summaryrefslogtreecommitdiff
path: root/Master/texmf/asymptote/three_surface.asy
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2009-08-15 23:57:48 +0000
committerKarl Berry <karl@freefriends.org>2009-08-15 23:57:48 +0000
commit16d128e5e10d541a78654b86409d5a3539f07708 (patch)
tree66de0af63c3811bb3040c16e9b52c11985f70811 /Master/texmf/asymptote/three_surface.asy
parentb20f78c549859ec0e8610bdd3ad904245e86b489 (diff)
asymptote 1.83
git-svn-id: svn://tug.org/texlive/trunk@14696 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf/asymptote/three_surface.asy')
-rw-r--r--Master/texmf/asymptote/three_surface.asy812
1 files changed, 483 insertions, 329 deletions
diff --git a/Master/texmf/asymptote/three_surface.asy b/Master/texmf/asymptote/three_surface.asy
index f2ad86dfe7e..e545d87cf7b 100644
--- a/Master/texmf/asymptote/three_surface.asy
+++ b/Master/texmf/asymptote/three_surface.asy
@@ -1,4 +1,5 @@
import bezulate;
+private import interpolate;
int nslice=12;
real camerafactor=1.2;
@@ -15,24 +16,24 @@ struct patch {
path3 external() {
return
- P[0][0]..controls P[0][1] and P[0][2]..
- P[0][3]..controls P[1][3] and P[2][3]..
- P[3][3]..controls P[3][2] and P[3][1]..
- P[3][0]..controls P[2][0] and P[1][0]..cycle;
+ P[0][0]..controls P[1][0] and P[2][0]..
+ P[3][0]..controls P[3][1] and P[3][2]..
+ P[3][3]..controls P[2][3] and P[1][3]..
+ P[0][3]..controls P[0][2] and P[0][1]..cycle;
}
triple[] internal() {
- return new triple[] {P[1][1],P[1][2],P[2][2],P[2][1]};
+ return new triple[] {P[1][1],P[2][1],P[2][2],P[1][2]};
}
triple cornermean() {
- return 0.25*(P[0][0]+P[0][3]+P[3][3]+P[3][0]);
+ return 0.25*(P[0][0]+P[0][3]+P[3][0]+P[3][3]);
}
- triple[] corners() {return new triple[] {P[0][0],P[0][3],P[3][3],P[3][0]};}
+ triple[] corners() {return new triple[] {P[0][0],P[3][0],P[3][3],P[0][3]};}
real[] map(real f(triple)) {
- return new real[] {f(P[0][0]),f(P[0][3]),f(P[3][3]),f(P[3][0])};
+ return new real[] {f(P[0][0]),f(P[3][0]),f(P[3][3]),f(P[0][3])};
}
triple Bu(int j, real u) {return bezier(P[0][j],P[1][j],P[2][j],P[3][j],u);}
@@ -43,8 +44,10 @@ struct patch {
triple BuPPP(int j) {return bezierPPP(P[0][j],P[1][j],P[2][j],P[3][j]);}
path3 uequals(real u) {
- return straight ? Bu(0,u)--Bu(3,u) :
- Bu(0,u)..controls Bu(1,u) and Bu(2,u)..Bu(3,u);
+ triple z0=Bu(0,u);
+ triple z1=Bu(3,u);
+ return path3(new triple[] {z0,Bu(2,u)},new triple[] {z0,z1},
+ new triple[] {Bu(1,u),z1},new bool[] {straight,false},false);
}
triple Bv(int i, real v) {return bezier(P[i][0],P[i][1],P[i][2],P[i][3],v);}
@@ -55,8 +58,10 @@ struct patch {
triple BvPPP(int i) {return bezierPPP(P[i][0],P[i][1],P[i][2],P[i][3]);}
path3 vequals(real v) {
- return straight ? Bv(0,v)--Bv(3,v) :
- Bv(0,v)..controls Bv(1,v) and Bv(2,v)..Bv(3,v);
+ triple z0=Bv(0,v);
+ triple z1=Bv(3,v);
+ return path3(new triple[] {z0,Bv(2,v)},new triple[] {z0,z1},
+ new triple[] {Bv(1,v),z1},new bool[] {straight,false},false);
}
triple point(real u, real v) {
@@ -65,76 +70,76 @@ struct patch {
// compute normal vectors for degenerate cases
private triple normal0(real u, real v, real epsilon) {
- triple n=0.5*(cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
- bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v))+
- cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
- bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v)));
+ triple n=0.5*(cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
+ bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u))+
+ cross(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v),
+ bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u)));
return abs(n) > epsilon ? n :
- 0.25*cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
- bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v))+
- 1/6*(cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
- bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v))+
- cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
- bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v)))+
- 1/12*(cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
- bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v))+
- cross(bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u),
- bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v)))+
- 1/36*cross(bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u),
- bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v));
+ 0.25*cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
+ bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u))+
+ 1/6*(cross(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v),
+ bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u))+
+ cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
+ bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u)))+
+ 1/12*(cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
+ bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u))+
+ cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
+ bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u)))+
+ 1/36*cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
+ bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u));
