summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2023-02-10 21:55:46 +0000
committerKarl Berry <karl@freefriends.org>2023-02-10 21:55:46 +0000
commit7f6a139227f88e6783babdcd8891b9d19f18efc6 (patch)
treec90166f9529f67eb4987657f1fca4ee197bfc638 /Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty
parentd002e8f0c323e328ef6385a9b5f9118dbbed7fa6 (diff)
resolsysteme (10feb23)
git-svn-id: svn://tug.org/texlive/trunk@65780 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty')
-rw-r--r--Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty958
1 files changed, 932 insertions, 26 deletions
diff --git a/Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty b/Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty
index 930cfd33e97..5ae5c8fe94e 100644
--- a/Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty
+++ b/Master/texmf-dist/tex/latex/resolsysteme/ResolSysteme.sty
@@ -2,7 +2,8 @@
% licence........: Released under the LaTeX Project Public License v1.3c or later, see http://www.latex-project.org/lppl.txtf
\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{ResolSysteme}[2023/02/08 v0.1.2 Travailler sur un systeme lineaire avec xint ou pyluatex]
+\ProvidesPackage{ResolSysteme}[2023/02/10 v0.1.3 Travailler sur un systeme lineaire avec xint ou pyluatex]
+% 0.1.3 Produit matriciel + Puissance matricielle (2x2/3x3 carré en normal, 2x2/3x3/4x4 avec python) + Inversion comportement commandes étoilées
% 0.1.2 Ajout pour afficher une matrice, à l'aide d'une syntaxe similaire aux autres commandes
% 0.1.1 Correction d'un bug avec le séparateur ";"
% 0.1.0 Version initiale
@@ -74,12 +75,27 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
InvMatTmp = MatTmp.inv()
return InvMatTmp
+def puissance_matrice_QQ(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,puiss) :
+ MatTmp = sy.Matrix(([a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
+
+def puissance_matrice_TT(a,b,c,d,e,f,g,h,i,puiss) :
+ MatTmp = sy.Matrix(([a,b,c],[d,e,f],[g,h,i]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
+
+def puissance_matrice_DD(a,b,c,d,puiss) :
+ MatTmp = sy.Matrix(([a,b],[c,d]))
+ PuissMatTmp = MatTmp**puiss
+ return PuissMatTmp
+
\end{python}
\fi
%------conversion en fraction, version interne !
\NewDocumentCommand\ConvVersFrac{ s O{} m }{%
- %*=moins devant
+ %*=moins sur le numérateur
%2=argument.optionnel[d/t/dec=...]
%3=argument mandataire {calcul ou fraction}
\def\calculargument{\xintPRaw{\xintIrr{\xinteval{#3}}}}%on calcule et on transforme en A/B
@@ -90,45 +106,45 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\ifblank{#2}%
{%
\IfBooleanTF{#1}%
+ {\ensuremath{\frac{\num{\numerateur}}{\num{\denominateur}}}}%
{%
\ifthenelse{\numerateur < 0}%
- {\ensuremath{-\frac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
- {\ensuremath{\frac{\num{\numerateur}}{\num{\denominateur}}}}%
+ {\ensuremath{-\frac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
+ {\ensuremath{\frac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
- {\ensuremath{\frac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
{}%si l'argument optionnel est vide
\IfStrEq{#2}{d}%
{%
\IfBooleanTF{#1}%
+ {\ensuremath{\dfrac{\num{\numerateur}}{\num{\denominateur}}}}%
{%
\ifthenelse{\numerateur < 0}%
- {\ensuremath{-\dfrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
- {\ensuremath{\dfrac{\num{\numerateur}}{\num{\denominateur}}}}%
+ {\ensuremath{-\dfrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
+ {\ensuremath{\dfrac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
- {\ensuremath{\dfrac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
{}%si l'argument optionnel est vide
\IfStrEq{#2}{t}%
{%
\IfBooleanTF{#1}%
+ {\ensuremath{\tfrac{\num{\numerateur}}{\num{\denominateur}}}}%
{%
\ifthenelse{\numerateur < 0}%
- {\ensuremath{-\tfrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
- {\ensuremath{\tfrac{\num{\numerateur}}{\num{\denominateur}}}}%
+ {\ensuremath{-\tfrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
+ {\ensuremath{\tfrac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
- {\ensuremath{\tfrac{\num{\numerateur}}{\num{\denominateur}}}}%
}%
{}%si l'argument optionnel est vide
\IfStrEq{#2}{n}%
{%
- \IfBooleanTF{#1}%
- {%
- \ifthenelse{\numerateur < 0}%
- {\ensuremath{-\nicefrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
- {\ensuremath{\nicefrac{\num{\numerateur}}{\num{\denominateur}}}}%
- }%
+ %\IfBooleanTF{#1}%
{\ensuremath{\nicefrac{\num{\numerateur}}{\num{\denominateur}}}}%
+ %{%
+ % \ifthenelse{\numerateur < 0}%
+ % {\ensuremath{-\nicefrac{\num{\fpeval{abs(\numerateur)}}}{\num{\denominateur}}}}%
+ % {\ensuremath{\nicefrac{\num{\numerateur}}{\num{\denominateur}}}}%
+ %}%
}%
{}%si l'argument optionnel est vide
\IfSubStr{#2}{dec}%on veut la forme décimale
@@ -150,7 +166,7 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
