diff options
author | Karl Berry <karl@freefriends.org> | 2011-01-24 00:40:31 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2011-01-24 00:40:31 +0000 |
commit | a19ad32cf56ba3ede021b0591ba0403e596c4a32 (patch) | |
tree | 1a8431db8daf791e4cef6c249f9d28e1fba66bb2 /Master/texmf-dist/source/latex/randomwalk | |
parent | e2a7756df6a69b1285382d47d185837b6a538e7f (diff) |
new latex package randomwalk (20jan11)
git-svn-id: svn://tug.org/texlive/trunk@21161 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/randomwalk')
-rw-r--r-- | Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx | 555 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/randomwalk/randomwalk.ins | 22 |
2 files changed, 577 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx new file mode 100644 index 00000000000..bfa4327d28e --- /dev/null +++ b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx @@ -0,0 +1,555 @@ +% \iffalse +%% File: randomwalk.dtx Copyright (C) 2011 Bruno Le Floch +%% +%% It may be distributed and/or modified under the conditions of the +%% LaTeX Project Public License (LPPL), either version 1.3c of this +%% license or (at your option) any later version. The latest version +%% of this license is in the file +%% +%% http://www.latex-project.org/lppl.txt +%% +%% ----------------------------------------------------------------------- +% +%<*driver|package> +\RequirePackage{l3names} +%</driver|package> +%\fi +\GetIdInfo$Id: randomwalk.dtx 1 2011-01-09 10:15:31Z blefloch $ + {Customizable Random Walks using TikZ}% +%\iffalse +%<*driver> +%\fi +\ProvidesFile{\filename.\filenameext} + [\filedate\space v\fileversion\space\filedescription] +%\iffalse +\documentclass[full]{l3doc} +\usepackage{randomwalk} +\usepackage{amsmath} +\begin{document} + \DocInput{randomwalk.dtx} +\end{document} +%</driver> +% \fi +% +% +% \title{The \textsf{randomwalk} package: \\ +% customizable random walks using TikZ\thanks{This file has version +% number \fileversion, last revised \filedate.}} +% \author{Bruno Le Floch} +% \date{\filedate} +% +% \maketitle +% \tableofcontents +% +% \begin{documentation} +% +% \begin{abstract} +% +% The |randomwalk| package draws random walks using TikZ. The following +% parameters can be customized: +% \begin{itemize} +% \item The number of steps, of course. +% \item The length of the steps, either a fixed length, or a length taken +% at random from a given set. +% \item The angle of each step, either taken at random from a given set, or +% uniformly distributed. +% \end{itemize} +% +% \end{abstract} +% +% +% \section{How to use it} +% +% The |randomwalk| package has exactly one user command: |\RandomWalk|, +% which takes a list of key-value pairs as its argument. A few examples: +% \begin{verbatim} +% \RandomWalk {number = 100, length = {4pt, 10pt}} +% \RandomWalk {number = 100, angles = {0,60,120,180,240,300}, degree} +% \RandomWalk {number = 100, length = 2em, +% angles = {0,10,20,-10,-20}, degree, angles-relative} +% \end{verbatim} +% The simplest is to give a list of all the keys, and their meaning: +% \begin{itemize} +% +% \item |number|: the number of steps (default \(10\)) +% +% \item |length|: the length of each step: either one dimension (e.g., |1em|), +% or a comma-separated list of dimensions (e.g. |{2pt, 5pt}|), by +% default |10pt|. The length of each step is a random element in this set +% of possible dimensions. +% +% \item |angles|: the polar angle for each step: a comma-separated list of +% angles, and each step takes a random angle among the list. If this is not specified, then the angle is uniformly distributed along the circle. +% +% \item |degree|(|s|): specifies that the angles are given in degrees. +% +% \item |angles-relative|: instead of being absolute, the angles are relative +% to the direction of the previous step. +% +% \end{itemize} +% +% \begin{figure} +% \begin{center} +% \framebox{\RandomWalk {number = 400, length = {4pt, 10pt}}} +% \caption{The result of \texttt{RandomWalk\{number\ =\ +% 400,\ length\ =\ \{4pt,\ 10pt\}\}}: a \(400\) steps long walk, +% where each step has one of two lengths.