summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2011-08-01 00:47:16 +0000
committerKarl Berry <karl@freefriends.org>2011-08-01 00:47:16 +0000
commitaec2bbc3994991ebc6c5f4dbc90ad15c55f1a1fb (patch)
tree8940f33f6b173fb5cc630cc58ed4b791ad29e3fe /Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex
parent868233e6288b5e35a7d7aabd79bf8e56a802bc12 (diff)
pgfplots 1.5 (29jul11)
git-svn-id: svn://tug.org/texlive/trunk@23292 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex')
-rw-r--r--Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex99
1 files changed, 47 insertions, 52 deletions
diff --git a/Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex b/Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex
index 3c3e9dd7f6a..2276f571db9 100644
--- a/Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex
+++ b/Master/texmf-dist/tex/generic/pgfplots/pgfplotsstackedplots.code.tex
@@ -46,32 +46,29 @@
% 2. At the beginning and end of each plot, the lists in 1.) are
% initialised properly.
%
-% 3. While plot coordinates are processed, the following methods
+% 3.1 While plot coordinates are processed during the survey phase, the following methods
% interact with the stacked API:
% \pgfplots@stacked@preparepoint@inmacro
% -> compute the 'stacked' sum.
% This may need to be done with floating point arithmetics because
% the data scaling trafo is not yet initialised
+% \pgfplots@stacked@rememberzerolevelpoint@for@next@plot
+% \pgfplots@stacked@getnextzerolevelpoint
%
+%
+% 3.2 during the final visualization phase, we have
% \pgfplots@stacked@finishpoint
% -> takes coordinates as they will be given to Tikz. This method is
% used to
% - communicate zero level coordinates to Tikz
% - implement the 'closed paths' option (allows filled stacked plots).
%
-% \pgfplots@stacked@rememberzerolevelpoint@for@next@plot
-% \pgfplots@stacked@getnextzerolevelpoint
-%
% 4. Zero levels are communicated to Tikz by
% \pgfplots@stacked@initzerolevelhandler. This routine initialises an
% input stream for Tikz plot handlers which produces a sequence of
% zero levels. It is used by [xy]comb and [xy]bar.
%
%
-% REMARK:
-% the state of the boolean \ifpgfplots@datascaletrafo@initialised
-% determines whether these routines expect and return floating point
-% numbers or fixed point numbers.
\let\pgfplots@stacked@zerolevelpoint@x=\pgfutil@empty
\let\pgfplots@stacked@zerolevelpoint@y=\pgfutil@empty
@@ -114,29 +111,25 @@
\let\pgfplots@stacked@closedcycle@impl=\pgfutil@empty
\ifpgfplots@stacked@isfirstplot
\global\pgfplotslistnewempty\pgfplots@stacked@zerolevellist
- \def\pgfplots@stacked@zerolevelpoint@x{0}%
- \def\pgfplots@stacked@zerolevelpoint@y{0}%
- \def\pgfplots@stacked@zerolevelpoint@z{0}%
% only work with float if its really necessary - for
% example if the scaling trafo which maps to pgfmath is
% not yet initialised.
- \ifpgfplots@datascaletrafo@initialised
+ \ifpgfplots@datascaletrafo@initialised % FIXME : should be '!ifsurvey'
+ \def\pgfplots@stacked@zerolevelpoint@x{0}%
+ \def\pgfplots@stacked@zerolevelpoint@y{0}%
+ \def\pgfplots@stacked@zerolevelpoint@z{0}%
\else
- \ifpgfplots@xislinear
- \pgfmathfloatcreate{0}{0.0}{0}%
- \let\pgfplots@stacked@zerolevelpoint@x=\pgfmathresult
- \fi
- \ifpgfplots@yislinear
- \pgfmathfloatcreate{0}{0.0}{0}%
- \let\pgfplots@stacked@zerolevelpoint@y=\pgfmathresult
- \fi
- \ifpgfplots@threedim
- \ifpgfplots@zislinear
- \pgfmathfloatcreate{0}{0.0}{0}%
- \let\pgfplots@stacked@zerolevelpoint@z=\pgfmathresult
- \fi
- \fi
+ \pgfplotscoordmath{x}{parsenumber}{0}%
+ \let\pgfplots@stacked@zerolevelpoint@x=\pgfmathresult
+ \let\pgfplots@stacked@zerolevelpoint@y=\pgfmathresult
+ \let\pgfplots@stacked@zerolevelpoint@z=\pgfmathresult
+ %
+ \pgfmathfloatcreate{0}{0.0}{0}%
+ \ifpgfplots@xislinear\else \let\pgfplots@stacked@zerolevelpoint@x=\pgfmathresult \fi
+ \ifpgfplots@yislinear\else \let\pgfplots@stacked@zerolevelpoint@y=\pgfmathresult \fi
+ \ifpgfplots@zislinear\else \let\pgfplots@stacked@zerolevelpoint@z=\pgfmathresult \fi
\fi
+ %
\def\pgfplots@stacked@getnextzerolevelpoint{}% will remain constant anyway.
