summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/longdivision
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2020-05-11 20:48:13 +0000
committerKarl Berry <karl@freefriends.org>2020-05-11 20:48:13 +0000
commit0e1ee2e226e159a60e8f3c25f41bfbf1ed10679c (patch)
treec033586537dec31ec6fc32304736fd89a004d40a /Master/texmf-dist/tex/latex/longdivision
parenteb00832c57337e4a212023733271ce2371ba231b (diff)
longdivision (11may20)
git-svn-id: svn://tug.org/texlive/trunk@55103 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/longdivision')
-rw-r--r--Master/texmf-dist/tex/latex/longdivision/longdivision.sty956
1 files changed, 595 insertions, 361 deletions
diff --git a/Master/texmf-dist/tex/latex/longdivision/longdivision.sty b/Master/texmf-dist/tex/latex/longdivision/longdivision.sty
index 98349704fe5..d749bab70e1 100644
--- a/Master/texmf-dist/tex/latex/longdivision/longdivision.sty
+++ b/Master/texmf-dist/tex/latex/longdivision/longdivision.sty
@@ -1,7 +1,7 @@
-%% Package: longdivision.sty version 1.0
+%% Package: longdivision.sty version 1.2.0
%% Author: Hood Chatham
%% Email: hood@mit.edu
-%% Date: 2/5/2017
+%% Date: 2020-05-09
%% License: Latex Project Public License
@@ -10,18 +10,23 @@
\ExplSyntaxOn
-
+%
% Core registers
+%
\bool_new:N \l__longdiv_mathmode_bool
-\bool_new:N \l_longdiv_repeating_decimal_bool
\bool_new:N \l__longdiv_added_point_bool
\bool_new:N \l__longdiv_seen_point_bool
\bool_new:N \l__longdiv_seen_digit_bool
\bool_new:N \l__longdiv_stopped_early_stage_bool
\int_new:N \l__longdiv_quotient_int
\int_new:N \l__longdiv_position_int
-\int_new:N \l__longdiv_point_digit_int
-\int_new:N \l__longdiv_repeat_digit_int
+\int_new:N \l__longdiv_point_digit_dividend_int
+\int_new:N \l__longdiv_point_digit_quotient_int
+\int_new:N \l__longdiv_repeat_digit_int % How many digits after the decimal point does repitition start (so in 1/9 will be 0)
+\int_set:Nn \l__longdiv_repeat_digit_int { 100 }
+\int_new:N \l__longdiv_digit_group_length
+
+\int_set:Nn \l__longdiv_digit_group_length 3
\dim_new:N \g__longdiv_temp_dim % For measuring the distance to the right side of digits
@@ -36,29 +41,100 @@
\int_const:Nn \c__longdiv_max_display_divisions_int { 20 }
\int_new:N \l__longdiv_display_divisions_int
+\tl_new:N \l__longdiv_remainder_tl
+\tl_new:N \l__longdiv_divisor_tl
+\tl_new:N \l__longdiv_dividend_tl
+\tl_new:N \l__longdiv_quotient_tl
+
+%
% Key-value arguments
+%
\cs_new:Npn \longdivisionkeys #1 { \keys_set:nn { longdivision } { #1 } }
\keys_define:nn { longdivision }
{
stage .int_set:N = \l__longdiv_digits_requested_int,
- max~extra~digits .int_set:N = \l__longdiv_max_extra_digits_int,
+ max ~ extra ~ digits .int_set:N = \l__longdiv_max_extra_digits_int,
unknown .code:n = {
- %\def\temp{#1}\show\temp
- \int_set:Nn \l__longdiv_max_extra_digits_int { \l_keys_key_tl }
- }
+ \longdiv_if_int:nTF {\tl_use:N \l_keys_key_tl}{
+ \int_set:Nn \l__longdiv_max_extra_digits_int { \l_keys_key_tl }
+ }{
+ \msg_error:nnx { longdivision } { unknown_key } { \tl_use:N \l_keys_key_tl }
+ }
+ },
+ german ~ division ~ sign .code:n = {
+ \cs_set:Nn \longdiv_german_division_sign: { #1 }
+ },
+ decimal ~ separator .code:n = {
+ \tl_if_single:nTF { #1 } {
+ \longdiv_if_digit:nTF { #1 } {
+ \msg_error:nnn { longdivision } { decimal_separator_is_digit } { #1 }
+ } {
+ \cs_set:Nn \longdiv_decimal_separator: { #1 }
+ }
+ }{
+ \msg_error:nnn { longdivision } { decimal_separator_not_single } { #1 }
+ }
+ },
+ digit ~ separator .code:n = {
+ \cs_if_exist_use:cF { longdiv_digit_separator ~ \detokenize{#1} }{
+ \cs_set_protected:Nn \longdiv_digit_separator: { #1 }
+ }
+ },
+ digit ~ group ~ length .int_set:N = \l__longdiv_digit_group_length,
+ separators ~ in ~ work .bool_set:N = \l__longdiv_separators_in_work_bool
+}
+
+\cs_set:cpn { longdiv_digit_separator ~ _ }{
+ \cs_set_protected:Nn \longdiv_digit_separator: { \texttt{\detokenize{_}} }
+}
+
+% We want to test for decimal separator later with \ifx / \token_if_eq_meaning:NN so we use \let to define the decimal separator.
+% The digit separator is only important currently in the output, so we can use \def for that.
+% TODO: ignore digit separator in input.
+\cs_new:Nn \longdiv_decimal_separator: { . }
+\cs_new:Nn \longdiv_digit_separator: { }
+\bool_set_true:N \l__longdiv_separators_in_work_bool
+
+
+\newcount\longdiv@tempcount
+\cs_new:Npn \longdiv_if_int:nTF #1 {
+ \afterassignment \longdiv_checkint_aux:w
+ % Why would I use $$ as a delimiter? Needs to be unexpandable and unlikely to show up in #1.
+ % I think \relax / \scan_stop: doesn't work because \int_eval:w will absorb a relax.
+ \longdiv@tempcount = \int_eval:w 0 #1 $$
+}
+
+\cs_new:Npn \longdiv_checkint_aux:w #1 $$ { % Picked up down here
+ \tl_if_empty:nTF { #1 }
}
\cs_new:Nn \longdiv_register_repeating_decimal_style_choices:n {
\keys_define:nn { longdivision } {
- repeating~decimal~style .choices:nn =
+ repeating ~ decimal ~ style .choices:nn =
{ #1 }
{
- \cs_set_eq:Nc \longdiv_linkedlist_indicate_repeating_decimal:n { longdiv_linkedlist_indicate_repeating_decimal_##1:n }
+ \cs_set_eq:Nc \longdiv_indicate_repeating_decimal:n { longdiv_indicate_repeating_decimal_##1:n }
+ \cs_if_exist:cT { longdiv_indicate_repeating_decimal_ ##1 _skip_begin: } {
+ \cs_set_eq:Nc \longdiv_indicate_repeating_decimal_skip_begin: { longdiv_indicate_repeating_decimal_ ##1 _skip_begin: }
+ }
+ \cs_if_exist:cT { longdiv_indicate_repeating_decimal_ ##1 _skip_end: } {
+ \cs_set_eq:Nc \longdiv_indicate_repeating_decimal_skip_end: { longdiv_indicate_repeating_decimal_ ##1 _skip_end: }
+ }
}
}
}
+% In the annoying and ugly "parentheses" repeating decimal setting, the repeating indicators take up space.
+% \longdiv_indicate_repeating_decimal_skip_begin: and \longdiv_indicate_repeating_decimal_skip_end: are supposed to measure the amount
+% of space taken up. For all the other settings, they are just empty.
+\cs_new:Nn \longdiv_indicate_repeating_decimal_skip_begin: { }
+\cs_new:Nn \longdiv_indicate_repeating_decimal_skip_end: { }
+% This is a no-op except in the parentheses setting.