} +% \end{center} +% \end{figure} +% +% \begin{figure} +% \begin{center} +% \framebox{\RandomWalk{number = 100, +% angles = {0,60,120,180,240,300}, degrees}} +% \caption{The result of \texttt{\string\RandomWalk\{number\ =\ +% 100,\ angles\ =\ \{0,60,120,180,240,300\}, degrees\}}: angles +% are constrained.} +% \end{center} +% \end{figure} +% +% \begin{figure} +% \begin{center} +% \framebox{\RandomWalk {number = 40, length = 1em, +% angles = {0,15,30,-15,-30}, degree, angles-relative}} +% \caption{A last example: \texttt{\string\RandomWalk\ \{number\ =\ 100,\ +% length\ =\ 2em,\ angles\ =\ \{0,10,20,-10,-20\},\ +% degree,\ angles-relative\}}} +% \end{center} +% \end{figure} +% +% \end{documentation} +% +% \begin{implementation} +% +% \section{\pkg{randomwalk} implementation} +% +% \subsection{Packages} +% +% The whole |expl3| bundle is loaded first, including Joseph Wright's +% very useful package |l3fp.sty| for floating point calculations. +% +%<*package> +% \begin{macrocode} +\ProvidesExplPackage + {\filename}{\filedate}{\fileversion}{\filedescription} +\RequirePackage{expl3} +\RequirePackage{xparse} +% \end{macrocode} +% +% I use some LaTeX2e packages: TikZ, for figures, and lcg for +% random numbers. +% \begin{macrocode} +\RequirePackage{tikz} +% \end{macrocode} +% +% |lcg| needs to know the smallest and biggest random numbers that it +% should produce, |\c_rw_lcg_first| and |_last|. It will then store them in +% |\c@lcg@rand|: the |\c@| is there because of how \LaTeXe\ defines +% counters. To make it clear that |\c| has a very special meaning here, +% I do not follow \LaTeX3 naming conventions. +% +% The |lcg| package would support a range of \( 2^{31} - 1 \), but +% |l3fp| constrains us to \(9\) digit numbers, so we take the closest +% available power of \(2\), namely \( 536870911 = 2^{29} - 1 \). +% +% \begin{macrocode} +\int_const:Nn \c_rw_lcg_first_int {0} +\int_const:Nn \c_rw_lcg_last_int {536870911} +\int_const:Nn \c_rw_lcg_range_int { + \c_rw_lcg_last_int - \c_rw_lcg_first_int +} +\RequirePackage [ + first= \c_rw_lcg_first_int, + last = \c_rw_lcg_last_int, + counter = lcg@rand ] + { lcg } +\rand % This \rand avoids some very odd bug. +% \end{macrocode} +% +% We need this constant for fast conversion from degrees to radians later. +% \begin{macrocode} +\fp_const:Nn \c_rw_one_degree_fp {+1.74532925e-2} +% \end{macrocode} +% +% +% \subsection{How the key-value list is treated} +% +%\begin{macro}{\RandomWalk} +% The only user command is |\RandomWalk|: it simply does the setup, and +% calls the internal macro |\rw_walk:|. +% \begin{macrocode} +\DeclareDocumentCommand \RandomWalk { m } { + \rw_set_defaults: + \keys_set:nn { randomwalk } { #1 } + \rw_walk: +} +% \end{macrocode} +%\end{macro} +% +% +%\begin{macro}{\rw_Atype} +%\begin{macro}{\rw_Ltype} +%\begin{macro}{\l_rw_Aargs_tl} +%\begin{macro}{\l_rw_Largs_tl} +%\begin{macro}{\rw_set_defaults:} +% Currently, the package treats the length of steps, and the angle, +% completely independently. Later, we build a control sequence from some +% constant text and the content of