summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3experimental
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-02-23 21:54:14 +0000
committerKarl Berry <karl@freefriends.org>2018-02-23 21:54:14 +0000
commit87d871a3d83784d48b71fa3712b9f525bfc710d2 (patch)
treef12f9ffdc697b5af9ee14c06874ec0e2f72c9f94 /Master/texmf-dist/source/latex/l3experimental
parentccc63194ce7813106830c8a8755c54d89de831b4 (diff)
l3 (22feb18)
git-svn-id: svn://tug.org/texlive/trunk@46720 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3experimental')
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3color/l3color.dtx876
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3color/l3color.ins56
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-paths.dtx901
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-points.dtx960
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-scopes.dtx141
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-softpath.dtx323
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-state.dtx193
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-transforms.dtx286
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.dtx575
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.ins66
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3str/l3str-convert.dtx40
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/l3str/l3str-format.dtx28
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/xcoffins/xcoffins.dtx4
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/xgalley/l3galley.dtx12
-rw-r--r--Master/texmf-dist/source/latex/l3experimental/xgalley/xgalley.dtx4
15 files changed, 4421 insertions, 44 deletions
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.dtx b/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.dtx
new file mode 100644
index 00000000000..f00c047afff
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.dtx
@@ -0,0 +1,876 @@
+% \iffalse meta-comment
+%
+%% File: l3color.dtx Copyright(C) 2017-2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver|package>
+\RequirePackage{expl3}
+%</driver|package>
+%<*driver>
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \textsf{l3color} package\\ Experimental color support^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{documentation}
+%
+% \section{Color models}
+%
+% A color \emph{model} is a way to represent sets of colors. Different models
+% are particularly suitable for different output methods, \emph{e.g.}~screen
+% or print. Parameter-based models can describe a very large number of unique
+% colors, and have a varying number of \emph{axes} which define a color
+% space. In contrast, various proprietary models are available which define
+% \emph{spot} colors.
+%
+% The models supported here are
+% \begin{itemize}
+% \item \texttt{gray} Grayscale color, with a single axis running from
+% $0$ (fully black) to $1$ (fully white)
+% \item \texttt{rgb} Red-green-blue color, with three axes, one for each of
+% the components
+% \item \texttt{cmyk} Cyan-magenta-yellow-black color, with four axes, one for
+% each of the components
+% \item \texttt{spot} Spot color, with one value, the name of the color
+% (see \url{https://helpx.adobe.com/indesign/using/spot-process-colors.html}
+% for details of the use of spot colors in print)
+% \end{itemize}
+%
+% Additional models may be created to allow mixing of spot colors
+% with each other or with those from other models. See
+% Section~\ref{l3color:sec:spot} for more detail of spot color support.
+%
+% When color is selected by model, the \meta{values} given are specified as
+% a comma-separated list. The length of the list will therefore be determined
+% by the detail of the model involved.
+%
+% Color models (and interconversion) are complex, and more details are given
+% in the manual to the \LaTeXe{} \pkg{xcolor} package and in the
+% \emph{PostScript Language Reference Manual}, published by Addison--Wesley.
+%
+% \section{Color expressions}
+%
+% In addition to allowing specification of color by model and values,
+% \pkg{l3color} also supports color expressions. These are created
+% by combining one or more color names, with the amount of each specified
+% as a percentage. The latter is given between |!| symbols in the expression.
+% Thus for example
+% \begin{verbatim}
+% red!50!green
+% \end{verbatim}
+% is a mixture of $50\,\%$ red and $50\,\%$ green. A trailing percentage is
+% interpreted as implicitly followed by |white|, and so
+% \begin{verbatim}
+% red!25
+% \end{verbatim}
+% specifies $25\,\%$ red mixed with $75\,\%$ white.
+%
+% Where the models for the mixed colors are different, the model of the first
+% color is used. Thus
+% \begin{verbatim}
+% red!50!cyan
+% \end{verbatim}
+% will result in a color specification using the |rgb| model, made up of
+% $50\,\%$ red and $50\,\%$ of cyan \emph{expressed in \texttt{rgb}}. As color
+% model interconversion is not exact.
+%
+% The one exception to the above is where the first model in an expression is
+% |gray|. In this case, the order of mixing is \enquote{swapped} internally, so
+% that for example
+% \begin{verbatim}
+% black!50!red
+% \end{verbatim}
+% has the same result as
+% \begin{verbatim}
+% red!50!black
+% \end{verbatim}
+% (the predefined colors |black| and |white| use the |gray| model).
+%
+% Where more than two colors are mixed in an expression, evaluation takes place
+% in a stepwise fashion. Thus in
+% \begin{verbatim}
+% cyan!50!magenta!10!yellow
+% \end{verbatim}
+% the sub-expression
+% \begin{verbatim}
+% cyan!50!magenta
+% \end{verbatim}
+% is first evaluated to give an intermediate color specification, before
+% the second step
+% \begin{verbatim}
+% <intermediate>!10!yellow
+% \end{verbatim}
+% where |<intermediate>| represents this transitory calculated value.
+%
+% Within a color expression, |.| may be used to represent the color active
+% for typesetting (the current color). This allows for example
+% \begin{verbatim}
+% .!50
+% \end{verbatim}
+% to mean a mixture of $50\,\%$ of current color with white.
+%
+% (Color expressions supported here are a subset of those provided by
+% the \LaTeXe{} \pkg{xcolor} package. At present, only such features as are
+% clearly useful have been added here.)
+%
+% \section{Named colors}
+%
+% Color names are stored in a single namespace, which makes them accessible
+% as part of color expressions. Whilst they are not reserved in a technical
+% sense, the names |black|, |white|, |red|, |green|, |blue|, |cyan|, |magenta|
+% and |yellow| have special meaning and should not be redefined. Color names
+% should be made up of letters, numbers and spaces only: other characters are
+% reserved for use in color expressions. In particular, |.| represents the
+% current color at the start of a color expression.
+%
+% \begin{function}{\color_set:nn}
+% \begin{syntax}
+% \cs{color_set:nn} \Arg{name} \Arg{color expression}
+% \end{syntax}
+% Evaluates the \meta{color expression} and stores the resulting
+% color specification as the \meta{name}.
+% \end{function}
+%
+% \begin{function}{\color_set:nnn}
+% \begin{syntax}
+% \cs{color_set:nnn} \Arg{name} \Arg{model} \Arg{value(s)}
+% \end{syntax}
+% Stores the color specification equivalent to the \meta{model} and
+% \meta{values} as the \meta{name}.
+% \end{function}
+%
+% \begin{function}{\color_set_eq:nn}
+% \begin{syntax}
+% \cs{color_set_eq:nn} \Arg{name1} \Arg{name2}
+% \end{syntax}
+% Copies the color specification in \meta{name2} to \meta{name1}. The
+% special name |.| may be used to represent the current color, allowing
+% it to be saved to a name.
+% \end{function}
+%
+% \begin{function}{\color_show:n}
+% \begin{syntax}
+% \cs{color_show:n} \Arg{name}
+% \end{syntax}
+% Displays the color specification stored in the \meta{name} on the
+% terminal
+% \end{function}
+%
+% \section{Selecting colors}
+%
+% \begin{function}{\color_select:n}
+% \begin{syntax}
+% \cs{color_select:n} \Arg{color expression}
+% \end{syntax}
+% Parses the \meta{color expression} and then activates the resulting
+% color specification for typeset material.
+% \end{function}
+%
+% \begin{function}{\color_select:nn}
+% \begin{syntax}
+% \cs{color_select:nn} \Arg{model} \Arg{value(s)}
+% \end{syntax}
+% Activates the color specification equivalent to the \meta{model} and
+% \meta{value(s)} for typeset material.
+% \end{function}
+%
+% \begin{variable}{\l_color_fixed_model_tl}
+% When this is set to a non-empty value, colors will be converted to
+% the specified model when they are selected. Note that included images
+% and similar are not influenced by this setting.
+% \end{variable}
+%
+% \section{Core color representation}
+%
+% To allow data to be handled internally, \pkg{l3color} uses a simple
+% representation of color, based on that used by the \pkg{dvips} program.
+% This is a token list made up of the model name followed by one or more
+% data entries, each separated by a \emph{space}. The valid forms are thus
+% \begin{itemize}
+% \item \texttt{gray \meta{gray}} Grayscale color with the \meta{gray}
+% value running from $0$ (fully black) to $1$ (fully white)
+% \item \texttt{cmyk \meta{cyan} \meta{magenta} \meta{yellow} \meta{black}},
+% each of which falls in the range $[0,1]$
+% \item \texttt{rgb \meta{red} \meta{green} \meta{blue}},
+% each of which falls in the range $[0,1]$
+% \item \texttt{spot \meta{name} \meta{tint}} A pre-defined spot color,
+% where the \meta{name} should be a pre-defined string color name and the
+% \meta{tint} should be in the range $[0,1]$.
+% \end{itemize}
+%
+% This core representation is produced when parsing color expressions.
+%
+% \begin{function}{\color_parse:nN}
+% \begin{syntax}
+% \cs{color_parse:nN} \Arg{color expression} \Arg{tl}
+% \end{syntax}
+% Parses the \meta{color expression} as described above, and sets the
+% \meta{tl} the the equivalent \meta{core color representation}.
+% \end{function}
+%
+% \section{Spot colors}
+% \label{l3color:sec:spot}
+%
+% \end{documentation}
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3color} Implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=color>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*package>
+\ProvidesExplPackage{l3color}{2018/02/21}{}
+ {L3 Experimental color support}
+%</package>
+% \end{macrocode}
+%
+% \subsection{Predefined color names}
+%
+% The ability to predefine colors with a name is a key part of this module and
+% means there has to be a method for storing the results. At first sight, it
+% seems natural to follow the usual \pkg{expl3} model and create a
+% \texttt{color} variable type for the process. That would then allow both
+% local and global colors, constant colors and the like. However, these names
+% need to be accessible in some form at the user level, for selection of colors
+% either simply by name or as part of a more complex expression. This does not
+% require that the full name is exposed but does require that they can be
+% looked up in a predictable way. As such, it is more useful to expose just the
+% color names as part of the interface, with the result that only local color
+% names can be created. (This is also seen for example in key creation in
+% \pkg{l3keys}.) As a result, color names are declarative (no \texttt{new}
+% functions).
+%
+% Since there is no need to manipulate colors \emph{en masse}, each is stored
+% in a separate token list variable, rather than the alternative of using a
+% single property list for all names.
+%
+% \subsection{Setup}
+%
+% \begin{variable}{\l_@@_tmp_tl}
+% \begin{macrocode}
+\tl_new:N \l_@@_tmp_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{Utility functions}
+%
+% \begin{macro}[int, TF, EXP]{\@@_if_defined:n}
+% A simple wrapper to avoid needing to have the lookup repeated in too many
+% places.
+% \begin{macrocode}
+\prg_new_conditional:Npnn \@@_if_defined:n #1 { T, F, TF }
+ {
+ \tl_if_exist:cTF { l_@@_named_ #1 _tl }
+ \prg_return_true:
+ \prg_return_false:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\@@_extract:nNN, \@@_extract:VNN}
+% \begin{macro}{\@@_extract:NNw}
+% Split the model and color from a named color, and store the two. No test
+% for the existence of the color: that is assumed to be the case (this
+% is internal only). Somewhat \enquote{old-fashioned} but should be quite
+% fast.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_extract:nNN #1#2#3
+ {
+ \exp_after:wN \exp_after:wN \exp_after:wN
+ \@@_extract:NNw
+ \exp_after:wN \exp_after:wN \exp_after:wN #2
+ \exp_after:wN \exp_after:wN \exp_after:wN #3
+ \cs:w l_@@_named_ #1 _tl \cs_end: \q_stop
+ }
+\cs_generate_variant:Nn \@@_extract:nNN { V }
+\cs_new_protected:Npn \@@_extract:NNw #1#2 #3 ~ #4 \q_stop
+ {
+ \tl_set:Nn #1 {#3}
+ \tl_set:Nn #2 {#4}
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Model conversion}
+%
+% \begin{macro}{\@@_convert:nnN, \@@_convert:VVN}
+% \begin{macro}{\@@_convert:nnnN}
+% \begin{macro}[aux, EXP]
+% {
+% \@@_convert_gray_rgb:w
+% \@@_convert_gray_cmyk:w
+% \@@_convert_cmyk_gray:w
+% \@@_convert_cmyk_rgb:w
+% \@@_convert_rgb_gray:w
+% \@@_convert_rgb_cmyk:w
+% }
+% \begin{macro}[aux, EXP]{\@@_convert_rgb_cmyk:nnnn}
+% Model conversion is carried out using standard formulae, as described in
+% the manual for \pkg{xcolor} (see also the \emph{PostScript Language
+% Reference Manual}).
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_convert:nnN #1#2#3
+ { \@@_convert:nnVN {#1} {#2} #3 #3 }
+\cs_generate_variant:Nn \@@_convert:nnN { VV }
+\cs_new_protected:Npn \@@_convert:nnnN #1#2#3#4
+ {
+ \str_if_eq_x:nnT {#1} { spot } % TO DO!!!
+ { }
+ \tl_set:Nx #4
+ { \use:c { @@_convert_ #1 _ #2 :w } #3 ~ 0 ~ 0 ~ 0 \q_stop }
+ }
+\cs_generate_variant:Nn \@@_convert:nnnN { nnV }
+\cs_new:Npn \@@_convert_gray_rgb:w #1 ~ #2 \q_stop
+ { #1 ~ #1 ~ #1 }
+\cs_new:Npn \@@_convert_gray_cmyk:w #1 ~ #2 \q_stop
+ { 0 ~ 0 ~ 0 ~ \fp_eval:n { 1 - #1 } }
+% \end{macrocode}
+% These rather odd values are based on \textsc{ntsc} television: the set are
+% used for the |cmyk| conversion.
+% \begin{macrocode}
+\cs_new:Npn \@@_convert_rgb_gray:w #1 ~ #2 ~ #3 ~ #4 \q_stop
+ { \fp_eval:n { 0.3 * #1 + 0.59 * #2 + 0.11 * #3 } }
+% \end{macrocode}
+% The conversion from |rgb| to |cmyk| is the most complex: a two-step
+% procedure which requires \emph{black generation} and \emph{undercolor
+% removal} functions. The PostScript reference describes them as
+% device-dependent, but following \pkg{xcolor} we assume they are linear.
+% Moreover, as the likelihood of anyone using a non-unitary matrix here is
+% tiny, we simplify and treat those two concepts as no-ops.
+% \begin{macrocode}
+\cs_new:Npn \@@_convert_rgb_cmyk:w #1 ~ #2 ~ #3 ~ #4 \q_stop
+ {
+ \exp_args:Nf \@@_convert_rgb_cmyk:nnnn
+ { \fp_eval:n { min ( 1 - #1 , 1 - #2 , 1 - #3 ) } } {#1} {#2} {#3}
+ }
+\cs_new:Npn \@@_convert_rgb_cmyk:nnnn #1#2#3#4
+ {
+ \fp_eval:n { min ( 1 , max ( 0 , 1 - #2 - #1 ) ) } \c_space_tl
+ \fp_eval:n { min ( 1 , max ( 0 , 1 - #3 - #1 ) ) } \c_space_tl
+ \fp_eval:n { min ( 1 , max ( 0 , 1 - #4 - #1 ) ) } \c_space_tl
+ #1
+ }
+\cs_new:Npn \@@_convert_cmyk_gray:w #1 ~ #2 ~ #3 ~ #4 ~ #5 \q_stop
+ { \fp_eval:n { 1 - min ( 1 , 0.3 * #1 + 0.59 * #2 + 0.11 * #3 + #4 ) } }
+\cs_new:Npn \@@_convert_cmyk_rgb:w #1 ~ #2 ~ #3 ~ #4 ~ #5 \q_stop
+ {
+ \fp_eval:n { 1 - min ( 1 , #1 + #4 ) } \c_space_tl
+ \fp_eval:n { 1 - min ( 1 , #2 + #4 ) } \c_space_tl
+ \fp_eval:n { 1 - min ( 1 , #3 + #4 ) }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Color expressions}
+%
+% \begin{variable}
+% {\l_@@_model_tl, \l_@@_value_tl, \l_@@_next_model_tl, \l_@@_next_value_tl}
+% Working space to store the color data whilst doing calculations: keeping
+% it on the stack is attractive but gets tricky (return is non-trivial).
+% \begin{macrocode}
+\tl_new:N \l_@@_model_tl
+\tl_new:N \l_@@_value_tl
+\tl_new:N \l_@@_next_model_tl
+\tl_new:N \l_@@_next_value_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\color_parse:nN}
+% \begin{macro}{\@@_parse:nN}
+% \begin{macro}{\@@_parse:Nw}
+% \begin{macro}{\@@_parse_loop_init:Nnn}
+% \begin{macro}{\@@_parse_loop:w}
+% \begin{macro}{\@@_parse_loop:nn}
+% \begin{macro}{\@@_parse_break:w}
+% \begin{macro}{\@@_parse_end:}
+% \begin{macro}[aux, EXP]{\@@_parse_mix:Nnnn, \@@_parse_mix:NVVn}
+% \begin{macro}[aux, EXP]{\@@_parse_mix:nNnn}
+% \begin{macro}[aux, EXP]
+% {
+% \@@_parse_mix_gray:nw ,
+% \@@_parse_mix_rgb:nw ,
+% \@@_parse_mix_cmyk:nw
+% }
+% The main function for parsing color expressions removes actives but
+% otherwise expands, then starts working through the expression itself.