}
static real fuzz=1000*realEpsilon;
triple normal(real u, real v) {
- triple n=cross(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u),
- bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v));
+ triple n=cross(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v),
+ bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u));
real epsilon=fuzz*change2(P);
return (abs(n) > epsilon) ? n : normal0(u,v,epsilon);
}
triple normal00() {
- triple n=9*cross(P[0][1]-P[0][0],P[1][0]-P[0][0]);
+ triple n=9*cross(P[1][0]-P[0][0],P[0][1]-P[0][0]);
real epsilon=fuzz*change2(P);
return abs(n) > epsilon ? n : normal0(0,0,epsilon);
}
- triple normal01() {
- triple n=9*cross(P[0][3]-P[0][2],P[1][3]-P[0][3]);
+ triple normal10() {
+ triple n=9*cross(P[3][0]-P[2][0],P[3][1]-P[3][0]);
real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(0,1,epsilon);
+ return abs(n) > epsilon ? n : normal0(1,0,epsilon);
}
triple normal11() {
- triple n=9*cross(P[3][3]-P[3][2],P[3][3]-P[2][3]);
+ triple n=9*cross(P[3][3]-P[2][3],P[3][3]-P[3][2]);
real epsilon=fuzz*change2(P);
return abs(n) > epsilon ? n : normal0(1,1,epsilon);
}
- triple normal10() {
- triple n=9*cross(P[3][1]-P[3][0],P[3][0]-P[2][0]);
+ triple normal01() {
+ triple n=9*cross(P[1][3]-P[0][3],P[0][3]-P[0][2]);
real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(1,0,epsilon);
+ return abs(n) > epsilon ? n : normal0(0,1,epsilon);
}
pen[] colors(material m, light light=currentlight) {
bool nocolors=colors.length == 0;
if(normals.length > 0)
- return new pen[] {light.color(normals[0],nocolors ? m : colors[0]),
- light.color(normals[1],nocolors ? m : colors[1]),
- light.color(normals[2],nocolors ? m : colors[2]),
- light.color(normals[3],nocolors ? m : colors[3])};
+ return new pen[] {color(normals[0],nocolors ? m : colors[0],light),
+ color(normals[1],nocolors ? m : colors[1],light),
+ color(normals[2],nocolors ? m : colors[2],light),
+ color(normals[3],nocolors ? m : colors[3],light)};
if(planar) {
triple normal=normal(0.5,0.5);
- return new pen[] {light.color(normal,nocolors ? m : colors[0]),
- light.color(normal,nocolors ? m : colors[1]),
- light.color(normal,nocolors ? m : colors[2]),
- light.color(normal,nocolors ? m : colors[3])};
+ return new pen[] {color(normal,nocolors ? m : colors[0],light),
+ color(normal,nocolors ? m : colors[1],light),
+ color(normal,nocolors ? m : colors[2],light),
+ color(normal,nocolors ? m : colors[3],light)};
}
- return new pen[] {light.color(normal00(),nocolors ? m : colors[0]),
- light.color(normal01(),nocolors ? m : colors[1]),
- light.color(normal11(),nocolors ? m : colors[2]),
- light.color(normal10(),nocolors ? m : colors[3])};
+ return new pen[] {color(normal00(),nocolors ? m : colors[0],light),
+ color(normal10(),nocolors ? m : colors[1],light),
+ color(normal11(),nocolors ? m : colors[2],light),
+ color(normal01(),nocolors ? m : colors[3],light)};
}
triple min3,max3;
@@ -162,11 +167,19 @@ struct patch {
}
pair min(projection P, pair bound=project(this.P[0][0],P.t)) {
- return minbezier(this.P,P.t,bound);
+ triple[][] Q=P.T.modelview*this.P;
+ if(P.infinity)
+ return xypart(minbezier(Q,(bound.x,bound.y,0)));
+ real d=P.T.projection[3][2];
+ return maxratio(Q,d*bound)/d; // d is negative
}
pair max(projection P, pair bound=project(this.P[0][0],P.t)) {
- return maxbezier(this.P,P.t,bound);
+ triple[][] Q=P.T.modelview*this.P;
+ if(P.infinity)
+ return xypart(maxbezier(Q,(bound.x,bound.y,0)));
+ real d=P.T.projection[3][2];
+ return minratio(Q,d*bound)/d; // d is negative
}
void operator init(triple[][] P, triple[] normals=new triple[],
@@ -242,11 +255,11 @@ struct patch {
} else straight=false;
P=new triple[][] {
- {point(external,0),postcontrol(external,0),precontrol(external,1),
- point(external,1)},
- {precontrol(external,0),internal[0],internal[1],postcontrol(external,1)},
- {postcontrol(external,3),internal[3],internal[2],precontrol(external,2)},
- {point(external,3),precontrol(external,3),postcontrol(external,2),
+ {point(external,0),precontrol(external,0),postcontrol(external,3),
+ point(external,3)},
+ {postcontrol(external,0),internal[0],internal[3],precontrol(external,3)},
+ {precontrol(external,1),internal[1],internal[2],postcontrol(external,2)},
+ {point(external,1),postcontrol(external,1),precontrol(external,2),
point(external,2)}
};
}
@@ -280,10 +293,10 @@ struct patch {
delta[j]=(external[(j+1)% 4]-external[j])/3;
P=new triple[][] {
- {external[0],external[0]+delta[0],external[1]-delta[0],external[1]},
- {external[0]-delta[3],internal[0],internal[1],external[1]+delta[1]},
- {external[3]+delta[3],internal[3],internal[2],external[2]-delta[1]},
- {external[3],external[3]-delta[2],external[2]+delta[2],external[2]}
+ {external[0],external[0]-delta[3],external[3]+delta[3],external[3]},
+ {external[0]+delta[0],internal[0],internal[3],external[3]-delta[2]},
+ {external[1]-delta[0],internal[1],internal[2],external[2]+delta[2]},
+ {external[1],external[1]+delta[1],external[2]-delta[1],external[2]}
};
}
}
@@ -322,8 +335,243 @@ patch reverse(patch s)
return S;
}
+// Return the Coons patch control points corresponding to path p.
