summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2017-12-06 23:56:06 +0000
committerKarl Berry <karl@freefriends.org>2017-12-06 23:56:06 +0000
commitcc862e582aa0dd7c0dee16bb5475394338a07641 (patch)
treeb03dbc5b6657d47f5c61b8fcc26f04a564ad6afd /Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
parent7ffad570b11726b0ca150867d23878fc1a949865 (diff)
l3 (7dec17)
git-svn-id: svn://tug.org/texlive/trunk@46003 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx44
1 files changed, 22 insertions, 22 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
index ca4f32809f2..e04403ccadb 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
@@ -1,13 +1,13 @@
% \iffalse meta-comment
%
-%% File: l3fp-expo.dtx Copyright (C) 2011-2014,2016,2017 The LaTeX3 Project
+%% File: l3fp-expo.dtx Copyright (C) 2011-2017 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
-% http://www.latex-project.org/lppl.txt
+% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
@@ -21,7 +21,7 @@
% for those people who are interested.
%
%<*driver>
-\documentclass[full]{l3doc}
+\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
@@ -38,7 +38,7 @@
% {latex-team@latex-project.org}^^A
% }^^A
% }
-% \date{Released 2017/11/14}
+% \date{Released 2017/12/05}
%
% \maketitle
%
@@ -58,7 +58,7 @@
%<@@=fp>
% \end{macrocode}
%
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
% {
% \@@_parse_word_exp:N ,
% \@@_parse_word_ln:N ,
@@ -112,7 +112,7 @@
%
% \subsubsection{Some constants}
%
-% \begin{variable}[aux]
+% \begin{variable}
% {
% \c_@@_ln_i_fixed_tl ,
% \c_@@_ln_ii_fixed_tl ,
@@ -142,7 +142,7 @@
%
% \subsubsection{Sign, exponent, and special numbers}
%
-% \begin{macro}[EXP, int]{\@@_ln_o:w}
+% \begin{macro}[EXP]{\@@_ln_o:w}
% The logarithm of negative numbers (including $-\infty$ and $-0$)
% raises the \enquote{invalid} exception. The logarithm of $+0$ is
% $-\infty$, raising a division by zero exception. The logarithm of
@@ -168,7 +168,7 @@
%
% \subsubsection{Absolute ln}
%
-% \begin{macro}[aux, EXP]{\@@_ln_npos_o:w}
+% \begin{macro}[EXP]{\@@_ln_npos_o:w}
% We catch the case of a significand very close to $0.1$ or to $1$.
% In all other cases, the final result is at least $10^{-4}$, and
% then an error of $0.5\cdot 10^{-20}$ is acceptable.
@@ -190,7 +190,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_ln_significand:NNNNnnnN}
+% \begin{macro}[EXP]{\@@_ln_significand:NNNNnnnN}
% \begin{syntax}
% \cs{@@_ln_significand:NNNNnnnN} \meta{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} \meta{continuation}
% \end{syntax}
@@ -223,7 +223,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_ln_x_ii:wnnnn}
+% \begin{macro}[EXP]{\@@_ln_x_ii:wnnnn}
% We have thus found $c \in [1,10]$ such that $0.7\leq ac < 1.4$
% in all cases. Compute $ 1 + x = 1 + ac \in [1.7,2.4)$.