the token list \cs{rw_Atype:}, and apply +% it to |\l_rw_Aargs_tl|. Same for \cs{rw_Ltype:}, applied to +% |\l_rw_Largs_tl| (why are \cs{rw_Atype:} and \cs{rw_Ltype:} implemented as +% control sequences and not token lists?). +% +% \cs{rw_set_defaults:} sets the default values before processing the user's +% key-value input. +% +% \begin{macrocode} +\cs_new:Nn \rw_Atype: {} +\cs_new:Nn \rw_Ltype: {} +\tl_new:Nn \l_rw_Aargs_tl {} +\tl_new:Nn \l_rw_Largs_tl {} +\bool_new:N \l_rw_revert_random_bool + +\cs_new:Nn \rw_set_defaults: +{ + \fp_set:Nn \l_rw_step_length_fp {10} + \int_set:Nn \l_rw_step_number_int {10} + \cs_set:Nn \rw_Atype: {interval:nn} + \tl_set:Nn \l_rw_Aargs_tl { {-\c_pi_fp} {\c_pi_fp} } + \cs_set:Nn \rw_Ltype: {fixed:n} + \tl_set:Nn \l_rw_Largs_tl {\l_rw_step_length_fp} + \bool_set_false:N \l_rw_revert_random_bool +} +% \end{macrocode} +% \end{macro} +% \end{macro} +% \end{macro} +% \end{macro} +% \end{macro} +% +% \begin{macro}{\keys_define:nn} +% We introduce the keys for our package. +% \begin{macrocode} +\keys_define:nn { randomwalk } { + number .value_required:, + length .value_required:, + angles .value_required:, + number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, + length .code:n = { + \clist_clear:N \l_rw_lengths_clist + \clist_put_right:Nn \l_rw_lengths_clist {#1} + \tl_set:Nn \l_rw_Largs_tl {\l_rw_lengths_clist} + \rw_clist_fp_from_dim:N \l_rw_lengths_clist + \rw_clist_count:NN \l_rw_tmpa_int \l_rw_lengths_clist + \int_compare:nNnTF {\l_rw_tmpa_int}={1} + { + \cs_gset:Nn \rw_Ltype: {fixed:n} + } + { + \cs_gset:Nn \rw_Ltype: {list:N} + } + }, + angles .code:n = { + \clist_clear:N \l_rw_angles_clist + \clist_put_right:Nn \l_rw_angles_clist {#1} + \cs_gset:Nn \rw_Atype: {list:N} + \tl_set:Nn \l_rw_Aargs_tl {\l_rw_angles_clist} + }, + degree .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, + degrees .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, + angles-relative .code:n = {\cs_gset:Nx \rw_Atype: {rel_\rw_Atype:}}, + revert-random .bool_set:N = \l_rw_revert_random_bool, +} +% \end{macrocode} +% \end{macro} +% +% +% \subsection{Drawing} +% +% \begin{macro}{\rw_walk:} +% We are ready to define |\rw_walk:|, which draws a TikZ picture of +% a random walk with the parameters set up by the |keys|. +% +% We reset all the coordinates to 0 originally. Then we draw the relevant +% TikZ picture by repeatedly calling |\rw_draw_step:|. +% +% \begin{macrocode} +\cs_new:Nn \rw_walk: +{ + \fp_set:Nn \l_rw_old_x_fp {0} + \fp_set:Nn \l_rw_old_y_fp {0} + \fp_set:Nn \l_rw_new_x_fp {0} + \fp_set:Nn \l_rw_new_y_fp {0} + \begin{tikzpicture} + \prg_stepwise_inline:nnnn {1}{1}{\l_rw_step_number_int} + { + \rw_step_draw: + } + \bool_if:NF \l_rw_revert_random_bool { + \global \cr@nd \cr@nd + } + \end{tikzpicture} +} +% \end{macrocode} +% \cs{cr@nd} is internal to the lcg package +% +% \end{macro} +% +% \begin{macro}{\rw_step_draw:} +% |\rw_step_draw:| passes its second argument \emph{with one level of +% braces removed} to its first argument, responsible for making a random +% step. Then, |\rw_step_draw:| draws the random step. +% \begin{macrocode} +\cs_new:Nn \rw_step_draw: +{ + \rw_step_random_generic:VV \l_rw_Largs_tl \l_rw_Aargs_tl + \fp_add:Nn \l_rw_new_x_fp {\l_rw_step_x_fp} + \fp_add:Nn \l_rw_new_y_fp {\l_rw_step_y_fp} + \draw (\fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp) + -- (\fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp); + \fp_set:Nn \l_rw_old_x_fp {\l_rw_new_x_fp} + \fp_set:Nn \l_rw_old_y_fp {\l_rw_new_y_fp} +} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\rw_step_random_generic:nn} +% It is better to write a function that produces one random step. +% \begin{macrocode} +\cs_new:Nn \rw_step_random_generic:nn +{ + \cs:w rw_L \rw_Ltype: \cs_end: #1 + \cs:w rw_A \rw_Atype: \cs_end: #2 + \rw_step_build: +} +\cs_generate_variant:Nn \rw_step_random_generic:nn {VV} +% \end{macrocode} +% \end{macro} +% +% +% The next couple of macros store a random floating point in +% |\l_rw_length_fp| or |\l_rw_angle_fp|. +% +% \begin{macro}{\rw_L..:.