diff options
author | Karl Berry <karl@freefriends.org> | 2013-07-12 22:54:42 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-07-12 22:54:42 +0000 |
commit | 60ede63177ff54dd8d1934012fbecce179a633ee (patch) | |
tree | 9dbd9e4608c9a0caa9864fedf49f0a2aea36fedf /Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx | |
parent | c2d4fa6f59f3c566ccd85e3b250f0a27485bbaea (diff) |
l3 (12jul13)
git-svn-id: svn://tug.org/texlive/trunk@31181 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx index d6f76c3b0c1..f0782a2eed4 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx @@ -36,7 +36,7 @@ % %<*driver> \RequirePackage{l3bootstrap} -\GetIdInfo$Id: l3fp-expo.dtx 4163 2012-08-30 16:33:11Z bruno $ +\GetIdInfo$Id: l3fp-expo.dtx 4482 2013-04-24 21:05:12Z joseph $ {L3 Floating-point exponential-related functions} \documentclass[full]{l3doc} \begin{document} @@ -96,7 +96,7 @@ % \ln (a \cdot 10^b) = b \cdot \ln (10) - \ln (c/5) + \ln (ac/5). % \end{equation*} % The logarithms $\ln(10)$ and $\ln(c/5)$ are looked up in a table. The -% last term is computed using the following Talor series of $\ln$ near +% last term is computed using the following Taylor series of $\ln$ near % $1$: % \begin{equation*} % \ln\left(\frac{ac}{5}\right) @@ -264,7 +264,7 @@ % both $A$ and $Z$ are arbitrary, in the range $[0.1,1)$, % and we had to monitor the growth of the sequence of % remainders $A$, $B$, $C$, etc. to ensure that no overflow -% occured during the computation of the next quotient. +% occurred during the computation of the next quotient. % The main source of risk was our choice to define the % quotient as roughly $10^9 \cdot A / 10^5 \cdot Z$: then % $A$ was bound to be below $2.147\cdots$, and this limit |