($) { _remt($_[0], pi2) }
+
+sub deg2deg($) { _remt($_[0], 360) }
+
+sub grad2grad($) { _remt($_[0], 400) }
+
+sub rad2deg ($;$) { my $d = _RD * $_[0]; $_[1] ? $d : deg2deg($d) }
+
+sub deg2rad ($;$) { my $d = _DR * $_[0]; $_[1] ? $d : rad2rad($d) }
+
+sub grad2deg ($;$) { my $d = _GD * $_[0]; $_[1] ? $d : deg2deg($d) }
+
+sub deg2grad ($;$) { my $d = _DG * $_[0]; $_[1] ? $d : grad2grad($d) }
+
+sub rad2grad ($;$) { my $d = _RG * $_[0]; $_[1] ? $d : grad2grad($d) }
+
+sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) }
+
+#
+# acos and asin functions which always return a real number
+#
+
+sub acos_real {
+ return 0 if $_[0] >= 1;
+ return pi if $_[0] <= -1;
+ return acos($_[0]);
+}
+
+sub asin_real {
+ return &pip2 if $_[0] >= 1;
+ return -&pip2 if $_[0] <= -1;
+ return asin($_[0]);
+}
+
+sub cartesian_to_spherical {
+ my ( $x, $y, $z ) = @_;
+
+ my $rho = sqrt( $x * $x + $y * $y + $z * $z );
+
+ return ( $rho,
+ atan2( $y, $x ),
+ $rho ? acos_real( $z / $rho ) : 0 );
+}
+
+sub spherical_to_cartesian {
+ my ( $rho, $theta, $phi ) = @_;
+
+ return ( $rho * cos( $theta ) * sin( $phi ),
+ $rho * sin( $theta ) * sin( $phi ),
+ $rho * cos( $phi ) );
+}
+
+sub spherical_to_cylindrical {
+ my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
+
+ return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
+}
+
+sub cartesian_to_cylindrical {
+ my ( $x, $y, $z ) = @_;
+
+ return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
+}
+
+sub cylindrical_to_cartesian {
+ my ( $rho, $theta, $z ) = @_;
+
+ return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
+}
+
+sub cylindrical_to_spherical {
+ return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
+}
+
+sub great_circle_distance {
+ my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
+
+ $rho = 1 unless defined $rho; # Default to the unit sphere.
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ return $rho *
+ acos_real( cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
+ sin( $lat0 ) * sin( $lat1 ) );
+}
+
+sub great_circle_direction {
+ my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
+
+ my $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1);
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ my $direction =
+ acos_real((sin($lat1) - sin($lat0) * cos($distance)) /
+ (cos($lat0) * sin($distance)));
+
+ $direction = pi2 - $direction
+ if sin($theta1 - $theta0) < 0;
+
+ return rad2rad($direction);
+}
+
+*great_circle_bearing = \&great_circle_direction;
+
+sub great_circle_waypoint {
+ my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;
+
+ $point = 0.5 unless defined $point;
+
+ my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );
+
+ return undef if $d == pi;
+
+ my $sd = sin($d);
+
+ return ($theta0, $phi0) if $sd == 0;
+
+ my $A = sin((1 - $point) * $d) / $sd;
+ my $B = sin( $point * $d) / $sd;
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
+ my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
+ my $z = $A * sin($lat0) + $B * sin($lat1);
+
+ my $theta = atan2($y, $x);
+ my $phi = acos_real($z);
+
+ return ($theta, $phi);
+}
+
+sub great_circle_midpoint {
+ great_circle_waypoint(@_[0..3], 0.5);
+}
+
+sub great_circle_destination {
+ my ( $theta0, $phi0, $dir0, $dst ) = @_;
+
+ my $lat0 = pip2 - $phi0;
+
+ my $phi1 = asin_real(sin($lat0)*cos($dst) +
+ cos($lat0)*sin($dst)*cos($dir0));
+
+ my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
+ cos($dst)-sin($lat0)*sin($phi1));
+
+ my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;
+
+ $dir1 -= pi2 if $dir1 > pi2;
+
+ return ($theta1, $phi1, $dir1);
+}
+
+1;
+
+__END__
+=pod
+
+=head1 NAME
+
+Math::Trig - trigonometric functions
+
+=head1 SYNOPSIS
+
+ use Math::Trig;
+
+ $x = tan(0.9);
+ $y = acos(3.7);
+ $z = asin(2.4);
+
+ $halfpi = pi/2;
+
+ $rad = deg2rad(120);
+
+ # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
+ use Math::Trig ':pi';
+
+ # Import the conversions between cartesian/spherical/cylindrical.