+pair[][] coons(path p)
+{
+ int L=length(p);
+ if(L == 1)
+ p=p--cycle--cycle--cycle;
+ else if(L == 2)
+ p=p--cycle--cycle;
+ else if(L == 3)
+ p=p--cycle;
+
+ pair[] internal=new pair[4];
+ for(int j=0; j < 4; ++j) {
+ internal[j]=nineth*(-4*point(p,j)
+ +6*(precontrol(p,j)+postcontrol(p,j))
+ -2*(point(p,j-1)+point(p,j+1))
+ +3*(precontrol(p,j-1)+postcontrol(p,j+1))
+ -point(p,j+2));
+ }
+
+ return new pair[][] {
+ {point(p,0),precontrol(p,0),postcontrol(p,3),point(p,3)},
+ {postcontrol(p,0),internal[0],internal[3],precontrol(p,3)},
+ {precontrol(p,1),internal[1],internal[2],postcontrol(p,2)},
+ {point(p,1),postcontrol(p,1),precontrol(p,2),point(p,2)}
+ };
+}
+
+// Decompose a possibly nonconvex cyclic path into an array of paths that
+// yield nondegenerate Coons patches.
+path[] regularize(path p, bool checkboundary=true)
+{
+ path[] s;
+
+ if(!cyclic(p))
+ abort("cyclic path expected");
+
+ int L=length(p);
+
+ if(L > 4) {
+ for(path g : bezulate(p))
+ s.append(regularize(g,checkboundary));
+ return s;
+ }
+
+ bool straight=piecewisestraight(p);
+ if(L <= 3 && straight) {
+ return new path[] {p};
+ }
+
+ // Split p along the angle bisector at t.
+ bool split(path p, real t) {
+ pair dir=dir(p,t);
+ if(dir != 0) {
+ path g=subpath(p,t,t+length(p));
+ int L=length(g);
+ pair z=point(g,0);
+ real[] T=intersections(g,z,z+I*dir);
+ for(int i=0; i < T.length; ++i) {
+ real cut=T[i];
+ if(cut > sqrtEpsilon && cut < L-sqrtEpsilon) {
+ pair w=point(g,cut);
+ if(!inside(p,0.5*(z+w),zerowinding)) continue;
+ pair delta=sqrtEpsilon*(w-z);
+ if(intersections(g,z-delta--w+delta).length != 2) continue;
+ s.append(regularize(subpath(g,0,cut)--cycle,checkboundary));
+ s.append(regularize(subpath(g,cut,L)--cycle,checkboundary));
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ // Ensure that all interior angles are less than 180 degrees.
+ real fuzz=1e-4;
+ int sign=sgn(windingnumber(p,inside(p,zerowinding)));
+ for(int i=0; i < L; ++i) {
+ if(sign*(conj(dir(p,i,-1))*dir(p,i,1)).y < -fuzz) {
+ if(split(p,i)) return s;
+ }
+ }
+
+ if(straight)
+ return new path[] {p};
+
+ pair[][] P=coons(p);
+
+ // Check for degeneracy.
+ pair[][] U=new pair[3][4];
+ pair[][] V=new pair[4][3];
+
+ for(int i=0; i < 3; ++i) {
+ for(int j=0; j < 4; ++j)
+ U[i][j]=P[i+1][j]-P[i][j];
+ }
+
+ for(int i=0; i < 4; ++i) {
+ for(int j=0; j < 3; ++j)
+ V[i][j]=P[i][j+1]-P[i][j];
+ }
+
+ int[] choose2={1,2,1};
+ int[] choose3={1,3,3,1};
+
+ real T[][]=new real[6][6];
+ for(int p=0; p < 6; ++p) {
+ int kstart=max(p-2,0);
+ int kstop=min(p,3);
+ real[] Tp=T[p];
+ for(int q=0; q < 6; ++q) {
+ real Tpq;
+ int jstop=min(q,3);
+ int jstart=max(q-2,0);
+ for(int k=kstart; k <= kstop; ++k) {
+ int choose3k=choose3[k];
+ for(int j=jstart; j <= jstop; ++j) {
+ int i=p-k;
+ int l=q-j;
+ Tpq += (conj(U[i][j])*V[k][l]).y*
+ choose2[i]*choose3k*choose3[j]*choose2[l];
+ }
+ }
+ Tp[q]=Tpq;
+ }
+ }
+
+ bool3 aligned=default;
+ bool degenerate=false;
+
+ for(int p=0; p < 6; ++p) {
+ for(int q=0; q < 6; ++q) {
+ if(aligned == default) {
+ if(T[p][q] > sqrtEpsilon) aligned=true;
+ if(T[p][q] < -sqrtEpsilon) aligned=false;
+ } else {
+ if((T[p][q] > sqrtEpsilon && aligned == false) ||
+ (T[p][q] < -sqrtEpsilon && aligned == true)) degenerate=true;
+ }
+ }
+ }
+
+ if(!degenerate) {
+ if(aligned == (sign >= 0))
+ return new path[] {p};
+ return s;
+ }
+
+ if(checkboundary) {
+ // Polynomial coefficients of (B_i'' B_j + B_i' B_j')/3.