+% At the end, we apply the payload.
+% \begin{macrocode}
+\cs_new_protected:Npn \color_parse:nN #1#2
+ {
+ \group_begin:
+ \seq_map_inline:Nn \l_char_active_seq
+ {
+ \tl_set:Nx \l_@@_tmp_tl { \cs_to_str:N ##1 }
+ \char_set_active_eq:NN ##1 \l_@@_tmp_tl
+ }
+ \tl_set:Nx \l_@@_tmp_tl {#1}
+ \exp_args:NNV \group_end:
+ \@@_parse:nN \l_@@_tmp_tl #2
+ }
+% \end{macrocode}
+% Before going to all of the effort of parsing an expression, these two
+% precursor functions look for a pre-defined name, either on its own or
+% with a trailing |!| (which is the same thing).
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_parse:nN #1#2
+ {
+ \tl_if_exist:cTF { l_@@_named_ #1 _tl }
+ { \tl_set_eq:Nc #2 { l_@@_named_ #1 _tl } }
+ { \@@_parse:Nw #2#1 ! \q_stop }
+ }
+\cs_new_protected:Npn \@@_parse:Nw #1#2 ! #3 \q_stop
+ {
+ \@@_if_defined:nTF {#2}
+ {
+ \tl_if_blank:nTF {#3}
+ { \tl_set_eq:Nc #1 { l_@@_named_ #2 _tl } }
+ { \@@_parse_loop_init:Nnn #1 {#2} {#3} }
+ }
+ {
+ \__kernel_msg_error:nnn { color } { unknown-color } {#3}
+ \tl_set_eq:NN \l_@@_current_tl \l_@@_named_black_tl
+ }
+ }
+% \end{macrocode}
+% Once we establish that a full parse is needed, the next job is to get the
+% detail of the first color. That will determine the model we use for the
+% calculation: splitting here makes checking that a bit easier.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_parse_loop_init:Nnn #1#2#3
+ {
+ \group_begin:
+ \@@_extract:nNN {#2} \l_@@_model_tl \l_@@_value_tl
+ \@@_parse_loop:w #3 ! ! ! ! \q_stop
+ \tl_set:Nx \l_@@_tmp_tl
+ { \l_@@_model_tl \c_space_tl \l_@@_value_tl }
+ \exp_args:NNNV \group_end:
+ \tl_set:Nn #1 \l_@@_tmp_tl
+ }
+% \end{macrocode}
+% This is the loop proper: there can be an open-ended set of colors to parse,
+% separated by |!| tokens. There are a few cases to look out for. At the end
+% of the expression and with we find a mix of $100$ then we simply skip the
+% next color entirely (we can't stop the loop as there might be a further
+% valid color to mix in). On the other hand, if we get a mix of $0$ then
+% drop everything so far and start again. There is also a trailing
+% |white| to \enquote{read in} if the final explicit data is a mix.
+% Those conditions are separate from actually looping, which is therefore
+% sorted out by checking if we have further data to process: in contrast
+% to \pkg{xcolor}, we don't allow |!!| so the test can be simplified.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_parse_loop:w #1 ! #2 ! #3 ! #4 ! #5 \q_stop
+ {
+ \bool_lazy_or:nnF
+ { \tl_if_blank_p:n {#1} }
+ { \int_compare_p:nNn {#1} = { 100 } }
+ {
+ \int_compare:nNnTF {#1} = { 0 }
+ {
+ \tl_if_blank:nTF {#2}
+ { \@@_extract:nNN { white } }
+ { \@@_extract:nNN {#2} }
+ \l_@@_model_tl \l_@@_value_tl
+ }
+ {
+ \use:x
+ {
+ \@@_parse_loop:nn {#1}
+ { \tl_if_blank:nTF {#2} { white } {#2} }
+ }
+ }
+ }
+ \tl_if_blank:nF {#3}
+ { \@@_parse_loop:w #3 ! #4 ! #5 \q_stop }
+ \@@_parse_end:
+ }
+% \end{macrocode}
+% The \enquote{payload} of calculation in the loop first. If the model for
+% the upcoming color is different from that of the existing (partial) color,
+% convert the model. For |gray| the two are flipped round so that the outcome
+% is something with \enquote{real} color. We are then in a position to do the
+% actual calculation itself. The two auxiliaries here give us a way to break
+% the loop should an invalid name be found.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_parse_loop:nn #1#2
+ {
+ \@@_if_defined:nTF {#2}
+ {
+ \@@_extract:nNN {#2} \l_@@_next_model_tl \l_@@_next_value_tl
+ \tl_if_eq:NNF \l_@@_model_tl \l_@@_next_model_tl
+ {
+ \str_if_eq_x:nnT { \l_@@_model_tl } { gray }
+ {
+ \use:x
+ {
+ \tl_set:Nn \exp_not:N \l_@@_model_tl
+ { \l_@@_next_model_tl }
+ \tl_set:Nn \exp_not:N \l_@@_value_tl
+ { \l_@@_next_value_tl }
+ \tl_set:Nn \exp_not:N \l_next_@@_model_tl
+ { \l_@@_model_tl }
+ \tl_set:Nn \exp_not:N \l_next_@@_value_tl
+ { \l_@@_value_tl }
+ }
+ }
+ \@@_convert:VVN
+ \l_@@_next_model_tl
+ \l_@@_model_tl
+ \l_@@_next_value_tl
+ }
+ \tl_set:Nx \l_@@_value_tl
+ {
+ \@@_parse_mix:NVVn
+ \l_@@_model_tl \l_@@_value_tl \l_@@_next_value_tl {#1}
+ }
+ }
+ {
+ \__kernel_msg_error:nnn { color } { unknown-color } {#2}
+ \@@_extract:nNN { black } \l_@@_model_tl \l_@@_value_tl
+ \@@_parse_break:w
+ }
+ }
+\cs_new_protected:Npn \@@_parse_break:w #1 \@@_parse_end: { }
+\cs_new_protected:Npn \@@_parse_end: { }
+% \end{macrocode}
+% Do the vector arithmetic: mainly a question of shuffling input, along
+% with one pre-calculation to keep down the use of division.
+% \begin{macrocode}
+\cs_new:Npn \@@_parse_mix:Nnnn #1#2#3#4
+ {
+ \exp_args:Nf \@@_parse_mix:nNnn
+ { \fp_eval:n { #4 / 100 } }
+ #1 {#2} {#3}
+ }
+\cs_generate_variant:Nn \@@_parse_mix:Nnnn { NVV }
+\cs_new:Npn \@@_parse_mix:nNnn #1#2#3#4
+ {
+ \use:c { @@_parse_mix_ #2 :nw } {#1}
+ #3 \q_mark #4 \q_stop
+ }
+\cs_new:Npn \@@_parse_mix_gray:nw #1#2 \q_mark #3 \q_stop
+ { \fp_eval:n { #2 * #1 + #3 * ( 1 - #1 ) } }
+\cs_new:Npn \@@_parse_mix_rgb:nw
+ #1#2 ~ #3 ~ #4 \q_mark #5 ~ #6 ~ #7 \q_stop
+ {
+ \fp_eval:n { #2 * #1 + #5 * ( 1 - #1 ) } \c_space_tl
+ \fp_eval:n { #3 * #1 + #6 * ( 1 - #1 ) } \c_space_tl
+ \fp_eval:n { #4 * #1 + #7 * ( 1 - #1 ) }
+ }
+\cs_new:Npn \@@_parse_mix_cmyk:nw
+ #1#2 ~ #3 ~ #4 ~ #5 \q_mark #6 ~ #7 ~ #8 ~ #9 \q_stop
+ {
+ \fp_eval:n { #2 * #1 + #6 * ( 1 - #1 ) } \c_space_tl
+ \fp_eval:n { #3 * #1 + #7 * ( 1 - #1 ) } \c_space_tl
+ \fp_eval:n { #4 * #1 + #8 * ( 1 - #1 ) } \c_space_tl
+ \fp_eval:n { #5 * #1 + #9 * ( 1 - #1 ) }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]
+% {\@@_parse_gray:w, \@@_parse_rgb:w, \@@_parse_cmyk:w, \@@_parse_spot:w}
+% \begin{macro}[EXP]{\@@_parse_spot_aux:w}
+% Turn the input into internal form.
+% \begin{macrocode}
+\cs_new:Npn \@@_parse_gray:w #1 , #2 \q_stop {#1}
+\cs_new:Npn \@@_parse_rgb:w #1 , #2 , #3 , #4 \q_stop { #1 ~ #2 ~ #3 }
+\cs_new:Npn \@@_parse_cmyk:w #1 , #2 , #3 , #4 , #5 \q_stop
+ { #1 ~ #2 ~ #3 ~ #4 }
+\cs_new:Npn \@@_parse_spot:w #1 , #2 \q_stop
+ { \@@_parse_spot_aux:w #1 ! 100 ! \q_stop }
+\cs_new:Npn \@@_parse_spot_aux:w #1 ! #2 ! #3 \q_stop
+ { #1 ~ \fp_eval:n { #2 / 100 } }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Selecting colors (and color models)}
+%
+% \begin{variable}{\l_color_fixed_model_tl}
+% For selecting a single fixed model.
+% \begin{macrocode}
+\tl_new:N \l_color_fixed_model_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_select:}
+% \begin{macro}{\@@_finalise:N}
+% \begin{macro}{\@@_finalise:w}
+% A driver-neutral location for \enquote{last minute} manipulations before
+% handing off to the driver code. We set the special |.| syntax here: this
+% will therefore always be available. The finalisation is separate from the
+% main function so it can also be applied to \emph{e.g.}~page color.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_select:
+ {
+ \@@_finalise:N \l_@@_current_tl
+ \tl_set_eq:cN { l_@@_named_ . _tl } \l_@@_current_tl
+ \@@_select:V \l_@@_current_tl
+ }
+\cs_new_protected:Npn \@@_finalise:N #1
+ {
+ \tl_if_empty:NF \l_color_fixed_model_tl
+ {
+ \exp_after:wN \@@_finalise:w #1 \q_stop
+ \tl_if_eq:NNF \l_@@_model_tl \l_color_fixed_model_tl
+ {
+ \@@_convert:VVN \l_@@_model_tl \l_color_fixed_model_tl
+ \l_@@_value_tl
+ }
+ \tl_set:Nx #1
+ { \l_color_fixed_model_tl \c_space_tl \l_@@_value_tl }
+ }
+ }
+\cs_new_protected:Npn \@@_finalise:w #1 ~ #2 \q_stop
+ {
+ \tl_set:Nn \l_@@_model_tl {#1}
+ \tl_set:Nn \l_@@_value_tl {#2}
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\color_select:n}
+% \begin{macro}{\color_select:nn}
+% Parse the input expressions then get the driver to actually activate
+% them.
+% \begin{macrocode}
+\cs_new_protected:Npn \color_select:n #1
+ {
+ \color_parse:nN {#1} \l_@@_current_tl
+ \@@_select:
+ }
+\cs_new_protected:Npn \color_select:nn #1#2
+ {
+ \@@_direct:nnN {#1} {#2} \l_@@_current_tl
+ \@@_select:
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Direct model use}
+%
+% \begin{macro}{\@@_direct:nnN}
+% Directly set a color based on a model/value combination.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_direct:nnN #1#2#3
+ {
+ \cs_if_exist:cTF { @@_parse_ #1 :w }
+ {
+ \tl_set:Nx #3
+ { #1 ~ \use:c { @@_parse_ #1 :w } #2 , 0 , 0 , 0 , 0 \q_stop }
+ }
+ {
+ \__kernel_msg_error:nnn { color } { invalid-model } {#1}
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Defining named colors}
+%
+% \begin{variable}{\l_@@_named_tl}
+% Space to store the detail of the named color.
+% \begin{macrocode}
+\tl_new:N \l_@@_named_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_store:Nn}
+% Store the named color unless it has an invalid name.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_store:Nn #1#2
+ {
+ \str_if_eq:nnF {#2} { . }
+ {
+ \tl_clear_new:c { l_@@_named_ #2 _tl }
+ \tl_set_eq:cN { l_@@_named_ #2 _tl } #1
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\color_set:nn}
+% \begin{macro}{\color_set:nnn}
+% \begin{macro}{\color_set_eq:nn}
+% Defining named colors has to include a step to force creation of the
+% underlying token list to avoid errors when checking is enabled.
+% \begin{macrocode}
+\cs_new_protected:Npn \color_set:nn #1#2
+ {
+ \color_parse:nN {#2} \l_@@_named_tl
+ \@@_store:Nn \l_@@_named_tl {#1}
+ }
+\cs_new_protected:Npn \color_set:nnn #1#2#3
+ {
+ \@@_direct:nnN {#2} {#3} \l_@@_named_tl
+ \@@_store:Nn \l_@@_named_tl {#1}
+ }
+\cs_new_protected:Npn \color_set_eq:nn #1#2
+ {
+ \@@_if_defined:nTF {#2}
+ {
+ \tl_clear_new:c { l_@@_named_ #1 _tl }
+ \str_if_eq:nnTF {#2} { . }
+ { \tl_set_eq:cN { l_@@_named_ #1 _tl } \l_@@_current_tl }
+ { \tl_set_eq:cc { l_@@_named_ #1 _tl } { l_@@_named_ #2 _tl } }
+ }
+ {
+ \__kernel_msg_error:nnn { color } { unknown-color } {#2}
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% A small set of colors are always defined.
+% \begin{macrocode}
+\color_set:nnn { black } { gray } { 0 }
+\color_set:nnn { white } { gray } { 1 }
+\color_set:nnn { cyan } { cmyk } { 1 , 0 , 0 , 0 }
+\color_set:nnn { magenta } { cmyk } { 0 , 1 , 0 , 0 }
+\color_set:nnn { yellow } { cmyk } { 0 , 0 , 1 , 0 }
+\color_set:nnn { red } { rgb } { 1 , 0 , 0 }
+\color_set:nnn { green } { rgb } { 0 , 1 , 0 }
+\color_set:nnn { blue } { rgb } { 0 , 0 , 1 }
+% \end{macrocode}
+%
+% \begin{variable}{\l_@@_named_._tl}
+% A special named color: this is always defined though not fixed in
+% definition.
+% \begin{macrocode}
+\tl_new:c { l_@@_named_._tl }
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{Diagnostics}
+%
+% \begin{macro}{\color_show:n}
+% \begin{macro}{\@@_show:w}
+% \begin{macro}{\@@_show_gray:w, \@@_show_rgb:w, \@@_show_cmyk:w}
+% Extract the information about a color and format for the user: the approach
+% is similar to the keys module here.
+% \begin{macrocode}
+\cs_new_protected:Npn \color_show:n #1
+ {
+ \msg_show:nnxxxx { LaTeX / color } { show }
+ {#1}
+ {
+ \@@_if_defined:nTF {#1}
+ { \exp_last_unbraced:Nv \@@_show:w { l_@@_named_ #1 _tl } \q_stop }
+ { }
+ }
+ { }
+ { }
+ }
+\cs_new:Npn \@@_show:w #1 ~ #2 \q_stop
+ {
+ \msg_show_item_unbraced:nn { model } {#1}
+ \exp_args:Nnf \msg_show_item_unbraced:nn { value }
+ { \use:c { @@_show_ #1 :w } #2 \q_stop }
+ }
+\cs_new:Npn \@@_show_gray:w #1 \q_stop { #1 }
+\cs_new:Npn \@@_show_rgb:w #1 ~ #2 ~ #3 \q_stop { #1 ,~ #2 ,~ #3 }
+\cs_new:Npn \@@_show_cmyk:w #1 ~ #2 ~ #3 ~ #4 \q_stop { #1 ,~ #2 ,~ #3 ,~ #4 }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Messages}
+%
+% \begin{macrocode}
+\__kernel_msg_new:nnnn { color } { invalid-model }
+ { Invalid~color~model~'#1'. }
+ {
+ LaTeX~has~been~asked~to~use~a~color~model~called~'#1',~
+ but~this~model~is~not~set~up.
+ }
+\__kernel_msg_new:nnnn { color } { unknown-color }
+ { Unknown~color~'#1'. }
+ {
+ LaTeX~has~been~asked~to~use~a~color~named~'#1',~
+ but~this~has~never~been~defined.
+ }
+% \end{macrocode}
+%
+% \begin{macrocode}
+\__kernel_msg_new:nnn { color } { show }
+ {
+ The~color~#1~
+ \tl_if_empty:nTF {#2}
+ { is~undefined. }
+ { has~the~properties: #2 }
+ }
+% \end{macrocode}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.ins b/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.ins
new file mode 100644
index 00000000000..de23faed546
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3color/l3color.ins
@@ -0,0 +1,56 @@
+\iffalse meta-comment
+
+File l3color.ins Copyright (C) 2017-2018 The LaTeX3 Project
+
+It may be distributed and/or modified under the conditions of the
+LaTeX Project Public License (LPPL), either version 1.3c of this
+license or (at your option) any later version. The latest version
+of this license is in the file
+
+ http://www.latex-project.org/lppl.txt
+
+This file is part of the "l3experimental bundle" (The Work in LPPL)
+and all files in that bundle must be distributed together.
+
+-----------------------------------------------------------------------
+
+The development version of the bundle can be found at
+
+ https://github.com/latex3/latex3
+
+for those people who are interested.
+
+-----------------------------------------------------------------------
+
+Any modification of this file should ensure that the copyright and
+license information is placed in the derived files.