+ use Math::Trig ':radial';
+
+ # Import the great circle formulas.
+ use Math::Trig ':great_circle';
+
+=head1 DESCRIPTION
+
+C<Math::Trig> defines many trigonometric functions not defined by the
+core Perl which defines only the C<sin()> and C<cos()>. The constant
+B<pi> is also defined as are a few convenience functions for angle
+conversions, and I<great circle formulas> for spherical movement.
+
+=head1 TRIGONOMETRIC FUNCTIONS
+
+The tangent
+
+=over 4
+
+=item B<tan>
+
+=back
+
+The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
+are aliases)
+
+B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
+
+The arcus (also known as the inverse) functions of the sine, cosine,
+and tangent
+
+B<asin>, B<acos>, B<atan>
+
+The principal value of the arc tangent of y/x
+
+B<atan2>(y, x)
+
+The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
+and acotan/acot are aliases). Note that atan2(0, 0) is not well-defined.
+
+B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
+
+The hyperbolic sine, cosine, and tangent
+
+B<sinh>, B<cosh>, B<tanh>
+
+The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
+and cotanh/coth are aliases)
+
+B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
+
+The area (also known as the inverse) functions of the hyperbolic
+sine, cosine, and tangent
+
+B<asinh>, B<acosh>, B<atanh>
+
+The area cofunctions of the hyperbolic sine, cosine, and tangent
+(acsch/acosech and acoth/acotanh are aliases)
+
+B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
+
+The trigonometric constant B<pi> and some of handy multiples
+of it are also defined.
+
+B<pi, pi2, pi4, pip2, pip4>
+
+=head2 ERRORS DUE TO DIVISION BY ZERO
+
+The following functions
+
+ acoth
+ acsc
+ acsch
+ asec
+ asech
+ atanh
+ cot
+ coth
+ csc
+ csch
+ sec
+ sech
+ tan
+ tanh
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
+pi>, where I<k> is any integer.
+
+Note that atan2(0, 0) is not well-defined.
+
+=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
+
+Please note that some of the trigonometric functions can break out
+from the B<real axis> into the B<complex plane>. For example
+C<asin(2)> has no definition for plain real numbers but it has
+definition for complex numbers.
+
+In Perl terms this means that supplying the usual Perl numbers (also
+known as scalars, please see L<perldata>) as input for the
+trigonometric functions might produce as output results that no more
+are simple real numbers: instead they are complex numbers.
+
+The C<Math::Trig> handles this by using the C<Math::Complex> package
+which knows how to handle complex numbers, please see L<Math::Complex>
+for more information. In practice you need not to worry about getting
+complex numbers as results because the C<Math::Complex> takes care of
+details like for example how to display complex numbers. For example:
+
+ print asin(2), "\n";
+
+should produce something like this (take or leave few last decimals):
+
+ 1.5707963267949-1.31695789692482i
+
+That is, a complex number with the real part of approximately C<1.571>
+and the imaginary part of approximately C<-1.317>.
+
+=head1 PLANE ANGLE CONVERSIONS
+
+(Plane, 2-dimensional) angles may be converted with the following functions.
+
+=over
+
+=item deg2rad
+
+ $radians = deg2rad($degrees);
+
+=item grad2rad
+
+ $radians = grad2rad($gradians);
+
+=item rad2deg
+
+ $degrees = rad2deg($radians);
+
+=item grad2deg
+
+ $degrees = grad2deg($gradians);
+
+=item deg2grad
+
+ $gradians = deg2grad($degrees);
+
+=item rad2grad
+
+ $gradians = rad2grad($radians);
+
+=back
+
+The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
+The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
+If you don't want this, supply a true second argument:
+
+ $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
+ $negative_degrees = rad2deg($negative_radians, 1);
+
+You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
+grad2grad().
+
+=over 4
+
+=item rad2rad
+
+ $radians_wrapped_by_2pi = rad2rad($radians);
+
+=item deg2deg
+
+ $degrees_wrapped_by_360 = deg2deg($degrees);
+
+=item grad2grad
+
+ $gradians_wrapped_by_400 = grad2grad($gradians);
+
+=back
+
+=head1 RADIAL COORDINATE CONVERSIONS
+
+B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
+systems, explained shortly in more detail.