+ static real[][][] fpv0={
+ {{5, -20, 30, -20, 5},
+ {-3, 24, -54, 48, -15},
+ {0, -6, 27, -36, 15},
+ {0, 0, -3, 8, -5}},
+ {{-7, 36, -66, 52, -15},
+ {3, -36, 108, -120, 45},
+ {0, 6, -45, 84, -45},
+ {0, 0, 3, -16, 15}},
+ {{2, -18, 45, -44, 15},
+ {0, 12, -63, 96, -45},
+ {0, 0, 18, -60, 45},
+ {0, 0, 0, 8, -15}},
+ {{0, 2, -9, 12, -5},
+ {0, 0, 9, -24, 15},
+ {0, 0, 0, 12, -15},
+ {0, 0, 0, 0, 5}}
+ };
+
+ // Compute one-ninth of the derivative of the Jacobian along the boundary.
+ real[][] c=array(4,array(5,0.0));
+ for(int i=0; i < 4; ++i) {
+ real[][] fpv0i=fpv0[i];
+ for(int j=0; j < 4; ++j) {
+ real[] w=fpv0i[j];
+ c[0] += w*(conj(P[i][0])*(P[j][1]-P[j][0])).y; // v=0
+ c[1] += w*(conj(P[3][j]-P[2][j])*P[3][i]).y; // u=1
+ c[2] += w*(conj(P[i][3])*(P[j][3]-P[j][2])).y; // v=1
+ c[3] += w*(conj(P[0][j]-P[1][j])*P[0][i]).y; // u=0
+ }
+ }
+
+ pair BuP(int j, real u) {
+ return bezierP(P[0][j],P[1][j],P[2][j],P[3][j],u);
+ }
+ pair BvP(int i, real v) {
+ return bezierP(P[i][0],P[i][1],P[i][2],P[i][3],v);
+ }
+ real normal(real u, real v) {
+ return (conj(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v))*
+ bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u)).y;
+ }
+
+ // Use Rolle's theorem to check for degeneracy on the boundary.
+ real M=0;
+ real cut;
+ for(int i=0; i < 4; ++i) {
+ if(!straight(p,i)) {
+ real[] ci=c[i];
+ pair[] R=quarticroots(ci[4],ci[3],ci[2],ci[1],ci[0]);
+ for(pair r : R) {
+ if(fabs(r.y) < sqrtEpsilon) {
+ real t=r.x;
+ if(0 <= t && t <= 1) {
+ real[] U={t,1,t,0};
+ real[] V={0,t,1,t};
+ real[] T={t,t,1-t,1-t};
+ real N=sign*normal(U[i],V[i]);
+ if(N < M) {
+ M=N; cut=i+T[i];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Split at the worst boundary degeneracy.
+ if(M < 0 && split(p,cut)) return s;
+ }
+
+ // Split arbitrarily to resolve any remaining (internal) degeneracy.
+ checkboundary=false;
+ for(int i=0; i < L; ++i)
+ if(!straight(p,i) && split(p,i+0.5)) return s;
+
+ while(true)
+ for(int i=0; i < L; ++i)
+ if(!straight(p,i) && split(p,i+unitrand())) return s;
+
+ return s;
+}
+
struct surface {
patch[] s;
+ int index[][];
+ bool vcyclic;
bool empty() {
return s.length == 0;
@@ -341,6 +589,8 @@ struct surface {
this.s=new patch[s.s.length];
for(int i=0; i < s.s.length; ++i)
this.s[i]=patch(s.s[i]);
+ this.index=copy(s.index);
+ this.vcyclic=s.vcyclic;
}
void operator init(triple[][][] P, triple[][] normals=new triple[][],
@@ -352,10 +602,8 @@ struct surface {
}
void colors(pen[][] palette) {
- for(int i=0; i < s.length; ++i) {
- pen[] palettei=palette[i];
- s[i].colors=new pen[] {palettei[0],palettei[1],palettei[2],palettei[3]};
- }
+ for(int i=0; i < s.length; ++i)
+ s[i].colors=copy(palette[i]);
}
triple[][] corners() {
@@ -376,232 +624,66 @@ struct surface {
return sequence(new triple(int i) {return s[i].cornermean();},s.length);
}
- // A constructor for a possibly nonconvex cyclic path in a given plane.