%------Affichage d'une matrice classique, 2x2 ou 3x3 ou 4x4
\NewDocumentCommand\AffMatrice{ s O{} D<>{} r() }{%
- %*=fractions avec - devant
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=options nicematrix
%4=matrice (,,;,,)
@@ -290,12 +306,210 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\fi
}
+
+\NewDocumentCommand\CarreMatrice{ s O{} D<>{} r() O{} }{%
+ %*=fractions avec - sur le numérateur
+ %2=options conversion
+ %3=options nicematrix
+ %4=matrice (,,;,,)
+ %5=affichage énoncé avec [Aff]
+ %---------------------
+ %lectures des matrices
+ \setsepchar{§/,}%
+ \readlist*\MAMATRICEA{#4}%
+ %les coeffs de A
+ \ifnum \MAMATRICEAlen=3
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[1,3]\MatC
+ \itemtomacro\MAMATRICEA[2,1]\MatD
+ \itemtomacro\MAMATRICEA[2,2]\MatE
+ \itemtomacro\MAMATRICEA[2,3]\MatF
+ \itemtomacro\MAMATRICEA[3,1]\MatG
+ \itemtomacro\MAMATRICEA[3,2]\MatH
+ \itemtomacro\MAMATRICEA[3,3]\MatI
+ %les conversions
+ \IfBooleanTF{#1}%
+ {%
+ \def\MatSQA{\ConvVersFrac*[#2]{\MatA*\MatA+\MatB*\MatD+\MatC*\MatG}}%
+ \def\MatSQB{\ConvVersFrac*[#2]{\MatA*\MatB+\MatB*\MatE+\MatC*\MatH}}%
+ \def\MatSQC{\ConvVersFrac*[#2]{\MatA*\MatC+\MatB*\MatF+\MatC*\MatI}}%
+ \def\MatSQD{\ConvVersFrac*[#2]{\MatD*\MatA+\MatE*\MatD+\MatF*\MatG}}%
+ \def\MatSQE{\ConvVersFrac*[#2]{\MatD*\MatB+\MatE*\MatE+\MatF*\MatH}}%
+ \def\MatSQF{\ConvVersFrac*[#2]{\MatD*\MatC+\MatE*\MatF+\MatF*\MatI}}%
+ \def\MatSQG{\ConvVersFrac*[#2]{\MatG*\MatA+\MatH*\MatD+\MatI*\MatG}}%
+ \def\MatSQH{\ConvVersFrac*[#2]{\MatG*\MatB+\MatH*\MatE+\MatI*\MatH}}%
+ \def\MatSQI{\ConvVersFrac*[#2]{\MatG*\MatC+\MatH*\MatF+\MatI*\MatI}}%
+ }%
+ {%
+ \def\MatSQA{\ConvVersFrac[#2]{\MatA*\MatA+\MatB*\MatD+\MatC*\MatG}}%
+ \def\MatSQB{\ConvVersFrac[#2]{\MatA*\MatB+\MatB*\MatE+\MatC*\MatH}}%
+ \def\MatSQC{\ConvVersFrac[#2]{\MatA*\MatC+\MatB*\MatF+\MatC*\MatI}}%
+ \def\MatSQD{\ConvVersFrac[#2]{\MatD*\MatA+\MatE*\MatD+\MatF*\MatG}}%
+ \def\MatSQE{\ConvVersFrac[#2]{\MatD*\MatB+\MatE*\MatE+\MatF*\MatH}}%
+ \def\MatSQF{\ConvVersFrac[#2]{\MatD*\MatC+\MatE*\MatF+\MatF*\MatI}}%
+ \def\MatSQG{\ConvVersFrac[#2]{\MatG*\MatA+\MatH*\MatD+\MatI*\MatG}}%
+ \def\MatSQH{\ConvVersFrac[#2]{\MatG*\MatB+\MatH*\MatE+\MatI*\MatH}}%
+ \def\MatSQI{\ConvVersFrac[#2]{\MatG*\MatC+\MatH*\MatF+\MatI*\MatI}}%
+ }%
+ %l'affichage
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} \\
+ \ConvVersFrac*[#2]{\MatD} & \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} \\
+ \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} & \ConvVersFrac*[#2]{\MatI}
+ \end{pNiceMatrix}}^2=
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} \\
+ \ConvVersFrac[#2]{\MatD} & \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} \\
+ \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} & \ConvVersFrac[#2]{\MatI}
+ \end{pNiceMatrix}}^2=
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatSQA}&{\MatSQB}&{\MatSQC} \\
+ {\MatSQD}&{\MatSQE}&{\MatSQF} \\
+ {\MatSQG}&{\MatSQH}&{\MatSQI}
+ \end{pNiceMatrix}%
+ \fi
+ \ifnum \MAMATRICEAlen=2
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[2,1]\MatC
+ \itemtomacro\MAMATRICEA[2,2]\MatD
+ %les conversions
+ \IfBooleanTF{#1}%
+ {%
+ \def\MatSQA{\ConvVersFrac*[#2]{\MatA*\MatA+\MatB*\MatC}}%
+ \def\MatSQB{\ConvVersFrac*[#2]{\MatA*\MatB+\MatB*\MatD}}%
+ \def\MatSQC{\ConvVersFrac*[#2]{\MatC*\MatA+\MatD*\MatC}}%
+ \def\MatSQD{\ConvVersFrac*[#2]{\MatC*\MatB+\MatD*\MatD}}%
+ }%
+ {%
+ \def\MatSQA{\ConvVersFrac[#2]{\MatA*\MatA+\MatB*\MatC}}%
+ \def\MatSQB{\ConvVersFrac[#2]{\MatA*\MatB+\MatB*\MatD}}%
+ \def\MatSQC{\ConvVersFrac[#2]{\MatC*\MatA+\MatD*\MatC}}%
+ \def\MatSQD{\ConvVersFrac[#2]{\MatC*\MatB+\MatD*\MatD}}%
+ }%
+ %l'affichage
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} \\
+ \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD}
+ \end{pNiceMatrix}}^2=
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} \\
+ \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD}
+ \end{pNiceMatrix}}^2=
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatSQA}&{\MatSQB} \\
+ {\MatSQC}&{\MatSQD}
+ \end{pNiceMatrix}%
+ \fi
+ \ifnum \MAMATRICEAlen=4
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[1,3]\MatC
+ \itemtomacro\MAMATRICEA[1,4]\MatD
+ \itemtomacro\MAMATRICEA[2,1]\MatE
+ \itemtomacro\MAMATRICEA[2,2]\MatF
+ \itemtomacro\MAMATRICEA[2,3]\MatG
+ \itemtomacro\MAMATRICEA[2,4]\MatH
+ \itemtomacro\MAMATRICEA[3,1]\MatI
+ \itemtomacro\MAMATRICEA[3,2]\MatJ
+ \itemtomacro\MAMATRICEA[3,3]\MatK
+ \itemtomacro\MAMATRICEA[3,4]\MatL
+ \itemtomacro\MAMATRICEA[4,1]\MatM
+ \itemtomacro\MAMATRICEA[4,2]\MatN
+ \itemtomacro\MAMATRICEA[4,3]\MatO
+ \itemtomacro\MAMATRICEA[4,4]\MatP
+ %les conversions
+ \IfBooleanTF{#1}%
+ {%
+ \def\MatAffA{\ConvVersFrac*[#2]{\MatA}}%
+ \def\MatAffB{\ConvVersFrac*[#2]{\MatB}}%
+ \def\MatAffC{\ConvVersFrac*[#2]{\MatC}}%
+ \def\MatAffD{\ConvVersFrac*[#2]{\MatD}}%
+ \def\MatAffE{\ConvVersFrac*[#2]{\MatE}}%
