summaryrefslogtreecommitdiff
path: root/Master/texmf-dist
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2014-01-04 00:17:22 +0000
committerKarl Berry <karl@freefriends.org>2014-01-04 00:17:22 +0000
commit64cabb7b36a81f41f4bbe49f00cf5aa4fc83f66c (patch)
treea58cad8582cd6d596ac7c83e4c87166d009ea2f3 /Master/texmf-dist
parent09a6ab34f799132f02f90e619fa695f2a07c426d (diff)
minifp (3jan14)
git-svn-id: svn://tug.org/texlive/trunk@32559 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist')
-rw-r--r--Master/texmf-dist/doc/generic/minifp/README3
-rw-r--r--Master/texmf-dist/doc/generic/minifp/minifp.pdfbin421610 -> 430316 bytes
-rw-r--r--Master/texmf-dist/doc/generic/minifp/test1.tex31
-rw-r--r--Master/texmf-dist/doc/generic/minifp/test2.tex4
-rw-r--r--Master/texmf-dist/source/generic/minifp/minifp.dtx292
-rw-r--r--Master/texmf-dist/tex/generic/minifp/mfpextra.tex40
-rw-r--r--Master/texmf-dist/tex/generic/minifp/minifp.sty11
7 files changed, 296 insertions, 85 deletions
diff --git a/Master/texmf-dist/doc/generic/minifp/README b/Master/texmf-dist/doc/generic/minifp/README
index 065bac29198..5f488bf27f3 100644
--- a/Master/texmf-dist/doc/generic/minifp/README
+++ b/Master/texmf-dist/doc/generic/minifp/README
@@ -13,7 +13,7 @@ Purpose:
Minifp should work in both LaTeX and plainTeX.
- This is version 0.95. It should work reasonably well, barring any
+ This is version 0.96. It should work reasonably well, barring any
bugs, but I expect to spend some time fine-tuning it before calling it
version 1.0.
@@ -83,6 +83,7 @@ Manifest:
<http://comp.uark.edu/~luecking/tex/tex.html>.
History:
+ Version 0.96: Added random number generator, based on random.tex
Version 0.95: More testing. Changed square root of negative from an
error to a warning. Documentation updated. Now mfpextra
checks for minifp.sty and inputs it if needed.
diff --git a/Master/texmf-dist/doc/generic/minifp/minifp.pdf b/Master/texmf-dist/doc/generic/minifp/minifp.pdf
index d08a688cf76..0fffe0ad383 100644
--- a/Master/texmf-dist/doc/generic/minifp/minifp.pdf
+++ b/Master/texmf-dist/doc/generic/minifp/minifp.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/minifp/test1.tex b/Master/texmf-dist/doc/generic/minifp/test1.tex
index 2956afa3fe6..52b8d138fad 100644
--- a/Master/texmf-dist/doc/generic/minifp/test1.tex
+++ b/Master/texmf-dist/doc/generic/minifp/test1.tex
@@ -70,8 +70,8 @@ Sine:\Rsin\y
Cosine:\Rcos\y
\Rpop\X\Rpush{21.34}%
Radians to degrees:\Rdeg\y
- \Rpop\X\Rpush{21.34}%
-Degrees to radians :\Rrad\y
+ \Rpop\X\Rpush{-21.34}%
+Degrees to radians (negative):\Rrad\y
\Rpop\X\Rpush{21.34}%
Common logarithm:\Rlog\y
\Rpop\X\Rpush{21.34}%
@@ -90,6 +90,18 @@ Floor:\Rfloor\y
Ceiling:\Rceil\y
\Rpop\X\Rpush{21.34}%
Square root:\Rsqrt\y
+ \Rpop\X\Rpush{21.34}%
+Random number:\Rrand\y
+ \Rpop\X\Rpush{21.34}%
+% restart with second generator
+\MFPsetseed0
+\MFPrandgenB
+Another:\Rrand\y
+ \Rpop\X\Rpush{21.34}%
+% restart with third generator
+\MFPsetseed0
+\MFPrandgenC
+Another:\Rrand\y
Now push $21.34$ and $12.34$ in that order:\Rpop\X\Rpush{21.34}\Rpush{12.34}\y
Compare: \Rcmp
21.34 is\IFlt{}{ not} less than 12.34.
@@ -188,7 +200,20 @@ Natural logarithm of {\tt X}:\MFPln\X\Z\w
number:^^J}%
Natural Logarithm of {\tt Y}:\MFPln\Y\Z\w
Exponential of {\tt X}:\MFPexp\X\Z\w
- Exponential of {\tt Y}:\MFPexp\Y\Z\W
+ Exponential of {\tt Y}:\MFPexp\Y\Z\w
+ Square root of {\tt X}:\MFPsqrt\X\Z\w
+ Square root of {\tt Y}:\MFPsqrt\Y\Z\w
+\MFPrandgenA
+Random number less than {\tt X}:\MFPrand\X\Z\w
+Random number less than {\tt Y}:\MFPrand\Y\Z\w
+\MFPsetseed0
+\MFPrandgenB
+ Another less than {\tt X}:\MFPrand\X\Z\w
+ Another less than {\tt Y}:\MFPrand\Y\Z\w
+\MFPsetseed0
+\MFPrandgenC
+ Another less than {\tt X}:\MFPrand\X\Z\w
+ Another less than {\tt Y}:\MFPrand\Y\Z\w
\filbreak
{\bf Extra tests of sine}\\
diff --git a/Master/texmf-dist/doc/generic/minifp/test2.tex b/Master/texmf-dist/doc/generic/minifp/test2.tex
index 6d6398a8976..c861032595b 100644
--- a/Master/texmf-dist/doc/generic/minifp/test2.tex
+++ b/Master/texmf-dist/doc/generic/minifp/test2.tex
@@ -104,6 +104,7 @@ with {\tt\string\pdfelapsedtime}.