- void operator init (path p, triple plane(pair)=XYplane,
- bool checkboundary=true) {
- if(!cyclic(p))
- abort("cyclic path expected");
-
- int L=length(p);
+ triple point(real u, real v) {
+ int U=floor(u);
+ int V=floor(v);
+ int index=index.length == 0 ? U+V : index[U][V];
+ return s[index].point(u-U,v-V);
+ }
- if(L > 4) {
- for(path g : bezulate(p))
- s.append(surface(g,plane,checkboundary).s);
- return;
- }
-
- pair[][] P(path p) {
- if(L == 1)
- p=p--cycle--cycle--cycle;
- else if(L == 2)
- p=p--cycle--cycle;
- else if(L == 3)
- p=p--cycle;
-
- pair[] internal=new pair[4];
- for(int j=0; j < 4; ++j) {
- internal[j]=nineth*(-4*point(p,j)
- +6*(precontrol(p,j)+postcontrol(p,j))
- -2*(point(p,j-1)+point(p,j+1))
- +3*(precontrol(p,j-1)+postcontrol(p,j+1))
- -point(p,j+2));
- }
-
- return new pair[][] {
- {point(p,0),postcontrol(p,0),precontrol(p,1),point(p,1)},
- {precontrol(p,0),internal[0],internal[1],postcontrol(p,1)},
- {postcontrol(p,3),internal[3],internal[2],precontrol(p,2)},
- {point(p,3),precontrol(p,3),postcontrol(p,2),point(p,2)}
- };
- }
+ triple normal(real u, real v) {
+ int U=floor(u);
+ int V=floor(v);
+ int index=index.length == 0 ? U+V : index[U][V];
+ return s[index].normal(u-U,v-V);
+ }
+
+ void ucyclic(bool f)
+ {
+ index.cyclic=f;
+ }
+
+ void vcyclic(bool f)
+ {
+ for(int[] i : index)
+ i.cyclic=f;
+ vcyclic=f;
+ }
+
+ bool ucyclic()
+ {
+ return index.cyclic;
+ }
+
+ bool vcyclic()
+ {
+ return vcyclic;
+ }
+ path3 uequals(real u) {
+ if(index.length == 0) return nullpath3;
+ int U=floor(u);
+ int[] index=index[U];
+ path3 g;
+ for(int i : index)
+ g=g&s[i].uequals(u-U);
+ return vcyclic() ? g&cycle : g;
+ }
+
+ path3 vequals(real v) {
+ if(index.length == 0) return nullpath3;
+ int V=floor(v);
+ path3 g;
+ for(int[] i : index)
+ g=g&s[i[V]].vequals(v-V);
+ return ucyclic() ? g&cycle : g;
+ }
+
+ // A constructor for a possibly nonconvex cyclic path in a given plane.
+ void operator init(path p, triple plane(pair)=XYplane) {
bool straight=piecewisestraight(p);
- if(L <= 3 && straight) {
- s=new patch[] {patch(P(p),plane,straight)};
- return;
- }
-
- // Split p along the angle bisector at t.
- bool split(path p, real t) {
- pair dir=dir(p,t);
- if(dir != 0) {
- path g=subpath(p,t,t+length(p));
- int L=length(g);
- pair z=point(g,0);
- real[] T=intersections(g,z,z+I*dir);
- for(int i=0; i < T.length; ++i) {
- real cut=T[i];
- if(cut > sqrtEpsilon && cut < L-sqrtEpsilon) {
- pair w=point(g,cut);
- if(!inside(p,0.5*(z+w),zerowinding)) continue;
- pair delta=sqrtEpsilon*(w-z);
- if(intersections(g,z-delta--w+delta).length != 2) continue;
- s=surface(subpath(g,0,cut)--cycle,plane,checkboundary).s;
- s.append(surface(subpath(g,cut,L)--cycle,plane,checkboundary).s);
- return true;
- }
- }
- }
- return false;
- }
-
- // Ensure that all interior angles are less than 180 degrees.
- real fuzz=1e-4;
- int sign=sgn(windingnumber(p,inside(p,zerowinding)));
- for(int i=0; i < L; ++i) {
- if(sign*(conj(dir(p,i,-1))*dir(p,i,1)).y < -fuzz) {
- if(split(p,i)) return;
- }
- }
-
- pair[][] P=P(p);
-
- if(straight) {
- s=new patch[] {patch(P,plane,straight)};
- return;
- }
-
- // Check for degeneracy.
- pair[][] U=new pair[3][4];
- pair[][] V=new pair[4][3];
-
- for(int i=0; i < 3; ++i) {
- for(int j=0; j < 4; ++j)
- U[i][j]=P[i+1][j]-P[i][j];
- }
-
- for(int i=0; i < 4; ++i) {
- for(int j=0; j < 3; ++j)
- V[i][j]=P[i][j+1]-P[i][j];
- }
-
- int[] choose2={1,2,1};
- int[] choose3={1,3,3,1};
-
- real T[][]=new real[6][6];
- for(int p=0; p < 6; ++p) {
- int kstart=max(p-2,0);
- int kstop=min(p,3);
- real[] Tp=T[p];
- for(int q=0; q < 6; ++q) {
- real Tpq;
- int jstop=min(q,3);
- int jstart=max(q-2,0);
- for(int k=kstart; k <= kstop; ++k) {
- int choose3k=choose3[k];
- for(int j=jstart; j <= jstop; ++j) {
- int i=p-k;
- int l=q-j;
- Tpq += (conj(U[i][j])*V[k][l]).y*
- choose2[i]*choose3k*choose3[j]*choose2[l];
- }
- }
- Tp[q]=Tpq;
- }
- }
-
- bool3 aligned=default;
- bool degenerate=false;
-
- for(int p=0; p < 6; ++p) {
- for(int q=0; q < 6; ++q) {
- if(aligned == default) {
- if(T[p][q] < -sqrtEpsilon) aligned=true;
- if(T[p][q] > sqrtEpsilon) aligned=false;
- } else {
- if((T[p][q] < -sqrtEpsilon && aligned == false) ||
- (T[p][q] > sqrtEpsilon && aligned == true)) degenerate=true;
- }
- }
- }
-
- if(!degenerate) {
- if(aligned == (sign >= 0))
- s=new patch[] {patch(P,plane)};
- return;
- }
-
- if(checkboundary) {
- // Polynomial coefficients of (B_i'' B_j + B_i' B_j')/3.