% \begin{macrocode}
@@ -603,7 +603,7 @@
%
% \subsubsection{Sign, exponent, and special numbers}
%
-% \begin{macro}[int, EXP]{\@@_exp_o:w}
+% \begin{macro}[EXP]{\@@_exp_o:w}
% \begin{macrocode}
\cs_new:Npn \@@_exp_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
@@ -627,7 +627,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_exp_normal_o:w, \@@_exp_pos_o:Nnwnw, \@@_exp_overflow:NN}
+% \begin{macro}[EXP]{\@@_exp_normal_o:w, \@@_exp_pos_o:Nnwnw, \@@_exp_overflow:NN}
% \begin{macrocode}
\cs_new:Npn \@@_exp_normal_o:w \s_@@ \@@_chk:w 1#1
{
@@ -679,8 +679,8 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[int, EXP]{\@@_exp_Taylor:Nnnwn}
-% \begin{macro}[aux, EXP]{\@@_exp_Taylor_loop:www, \@@_exp_Taylor_break:Nww}
+% \begin{macro}[EXP]{\@@_exp_Taylor:Nnnwn}
+% \begin{macro}[EXP]{\@@_exp_Taylor_loop:www, \@@_exp_Taylor_break:Nww}
% This function is called for numbers in the range $[10^{-9},
% 10^{-1})$. We compute $10$ terms of the Taylor series. The
% first argument is irrelevant (rounding digit used by some other
@@ -719,7 +719,7 @@
% \end{macro}
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_exp_pos_large:NnnNwn ,
% \@@_exp_large_after:wwn ,
@@ -887,7 +887,7 @@
% One peculiarity of this operation is that $\nan^0 = 1^\nan = 1$,
% because this relation is obeyed for any number, even $\pm\infty$.
%
-% \begin{macro}[int, EXP]+\@@_^_o:ww+
+% \begin{macro}[EXP]+\@@_^_o:ww+
% We cram most of the tests into a single function to save csnames.
% First treat the case $b=0$: $a^0=1$ for any $a$, even \texttt{nan}.
% Then test the sign of $a$.
@@ -935,7 +935,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_pow_zero_or_inf:ww}
+% \begin{macro}[EXP]{\@@_pow_zero_or_inf:ww}
% Raising $-0$ or $-\infty$ to \texttt{nan} yields \texttt{nan}. For
% other powers, the result is $+0$ if $0$ is raised to a positive
% power or $\infty$ to a negative power, and $+\infty$ otherwise.
@@ -971,7 +971,7 @@
% \end{macrocode}
% \end{macro}
%
-% \begin{macro}[aux, EXP]{\@@_pow_normal_o:ww}
+% \begin{macro}[EXP]{\@@_pow_normal_o:ww}
% We have in front of us $a$, and $b\neq 0$, we know that $a$ is a
% normal number, and we wish to compute $\lvert a\rvert^{b}$. If
% $\lvert a\rvert=1$, we return $1$, unless $a=-1$ and $b$ is
@@ -1019,7 +1019,7 @@
% \end{macro}
%
% ^^A todo: check that we compute ln to 21 digits!
-% \begin{macro}[aux, EXP]{\@@_pow_npos_o:Nww}
+% \begin{macro}[EXP]{\@@_pow_npos_o:Nww}
% We now know that $a\neq\pm 1$ is a normal number, and $b$ is a
% normal number too. We want to compute $\lvert a\rvert^{b} = (\lvert
% x\rvert\cdot 10^{n})^{y\cdot 10^{p}} = \exp((\ln\lvert x\rvert + n
@@ -1052,7 +1052,7 @@
% \end{macro}
%
%^^A begin[todo]
-% \begin{macro}[aux, EXP]{\@@_pow_npos_aux:NNnww}
+% \begin{macro}[EXP]{\@@_pow_npos_aux:NNnww}
% The first argument is the conversion function from fixed point to
% float. Then comes an exponent and the $4$ brace groups of $x$,
% followed by $b$. Compute $-\ln(x)$.
@@ -1146,7 +1146,7 @@
% \end{macro}
%^^A end[todo]
%
-% \begin{macro}[aux, EXP]{\@@_pow_neg:www, \@@_pow_neg_aux:wNN}
+% \begin{macro}[EXP]{\@@_pow_neg:www, \@@_pow_neg_aux:wNN}
% This function is followed by three floating point numbers: $|a|^b$,
% $a\in[-\infty,-0]$, and $b$. If $b$ is an even integer (case $-1$),
% $a^b=|a|^b$. If $b$ is an odd integer (case $0$), $a^b=-|a|^b$,
@@ -1184,7 +1184,7 @@
% ^^A todo: is this \@@_exp_after_o:w necessary? Appropriate?
% \end{macro}
%
-% \begin{macro}[aux, rEXP]
+% \begin{macro}[rEXP]
% {
% \@@_pow_neg_case:w, \@@_pow_neg_case_aux:nnnnn,
% \@@_pow_neg_case_aux:Nnnw