+\cs_new:Nn \longdiv_indicate_repeating_decimal_phantom:n { \longdiv_indicate_repeating_decimal_skip_begin: #1 \longdiv_indicate_repeating_decimal_skip_end: }
+\cs_new:Nn \longdiv_indicate_repeating_decimal_dividend:n { \longdiv_indicate_repeating_decimal_phantom:n { #1 } }
+\cs_new:Nn \longdiv_indicate_repeating_decimal_quotient:n { \longdiv_indicate_repeating_decimal:n { #1 } }
+
\cs_new:Nn \longdiv_register_style_choices:n {
\keys_define:nn { longdivision } {
style .choices:nn =
@@ -76,80 +152,108 @@
\cs_new:cpn { longdiv_typeset_main_ #1 :} { #2 }
\longdiv_register_style_choices:n { #1 }
}
-\let \longdivdefinestyle \longdiv_define_style:nn
+\let \longdivisiondefinestyle \longdiv_define_style:nn
-%%
-%% The linked list
-%%
-% This token list just stores a reference to the first entry in the linked list
-\tl_new:N \l__longdiv_linkedlist_tl
-\tl_set:Nn\l__longdiv_linkedlist_tl { \longdiv_linkedlist_next:n { 0 } }
-\int_new:N \l__longdiv_linkedlist_length_int
+% Errors:
+\group_begin:
+\char_set_catcode_space:N\ % Using ~ in the messages is annoying, so let's restore the catcode of space for the meantime
+\msg_new:nnn {longdivision} {dividend_invalid} {Dividend '#1' is invalid (\msg_line_context:).}
+\msg_new:nnn {longdivision} {divisor_too_large}
+ {Divisor '#2' is too large (\msg_line_context:). It has \tl_count:n {#2} digits, but divisors can be at most 9 digits long.}
+\msg_new:nnn {longdivision} {divisor_not_int} {Divisor '#2' is not an integer (\msg_line_context:).}
+\msg_new:nnn {longdivision} {divisor_invalid} {Divisor '#2' is invalid (\msg_line_context:).}
+\msg_new:nnn {longdivision} {unknown_key} {Unknown key '#1'. (\msg_line_context:).}
+\msg_new:nnn {longdivision} {decimal_separator_not_single} {Decimal separator '#1' should be a single token. (\msg_line_context:).}
+\msg_new:nnn {longdivision} {decimal_separator_is_digit} {Decimal separator '#1' is a digit which is not allowed. (\msg_line_context:).}
-% Set the next entry to be a no-op so that when expanded the last "null pointer" just disappears
-\cs_new:Nn \longdiv_linkedlist_set_next_do_nothing: {
- \cs_set_eq:cN { longdiv_linkedlist ~ \int_use:N \l__longdiv_linkedlist_length_int } \prg_do_nothing:
-}
-\longdiv_linkedlist_set_next_do_nothing:
+% Warnings:
+\msg_new:nnn {longdivision} {work_stopped_early} {The work display stopped early to avoid running off the page (\msg_line_context:).}
+\msg_new:nnn {longdivision} {division_stopped_early} {The division stopped early to avoid running off the page (\msg_line_context:).}
+\msg_new:nnn {longdivision} {no_division_occurred}
+ {Either the dividend was zero or you used \token_to_str:N \intlongdiv \space and the dividend was ~less than the divisor. ~
+ This isn't a big deal, but the result probably looks silly.}
+\msg_new:nnn {longdivision} {no_tikz} {You requested "style~=~tikz" but tikz has not been loaded. Falling back to "style~=~standard".}
+\group_end:
-% "pointer" to next element (argument is the element's id)
-\cs_new:Nn \longdiv_linkedlist_next:n { \use:c { longdiv_linkedlist ~ #1 } }
-\cs_new:Nn \longdiv_linkedlist_add:n {
- \cs_set:cpx { longdiv_linkedlist ~ \int_use:N \l__longdiv_linkedlist_length_int}{
- \exp_not:n{ \longdiv_linkedlist_element:n { #1 } } \exp_not:N \longdiv_linkedlist_next:n { \int_eval:n { \l__longdiv_linkedlist_length_int + 1} }
- }
- \int_incr:N \l__longdiv_linkedlist_length_int
- \longdiv_linkedlist_set_next_do_nothing:
-}
-\cs_new_eq:NN \longdiv_linkedlist_element:n \use:n
-\cs_generate_variant:Nn \longdiv_linkedlist_add:n { f }
-% The easy implementation of remove_tail and the \longdiv_linkedlist_indicate_repeating_decimal commands is why I chose the "linked list" format.
-% Delete last element of list.
-\cs_new:Nn \longdiv_linkedlist_remove_tail: {
- \int_decr:N \l__longdiv_linkedlist_length_int
- \longdiv_linkedlist_set_next_do_nothing:
-}
%%
%% Entry points
%%
-% \tl_rescan to ignore spaces in input.
\NewDocumentCommand \longdivision { omm } {
\group_begin:
\IfNoValueF { #1 } {
\keys_set:nn { longdivision } { #1 }
}
- \tl_rescan:nn { \ExplSyntaxOn } { \longdiv_start:xx { #2 } { #3 } }
+ \longdiv_start:xx { #2 } { #3 }
\group_end:
}
-% Same as \longdiv[0]{#1}{#2}.
+% Same as \longdiv[options, 0]{#1}{#2}.
\NewDocumentCommand \intlongdivision { omm } {
\group_begin:
\IfNoValueF { #1 } {
\keys_set:nn { longdivision } { #1 }
}
\int_set:Nn \l__longdiv_max_extra_digits_int { 0 }
- \tl_rescan:nn { \ExplSyntaxOn } { \longdiv_start:xx { #2 } { #3 } }
+ \longdiv_start:xx { #2 } { #3 }
\group_end:
}
+\cs_generate_variant:Nn \tl_remove_all:Nn { No }
+
+% We need \longdiv_decimal_separator: to be \def'd so that we can expand it for use with tl_remove_all (in prepare_dividend)
+% but we also want to test for the decimal separator with \token_if_eq_meaning:NN (in \longdiv_if_token_is_decimal_separator:N)
+\cs_new:Nn \longdiv_store_decimal_separator_token: {
+ \exp_last_unbraced:NNo \cs_set_eq:NN \longdiv_decimal_separator_token: \longdiv_decimal_separator:
+}
+
+\cs_new:Nn \longdiv_start:nn {
+ \longdiv_store_decimal_separator_token:
+ \tl_set:Nn \l_tmpa_tl {#1}
+ \tl_set:Nn \l_tmpb_tl {#2}
+ % Remove spaces from arguments (we used to do this by setting space to ignore and using \tl_rescan but that is a bit gauche).
+ \tl_remove_all:Nn \l_tmpa_tl { ~ }
+ \tl_remove_all:Nn \l_tmpb_tl { ~ }
+ % TODO: Remove digit separators from inputs (dummied out because I didn't feel like handling _ case)
+ % \tl_if_empty:oF \longdiv_digit_separator: {
+ % \tl_remove_all:No \l_tmpa_tl { \longdiv_digit_separator: }
+ % \tl_remove_all:No \l_tmpb_tl { \longdiv_digit_separator: }
+ % }
+ \longdiv_add_leading_zero_if_necessary:N \l_tmpa_tl
+
+ \longdiv_start_i:xx
+ { \tl_use:N \l_tmpa_tl }
+ { \tl_use:N \l_tmpb_tl }
+}
+\cs_generate_variant:Nn \longdiv_start:nn { xx }
+
+
+\cs_generate_variant:Nn \tl_if_eq:nnT { xnT }
+\cs_new:Nn \longdiv_add_leading_zero_if_necessary:N {
+ \tl_if_eq:xnT { \tl_head:N { #1 } } { . } {
+ \tl_put_left:Nn \l_tmpa_tl { 0 }
+ }
+}
+
% Check input is valid then enter main loop.
% We use \int_eval:w to ensure that the dividend has no unnecessary leading zeroes and doesn't begin with a decimal point.
% Note that \int_eval:n wouldn't work here because it inserts a "\relax" token that would not get eaten by \numexpr if
% #1 contains a decimal point. This "\relax" causes trouble for the division main loop.
-\cs_new:Nn \longdiv_start:nn {
- \longdiv_check_dividend:n { #1 }
+\cs_new:Nn \longdiv_start_i:nn {
+ \longdiv_if_decimal_number:nF { #1 } {
+ \longdiv_error:nwnn { dividend_invalid }
+ }
\longdiv_check_divisor:n { #2 }
- % Second copy of #1 is eaten by \longdiv_typeset:nnn to print the dividend
- \exp_args:Nnnff \longdiv_get_new_digit:nnn { } { #2 } { \int_eval:w 0#1 } { \int_eval:w 0#1 }
+ \tl_set:Nn \l__longdiv_dividend_tl { #1 }
+ \tl_set:Nn \l__longdiv_divisor_tl { #2 }
+ \longdiv_get_new_digit:nnn { } { #2 } { #1 }
\longdiv_break_point: { #1 } { #2 }
}
-\cs_generate_variant:Nn \longdiv_start:nn { xx }
+\cs_generate_variant:Nn \longdiv_start_i:nn { xx }
\cs_new_eq:NN \longdiv_break_point: \use_none:nn
@@ -157,42 +261,70 @@
%% Input checkers
%%
+\prg_new_conditional:Nnn \longdiv_if_token_is_decimal_separator:N { TF } {
+ \token_if_eq_meaning:NNTF #1 \longdiv_decimal_separator_token: {
+ \prg_return_true:
+ }{
+ \prg_return_false:
+ }
+}
+
+
% Parse through the dividend token by token
% Check that every token is a digit with the exception of at most one .