- static real[][][] fpv0={
- {{5, -20, 30, -20, 5},
- {-3, 24, -54, 48, -15},
- {0, -6, 27, -36, 15},
- {0, 0, -3, 8, -5}},
- {{-7, 36, -66, 52, -15},
- {3, -36, 108, -120, 45},
- {0, 6, -45, 84, -45},
- {0, 0, 3, -16, 15}},
- {{2, -18, 45, -44, 15},
- {0, 12, -63, 96, -45},
- {0, 0, 18, -60, 45},
- {0, 0, 0, 8, -15}},
- {{0, 2, -9, 12, -5},
- {0, 0, 9, -24, 15},
- {0, 0, 0, 12, -15},
- {0, 0, 0, 0, 5}}
- };
-
- // Compute one-ninth of the derivative of the Jacobian along the boundary.
- real[][] c=array(4,array(5,0.0));
- for(int i=0; i < 4; ++i) {
- real[][] fpv0i=fpv0[i];
- for(int j=0; j < 4; ++j) {
- real[] w=fpv0i[j];
- c[0] += w*(conj(P[0][j]-P[1][j])*P[0][i]).y; // u=0
- c[1] += w*(conj(P[i][3])*(P[j][3]-P[j][2])).y; // v=1
- c[2] += w*(conj(P[3][j]-P[2][j])*P[3][i]).y; // u=1
- c[3] += w*(conj(P[i][0])*(P[j][1]-P[j][0])).y; // v=0
- }
- }
-
- pair BuP(int j, real u) {
- return bezierP(P[0][j],P[1][j],P[2][j],P[3][j],u);
- }
- pair BvP(int i, real v) {
- return bezierP(P[i][0],P[i][1],P[i][2],P[i][3],v);
- }
- real normal(real u, real v) {
- return (conj(bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u))*
- bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v)).y;
- }
-
- // Use Rolle's theorem to check for degeneracy on the boundary.
- real M=0;
- real cut;
- for(int i=0; i < 4; ++i) {
- if(!straight(p,i)) {
- real[] ci=c[i];
- pair[] R=quarticroots(ci[4],ci[3],ci[2],ci[1],ci[0]);
- for(pair r : R) {
- if(fabs(r.y) < sqrtEpsilon) {
- real t=r.x;
- if(0 <= t && t <= 1) {
- real[] U={0,t,1,t};
- real[] V={t,1,t,0};
- real[] T={t,t,1-t,1-t};
- real N=sign*normal(U[i],V[i]);
- if(N < M) {
- M=N; cut=i+T[i];
- }
- }
- }
- }
- }
- }
-
- // Split at the worst boundary degeneracy.
- if(M < 0 && split(p,cut)) return;
- }
-
- // Split arbitrarily to resolve any remaining (internal) degeneracy.
- checkboundary=false;
- for(int i=0; i < L; ++i)
- if(!straight(p,i) && split(p,i+0.5)) return;
-
- while(true)
- for(int i=0; i < L; ++i)
- if(!straight(p,i) && split(p,i+unitrand())) return;
+ for(path g : regularize(p))
+ s.push(patch(coons(g),plane,straight));
}
void operator init(explicit path[] g, triple plane(pair)=XYplane) {
@@ -715,12 +797,13 @@ struct surface {
// An optional surface pen color(int i, real j) may be specified
// to override the color at vertex(i,j).
void operator init(triple c, path3 g, triple axis, int n=nslice,
- real angle1=0, real angle2= 360,
+ real angle1=0, real angle2=360,
pen color(int i, real j)=null) {
axis=unit(axis);
real w=(angle2-angle1)/n;
int L=length(g);
s=new patch[L*n];
+ index=new int[n][L];
int m=-1;
transform3[] T=new transform3[n+1];
transform3 t=rotate(w,c,c+axis);
@@ -728,6 +811,9 @@ struct surface {
for(int k=1; k <= n; ++k)
T[k]=T[k-1]*t;
+ typedef pen colorfcn(int i, real j);
+ bool defaultcolors=(colorfcn) color == null;
+
for(int i=0; i < L; ++i) {
path3 h=subpath(g,i,i+1);
path3 r=reverse(h);
@@ -754,13 +840,16 @@ struct surface {
for(int k=0; k < n; ++k, j += w) {
transform3 Tp=T[k+1];
triple dirp=dir(j+w);
- path3 G=Tk*h{dirj}..{dirp}Tp*r{-dirp}..{-dirj}cycle;
+ path3 G=reverse(Tk*h{dirj}..{dirp}Tp*r{-dirp}..{-dirj}cycle);
Tk=Tp;
dirj=dirp;
- s[++m]=color == null ? patch(G) :
- patch(G,new pen[] {color(i,j),color(i+1,j),color(i+1,j+w),
- color(i,j+w)});
+ s[++m]=defaultcolors ? patch(G) :
+ patch(G,new pen[] {color(i,j),color(i,j+w),color(i+1,j+w),
+ color(i+1,j)});
+ index[k][i]=m;
}
+ ucyclic((angle2-angle1) % 360 == 0);
+ vcyclic(cyclic(g));
}
}
@@ -784,6 +873,9 @@ surface operator * (transform3 t, surface s)
S.s=new patch[s.s.length];
for(int i=0; i < s.s.length; ++i)
S.s[i]=t*s.s[i];
+ S.index=copy(s.index);
+ S.vcyclic=(bool) s.vcyclic;
+
return S;
}
@@ -894,10 +986,11 @@ triple[][] subpatchend(triple[][] P, real u, real v)
{c4[2],c5[2],c6[2],c7[2]}};
}