+ \def\MatAffF{\ConvVersFrac*[#2]{\MatF}}%
+ \def\MatAffG{\ConvVersFrac*[#2]{\MatG}}%
+ \def\MatAffH{\ConvVersFrac*[#2]{\MatH}}%
+ \def\MatAffI{\ConvVersFrac*[#2]{\MatI}}%
+ \def\MatAffJ{\ConvVersFrac*[#2]{\MatJ}}%
+ \def\MatAffK{\ConvVersFrac*[#2]{\MatK}}%
+ \def\MatAffL{\ConvVersFrac*[#2]{\MatL}}%
+ \def\MatAffM{\ConvVersFrac*[#2]{\MatM}}%
+ \def\MatAffN{\ConvVersFrac*[#2]{\MatN}}%
+ \def\MatAffO{\ConvVersFrac*[#2]{\MatO}}%
+ \def\MatAffP{\ConvVersFrac*[#2]{\MatP}}%
+ }%
+ {%
+ \def\MatAffA{\ConvVersFrac[#2]{\MatA}}%
+ \def\MatAffB{\ConvVersFrac[#2]{\MatB}}%
+ \def\MatAffC{\ConvVersFrac[#2]{\MatC}}%
+ \def\MatAffD{\ConvVersFrac[#2]{\MatD}}%
+ \def\MatAffE{\ConvVersFrac[#2]{\MatE}}%
+ \def\MatAffF{\ConvVersFrac[#2]{\MatF}}%
+ \def\MatAffG{\ConvVersFrac[#2]{\MatG}}%
+ \def\MatAffH{\ConvVersFrac[#2]{\MatH}}%
+ \def\MatAffI{\ConvVersFrac[#2]{\MatI}}%
+ \def\MatAffJ{\ConvVersFrac[#2]{\MatJ}}%
+ \def\MatAffK{\ConvVersFrac[#2]{\MatK}}%
+ \def\MatAffL{\ConvVersFrac[#2]{\MatL}}%
+ \def\MatAffM{\ConvVersFrac[#2]{\MatM}}%
+ \def\MatAffN{\ConvVersFrac[#2]{\MatN}}%
+ \def\MatAffO{\ConvVersFrac[#2]{\MatO}}%
+ \def\MatAffP{\ConvVersFrac[#2]{\MatP}}%
+ }%
+ %l'affichage
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD} \\
+ \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} & \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} \\
+ \ConvVersFrac*[#2]{\MatI} & \ConvVersFrac*[#2]{\MatJ} & \ConvVersFrac*[#2]{\MatK} & \ConvVersFrac*[#2]{\MatL} \\
+ \ConvVersFrac*[#2]{\MatM} & \ConvVersFrac*[#2]{\MatN} & \ConvVersFrac*[#2]{\MatO} & \ConvVersFrac*[#2]{\MatP}
+ \end{pNiceMatrix}}^2=
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD} \\
+ \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} & \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} \\
+ \ConvVersFrac[#2]{\MatI} & \ConvVersFrac[#2]{\MatJ} & \ConvVersFrac[#2]{\MatK} & \ConvVersFrac[#2]{\MatL} \\
+ \ConvVersFrac[#2]{\MatM} & \ConvVersFrac[#2]{\MatN} & \ConvVersFrac[#2]{\MatO} & \ConvVersFrac[#2]{\MatP}
+ \end{pNiceMatrix}}^2=
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatAffA} & {\MatAffB} & {\MatAffC} & {\MatAffD} \\
+ {\MatAffE} & {\MatAffF} & {\MatAffG} & {\MatAffH} \\
+ {\MatAffI} & {\MatAffJ} & {\MatAffK} & {\MatAffL} \\
+ {\MatAffM} & {\MatAffN} & {\MatAffO} & {\MatAffP} \\
+ \end{pNiceMatrix}%
+ \fi
+}
+
%------Commande classique, 2x2 ou 3x3
-\NewDocumentCommand\MatriceInverse{ s O{} D<>{} r() }{%
- %*=fractions avec - devant
+\NewDocumentCommand\MatriceInverse{ s O{} D<>{} r() O{} }{%
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=options nicematrix
%4=matrice (,,;,,)
+ %5=Affichage énoncé avec [Aff]
%---------------------
%lectures des matrices
\setsepchar{§/,}%
@@ -341,6 +555,24 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\def\MatInvH{\ConvVersFrac[#2]{(-\MatA*\MatH+\MatB*\MatG)/\DETMATRICE}}%
\def\MatInvI{\ConvVersFrac[#2]{(\MatA*\MatE-\MatB*\MatD)/\DETMATRICE}}%
}%
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} \\
+ \ConvVersFrac*[#2]{\MatD} & \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} \\
+ \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} & \ConvVersFrac*[#2]{\MatI} \\
+ \end{pNiceMatrix}}^{-1}=
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} \\
+ \ConvVersFrac[#2]{\MatD} & \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} \\
+ \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} & \ConvVersFrac[#2]{\MatI} \\
+ \end{pNiceMatrix}}^{-1}=
+ }%
+ }{}%
\begin{pNiceMatrix}[#3]
{\MatInvA}&{\MatInvB}&{\MatInvC} \\
{\MatInvD}&{\MatInvE}&{\MatInvF} \\
@@ -372,6 +604,22 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\def\MatInvC{\ConvVersFrac[#2]{(-\MatC)/\DETMATRICE}}%
\def\MatInvD{\ConvVersFrac[#2]{(\MatA)/\DETMATRICE}}%
}%
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} \\
+ \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD}
+ \end{pNiceMatrix}}^{-1}=
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} \\
+ \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD}
+ \end{pNiceMatrix}}^{-1}=
+ }%
+ }{}%
\begin{pNiceMatrix}[#3]
{\MatInvA}&{\MatInvB} \\
{\MatInvC}&{\MatInvD}
@@ -381,7 +629,7 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
}
\NewDocumentCommand\DetMatrice{ s O{} r() }{%
- %*=fractions avec - devant
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=matrice (,,;,,)
%---------------------
@@ -420,7 +668,7 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
}
\NewDocumentCommand\SolutionSysteme{ s O{} D<>{} r() r() O{} }{%
- %*=fractions avec - devant
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=options nicematrix
%4=matrice (,,;,,) principale
@@ -530,10 +778,408 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\fi
}
+\NewDocumentCommand\ProduitMatrices{ s O{} D<>{} r() r() O{} }{%
+ %*=fractions avec - sur le numérateur
+ %2=options conversion
+ %3=options nicematrix globales ?