-\cs_new:Nn \longdiv_check_dividend:n {
- \longdiv_check_dividend_before_point:N #1 \q_stop
+\prg_new_conditional:Nnn \longdiv_if_decimal_number:n { F } {
+ \longdiv_if_decimal_number_before_point:N #1 \q_stop
}
-\cs_new:Nn \longdiv_check_dividend_before_point:N {
- \token_if_eq_meaning:NNF #1 \q_stop {
- \token_if_eq_meaning:NNTF #1 . {
- \longdiv_check_dividend_seen_point:N
+\cs_new:Nn \longdiv_if_decimal_number_before_point:N {
+ \token_if_eq_meaning:NNTF #1 \q_stop {
+ \prg_return_true:
+ }{
+ \longdiv_if_token_is_decimal_separator:NTF #1 {
+ \longdiv_if_decimal_number_seen_point:N
}{
- \longdiv_check_dividend_isdigit:N #1
- \longdiv_check_dividend_before_point:N
+ \longdiv_if_digit:nF { #1 }{
+ \prg_return_false:
+ \use_none_delimit_by_q_stop:w
+ }
+ \longdiv_if_decimal_number_before_point:N
}
}
}
-\cs_new:Nn \longdiv_check_dividend_seen_point:N {
- \token_if_eq_meaning:NNF #1 \q_stop {
- \longdiv_check_dividend_isdigit:N #1
- \longdiv_check_dividend_seen_point:N
+\cs_new:Nn \longdiv_if_decimal_number_seen_point:N {
+ \token_if_eq_meaning:NNTF #1 \q_stop {
+ \prg_return_true:
+ }{
+ \longdiv_if_digit:nF { #1 }{
+ \prg_return_false:
+ \use_none_delimit_by_q_stop:w
+ }
+ \longdiv_if_decimal_number_seen_point:N
}
}
-\cs_new:Nn \longdiv_check_dividend_isdigit:N {
- \bool_if:nF { \token_if_eq_meaning_p:NN #1 0
- || \token_if_eq_meaning_p:NN #1 1 || \token_if_eq_meaning_p:NN #1 2 || \token_if_eq_meaning_p:NN #1 3
- || \token_if_eq_meaning_p:NN #1 4 || \token_if_eq_meaning_p:NN #1 5 || \token_if_eq_meaning_p:NN #1 6
- || \token_if_eq_meaning_p:NN #1 7 || \token_if_eq_meaning_p:NN #1 8 || \token_if_eq_meaning_p:NN #1 9
- }{
- \longdiv_error:nwnn { dividend_invalid }
- }
+\prg_new_conditional:Nnn \longdiv_if_digit:n { T, F, TF, p } {
+ \bool_lazy_and:nnTF
+ { \tl_if_single_p:n { #1 } }
+ {\bool_lazy_any_p:n{
+ { \token_if_eq_meaning_p:NN #1 0 }
+ { \token_if_eq_meaning_p:NN #1 1 }
+ { \token_if_eq_meaning_p:NN #1 2 }
+ { \token_if_eq_meaning_p:NN #1 3 }
+ { \token_if_eq_meaning_p:NN #1 4 }
+ { \token_if_eq_meaning_p:NN #1 5 }
+ { \token_if_eq_meaning_p:NN #1 6 }
+ { \token_if_eq_meaning_p:NN #1 7 }
+ { \token_if_eq_meaning_p:NN #1 8 }
+ { \token_if_eq_meaning_p:NN #1 9 }
+ }}
+ { \prg_return_true: }
+ { \prg_return_false: }
}
% Check that there is no ., that it is at most 8 digits, and that the entire argument can get assigned to a count variable
-% There's no way to do this last check in expl3, so I use plaintex \newcount, \afterassignment, and \l__longdiv_temp_int =.
+% There's no slick way to do this last check in expl3, so I use plaintex \newcount, \afterassignment, and \l__longdiv_temp_int =.
\newcount \l__longdiv_temp_int
\cs_new:Nn \longdiv_check_divisor:n {
\tl_if_in:nnT { #1 } { . } {
@@ -200,7 +332,7 @@
}
% We have to do the length check before the "validity" check because the "validity" check makes an assignment
% which throws a low level error if the number to be assigned is too large.
- \int_compare:nNnF { \tl_count:n { #1 } } < \c_nine {
+ \int_compare:nNnF { \tl_count:n { #1 } } < 9 {
\longdiv_error:nwnn { divisor_too_large }
}
% Idea here: if #1 is a valid number, \l__longdiv_temp_int = 0#1 will absorb all of it.
@@ -215,7 +347,7 @@
\tl_if_empty:nF { #1 } {
\longdiv_error:nwnn { divisor_invalid }
}
- \int_compare:nNnT \l__longdiv_temp_int = \c_zero {
+ \int_compare:nNnT \l__longdiv_temp_int = \c_zero_int {
\longdiv_error:nwnn { divisor_zero }
}
}
@@ -225,22 +357,6 @@
\msg_error:nnnn { longdivision } { #1 }
}
-% Errors:
-\msg_new:nnn { longdivision } { dividend_invalid } { Dividend ~ '#1' ~ is ~ invalid ~ (\msg_line_context:).}
-\msg_new:nnn { longdivision } { divisor_too_large }
- { Divisor ~ '#2' ~ is ~ too ~ large ~ (\msg_line_context:). ~ It ~ has ~ \tl_count:n { #2 } ~ digits, ~ but ~ divisors ~ can ~ be ~ at ~ most ~ 9 ~ digits ~ long. }
-\msg_new:nnn { longdivision } { divisor_not_int } { Divisor ~ '#2' ~ is ~ not ~ an ~ integer ~ (\msg_line_context:). }
-\msg_new:nnn { longdivision } { divisor_invalid } { Divisor ~ '#2' ~ is ~ invalid ~ (\msg_line_context:). }
-
-% Warnings:
-\msg_new:nnn { longdivision } { work_stopped_early } { The ~ work ~ display ~ stopped ~ early ~ to ~ avoid ~ running ~ off ~ the ~ page ~ (\msg_line_context:). }
-\msg_new:nnn { longdivision } { division_stopped_early } { The ~ division ~ stopped ~ early ~ to ~ avoid ~ running ~ off ~ the ~ page ~ (\msg_line_context:).}
-\msg_new:nnn { longdivision } { no_division_occurred }
- { Either ~ the ~ dividend ~ was ~ zero ~ or ~ you ~ used ~ \token_to_str:N \intlongdiv \space and ~ the ~ dividend ~ was ~less ~ than ~ the ~ divisor. ~
- This ~ isn't ~ a ~ big ~ deal, ~ but ~ the ~ result ~ probably ~ looks ~ silly. }
-\msg_new:nnn { longdivision } { no_tikz } { You ~ requested ~ "style~=~tikz" ~ but ~ tikz ~ has ~ not ~ been ~ loaded. ~ Falling ~ back ~ to ~ "style~=~standard". }
-
-
%%
%% Division
%%
@@ -253,7 +369,7 @@
% If we haven't hit the decimal point add it to the quotient and dividend
% Set seen_digit false so that we can remove the decimal point later if it divided evenly or we used \intlongdiv
\bool_if:NF \l__longdiv_seen_point_bool {
- \longdiv_add_point: %
+ \longdiv_record_point: %
\bool_set_false:N \l__longdiv_seen_digit_bool
\bool_set_true:N \l__longdiv_added_point_bool
}
@@ -265,8 +381,8 @@
\cs_generate_variant:Nn \longdiv_get_new_digit:nnn {xnn}
\cs_new:Npn \longdiv_get_new_digit_aux:nnw #1 #2 #3 #4;{
- \token_if_eq_meaning:NNTF #3 . {
- \longdiv_add_point:
+ \longdiv_if_token_is_decimal_separator:NTF #3 {
+ \longdiv_record_point:
\bool_set_true:N \l__longdiv_seen_digit_bool % Prevent this decimal point from being removed later
\bool_set_false:N \l__longdiv_added_point_bool
\longdiv_get_new_digit:nnn { #1 } { #2 } { #4 }
@@ -276,15 +392,13 @@
}
% Adds a decimal point, with a leading 0 if necessary, and records the current position in \l__longdiv_point_digit_int
-\cs_new:Nn \longdiv_add_point: {
- \bool_set_true:N \l__longdiv_seen_point_bool
- \bool_if:NTF \l__longdiv_seen_digit_bool {
- \longdiv_linkedlist_add:n { . }
- }{
- \longdiv_linkedlist_add:n { 0. } % Add a leading zero
-
+\cs_new:Nn \longdiv_record_point: {
+ \bool_if:NF \l__longdiv_seen_digit_bool {
+ \tl_put_right:Nn \l__longdiv_quotient_tl { 0 } % Add a leading zero
}
- \int_set_eq:NN \l__longdiv_point_digit_int \l__longdiv_position_int % Record the position of the point
+ \int_set_eq:NN \l__longdiv_point_digit_dividend_int { \l__longdiv_position_int } % Record the position of the point
+ \bool_set_true:N \l__longdiv_seen_point_bool
+ \int_set:Nn \l__longdiv_point_digit_quotient_int { \tl_count:N \l__longdiv_quotient_tl }
}
% Divide when we still have more digits.
@@ -297,17 +411,17 @@
}{
\int_set:Nn \l__longdiv_quotient_int { \int_div_truncate:nn { #1 } { #2 } }
\bool_if:nTF {
- \int_compare_p:nNn \l__longdiv_quotient_int = \c_zero % If the quotient was zero, we might not have to print it
+ \int_compare_p:nNn \l__longdiv_quotient_int = \c_zero_int % If the quotient was zero, we might not have to print it
&& !\l__longdiv_seen_digit_bool % If no other digits have been printed
&& !\l__longdiv_seen_point_bool % And we are before the decimal point
}{
\int_incr:N \l__longdiv_digits_requested_int % Get an extra digit, this one doesn't count.
}{ % Otherwise print it and record that we've seen a digit (all further 0's must be printed)
\bool_set_true:N \l__longdiv_seen_digit_bool
- \longdiv_linkedlist_add:f { \int_use:N \l__longdiv_quotient_int }
+ \tl_put_right:Nf \l__longdiv_quotient_tl { \int_use:N \l__longdiv_quotient_int }
}
\int_incr:N \l__longdiv_position_int
- \longdiv_divide_record:nn{ #1 }{ #2 }
+ \longdiv_divide_record:nn { #1 }{ #2 }
\longdiv_get_new_digit:xnn { \longdiv_remainder:nn { #1 } { #2 } } { #2 }
}
}
@@ -326,13 +440,14 @@
% For some reason we need to shift the typeset work over by half a digit if we quit early due to "stage" option
% so we need to set a flag so that the work typesetter can know to do this.