2.54321\times22432.87654321 &0.046\cr
22432.87654321/2.54321 &0.11\cr
\sqrt{23456789.54321} &0.172\cr
+\mathop{\fam0 rand}(23456789.54321) &0.105\cr
1.00001234^{8000} &0.72\cr
\exp(2.54321) &0.42\cr
\sin(2.54321) &0.41\cr
@@ -153,6 +154,7 @@ the 32-bit hardware.)
\Rpop\X\Rpush{21.34}\Rfloor
\Rpop\X\Rpush{21.34}\Rceil
\Rpop\X\Rpush{21.34}\Rsqrt
+\Rpop\X\Rpush{21.34}\Rrand
\Rpop\X\Rpush{21.34}\Rpush{12.34}\Rcmp
\IFlt{}{}\IFgt{}{}\IFeq{}{}\Rsub
\IFneg{}{}\IFpos{}{}\IFzero{}{}\Rpop\X
@@ -250,6 +252,8 @@ the 32-bit hardware.)
\MFPexp{8}\Z
\MFPexp{9}\Z
\MFPexp{10}\Z
+\MFPsqrt{10}\Z
+\MFPrand{10}\Z
\MFPexp{-8.3254}\Z
\MFPpow\MFPe{-10}\Z
\MFPpow\MFPe{-9}\Z
diff --git a/Master/texmf-dist/source/generic/minifp/minifp.dtx b/Master/texmf-dist/source/generic/minifp/minifp.dtx
index c3621aef2ba..2e88dd1e47f 100644
--- a/Master/texmf-dist/source/generic/minifp/minifp.dtx
+++ b/Master/texmf-dist/source/generic/minifp/minifp.dtx
@@ -13,8 +13,8 @@
% minifp has maintenance status "author-maintained". The Current Maintainer
% is Daniel H. Luecking. The Base Interpreter is TeX (plain TeX or LaTeX).
%<*driver|sty>
-\def\MFPfiledate{2013/05/28}%
-\def\MFPfileversion{0.95}%
+\def\MFPfiledate{2013/12/30}%
+\def\MFPfileversion{0.96}%
%</driver|sty>
%
%<*driver>
@@ -25,8 +25,8 @@
\addtolength{\textwidth}{1pt}
-\usepackage[morefloats=2]{morefloats}
-
+\usepackage[morefloats=5]{morefloats}
+\usepackage{amssymb}
% This avoids messages about nonexistent font variants (e.g., in \section):
\def\mytt{\upshape\mdseries\ttfamily}
% I use it instead of \texttt:
@@ -104,7 +104,7 @@
\end{document}
%</driver>
%\fi
-% \CheckSum{3402}
+% \CheckSum{3541}
% \CharacterTable
% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
@@ -262,8 +262,8 @@
% negation, absolute value, doubling, halving, integer part, fractional
% part, floor, ceiling, signum, squaring, increment, decrement and
% inversion. With the ``\texttt{extra}'' option, the unary operations
-% sine, cosine, logarithm, powers and square root are available, and the
-% binary operation angle. See section~\ref{extras}.
+% sine, cosine, logarithm, powers, square root and random number are
+% available, and the binary operation angle. See section~\ref{extras}.
%
% These extra operations are made available using the \texttt{extra}
% option in \LaTeX{}:
@@ -326,19 +326,21 @@
%
% \subsection{Nonstack-based operations}
%
-% In the following tables, an argument designated
-% \meta{num} can be any decimal real number with at most 8
-% digits on each side of the decimal point, or it can be a macro that
-% contains such a number. If the decimal dot is absent, the fractional part
-% will be taken to be zero, if the integer part or the fractional part is
-% absent, it will be taken to be zero. (One consequence of these rules is
-% that all the following arguments produce the same internal
-% representation of zero: \marg{0.0}, \marg{0.}, \marg{.0},
-% \marg{0}, \marg{.}, and \marg{}\,.) Spaces may appear anywhere in the
-% \meta{num} arguments and are stripped out before the number is used.
-% For example, \marg{3 . 1415 9265} is a valid argument. Commas are not
-% permitted. The decimal dot (period, fullstop) character must be
-% inactivated if some babel language makes it a shorthand.