+
+\fi
+
+\input l3docstrip.tex
+\askforoverwritefalse
+
+\preamble
+
+Copyright (C) 2017-2018 The LaTeX3 Project
+
+It may be distributed and/or modified under the conditions of
+the LaTeX Project Public License (LPPL), either version 1.3c of
+this license or (at your option) any later version. The latest
+version of this license is in the file:
+
+ http://www.latex-project.org/lppl.txt
+
+This file is part of the "l3experimental bundle" (The Work in LPPL)
+and all files in that bundle must be distributed together.
+
+\endpreamble
+% stop docstrip adding \endinput
+\postamble
+\endpostamble
+
+\keepsilent
+
+\generate{\file{l3color.sty}{\from{l3color.dtx}{package}}}
+
+\endbatchfile
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-paths.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-paths.dtx
new file mode 100644
index 00000000000..2fa882e7f1a
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-paths.dtx
@@ -0,0 +1,901 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-paths.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw-paths} package\\ Drawing paths^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-paths} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% This sub-module covers more-or-less the same ideas as
+% \texttt{pgfcorepathconstruct.code.tex}, though using the expandable FPU
+% means that the implementation often varies. At present, equivalents of the
+% following are currently absent:
+% \begin{itemize}
+% \item \cs{pgfpatharcto}, \cs{pgfpatharctoprecomputed}: These are
+% extremely specialised and are very complex in implementation. If the
+% functionality is required, it is likely that it will be set up from
+% scratch here.
+% \item \cs{pgfpathparabola}: Seems to be unused other than defining
+% a Ti\emph{k}Z interface, which itself is then not used further.
+% \item \cs{pgfpathsine}, \cs{pgfpathcosine}: Need to see exactly how
+% these need to work, in particular whether a wider input range is
+% needed and what approximation to make.
+% \item \cs{pgfpathcurvebetweentime}, \cs{pgfpathcurvebetweentimecontinue}:
+% These don't seem to be used at all.
+% \end{itemize}
+%
+% \begin{variable}
+% {\l_@@_path_tmp_tl, \l_@@_path_tmpa_fp, \l_@@_path_tmpb_fp}
+% Scratch space.
+% \begin{macrocode}
+\tl_new:N \l_@@_path_tmp_tl
+\fp_new:N \l_@@_path_tmpa_fp
+\fp_new:N \l_@@_path_tmpb_fp
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{Tracking paths}
+%
+% \begin{variable}{\g_@@_path_lastx_dim, \g_@@_path_lasty_dim}
+% The last point visited on a path.
+% \begin{macrocode}
+\dim_new:N \g_@@_path_lastx_dim
+\dim_new:N \g_@@_path_lasty_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}
+% {
+% \g_@@_path_xmax_dim,
+% \g_@@_path_xmin_dim,
+% \g_@@_path_ymax_dim,
+% \g_@@_path_ymin_dim
+% }
+% The limiting size of a path.
+% \begin{macrocode}
+\dim_new:N \g_@@_path_xmax_dim
+\dim_new:N \g_@@_path_xmin_dim
+\dim_new:N \g_@@_path_ymax_dim
+\dim_new:N \g_@@_path_ymin_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_path_update_limits:nn}
+% \begin{macro}{\@@_path_reset_limits:}
+% Track the limits of a path and (perhaps) of the picture as a whole.
+% (At present the latter is always true: that will change as more complex
+% functionality is added.)
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_update_limits:nn #1#2
+ {
+ \dim_gset:Nn \g_@@_path_xmax_dim
+ { \dim_max:nn \g_@@_path_xmax_dim {#1} }
+ \dim_gset:Nn \g_@@_path_xmin_dim
+ { \dim_min:nn \g_@@_path_xmin_dim {#1} }
+ \dim_gset:Nn \g_@@_path_ymax_dim
+ { \dim_max:nn \g_@@_path_ymax_dim {#2} }
+ \dim_gset:Nn \g_@@_path_ymin_dim
+ { \dim_min:nn \g_@@_path_ymin_dim {#2} }
+ \bool_if:NT \l_@@_update_bb_bool
+ {
+ \dim_gset:Nn \g_@@_xmax_dim
+ { \dim_max:nn \g_@@_xmax_dim {#1} }
+ \dim_gset:Nn \g_@@_xmin_dim
+ { \dim_min:nn \g_@@_xmin_dim {#1} }
+ \dim_gset:Nn \g_@@_ymax_dim
+ { \dim_max:nn \g_@@_ymax_dim {#2} }
+ \dim_gset:Nn \g_@@_ymin_dim
+ { \dim_min:nn \g_@@_ymin_dim {#2} }
+ }
+ }
+\cs_new_protected:Npn \@@_path_reset_limits:
+ {
+ \dim_gset:Nn \g_@@_path_xmax_dim { -\c_max_dim }
+ \dim_gset:Nn \g_@@_path_xmin_dim { \c_max_dim }
+ \dim_gset:Nn \g_@@_path_ymax_dim { -\c_max_dim }
+ \dim_gset:Nn \g_@@_path_ymin_dim { \c_max_dim }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_path_update_last:nn}
+% A simple auxiliary to avoid repetition.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_update_last:nn #1#2
+ {
+ \dim_gset:Nn \g_@@_path_lastx_dim {#1}
+ \dim_gset:Nn \g_@@_path_lasty_dim {#2}
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Corner arcs}
+%
+% At the level of path \emph{construction}, rounded corners are handled
+% by inserting a marker into the path: that is then picked up once the
+% full path is constructed. Thus we need to set up the appropriate
+% data structures here, such that this can be applied every time it is
+% relevant.
+%
+% \begin{variable}{\l_@@_corner_xarc_dim, \l_@@_corner_yarc_dim}
+% The two arcs in use.
+% \begin{macrocode}
+\dim_new:N \l_@@_corner_xarc_dim
+\dim_new:N \l_@@_corner_yarc_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\l_@@_corner_arc_bool}
+% A flag to speed up the repeated checks.
+% \begin{macrocode}
+\bool_new:N \l_@@_corner_arc_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_path_corner_arc:n}
+% \begin{macro}{\@@_path_corner_arc:nn}
+% Calculate the arcs, check they are non-zero.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_corner_arc:n #1
+ {
+ \@@_point_process:nn { \@@_path_corner_arc:nn } {#1}
+ }
+\cs_new_protected:Npn \@@_path_corner_arc:nn #1#2
+ {
+ \dim_set:Nn \l_@@_corner_xarc_dim {#1}
+ \dim_set:Nn \l_@@_corner_yarc_dim {#2}
+ \bool_lazy_and:nnTF
+ { \dim_compare_p:nNn \l_@@_corner_xarc_dim = { 0pt } }
+ { \dim_compare_p:nNn \l_@@_corner_yarc_dim = { 0pt } }
+ { \bool_set_false:N \l_@@_corner_arc_bool }
+ { \bool_set_true:N \l_@@_corner_arc_bool }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_path_mark_corner:}
+% Mark up corners for arc post-processing.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_mark_corner:
+ {
+ \bool_if:NT \l_@@_corner_arc_bool
+ {
+ \@@_softpath_roundpoint:VV
+ \l_@@_corner_xarc_dim
+ \l_@@_corner_yarc_dim
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Basic path constructions}
+%
+% \begin{macro}{\draw_path_moveto:n, \draw_path_lineto:n}
+% \begin{macro}{\@@_path_moveto:nn, \@@_path_lineto:nn}
+% \begin{macro}{\draw_path_curveto:nnn}
+% \begin{macro}{\@@_path_curveto:nnnnnn}
+% At present, stick to purely linear transformation support and skip the
+% soft path business: that will likely need to be revisited later.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_moveto:n #1
+ {
+ \@@_point_process:nn
+ { \@@_path_moveto:nn }
+ { \draw_point_transform:n {#1} }
+ }
+\cs_new_protected:Npn \@@_path_moveto:nn #1#2
+ {
+ \@@_path_update_limits:nn {#1} {#2}
+ \@@_softpath_moveto:nn {#1} {#2}
+ \@@_path_update_last:nn {#1} {#2}
+ }
+\cs_new_protected:Npn \draw_path_lineto:n #1
+ {
+ \@@_point_process:nn
+ { \@@_path_lineto:nn }
+ { \draw_point_transform:n {#1} }
+ }
+\cs_new_protected:Npn \@@_path_lineto:nn #1#2
+ {
+ \@@_path_mark_corner:
+ \@@_path_update_limits:nn {#1} {#2}
+ \@@_softpath_lineto:nn {#1} {#2}
+ \@@_path_update_last:nn {#1} {#2}
+ }
+\cs_new_protected:Npn \draw_path_curveto:nnn #1#2#3
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nn
+ {
+ \@@_path_mark_corner:
+ \@@_path_curveto:nnnnnn
+ }
+ { \draw_point_transform:n {#1} }
+ }
+ { \draw_point_transform:n {#2} }
+ { \draw_point_transform:n {#3} }
+ }
+\cs_new_protected:Npn \@@_path_curveto:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_path_update_limits:nn {#1} {#2}
+ \@@_path_update_limits:nn {#3} {#4}
+ \@@_path_update_limits:nn {#5} {#6}
+ \@@_softpath_curveto:nnnnnn {#1} {#2} {#3} {#4} {#5} {#6}
+ \@@_path_update_last:nn {#5} {#6}
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_close:}
+% A simple wrapper.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_close:
+ {
+ \@@_path_mark_corner:
+ \@@_softpath_closepath:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Computed curves}
+%
+% More complex operations need some calculations. To assist with those, various
+% constants are pre-defined.
+%
+% \begin{macro}{\draw_path_curveto:nn}
+% \begin{macro}{\@@_path_curveto:nnnn}
+% \begin{variable}{\c_@@_path_curveto_a_fp, \c_@@_path_curveto_b_fp}
+% A quadratic curve with one control point $(x_{\mathrm{c}},
+% y_{\mathrm{c}})$. The two required control points are then
+% \[
+% x_{1} = \frac{1}{3}x_{\mathrm{s}} + \frac{2}{3}x_{\mathrm{c}}
+% \quad
+% y_{1} = \frac{1}{3}y_{\mathrm{s}} + \frac{2}{3}y_{\mathrm{c}}
+% \]
+% and
+% \[
+% x_{2} = \frac{1}{3}x_{\mathrm{e}} + \frac{2}{3}x_{\mathrm{c}}
+% \quad
+% x_{2} = \frac{1}{3}y_{\mathrm{e}} + \frac{2}{3}y_{\mathrm{c}}
+% \]
+% using the start (last) point $(x_{\mathrm{s}}, y_{\mathrm{s}})$
+% and the end point $(x_{\mathrm{s}}, y_{\mathrm{s}})$.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_curveto:nn #1#2
+ {
+ \@@_point_process:nnn
+ { \@@_path_curveto:nnnn }
+ { \draw_point_transform:n {#1} }
+ { \draw_point_transform:n {#2} }
+ }
+\cs_new_protected:Npn \@@_path_curveto:nnnn #1#2#3#4
+ {
+ \fp_set:Nn \l_@@_path_tmpa_fp { \c_@@_path_curveto_b_fp * #1 }
+ \fp_set:Nn \l_@@_path_tmpb_fp { \c_@@_path_curveto_b_fp * #2 }
+ \use:x
+ {
+ \@@_path_mark_corner:
+ \@@_path_curveto:nnnnnn
+ {
+ \fp_to_dim:n
+ {
+ \c_@@_path_curveto_a_fp * \g_@@_path_lastx_dim
+ + \l_@@_path_tmpa_fp
+ }
+ }
+ {
+ \fp_to_dim:n
+ {
+ \c_@@_path_curveto_a_fp * \g_@@_path_lasty_dim
+ + \l_@@_path_tmpb_fp
+ }
+ }
+ {
+ \fp_to_dim:n
+ { \c_@@_path_curveto_a_fp * #3 + \l_@@_path_tmpa_fp }
+ }
+ {
+ \fp_to_dim:n
+ { \c_@@_path_curveto_a_fp * #4 + \l_@@_path_tmpb_fp }
+ }
+ {#3}
+ {#4}
+ }
+ }
+\fp_const:Nn \c_@@_path_curveto_a_fp { 1 / 3 }
+\fp_const:Nn \c_@@_path_curveto_b_fp { 2 / 3 }
+% \end{macrocode}
+% \end{variable}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_arc:nnn}
+% \begin{macro}{\draw_path_arc:nnnn}
+% \begin{macro}{\@@_path_arc:nnnn}
+% \begin{macro}{\@@_path_arc:nnNnn}
+% \begin{macro}
+% {
+% \@@_path_arc_auxi:nnnnNnn,
+% \@@_path_arc_auxi:fnnnNnn,
+% \@@_path_arc_auxi:fnfnNnn
+% }
+% \begin{macro}{\@@_path_arc_auxii:nnnNnnnn}
+% \begin{macro}{\@@_path_arc_auxiii:nn}
+% \begin{macro}{\@@_path_arc_auxiv:nnnn}
+% \begin{macro}{\@@_path_arc_auxv:nn, \@@_path_arc_auxvi:nn}
+% \begin{macro}{\@@_path_arc_add:nnnn}
+% \begin{variable}{\l_@@_path_arc_delta_fp, \l_@@_path_arc_start_fp}
+% \begin{variable}{\c_@@_path_arc_90_fp,\c_@@_path_arc_60_fp}
+% Drawing an arc means dividing the total curve required into sections:
+% using Bézier curves we can cover at most $90^{\circ}$ at once. To allow
+% for later manipulations, we aim to have roughly equal last segments to
+% the line, with the split set at a final part of $115^{\circ}$.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_arc:nnn #1#2#3
+ { \draw_path_arc:nnnn {#1} {#2} {#3} {#3} }
+\cs_new_protected:Npn \draw_path_arc:nnnn #1#2#3#4
+ {
+ \use:x
+ {
+ \@@_path_arc:nnnn
+ { \fp_eval:n {#1} }
+ { \fp_eval:n {#2} }
+ { \fp_to_dim:n {#3} }
+ { \fp_to_dim:n {#4} }
+ }
+ }
+\cs_new_protected:Npn \@@_path_arc:nnnn #1#2#3#4
+ {
+ \fp_compare:nNnTF {#1} > {#2}
+ { \@@_path_arc:nnNnn {#1} {#2} - {#3} {#4} }
+ { \@@_path_arc:nnNnn {#1} {#2} + {#3} {#4} }
+ }
+\cs_new_protected:Npn \@@_path_arc:nnNnn #1#2#3#4#5
+ {
+ \fp_set:Nn \l_@@_path_arc_start_fp {#1}
+ \fp_set:Nn \l_@@_path_arc_delta_fp { abs( #1 - #2 ) }
+ \fp_while_do:nNnn { \l_@@_path_arc_delta_fp } > { 90 }
+ {
+ \fp_compare:nNnTF \l_@@_path_arc_delta_fp > { 115 }
+ {
+ \@@_path_arc_auxi:ffnnNnn
+ { \fp_to_decimal:N \l_@@_path_arc_start_fp }
+ { \fp_eval:n { \l_@@_path_arc_start_fp #3 90 } }
+ { 90 } {#2}
+ #3 {#4} {#5}
+ }
+ {
+ \@@_path_arc_auxi:ffnnNnn
+ { \fp_to_decimal:N \l_@@_path_arc_start_fp }
+ { \fp_eval:n { \l_@@_path_arc_start_fp #3 60 } }
+ { 60 } {#2}
+ #3 {#4} {#5}
+ }
+ }
+ \@@_path_mark_corner:
+ \@@_path_arc_auxi:fnfnNnn
+ { \fp_to_decimal:N \l_@@_path_arc_start_fp }
+ {#2}
+ { \fp_eval:n { abs( \l_@@_path_arc_start_fp - #2 ) } }
+ {#2}
+ #3 {#4} {#5}
+ }
+% \end{macrocode}
+% The auxiliary is responsible for calculating the required points.