\bool_set_true:N \l__longdiv_stopped_early_stage_bool
- % \int_set:Nn \l_tmpa_int { \use:c { longdiv_linkedlist ~ \int_eval:n { \l__longdiv_linkedlist_length_int - 1 } } }
- \longdiv_linkedlist_add:n { \phantom { #3 0 } }
- \exp_args:Nx \longdiv_typeset:nnn { \longdiv_delete_last:n { #1 } } { #2 }
+ \tl_put_right:Nn \l__longdiv_quotient_tl { {\longdiv_hphantom:n { #3 0 }} }
+ \tl_set:Nf \l__longdiv_remainer { \tl_range:nnn { #1 } { 1 } { -2 } }
+ \longdiv_typeset:
}
-% Deletes the last digit of number.
-\cs_new:Nn \longdiv_delete_last:n { \tl_reverse:f { \tl_tail:f { \tl_reverse:f { #1 } } } }
+% \relax to protect also against f expansion
+\cs_new:Nn \longdiv_hphantom:n { \relax \longdiv_hphantom_aux: { #1 } }
+\cs_new_protected:Nn \longdiv_hphantom_aux: { \hphantom }
% Divide when we are out of digits.
% #1 -- remainder from last time (we will add a zero to the end)
@@ -343,28 +458,33 @@
% If we've seen this remainder before, we're done. Use the appropriate command
% to insert the overline, and then typeset everything
\cs_if_exist_use:cTF { longdiv_remainders ~ \int_eval:n { #1 } }{ % \int_eval:n to remove leading zero
- \longdiv_typeset:nnn { #1 } { #2 }
+ \tl_set:Nn \l__longdiv_remainder_tl { #1 }
+ \longdiv_typeset:
}{
- \bool_if:nTF {
+ \bool_if:nTF { % Check if we should stop early
\int_compare_p:nNn \l__longdiv_extra_digits_int = \l__longdiv_max_extra_digits_int
||\int_compare_p:nNn \l__longdiv_position_int = \c__longdiv_max_total_digits_int
- ||\int_compare_p:nNn \l__longdiv_position_int = \l__longdiv_digits_requested_int
+ ||\int_compare_p:nNn \l__longdiv_position_int = \l__longdiv_digits_requested_int % This is from the "stage" option
}{
\int_compare:nNnT \l__longdiv_position_int = \c__longdiv_max_total_digits_int {
\msg_warning:nn { longdivision } { division_stopped_early }
}
- \longdiv_typeset:nnn { #1 } { #2 }
+ \tl_set:Nn \l__longdiv_remainder_tl { #1 }
+ \longdiv_typeset:
}{
% Otherwise, record that we've seen this remainder and the position we're in
% In case this is the first digit of the repeated part
+ % \l__longdiv_repeat_digit_int counts digits after the decimal point, so in 1/9 it will be 0.
+ % See also the comment above \longdiv_insert_separators:Nn
\cs_set:cpx { longdiv_remainders ~ \int_eval:n { #1 } }{ % \int_eval:n to remove leading zero
- \int_set:Nn \l__longdiv_repeat_digit_int { \int_use:N \l__longdiv_linkedlist_length_int }
- \exp_not:N \longdiv_linkedlist_indicate_repeating_decimal:n { \int_use:N \l__longdiv_linkedlist_length_int }
+ \exp_not:N \int_set:Nn \exp_not:N \l__longdiv_repeat_digit_int {
+ \tl_count:N \l__longdiv_quotient_tl - \int_use:N \l__longdiv_point_digit_quotient_int
+ }
}
% Now we have to use #1 0 everywhere
\int_set:Nn \l__longdiv_quotient_int { \int_div_truncate:nn { #1 0 } { #2 } }
- \longdiv_linkedlist_add:f { \int_use:N \l__longdiv_quotient_int }
- \bool_set_true:N \l__longdiv_seen_digit_bool % We've seen a digit after the decimal point, don't need to remove it
+ \tl_put_right:Nf \l__longdiv_quotient_tl { \int_use:N \l__longdiv_quotient_int }
+ \bool_set_true:N \l__longdiv_seen_digit_bool % We've seen a digit after the decimal point
\int_incr:N \l__longdiv_position_int
\int_incr:N \l__longdiv_extra_digits_int
\longdiv_divide_record:nn { #1 0 } { #2 }
@@ -380,7 +500,7 @@
% This command checks if the quotient was zero, and if so preserves the leading zero by avoiding \int_eval:n
% This is so that e.g, \longdiv{14.1}{7} doesn't screw up
\cs_new:Nn \longdiv_remainder:nn {
- \int_compare:nNnTF \l__longdiv_quotient_int = \c_zero
+ \int_compare:nNnTF \l__longdiv_quotient_int = \c_zero_int
{ #1 }
{ \int_eval:n { #1 - \l__longdiv_quotient_int * #2 } }
}
@@ -393,7 +513,7 @@
\tl_new:N \l__longdiv_work_tl
\cs_new:Nn \longdiv_divide_record:nn {
\int_compare:nNnTF \l__longdiv_display_divisions_int < \c__longdiv_max_display_divisions_int {
- \int_compare:nNnF \l__longdiv_quotient_int = \c_zero { % If the quotient was zero, nothing needs to be typeset
+ \int_compare:nNnF \l__longdiv_quotient_int = \c_zero_int { % If the quotient was zero, nothing needs to be typeset
\tl_set:Nx \l__longdiv_work_tl {
\l__longdiv_work_tl
{ \int_use:N \l__longdiv_position_int } { #1 } { \int_eval:n { \l__longdiv_quotient_int * #2 } }
@@ -402,7 +522,8 @@
}
}{
\int_compare:nNnT \l__longdiv_display_divisions_int = \c__longdiv_max_display_divisions_int {
- \int_compare:nNnF \l__longdiv_quotient_int = \c_zero {
+ % If we hit max_display_divisions, we need to use typeset_work_last and emit a stopped-early warning. Otherwise this is the same as the display_divisions < max_display_divisions case.
+ \int_compare:nNnF \l__longdiv_quotient_int = \c_zero_int {
\tl_set:Nx \l__longdiv_work_tl {
\l__longdiv_work_tl
{ \int_use:N \l__longdiv_position_int } { #1 } { \int_eval:n { \l__longdiv_quotient_int * #2 } }
@@ -419,212 +540,272 @@
%% Typesetting
%%
+% This is the bulk of the code, division is quite easy but arranging stuff on the page is much harder.
+
+\cs_new_protected:Nn \longdiv_return_to_original_mode:n { \bool_if:NF \l__longdiv_mathmode_bool \hbox { #1 } }
%% Indicate repeating decimals
-% These are all different implementations of \longdiv_linkedlist_indicate_repeating_decimal:n
+% These are all different implementations of \longdiv_indicate_repeating_decimal:n
% They take one input which is the index of the start of the repeating decimal in the linked list
-% Chosen using "repeating decimal style", default is "dots all"
+% Chosen using "repeating decimal style", default is "overline"
% possible values: "overline", "dots", "dots all", "parentheses"
-% Put an \overline over the repeated digits. \overline only works in math mode, so we have to use \ensuremath. Then we put an \hbox
-% to take ourselves
-\cs_new:Nn \longdiv_linkedlist_indicate_repeating_decimal_overline:n {
- \cs_set:cpx { longdiv_linkedlist ~ #1 }{
- \ensuremath{ \overline { \bool_if:NF \l__longdiv_mathmode_bool \hbox { \exp_not:f { \use:c { longdiv_linkedlist ~ #1 } } } } }
- }
+% Put an \overline over the repeated digits. \overline only works in math mode, so we have to use \ensuremath.
+% \longdiv_return_to_original_mode:n restores text mode by wrapping in an hbox if necessary.
+% We stored the top level mode at the beginning of \longdiv_typeset:
+\cs_new:Nn \longdiv_indicate_repeating_decimal_overline:n {
+ \longdiv_ensuremath:n { \overline { \longdiv_return_to_original_mode:n {
+ #1
+ } } }
}
-\cs_new:cn { longdiv_linkedlist_indicate_repeating_decimal_dots~all:n } {
- \cs_set:cpx { longdiv_linkedlist ~ #1 }{
- \exp_not:n {
- \cs_set:Npn \longdiv_linkedlist_element:n ##1 { \dot ##1 }
- }
- \ensuremath { \noexpand \dot \exp_not:f { \use:c { longdiv_linkedlist ~ #1 } } }
+\cs_new_protected:Nn \longdiv_dot:n {
+ % In the dotsall case, we use this on every digit in range, but we don't want to put dots over the
+ % punctuation so we test for it.