+ %4=matrice (,,§,,) A
+ %5=matrice (,,§,,) B
+ %---------------------
+ %lectures des matrices et dimensions
+ \setsepchar{§/,}%
+ \readlist*\MatA{#4}%
+ \readlist*\MatB{#5}%
+ \def\NbLigMatA{\MatAlen}%
+ \def\NbLigMatB{\MatBlen}%
+ \itemtomacro\MatA[1]{\MatAligne}%
+ \itemtomacro\MatB[1]{\MatBligne}%
+ \setsepchar{,}%
+ \readlist*\TmpA{\MatAligne}%
+ \readlist*\TmpB{\MatBligne}%
+ \def\NbColMatA{\TmpAlen}%
+ \def\NbColMatB{\TmpBlen}%
+ %test de dimensions !!
+ \xintifboolexpr{\NbColMatA != \NbLigMatB}
+ {\text{Erreur de dimensions}}%
+ {
+ \xintifboolexpr{\NbLigMatA==1 'and' \NbColMatA==2 'and' \NbLigMatB==2 'and' \NbColMatB==1}% (1,2)*(2,1)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatB[1]\CoeffBa
+ \itemtomacro\MatB[2]\CoeffBb
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatRes{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb}}%
+ }%
+ {%
+ \def\MatRes{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} \\ \ConvVersFrac*[#2]{\CoeffBb} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} \\ \ConvVersFrac[#2]{\CoeffBb} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatRes
+ \end{pNiceMatrix}%
+ }{}%fin 1,2*2,1
+ \xintifboolexpr{\NbLigMatA==1 'and' \NbColMatA==2 'and' \NbLigMatB==2 'and' \NbColMatB==2}% (1,2)*(2,2)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatB[1,1]\CoeffBa
+ \itemtomacro\MatB[1,2]\CoeffBb
+ \itemtomacro\MatB[2,1]\CoeffBc
+ \itemtomacro\MatB[2,2]\CoeffBd
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBd}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBd}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} & \ConvVersFrac*[#2]{\CoeffBb} \\ \ConvVersFrac*[#2]{\CoeffBc} & \ConvVersFrac*[#2]{\CoeffBd} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} & \ConvVersFrac[#2]{\CoeffBb} \\ \ConvVersFrac[#2]{\CoeffBc} & \ConvVersFrac[#2]{\CoeffBd} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA & \MatResB
+ \end{pNiceMatrix}%
+ }{}%fin 1,2*2,1
+ \xintifboolexpr{\NbLigMatA==1 'and' \NbColMatA==3 'and' \NbLigMatB==3 'and' \NbColMatB==1}% (1,3)*(3,1)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[1,3]\CoeffAc
+ \itemtomacro\MatB[1]\CoeffBa
+ \itemtomacro\MatB[2]\CoeffBb
+ \itemtomacro\MatB[3]\CoeffBc
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatRes{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb+\CoeffAc*\CoeffBc}}%
+ }%
+ {%
+ \def\MatRes{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb+\CoeffAc*\CoeffBc}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} & \ConvVersFrac*[#2]{\CoeffAc} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} & \ConvVersFrac*[#2]{\CoeffBb} & \ConvVersFrac*[#2]{\CoeffBc} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} & \ConvVersFrac[#2]{\CoeffAc} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} \\ \ConvVersFrac[#2]{\CoeffBb} \\ \ConvVersFrac[#2]{\CoeffBc} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatRes
+ \end{pNiceMatrix}%
+ }{}%fin 1,3*3,1
+ \xintifboolexpr{\NbLigMatA==1 'and' \NbColMatA==3 'and' \NbLigMatB==3 'and' \NbColMatB==3}% (1,3)*(3,3)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[1,3]\CoeffAc
+ \itemtomacro\MatB[1,1]\CoeffBa
+ \itemtomacro\MatB[1,2]\CoeffBb
+ \itemtomacro\MatB[1,3]\CoeffBc
+ \itemtomacro\MatB[2,1]\CoeffBd
+ \itemtomacro\MatB[2,2]\CoeffBe
+ \itemtomacro\MatB[2,3]\CoeffBf
+ \itemtomacro\MatB[3,1]\CoeffBg
+ \itemtomacro\MatB[3,2]\CoeffBh
+ \itemtomacro\MatB[3,3]\CoeffBi
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBd+\CoeffAc*\CoeffBg}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBe+\CoeffAc*\CoeffBh}}%
+ \def\MatResC{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBc+\CoeffAb*\CoeffBf+\CoeffAc*\CoeffBi}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBd+\CoeffAc*\CoeffBg}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBe+\CoeffAc*\CoeffBh}}%
+ \def\MatResC{\ConvVersFrac[#2]{\CoeffAa*\CoeffBc+\CoeffAb*\CoeffBf+\CoeffAc*\CoeffBi}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} & \ConvVersFrac*[#2]{\CoeffAc} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\CoeffBa} & \ConvVersFrac*[#2]{\CoeffBb} & \ConvVersFrac*[#2]{\CoeffBc} \\
+ \ConvVersFrac*[#2]{\CoeffBd} & \ConvVersFrac*[#2]{\CoeffBe} & \ConvVersFrac*[#2]{\CoeffBf} \\
+ \ConvVersFrac*[#2]{\CoeffBg} & \ConvVersFrac*[#2]{\CoeffBh} & \ConvVersFrac*[#2]{\CoeffBi}