+% The \enquote{magic} number required to determine the length of the
+% control vectors is well-established for a right-angle:
+% $\frac{4}{3}(\sqrt{2} - 1) = 0.552\,284\,75$. For other cases, we follow
+% the calculation used by \pkg{pgf} but with the second common case of
+% $60^{\circ}$ pre-calculated for speed.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_arc_auxi:nnnnNnn #1#2#3#4#5#6#7
+ {
+ \use:x
+ {
+ \@@_path_arc_auxii:nnnNnnnn
+ {#1} {#2} {#4} #5 {#6} {#7}
+ {
+ \fp_to_dim:n
+ {
+ \cs_if_exist_use:cF
+ { c_@@_path_arc_ #3 _fp }
+ { 4/3 * tand( 0.25 * #3 ) }
+ * #6
+ }
+ }
+ {
+ \fp_to_dim:n
+ {
+ \cs_if_exist_use:cF
+ { c_@@_path_arc_ #3 _fp }
+ { 4/3 * tand( 0.25 * #3 ) }
+ * #7
+ }
+ }
+ }
+ }
+\cs_generate_variant:Nn \@@_path_arc_auxi:nnnnNnn { fnf , ff }
+% \end{macrocode}
+% We can now calculate the required points. As everything here is
+% non-expandable, that is best done by using \texttt{x}-type expansion
+% to build up the tokens. The three points are calculated out-of-order,
+% since finding the second control point needs the position of the end
+% point. Once the points are found, fire-off the fundamental path
+% operation and update the record of where we are up to. The final
+% point has to be
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_arc_auxii:nnnNnnnn #1#2#3#4#5#6#7#8
+ {
+ \tl_clear:N \l_@@_path_tmp_tl
+ \@@_point_process:nn
+ { \@@_path_arc_auxiii:nn }
+ {
+ \@@_point_transform_noshift:n
+ { \draw_point_polar:nnn { #1 #4 90 } {#7} {#8} }
+ }
+ \@@_point_process:nn
+ {
+ \@@_point_process:nn
+ { \@@_path_arc_auxiv:nnnn }
+ {
+ \draw_point_transform:n
+ { \draw_point_polar:nnn {#1} {#5} {#6} }
+ }
+ }
+ {
+ \draw_point_transform:n
+ { \draw_point_polar:nnn {#2} {#5} {#6} }
+ }
+ \@@_point_process:nn
+ { \@@_path_arc_auxv:nn }
+ {
+ \@@_point_transform_noshift:n
+ { \draw_point_polar:nnn { #2 #4 -90 } {#7} {#8} }
+ }
+ \exp_after:wN \@@_path_curveto:nnnnnn \l_@@_path_tmp_tl
+ \fp_set:Nn \l_@@_path_arc_delta_fp { abs ( #2 - #3 ) }
+ \fp_set:Nn \l_@@_path_arc_start_fp {#2}
+ }
+% \end{macrocode}
+% The first control point.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_arc_auxiii:nn #1#2
+ {
+ \@@_path_arc_aux_add:nn
+ { \g_@@_path_lastx_dim + #1 }
+ { \g_@@_path_lasty_dim + #2 }
+ }
+% \end{macrocode}
+% The end point: simple arithmetic.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_arc_auxiv:nnnn #1#2#3#4
+ {
+ \@@_path_arc_aux_add:nn
+ { \g_@@_path_lastx_dim - #1 + #3 }
+ { \g_@@_path_lasty_dim - #2 + #4 }
+ }
+% \end{macrocode}
+% The second control point: extract the last point, do some
+% rearrangement and record.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_arc_auxv:nn #1#2
+ {
+ \exp_after:wN \@@_path_arc_auxvi:nn
+ \l_@@_path_tmp_tl {#1} {#2}
+ }
+\cs_new_protected:Npn \@@_path_arc_auxvi:nn #1#2#3#4#5#6
+ {
+ \tl_set:Nn \l_@@_path_tmp_tl { {#1} {#2} }
+ \@@_path_arc_aux_add:nn
+ { #5 + #3 }
+ { #6 + #4 }
+ \tl_put_right:Nn \l_@@_path_tmp_tl { {#3} {#4} }
+ }
+\cs_new_protected:Npn \@@_path_arc_aux_add:nn #1#2
+ {
+ \tl_put_right:Nx \l_@@_path_tmp_tl
+ { { \fp_to_dim:n {#1} } { \fp_to_dim:n {#2} } }
+ }
+\fp_new:N \l_@@_path_arc_delta_fp
+\fp_new:N \l_@@_path_arc_start_fp
+\fp_const:cn { c_@@_path_arc_90_fp } { 4/3 * (sqrt(2) - 1) }
+\fp_const:cn { c_@@_path_arc_60_fp } { 4/3 * tand(15) }
+% \end{macrocode}
+% \end{variable}
+% \end{variable}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_arc_axes:nnnn}
+% A simple wrapper.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_arc_axes:nnnn #1#2#3#4
+ {
+ \draw_transform_triangle:nnn { 0cm , 0cm } {#3} {#4}
+ \draw_path_arc:nnn {#1} {#2} { 1pt }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_ellipse:nnn}
+% \begin{macro}{\@@_path_ellipse:nnnnnn}
+% \begin{macro}[EXP]
+% {
+% \@@_path_ellipse_arci:nnnnnn ,
+% \@@_path_ellipse_arcii:nnnnnn ,
+% \@@_path_ellipse_arciii:nnnnnn ,
+% \@@_path_ellipse_arciv:nnnnnn
+% }
+% \begin{variable}{\c_@@_path_ellipse_fp}
+% Drawing an ellipse is an optimised version of drawing an arc, in particular
+% reusing the same constant. We need to deal with the ellipse in four parts
+% and also deal with moving to the right place, closing it and ending up
+% back at the center. That is handled on a per-arc basis, each in a
+% separate auxiliary for readability.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_ellipse:nnn #1#2#3
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nn
+ { \@@_path_ellipse:nnnnnn }
+ { \draw_point_transform:n {#1} }
+ }
+ { \@@_point_transform_noshift:n {#2} }
+ { \@@_point_transform_noshift:n {#3} }
+ }
+\cs_new_protected:Npn \@@_path_ellipse:nnnnnn #1#2#3#4#5#6
+ {
+ \use:x
+ {
+ \@@_path_moveto:nn
+ { \fp_to_dim:n { #1 + #3 } } { \fp_to_dim:n { #2 + #4 } }
+ \@@_path_ellipse_arci:nnnnnn {#1} {#2} {#3} {#4} {#5} {#6}
+ \@@_path_ellipse_arcii:nnnnnn {#1} {#2} {#3} {#4} {#5} {#6}
+ \@@_path_ellipse_arciii:nnnnnn {#1} {#2} {#3} {#4} {#5} {#6}
+ \@@_path_ellipse_arciv:nnnnnn {#1} {#2} {#3} {#4} {#5} {#6}
+ }
+ \@@_softpath_closepath:
+ \@@_path_moveto:nn {#1} {#2}
+ }
+\cs_new:Npn \@@_path_ellipse_arci:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_path_curveto:nnnnnn
+ { \fp_to_dim:n { #1 + #3 + #5 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #2 + #4 + #6 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #1 + #3 * \c_@@_path_ellipse_fp + #5 } }
+ { \fp_to_dim:n { #2 + #4 * \c_@@_path_ellipse_fp + #6 } }
+ { \fp_to_dim:n { #1 + #5 } }
+ { \fp_to_dim:n { #2 + #6 } }
+ }
+\cs_new:Npn \@@_path_ellipse_arcii:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_path_curveto:nnnnnn
+ { \fp_to_dim:n { #1 - #3 * \c_@@_path_ellipse_fp + #5 } }
+ { \fp_to_dim:n { #2 - #4 * \c_@@_path_ellipse_fp + #6 } }
+ { \fp_to_dim:n { #1 - #3 + #5 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #2 - #4 + #6 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #1 - #3 } }
+ { \fp_to_dim:n { #2 - #4 } }
+ }
+\cs_new:Npn \@@_path_ellipse_arciii:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_path_curveto:nnnnnn
+ { \fp_to_dim:n { #1 - #3 - #5 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #2 - #4 - #6 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #1 - #3 * \c_@@_path_ellipse_fp - #5 } }
+ { \fp_to_dim:n { #2 - #4 * \c_@@_path_ellipse_fp - #6 } }
+ { \fp_to_dim:n { #1 - #5 } }
+ { \fp_to_dim:n { #2 - #6 } }
+ }
+\cs_new:Npn \@@_path_ellipse_arciv:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_path_curveto:nnnnnn
+ { \fp_to_dim:n { #1 + #3 * \c_@@_path_ellipse_fp - #5 } }
+ { \fp_to_dim:n { #2 + #4 * \c_@@_path_ellipse_fp - #6 } }
+ { \fp_to_dim:n { #1 + #3 - #5 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #2 + #4 - #6 * \c_@@_path_ellipse_fp } }
+ { \fp_to_dim:n { #1 + #3 } }
+ { \fp_to_dim:n { #2 + #4 } }
+ }
+\fp_const:Nn \c_@@_path_ellipse_fp { \fp_use:c { c_@@_path_arc_90_fp } }
+% \end{macrocode}
+% \end{variable}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_circle:nn}
+% A shortcut.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_circle:nn #1#2
+ { \draw_path_ellipse:nnn {#1} { #2 , 0pt } { 0pt , #2 } }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Rectangles}
+%
+% \begin{macro}{\draw_path_rectangle:nn}
+% \begin{macro}{\@@_path_rectangle:nnnn, \@@_path_rectangle_rounded:nnnn}
+% Building a rectangle can be a single operation, or for rounded versions will
+% involve step-by-step construction.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_rectangle:nn #1#2
+ {
+ \@@_point_process:nnn
+ {
+ \bool_if:NTF \l_@@_corner_arc_bool
+ { \@@_path_rectangle_rounded:nnnn }
+ { \@@_path_rectangle:nnnn }
+ }
+ { \draw_point_transform:n {#1} }
+ {#2}
+ }
+\cs_new_protected:Npn \@@_path_rectangle:nnnn #1#2#3#4
+ {
+ \@@_path_update_limits:nn {#1} {#2}
+ \@@_path_update_limits:nn { #1 + #3 } { #2 + #4 }
+ \@@_softpath_rectangle:nnnn {#1} {#2} {#3} {#4}
+ \@@_path_update_last:nn {#1} {#2}
+ }
+\cs_new_protected:Npn \@@_path_rectangle_rounded:nnnn #1#2#3#4
+ {
+ \draw_path_moveto:n { #1 + #3 , #2 + #4 }
+ \draw_path_lineto:n { #1 , #2 + #4 }
+ \draw_path_lineto:n { #1 , #2 }
+ \draw_path_lineto:n { #1 + #3 , #2 }
+ \draw_path_close:
+ \draw_path_moveto:n { #1 , #2 }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_path_rectangle_corners:nn}
+% \begin{macro}{\@@_path_rectangle_corners:nnnn}
+% Another shortcut wrapper.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_rectangle_corners:nn #1#2
+ {
+ \@@_point_process:nnn
+ { \@@_path_rectangle_corners:nnnnn {#1} }
+ {#1} {#2}
+ }
+\cs_new_protected:Npn \@@_path_rectangle_corners:nnnnn #1#2#3#4#5
+ { \draw_path_rectangle:nn {#1} { #4 - #2 , #5 - #3 } }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Grids}
+%
+% \begin{macro}{\draw_path_grid:nnnn}
+% \begin{macro}{\@@_path_grid:nnnnnn}
+% A simple set of loops.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_grid:nnnn #1#2#3#4
+ {
+ \@@_point_process:nnn
+ { \@@_path_grid:nnnnnn {#1} {#2} }
+ {#3} {#4}
+ }
+\cs_new_protected:Npn \@@_path_grid:nnnnnn #1#2#3#4#5#6
+ {
+ \dim_step_inline:nnnn
+ {#3} { \dim_compare:nNnF {#3} < {#5} { - } \dim_abs:n {#1} } {#5}
+ {
+ \draw_path_moveto:n { ##1 , #4 }
+ \draw_path_lineto:n { ##1 , #6 }
+ }
+ \dim_step_inline:nnnn
+ {#4} { \dim_compare:nNnF {#4} < {#6} { - } \dim_abs:n {#2} } {#6}
+ {
+ \draw_path_moveto:n { #3 , ##1 }
+ \draw_path_lineto:n { #5 , ##1 }
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Using paths}
+%
+% \begin{variable}
+% {
+% \l_@@_path_use_clip_bool ,
+% \l_@@_path_use_fill_bool ,
+% \l_@@_path_use_stroke_bool
+% }
+% Actions to pass to the driver.
+% \begin{macrocode}
+\bool_new:N \l_@@_path_use_clip_bool
+\bool_new:N \l_@@_path_use_fill_bool
+\bool_new:N \l_@@_path_use_stroke_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\l_@@_path_use_bb_bool, \l_@@_path_use_clear_bool}
+% Actions handled at the macro layer.
+% \begin{macrocode}
+\bool_new:N \l_@@_path_use_bb_bool
+\bool_new:N \l_@@_path_use_clear_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_path_use:n, \draw_path_use_clear:n}
+% \begin{macro}{\@@_path_use:n}
+% \begin{macro}{\@@_path_use_action_draw:}
+% \begin{macro}{\@@_path_use_stroke_bb:}
+% \begin{macro}{\@@_path_use_stroke_bb_aux:NnN}
+% There are a range of actions which can apply to a path: they are handled
+% in a single function which can carry out several of them. The first step
+% is to deal with the special case of clearing the path.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_path_use:n #1
+ {
+ \tl_if_blank:nF {#1}
+ { \@@_path_use:n {#1} }
+ }
+\cs_new_protected:Npn \draw_path_use_clear:n #1
+ {
+ \bool_lazy_or:nnTF
+ { \tl_if_blank_p:n {#1} }
+ { \str_if_eq_p:nn {#1} { clear } }
+ {
+ \@@_softpath_clear:
+ \@@_path_reset_limits:
+ }
+ { \@@_path_use:n { #1 , clear } }
+ }
+% \end{macrocode}
+% Map over the actions and set up the data: mainly just booleans,
+% but with the possibility to cover more complex cases. The business end
+% of the function is a series of checks on the various flags, then
+% taking the appropriate action(s).
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_use:n #1
+ {
+ \bool_set_false:N \l_@@_path_use_clip_bool
+ \bool_set_false:N \l_@@_path_use_fill_bool
+ \bool_set_false:N \l_@@_path_use_stroke_bool
+ \clist_map_inline:nn {#1}
+ {
+ \cs_if_exist:cTF { l_@@_path_use_ ##1 _ bool }
+ { \bool_set_true:c { l_@@_path_use_ ##1 _ bool } }
+ {
+ \cs_if_exist_use:cF { @@_path_use_action_ ##1 : }
+ { \ERROR }
+ }
+ }
+ \bool_lazy_and:nnT
+ { \l_@@_update_bb_bool }
+ { \l_@@_path_use_stroke_bool }
+ { \@@_path_use_stroke_bb: }
+ \bool_if:NTF \l_@@_path_use_clear_bool
+ { \@@_softpath_use_clear: }
+ { \@@_softpath_use: }
+ \bool_if:NT \l_@@_path_use_clip_bool
+ { \driver_draw_clip: }
+ \bool_lazy_or:nnT
+ { \l_@@_path_use_fill_bool }
+ { \l_@@_path_use_stroke_bool }
+ {
+ \use:c
+ {
+ driver_draw_
+ \bool_if:NT \l_@@_path_use_fill_bool { fill }
+ \bool_if:NT \l_@@_path_use_stroke_bool { stroke }
+ :
+ }
+ }
+ }
+\cs_new_protected:Npn \@@_path_use_action_draw:
+ {
+ \bool_set_true:N \l_@@_path_use_stroke_bool
+ }
+% \end{macrocode}
+% Where the path is relevant to size and is stroked, we need to allow for
+% the part which overlaps the edge of the bounding box.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_path_use_stroke_bb:
+ {
+ \@@_path_use_stroke_bb_aux:NnN x { max } +
+ \@@_path_use_stroke_bb_aux:NnN y { max } +
+ \@@_path_use_stroke_bb_aux:NnN x { min } -
+ \@@_path_use_stroke_bb_aux:NnN y { min } -
+ }
+\cs_new_protected:Npn \@@_path_use_stroke_bb_aux:NnN #1#2#3
+ {
+ \dim_compare:nNnF { \dim_use:c { g_@@_ #1#2 _dim } } = { #3 -\c_max_dim }
+ {
+ \dim_gset:cn { g_@@_ #1#2 _dim }
+ {
+ \use:c { dim_ #2 :nn }
+ { \dim_use:c { g_@@_ #1#2 _dim } }
+ {
+ \dim_use:c { g_@@_path_ #1#2 _dim }
+ #3 0.5 \g_@@_linewidth_dim
+ }
+ }
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-points.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-points.dtx
new file mode 100644
index 00000000000..01497992889
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-points.dtx
@@ -0,0 +1,960 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-points.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw-points} package\\ Calculating points^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-points} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% This sub-module covers more-or-less the same ideas as
+% \texttt{pgfcorepoints.code.tex}, though the approach taken to returning
+% values is different: point expressions here are processed by expansion
+% and return a co-ordinate pair in the form |{|\meta{x}|}{|\meta{y}|}|.
+% Equivalents of following \pkg{pgf} functions are deliberately omitted:
+% \begin{itemize}
+% \item \cs{pgfpointorigin}: Can be given explicitly as |{0pt}{0pt}|.
+% \item \cs{pgfextractx}, \cs{pgfextracty}: Available by applying
+% \cs{use_i:nn}/\cs{use_ii:nn} or similar to the \texttt{x}-type
+% expansion of a point expression.
+% \item \cs{pgfgetlastxy}: Unused in the entire \pkg{pgf} core, may be
+% emulated by \texttt{x}-type expansion of a point expression, then using
+% the result.
+% \end{itemize}
+% In addition, equivalents of the following \emph{may} be added in future but
+% are currently absent:
+% \begin{itemize}
+% \item \cs{pgfpointcylindrical}, \cs{pgfpointspherical}: The usefulness
+% of these commands is not currently clear.
+% \item \cs{pgfpointborderrectangle}, \cs{pgfpointborderellipse}: To be
+% revisited once the semantics and use cases are clear.
+% \item \cs{pgfqpoint}, \cs{pgfqpointscale}, \cs{pgfqpointpolar},
+% \cs{pgfqpointxy}, \cs{pgfqpointxyz}: The expandable approach taken in
+% the code here, along with the absolute requirement for \eTeX{}, means
+% it is likely many use cases for these commands may be covered in other
+% ways. This may be revisited as higher-level structures are constructed.
