summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2024-01-16 21:29:12 +0000
committerKarl Berry <karl@freefriends.org>2024-01-16 21:29:12 +0000
commit076968e12d60e0cf6bfb65612dee786d49d3a0cb (patch)
tree6610904708c77fc0fb7ac99eace088d1d2f0586f /Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua
parent67f9344098e309a9414bbe29f7e8de16b8bb47a7 (diff)
tkz-elements (16jan24)
git-svn-id: svn://tug.org/texlive/trunk@69461 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua')
-rw-r--r--Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua81
1 files changed, 48 insertions, 33 deletions
diff --git a/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua b/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua
index cde3c027ac0..33477340d3d 100644
--- a/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua
+++ b/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_circles.lua
@@ -1,7 +1,7 @@
-- tkz_elements_functions_circles.lua
--- date 23/12/24
--- version 1.72c
--- Copyright 2023 Alain Matthes
+-- date 2024/01/16
+-- version 1.82c
+-- Copyright 2024 Alain Matthes
-- This work may be distributed and/or modified under the
-- conditions of the LaTeX Project Public License, either version 1.3
-- of this license or (at your option) any later version.
@@ -51,40 +51,55 @@ function inversion_ (c,p,pt)
local r = (ry*ry)/d
return c+polar_ (r,point.arg(pt-c))
end
-
+
+function circles_position_ (c1,r1,c2,r2)
+ local d,max,min,epsilon
+ epsilon = 10^(-12)
+ d = point.mod(c1-c2)
+ max = r1+r2
+ min = math.abs ( r1 - r2)
+ if d > max then return "outside"
+ elseif math.abs(d - max) < epsilon then return "outside tangent" -- epsilon
+ elseif math.abs(d - min) < epsilon then return "inside tangent" -- epsilon
+ elseif d < min then return "inside"
+ else return "intersect"
+ end
+end
+
function radical_axis_ (c1,p1,c2,p2)
- local d,m,m1,m2,epsilon,ci,cj,ck,cm,cn,r1,r2,t
+ local ci,cj
r1 = point.abs(c1-p1)
r2 = point.abs(c2-p2)
- epsilon = 10^(-12)
- d = point.abs (c2 - c1)
- m = d - (r1+r2)
- m1 = math.abs (d - (r1+r2))
- m2 = math.abs (d - math.abs(r1-(r2)))
- if m2 < epsilon then
- ci = rotation_ (p1,math.pi/2,c2)
- cj = rotation_ (p1,-math.pi/2,c2)
- return ci,cj
- elseif m1 < epsilon then -- circles tangent
- -- z.A = point : new ( x , y ) contact
- t,t = intersection_cc_ (c1,p1,c2,p2)
- ci = rotation_ (t,math.pi/2,c2)
- cj = rotation_ (t,-math.pi/2,c2)
- return ci,cj
- -- circles disjoints
- elseif m > 0 then
- ck = rotation_ (c1,math.pi/3,c2)
- ci,cj = intersection_cc_ (c1,p1,ck,c1)
- cm,cn = intersection_cc_ (c2,p2,ck,c1)
- ci = intersection_ll_ (ci,cj,cm,cn)
- cj = symmetry_axial_ (c1,c2,ci) -- projection_ (c1,c2,ci)
- return ci,cj
- else
- ci,cj = intersection_cc_ (c1,p1,c2,p2)
- return ci,cj
- end
+ d = point.abs(c1-c2)
+ h = (r1*r1-r2*r2+d*d)/(2*d)
+ ck = radical_center_ (c1,p1,c2,p2)
+ cj = rotation_ (ck,-math.pi/2,c1)
+ ci = symmetry_ (ck,cj)
+ return cj,ci
end
+function radical_center_ (c1,p1,c2,p2)
+ local d,r1,r2,h
+ r1 = point.abs(c1-p1)
+ r2 = point.abs(c2-p2)
+ d = point.abs(c1-c2)
+ h = (r1*r1-r2*r2+d*d)/(2*d)
+ return h*(c2-c1)/d+c1
+end
+
+-- version 1.60 center pour deux cercles ?
+function radical_center3 (C1,C2,C3)
+ local t1,t2,t3,t4
+ t1,t2 = radical_axis_ (C1.center,C1.through,C2.center,C2.through)
+ if C3 == nil then
+ return intersection_ll_ (t1,t2,C1.center,C2.center)
+ else
+ t3,t4 = radical_axis_ (C3.center,C3.through,C2.center,C2.through)
+return intersection_ll_ (t1,t2,t3,t4)
+end
+end
+
+
function south_pole_ (c,p)
local r
r = point.abs (c-p)
@@ -117,7 +132,7 @@ end
-- version 1.60 new
function midcircle_(C1,C2)
local state,r,s,t1,t2,T1,T2,p,a,b,c,d,Cx,Cy,i,j
- state = circles_position(C1,C2)
+ state = circles_position_(C1.center,C1.radius,C2.center,C2.radius)
i = barycenter_ ({C2.center,C1.radius},{C1.center,-C2.radius})
j = barycenter_ ({C2.center,C1.radius},{C1.center,C2.radius})
t1,t2 = tangent_from_ (C1.center,C1.through,i)