+
+You can import radial coordinate conversion functions by using the
+C<:radial> tag:
+
+ use Math::Trig ':radial';
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+B<All angles are in radians>.
+
+=head2 COORDINATE SYSTEMS
+
+B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.
+
+Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a sphere surface. The radius of the sphere is B<rho>, also
+known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The angle from the I<z>-axis is B<phi>, also known as the
+I<polar> coordinate. The North Pole is therefore I<0, 0, rho>, and
+the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
+pi/2, rho>. In geographical terms I<phi> is latitude (northward
+positive, southward negative) and I<theta> is longitude (eastward
+positive, westward negative).
+
+B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
+some texts define the I<phi> to start from the horizontal plane, some
+texts use I<r> in place of I<rho>.
+
+Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a cylinder surface. The radius of the cylinder is B<rho>,
+also known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The third coordinate is the I<z>, pointing up from the
+B<theta>-plane.
+
+=head2 3-D ANGLE CONVERSIONS
+
+Conversions to and from spherical and cylindrical coordinates are
+available. Please notice that the conversions are not necessarily
+reversible because of the equalities like I<pi> angles being equal to
+I<-pi> angles.
+
+=over 4
+
+=item cartesian_to_cylindrical
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+
+=item cartesian_to_spherical
+
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+
+=item cylindrical_to_cartesian
+
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+
+=item cylindrical_to_spherical
+
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+
+Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
+
+=item spherical_to_cartesian
+
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+
+=item spherical_to_cylindrical
+
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
+
+=back
+
+=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
+
+A great circle is section of a circle that contains the circle
+diameter: the shortest distance between two (non-antipodal) points on
+the spherical surface goes along the great circle connecting those two
+points.
+
+=head2 great_circle_distance
+
+You can compute spherical distances, called B<great circle distances>,
+by importing the great_circle_distance() function:
+
+ use Math::Trig 'great_circle_distance';
+
+ $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
+
+The I<great circle distance> is the shortest distance between two
+points on a sphere. The distance is in C<$rho> units. The C<$rho> is
+optional, it defaults to 1 (the unit sphere), therefore the distance
+defaults to radians.
+
+If you think geographically the I<theta> are longitudes: zero at the
+Greenwhich meridian, eastward positive, westward negative -- and the
+I<phi> are latitudes: zero at the North Pole, northward positive,
+southward negative. B<NOTE>: this formula thinks in mathematics, not
+geographically: the I<phi> zero is at the North Pole, not at the
+Equator on the west coast of Africa (Bay of Guinea). You need to
+subtract your geographical coordinates from I<pi/2> (also known as 90
+degrees).
+
+ $distance = great_circle_distance($lon0, pi/2 - $lat0,
+ $lon1, pi/2 - $lat1, $rho);
+
+=head2 great_circle_direction
+
+The direction you must follow the great circle (also known as I<bearing>)
+can be computed by the great_circle_direction() function:
+
+ use Math::Trig 'great_circle_direction';
+
+ $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
+
+=head2 great_circle_bearing
+
+Alias 'great_circle_bearing' for 'great_circle_direction' is also available.
+
+ use Math::Trig 'great_circle_bearing';
+
+ $direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1);
+
+The result of great_circle_direction is in radians, zero indicating
+straight north, pi or -pi straight south, pi/2 straight west, and
+-pi/2 straight east.
+
+=head2 great_circle_destination
+
+You can inversely compute the destination if you know the
+starting point, direction, and distance:
+
+ use Math::Trig 'great_circle_destination';
+
+ # $diro is the original direction,
+ # for example from great_circle_bearing().
+ # $distance is the angular distance in radians,
+ # for example from great_circle_distance().
+ # $thetad and $phid are the destination coordinates,
+ # $dird is the final direction at the destination.
+
+ ($thetad, $phid, $dird) =
+ great_circle_destination($theta, $phi, $diro, $distance);
+
+or the midpoint if you know the end points:
+
+=head2 great_circle_midpoint
+
+ use Math::Trig 'great_circle_midpoint';
+
+ ($thetam, $phim) =
+ great_circle_midpoint($theta0, $phi0, $theta1, $phi1);
+
+The great_circle_midpoint() is just a special case of
+
+=head2 great_circle_waypoint
+
+ use Math::Trig 'great_circle_waypoint';
+
+ ($thetai, $phii) =
+ great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);
+
+Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
+$phi1). Note that antipodal points (where their distance is I<pi>
+radians) do not have waypoints between them (they would have an an
+"equator" between them), and therefore C<undef> is returned for
+antipodal points. If the points are the same and the distance
+therefore zero and all waypoints therefore identical, the first point
+(either point) is returned.