+% \end{itemize}
+%
+% \subsection{Support functions}
+%
+% \begin{macro}[EXP]{\@@_point_process:nn}
+% \begin{macro}[EXP]{\@@_point_process_auxi:nn, \@@_point_process_auxi:fn}
+% \begin{macro}[EXP]{\@@_point_process_auxii:nw}
+% \begin{macro}[EXP]{\@@_point_process:nnn}
+% \begin{macro}[EXP]{\@@_point_process_auxiii:nnn, \@@_point_process_auxiii:ffn}
+% \begin{macro}[EXP]{\@@_point_process_auxiv:nw}
+% Execute whatever code is passed to extract the $x$ and $y$ co-ordinates.
+% The first argument here should itself absorb two arguments. There is
+% also a version to deal with two co-ordinates: common enough to justify a
+% separate function.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_process:nn #1#2
+ {
+ \@@_point_process_auxi:fn
+ { \@@_point_to_dim:n {#2} }
+ {#1}
+ }
+\cs_new:Npn \@@_point_process_auxi:nn #1#2
+ { \@@_point_process_auxii:nw {#2} #1 \q_stop }
+\cs_generate_variant:Nn \@@_point_process_auxi:nn { f }
+\cs_new:Npn \@@_point_process_auxii:nw #1 #2 , #3 \q_stop
+ { #1 {#2} {#3} }
+\cs_new:Npn \@@_point_process:nnn #1#2#3
+ {
+ \@@_point_process_auxiii:ffn
+ { \@@_point_to_dim:n {#2} }
+ { \@@_point_to_dim:n {#3} }
+ {#1}
+ }
+\cs_new:Npn \@@_point_process_auxiii:nnn #1#2#3
+ { \@@_point_process_auxiv:nw {#3} #1 \q_mark #2 \q_stop }
+\cs_generate_variant:Nn \@@_point_process_auxiii:nnn { ff }
+\cs_new:Npn \@@_point_process_auxiv:nw #1 #2 , #3 \q_mark #4 , #5 \q_stop
+ { #1 {#2} {#3} {#4} {#5} }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\@@_point_to_dim:n}
+% \begin{macro}[EXP]{\@@_point_to_dim_aux:n, \@@_point_to_dim_aux:f}
+% \begin{macro}[EXP]{\@@_point_to_dim_aux:w}
+% Co-ordinates are always returned as two dimensions.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_to_dim:n #1
+ { \@@_point_to_dim_aux:f { \fp_eval:n {#1} } }
+\cs_new:Npn \@@_point_to_dim_aux:n #1
+ { \@@_point_to_dim_aux:w #1 }
+\cs_generate_variant:Nn \@@_point_to_dim_aux:n { f }
+\cs_new:Npn \@@_point_to_dim_aux:w ( #1 , ~ #2 ) { #1pt , #2pt }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Co-ordinates}
+%
+% The most basic way of giving points is as simple $(x,y)$ co-ordinates.
+%
+% \begin{macro}[EXP]{\draw_point:nn}
+% Simply turn the given values into dimensions.
+% \begin{macrocode}
+\cs_new:Npn \draw_point:nn #1#2
+ { \@@_point_to_dim:n { #1 , #2 } }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Polar co-ordinates}
+%
+% \begin{macro}[EXP]{\draw_point_polar:nn}
+% \begin{macro}[EXP]{\draw_point_polar:nnn}
+% \begin{macro}[EXP]{\@@_draw_polar:nnn, \@@_draw_polar:fnn}
+% Polar co-ordinates may have either one or two lengths, so there is a need
+% to do a simple split before the calculation. As the angle gets used twice,
+% save on any expression evaluation there and force expansion.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_polar:nn #1#2
+ { \draw_point_polar:nnn {#1} {#2} {#2} }
+\cs_new:Npn \draw_point_polar:nnn #1#2#3
+ { \@@_draw_polar:fnn { \fp_eval:n {#1} } {#2} {#3} }
+\cs_new:Npn \@@_draw_polar:nnn #1#2#3
+ { \@@_point_to_dim:n { cosd(#1) * (#2) , sind(#1) * (#3) } }
+\cs_generate_variant:Nn \@@_draw_polar:nnn { f }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Point expression arithmetic}
+%
+% These functions all take point expressions as arguments.
+%
+% \begin{macro}[EXP]
+% {\draw_point_add:nn, \draw_point_diff:nn, \draw_point_scale:nn}
+% Simple mathematics.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_add:nn #1#2
+ { \@@_point_to_dim:n { (#1) + (#2) } }
+\cs_new:Npn \draw_point_diff:nn #1#2
+ { \@@_point_to_dim:n { (#2) - (#1) } }
+\cs_new:Npn \draw_point_scale:nn #1#2
+ { \@@_point_to_dim:n { #1 * (#2) } }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_unit_vector:n}
+% \begin{macro}[EXP]{\@@_point_unit_vector:nn}
+% Only a single point expression so the expansion is done here. The
+% outcome is the normalised vector from $(0,0)$ in the direction of
+% the point, \emph{i.e.}
+% \[
+% P_{x} = \frac{x}{\sqrt{x^{2} + y^{2}}} \quad
+% P_{y} = \frac{y}{\sqrt{x^{2} + y^{2}}}
+% \]
+% \begin{macrocode}
+\cs_new:Npn \draw_point_unit_vector:n #1
+ { \@@_point_process:nn { \@@_point_unit_vector:nn } {#1} }
+\cs_new:Npn \@@_point_unit_vector:nn #1#2
+ {
+ \@@_point_to_dim:n
+ { ( #1 , #2 ) / (sqrt(#1 * #1 + #2 * #2)) }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Intersection calculations}
+%
+% \begin{macro}[EXP]{\draw_point_intersect_lines:nnnn}
+% \begin{macro}[EXP]{\@@_point_intersect_lines:nnnnnn}
+% \begin{macro}[EXP]{\@@_point_intersect_lines:nnnnnnnn}
+% \begin{macro}[EXP]
+% {\@@_point_intersect_lines_aux:nnnnnn, \@@_point_intersect_lines_aux:ffffff}
+% The intersection point~$P$ between a line joining points $(x_{1}, y_{1})$
+% and $(x_{2}, y_{2})$ with a second line joining points $(x_{3}, y_{3})$
+% and $(x_{4}, y_{4})$ can be calculated using the formulae
+% \[
+% P_{x} =
+% \frac{(x_{1}y_{2} - y_{1}x_{2})(x_{3} - x_{4})
+% - (x_{3}y_{4} - y_{3}x_{4})(x_{1} - x_{2})}
+% {(x_{1} - x_{2})(y_{3} - y_{4}) - (y_{1} - y_{2})(x_{3} - x_{4})}
+% \]
+% and
+% \[
+% P_{y} =
+% \frac{(x_{1}y_{2} - y_{1}x_{2})(y_{3} - y_{5})
+% - (x_{3}y_{4} - y_{3}x_{4})(y_{1} - y_{2})}
+% {(x_{1} - x_{2})(y_{3} - y_{4}) - (y_{1} - y_{2})(x_{3} - x_{4})}
+% \]
+% The work therefore comes down to expanding the incoming data, then
+% pre-calculating as many parts as possible before the final work to find
+% the intersection. (Expansion and argument re-ordering is much less work
+% than additional floating point calculations.)
+% \begin{macrocode}
+\cs_new:Npn \draw_point_intersect_lines:nnnn #1#2#3#4
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nnn
+ { \@@_point_intersect_lines:nnnnnnnn } {#3} {#4}
+ }
+ {#1} {#2}
+ }
+% \end{macrocode}
+% At this stage we have all of the information we need, fully expanded:
+% \begin{enumerate}[label = \#\arabic*, font = \ttfamily]
+% \item $x_{3}$
+% \item $y_{3}$
+% \item $x_{4}$
+% \item $y_{4}$
+% \item $x_{1}$
+% \item $y_{1}$
+% \item $x_{2}$
+% \item $y_{2}$
+% \end{enumerate}
+% so now just have to do all of the calculation.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_intersect_lines:nnnnnnnn #1#2#3#4#5#6#7#8
+ {
+ \@@_point_intersect_lines_aux:ffffff
+ { \fp_eval:n { #1 * #4 - #2 * #3 } }
+ { \fp_eval:n { #5 * #8 - #6 * #7 } }
+ { \fp_eval:n { #1 - #3 } }
+ { \fp_eval:n { #5 - #7 } }
+ { \fp_eval:n { #2 - #4 } }
+ { \fp_eval:n { #6 - #8 } }
+ }
+\cs_new:Npn \@@_point_intersect_lines_aux:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_point_to_dim:n
+ {
+ ( #2 * #3 - #1 * #4 , #2 * #5 - #1 * #6 )
+ / ( #4 * #5 - #6 * #3 )
+ }
+ }
+\cs_generate_variant:Nn \@@_point_intersect_lines_aux:nnnnnn { ffffff }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_intersect_circles:nnnnn}
+% \begin{macro}[EXP]{\@@_point_intersect_circles_auxi:nnnnnnn}
+% \begin{macro}[EXP]
+% {
+% \@@_point_intersect_circles_auxii:nnnnnnn,
+% \@@_point_intersect_circles_auxii:ffnnnnn,
+% \@@_point_intersect_circles_auxiii:nnnnnnn,
+% \@@_point_intersect_circles_auxiii:ffnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_intersect_circles_auxiv:nnnnnnnn,
+% \@@_point_intersect_circles_auxiv:fnnnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_intersect_circles_auxv:nnnnnnnnn,
+% \@@_point_intersect_circles_auxv:ffnnnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_intersect_circles_auxvi:nnnnnnnn,
+% \@@_point_intersect_circles_auxvi:fnnnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_intersect_circles_auxvii:nnnnnnn,
+% \@@_point_intersect_circles_auxvii:fffnnnn
+% }
+% Another long expansion chain to get the values in the right places.
+% We have two circles, the first with center $(a, b)$ and radius~$r$,
+% the second with center $(c, d)$ and radius~$s$. We use the intermediate
+% values
+% \begin{align*}
+% e &= c - a \\
+% f &= d - b \\
+% p &= \sqrt{e^{2} + f^{2}} \\
+% k &= \frac{p^{2} + r^{2} - s^{2}}{2p}
+% \end{align*}
+% in either
+% \begin{align*}
+% P_{x} &= a + \frac{ek}{p} + \frac{f}{p}\sqrt{r^{2} - k^{2}} \\
+% P_{y} &= b + \frac{fk}{p} - \frac{e}{p}\sqrt{r^{2} - k^{2}}
+% \end{align*}
+% or
+% \begin{align*}
+% P_{x} &= a + \frac{ek}{p} - \frac{f}{p}\sqrt{r^{2} - k^{2}} \\
+% P_{y} &= b + \frac{fk}{p} + \frac{e}{p}\sqrt{r^{2} - k^{2}}
+% \end{align*}
+% depending on which solution is required. The rest of the work is simply
+% forcing the appropriate expansion and shuffling arguments.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_intersect_circles:nnnnn #1#2#3#4#5
+ {
+ \@@_point_process:nnn
+ { \@@_point_intersect_circles_auxi:nnnnnnn {#2} {#4} {#5} }
+ {#1} {#3}
+ }
+\cs_new:Npn \@@_point_intersect_circles_auxi:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_intersect_circles_auxii:ffnnnnn
+ { \fp_eval:n {#1} } { \fp_eval:n {#2} } {#4} {#5} {#6} {#7} {#3}
+ }
+% \end{macrocode}
+% At this stage we have all of the information we need, fully expanded:
+% \begin{enumerate}[label = \#\arabic*, font = \ttfamily]
+% \item $r$
+% \item $s$
+% \item $a$
+% \item $b$
+% \item $c$
+% \item $d$
+% \item $n$
+% \end{enumerate}
+% Once we evaluate $e$ and $f$, the co-ordinate $(c,d)$ is no longer
+% required: handy as we will need various intermediate values in the
+% following.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_intersect_circles_auxii:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_intersect_circles_auxiii:ffnnnnn
+ { \fp_eval:n { #5 - #3 } }
+ { \fp_eval:n { #6 - #4 } }
+ {#1} {#2} {#3} {#4} {#7}
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxii:nnnnnnn { ff }
+\cs_new:Npn \@@_point_intersect_circles_auxiii:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_intersect_circles_auxiv:fnnnnnnn
+ { \fp_eval:n { sqrt( #1 * #1 + #2 * #2 ) } }
+ {#1} {#2} {#3} {#4} {#5} {#6} {#7}
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxiii:nnnnnnn { ff }
+% \end{macrocode}
+% We now have $p$: we pre-calculate $1/p$ as it is needed a few times and
+% is relatively expensive. We also need $r^{2}$ twice so deal with that
+% here too.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_intersect_circles_auxiv:nnnnnnnn #1#2#3#4#5#6#7#8
+ {
+ \@@_point_intersect_circles_auxv:ffnnnnnnn
+ { \fp_eval:n { 1 / #1 } }
+ { \fp_eval:n { #4 * #4 } }
+ {#1} {#2} {#3} {#5} {#6} {#7} {#8}
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxiv:nnnnnnnn { f }
+\cs_new:Npn \@@_point_intersect_circles_auxv:nnnnnnnnn #1#2#3#4#5#6#7#8#9
+ {
+ \@@_point_intersect_circles_auxvi:fnnnnnnn
+ { \fp_eval:n { 0.5 * #1 * ( #2 + #3 * #3 - #6 * #6 ) } }
+ {#1} {#2} {#4} {#5} {#7} {#8} {#9}
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxv:nnnnnnnnn { ff }
+% \end{macrocode}
+% We now have all of the intermediate values we require, with one division
+% carried out up-front to avoid doing this expensive step twice:
+% \begin{enumerate}[label = \#\arabic*, font = \ttfamily]
+% \item $k$
+% \item $1/p$
+% \item $r^{2}$
+% \item $e$
+% \item $f$
+% \item $a$
+% \item $b$
+% \item $n$
+% \end{enumerate}
+% There are some final pre-calculations, $k/p$,
+% $\frac{\sqrt{r^{2} - k^{2}}}{p}$ and the usage of $n$, then we
+% can yield a result.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_intersect_circles_auxvi:nnnnnnnn #1#2#3#4#5#6#7#8
+ {
+ \@@_point_intersect_circles_auxvii:fffnnnn
+ { \fp_eval:n { #1 * #2 } }
+ { \int_if_odd:nTF {#8} { 1 } { -1 } }
+ { \fp_eval:n { sqrt ( #3 - #1 * #1 ) * #2 } }
+ {#4} {#5} {#6} {#7}
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxvi:nnnnnnnn { f }
+\cs_new:Npn \@@_point_intersect_circles_auxvii:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_to_dim:n
+ { #6 + #4 * #1 + #2 * #3 * #5 , #7 + #5 * #1 + -1 * #2 * #3 * #4 }
+ }
+\cs_generate_variant:Nn \@@_point_intersect_circles_auxvii:nnnnnnn { fff }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Interpolation on a line (vector) or arc}
+%
+% \begin{macro}[EXP]{\draw_point_interpolate_line:nnn}
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_line_aux:nnnnn,
+% \@@_point_interpolate_line_aux:fnnnn,
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_line_aux:nnnnnn,
+% \@@_point_interpolate_line_aux:fnnnnn,
+% }
+% Simple maths after expansion.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_interpolate_line:nnn #1#2#3
+ {
+ \@@_point_process:nnn
+ { \@@_point_interpolate_line_aux:fnnnn { \fp_eval:n {#1} } }
+ {#2} {#3}
+ }
+\cs_new:Npn \@@_point_interpolate_line_aux:nnnnn #1#2#3#4#5
+ {
+ \@@_point_interpolate_line_aux:fnnnnn { \fp_eval:n { 1 - #1 } }
+ {#1} {#2} {#3} {#4} {#5}
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_line_aux:nnnnn { f }
+\cs_new:Npn \@@_point_interpolate_line_aux:nnnnnn #1#2#3#4#5#6
+ { \@@_point_to_dim:n { #2 * #3 + #1 * #5 , #2 * #4 + #1 * #6 } }
+\cs_generate_variant:Nn \@@_point_interpolate_line_aux:nnnnnn { f }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_interpolate_distance:nnn}
+% \begin{macro}[EXP]{\@@_point_interpolate_distance:nnnnn}
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_distance_aux:nnnnnnn,
+% \@@_point_interpolate_distance_aux:nnnnnnn,
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_distance_aux:nnnnnn,
+% \@@_point_interpolate_distance_aux:fnnnnn,
+% }
+% Same idea but using the normalised length to obtain the scale factor.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_interpolate_distance:nnn #1#2#3
+ {
+ \@@_point_process:nnn
+ { \@@_point_interpolate_distance:nnnnn {#1} }
+ {#2} {#3}
+ }
+\cs_new:Npn \@@_point_interpolate_distance:nnnnn #1#2#3#4#5
+ {
+ \@@_point_interpolate_distance_aux:nnnnnnn
+ { \fp_eval:n { #4 - #2 } }
+ { \fp_eval:n { #5 - #3 } }
+ {#2} {#3} {#4} {#5} {#1}
+ }
+\cs_new:Npn \@@_point_interpolate_distance_aux:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_interpolate_distance_aux:fnnnn