+ \longdiv_if_digit:nTF { #1 } {
+ \longdiv_ensuremath:n { \dot { \longdiv_return_to_original_mode:n { #1 } } }
+ }{
+ #1
}
}
-\cs_new:Nn \longdiv_linkedlist_indicate_repeating_decimal_dots:n {
- \cs_set:cpx { longdiv_linkedlist ~ \int_eval:n { \l__longdiv_linkedlist_length_int - 1 } }{
- \noexpand\dot \use:c { longdiv_linkedlist ~ \int_eval:n { \l__longdiv_linkedlist_length_int - 1 } }
- }
- \cs_set:cpx { longdiv_linkedlist ~ #1 }{
- \ensuremath { \noexpand \dot \exp_not:f { \use:c { longdiv_linkedlist ~ #1 } } }
- }
+% #1 -- put a dot over every digit in #1. This needs to be expandable like all the indicate_repeating_decimal variants.
+\cs_new:cn { longdiv_indicate_repeating_decimal_dots~all:n } {
+ \tl_map_function:nN { #1 } \longdiv_dot:n % \tl_map_function is expandable whereas \tl_map_inline is not.
}
-\bool_new:N \l__longdiv_repeating_decimal_parentheses_bool
-\cs_new:Nn \longdiv_linkedlist_indicate_repeating_decimal_parentheses:n {
- \cs_set:cpx { longdiv_linkedlist ~ #1 }{
- ( \exp_not:f { \use:c { longdiv_linkedlist ~ #1 } } )
- }
- % Don't insert extra space for parenthesis in german typesetting because the quotient isn't directly above dividend and work.
- \cs_if_eq:NNF \longdiv_typeset_main: \longdiv_typeset_main_german:{
- \bool_set_true:N \l__longdiv_repeating_decimal_parentheses_bool
- \cs_set:Nn \longdiv_typeset_extra_zeroes: {
- \bool_if:NT \l__longdiv_added_point_bool { . }
- \prg_replicate:nn { #1 - \l__longdiv_linkedlist_length_int + \l__longdiv_extra_digits_int } { 0 } \hphantom (
- \prg_replicate:nn { \l__longdiv_position_int - #1 } { 0 } \hphantom{ ) }
- }
- }
+% Put a dot over the first and last entry of the token list leaving the rest alone
+\cs_new:Nn \longdiv_indicate_repeating_decimal_dots:n {
+ \longdiv_dot:n { \tl_head:n { #1 } }
+ % tl_range wraps it's output in an \exp_not:n which we cancel out with this \expanded
+ % (I guess in expl3 this is \use:e)
+ \expanded { \tl_range:nnn { #1 } { 2 } { -2 } }
+ \longdiv_dot:n { \tl_item:nn { #1 } { -1 } }
}
-% Do nothing, don't indicate repeating digits at all.
-\cs_new:Nn \longdiv_linkedlist_indicate_repeating_decimal_none:n {
+\bool_new:N \l__longdiv_repeating_decimal_parentheses_bool
+
+\cs_new:Nn \longdiv_indicate_repeating_decimal_parentheses:n {
+ (#1)
+}
+% In the parentheses case, the parentheses take up space so we record that here
+\cs_new:Nn \longdiv_indicate_repeating_decimal_parentheses_skip_begin: {
+ { \longdiv_hphantom:n { ( } }
}
-\cs_new_eq:NN \longdiv_linkedlist_indicate_repeating_decimal:n \longdiv_linkedlist_indicate_repeating_decimal_overline:n
+\cs_new:Nn \longdiv_indicate_repeating_decimal_parentheses_skip_end: {
+ { \longdiv_hphantom:n { ) } }
+}
-% \l__longdiv_linkedlist_tl -- quotient
-% #1 -- remainder
-% #2 -- divisor
-% #3 -- dividend
-\cs_new:Nn \longdiv_typeset:nnn {
- \mode_if_math:TF { \bool_set_true:N \l__longdiv_mathmode_bool } { \bool_set_false:N \l__longdiv_mathmode_bool }
- \cs_set:Npn \longdiv_typeset_dividend: {
- \longdiv_typeset_number:n {
- #3
- \bool_if:NT \l__longdiv_seen_digit_bool { % we don't want to add a trailing decimal point to the dividend if it divided evenly
- \longdiv_typeset_extra_zeroes:
- }
- }
+% Do nothing, don't indicate repeating digits at all.
+\cs_new:Nn \longdiv_indicate_repeating_decimal_none:n { #1 }
+
+% Default is overline
+\cs_new_eq:NN \longdiv_indicate_repeating_decimal:n \longdiv_indicate_repeating_decimal_overline:n
+
+% The three markers are inserted by \longdiv_insert_separators:Nn into quotient, dividend, and work.
+% We give them various definitions in the three contexts depending on how we do the formatting.
+% typeset_work is typically happening inside of a tabular where each row is in a separate local context,
+% so we need to make definitions global for that case. For sanitation purposes, we get rid of the defintions
+% as soon as we are done with them.
+\cs_new:Nn \longdiv_undefine_markers: {
+ \cs_undefine:N \longdiv_decimal_separator_marker:
+ \cs_undefine:N \longdiv_digit_separator_marker:
+ \cs_undefine:N \longdiv_repeat_marker:
+}
+
+\cs_new:Nn \longdiv_typeset_work: {
+ \bool_if:NTF \l__longdiv_separators_in_work_bool { % This is the "separators in work" option.
+ \cs_gset:Nn \longdiv_decimal_separator_marker: { \longdiv_decimal_separator: } % If true print the separators
+ \cs_gset:Nn \longdiv_digit_separator_marker: { \longdiv_digit_separator: }
+ }{
+ \cs_gset:Nn \longdiv_decimal_separator_marker: {{ \longdiv_hphantom:n { \longdiv_decimal_separator: } }} % Else use \phantom
+ \cs_gset:Nn \longdiv_digit_separator_marker: {{ \longdiv_hphantom:n { \longdiv_digit_separator: } }}
}
- \cs_set:Npn \longdiv_typeset_work: { \longdiv_typeset_work:n { #1 } }
- \cs_set:Npn \longdiv_typeset_divisor: { \longdiv_typeset_number:n { #2 } }
- \cs_set:Npn \longdiv_typeset_remainder: { \longdiv_typeset_number:n { #1 } } % This isn't used in current typesetting code, just could be nice to have
- \bool_set:Nn \l_longdiv_repeating_decimal_bool { \int_compare_p:nNn \l__longdiv_repeat_digit_int > 0 } % This isn't used in current typesetting code, just could be nice to have
- \let\longdivdividend\longdiv_typeset_dividend:
- \let\longdivdivisor\longdiv_typeset_divisor:
- \let\longdivquotient\longdiv_typeset_quotient:
- \let\longdivwork\longdiv_typeset_work:
- \bool_if:NF \l__longdiv_seen_digit_bool { \longdiv_linkedlist_remove_tail: } % If we haven't seen any new digits since adding a terminal decimal point, delete it.
- \longdiv_typeset_main:
+ \cs_gset:Nn \longdiv_repeat_marker: { \longdiv_indicate_repeating_decimal_skip_begin: } % Leave a space (if we are in parentheses case) if we see the repeat_marker.
+ \longdiv_typeset_work:n { \tl_use:N \l__longdiv_remainder_tl }
+ \longdiv_undefine_markers:
}
-
-\cs_new:Nn \longdiv_typeset_extra_zeroes: {
- \bool_if:NT \l__longdiv_added_point_bool { . }
- \prg_replicate:nn { \l__longdiv_extra_digits_int } { 0 }
+\cs_new_protected:Nn \longdiv_ensuremath:n { \ensuremath{#1} }
+% Choose mathmode or not mathmode as appropriate. \l__longdiv_mathmode_bool is set in \longdiv_typeset:
+\cs_new_protected:Nn \longdiv_typeset_number:n {
+ \bool_if:NTF \l__longdiv_mathmode_bool { \longdiv_ensuremath:n { #1 } } { \hbox { #1 } }
}
-\cs_new:Nn \longdiv_typeset_main_default: {
- \bool_if:NTF \l__longdiv_is_tikz_loaded_bool {
- \longdiv_typeset_main_tikz:
- } {
- \longdiv_typeset_main_standard:
- }
+\cs_new:Nn \longdiv_typeset_divisor: {
+ \longdiv_typeset_number:n { \tl_use:N \l__longdiv_divisor_tl }
}
-\cs_new_eq:NN \longdiv_typeset_main: \longdiv_typeset_main_default:
-
-\longdiv_define_style:nn { standard } {
- \hskip4pt
- \rule{0pt}{22pt} \longdiv_typeset_divisor: \, \begin{tabular}[b]{@{}r@{}}
- \longdiv_typeset_quotient:\,
- \\\hline
-
- \smash{\big)}\begin{tabular}[t]{@{}l@{}}
- \longdiv_typeset_dividend: \\
- \longdiv_typeset_work:\\[3pt]
- \end{tabular}\,
- \end{tabular}
- \hskip5.3pt
+\cs_new:Nn \longdiv_typeset_dividend: {
+ \longdiv_typeset_number:n { \tl_use:N \l__longdiv_dividend_tl }
}
-\bool_new:N \l__longdiv_is_tikz_loaded_bool
-\AtBeginDocument{ \@ifpackageloaded { tikz }{ \bool_gset_true:N \l__longdiv_is_tikz_loaded_bool } { } }
-
-\longdiv_define_style:nn { german } {
- \begin{tabular}[t]{@{}l@{}}
- \longdiv_typeset_dividend: \hskip1pt : \hskip1pt \longdiv_typeset_divisor: \hskip4pt = \hskip4pt \longdiv_typeset_quotient: \\
- \longdiv_typeset_work:
- \end{tabular}
+\cs_set:Npn \longdiv_typeset_quotient: {
+ \longdiv_typeset_number:n { \tl_use:N \l__longdiv_quotient_tl }
}
-
-\newlength{\longdiv@dividendlength}
-\newlength{\longdiv@dividendheight}
-\newlength{\longdiv@divisorheight}
-\newlength{\longdiv@maxheight}
-
-\let\longdiv@ifl@aded\@ifl@aded
-\let\longdiv@pkgextension\@pkgextension
-\def\longdiv@ifpackageloaded{\@ifl@aded\@pkgextension}
-
-\longdiv_define_style:nn { tikz }{
- \let\@ifl@aded\longdiv@ifl@aded
- \let\@pkgextension \longdiv@pkgextension
- \bool_if:NTF \l__longdiv_is_tikz_loaded_bool {
- \longdiv@typeset@tikz@rest
- } {
- \msg_warning:nn { longdivision } { no_tikz }
- \longdiv_typeset_main_standard:
- }
+% This isn't used in current typesetting code, but could be nice to have for integer division for instance
+\cs_set:Npn \longdiv_typeset_remainder: {
+ \longdiv_typeset_number:n { \tl_use:N \l__longdiv_remainder_tl }
}
+% At this point, the divisor, dividend, quotient, and remainder should all be stored in their appropriate token lists:
+% \l__longdiv_divisor_tl
+% \l__longdiv_dividend_tl
+% \l__longdiv_quotient_tl
+% \l__longdiv_remainder_tl
+% Of course we also care about all sorts of other state...