+% In the following tables, an argument designated \meta{num} can be any
+% decimal real number with at most 8 digits on each side of the decimal
+% point, or it can be a macro that contains such a number. If the decimal
+% dot is absent, the fractional part will be taken to be zero, if the
+% integer part or the fractional part is absent, it will be taken to be
+% zero. (One consequence of these rules is that all the following
+% arguments produce the same internal representation of zero: \marg{0.0},
+% \marg{0.}, \marg{.0}, \marg{0}, \marg{.}, and \marg{}\,.) Spaces may
+% appear anywhere in the \meta{num} arguments and are stripped out before
+% the number is used. For example, \marg{3 . 1415 9265} is a valid
+% argument. Commas are not permitted. The decimal point \emph{must} be
+% ASCII 46 (variously called a dot, period, or fullstop) with category 12
+% (`other'). If an input encoding is used that allows more than one `dot',
+% the user must be sure to enter this one. If some babel language
+% definitions make it a shorthand, it must be inactivated before use.
%
% The \cs{macro} argument is any legal macro. The result of using one of
% these commands is that the macro is defined (or redefined, there is no
@@ -632,7 +634,7 @@
% \medskip
% \centerline{%
% \begin{tabular}{lp{4.0in}}
-% \multicolumn2{c}{\textit{Binary Operations}}\\
+% \textit{Binary Operations}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -662,7 +664,7 @@
% \medskip
% \centerline{%
% \begin{tabular}{lp{4.0in}}
-% \multicolumn2{c}{\textit{Unary Operations}}\\
+% \textit{Unary Operations}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -714,7 +716,7 @@
% \medskip
% \centerline{%
% \begin{tabular}{lp{3.8in}}
-% \multicolumn2{c}{\textit{Do Nothing}}\\
+% \textit{Do Nothing}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -761,7 +763,7 @@
% \medskip
% \centerline{%
% \begin{tabular}{lp{3.8in}}
-% \multicolumn2{c}{\textit{Stack Manipulations}}\\
+% \textit{Stack Manipulations}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -783,7 +785,7 @@
% \medskip
% \centerline{%
% \begin{tabular}{lp{3.8in}}
-% \multicolumn2{c}{\textit{Exporting changed values}}\\
+% \textit{Exporting changed values}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -852,8 +854,8 @@
% incorrect that this package does not even try to detect them. Thus, they
% will only be caught if some \TeX{} operation encounters something it
% cannot handle. (The \LaTeX{} manual calls these ``weird errors'' because
-% the messages tend to be uninformative.) Incorrect numbers may even
-% pass unnoticed, but leave random printed characters on the paper, or odd
+% the messages tend to be uninformative.) Incorrectly formed numbers may even
+% pass unnoticed, but leave unexpected printed characters on the paper, or odd
% spacing.
%
% \section{Implementation}
@@ -955,8 +957,8 @@
% \end{macrocode}
%
% We need to divide by both $10^4$ and $10^8$ several times. I could
-% have allocated two count registers, but have taken the approach of only
-% using those for intermediate calculations.
+% have allocated two count registers, but have taken the approach of
+% reserving those for intermediate calculations.
% \begin{macrocode}
\def\MFP@tttfour {10000}% ttt = Ten To The
\def\MFP@ttteight{100000000}%
@@ -1124,7 +1126,7 @@
% stored in \cs{MFP@*@Sgn} as $-1$, $0$ or $1$.
%
% We strip the spaces and pad the fractional parts separately because
-% they are unnecessary when processing \op{pop}ed reals (though they wouldn't
+% they are unnecessary when processing \op{pop}ped reals (though they wouldn't
% hurt).
%
% The number to be parsed is \arg4 and the macros to contain the parts
@@ -1202,7 +1204,14 @@
% \end{macrocode}
%
% Concatenate an argument (or two) to the front of stack. The material
-% must already be in correct format.
+% must already be in correct format. Note: `front' is where they go
+% visually (i.e., leftmost) but it can be useful to imagine the stack
+% growin rightward (or sometimes even downward).
+%
+% Note that the result of \verb$\MFP@cattwo{#1}{#2}$ is the same as
+% \verb$\MFP@cat{#2}$ followed by \verb$\MFP@cat{#1}$. It seemed that
+% reversing the arguments in \cs{MFP@Rcattwo} confused me more than this
+% fact.
% \begin{macrocode}
\def\MFP@Rcat#1{\edef\MFP@Rstack{{#1}\MFP@Rstack}}%
\def\MFP@Rcattwo#1#2{\edef\MFP@Rstack{{#1}{#2}\MFP@Rstack}}%
@@ -1448,12 +1457,16 @@
% \DescribeMacro{\Rexch}
% \DescribeMacro{\Rdup}
% And finally some special commands. There is a no-op and commands for
-% comparing, checking, and manipulation of the stack.
+% comparing, checking, and manipulation of the stack. Note that
+% \cs{Rcmp} parses the last two elements on the stack, then puts them back
+% before calling the internal command that operates on the parsed parts.
+% The same is true of \cs{Rchk}, but only the last stack element is
+% examined.