+ { \fp_eval:n { (#7) / (sqrt ( #1 * #1 + #2 * #2 )) } }
+ {#3} {#4} {#5} {#6}
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_distance_aux:nnnnnnn { ff }
+\cs_new:Npn \@@_point_interpolate_distance_aux:nnnnn #1#2#3#4#5
+ { \@@_point_to_dim:n { #2 + #1 * #4 , #3 + #1 * #5 } }
+\cs_generate_variant:Nn \@@_point_interpolate_distance_aux:nnnnn { f }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_interpolate_arcaxes:nnnnnn}
+% \begin{macro}[EXP]{\@@_point_interpolate_arcaxes_auxi:nnnnnnnnn}
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_arcaxes_auxii:nnnnnnnnn,
+% \@@_point_interpolate_arcaxes_auxii:fnnnnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_arcaxes_auxiii:nnnnnnn,
+% \@@_point_interpolate_arcaxes_auxiii:fnnnnnn
+% }
+% \begin{macro}[EXP]
+% {
+% \@@_point_interpolate_arcaxes_auxiv:nnnnnnnn,
+% \@@_point_interpolate_arcaxes_auxiv:ffnnnnnn
+% }
+% Finding a point on an ellipse arc is relatively easy: find the correct
+% angle between the two given, use the sine and cosine of that angle,
+% apply to the axes. We just have to work a bit with the co-ordinate
+% expansion.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_interpolate_arcaxes:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nn
+ { \@@_point_interpolate_arcaxes_auxi:nnnnnnnnn {#1} {#5} {#6} }
+ {#4}
+ }
+ {#2} {#3}
+ }
+\cs_new:Npn \@@_point_interpolate_arcaxes_auxi:nnnnnnnnn #1#2#3#4#5#6#7#8#9
+ {
+ \@@_point_interpolate_arcaxes_auxii:fnnnnnnnn
+ { \fp_eval:n {#1} } {#2} {#3} {#6} {#7} {#8} {#9} {#4} {#5}
+ }
+% \end{macrocode}
+% At this stage, the three co-ordinate pairs are fully expanded but somewhat
+% re-ordered:
+% \begin{enumerate}[label = \#\arabic*, font = \ttfamily]
+% \item $p$
+% \item $\theta_{1}$
+% \item $\theta_{2}$
+% \item $x_{c}$
+% \item $y_{c}$
+% \item $x_{a1}$
+% \item $y_{a1}$
+% \item $x_{a2}$
+% \item $y_{a2}$
+% \end{enumerate}
+% We are now in a position to find the target angle, and from that
+% the sine and cosine required.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_interpolate_arcaxes_auxii:nnnnnnnnn #1#2#3#4#5#6#7#8#9
+ {
+ \@@_point_interpolate_arcaxes_auxiii:fnnnnnn
+ { \fp_eval:n { #1 * (#3) + ( 1 - #1 ) * (#2) } }
+ {#4} {#5} {#6} {#7} {#8} {#9}
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_arcaxes_auxii:nnnnnnnnn { f }
+\cs_new:Npn \@@_point_interpolate_arcaxes_auxiii:nnnnnnn #1#2#3#4#5#6#7
+ {
+ \@@_point_interpolate_arcaxes_auxiv:ffnnnnnn
+ { \fp_eval:n { cosd (#1) } }
+ { \fp_eval:n { sind (#1) } }
+ {#2} {#3} {#4} {#5} {#6} {#7}
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_arcaxes_auxiii:nnnnnnn { f }
+\cs_new:Npn \@@_point_interpolate_arcaxes_auxiv:nnnnnnnn #1#2#3#4#5#6#7#8
+ {
+ \@@_point_to_dim:n
+ { #3 + #1 * #5 + #2 * #7 , #4 + #1 * #6 + #2 * #8 }
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_arcaxes_auxiv:nnnnnnnn { ff }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_interpolate_curve:nnnnn}
+% \begin{macro}[EXP]{\draw_point_interpolate_curve_auxi:nnnnnnnnn}
+% \begin{macro}[EXP]
+% {
+% \draw_point_interpolate_curve_auxii:nnnnnnnnn,
+% \draw_point_interpolate_curve_auxii:fnnnnnnnn,
+% }
+% \begin{macro}[EXP]
+% {
+% \draw_point_interpolate_curve_auxiii:nnnnnn,
+% \draw_point_interpolate_curve_auxiii:fnnnnn,
+% }
+% \begin{macro}[EXP]{\draw_point_interpolate_curve_auxiv:nnnnnn}
+% \begin{macro}[EXP]
+% {
+% \draw_point_interpolate_curve_auxv:nnw,
+% \draw_point_interpolate_curve_auxv:ffw,
+% }
+% \begin{macro}[EXP]{\draw_point_interpolate_curve_auxvi:n}
+% \begin{macro}[EXP]{\draw_point_interpolate_curve_auxvii:nnnnnnnn}
+% \begin{macro}[EXP]
+% {
+% \draw_point_interpolate_curve_auxviii:nnnnnn,
+% \draw_point_interpolate_curve_auxviii:ffnnnn,
+% }
+% Here we start with a proportion of the curve ($p$) and four points
+% \begin{enumerate}
+% \item The initial point $(x_{1},y_{1})$
+% \item The first control point $(x_{2},y_{2})$
+% \item The second control point $(x_{3},y_{3})$
+% \item The final point $(x_{4},y_{4})$
+% \end{enumerate}
+% The first phase is to expand out all of these values.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_interpolate_curve:nnnnnn #1#2#3#4#5
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nnn
+ { \@@_point_interpolate_curve_auxi:nnnnnnnnn {#1} }
+ {#4} {#5}
+ }
+ {#2} {#3}
+ }
+\cs_new:Npn \@@_point_interpolate_curve_auxi:nnnnnnnnn #1#2#3#4#5#6#7#8#9
+ {
+ \@@_point_interpolate_curve_auxii:fnnnnnnnn
+ { \fp_eval:n {#1} }
+ {#6} {#7} {#8} {#9} {#2} {#3} {#4} {#5}
+ }
+% \end{macrocode}
+% At this stage, everything is fully expanded and back in the input order.
+% The approach to finding the required point is iterative. We carry out
+% three phases. In phase one, we need all of the input co-ordinates
+% \begin{align*}
+% x_{1}' &= (1 - p)x_{1} + px_{2} \\
+% y_{1}' &= (1 - p)y_{1} + py_{2} \\
+% x_{2}' &= (1 - p)x_{2} + px_{3} \\
+% y_{2}' &= (1 - p)y_{2} + py_{3} \\
+% x_{3}' &= (1 - p)x_{3} + px_{4} \\
+% y_{3}' &= (1 - p)y_{3} + py_{4}
+% \end{align*}
+% In the second stage, we can drop the final point
+% \begin{align*}
+% x_{1}'' &= (1 - p)x_{1}' + px_{2}' \\
+% y_{1}'' &= (1 - p)y_{1}' + py_{2}' \\
+% x_{2}'' &= (1 - p)x_{2}' + px_{3}' \\
+% y_{2}'' &= (1 - p)y_{2}' + py_{3}'
+% \end{align*}
+% and for the final stage only need one set of calculations
+% \begin{align*}
+% P_{x} &= (1 - p)x_{1}'' + px_{2}'' \\
+% P_{y} &= (1 - p)y_{1}'' + py_{2}''
+% \end{align*}
+% Of course, this does mean a lot of calculations and expansion!
+% \begin{macrocode}
+\cs_new:Npn \@@_point_interpolate_curve_auxii:nnnnnnnnn
+ #1#2#3#4#5#6#7#8#9
+ {
+ \@@_point_interpolate_curve_auxiii:fnnnnn
+ { \fp_eval:n { 1 - #1 } }
+ {#1}
+ { {#2} {#3} } { {#4} {#5} } { {#6} {#7} } { {#8} {#9} }
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_curve_auxii:nnnnnnnnn { f }
+% \begin{macrocode}
+% We need to do the first cycle, but haven't got enough arguments to keep
+% everything in play at once. So her ewe use a but of argument re-ordering
+% and a single auxiliary to get the job done.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_interpolate_curve_auxiii:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_point_interpolate_curve_auxiv:nnnnnn {#1} {#2} #3 #4
+ \@@_point_interpolate_curve_auxiv:nnnnnn {#1} {#2} #4 #5
+ \@@_point_interpolate_curve_auxiv:nnnnnn {#1} {#2} #5 #6
+ \prg_do_nothing:
+ \@@_point_interpolate_curve_auxvi:n { {#1} {#2} }
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_curve_auxiii:nnnnnn { f }
+\cs_new:Npn \@@_point_interpolate_curve_auxiv:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_point_interpolate_curve_auxv:ffw
+ { \fp_eval:n { #1 * #3 + #2 * #5 } }
+ { \fp_eval:n { #1 * #4 + #2 * #6 } }
+ }
+\cs_new:Npn \@@_point_interpolate_curve_auxv:nnw
+ #1#2#3 \prg_do_nothing: #4#5
+ {
+ #3
+ \prg_do_nothing:
+ #4 { #5 {#1} {#2} }
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_curve_auxv:nnw { ff }
+% \begin{macrocode}
+% Get the arguments back into the right places and to the second and
+% third cycles directly.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_interpolate_curve_auxvi:n #1
+ { \@@_point_interpolate_curve_auxvii:nnnnnnnn #1 }
+\cs_new:Npn \@@_point_interpolate_curve_auxvii:nnnnnnnn #1#2#3#4#5#6#7#8
+ {
+ \@@_point_interpolate_curve_auxviii:ffffnn
+ { \fp_eval:n { #1 * #5 + #2 * #3 } }
+ { \fp_eval:n { #1 * #6 + #2 * #4 } }
+ { \fp_eval:n { #1 * #7 + #2 * #5 } }
+ { \fp_eval:n { #1 * #8 + #2 * #6 } }
+ {#1} {#2}
+ }
+\cs_new:Npn \@@_point_interpolate_curve_auxviii:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_point_to_dim:n
+ { #5 * #3 + #6 * #1 , #5 * #4 + #6 * #2 }
+ }
+\cs_generate_variant:Nn \@@_point_interpolate_curve_auxviii:nnnnnn { ffff }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Vector support}
+%
+% As well as co-ordinates relative to the drawing
+%
+% \begin{variable}
+% {
+% \l_@@_xvec_x_dim,
+% \l_@@_xvec_y_dim,
+% \l_@@_yvec_x_dim,
+% \l_@@_yvec_y_dim,
+% \l_@@_zvec_x_dim,
+% \l_@@_zvec_y_dim
+% }
+% Base vectors to map to the underlying two-dimensional drawing space.
+% \begin{macrocode}
+\dim_new:N \l_@@_xvec_x_dim
+\dim_new:N \l_@@_xvec_y_dim
+\dim_new:N \l_@@_yvec_x_dim
+\dim_new:N \l_@@_yvec_y_dim
+\dim_new:N \l_@@_zvec_x_dim
+\dim_new:N \l_@@_zvec_y_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_xvec:n, \draw_yvec:n, \draw_zvec:n}
+% \begin{macro}{\@@_vec:nn}
+% \begin{macro}{\@@_vec:nnn}
+% Calculate the underlying position and store it.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_xvec:n #1
+ { \@@_vec:nn { x } {#1} }
+\cs_new_protected:Npn \draw_yvec:n #1
+ { \@@_vec:nn { y } {#1} }
+\cs_new_protected:Npn \draw_zvec:n #1
+ { \@@_vec:nn { z } {#1} }
+\cs_new_protected:Npn \@@_vec:nn #1#2
+ {
+ \@@_point_process:nn { \@@_vec:nnn {#1} } {#2}
+ }
+\cs_new_protected:Npn \@@_vec:nnn #1#2#3
+ {
+ \dim_set:cn { l_@@_ #1 vec_x_dim } {#2}
+ \dim_set:cn { l_@@_ #1 vec_y_dim } {#3}
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% Initialise the vectors.
+% \begin{macrocode}
+\draw_xvec:n { 1cm , 0cm }
+\draw_yvec:n { 0cm , 1cm }
+\draw_zvec:n { -0.385cm , -0.385cm }
+% \end{macrocode}
+%
+% \begin{macro}[EXP]{\draw_point_vec:nn}
+% \begin{macro}[EXP]{\@@_point_vec:nn, \@@_point_vec:ff}
+% \begin{macro}[EXP]{\draw_point_vec:nnn}
+% \begin{macro}[EXP]{\@@_point_vec:nnn, \@@_point_vec:fff}
+% Force a single evaluation of each factor, then use these to work out the
+% underlying point.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_vec:nn #1#2
+ { \@@_point_vec:ff { \fp_eval:n {#1} } { \fp_eval:n {#2} } }
+\cs_new:Npn \@@_point_vec:nn #1#2
+ {
+ \@@_point_to_dim:n
+ {
+ #1 * \l_@@_xvec_x_dim + #2 * \l_@@_yvec_x_dim ,
+ #1 * \l_@@_xvec_y_dim + #2 * \l_@@_yvec_y_dim
+ }
+ }
+\cs_generate_variant:Nn \@@_point_vec:nn { ff }
+\cs_new:Npn \draw_point_vec:nnn #1#2#3
+ {
+ \@@_point_vec:fff
+ { \fp_eval:n {#1} } { \fp_eval:n {#2} } { \fp_eval:n {#3} }
+ }
+\cs_new:Npn \@@_point_vec:nnn #1#2#3
+ {
+ \@@_point_to_dim:n
+ {
+ #1 * \l_@@_xvec_x_dim
+ + #2 * \l_@@_yvec_x_dim
+ + #3 * \l_@@_zvec_x_dim
+ ,
+ #1 * \l_@@_xvec_y_dim
+ + #2 * \l_@@_yvec_y_dim
+ + #3 * \l_@@_zvec_y_dim
+ }
+ }
+\cs_generate_variant:Nn \@@_point_vec:nnn { fff }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\draw_point_vec_polar:nn}
+% \begin{macro}[EXP]{\draw_point_vec_polar:nnn}
+% \begin{macro}[EXP]{\@@_point_vec_polar:nnn, \@@_point_vec_polar:fnn}
+% Much the same as the core polar approach.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_vec_polar:nn #1#2
+ { \draw_point_vec_polar:nnn {#1} {#2} {#2} }
+\cs_new:Npn \draw_point_vec_polar:nnn #1#2#3
+ { \@@_draw_vec_polar:fnn { \fp_eval:n {#1} } {#2} {#3} }
+\cs_new:Npn \@@_draw_vec_polar:nnn #1#2#3
+ {
+ \@@_point_to_dim:n
+ {
+ cosd(#1) * (#2) * \l_@@_xvec_x_dim ,
+ sind(#1) * (#3) * \l_@@_yvec_y_dim
+ }
+ }
+\cs_generate_variant:Nn \@@_draw_vec_polar:nnn { f }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Transformations}
+%
+% \begin{macro}[EXP]{\draw_point_transform:n}
+% \begin{macro}[EXP]{\@@_point_transform:nn}
+% Applies a transformation matrix to a point: see \texttt{l3draw-transforms}
+% for the business end. Where possible, we avoid the relatively expensive
+% multiplication step.
+% \begin{macrocode}
+\cs_new:Npn \draw_point_transform:n #1
+ {
+ \@@_point_process:nn
+ { \@@_point_transform:nn } {#1}
+ }
+\cs_new:Npn \@@_point_transform:nn #1#2
+ {
+ \bool_if:NTF \l_@@_transformcm_active_bool
+ {
+ \@@_point_to_dim:n
+ {
+ (
+ \l_@@_transformcm_aa_fp * #1
+ + \l_@@_transformcm_ba_fp * #2
+ + \l_@@_transformcm_xshift_dim
+ )
+ ,
+ (
+ \l_@@_transformcm_ab_fp * #1
+ + \l_@@_transformcm_bb_fp * #2
+ + \l_@@_transformcm_yshift_dim
+ )
+ }
+ }
+ {
+ \@@_point_to_dim:n
+ {
+ (#1, #2)
+ + ( \l_@@_transformcm_xshift_dim ,
+ \l_@@_transformcm_yshift_dim )
+ }
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\@@_point_transform_noshift:n}
+% \begin{macro}[EXP]{\@@_point_transform_noshift:nn}
+% A version with no shift: used for internal purposes.
+% \begin{macrocode}
+\cs_new:Npn \@@_point_transform_noshift:n #1
+ {
+ \@@_point_process:nn
+ { \@@_point_transform_noshift:nn } {#1}
+ }
+\cs_new:Npn \@@_point_transform_noshift:nn #1#2
+ {
+ \bool_if:NTF \l_@@_transformcm_active_bool
+ {
+ \@@_point_to_dim:n
+ {
+ (
+ \l_@@_transformcm_aa_fp * #1
+ + \l_@@_transformcm_ba_fp * #2
+ )
+ ,
+ (
+ \l_@@_transformcm_ab_fp * #1
+ + \l_@@_transformcm_bb_fp * #2
+ )
+ }
+ }
+ { \@@_point_to_dim:n { (#1, #2) } }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-scopes.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-scopes.dtx
new file mode 100644
index 00000000000..b87a6a152b7
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-scopes.dtx
@@ -0,0 +1,141 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-scopes.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw} package\\ Drawing scopes^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-scopes} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% \subsection{Drawing environment}
+%
+% \begin{variable}
+% {\g_@@_xmax_dim, \g_@@_xmin_dim, \g_@@_ymax_dim, \g_@@_ymin_dim}
+% Used to track the overall (official) size of the image created: may
+% not actually be the natural size of the content.
+% \begin{macrocode}
+\dim_new:N \g_@@_xmax_dim
+\dim_new:N \g_@@_xmin_dim
+\dim_new:N \g_@@_ymax_dim
+\dim_new:N \g_@@_ymin_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\l_@@_update_bb_bool}
+% Flag to indicate that a path (or similar) should update the bounding box
+% of the drawing.
+% \begin{macrocode}
+\bool_new:N \l_@@_update_bb_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\l_@@_main_box}
+% Box for setting the drawing.