} +% First for the length of steps. +% \begin{macrocode} +\cs_new:Nn \rw_Lfixed:n { + \fp_set:Nn \l_rw_radius_fp {#1} } +\cs_new:Nn \rw_Llist:N { + \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } +\cs_new:Nn \rw_Linterval:nn { + \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\rw_L..:.} +% Then for angles. +% \begin{macrocode} +\cs_new:Nn \rw_Ainterval:nn { + \rw_set_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } +\cs_new:Nn \rw_Alist:N { + \rw_set_to_random_clist_element:NN \l_rw_angle_fp #1 } +\cs_new:Nn \rw_Arel_interval:nn { + \rw_add_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } +\cs_new:Nn \rw_Arel_list:N { + \rw_add_to_random_clist_element:NN \l_rw_angle_fp #1 } +% \end{macrocode} +% \end{macro} +% +% +% \begin{macro}{\rw_step_build:} +% And the operation to build the step from the random polar coordinates +% (these, we obtain via the |\rw_A...| and |\rw_L...| commands): +% +% \begin{macrocode} +\cs_new:Nn \rw_step_build: +{ + \rw_cartesian_from_polar:NNNN \l_rw_step_x_fp \l_rw_step_y_fp + \l_rw_radius_fp \l_rw_angle_fp +} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\rw_cartesian_from_polar:NNNN} +% +% The four arguments of |\rw_cartesian_from_polar:NNNN| are +% \( (x, y, r, \theta) \): it sets \( (x, y) \) equal to the cartesian +% coordinates corresponding to a radius \(r\) and an angle \( \theta \). +% We also give a version with global assignments. +% +% \begin{macrocode} +\cs_new_protected:Nn \rw_cartesian_from_polar:NNNN +{ + \fp_cos:Nn #1 {\fp_use:N #4} + \fp_sin:Nn #2 {\fp_use:N #4} + \fp_mul:Nn #1 {\fp_use:N #3} + \fp_mul:Nn #2 {\fp_use:N #3} +} +\cs_new_protected:Nn \rw_gcartesian_from_polar:NNNN +{ + \fp_gcos:Nn #1 {\fp_use:N #4} + \fp_gsin:Nn #2 {\fp_use:N #4} + \fp_gmul:Nn #1 {\fp_use:N #3} + \fp_gmul:Nn #2 {\fp_use:N #3} +} +% \end{macrocode} +% \end{macro} +% +% We cannot yet do the conversion in the other direction: |l3fp.dtx| does +% not yet provide inverse trigonometric functions. But in fact, we do not +% need this conversion, so let's stop worrying. +% +% \subsection{On random numbers etc.} +% +% For random numbers, the interface of |lcg| is not quite enough, so we +% provide our own \LaTeX3y functions. Also, this will allow us to change +% quite easily our source of random numbers. +% +% \begin{macrocode} +\cs_new:Nn \rw_set_to_random_int:Nnn +{ + \rand + \int_set:Nn #1 + { + \int_mod:nn {\c@lcg@rand} { (#3) - (#2) } + } +} +% \end{macrocode} +% We also need floating point random numbers. +% \begin{macrocode} +\cs_new:Nn \rw_set_to_random_fp:Nnn +{ + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} + \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} + \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_set:Nn #1 { \l_rw_tmpa_fp } +} +\cs_new:Nn \rw_add_to_random_fp:Nnn +{ + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} + \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} + \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? +} +% \end{macrocode} +% +% There does not seem to be any |clist|-counting implemented in \LaTeX3, so +% we do it ourselves. +% \begin{macrocode} +\cs_new:Nn \rw_clist_count:NN +{ + \int_set:Nn \l_rw_tmpa_int {0} + \clist_set_eq:NN \l_rw_tmpa_clist #2 + \bool_until_do:nn + { + \clist_if_empty_p:N \l_rw_tmpa_clist + }{ + \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpa_toks + \int_add:Nn \l_rw_tmpa_int {1} + } + \int_set_eq:NN #1 \l_rw_tmpa_int +} +% \end{macrocode} +% +% We also pick the |n|-th element of a |clist|.