+ \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} & \ConvVersFrac[#2]{\CoeffAc} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\CoeffBa} & \ConvVersFrac[#2]{\CoeffBb} & \ConvVersFrac[#2]{\CoeffBc} \\
+ \ConvVersFrac[#2]{\CoeffBd} & \ConvVersFrac[#2]{\CoeffBe} & \ConvVersFrac[#2]{\CoeffBf} \\
+ \ConvVersFrac[#2]{\CoeffBg} & \ConvVersFrac[#2]{\CoeffBh} & \ConvVersFrac[#2]{\CoeffBi}
+ \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA & \MatResB & \MatResC
+ \end{pNiceMatrix}%
+ }{}%fin 1,3*3,3
+ \xintifboolexpr{\NbLigMatA==2 'and' \NbColMatA==2 'and' \NbLigMatB==2 'and' \NbColMatB==1}% (2,2)*(2,1)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[2,1]\CoeffAc
+ \itemtomacro\MatA[2,2]\CoeffAd
+ \itemtomacro\MatB[1]\CoeffBa
+ \itemtomacro\MatB[2]\CoeffBb
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAc*\CoeffBa+\CoeffAd*\CoeffBb}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAc*\CoeffBa+\CoeffAd*\CoeffBb}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} \\ \ConvVersFrac*[#2]{\CoeffAc} & \ConvVersFrac*[#2]{\CoeffAd} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} \\ \ConvVersFrac*[#2]{\CoeffBb} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} \\ \ConvVersFrac[#2]{\CoeffAc} & \ConvVersFrac[#2]{\CoeffAd} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} \\ \ConvVersFrac[#2]{\CoeffBb} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA \\ \MatResB
+ \end{pNiceMatrix}%
+ }{}%fin 2,2*2,1
+ \xintifboolexpr{\NbLigMatA==2 'and' \NbColMatA==2 'and' \NbLigMatB==2 'and' \NbColMatB==2}% (2,2)*(2,2)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[2,1]\CoeffAc
+ \itemtomacro\MatA[2,2]\CoeffAd
+ \itemtomacro\MatB[1,1]\CoeffBa
+ \itemtomacro\MatB[1,2]\CoeffBb
+ \itemtomacro\MatB[2,1]\CoeffBc
+ \itemtomacro\MatB[2,2]\CoeffBd
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBb+\CoeffAd*\CoeffBd}}%
+ \def\MatResC{\ConvVersFrac*[#2]{\CoeffAc*\CoeffBa+\CoeffAd*\CoeffBc}}%
+ \def\MatResD{\ConvVersFrac*[#2]{\CoeffAc*\CoeffBb+\CoeffAd*\CoeffBd}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAa*\CoeffBb+\CoeffAd*\CoeffBd}}%
+ \def\MatResC{\ConvVersFrac[#2]{\CoeffAc*\CoeffBa+\CoeffAd*\CoeffBc}}%
+ \def\MatResD{\ConvVersFrac[#2]{\CoeffAc*\CoeffBb+\CoeffAd*\CoeffBd}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} \\ \ConvVersFrac*[#2]{\CoeffAc} & \ConvVersFrac*[#2]{\CoeffAd} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} & \ConvVersFrac*[#2]{\CoeffBb} \\ \ConvVersFrac*[#2]{\CoeffBc} & \ConvVersFrac*[#2]{\CoeffBd} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} \\ \ConvVersFrac[#2]{\CoeffAc} & \ConvVersFrac[#2]{\CoeffAd} \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} & \ConvVersFrac[#2]{\CoeffBb} \\ \ConvVersFrac[#2]{\CoeffBc} & \ConvVersFrac[#2]{\CoeffBd} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA & \MatResB \\ \MatResC & \MatResD
+ \end{pNiceMatrix}%
+ }{}%fin 2,2*2,1
+ \xintifboolexpr{\NbLigMatA==3 'and' \NbColMatA==3 'and' \NbLigMatB==3 'and' \NbColMatB==1}% (3,3)*(3,1)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[1,3]\CoeffAc
+ \itemtomacro\MatA[2,1]\CoeffAd
+ \itemtomacro\MatA[2,2]\CoeffAe
+ \itemtomacro\MatA[2,3]\CoeffAf
+ \itemtomacro\MatA[3,1]\CoeffAg
+ \itemtomacro\MatA[3,2]\CoeffAh
+ \itemtomacro\MatA[3,3]\CoeffAi
+ \itemtomacro\MatB[1]\CoeffBa
+ \itemtomacro\MatB[2]\CoeffBb
+ \itemtomacro\MatB[3]\CoeffBc
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb+\CoeffAc*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAd*\CoeffBa+\CoeffAe*\CoeffBb+\CoeffAf*\CoeffBc}}%
+ \def\MatResC{\ConvVersFrac*[#2]{\CoeffAg*\CoeffBa+\CoeffAh*\CoeffBb+\CoeffAi*\CoeffBc}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBb+\CoeffAc*\CoeffBc}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAd*\CoeffBa+\CoeffAe*\CoeffBb+\CoeffAf*\CoeffBc}}%
+ \def\MatResC{\ConvVersFrac[#2]{\CoeffAg*\CoeffBa+\CoeffAh*\CoeffBb+\CoeffAi*\CoeffBc}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} & \ConvVersFrac*[#2]{\CoeffAc} \\
+ \ConvVersFrac*[#2]{\CoeffAd} & \ConvVersFrac*[#2]{\CoeffAe} & \ConvVersFrac*[#2]{\CoeffAf} \\
+ \ConvVersFrac*[#2]{\CoeffAg} & \ConvVersFrac*[#2]{\CoeffAh} & \ConvVersFrac*[#2]{\CoeffAi}
+ \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac*[#2]{\CoeffBa} \\ \ConvVersFrac*[#2]{\CoeffBb} \\ \ConvVersFrac*[#2]{\CoeffBc} \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} & \ConvVersFrac[#2]{\CoeffAc} \\
+ \ConvVersFrac[#2]{\CoeffAd} & \ConvVersFrac[#2]{\CoeffAe} & \ConvVersFrac[#2]{\CoeffAf} \\