% \begin{macrocode}
\let\Rnoop\relax
\def\Rcmp{%
\MFPgetoperand@y\MFPgetoperand@x
- \MFP@Rcat\MFP@x@Val\MFP@Rcat\MFP@y@Val
+ \MFP@Rcattwo\MFP@y@Val\MFP@x@Val
\MFP@Rcmp}%
\def\Rchk{%
\MFPgetoperand@x
@@ -1466,8 +1479,8 @@
\MFPpush@result}%
\def\Rpop{\@xp\MFP@popit\MFP@Rstack\MFP@end}%
\def\Rexch{%
- \Rpop\MFP@x@Val\Rpop\MFP@y@Val
- \MFP@Rcattwo\MFP@y@Val\MFP@x@Val}%
+ \Rpop\MFP@y@Val\Rpop\MFP@x@Val
+ \MFP@Rcattwo\MFP@x@Val\MFP@y@Val}%
\def\Rdup{%
\Rpop\MFP@x@Val
\MFP@Rcattwo\MFP@x@Val\MFP@x@Val}%
@@ -2074,7 +2087,8 @@
% We invoke an error message upon division by zero, but nevertheless return
% a value. By default it is $0$ for $0/0$ and the maximum possible real
% for $x/0$ when $x$ is not zero. If the numerator is zero and the
-% denominator not, we do nothing as $z$ was initialized to be zero.
+% denominator not, we could do nothing as $z$ was initialized to be zero.
+% However, we play it safe by explicitly setting $z$ to zero.
%
% If neither is zero, we calculate the sign of the result and call
% \cs{MFP@@Rdiv} to divide the absolute values.
@@ -2140,10 +2154,11 @@
% \end{macrocode}
%
% Since our result will have at most one digit in the integer part, a
-% rightward shift of $10$ places will make every digit $0$, including the
-% rounding digit, so we do nothing (returning $0$).
+% rightward shift of $10$ places will make every digit $0$ including the
+% rounding digit, so we return $0$.
% \begin{macrocode}
\ifnum\MFP@tempa<-9
+ \MFP@Rzero
\else
% \end{macrocode}
%
@@ -2549,13 +2564,13 @@
%
% \section{Extras}\label{extras}
%
-% The extras consist so far of sine, cosine, angle, logarithm, powers, and
-% square root. For completeness, here is the table of user-level commands
-% available.
+% The extras consist so far of sine, cosine, angle, logarithm, powers,
+% square root, and random number. For completeness, here is the table of
+% user-level commands available.
%
% \medskip
% \centerline{%
-% \begin{tabular}{lp{3.4in}}
+% \begin{tabular}{lp{3in}}
% \textit{Operand versions}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
@@ -2592,16 +2607,39 @@
% \SpecialUsageIndex{\MFPsqrt}^^A
% \cs{MFPsqrt}\mmarg{num}\cs{macro}&
% Stores the square root of \meta{num} in \cs{macro}.\\
+% \SpecialUsageIndex{\MFPrand}^^A
+% \cs{MFPrand}\mmarg{num}\cs{macro}&
+% Stores a random real number between $0$ amd \meta{num} in
+% \cs{macro}. If \meta{num} is negative, so is the result.\\
% \SpecialUsageIndex{\MFPpow}^^A
% \cs{MFPpow}\mmarg{num}\mmarg{int}\cs{macro}&
% Stores the \meta{int} power of \meta{num} in \cs{macro}. The
% second operand must be an integer (positive or negative).
% \end{tabular}}
%
+% In addition, there is \SpecialUsageIndex{\MFPsetseed}\cs{MFPsetseed} for
+% setting the internal random number seed. It takes one argument, the seed
+% value, which must be an integer greater than or equal to $1$ and less
+% than or equal to $2^{31}-2 = 2\,147\,483\,646$. If the seed is set to
+% zero or a negative number then the first use of the random number
+% generator will replace it with a seed value based on the current time
+% and date. The randum number seed is a global value.
+%
+% There are actually three random number generators and they can be
+% selected with the commands
+% \SpecialUsageIndex{\MFPrandgenA}\cs{MFPrandgenA},
+% \SpecialUsageIndex{\MFPrandgenB}\cs{MFPrandgenB}, or
+% \SpecialUsageIndex{\MFPrandgenC}\cs{MFPrandgenC}. The first uses the
+% code and multiplier value from the well-known macro file
+% \file{random.tex}. It is the default. The other two use different
+% multipliers which are alleged to have better statistical behavior. If
+% any of these commands is used inside a group, that generator is in force
+% during that group only.
+%
% \bigskip
% \centerline{%
% \begin{tabular}{lp{3.9in}}
-% \multicolumn2{c}{\textit{Stack versions}}\\
+% \textit{Stack versions}&\\[3pt]
% \hline\hline
% \textbf{Command}&\textbf{operation}\\
% \hline
@@ -2625,6 +2663,9 @@
% Computes the exponential of the number (i.e., $e^x$).\\
% \SpecialUsageIndex{\Rsqrt}\cs{Rsqrt}&
% Computes the square root of the number.\\
+% \SpecialUsageIndex{\Rrand}\cs{Rrand}&
+% Returns a random real number between $0$ and the number, keeping the
+% sign.\\
% \SpecialUsageIndex{\Rpow}\cs{Rpow}&
% Computes $x^y$. The last number pushed ($y$) must be an
% integer.