+% \begin{macrocode}
+\box_new:N \l_@@_main_box
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_begin:, \draw_end:}
+% Drawings are created by setting them into a box, then adjusting the box
+% before inserting into the surroundings. At present the content is simply
+% collected then dumped: work will be required to manipulate the size as
+% this data becomes more defined. It may be that a coffin construct is
+% better here in the longer term: that may become clearer as the code is
+% completed. Another obvious question is whether/where vertical mode should
+% be ended (\emph{i.e.}~should this behave like a raw |\vbox| or like
+% a coffin). In contrast to \pkg{pgf}, we use a vertical box here: material
+% between explicit instructions should not be present anyway. (Consider
+% adding an |\everypar| hook as done for the \LaTeXe{} preamble.)
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_begin:
+ {
+ \vbox_set:Nw \l_@@_main_box
+ \driver_draw_begin:
+ \dim_gset:Nn \g_@@_xmax_dim { -\c_max_dim }
+ \dim_gset:Nn \g_@@_xmin_dim { \c_max_dim }
+ \dim_gset:Nn \g_@@_ymax_dim { -\c_max_dim }
+ \dim_gset:Nn \g_@@_ymin_dim { \c_max_dim }
+ \bool_set_true:N \l_@@_update_bb_bool
+ \draw_transform_reset:
+ \draw_linewidth:n { \l_draw_default_linewidth_dim }
+ }
+\cs_new_protected:Npn \draw_end:
+ {
+ \driver_draw_end:
+ \vbox_set_end:
+ \hbox_set:Nn \l_@@_main_box
+ {
+ \skip_horizontal:n { -\g_@@_xmin_dim }
+ \box_move_down:nn { \g_@@_ymin_dim }
+ { \box_use_drop:N \l_@@_main_box }
+ }
+ \box_set_ht:Nn \l_@@_main_box
+ { \g_@@_ymax_dim - \g_@@_ymin_dim }
+ \box_set_dp:Nn \l_@@_main_box { 0pt }
+ \box_set_wd:Nn \l_@@_main_box
+ { \g_@@_xmax_dim - \g_@@_xmin_dim }
+ \mode_leave_vertical:
+ \box_use_drop:N \l_@@_main_box
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-softpath.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-softpath.dtx
new file mode 100644
index 00000000000..f10d7928082
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-softpath.dtx
@@ -0,0 +1,323 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-softpath.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw-softpath} package\\ Soft paths^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-softpath} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% There are two linked aims in the code here. The most significant is to
+% provide a way to modify paths, for example to shorten the ends or round
+% the corners. This means that the path cannot be written piecemeal as
+% specials, but rather needs to be held in macros. The second aspect that
+% follows from this is performance: simply adding to a single macro a piece
+% at a time will have poor performance as the list gets long. Paths need to
+% be global (as specials are), so we cannot use \pkg{l3tl-build} or a similar
+% approach. Instead, we use the same idea as \pkg{pgf}: use a series of buffer
+% macros such that in most cases we don't add tokens to the main list. This
+% will get slow only for \emph{enormous} paths.
+%
+% Each marker (operation) token takes two arguments, which makes processing
+% more straight-forward. As such, some operations have dummy arguments, whilst
+% others have to be split over several tokens. As the code here is at a low
+% level, all dimension arguments are assumed to be explicit and fully-expanded.
+%
+% \begin{variable}
+% {
+% \g_@@_softpath_main_tl ,
+% \g_@@_softpath_buffer_a_tl ,
+% \g_@@_softpath_buffer_b_tl
+% }
+% The soft path itself.
+% \begin{macrocode}
+\tl_new:N \g_@@_softpath_main_tl
+\tl_new:N \g_@@_softpath_buffer_a_tl
+\tl_new:N \g_@@_softpath_buffer_b_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}
+% {
+% \g_@@_softpath_buffer_a_int ,
+% \g_@@_softpath_buffer_b_int
+% }
+% Tracking data.
+% \begin{macrocode}
+\int_new:N \g_@@_softpath_buffer_a_int
+\int_new:N \g_@@_softpath_buffer_b_int
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_softpath_add:n, \@@_softpath_add:x}
+% \begin{macro}{\@@_softpath_concat:n}
+% \begin{macro}{\@@_softpath_reset_buffers:}
+% The softpath itself is quite simple. We use three token lists to hold the
+% data: two buffers of limited length, and the main list of arbitrary size.
+% Most of the time this will mean that we don't add to the full list, so
+% performance will be acceptable.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_softpath_add:n #1
+ {
+ \int_compare:nNnTF \g_@@_softpath_buffer_a_int < { 40 }
+ {
+ \int_gincr:N \g_@@_softpath_buffer_a_int
+ \tl_gput_right:Nn \g_@@_softpath_buffer_a_tl {#1}
+ }
+ {
+ \int_compare:nNnTF \g_@@_softpath_buffer_b_int < { 40 }
+ {
+ \int_gincr:N \g_@@_softpath_buffer_b_int
+ \tl_gset:Nx \g_@@_softpath_buffer_b_tl
+ {
+ \exp_not:V \g_@@_softpath_buffer_b_tl
+ \exp_not:V \g_@@_softpath_buffer_a_tl
+ \exp_not:n {#1}
+ }
+ \int_gzero:N \g_@@_softpath_buffer_a_int
+ \tl_gclear:N \g_@@_softpath_buffer_a_tl
+ }
+ { \@@_softpath_concat:n {#1} }
+ }
+ }
+\cs_generate_variant:Nn \@@_softpath_add:n { x }
+\cs_new_protected:Npn \@@_softpath_concat:n #1
+ {
+ \tl_gset:Nx \g_@@_softpath_main_tl
+ {
+ \exp_not:V \g_@@_softpath_main_tl
+ \exp_not:V \g_@@_softpath_buffer_b_tl
+ \exp_not:V \g_@@_softpath_buffer_a_tl
+ \exp_not:n {#1}
+ }
+ \@@_softpath_reset_buffers:
+ }
+\cs_new_protected:Npn \@@_softpath_reset_buffers:
+ {
+ \int_gzero:N \g_@@_softpath_buffer_a_int
+ \tl_gclear:N \g_@@_softpath_buffer_a_tl
+ \int_gzero:N \g_@@_softpath_buffer_b_int
+ \tl_gclear:N \g_@@_softpath_buffer_b_tl
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\@@_softpath_get:N, \@@_softpath_set_eq:N}
+% Save and restore functions.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_softpath_get:N #1
+ {
+ \@@_softpath_concat:n { }
+ \tl_set_eq:NN #1 \g_@@_softpath_main_tl
+ }
+\cs_new_protected:Npn \@@_softpath_set_eq:N #1
+ {
+ \tl_gset_eq:NN \g_@@_softpath_main_tl #1
+ \@@_softpath_reset_buffers:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}
+% {\@@_softpath_use:, \@@_softpath_clear:, \@@_softpath_use_clear:}
+% Using and clearing is trivial.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_softpath_use:
+ {
+ \g_@@_softpath_main_tl
+ \g_@@_softpath_buffer_b_tl
+ \g_@@_softpath_buffer_a_tl
+ }
+\cs_new_protected:Npn \@@_softpath_clear:
+ {
+ \tl_gclear:N \g_@@_softpath_main_tl
+ \tl_gclear:N \g_@@_softpath_buffer_a_tl
+ \tl_gclear:N \g_@@_softpath_buffer_b_tl
+ }
+\cs_new_protected:Npn \@@_softpath_use_clear:
+ {
+ \@@_softpath_use:
+ \@@_softpath_clear:
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{variable}{\g_@@_softpath_lastx_dim, \g_@@_softpath_lasty_dim}
+% For tracking the end of the path (to close it).
+% \begin{macrocode}
+\dim_new:N \g_@@_softpath_lastx_dim
+\dim_new:N \g_@@_softpath_lasty_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\g_@@_softpath_move_bool}
+% Track if moving a point should update the close position.
+% \begin{macrocode}
+\bool_new:N \g_@@_softpath_move_bool
+\bool_gset_true:N \g_@@_softpath_move_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@_softpath_curveto:nnnnnn}
+% \begin{macro}
+% {
+% \@@_softpath_lineto:nn,
+% \@@_softpath_moveto:nn
+% }
+% \begin{macro}{\@@_softpath_rectangle:nnnn}
+% \begin{macro}{\@@_softpath_roundpoint:nn, \@@_softpath_roundpoint:VV}
+% The various parts of a path expressed as the appropriate soft path
+% functions.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_softpath_closepath:
+ {
+ \@@_softpath_add:x
+ {
+ \@@_softpath_close_op:nn
+ { \dim_use:N \g_@@_softpath_lastx_dim }
+ { \dim_use:N \g_@@_softpath_lasty_dim }
+ }
+ }
+\cs_new_protected:Npn \@@_softpath_curveto:nnnnnn #1#2#3#4#5#6
+ {
+ \@@_softpath_add:n
+ {
+ \@@_softpath_curveto_opi:nn {#1} {#2}
+ \@@_softpath_curveto_opii:nn {#3} {#4}
+ \@@_softpath_curveto_opiii:nn {#5} {#6}
+ }
+ }
+\cs_new_protected:Npn \@@_softpath_lineto:nn #1#2
+ {
+ \@@_softpath_add:n
+ { \@@_softpath_lineto_op:nn {#1} {#2} }
+ }
+\cs_new_protected:Npn \@@_softpath_moveto:nn #1#2
+ {
+ \@@_softpath_add:n
+ { \@@_softpath_moveto_op:nn {#1} {#2} }
+ \bool_if:NT \g_@@_softpath_move_bool
+ {
+ \dim_gset:Nn \g_@@_softpath_lastx_dim {#1}
+ \dim_gset:Nn \g_@@_softpath_lasty_dim {#2}
+ }
+ }
+\cs_new_protected:Npn \@@_softpath_rectangle:nnnn #1#2#3#4
+ {
+ \@@_softpath_add:n
+ {
+ \@@_softpath_rectangle_opi:nn {#1} {#2}
+ \@@_softpath_rectangle_opii:nn {#3} {#4}
+ }
+ }
+\cs_new_protected:Npn \@@_softpath_roundpoint:nn #1#2
+ {
+ \@@_softpath_add:n
+ { \@@_softpath_roundpoint_op:nn {#1} {#2} }
+ }
+\cs_generate_variant:Nn \@@_softpath_roundpoint:nn { VV }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}
+% {
+% \@@_softpath_close_op:nn ,
+% \@@_softpath_curveto_opi:nn ,
+% \@@_softpath_curveto_opii:nn ,
+% \@@_softpath_curveto_opiii:nn ,
+% \@@_softpath_lineto_op:nn ,
+% \@@_softpath_moveto_op:nn ,
+% \@@_softpath_roundpoint_op:nn ,
+% \@@_softpath_rectangle_opi:nn ,
+% \@@_softpath_rectangle_opii:nn
+% }
+% \begin{macro}{\@@_softpath_curveto_opi:nnNnnNnn}
+% \begin{macro}{\@@_softpath_rectangle_opi:nnNnn}
+% The markers for operations: all the top-level ones take two arguments.
+% \begin{macrocode}
+\cs_new_protected:Npn \@@_softpath_close_op:nn #1#2
+ { \driver_draw_closepath: }
+\cs_new_protected:Npn \@@_softpath_curveto_opi:nn #1#2
+ { \@@_softpath_curveto_opi:nnNnnNnn {#1} {#2} }
+\cs_new_protected:Npn \@@_softpath_curveto_opi:nnNnnNnn #1#2#3#4#5#6#7#8
+ { \driver_draw_curveto:nnnnnn {#1} {#2} {#4} {#5} {#7} {#8} }
+\cs_new_protected:Npn \@@_softpath_curveto_opii:nn #1#2 { }
+\cs_new_protected:Npn \@@_softpath_curveto_opiii:nn #1#2 { }
+\cs_new_protected:Npn \@@_softpath_lineto_op:nn #1#2
+ { \driver_draw_lineto:nn {#1} {#2} }
+\cs_new_protected:Npn \@@_softpath_moveto_op:nn #1#2
+ { \driver_draw_moveto:nn {#1} {#2} }
+\cs_new_protected:Npn \@@_softpath_roundpoint_op:nn #1#2 { }
+\cs_new_protected:Npn \@@_softpath_rectangle_opi:nn #1#2
+ { \@@_softpath_rectangle_opi:nnNnn {#1} {#2} }
+\cs_new_protected:Npn \@@_softpath_rectangle_opi:nnNnn #1#2#3#4#5
+ { \driver_draw_rectangle:nnnn {#1} {#2} {#4} {#5} }
+ \cs_new_protected:Npn \@@_softpath_rectangle_opii:nn #1#2 { }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-state.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-state.dtx
new file mode 100644
index 00000000000..5e6eb424d05
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-state.dtx
@@ -0,0 +1,193 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-state.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw-state} package\\ Drawing graphics state^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-state} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% \begin{variable}{\g_@@_linewidth_dim, \g_@@_inner_linewidth_dim}
+% Linewidth for strokes: global as the scope for this relies on the graphics
+% state. The inner line width is used for places where two lines are used.
+% \begin{macrocode}
+\dim_new:N \g_@@_linewidth_dim
+\dim_new:N \g_@@_inner_linewidth_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\l_draw_default_linewidth_dim}
+% A default: this is used at the start of every drawing.
+% \begin{macrocode}
+\dim_new:N \l_draw_default_linewidth_dim
+\dim_set:Nn \l_draw_default_linewidth_dim { 0.4pt }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_linewidth:n, \draw_inner_linewidth:n}
+% Set the linewidth: we need a wrapper as this has to pass to the driver
+% layer. The inner version is handled at the macro layer but is given a
+% consistent interface here.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_linewidth:n #1
+ {
+ \dim_gset:Nn \g_@@_linewidth_dim { \fp_to_dim:n {#1} }
+ \driver_draw_linewidth:n \g_@@_linewidth_dim
+ }
+\cs_new_protected:Npn \draw_inner_linewidth:n #1
+ { \dim_gset:Nn \g_@@_inner_linewidth_dim { \fp_to_dim:n {#1} } }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\draw_miterlimit:n}
+% Pass through to the driver layer.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_miterlimit:n #1
+ { \driver_draw_miterlimit:n { \fp_to_dim:n {#1} } }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}
+% {
+% \draw_cap_butt:, \draw_cap_rectangle:, \draw_cap_round:,
+% \draw_evenodd_rule:, \draw_nonzero_rule:,
+% \draw_join_bevel:, \draw_join_miter:, \draw_join_round:
+% }
+% All straight wrappers.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_cap_butt: { \driver_draw_cap_butt: }
+\cs_new_protected:Npn \draw_cap_rectangle: { \driver_draw_cap_rectangle: }
+\cs_new_protected:Npn \draw_cap_round: { \driver_draw_cap_round: }
+\cs_new_protected:Npn \draw_evenodd_rule: { \driver_draw_evenodd_rule: }
+\cs_new_protected:Npn \draw_nonzero_rule: { \driver_draw_nonzero_rule: }
+\cs_new_protected:Npn \draw_join_bevel: { \driver_draw_join_bevel: }
+\cs_new_protected:Npn \draw_join_miter: { \driver_draw_join_miter: }
+\cs_new_protected:Npn \draw_join_round: { \driver_draw_join_round: }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{variable}{\l_@@_color_tmp_tl}
+% Scratch space.
+% \begin{macrocode}
+\tl_new:N \l_@@_color_tmp_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\g_@@_fill_color_tl, \g_@@_stroke_color_tl}
+% For tracking.
+% \begin{macrocode}
+\tl_new:N \g_@@_fill_color_tl
+\tl_new:N \g_@@_stroke_color_tl
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_color:n, \draw_color_fill:n, \draw_color_stroke:n}
+% \begin{macro}{\@@_color:nn}
+% \begin{macro}{\@@_color_aux:nn, \@@_color_aux:Vn}
+% \begin{macro}{\@@_color:nw}
+% \begin{macro}
+% {
+% \@@_select_cmyk:nw, \@@_select_gray:nw,
+% \@@_select_rgb:nw, \@@_split_select:nw
+% }
+% Much the same as for core color support but calling the relevant
+% driver-level function.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_color:n #1
+ { \@@_color:nn { } {#1} }
+\cs_new_protected:Npn \draw_color_fill:n #1
+ { \@@_color:nn { fill } {#1} }
+\cs_new_protected:Npn \draw_color_stroke:n #1
+ { \@@_color:nn { stroke } {#1} }
+\cs_new_protected:Npn \@@_color:nn #1#2
+ {
+ \color_parse:nN {#2} \l_@@_color_tmp_tl
+ \tl_if_blank:nTF {#1}
+ {
+ \tl_gset_eq:NN \g_@@_fill_color_tl \l_@@_color_tmp_tl
+ \tl_gset_eq:NN \g_@@_stroke_color_tl \l_@@_color_tmp_tl
+ \@@_color_aux:Vn \l_@@_color_tmp_tl { color }
+ }
+ {
+ \tl_gset_eq:cN { g_@@_ #1 _color_tl } \l_@@_color_tmp_tl
+ \@@_color_aux:Vn \l_@@_color_tmp_tl { #1 }
+ }
+ }
+\cs_new_protected:Npn \@@_color_aux:nn #1#2
+ { \@@_color:nw {#2} #1 \q_stop }
+\cs_generate_variant:Nn \@@_color_aux:nn { V }
+\cs_new_protected:Npn \@@_color:nw #1#2 ~ #3 \q_stop
+ { \use:c { @@_color_ #2 :nw } {#1} #3 \q_stop }
+\cs_new_protected:Npn \@@_color_cmyk:nw #1#2 ~ #3 ~ #4 ~ #5 \q_stop
+ { \use:c { driver_draw_ #1 _cmyk:nnnn } {#2} {#3} {#4} {#5} }
+\cs_new_protected:Npn \@@_color_gray:nw #1#2 \q_stop
+ { \use:c { driver_draw_ #1 _gray:n } {#2} }
+\cs_new_protected:Npn \@@_color_rgb:nw #1#2 ~ #3 ~ #4 \q_stop
+ { \use:c { driver_draw_ #1 _rgb:nnn } {#2} {#3} {#4} }
+\cs_new_protected:Npn \@@_color_spot:nw #1#2 ~ #3 \q_stop
+ { \use:c { driver_draw_ #1 _spot:nn } {#2} {#3} }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-transforms.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-transforms.dtx
new file mode 100644
index 00000000000..4f325f01092
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw-transforms.dtx
@@ -0,0 +1,286 @@
+% \iffalse meta-comment
+%
+%% File: l3draw-transforms.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\RequirePackage{expl3}
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw-transforms} package\\ Transformations^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw-transforms} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% \begin{variable}{\l_@@_transformcm_active_bool}
+% An internal flag to avoid redundant calculations.