+\cs_new:Nn \longdiv_typeset: {
+ % Record whether we are in mathmode or not on the top level so we can make sure to typeset everything consistently
+ \mode_if_math:TF { \bool_set_true:N \l__longdiv_mathmode_bool } { \bool_set_false:N \l__longdiv_mathmode_bool }
-\def\longdiv@typeset@tikz@rest{
- \let\longdiv@typeset@dividend\longdiv_typeset_dividend:
- \let\longdiv@typeset@divisor\longdiv_typeset_divisor:
- \let\longdiv@typeset@quotient\longdiv_typeset_quotient:
- \let\longdiv@typeset@work\longdiv_typeset_work:
- \settowidth{\longdiv@dividendlength}{1.\longdiv_typeset_dividend:}
- \settoheight{\longdiv@dividendheight}{\longdiv_typeset_dividend:}
- \settoheight{\longdiv@maxheight}{\longdiv_typeset_dividend:\longdiv_typeset_divisor:}
- \settoheight{\longdiv@divisorheight}{\longdiv_typeset_divisor:}
- \l__longdiv_rulethickness_dim = 0.2mm
- \longdiv@typeset@main@tikz@helper
-}
+ \longdiv_prepare_divisor:
+ \longdiv_prepare_dividend:
+ \longdiv_prepare_quotient:
+ \longdiv_prepare_remainder:
-\ExplSyntaxOff
-\def\longdiv@typeset@main@tikz@helper{
- \begin{tikzpicture} [baseline=.5pt]
- \draw (1pt,.5*\longdiv@divisorheight) node [left] {\longdiv@typeset@divisor};
- \draw (\longdiv@dividendlength,.5*\longdiv@dividendheight) node [left] {\longdiv@typeset@dividend};
- \draw [line width=0.2mm] (0pt,-.22*\longdiv@dividendheight) arc (-70:60:\longdiv@maxheight*.41 and \longdiv@maxheight*.88) -- ++(\longdiv@dividendlength-2pt,0pt);
- \draw (\longdiv@dividendlength,\longdiv@divisorheight+\longdiv@maxheight*.3) node[above left] {
- \longdiv@typeset@quotient
- };
- \draw (0,0) node[below right] {
- \begin{tabular}[t]{@{}l@{}}
- \longdiv@typeset@work
- \end{tabular}
- };
- \end{tikzpicture}
-}
-\ExplSyntaxOn
+ % Copy components into "public" commands for custom typeset_main code
+ \let\longdivwork\longdiv_typeset_work:
+ \let\longdivdivisor\longdiv_typeset_divisor:
+ \let\longdivdividend\longdiv_typeset_dividend:
+ \let\longdivquotient\longdiv_typeset_quotient:
+ \let\longdivremainder\longdiv_typeset_remainder:
+ \longdiv_typeset_main:
+}
-\cs_new:Nn \longdiv_typeset_quotient: {
- \int_compare:nNnTF \l__longdiv_linkedlist_length_int = \c_zero
- {
- \bool_if:NTF \l__longdiv_stopped_early_stage_bool
- { }
- { \longdiv_typeset_number:n { 0 } }
+\cs_new:Nn \longdiv_prepare_divisor: {
+ \longdiv_insert_separators:Nn \l__longdiv_divisor_tl { \tl_count:N \l__longdiv_divisor_tl }
+ \cs_gset:Nn \longdiv_digit_separator_marker: { \longdiv_digit_separator: }
+ \tl_set:Nx \l__longdiv_divisor_tl { \tl_use:N \l__longdiv_divisor_tl }
+ \longdiv_undefine_markers:
+}
+
+\cs_new:Nn \longdiv_prepare_dividend: {
+ \tl_set:Nx \l__longdiv_dividend_tl {
+ \tl_use:N \l__longdiv_dividend_tl
+ % Pad dividend with extra zeroes as needed
+ \prg_replicate:nn { \l__longdiv_extra_digits_int } { 0 }
+ }
+ % Get rid of decimal separator if present (it gets added back in by insert_separators)
+ \tl_remove_all:No \l__longdiv_dividend_tl { \longdiv_decimal_separator: }
+ \longdiv_insert_separators:Nn \l__longdiv_dividend_tl { \l__longdiv_point_digit_dividend_int }
+ \cs_set:Nn \longdiv_decimal_separator_marker: { \longdiv_decimal_separator: }
+ \cs_set:Nn \longdiv_digit_separator_marker: { \longdiv_digit_separator: }
+ \cs_set:Npn \longdiv_repeat_marker: ##1 \s_stop {
+ \longdiv_indicate_repeating_decimal_dividend:n { ##1 }
+ }
+ \tl_set:Nx \l__longdiv_dividend_tl { \tl_use:N \l__longdiv_dividend_tl \s_stop }
+ \longdiv_undefine_markers:
+
+ % The rest of this function groups punctuation with the digit to its right
+ % 123,456.789 ==> 123{,4}56{.7}89
+ % This is for typesetting the work, we need to measure how far to the right
+ % to typeset a block that contains the first four digits that should be the width of
+ % 123{,4}. This format is needed for \longdiv_typeset_setwidth:n to work correctly.
+ \tl_build_clear:N \l_tmpa_tl
+ \tl_build_clear:N \l_tmpb_tl
+ \tl_map_inline:Nn \l__longdiv_dividend_tl {
+ \tl_build_put_right:Nn \l_tmpb_tl { ##1 }
+ \longdiv_if_digit:nT { ##1 } {
+ \tl_build_end:N \l_tmpb_tl
+ \tl_build_put_right:No \l_tmpa_tl {
+ \exp_after:wN { \exp:w \exp_end_continue_f:w \tl_use:N \l_tmpb_tl }
+ }
+ \tl_build_clear:N \l_tmpb_tl
}
- { \longdiv_typeset_number:n { \l__longdiv_linkedlist_tl } }
+ }
+ % Catch any trailing punctuation
+ \tl_build_end:N \l_tmpb_tl
+ \tl_build_put_right:No \l_tmpa_tl {
+ \exp_after:wN { \exp:w \exp_end_continue_f:w \tl_use:N \l_tmpb_tl }
+ }
+ \tl_build_end:N \l_tmpa_tl
+ % Store retokenized result into \l__longdiv_dividend_tl
+ \tl_set_eq:NN \l__longdiv_dividend_tl \l_tmpa_tl
+}
+
+\cs_new:Nn \longdiv_prepare_quotient: {
+ \longdiv_insert_separators:Nn \l__longdiv_quotient_tl { \l__longdiv_point_digit_quotient_int }
+ \cs_set:Nn \longdiv_decimal_separator_marker: { \longdiv_decimal_separator: }
+ \cs_set:Nn \longdiv_digit_separator_marker: { \longdiv_digit_separator: }
+ \cs_set:Npn \longdiv_repeat_marker: ##1 \s_stop {
+ \longdiv_indicate_repeating_decimal_quotient:n { ##1 }
+ }
+ \tl_set:Nx \l__longdiv_quotient_tl { \tl_use:N \l__longdiv_quotient_tl \s_stop }
+ \longdiv_undefine_markers:
+}
+
+% In the very outside chance that someone defines a format that uses "\longdivremainder", has a 4+ digit remainder,
+% AND uses the digit separator option, I have them covered... In the other 99.99% of the time this does nothing.
+% Really just here for uniformity.