+ \ConvVersFrac[#2]{\CoeffAg} & \ConvVersFrac[#2]{\CoeffAh} & \ConvVersFrac[#2]{\CoeffAi}
+ \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3] \ConvVersFrac[#2]{\CoeffBa} \\ \ConvVersFrac[#2]{\CoeffBb} \\ \ConvVersFrac[#2]{\CoeffBc} \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA \\ \MatResB \\ \MatResC
+ \end{pNiceMatrix}%
+ }{}%fin 3,3*3,1
+ \xintifboolexpr{\NbLigMatA==3 'and' \NbColMatA==3 'and' \NbLigMatB==3 'and' \NbColMatB==3}% (3,3)*(3,3)
+ {%
+ \itemtomacro\MatA[1,1]\CoeffAa
+ \itemtomacro\MatA[1,2]\CoeffAb
+ \itemtomacro\MatA[1,3]\CoeffAc
+ \itemtomacro\MatA[2,1]\CoeffAd
+ \itemtomacro\MatA[2,2]\CoeffAe
+ \itemtomacro\MatA[2,3]\CoeffAf
+ \itemtomacro\MatA[3,1]\CoeffAg
+ \itemtomacro\MatA[3,2]\CoeffAh
+ \itemtomacro\MatA[3,3]\CoeffAi
+ \itemtomacro\MatB[1,1]\CoeffBa
+ \itemtomacro\MatB[1,2]\CoeffBb
+ \itemtomacro\MatB[1,3]\CoeffBc
+ \itemtomacro\MatB[2,1]\CoeffBd
+ \itemtomacro\MatB[2,2]\CoeffBe
+ \itemtomacro\MatB[1,3]\CoeffBf
+ \itemtomacro\MatB[3,1]\CoeffBg
+ \itemtomacro\MatB[3,2]\CoeffBh
+ \itemtomacro\MatB[3,3]\CoeffBi
+ \IfBooleanTF{#1}%version étoilée := moins sur num
+ {%
+ \def\MatResA{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBd+\CoeffAc*\CoeffBg}}%
+ \def\MatResB{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBe+\CoeffAc*\CoeffBh}}%
+ \def\MatResC{\ConvVersFrac*[#2]{\CoeffAa*\CoeffBc+\CoeffAb*\CoeffBf+\CoeffAc*\CoeffBi}}%
+ \def\MatResD{\ConvVersFrac*[#2]{\CoeffAd*\CoeffBa+\CoeffAe*\CoeffBd+\CoeffAf*\CoeffBg}}%
+ \def\MatResE{\ConvVersFrac*[#2]{\CoeffAd*\CoeffBb+\CoeffAe*\CoeffBe+\CoeffAf*\CoeffBh}}%
+ \def\MatResF{\ConvVersFrac*[#2]{\CoeffAd*\CoeffBc+\CoeffAe*\CoeffBf+\CoeffAf*\CoeffBi}}%
+ \def\MatResG{\ConvVersFrac*[#2]{\CoeffAg*\CoeffBa+\CoeffAh*\CoeffBd+\CoeffAi*\CoeffBg}}%
+ \def\MatResH{\ConvVersFrac*[#2]{\CoeffAg*\CoeffBb+\CoeffAh*\CoeffBe+\CoeffAi*\CoeffBh}}%
+ \def\MatResI{\ConvVersFrac*[#2]{\CoeffAg*\CoeffBc+\CoeffAh*\CoeffBf+\CoeffAi*\CoeffBi}}%
+ }%
+ {%
+ \def\MatResA{\ConvVersFrac[#2]{\CoeffAa*\CoeffBa+\CoeffAb*\CoeffBd+\CoeffAc*\CoeffBg}}%
+ \def\MatResB{\ConvVersFrac[#2]{\CoeffAa*\CoeffBb+\CoeffAb*\CoeffBe+\CoeffAc*\CoeffBh}}%
+ \def\MatResC{\ConvVersFrac[#2]{\CoeffAa*\CoeffBc+\CoeffAb*\CoeffBf+\CoeffAc*\CoeffBi}}%
+ \def\MatResD{\ConvVersFrac[#2]{\CoeffAd*\CoeffBa+\CoeffAe*\CoeffBd+\CoeffAf*\CoeffBg}}%
+ \def\MatResE{\ConvVersFrac[#2]{\CoeffAd*\CoeffBb+\CoeffAe*\CoeffBe+\CoeffAf*\CoeffBh}}%
+ \def\MatResF{\ConvVersFrac[#2]{\CoeffAd*\CoeffBc+\CoeffAe*\CoeffBf+\CoeffAf*\CoeffBi}}%
+ \def\MatResG{\ConvVersFrac[#2]{\CoeffAg*\CoeffBa+\CoeffAh*\CoeffBd+\CoeffAi*\CoeffBg}}%
+ \def\MatResH{\ConvVersFrac[#2]{\CoeffAg*\CoeffBb+\CoeffAh*\CoeffBe+\CoeffAi*\CoeffBh}}%
+ \def\MatResI{\ConvVersFrac[#2]{\CoeffAg*\CoeffBc+\CoeffAh*\CoeffBf+\CoeffAi*\CoeffBi}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\CoeffAa} & \ConvVersFrac*[#2]{\CoeffAb} & \ConvVersFrac*[#2]{\CoeffAc} \\
+ \ConvVersFrac*[#2]{\CoeffAd} & \ConvVersFrac*[#2]{\CoeffAe} & \ConvVersFrac*[#2]{\CoeffAf} \\
+ \ConvVersFrac*[#2]{\CoeffAg} & \ConvVersFrac*[#2]{\CoeffAh} & \ConvVersFrac*[#2]{\CoeffAi}
+ \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\CoeffBa} & \ConvVersFrac*[#2]{\CoeffBb} & \ConvVersFrac*[#2]{\CoeffBc} \\
+ \ConvVersFrac*[#2]{\CoeffBd} & \ConvVersFrac*[#2]{\CoeffBe} & \ConvVersFrac*[#2]{\CoeffBf} \\
+ \ConvVersFrac*[#2]{\CoeffBg} & \ConvVersFrac*[#2]{\CoeffBh} & \ConvVersFrac*[#2]{\CoeffBi}
+ \end{pNiceMatrix}
+ =
+ }%
+ {%
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\CoeffAa} & \ConvVersFrac[#2]{\CoeffAb} & \ConvVersFrac[#2]{\CoeffAc} \\
+ \ConvVersFrac[#2]{\CoeffAd} & \ConvVersFrac[#2]{\CoeffAe} & \ConvVersFrac[#2]{\CoeffAf} \\
+ \ConvVersFrac[#2]{\CoeffAg} & \ConvVersFrac[#2]{\CoeffAh} & \ConvVersFrac[#2]{\CoeffAi}
+ \end{pNiceMatrix}
+ \times
+ \begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\CoeffBa} & \ConvVersFrac[#2]{\CoeffBb} & \ConvVersFrac[#2]{\CoeffBc} \\
+ \ConvVersFrac[#2]{\CoeffBd} & \ConvVersFrac[#2]{\CoeffBe} & \ConvVersFrac[#2]{\CoeffBf} \\
+ \ConvVersFrac[#2]{\CoeffBg} & \ConvVersFrac[#2]{\CoeffBh} & \ConvVersFrac[#2]{\CoeffBi}
+ \end{pNiceMatrix}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ \MatResA & \MatResB & \MatResC \\ \MatResD & \MatResE & \MatResF \\ \MatResG & \MatResH & \MatResI
+ \end{pNiceMatrix}%
+ }{}%fin 3,3*3,3
+ }%
+}
+
+
%------Commandes via pyluatex
\if@pyluatex %package pyluatex à charger par l'utilisateur !