-patch subpatch(patch s, real ua, real va, real ub, real vb)
+patch subpatch(patch s, pair a, pair b)
{
- assert(ua >= 0 && va >= 0 && ub <= 1 && vb <= 1 && ua < ub && va < vb);
- return patch(subpatchbegin(subpatchend(s.P,ub,vb),ua/ub,va/vb),
+ assert(a.x >= 0 && a.y >= 0 && b.x <= 1 && b.y <= 1 &&
+ a.x < b.x && a.y < b.y);
+ return patch(subpatchbegin(subpatchend(s.P,b.x,b.y),a.x/b.x,a.y/b.y),
s.straight,s.planar);
}
@@ -958,8 +1051,17 @@ void draw3D(frame f, patch s, material m, light light=currentlight)
bool lighton=light.on();
if(!lighton && !invisible((pen) m))
m=emissive(m);
+ real PRCshininess;
+ if(prc()) {
+ // Empirical translation table from Phong-Blinn to PRC shininess model:
+ static real[] x={0.015,0.025,0.05,0.07,0.1,0.14,0.23,0.5,0.65,0.75,0.85,
+ 0.875,0.9,1};
+ static real[] y={0.05,0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.55,0.6,0.7,0.8,0.9,1};
+ static realfunction s=fspline(x,y,monotonic);
+ PRCshininess=s(m.shininess);
+ }
real granularity=m.granularity >= 0 ? m.granularity : defaultgranularity;
- draw(f,s.P,s.straight,m.p,m.opacity,m.shininess,granularity,
+ draw(f,s.P,s.straight,m.p,m.opacity,m.shininess,PRCshininess,granularity,
s.planar ? s.normal(0.5,0.5) : O,lighton,s.colors);
}
@@ -972,7 +1074,7 @@ void tensorshade(transform t=identity(), frame f, patch s,
}
restricted pen[] nullpens={nullpen};
-nullpens.cyclic(true);
+nullpens.cyclic=true;
void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
material[] surfacepen, pen[] meshpen=nullpens,
@@ -1011,7 +1113,7 @@ void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
depth=sort(depth);
- light.T=shiftless(P.modelview());
+ light.T=shiftless(P.T.modelview);
// Draw from farthest to nearest
while(depth.length > 0) {
@@ -1033,8 +1135,8 @@ void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
{
material[] surfacepen={surfacepen};
pen[] meshpen={meshpen};
- surfacepen.cyclic(true);
- meshpen.cyclic(true);
+ surfacepen.cyclic=true;
+ meshpen.cyclic=true;
draw(t,f,s,nu,nv,surfacepen,meshpen,light,meshlight,P);
}
@@ -1082,8 +1184,8 @@ void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
{
material[] surfacepen={surfacepen};
pen[] meshpen={meshpen};
- surfacepen.cyclic(true);
- meshpen.cyclic(true);
+ surfacepen.cyclic=true;
+ meshpen.cyclic=true;
draw(pic,s,nu,nv,surfacepen,meshpen,light,meshlight);
}
@@ -1092,18 +1194,26 @@ void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
light light=currentlight, light meshlight=light)
{
pen[] meshpen={meshpen};
- meshpen.cyclic(true);
+ meshpen.cyclic=true;
draw(pic,s,nu,nv,surfacepen,meshpen,light,meshlight);
}
-surface extrude(path p, triple axis=Z)
+surface extrude(path3 p, path3 q)
{
static patch[] allocate;
- path3 G=path3(p);
- path3 G2=shift(axis)*G;
return surface(...sequence(new patch(int i) {
- return patch(subpath(G,i,i+1)--subpath(G2,i+1,i)--cycle);
- },length(G)));
+ return patch(subpath(p,i,i+1)--subpath(q,i+1,i)--cycle);
+ },length(p)));
+}
+
+surface extrude(path3 p, triple axis=Z)
+{
+ return extrude(p,shift(axis)*p);
+}
+
+surface extrude(path p, triple axis=Z)
+{
+ return extrude(path3(p),axis);
}
surface extrude(explicit path[] p, triple axis=Z)
@@ -1179,11 +1289,11 @@ void label(frame f, Label L, triple position, align align=NoAlign,
} else {
if(L.filltype == NoFill)
fill(f,path(L,project(position,P.t),P),
- light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ color(L.T3*Z,L.p,light,shiftless(P.T.modelview)));
else {
frame d;
fill(d,path(L,project(position,P.t),P),
- light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ color(L.T3*Z,L.p,light,shiftless(P.T.modelview)));
add(f,d,L.filltype);
}
}
@@ -1215,11 +1325,11 @@ void label(picture pic=currentpicture, Label L, triple position,
if(pic != null) {
if(L.filltype == NoFill)
fill(project(v,P.t),pic,path(L,P),