@@ -2644,7 +2685,7 @@
% \DescribeMacro{\Rrad}\DescribeMacro{\Rdeg}
% \DescribeMacro{\Rlog}\DescribeMacro{\Rln}
% \DescribeMacro{\Rexp}\DescribeMacro{\Rsqrt}
-% \DescribeMacro{\Rpow}
+% \DescribeMacro{\Rrand}\DescribeMacro{\Rpow}
% We start \file{mfpextra} with the hook \cs{MFP@Rextra} that
% \cs{startMFPprogram} will call to make available the extra operations
% defined here. If \file{minifp.sty} has been loaded, this macro is
@@ -2684,6 +2725,7 @@
\def\Rln {\MFP@stack@Unary\MFP@Rln }%
\def\Rexp {\MFP@stack@Unary\MFP@Rexp }%
\def\Rsqrt {\MFP@stack@Unary\MFP@Rsqrt}%
+ \def\Rrand {\MFP@stack@Unary\MFP@Rrand}%
\def\Rpow {\MFP@stack@Binary\MFP@Rpow}}%
% \end{macrocode}
%
@@ -2691,7 +2733,7 @@
% \DescribeMacro{\MFPrad}\DescribeMacro{\MFPdeg}
% \DescribeMacro{\MFPlog}\DescribeMacro{\MFPln}
% \DescribeMacro{\MFPexp}\DescribeMacro{\MFPsqrt}
-% \DescribeMacro{\MFPpow}
+% \DescribeMacro{\MFPrand}\DescribeMacro{\MFPpow}
% Then the wrappers for the operand versions.
% \begin{macrocode}
\def\MFPcos {\MFP@op@Unary\MFP@Rcos }%
@@ -2703,6 +2745,7 @@
\def\MFPln {\MFP@op@Unary\MFP@Rln }%
\def\MFPexp {\MFP@op@Unary\MFP@Rexp }%
\def\MFPsqrt {\MFP@op@Unary\MFP@Rsqrt}%
+\def\MFPrand {\MFP@op@Unary\MFP@Rrand}%
\def\MFPpow {\MFP@op@Binary\MFP@Rpow}%
% \end{macrocode}
%
@@ -2813,7 +2856,8 @@
%
% The registers $w$ and $v$ are used to save intermediate results.
% The ``\texttt{DP}'' in \cs{MFP@DPmul} refers to the fact that we are
-% multiplying by a ``double precision'' real.
+% multiplying by a ``double precision'' real. The conversion factors are
+% required to be positive.
% \begin{macrocode}
\def\MFP@DPmul#1#2#3{%
\ifnum\MFP@x@Sgn=0
@@ -3148,7 +3192,7 @@
% compute the angle for $|x|$ and subtract it from $180$. Finally,
% reduced to both coordinates positive, if $y>x$ we compute the angle of
% $(y,x)$ and subtract that from $90$. Ultimately, we apply a power
-% series formula for $mathop{\mathrm{angle}}(1,y/x)$ and get convergence
+% series formula for $\mathop{\mathrm{angle}}(1,y/x)$ and get convergence
% when the argument is less than $1$, but convergence is poor unless the
% argument is less than $1/2$. When that is not the case, conceptually, we
% rotate the picture clockwise by the arctangent of $1/2$, compute the
@@ -3303,10 +3347,10 @@
% $$
% where $u = x^2$.
%
-% We start with the common iterated code. It assumes a scaled value in x
+% We start with the common iterated code. It assumes a scaled value in $x$
% to be multiplied by the saved (scaled) value of $x^2$ (in register $u$)
% and by a coefficient (supplied in separate integer and fractional
-% parts). It ends with the new value in x.
+% parts). It ends with the new value in $x$.
% \begin{macrocode}
\def\MFP@scaledmul{\MFP@Rmul\MFP@Rcopyzx\MFP@RdivC}%
\def\MFP@atan@iter#1#2{%
@@ -3346,9 +3390,10 @@
%
% The power series produces a logarithm in base $e$ so we ultimately get
% the answer in two parts, with the parts calculated for different bases.
-% The last step is to multiply the second part by a conversion factor and
-% add the first to it. For natural log, convert the first and add the
-% second. Which one is to be returned is passed as a boolean
+% The last step for the common log is to multiply the second part by a
+% conversion factor and add the first to it. For natural log, convert the
+% first and add the second. Which one is to be returned is passed as a
+% boolean.
%
% We keep the value-so-far in register $s$ and the modified
% $x$-value in register $t$.
@@ -3398,8 +3443,8 @@
\fi
% \end{macrocode}
%
-% Now the integer part of $\log_{10} x$ is known. We save it in $s$
-% Also, set the sign of the reduced argument (positive). Then call
+% Now the integer part of $\log_{10} x$ is known. We save it in $s$.
+% Also set the sign of the reduced argument (positive). Then call
% \cs{MFP@Rlog@reduce}, which reduces $x$ to less than $1.161\,$ while
% possibly increasing $s$. For the natural log, we convert the value in
% $s$.
@@ -3720,9 +3765,17 @@
% The above scheme requires at most $\lfloor\log_2 n\rfloor$ squarings
% and at most $\lceil \log_2 n \rceil$ multiplications for $x^n$, while
% directly multiplying $x\cdot x \cdots x$ would require $n-1$
-% multiplications. I have tested with an exponent equal to $8000$ and it
-% takes only about $25$ times as long as a single multiplication (rather
-% than $7999$ times).
+% multiplications.
+%
+% I have tested with an exponents around $8000$, which has 13 binary
+% digits. Each squaring could double the relative error. For that
+% large a power, the base has to be near 1 to avoid overflow or underflow.