\footnote{Is +% \textbackslash\texttt{l\_rw\_tmpa\_toks} a complete misnomer?} +% \begin{macrocode} +\cs_new:Nn \rw_clist_nth:NNn { + \int_set:Nn \l_rw_tmpa_int {#3} + \clist_set_eq:NN \l_rw_tmpa_clist #2 + \bool_until_do:nn + { + \int_compare_p:nNn {\l_rw_tmpa_int}<{0} + }{ + \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpc_fp + \int_add:Nn \l_rw_tmpa_int {-1} + } + \fp_set:Nn #1 {\l_rw_tmpc_fp} +} +% \end{macrocode} +% +% We can now pick an element at random from a comma-separated list +% \begin{macrocode} +\cs_new:Nn \rw_set_to_random_clist_element:NN +{ + \rw_clist_count:NN \l_rw_tmpa_int #2 + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} + \rw_clist_nth:NNn #1 #2 {\l_rw_tmpb_int} +} +\cs_new:Nn \rw_add_to_random_clist_element:NN +{ + \rw_clist_count:NN \l_rw_tmpa_int #2 + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} + \rw_clist_nth:NNn \l_rw_tmpb_fp #2 {\l_rw_tmpb_int} + \fp_add:Nn #1 {\l_rw_tmpb_fp} +} +% \end{macrocode} +% +% More stuff on |clist|s. +% \begin{macrocode} +\cs_new:Nn \rw_radians_from_degrees:N +{ + \clist_clear:N \l_rw_tmpa_clist + \bool_until_do:nn + { + \clist_if_empty_p:N #1 + }{ + \clist_pop:NN #1 \l_rw_tmpa_toks + \fp_set:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} + \fp_mul:Nn \l_rw_tmpa_fp {\c_rw_one_degree_fp} + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_put_right:NV #1 \l_rw_tmpa_clist +} + +\cs_new:Nn \rw_clist_fp_from_dim:N +{ + \clist_clear:N \l_rw_tmpa_clist + \bool_until_do:nn + { + \clist_if_empty_p:N #1 + }{ + \clist_pop:NN #1 \l_rw_tmpa_toks + \fp_set_from_dim:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_put_right:NV #1 \l_rw_tmpa_clist +} +% \end{macrocode} +% +% We need a bunch of floating point numbers: each step line goes from the +% |_old| point to the |_new| point. The coordinates |_add| are those of the +% vector from one to the next, so that |_new = _old + _add|. +% \begin{macrocode} +\fp_new:N \l_rw_old_x_fp +\fp_new:N \l_rw_old_y_fp +\fp_new:N \l_rw_step_x_fp +\fp_new:N \l_rw_step_y_fp +\fp_new:N \l_rw_new_x_fp +\fp_new:N \l_rw_new_y_fp +\fp_new:N \l_rw_angle_fp +\int_new:N \l_rw_step_number_int +\clist_new:N \l_rw_angles_clist +\clist_new:N \l_rw_lengths_clist + +\fp_new:N \l_rw_tmpa_fp +\fp_new:N \l_rw_tmpb_fp +\fp_new:N \l_rw_tmpc_fp +\clist_new:N \l_rw_tmpa_clist +\clist_new:N \l_rw_tmpb_clist +\int_new:N \l_rw_tmpa_int +\int_new:N \l_rw_tmpb_int +\int_new:N \l_rw_tmpc_int +% \end{macrocode} +%</package> +% +% \end{implementation} +% +% \endinput diff --git a/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins b/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins new file mode 100644 index 00000000000..151851b0974 --- /dev/null +++ b/Master/texmf-dist/source/latex/randomwalk/randomwalk.ins @@ -0,0 +1,22 @@ +\input docstrip.tex +\askforoverwritefalse + +\preamble + +Do not distribute a modified version of this file. + +Communicate any suggestions for changing this package +to Bruno Le Floch (first@su.rname.fr, replaced by the +relevant parts of my name). + +\endpreamble +% stop docstrip adding \endinput +\postamble +\endpostamble + +\keepsilent + +% the package +\generate{\file{randomwalk.sty}{\from{randomwalk.dtx}{package}}} + +\endbatchfile |