summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-07-12 22:54:42 +0000
committerKarl Berry <karl@freefriends.org>2013-07-12 22:54:42 +0000
commit60ede63177ff54dd8d1934012fbecce179a633ee (patch)
tree9dbd9e4608c9a0caa9864fedf49f0a2aea36fedf /Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
parentc2d4fa6f59f3c566ccd85e3b250f0a27485bbaea (diff)
l3 (12jul13)
git-svn-id: svn://tug.org/texlive/trunk@31181 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx')
-rw-r--r--Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx6
1 files changed, 3 insertions, 3 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
index d6f76c3b0c1..f0782a2eed4 100644
--- a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
+++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
@@ -36,7 +36,7 @@
%
%<*driver>
\RequirePackage{l3bootstrap}
-\GetIdInfo$Id: l3fp-expo.dtx 4163 2012-08-30 16:33:11Z bruno $
+\GetIdInfo$Id: l3fp-expo.dtx 4482 2013-04-24 21:05:12Z joseph $
{L3 Floating-point exponential-related functions}
\documentclass[full]{l3doc}
\begin{document}
@@ -96,7 +96,7 @@
% \ln (a \cdot 10^b) = b \cdot \ln (10) - \ln (c/5) + \ln (ac/5).
% \end{equation*}
% The logarithms $\ln(10)$ and $\ln(c/5)$ are looked up in a table. The
-% last term is computed using the following Talor series of $\ln$ near
+% last term is computed using the following Taylor series of $\ln$ near
% $1$:
% \begin{equation*}
% \ln\left(\frac{ac}{5}\right)
@@ -264,7 +264,7 @@
% both $A$ and $Z$ are arbitrary, in the range $[0.1,1)$,
% and we had to monitor the growth of the sequence of
% remainders $A$, $B$, $C$, etc. to ensure that no overflow
-% occured during the computation of the next quotient.
+% occurred during the computation of the next quotient.
% The main source of risk was our choice to define the
% quotient as roughly $10^9 \cdot A / 10^5 \cdot Z$: then
% $A$ was bound to be below $2.147\cdots$, and this limit