- light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ color(L.T3*Z,L.p,light,shiftless(P.T.modelview)));
else {
picture d;
fill(project(v,P.t),d,path(L,P),
- light.color(L.T3*Z,L.p,shiftless(P.modelview())));
+ color(L.T3*Z,L.p,light,shiftless(P.T.modelview)));
add(pic,d,L.filltype);
}
}
@@ -1271,30 +1381,74 @@ surface extrude(Label L, triple axis=Z)
restricted surface nullsurface;
+surface labelsurface(Label L, surface s, real uoffset, real voffset,
+ real height=0, bool bottom=false, bool top=true)
+{
+ int nu=s.index.length;
+ if(nu == 0) return nullsurface;
+ int nv=s.index[0].length;
+ if(nv == 0) return nullsurface;
+
+ path[] g=texpath(L);
+ pair m=min(g);
+ pair M=max(g);
+ pair lambda=inverse(L.T*scale(nu-epsilon,nv-epsilon))*(M-m);
+ lambda=(abs(lambda.x),abs(lambda.y));
+ path[] G=bezulate(g);
+
+ path3 transpath(path p, real height) {
+ return path3(unstraighten(p),new triple(pair z) {
+ real u=uoffset+(z.x-m.x)/lambda.x;
+ real v=voffset+(z.y-m.y)/lambda.y;
+ if(((u < 0 || u >= nu) && !s.ucyclic()) ||
+ ((v < 0 || v >= nv) && !s.vcyclic()))
+ abort("cannot fit string to surface");
+ return s.point(u,v)+height*unit(s.normal(u,v));
+ });
+ }
+
+ surface s;
+ for(path p : G) {
+ for(path g : regularize(p)) {
+ path3 b;
+ bool extrude=height > 0;
+ if(bottom || extrude)
+ b=transpath(g,0);
+ if(bottom) s.s.push(patch(b));
+ if(top || extrude) {
+ path3 h=transpath(g,height);
+ if(top) s.s.push(patch(h));
+ if(extrude) s.append(extrude(b,h));
+ }
+ }
+ }
+ return s;
+}
+
private real a=4/3*(sqrt(2)-1);
-private transform3 t=rotate(90,O,Z);
-private transform3 t2=t*t;
-private transform3 t3=t2*t;
+private transform3 t1=rotate(90,O,Z);
+private transform3 t2=t1*t1;
+private transform3 t3=t2*t1;
private transform3 i=xscale3(-1)*zscale3(-1);
-restricted patch octant1=patch(X{Z}..{-X}Z..Z{Y}..{-Z}Y{X}..{-Y}cycle,
- new triple[] {(1,a,a),(a,a^2,1),(a^2,a,1),
- (a,1,a)});
+restricted patch octant1=patch(X{Y}..{-X}Y{Z}..{-Y}Z..Z{X}..{-Z}cycle,
+ new triple[] {(1,a,a),(a,1,a),(a^2,a,1),
+ (a,a^2,1)});
-restricted surface unithemisphere=surface(octant1,t*octant1,t2*octant1,
+restricted surface unithemisphere=surface(octant1,t1*octant1,t2*octant1,
t3*octant1);
-restricted surface unitsphere=surface(octant1,t*octant1,t2*octant1,t3*octant1,
- i*octant1,i*t*octant1,i*t2*octant1,
+restricted surface unitsphere=surface(octant1,t1*octant1,t2*octant1,t3*octant1,
+ i*octant1,i*t1*octant1,i*t2*octant1,
i*t3*octant1);
restricted patch unitfrustum(real t1, real t2)
{
real s1=interp(t1,t2,1/3);
real s2=interp(t1,t2,2/3);
- return patch(interp(Z,X,t2)--interp(Z,X,t1){Y}..{-X}interp(Z,Y,t1)--
- interp(Z,Y,t2){X}..{-Y}cycle,
- new triple[] {(s2,s2*a,1-s2),(s1,s1*a,1-s1),(s1*a,s1,1-s1),
- (s2*a,s2,1-s2)});
+ return patch(interp(Z,X,t2){Y}..{-X}interp(Z,Y,t2)--interp(Z,Y,t1){X}..{-Y}
+ interp(Z,X,t1)--cycle,
+ new triple[] {(s2,s2*a,1-s2),(s2*a,s2,1-s2),(s1*a,s1,1-s1),
+ (s1,s1*a,1-s1)});
}
// Return a unitcone constructed from n frusta (the final one being degenerate)
@@ -1306,7 +1460,7 @@ surface unitcone(int n=6)
for(int i=0; i < n; ++i) {
patch s=unitfrustum(i < n-1 ? r^(i+1) : 0,r^i);
unitcone.s[i]=s;
- unitcone.s[n+i]=t*s;
+ unitcone.s[n+i]=t1*s;
unitcone.s[2n+i]=t2*s;
unitcone.s[3n+i]=t3*s;
}
@@ -1316,9 +1470,9 @@ surface unitcone(int n=6)
restricted surface unitcone=unitcone();
restricted surface unitsolidcone=surface(patch(unitcircle3)...unitcone.s);
-private patch unitcylinder1=patch(X--X+Z{Y}..{-X}Y+Z--Y{X}..{-Y}cycle);
+private patch unitcylinder1=patch(X{Y}..{-X}Y--Y+Z{X}..{-Y}X+Z--cycle);
-restricted surface unitcylinder=surface(unitcylinder1,t*unitcylinder1,
+restricted surface unitcylinder=surface(unitcylinder1,t1*unitcylinder1,
t2*unitcylinder1,t3*unitcylinder1);
private patch unitplane=patch(new triple[] {O,X,X+Y,Y});