+% So the relative error is about $.5(10)^{-8}$. Doubling that 12 times
+% would increase it to about $.00004$, and the result could have as little
+% as 4 or 5 significant figures. In these tests, the results were actually
+% accurate to 5 or 6 significant figures, starting with 8 figures. Raising
+% to this power takes only about $25$ times as long as a single
+% multiplication (rather than $7999$ times).
%
% For negative powers we can either find the positive power of $x$ and
% take its reciprocal or take the reciprocal of $x$ and find its positive
@@ -3845,7 +3898,7 @@
% With this value, $s + \bar\epsilon$ misses the exact square root by at
% most $\epsilon^2/(2s) < .5\cdot 10^{-8}$, because $s \ge 1$.
% The final result $s + \bar\epsilon$ is equivalent to computing the
-% average $s$ and $x/s$. This, possibly divided by $10^4$ or $10^2$ is the
+% average of $s$ and $x/s$. This, possibly divided by $10^4$ or $10^2$ is the
% returned value.
%
% By tests, with rare exceptions, our computations produces a result
@@ -3899,13 +3952,13 @@
% number is too large for \TeX{} to handle as an integer, it is not that
% hard to convert it to a string of binary digits stored in a macro.
%
-% The process turns out to be simpler if we convert $10^8 x$ to base 4
-% rather than binary. Also, instead of producing the square root encoded
-% in a string of binary digits, we simply build the numerical result as we
-% discover the binary digits (multiply previous value by two and add the
-% new digit.) Fortunately, the square root of $10^8 x$ (and the
-% temporary scratch registers used in the code) will never exceed \TeX{}'s
-% limit for integers.
+% The algorithm simplifies somewhat if we proces a base 4 integer,
+% producing a base 2 result. Also, instead of producing the square root
+% encoded in a string of binary digits, we simply build the numerical
+% result as we discover the binary digits (multiply previous value by two
+% and add the new digit.) Fortunately, the square root of $10^8 x$ (and
+% the temporary scratch registers used in the code) will never exceed
+% \TeX{}'s limit for integers.
%
% The macro \cs{MFP@ItoQ} implements the conversion to base-4 digits.
% The two arguments are the integer and fractional part of $x$. The
@@ -3965,8 +4018,9 @@
%
% The following is a loop that essentially performs a base-2 version of
% the base-10 algorithm that I learned at age 12 from my father
-% (apparently it was taught in eighth or ninth grade in his day). Seeing
-% it written out, I am surprise at how concise and elegant it is!
+% (apparently it was taught in eighth or ninth grade in his day, but not
+% in mine). Seeing it written out, I am surprise at how concise and
+% elegant it is!
% \begin{macrocode}
\def\MFP@Isqrt@loop#1{%
\ifx\MFP@end #1%
@@ -3980,17 +4034,103 @@
\fi
\expandafter\MFP@Isqrt@loop
\fi}%
+% \end{macrocode}
+%
+%^^A For my own benefit: the above code finds the next binary digit and
+%^^A updates the square root (in \cs{MFP@tempc}) by appending that digit. The
+%^^A new digit is also appended to the end of \cs{MFP@tempa}. This is
+%^^A subtracted from \cs{MFP@tempb}, but only if the last digit is a 1. Then
+%^^A the next quadrenary digit is appended to \cs{MFP@tempb}. Finally, the
+%^^A last binary digit found is added (not appended) to \cs{MFP@tempa}. The
+%^^A ``appending'' of a digit means a multiplication by $2$ (or $4$) and the
+%^^A addition of the digit. We perform such additions only if the digit is a
+%^^A 1, and we determine if the digit is 1 or 0 by the \cs{ifnum} test.
+%
+% \subsection{Random numbers}
+%
+% We borrow the code of \file{random.tex} to generate a random integer in
+% the range $1$ to $2^{31}-2$, inclusive. Mathematically, this works
+% because the modulus $m = 2^{31}-1$ is a prime number, and the
+% multiplicative group of nonzero elements of $\mathbb{Z}_m$ is cyclic.
+% The multiplier chosen (in our cases $16\,807$, $48\,271$, or $69\,621$)
+% has to be a generator of that group.
+%
+% The first step is the code for \cs{nextrandom} from \file{random.tex}.
+% We could omit this if it is already defined, or we could even input
+% \file{random.tex} but, for better control, we define it ourselves with
+% an internal name. This code leaves the next random number in
+% \cs{MFP@randseed}. The initial seed is calculated from the time and
+% date if it was not positive
+% \begin{macrocode}
+\newcount\MFP@randseed % the random number (and starting seed)
+\def\MFP@nextrand{\begingroup
+ \ifnum\MFP@randseed<1
+ \global\MFP@randseed\time
+ \global\multiply\MFP@randseed388 \global\advance\MFP@randseed\year
+ \global\multiply\MFP@randseed31 \global\advance\MFP@randseed\day
+ \global\multiply\MFP@randseed97 \global\advance\MFP@randseed\month
+ \MFP@nextrand \MFP@nextrand \MFP@nextrand
+ \fi
+ \MFP@tempa\MFP@randseed
+ \divide\MFP@tempa \MFP@rand@q % modulus = m*q + r
+ \MFP@tempb\MFP@tempa
+ \multiply\MFP@tempa \MFP@rand@q
+ \global\advance\MFP@randseed-\MFP@tempa % seed mod q
+ \global\multiply\MFP@randseed \MFP@rand@m
+ \multiply\MFP@tempb \MFP@rand@r
+ \global\advance\MFP@randseed-\MFP@tempb
+ \ifnum\MFP@randseed<\z@ \global\advance\MFP@randseed "7FFFFFFF\relax\fi
+ \endgroup}%
+% \end{macrocode}
+%
+% \DescribeMacro{\MFPrandgenA}\DescribeMacro{\MFPrandgenB}
+% \DescribeMacro{\MFPrandgenC}
+% We have paametrized \cs{MFP@nextrand} so that any suitable multiplier
+% can be used. The following commands each select one of the three
+% multipliers that we provide, plus precomputed values for the quotient
+% and remainder. We default to generator ``A''.