+\cs_new:Nn \longdiv_prepare_remainder: {
+ \longdiv_insert_separators:Nn \l__longdiv_remainder_tl { \tl_count:N \l__longdiv_remainder_tl }
+ \cs_gset:Nn \longdiv_digit_separator_marker: { \longdiv_digit_separator: }
+ \tl_set:Nx \l__longdiv_remainder_tl { \tl_use:N \l__longdiv_remainder_tl }
+ \longdiv_undefine_markers:
+}
+
+\int_new:N \l__longdiv_temp_length_int
+
+\cs_generate_variant:Nn \tl_map_inline:nn { fn }
+\cs_generate_variant:Nn \tl_put_right:Nn { Nf }
+\cs_generate_variant:Nn \tl_build_put_right:Nn { No, Nf }
+
+% This is the key workhorse for our typesetting engine.
+% #1 -- a token list
+% #2 -- how many digits of the current number come before the decimal point
+% We iterate over the current token list, making a new one with punctuation inserted.
+% We use a coordinate system where the digit directly AFTER the decimal point is digit 0,
+% the digit directly before the decimal point is digit -1, etc.
+% This coordinate system is obviously useful for digit separators which occur based on their position
+% relative to the decimal point.
+% We set up \l__longdiv_repeat_digit_int so that it is already in these coordinates.
+% Any additional decorations that need to be added in the future should use coordiantes relative to the decimal point too.
+\cs_new:Nn \longdiv_insert_separators:Nn {
+ \int_set:Nn \l_tmpa_int { - \int_eval:n { #2 } }
+ \tl_build_clear:N \l_tmpa_tl
+ \tl_build_put_right:Nf \l_tmpa_tl { \tl_head:N #1 }
+ \tl_map_inline:fn { \tl_tail:N #1 } {
+ \int_incr:N \l_tmpa_int
+ \int_compare:nNnTF \l_tmpa_int = 0 {
+ \tl_build_put_right:Nn \l_tmpa_tl { \longdiv_decimal_separator_marker: }
+ }{
+ % Check if \l_tmpa_int is divisible by \l__longdiv_digit_group_length.
+ \int_compare:nNnT \l_tmpa_int = { \l_tmpa_int / \l__longdiv_digit_group_length * \l__longdiv_digit_group_length } {
+ \tl_build_put_right:Nn \l_tmpa_tl { \longdiv_digit_separator_marker: }
+ }
+ }
+ \int_compare:nNnT \l_tmpa_int = \l__longdiv_repeat_digit_int {
+ \tl_build_put_right:Nn \l_tmpa_tl { \longdiv_repeat_marker: }
+ }
+ \tl_build_put_right:Nn \l_tmpa_tl { ##1 }
+ }
+ \tl_build_get:NN \l_tmpa_tl #1
}
-\cs_new:Nn \longdiv_typeset_number:n {
- \bool_if:NTF \l__longdiv_mathmode_bool { \ensuremath{#1} } { #1 }
-}
-
% Iterate through the division "work" and typeset it
+% Argument is remainder after the final division iteration
\cs_new:Nn \longdiv_typeset_work:n {
\tl_if_empty:NTF \l__longdiv_work_tl {
\msg_warning:nn { longdivision } { no_division_occurred }
}{
\exp_after:wN \longdiv_typeset_work_first:nnn \l__longdiv_work_tl
+ % If we quit early, \longdiv_typeset_work_last:nn occurs already in \l__longdiv_work_tl so don't need it again
\int_compare:nNnT \l__longdiv_display_divisions_int < \c__longdiv_max_display_divisions_int {
\exp_args:No \longdiv_typeset_work_last:nn { \int_use:N \l__longdiv_position_int } { #1 }
}
}
}
+\tl_new:N \g__longdiv_work_line_tl
+
% #1 -- digits in to the right side of the numbers we are writing
% #2 -- remainder from last time with new digits added to the right
% #3 -- quotient * divisor
@@ -632,10 +813,16 @@
% _rest typesets result from last time, quotient * divisor and the line
% _last only typesets the remainder from last time
\cs_new:Nn \longdiv_typeset_work_first:nnn {
- \longdiv_typeset_setwidth:n { #1 }
+ \longdiv_typeset_setwidth:n { #1 }
\hspace{\g__longdiv_temp_dim}
- \llap { \longdiv_insert_point_ifneeded:nn { #1 } { #3 } }
- \\\longdiv_rule:nn{#1}{#3}
+ \tl_gset:Nf \g__longdiv_work_line_tl { #3 }
+ \longdiv_work_insert_separators:Nn { \g__longdiv_work_line_tl } { #1 }
+ % We need the definition to be global to make it past the \\.
+ % Best practice would be to feed in a local variable to insert_separators, but insert_separators
+ % already uses \l_tmpa_tl and \l_tmb_tl for its own purposes. It would anyways be more error prone to do it that way.
+ \tl_gset_eq:NN \g__longdiv_work_line_tl \g__longdiv_work_line_tl % Globalize definition from insert_separators
+ \longdiv_llap_preserve_math_mode:n { \longdiv_typeset_number:n { \g__longdiv_work_line_tl } }
+ \\\longdiv_rule:N { \g__longdiv_work_line_tl }
\peek_meaning:NT \bgroup {
\longdiv_typeset_work_rest:nnn
}
@@ -644,11 +831,17 @@
\cs_new:Nn \longdiv_typeset_work_rest:nnn {
\longdiv_typeset_setwidth:n { #1 }
\hspace{\g__longdiv_temp_dim}
- \llap { \longdiv_insert_point_ifneeded:nn { #1 } { #2 } }
+ \tl_gset:Nf \g__longdiv_work_line_tl { #2 }
+ \longdiv_work_insert_separators:Nn { \g__longdiv_work_line_tl } { #1 }
+ \tl_gset_eq:NN \g__longdiv_work_line_tl \g__longdiv_work_line_tl
+ \longdiv_llap_preserve_math_mode:n { \longdiv_typeset_number:n { \g__longdiv_work_line_tl } }
\\
\hspace{\g__longdiv_temp_dim}
- \llap { \longdiv_insert_point_ifneeded:nn { #1 } { #3 } }
- \\\longdiv_rule:nn{#1}{#3}
+ \tl_gset:Nf \g__longdiv_work_line_tl { #3 }
+ \longdiv_work_insert_separators:Nn { \g__longdiv_work_line_tl } { #1 }
+ \tl_gset_eq:NN \g__longdiv_work_line_tl \g__longdiv_work_line_tl
+ \longdiv_llap_preserve_math_mode:n { \longdiv_typeset_number:n { \g__longdiv_work_line_tl } }
+ \\\longdiv_rule:N { \g__longdiv_work_line_tl }
\peek_meaning:NT \bgroup {
\longdiv_typeset_work_rest:nnn
}
@@ -659,107 +852,148 @@
\cs_new:Nn \longdiv_typeset_work_last:nn {
\longdiv_typeset_setwidth:n { #1 }
\hspace{\g__longdiv_temp_dim}
- \llap { \longdiv_insert_point_ifneeded:nn { #1 } { #2 } }
-}
-
-% #1 -- the start position of the substring
-% #2 -- the substring
-% #3 -- the position we are checking for
-\prg_new_conditional:Nnn \longdiv_if_contains_position:nnn { TF,T,F } {
- \bool_if:nTF {
- \int_compare_p:nNn { #1 } > #3
- && \int_compare_p:nNn { #1 - \tl_count:n { #2 } } < #3
- }{
- \prg_return_true:
- }{
- \prg_return_false:
- }
+ \tl_gset:Nf \g__longdiv_work_line_tl { #2 }
+ \longdiv_work_insert_separators:Nn { \g__longdiv_work_line_tl } { #1 }
+ \tl_gset_eq:NN \g__longdiv_work_line_tl \g__longdiv_work_line_tl
+ \longdiv_llap_preserve_math_mode:n { \longdiv_typeset_number:n { \g__longdiv_work_line_tl } }
}
-% Set \g__longdiv_temp_dim equal to digitwidth * number of digits
-% If we are past the decimal point, add \c__longdiv_pointwidth_dim
+% Set \g__longdiv_temp_dim equal to the width of the first #1 digits of dividend (and any punctuation in that range).