\NewDocumentCommand\SolutionSystemePY{ s O{} D<>{} r() r() O{} }{%
- %*=avec le moins devant
+ %*=fractions avec - sur le numérateur
%2=Option Fraction
%3=matrice du système
%4=second membre
@@ -681,8 +1327,8 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\fi
}
-\NewDocumentCommand\MatriceInversePY{ s O{} D<>{} r() }{%
- %*=fractions avec - devant
+\NewDocumentCommand\MatriceInversePY{ s O{} D<>{} r() O{} }{%
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=options nicematrix
%4=matrice (,,;,,)
@@ -750,6 +1396,28 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\def\MatInvO{\ConvVersFrac[#2]{\py{inverse_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP)[14]}}}%
\def\MatInvP{\ConvVersFrac[#2]{\py{inverse_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP)[15]}}}%
}%
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD} \\
+ \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} & \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} \\
+ \ConvVersFrac*[#2]{\MatI} & \ConvVersFrac*[#2]{\MatJ} & \ConvVersFrac*[#2]{\MatK} & \ConvVersFrac*[#2]{\MatL} \\
+ \ConvVersFrac*[#2]{\MatM} & \ConvVersFrac*[#2]{\MatN} & \ConvVersFrac*[#2]{\MatO} & \ConvVersFrac*[#2]{\MatO} \\
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD} \\
+ \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} & \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} \\
+ \ConvVersFrac[#2]{\MatI} & \ConvVersFrac[#2]{\MatJ} & \ConvVersFrac[#2]{\MatK} & \ConvVersFrac[#2]{\MatL} \\
+ \ConvVersFrac[#2]{\MatM} & \ConvVersFrac[#2]{\MatN} & \ConvVersFrac[#2]{\MatO} & \ConvVersFrac[#2]{\MatO} \\
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ }{}%
\begin{pNiceMatrix}[#3]
{\MatInvA} & {\MatInvB} & {\MatInvC} & {\MatInvD} \\
{\MatInvE} & {\MatInvF} & {\MatInvG} & {\MatInvH} \\
@@ -795,6 +1463,26 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\def\MatInvH{\ConvVersFrac[#2]{\py{inverse_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI)[7]}}}
\def\MatInvI{\ConvVersFrac[#2]{\py{inverse_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI)[8]}}}
}%
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} \\
+ \ConvVersFrac*[#2]{\MatD} & \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} \\
+ \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} & \ConvVersFrac*[#2]{\MatI}
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} \\
+ \ConvVersFrac[#2]{\MatD} & \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} \\
+ \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} & \ConvVersFrac[#2]{\MatI}
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ }{}%
\begin{pNiceMatrix}[#3]
{\MatInvA} & {\MatInvB} & {\MatInvC} \\
{\MatInvD} & {\MatInvE} & {\MatInvF} \\
@@ -824,6 +1512,24 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\def\MatInvC{\ConvVersFrac[#2]{\py{inverse_matrice_DD(\MatA,\MatB,\MatC,\MatD)[2]}}}
\def\MatInvD{\ConvVersFrac[#2]{\py{inverse_matrice_DD(\MatA,\MatB,\MatC,\MatD)[3]}}}
}%
+ \IfStrEq{#5}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} \\
+ \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD}
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} \\
+ \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD}
+ \end{pNiceMatrix}}^{-1}
+ =
+ }%
+ }{}%
\begin{pNiceMatrix}[#3]
{\MatInvA} & {\MatInvB} \\
{\MatInvC} & {\MatInvD}
@@ -832,8 +1538,208 @@ def inverse_matrice_TT(a,b,c,d,e,f,g,h,i) :
\fi
}
+\NewDocumentCommand\MatricePuissancePY{ s O{} D<>{} r() r() O{} }{%
+ %*=fractions avec - sur le numérateur
+ %2=options conversion
+ %3=options nicematrix
+ %4=matrice (,,;,,)
+ %5=puissance
+ %6=affichage de l'énoncé
+ %---------------------
+ %lectures des matrices
+ \setsepchar{§/,}%
+ \readlist*\MAMATRICEA{#4}%
+ %les coeffs de A et le déterminant et les coeff de l'inverse
+ \ifnum \MAMATRICEAlen=4
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[1,3]\MatC
+ \itemtomacro\MAMATRICEA[1,4]\MatD
+ \itemtomacro\MAMATRICEA[2,1]\MatE
+ \itemtomacro\MAMATRICEA[2,2]\MatF
+ \itemtomacro\MAMATRICEA[2,3]\MatG
+ \itemtomacro\MAMATRICEA[2,4]\MatH
+ \itemtomacro\MAMATRICEA[3,1]\MatI
+ \itemtomacro\MAMATRICEA[3,2]\MatJ
+ \itemtomacro\MAMATRICEA[3,3]\MatK
+ \itemtomacro\MAMATRICEA[3,4]\MatL
+ \itemtomacro\MAMATRICEA[4,1]\MatM
+ \itemtomacro\MAMATRICEA[4,2]\MatN
+ \itemtomacro\MAMATRICEA[4,3]\MatO
+ \itemtomacro\MAMATRICEA[4,4]\MatP
+ %les solutions
+ \IfBooleanTF{#1}%
+ {
+ \def\MatPuissA{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[3]}}}%
+ \def\MatPuissE{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[4]}}}%
+ \def\MatPuissF{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[5]}}}%
+ \def\MatPuissG{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[6]}}}%
+ \def\MatPuissH{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[7]}}}%
+ \def\MatPuissI{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[8]}}}%
+ \def\MatPuissJ{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[9]}}}%
+ \def\MatPuissK{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[10]}}}%
+ \def\MatPuissL{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[11]}}}%
+ \def\MatPuissM{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[12]}}}%
+ \def\MatPuissN{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[13]}}}%
+ \def\MatPuissO{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[14]}}}%
+ \def\MatPuissP{\ConvVersFrac*[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[15]}}}%
+ }%
+ {%
+ \def\MatPuissA{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[3]}}}%
+ \def\MatPuissE{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[4]}}}%
+ \def\MatPuissF{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[5]}}}%