\else
{\globaldefs=1
@@ -259,26 +252,27 @@
% - \pgfplots@current@point@[xyz] are adjusted.
\def\pgfplots@stacked@preparepoint@inmacro{%
\pgfplots@stacked@getnextzerolevelpoint
+ %
\ifpgfplots@stacked@plus
- \let\pgfplots@stacked@op=\pgfmath@basic@add@
+ \def\pgfplots@stacked@op{add}%
\else
- \let\pgfplots@stacked@op=\pgfmath@basic@subtract@
+ \def\pgfplots@stacked@op{subtract}%
\fi
\pgfplots@if{pgfplots@\pgfplots@stacked@dir islinear}{%
- \ifpgfplots@datascaletrafo@initialised
- \else
- \ifpgfplots@stacked@plus
- \let\pgfplots@stacked@op=\pgfmathfloatadd@
- \else
- \let\pgfplots@stacked@op=\pgfmathfloatsubtract@
- \fi
- \fi
- }{}%
- \edef\pgfplots@loc@TMPa{
- \noexpand\pgfplots@stacked@op
- {\csname pgfplots@stacked@zerolevelpoint@\pgfplots@stacked@dir\endcsname}%
- {\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname}}%
- \pgfplots@loc@TMPa
+ \pgfplotscoordmath{\pgfplots@stacked@dir}{op}{\pgfplots@stacked@op}{%
+ {\csname pgfplots@stacked@zerolevelpoint@\pgfplots@stacked@dir\endcsname}%
+ {\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname}}%
+ }{%
+ % LOG. we need to compute log(zerolevel + current):
+ \pgfplotscoordmath{\pgfplots@stacked@dir}{exp}{\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname}%
+ \pgfmathfloatparsenumber\pgfmathresult
+ \expandafter\let\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname=\pgfmathresult
+ \csname pgfmathfloat\pgfplots@stacked@op @\endcsname
+ {\csname pgfplots@stacked@zerolevelpoint@\pgfplots@stacked@dir\endcsname}%
+ {\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname}%
+ }%
+ %
+ % for logs, I remember just zerolevel+current; not its log.
\expandafter\let\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname=\pgfmathresult
\ifpgfplots@threedim
\ifpgfplots@curplot@threedim
@@ -289,6 +283,12 @@
\else
\pgfplots@stacked@rememberzerolevelpoint@for@next@plot{(\pgfplots@current@point@x,\pgfplots@current@point@y)}%
\fi
+ %
+ \pgfplots@if{pgfplots@\pgfplots@stacked@dir islinear}{%
+ }{%
+ \pgfplotscoordmath{\pgfplots@stacked@dir}{log}{\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname}%
+ \expandafter\let\csname pgfplots@current@point@\pgfplots@stacked@dir\endcsname=\pgfmathresult
+ }%
}
% This here is a re-implementation of the stored plot processing.
@@ -469,16 +469,11 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\endgroup
%
- \ifpgfplots@apply@datatrafo
- \def\pgfplots@coord@stream@coord@{%
- \pgfplots@apply@data@scaletrafo@to@one@point%
- \pgfplots@coord@stream@finalize@currentpt
- }%
- \else
- \def\pgfplots@coord@stream@coord@{%
- \pgfplots@coord@stream@finalize@currentpt
- }%
- \fi
+ \def\pgfplots@coord@stream@coord@{%
+ \pgfplotsaxisvisphasetransformcoordinate\pgfplots@current@point@x\pgfplots@current@point@y\pgfplots@current@point@z%
+ \pgfplotsaxisvisphasepreparedatapoint
+ \pgfplots@coord@stream@finalize@currentpt
+ }%
}
% This command gets called after the sequence reversal has been done.