+% \begin{macrocode}
+\def\MFPrandgenA{\def\MFP@rand@m{16807 }\def\MFP@rand@q{127773 }%
+ \def\MFP@rand@r{2836 }}%
+\def\MFPrandgenB{\def\MFP@rand@m{48271 }\def\MFP@rand@q{44488 }%
+ \def\MFP@rand@r{3399 }}%
+\def\MFPrandgenC{\def\MFP@rand@m{69621 }\def\MFP@rand@q{30845 }%
+ \def\MFP@rand@r{23902 }}%
+\MFPrandgenA
+% \end{macrocode}
+%
+% The command \verb$\MFPranr{$\meta{x}\verb$}\X$ will take a parameter $x$
+% and define \cs{X} to contain a (pseudo)random real number in the
+% interval $[0,x]$. Theoretically, the number should lie in $[0,x)$, but
+% rounding will make $x$ itself a possible value. Similarly, \cs{Rrand}
+% will replace the $x$ on top of the stack with this random value. To get
+% the result, we call \cs{MFP@getrand} twice to produce two random
+% integers in the range $[0,99999999]$ and assemble them into a double
+% precision multiplier less than $1$. Then we multiply $x$ by that with
+% our \cs{MDP@DPmul}.
+%
+% The test at the end of \cs{MFP@getrand} fails only about 1 time in 50,
+% so the odds are vanishingly small that more than a few tries are needed.
+% \begin{macrocode}
+\def\MFP@getrand{% leaves result in \MFP@tempa
+ \MFP@nextrand
+ \MFP@tempa\MFP@randseed
+ \advance\MFP@tempa-1
+ \divide\MFP@tempa 21 % (2^31-3)= 100000000*21 + r
+ \ifnum \MFP@ttteight> \MFP@tempa
+ \else \@xp\MFP@getrand\fi}%
+\def\MFP@Rrand{%
+ \MFP@getrand \edef\MFP@a@Tmp{\number\MFP@tempa}%
+ \MFP@getrand \edef\MFP@b@Tmp{\number\MFP@tempa}%
+ \MFP@DPmul0\MFP@a@Tmp\MFP@b@Tmp}%
+% \end{macrocode}
+%
+% \DescribeMacro{\MFPsetseed}
+% Finally, a user-level command to set the seed value.
+% \begin{macrocode}
+\def\MFPsetseed#1{\global\MFP@randseed #1\relax}%
\MFP@xfinish
%</extra>
% \end{macrocode}
-% For my own benefit: the above code finds the next binary digit and
-% updates the square root (in \cs{MFP@tempc}) by appending that digit. The
-% new digit is also appended to the end of \cs{MFP@tempa}. This is
-% subtracted from \cs{MFP@tempb}, but only if the last digit is a 1. Then
-% the next quadrenary digit is appended to \cs{MFP@tempb}. Finally, the
-% last binary digit found is added (not appended) to \cs{MFP@tempa}. The
-% ``appending'' of a digit means a multiplication by $2$ (or $4$) and the
-% addition of the digit. We perform such additions only if the digit is a
-% 1, and we determine if the digit is 1 or 0 by the \cs{ifnum} test.