+ \def\MatPuissG{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[6]}}}%
+ \def\MatPuissH{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[7]}}}%
+ \def\MatPuissI{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[8]}}}%
+ \def\MatPuissJ{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[9]}}}%
+ \def\MatPuissK{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[10]}}}%
+ \def\MatPuissL{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[11]}}}%
+ \def\MatPuissM{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[12]}}}%
+ \def\MatPuissN{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[13]}}}%
+ \def\MatPuissO{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[14]}}}%
+ \def\MatPuissP{\ConvVersFrac[#2]{\py{puissance_matrice_QQ(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,\MatJ,\MatK,\MatL,\MatM,\MatN,\MatO,\MatP,#5)[15]}}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD} \\
+ \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} & \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} \\
+ \ConvVersFrac*[#2]{\MatI} & \ConvVersFrac*[#2]{\MatJ} & \ConvVersFrac*[#2]{\MatK} & \ConvVersFrac*[#2]{\MatL} \\
+ \ConvVersFrac*[#2]{\MatM} & \ConvVersFrac*[#2]{\MatN} & \ConvVersFrac*[#2]{\MatO} & \ConvVersFrac*[#2]{\MatO} \\
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD} \\
+ \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} & \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} \\
+ \ConvVersFrac[#2]{\MatI} & \ConvVersFrac[#2]{\MatJ} & \ConvVersFrac[#2]{\MatK} & \ConvVersFrac[#2]{\MatL} \\
+ \ConvVersFrac[#2]{\MatM} & \ConvVersFrac[#2]{\MatN} & \ConvVersFrac[#2]{\MatO} & \ConvVersFrac[#2]{\MatO} \\
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatPuissA} & {\MatPuissB} & {\MatPuissC} & {\MatPuissD} \\
+ {\MatPuissE} & {\MatPuissF} & {\MatPuissG} & {\MatPuissH} \\
+ {\MatPuissI} & {\MatPuissJ} & {\MatPuissK} & {\MatPuissL} \\
+ {\MatPuissM} & {\MatPuissN} & {\MatPuissO} & {\MatPuissP} \\
+ \end{pNiceMatrix}%
+ \fi
+ \ifnum \MAMATRICEAlen=3
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[1,3]\MatC
+ \itemtomacro\MAMATRICEA[2,1]\MatD
+ \itemtomacro\MAMATRICEA[2,2]\MatE
+ \itemtomacro\MAMATRICEA[2,3]\MatF
+ \itemtomacro\MAMATRICEA[3,1]\MatG
+ \itemtomacro\MAMATRICEA[3,2]\MatH
+ \itemtomacro\MAMATRICEA[3,3]\MatI
+ %les solutions
+ \IfBooleanTF{#1}%
+ {
+ \def\MatPuissA{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[3]}}}%
+ \def\MatPuissE{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[4]}}}%
+ \def\MatPuissF{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[5]}}}%
+ \def\MatPuissG{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[6]}}}%
+ \def\MatPuissH{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[7]}}}%
+ \def\MatPuissI{\ConvVersFrac*[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[8]}}}%
+ }%
+ {%
+ \def\MatPuissA{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[3]}}}%
+ \def\MatPuissE{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[4]}}}%
+ \def\MatPuissF{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[5]}}}%
+ \def\MatPuissG{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[6]}}}%
+ \def\MatPuissH{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[7]}}}%
+ \def\MatPuissI{\ConvVersFrac[#2]{\py{puissance_matrice_TT(\MatA,\MatB,\MatC,\MatD,\MatE,\MatF,\MatG,\MatH,\MatI,#5)[8]}}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} & \ConvVersFrac*[#2]{\MatC} \\
+ \ConvVersFrac*[#2]{\MatD} & \ConvVersFrac*[#2]{\MatE} & \ConvVersFrac*[#2]{\MatF} \\
+ \ConvVersFrac*[#2]{\MatG} & \ConvVersFrac*[#2]{\MatH} & \ConvVersFrac*[#2]{\MatI}
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} & \ConvVersFrac[#2]{\MatC} \\
+ \ConvVersFrac[#2]{\MatD} & \ConvVersFrac[#2]{\MatE} & \ConvVersFrac[#2]{\MatF} \\
+ \ConvVersFrac[#2]{\MatG} & \ConvVersFrac[#2]{\MatH} & \ConvVersFrac[#2]{\MatI}
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatPuissA} & {\MatPuissB} & {\MatPuissC} \\
+ {\MatPuissD} & {\MatPuissE} & {\MatPuissF} \\
+ {\MatPuissG} & {\MatPuissH} & {\MatPuissI}
+ \end{pNiceMatrix}%
+ \fi
+ \ifnum \MAMATRICEAlen=2
+ \itemtomacro\MAMATRICEA[1,1]\MatA
+ \itemtomacro\MAMATRICEA[1,2]\MatB
+ \itemtomacro\MAMATRICEA[2,1]\MatC
+ \itemtomacro\MAMATRICEA[2,2]\MatD
+ %les solutions
+ \IfBooleanTF{#1}%
+ {
+ \def\MatPuissA{\ConvVersFrac*[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac*[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac*[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac*[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[3]}}}%
+ }%
+ {%
+ \def\MatPuissA{\ConvVersFrac[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[0]}}}%
+ \def\MatPuissB{\ConvVersFrac[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[1]}}}%
+ \def\MatPuissC{\ConvVersFrac[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[2]}}}%
+ \def\MatPuissD{\ConvVersFrac[#2]{\py{puissance_matrice_DD(\MatA,\MatB,\MatC,\MatD,#5)[3]}}}%
+ }%
+ \IfStrEq{#6}{Aff}%si matrice
+ {%
+ \IfBooleanTF{#1}%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac*[#2]{\MatA} & \ConvVersFrac*[#2]{\MatB} \\
+ \ConvVersFrac*[#2]{\MatC} & \ConvVersFrac*[#2]{\MatD}
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ {%
+ {\begin{pNiceMatrix}[#3]
+ \ConvVersFrac[#2]{\MatA} & \ConvVersFrac[#2]{\MatB} \\
+ \ConvVersFrac[#2]{\MatC} & \ConvVersFrac[#2]{\MatD}
+ \end{pNiceMatrix}}^{#5}
+ =
+ }%
+ }{}%
+ \begin{pNiceMatrix}[#3]
+ {\MatPuissA} & {\MatPuissB} \\
+ {\MatPuissC} & {\MatPuissD}
+ \end{pNiceMatrix}%
+ \fi
+}
+
\NewDocumentCommand\DetMatricePY{ s O{} r() }{%
- %*=fractions avec - devant
+ %*=fractions avec - sur le numérateur
%2=options conversion
%3=matrice (,,;,,)
%---------------------