+% In prepare_dividend we grouped the punctuation together with the following digit so that this works conveniently
\cs_new:Nn \longdiv_typeset_setwidth:n {
- \dim_gset:Nn \g__longdiv_temp_dim { #1\c__longdiv_digitwidth_dim }
+ \settowidth \l__longdiv_tempwidth_dim {\tl_range:Nnn \l__longdiv_dividend_tl { 1 } { #1 } \relax }
+ \dim_gset:Nn \g__longdiv_temp_dim { \l__longdiv_tempwidth_dim }
% For some reason we need to shift everything over by half a digit if we quit early due to "stage" option
- \bool_if:NT \l__longdiv_stopped_early_stage_bool { \dim_gadd:Nn \g__longdiv_temp_dim { -0.5\c__longdiv_digitwidth_dim } }
- \int_compare:nNnT \l__longdiv_point_digit_int < { #1 } {
- \dim_gadd:Nn \g__longdiv_temp_dim \c__longdiv_pointwidth_dim
- }
- \bool_if:NT \l__longdiv_repeating_decimal_parentheses_bool {
- \int_compare:nNnT \l__longdiv_repeat_digit_int < { #1 } {
- \dim_gadd:Nn \g__longdiv_temp_dim \c__longdiv_parenwidth_dim
- }
- }
+ \bool_if:NT \l__longdiv_stopped_early_stage_bool {\dim_gadd:Nn \g__longdiv_temp_dim { -0.5\c__longdiv_digitwidth_dim } }
}
-% If the number ends after the decimal point ( #1 > \l__longdiv_point_digit_int )
-% and start before it ( #1 - length(#2) < \l__longdiv_point_digit_int) insert a
-% decimal point in the appropriate position of #2. Otherwise just return #2
-\cs_new:Nn \longdiv_insert_point_ifneeded:nn {
- \tl_set:Nn \l_tmpa_tl { #2 }
- \bool_if:NT \l__longdiv_repeating_decimal_parentheses_bool {
- \longdiv_if_contains_position:nnnT { #1 } { #2 } { \l__longdiv_repeat_digit_int } {
- \tl_set:Nx \l_tmpa_tl {
- \exp_not:N \longdiv_insert:nff { \hskip \c__longdiv_parenwidth_dim } %)
- { \int_eval:n{\l__longdiv_repeat_digit_int - #1 + \tl_count:n { #2 }} }
- { \tl_use:N \l_tmpa_tl }
- }
- }
- }
- \longdiv_if_contains_position:nnnT { #1 } { #2 } { \l__longdiv_point_digit_int } {
- \tl_set:Nx \l_tmpa_tl { \longdiv_insert:nff . {\int_eval:n{\l__longdiv_point_digit_int - #1 + \tl_count:n { #2 }}} { \tl_use:N \l_tmpa_tl } }
- }
- \longdiv_typeset_number:n { \tl_use:N \l_tmpa_tl }
+% #2 is the distance to the right endpoint of the token list #1.
+% The distance to decimal point is (point_digit_divident - distance to left endpoint of #1)
+\cs_new:Nn \longdiv_work_insert_separators:Nn {
+ \longdiv_insert_separators:Nn #1 { \l__longdiv_point_digit_dividend_int + \tl_count:N #1 - #2 }
}
-% Walk #2 digits across #3 and then insert #1
-\cs_new:Nn \longdiv_insert:nnn {
- \longdiv_insert_aux:onN { #2 } { #1 } #3
+% I think this is the same as a command from mathtools, but I make my own here.
+\cs_new:Nn \longdiv_llap_preserve_math_mode:n {
+ \if_mode_math:
+ \llap{$#1$}
+ \else
+ \llap{#1}
+ \fi
}
-\cs_generate_variant:Nn \longdiv_insert:nnn { nff }
-\cs_new:Nn \longdiv_insert_aux:nnN {
- \int_compare:nNnTF { #1 } = \c_zero {
- #2#3
- }{
- #3 \longdiv_insert_aux:onN { \int_eval:n { #1 - 1 } } { #2 }
- }
-}
-\cs_generate_variant:Nn \longdiv_insert_aux:nnN {onN}
-
-
-% Okay, this is another section where we are adulterated with plaintex stuff.
-% It would be easy to reimplement \settowidth, but \hrule and \noalign have no
-% expl3 name anyways. Since I only use these dim variables with \settowidth, I declare
-% them with \newdimen rather than \dim_new:N
-\newdimen \c__longdiv_digitwidth_dim
-\settowidth \c__longdiv_digitwidth_dim { 0 }
-\newdimen \c__longdiv_pointwidth_dim
-\settowidth \c__longdiv_pointwidth_dim { . }
-\newdimen \c__longdiv_parenwidth_dim
-\settowidth \c__longdiv_parenwidth_dim { ( }
-\newdimen \l__longdiv_tempwidth_dim
+\newdimen \l__longdiv_tempwidth_dim
\newdimen \l__longdiv_rulethickness_dim
\l__longdiv_rulethickness_dim = 0.2mm
-\cs_new:Nn \longdiv_rule:nn {
+% Make a rule of length the width of token list #1 whose right endpoint is \g__longdiv_temp_dim from the left.
+\cs_new:Nn \longdiv_rule:N {
\noalign {
- \settowidth \l__longdiv_tempwidth_dim { #2 }
- % Check whether the decimal point occurred in the middle of the current number
- % because if so, it's longer by pointwidth.
- \longdiv_if_contains_position:nnnT { #1 } { #2 } { \l__longdiv_point_digit_int } {
- \dim_add:Nn \l__longdiv_tempwidth_dim \c__longdiv_pointwidth_dim
- }
- % If we use parens to denote the repeating part of the quotient, they take up space too. Test if a paren occurs.
- \bool_if:NT \l__longdiv_repeating_decimal_parentheses_bool {
- \longdiv_if_contains_position:nnnT { #1 } { #2 } { \l__longdiv_point_digit_int } {
- \dim_add:Nn \l__longdiv_tempwidth_dim \c__longdiv_parenwidth_dim
- }
- }
+ \settowidth \l__longdiv_tempwidth_dim { \tl_use:N #1 }
\box_move_right:nn { \g__longdiv_temp_dim - \l__longdiv_tempwidth_dim } {
\vbox:n { \hrule width \l__longdiv_tempwidth_dim height \l__longdiv_rulethickness_dim }
}
}
}
+
+
+%%
+%% Typesetting styles
+%%
+
+% The typesetting style is chosen with the "style" key.
+% These commands use the five commands which contain the relevant results of the division:
+% \longdivdivisor
+% \longdivdividend
+% \longdivquotient
+% \longdivremainder
+% \longdivwork
+
+\longdiv_define_style:nn { default } {
+ \bool_if:NTF \l__longdiv_is_tikz_loaded_bool {
+ \longdiv_typeset_main_tikz:
+ } {
+ \longdiv_typeset_main_standard:
+ }
+}
+\cs_new_eq:NN \longdiv_typeset_main: \longdiv_typeset_main_default:
+
+% In the normal fonts this looks vaguely okay I guess.
+% One nice thing about the standard / german styles is that \tracingall behaves better.
+% Tikz really wrecks the \tracingall output (hundreds of thousands of text lines of the tikz parser =( )
+% I believe this is stolen from the ancient plaintex longdiv.tex
+\longdiv_define_style:nn { standard } {
+ \hskip4pt
+ \rule{0pt}{22pt} \longdivdivisor \, \begin{tabular}[b]{@{}r@{}}
+ \longdivquotient \,
+ \\\hline
+ \smash{\big)}\begin{tabular}[t]{@{}l@{}}
+ \longdivdividend{\hskip 3pt}\relax \\
+ \longdivwork\\[3pt]
+ \end{tabular}\,
+ \end{tabular}
+ \hskip5.3pt
+}
+
+\cs_new:Nn \longdiv_german_division_sign: { : }
+
+% "German" style because it was first requested by a German. has also been suggested to call it "Latin American" style.
+\longdiv_define_style:nn { german } {
+ \begin{tabular}[t]{@{}l@{}}
+ \longdivdividend \hskip1pt \longdiv_german_division_sign: \hskip1pt \longdivdivisor \hskip4pt = \hskip4pt \longdivquotient \\
+ \longdivwork
+ \end{tabular}
+}
+
+
+% Certainly the pretiest of my three styles. I think I got it from a tex stack exchange post,
+% but I apparently didn't credit it when I copied it and I cannot find teh post now.
+\longdiv_define_style:nn { tikz }{
+ \bool_if:NTF \l__longdiv_is_tikz_loaded_bool {
+ \longdiv@typeset@main@tikz
+ } {
+ \msg_warning:nn { longdivision } { no_tikz }
+ \longdiv_typeset_main_standard:
+ }
+}
+
+\bool_new:N \l__longdiv_is_tikz_loaded_bool
+\AtBeginDocument{ \@ifpackageloaded { tikz }{ \bool_gset_true:N \l__longdiv_is_tikz_loaded_bool } { } }
+
+
+\ExplSyntaxOff
+
+\newlength{\longdiv@dividendlength}
+\newlength{\longdiv@dividendheight}
+\newlength{\longdiv@divisorheight}
+\newlength{\longdiv@maxheight}
+
+% text depth is needed to prevent descending commas from shifting components up weirdly.
+\def\longdiv@typeset@main@tikz{
+ \settowidth{\longdiv@dividendlength}{1.\longdivdividend}
+ \settoheight{\longdiv@dividendheight}{\longdivdividend}
+ \settoheight{\longdiv@maxheight}{\longdivdividend\longdivdivisor}
+ \settoheight{\longdiv@divisorheight}{\longdivdivisor}
+ \begin{tikzpicture} [baseline=.5pt, text height=\longdiv@maxheight]
+ \draw (1pt,.5*\longdiv@divisorheight)
+ node [left, text depth=0pt] { \longdivdivisor };
+ \draw (\longdiv@dividendlength,.5*\longdiv@dividendheight )
+ node [left, text depth=0pt] { \longdivdividend };
+ \draw [line width=0.2mm]
+ (0pt,-.22*\longdiv@dividendheight) arc (-70:60:\longdiv@maxheight*.41 and \longdiv@maxheight*.88)
+ -- ++(\longdiv@dividendlength-2pt, 0pt);
+ \draw (\longdiv@dividendlength,\longdiv@divisorheight+\longdiv@maxheight*.37)
+ node[above left, text depth=0pt] { \longdivquotient };
+ \draw (1pt,0) node[below right] {
+ \begin{tabular}[t]{@{}l@{}}
+ \longdivwork
+ \end{tabular}
+ };
+ \end{tikzpicture}
+}
+\ExplSyntaxOn
+
+
+
\ExplSyntaxOff