+
+The thetas, phis, direction, and distance in the above are all in radians.
+
+You can import all the great circle formulas by
+
+ use Math::Trig ':great_circle';
+
+Notice that the resulting directions might be somewhat surprising if
+you are looking at a flat worldmap: in such map projections the great
+circles quite often do not look like the shortest routes -- but for
+example the shortest possible routes from Europe or North America to
+Asia do often cross the polar regions. (The common Mercator projection
+does B<not> show great circles as straight lines: straight lines in the
+Mercator projection are lines of constant bearing.)
+
+=head1 EXAMPLES
+
+To calculate the distance between London (51.3N 0.5W) and Tokyo
+(35.7N 139.8E) in kilometers:
+
+ use Math::Trig qw(great_circle_distance deg2rad);
+
+ # Notice the 90 - latitude: phi zero is at the North Pole.
+ sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
+ my @L = NESW( -0.5, 51.3);
+ my @T = NESW(139.8, 35.7);
+ my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.
+
+The direction you would have to go from London to Tokyo (in radians,
+straight north being zero, straight east being pi/2).
+
+ use Math::Trig qw(great_circle_direction);
+
+ my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.
+
+The midpoint between London and Tokyo being
+
+ use Math::Trig qw(great_circle_midpoint);
+
+ my @M = great_circle_midpoint(@L, @T);
+
+or about 69 N 89 E, in the frozen wastes of Siberia.
+
+B<NOTE>: you B<cannot> get from A to B like this:
+
+ Dist = great_circle_distance(A, B)
+ Dir = great_circle_direction(A, B)
+ C = great_circle_destination(A, Dist, Dir)
+
+and expect C to be B, because the bearing constantly changes when
+going from A to B (except in some special case like the meridians or
+the circles of latitudes) and in great_circle_destination() one gives
+a B<constant> bearing to follow.
+
+=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
+
+The answers may be off by few percentages because of the irregular
+(slightly aspherical) form of the Earth. The errors are at worst
+about 0.55%, but generally below 0.3%.
+
+=head2 Real-valued asin and acos
+
+For small inputs asin() and acos() may return complex numbers even
+when real numbers would be enough and correct, this happens because of
+floating-point inaccuracies. You can see these inaccuracies for
+example by trying theses:
+
+ print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n";
+ printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n";
+
+which will print something like this
+
+ -1.11022302462516e-16
+ 0.99999999999999988898
+
+even though the expected results are of course exactly zero and one.
+The formulas used to compute asin() and acos() are quite sensitive to
+this, and therefore they might accidentally slip into the complex
+plane even when they should not. To counter this there are two
+interfaces that are guaranteed to return a real-valued output.
+
+=over 4
+
+=item asin_real
+
+ use Math::Trig qw(asin_real);
+
+ $real_angle = asin_real($input_sin);
+
+Return a real-valued arcus sine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, pi/2
+is returned. For inputs less than minus one, -pi/2 is returned.
+
+=item acos_real
+
+ use Math::Trig qw(acos_real);
+
+ $real_angle = acos_real($input_cos);
+
+Return a real-valued arcus cosine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, zero
+is returned. For inputs less than minus one, pi is returned.
+
+=back
+
+=head1 BUGS
+
+Saying C<use Math::Trig;> exports many mathematical routines in the
+caller environment and even overrides some (C<sin>, C<cos>). This is
+construed as a feature by the Authors, actually... ;-)
+
+The code is not optimized for speed, especially because we use
+C<Math::Complex> and thus go quite near complex numbers while doing
+the computations even when the arguments are not. This, however,
+cannot be completely avoided if we want things like C<asin(2)> to give
+an answer instead of giving a fatal runtime error.
+
+Do not attempt navigation using these formulas.
+
+L<Math::Complex>
+
+=head1 AUTHORS
+
+Jarkko Hietaniemi <F<jhi!at!iki.fi>> and
+Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>.
+
+=head1 LICENSE
+
+This library is free software; you can redistribute it and/or modify
+it under the same terms as Perl itself.
+
+=cut
+
+# eof