%\Finale
%
diff --git a/Master/texmf-dist/tex/generic/minifp/mfpextra.tex b/Master/texmf-dist/tex/generic/minifp/mfpextra.tex
index 9d65d0ff1aa..71d476dd497 100644
--- a/Master/texmf-dist/tex/generic/minifp/mfpextra.tex
+++ b/Master/texmf-dist/tex/generic/minifp/mfpextra.tex
@@ -51,6 +51,7 @@
\def\Rln {\MFP@stack@Unary\MFP@Rln }%
\def\Rexp {\MFP@stack@Unary\MFP@Rexp }%
\def\Rsqrt {\MFP@stack@Unary\MFP@Rsqrt}%
+ \def\Rrand {\MFP@stack@Unary\MFP@Rrand}%
\def\Rpow {\MFP@stack@Binary\MFP@Rpow}}%
\def\MFPcos {\MFP@op@Unary\MFP@Rcos }%
\def\MFPsin {\MFP@op@Unary\MFP@Rsin }%
@@ -61,6 +62,7 @@
\def\MFPln {\MFP@op@Unary\MFP@Rln }%
\def\MFPexp {\MFP@op@Unary\MFP@Rexp }%
\def\MFPsqrt {\MFP@op@Unary\MFP@Rsqrt}%
+\def\MFPrand {\MFP@op@Unary\MFP@Rrand}%
\def\MFPpow {\MFP@op@Binary\MFP@Rpow}%
\def\MFP@logofzero@err{%
\MFP@errmsg{logarithm of zero}%
@@ -659,6 +661,44 @@
\fi
\expandafter\MFP@Isqrt@loop
\fi}%
+\newcount\MFP@randseed % the random number (and starting seed)
+\def\MFP@nextrand{\begingroup
+ \ifnum\MFP@randseed<1
+ \global\MFP@randseed\time
+ \global\multiply\MFP@randseed388 \global\advance\MFP@randseed\year
+ \global\multiply\MFP@randseed31 \global\advance\MFP@randseed\day
+ \global\multiply\MFP@randseed97 \global\advance\MFP@randseed\month
+ \MFP@nextrand \MFP@nextrand \MFP@nextrand
+ \fi
+ \MFP@tempa\MFP@randseed
+ \divide\MFP@tempa \MFP@rand@q % modulus = m*q + r
+ \MFP@tempb\MFP@tempa
+ \multiply\MFP@tempa \MFP@rand@q
+ \global\advance\MFP@randseed-\MFP@tempa % seed mod q
+ \global\multiply\MFP@randseed \MFP@rand@m
+ \multiply\MFP@tempb \MFP@rand@r
+ \global\advance\MFP@randseed-\MFP@tempb
+ \ifnum\MFP@randseed<\z@ \global\advance\MFP@randseed "7FFFFFFF\relax\fi
+ \endgroup}%
+\def\MFPrandgenA{\def\MFP@rand@m{16807 }\def\MFP@rand@q{127773 }%
+ \def\MFP@rand@r{2836 }}%
+\def\MFPrandgenB{\def\MFP@rand@m{48271 }\def\MFP@rand@q{44488 }%
+ \def\MFP@rand@r{3399 }}%
+\def\MFPrandgenC{\def\MFP@rand@m{69621 }\def\MFP@rand@q{30845 }%
+ \def\MFP@rand@r{23902 }}%
+\MFPrandgenA
+\def\MFP@getrand{% leaves result in \MFP@tempa
+ \MFP@nextrand
+ \MFP@tempa\MFP@randseed
+ \advance\MFP@tempa-1
+ \divide\MFP@tempa 21 % (2^31-3)= 100000000*21 + r
+ \ifnum \MFP@ttteight> \MFP@tempa
+ \else \@xp\MFP@getrand\fi}%
+\def\MFP@Rrand{%
+ \MFP@getrand \edef\MFP@a@Tmp{\number\MFP@tempa}%
+ \MFP@getrand \edef\MFP@b@Tmp{\number\MFP@tempa}%
+ \MFP@DPmul0\MFP@a@Tmp\MFP@b@Tmp}%
+\def\MFPsetseed#1{\global\MFP@randseed #1\relax}%
\MFP@xfinish
\endinput
%%
diff --git a/Master/texmf-dist/tex/generic/minifp/minifp.sty b/Master/texmf-dist/tex/generic/minifp/minifp.sty
index 0566ae33e1e..bcd4ad1ec7b 100644
--- a/Master/texmf-dist/tex/generic/minifp/minifp.sty
+++ b/Master/texmf-dist/tex/generic/minifp/minifp.sty
@@ -21,8 +21,8 @@
%% is Daniel H. Luecking. The Base Interpreters associated
%% with minifp are plain TeX and LaTeX.
%%
-\def\MFPfiledate{2013/05/28}%
-\def\MFPfileversion{0.95}%
+\def\MFPfiledate{2013/12/30}%
+\def\MFPfileversion{0.96}%
\expandafter
\ifx \csname MFP@finish\endcsname\relax
\else \expandafter\endinput \fi
@@ -255,7 +255,7 @@
\let\Rnoop\relax
\def\Rcmp{%
\MFPgetoperand@y\MFPgetoperand@x
- \MFP@Rcat\MFP@x@Val\MFP@Rcat\MFP@y@Val
+ \MFP@Rcattwo\MFP@y@Val\MFP@x@Val
\MFP@Rcmp}%
\def\Rchk{%
\MFPgetoperand@x
@@ -268,8 +268,8 @@
\MFPpush@result}%
\def\Rpop{\@xp\MFP@popit\MFP@Rstack\MFP@end}%
\def\Rexch{%
- \Rpop\MFP@x@Val\Rpop\MFP@y@Val
- \MFP@Rcattwo\MFP@y@Val\MFP@x@Val}%
+ \Rpop\MFP@y@Val\Rpop\MFP@x@Val
+ \MFP@Rcattwo\MFP@x@Val\MFP@y@Val}%
\def\Rdup{%
\Rpop\MFP@x@Val
\MFP@Rcattwo\MFP@x@Val\MFP@x@Val}%
@@ -554,6 +554,7 @@
\advance\MFP@tempa-\MFP@numdigits@toshift\MFP@x@Int\relax
\@XP\MFP@doshift@x\@xp\MFP@x@Int\MFP@x@Frc0000000\MFP@end
\ifnum\MFP@tempa<-9
+ \MFP@Rzero
\else
\MFP@tempf\MFP@tempa
\advance\MFP@tempf 10