+% \begin{macrocode}
+\bool_new:N \l_@@_transformcm_active_bool
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}
+% {
+% \l_@@_transformcm_aa_fp, \l_@@_transformcm_ab_fp,
+% \l_@@_transformcm_ba_fp, \l_@@_transformcm_aa_fp,
+% \l_@@_transformcm_xshift_dim,
+% \l_@@_transformcm_yshift_dim
+% }
+% The active matrix itself.
+% \begin{macrocode}
+\fp_new:N \l_@@_transformcm_aa_fp
+\fp_new:N \l_@@_transformcm_ab_fp
+\fp_new:N \l_@@_transformcm_ba_fp
+\fp_new:N \l_@@_transformcm_bb_fp
+\dim_new:N \l_@@_transformcm_xshift_dim
+\dim_new:N \l_@@_transformcm_yshift_dim
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\draw_transform_reset:}
+% Fast resetting.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_transform_reset:
+ {
+ \fp_set:Nn \l_@@_transformcm_aa_fp { 1}
+ \fp_zero:N \l_@@_transformcm_ab_fp
+ \fp_zero:N \l_@@_transformcm_ba_fp
+ \fp_set:Nn \l_@@_transformcm_bb_fp { 1 }
+ \dim_zero:N \l_@@_transformcm_xshift_dim
+ \dim_zero:N \l_@@_transformcm_yshift_dim
+ }
+\draw_transform_reset:
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\draw_transform:nnnnn}
+% \begin{macro}{\@@_transform:nnnnnnn}
+% Setting the transform matrix is straight-forward, with just a bit
+% of expansion to sort out. With the mechanism active, the identity
+% matrix is set.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_transform:nnnnn #1#2#3#4#5
+ {
+ \@@_point_process:nn
+ { \@@_transform:nnnnnnn {#1} {#2} {#3} {#4} }
+ {#5}
+ }
+\cs_new_protected:Npn \@@_transform:nnnnnnn #1#2#3#4#5#6
+ {
+ \fp_set:Nn \l_@@_transformcm_aa_fp {#1}
+ \fp_set:Nn \l_@@_transformcm_ab_fp {#2}
+ \fp_set:Nn \l_@@_transformcm_ba_fp {#3}
+ \fp_set:Nn \l_@@_transformcm_bb_fp {#4}
+ \dim_set:Nn \l_@@_transformcm_xshift_dim {#5}
+ \dim_set:Nn \l_@@_transformcm_yshift_dim {#6}
+ \bool_lazy_all:nTF
+ {
+ { \fp_compare_p:nNn \l_@@_transformcm_aa_fp = \c_one_fp }
+ { \fp_compare_p:nNn \l_@@_transformcm_ab_fp = \c_zero_fp }
+ { \fp_compare_p:nNn \l_@@_transformcm_ba_fp = \c_zero_fp }
+ { \fp_compare_p:nNn \l_@@_transformcm_bb_fp = \c_one_fp }
+ }
+ { \bool_set_false:N \l_@@_transformcm_active_bool }
+ { \bool_set_true:N \l_@@_transformcm_active_bool }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_transform_concat:nnnnn}
+% \begin{macro}{\@@_transform_concat:nnnnnn}
+% \begin{macro}{\@@_transform_concat_aux:nnnnnn}
+% Much the same story for adding to an existing matrix. The part that is more
+% complex is the calculations required: everything gets passed back to
+% \cs{@@_transform_set:nnnnnn}, with pre-expansion just in case there are
+% \emph{e.g}~random values. The final step is \texttt{x}-type expanded as
+% otherwise later values affect earlier ones.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_transform_concat:nnnnn #1#2#3#4#5
+ {
+ \@@_point_process:nn
+ { \@@_transform_concat:nnnnnn {#1} {#2} {#3} {#4} }
+ {#5}
+ }
+\cs_new_protected:Npn \@@_transform_concat:nnnnnn #1#2#3#4#5#6
+ {
+ \use:x
+ {
+ \@@_transform_concat_aux:nnnnnn
+ { \fp_eval:n {#1} }
+ { \fp_eval:n {#2} }
+ { \fp_eval:n {#3} }
+ { \fp_eval:n {#4} }
+ {#5}
+ {#6}
+ }
+ }
+\cs_new_protected:Npn \@@_transform_concat_aux:nnnnnn #1#2#3#4#5#6
+ {
+ \use:x
+ {
+ \@@_transform:nnnnnnn
+ { #1 * \l_@@_transformcm_aa_fp + #2 * \l_@@_transformcm_ba_fp }
+ { #1 * \l_@@_transformcm_ab_fp + #2 * \l_@@_transformcm_bb_fp }
+ { #3 * \l_@@_transformcm_aa_fp + #4 * \l_@@_transformcm_ba_fp }
+ { #3 * \l_@@_transformcm_ab_fp + #4 * \l_@@_transformcm_bb_fp }
+ {
+ \fp_to_dim:n
+ {
+ \l_@@_transformcm_xshift_dim
+ + \l_@@_transformcm_aa_fp * #5
+ + \l_@@_transformcm_ba_fp * #6
+ }
+ }
+ {
+ \fp_to_dim:n
+ {
+ \l_@@_transformcm_yshift_dim
+ + \l_@@_transformcm_ab_fp * #5
+ + \l_@@_transformcm_bb_fp * #6
+ }
+ }
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_transform_invert:}
+% \begin{macro}{\@@_transform_invert:n, \@@_transform_invert:f}
+% Standard mathematics: calculate the inverse matrix and use that, then
+% undo the shifts.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_transform_invert:
+ {
+ \bool_if:NT \l_@@_transformcm_active_bool
+ {
+ \@@_transform_invert:f
+ {
+ \fp_eval:n
+ {
+ 1 /
+ (
+ \l_@@_transformcm_aa_fp * \l_@@_transformcm_bb_fp
+ - \l_@@_transformcm_ab_fp * \l_@@_transformcm_ba_fp
+ )
+ }
+ }
+ }
+ \dim_set:Nn \l_@@_transformcm_xshift_dim
+ {
+ \fp_to_dim:n
+ {
+ -\l_@@_transformcm_xshift_dim * \l_@@_transformcm_aa_fp
+ -\l_@@_transformcm_yshift_dim * \l_@@_transformcm_ba_fp
+ }
+ }
+ \dim_set:Nn \l_@@_transformcm_yshift_dim
+ {
+ \fp_to_dim:n
+ {
+ -\l_@@_transformcm_xshift_dim * \l_@@_transformcm_ab_fp
+ -\l_@@_transformcm_yshift_dim * \l_@@_transformcm_bb_fp
+ }
+ }
+ }
+\cs_new_protected:Npn \@@_transform_invert:n #1
+ {
+ \fp_set:Nn \l_@@_transformcm_aa_fp
+ { \l_@@_transformcm_bb_fp * #1 }
+ \fp_set:Nn \l_@@_transformcm_ab_fp
+ { -\l_@@_transformcm_ab_fp * #1 }
+ \fp_set:Nn \l_@@_transformcm_ba_fp
+ { -\l_@@_transformcm_ba_fp * #1 }
+ \fp_set:Nn \l_@@_transformcm_bb_fp
+ { \l_@@_transformcm_aa_fp * #1 }
+ }
+\cs_generate_variant:Nn \@@_transform_invert:n { f }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\draw_transform_triangle:nnn}
+% Simple maths to move the canvas origin to |#1| and the two axes to
+% |#2| and |#3|.
+% \begin{macrocode}
+\cs_new_protected:Npn \draw_transform_triangle:nnn #1#2#3
+ {
+ \@@_point_process:nnn
+ {
+ \@@_point_process:nn
+ { \@@_tranform_triangle:nnnnnn }
+ {#1}
+ }
+ {#2} {#3}
+ }
+\cs_new_protected:Npn \@@_tranform_triangle:nnnnnn #1#2#3#4#5#6
+ {
+ \use:x
+ {
+ \@@_transform:nnnnnnn
+ { #3 - #1 }
+ { #4 - #2 }
+ { #5 - #1 }
+ { #6 - #2 }
+ {#1}
+ {#2}
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.dtx b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.dtx
new file mode 100644
index 00000000000..9b7c04d5e54
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.dtx
@@ -0,0 +1,575 @@
+% \iffalse meta-comment
+%
+%% File: l3draw.dtx Copyright(C) 2018 The LaTeX3 Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% http://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3experimental bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver|package>
+\RequirePackage{expl3}
+%</driver|package>
+%<*driver>
+\documentclass[full]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \title{^^A
+% The \pkg{l3draw} package\\ Core drawing support^^A
+% }
+%
+% \author{^^A
+% The \LaTeX3 Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2018/02/21}
+%
+% \maketitle
+%
+% \begin{documentation}
+%
+% \section{\pkg{l3draw} documentation}
+%
+% The \pkg{l3draw} package provides a set of tools for creating (vector)
+% drawings in \pkg{expl3}. It is heavily inspired by the \pkg{pgf} layer of
+% the Ti\textit{k}Z system, with many of the interfaces having the same form.
+% However, the code provided here is build entirely on core \pkg{expl3} ideas
+% and uses the \LaTeX3 FPU for numerical support.
+%
+% Numerical expressions in \pkg{l3draw} are handled as floating point
+% expressions, unless otherwise noted. This means that they may contain or
+% omit explicit units. Where units are omitted, they will automatically be
+% taken as given in (\TeX{}) points.
+%
+% The code here is \emph{highly} experimental.
+%
+% \subsection{Drawings}
+%
+% \begin{function}{\draw_begin:, \draw_end:}
+% \begin{syntax}
+% \cs{draw_begin:}
+% ...
+% \cs{draw_end:}
+% \end{syntax}
+% Each drawing should be created within a \cs{draw_begin:}/\cs{draw_end:}
+% function pair. The \texttt{begin} function sets up a number of key
+% data structures for the rest of the functions here: unless otherwise
+% specified, use of |\draw_...| functions outside of this
+% \enquote{environment} is \emph{not supported}.
+%
+% The drawing created within the environment will be inserted into
+% the typesetting stream by the \cs{draw_end:} function, which will
+% switch out of vertical mode if required.
+% \end{function}
+%
+% \subsection{Graphics state}
+%
+% Within the drawing environment, a number of functions control how drawings
+% will appear. Note that these all apply \emph{globally}, though some are
+% rest at the start of each drawing (\cs{draw_begin:}).
+%
+% \begin{function}{\g_draw_linewidth_default_dim}
+% The default value of the linewidth for stokes, set at the start
+% of every drawing (\cs{draw_begin:}).
+% \end{function}
+%
+% \begin{function}{\draw_linewidth:n, \draw_inner_linewidth:n}
+% \begin{syntax}
+% \cs{draw_linewidth:n} \Arg{width}
+% \end{syntax}
+% Sets the width to be used for stroking to the \meta{width} (an
+% \meta{fp expr}).
+% \end{function}
+%
+% \begin{function}{\draw_nonzero_rule:, \draw_evenodd_rule:}
+% \begin{syntax}
+% \cs{draw_nonzero_rule:}
+% \end{syntax}
+% Active either the non-zero winding number or the even-odd rule,
+% respectively, for determining what is inside a fill or clip area.
+% For technical reasons, these command are not influenced by scoping
+% and apply on an ongoing basis.
+% \end{function}
+%
+% \begin{function}
+% {
+% \draw_cap_butt: ,
+% \draw_cap_rectangle: ,
+% \draw_cap_round:
+% }
+% \begin{syntax}
+% \cs{draw_cap_butt:}
+% \end{syntax}
+% Sets the style of terminal stroke position to one of butt, rectangle or
+% round.
+% \end{function}
+%
+% \begin{function}
+% {
+% \draw_join_bevel: ,
+% \draw_join_miter: ,
+% \draw_join_round:
+% }
+% \begin{syntax}
+% \cs{draw_cap_butt:}
+% \end{syntax}
+% Sets the style of stroke joins to one of bevel, miter or round.
+% \end{function}
+%
+% \begin{function}{\draw_miterlimit:n}
+% \begin{syntax}
+% \cs{draw_miterlimit:n} \Arg{limit}
+% \end{syntax}
+% Sets the miter \meta{limit} of lines joined as a miter, as described in the
+% PDF and PostScript manuals. The \meta{limit} is an \meta{fp expr}.
+% \end{function}
+%
+% \subsection{Points}
+%
+% Functions supporting the calculation of points (co-ordinates) are expandable
+% and may be used outside of the drawing environment. When used in this
+% way, they all yield a co-ordinate tuple, for example
+% \begin{verbatim}
+% \tl_set:Nx \l_tmpa_tl { \draw_point:nn { 1 } { 2 } }
+% \tl_show:N \l_tmpa_tl
+% \end{verbatim}
+% gives
+% \begin{verbatim}
+% > \l_tmpa_tl=1pt,2pt.
+% <recently read> }
+% \end{verbatim}
+%
+% This output form is then suitable as \emph{input} for subsequent point
+% calculations, \emph{i.e.}~where a \meta{point} is required it may be
+% given as a tuple. This \emph{may} include units and surrounding
+% parentheses, for example
+% \begin{verbatim}
+% 1,2
+% (1,2)
+% 1cm,3pt
+% (1pt,2cm)
+% 2 * sind(30), 2^4in
+% \end{verbatim}
+% are all valid input forms. Notice that each part of the tuple may itself
+% be a float point expression.
+%
+% Point co-ordinates are relative to the canvas axes, but can be transformed
+% by \cs{draw_point_transform:n}. These manipulation is applied by many
+% higher-level functions, for example path construction, and allows parts of
+% a drawing to be rotated, scaled or skewed. This occurs before writing any
+% data to the driver, and so such manipulations are tracked by the drawing
+% mechanisms. See \cs{driver_draw_transformcm:nnnnnn} for driver-level
+% manipulation of the canvas axes themselves.
+%
+% Notice that in contrast to \pkg{pgf} it is possible to give the positions
+% of points \emph{directly}.
+%
+% \subsubsection{Basic point functions}
+%
+% \begin{function}[EXP]{\draw_point:nn}
+% \begin{syntax}
+% \cs{draw_point:nn} \Arg{x} \Arg{y}
+% \end{syntax}
+% Gives the co-ordinates of the point at \meta{x} and \meta{y}, both of
+% which are \meta{fp expr}.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_polar:nn, \draw_point_polar:nnn}
+% \begin{syntax}
+% \cs{draw_point_polar:nn} \Arg{angle} \Arg{radius}
+% \cs{draw_point_polar:nnn} \Arg{angle} \Arg{radius-a} \Arg{radius-b}
+% \end{syntax}
+% Gives the co-ordinates of the point at \meta{angle} (an \meta{fp expr} in
+% \emph{degrees}) and \meta{radius}. The three-argument version accepts
+% two radii of different lengths.
+%
+% Note the interface here is somewhat different from that in \pkg{pgf}:
+% the one- and two-radii versions in \pkg{l3draw} use separate functions,
+% whilst in \pkg{pgf} they use the same function and a keyword.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_add:nn}
+% \begin{syntax}
+% \cs{draw_point_add:nn} \Arg{point1} \Arg{point2}
+% \end{syntax}
+% Adds \meta{point1} to \meta{point2}.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_diff:nn}
+% \begin{syntax}
+% \cs{draw_point_diff:nn} \Arg{point1} \Arg{point2}
+% \end{syntax}
+% Subtracts \meta{point1} from \meta{point2}.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_scale:nn}
+% \begin{syntax}
+% \cs{draw_point_scale:nn} \Arg{scale} \Arg{point}
+% \end{syntax}
+% Scales the \meta{point} by the \meta{scale} (an \meta{fp expr}).
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_unit_vector:n}
+% \begin{syntax}
+% \cs{draw_point_unit_vector:n} \Arg{point}
+% \end{syntax}
+% Expands to the co-ordinates of a unit vector joining the \meta{point}
+% with the origin.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_transform:n}
+% \begin{syntax}
+% \cs{draw_point_transform:n} \Arg{point}
+% \end{syntax}
+% Evaluates the position of the \meta{point} subject to the current
+% transformation matrix. This operation is applied automatically by
+% most higher-level functions (\emph{e.g.}~path manipulations).
+% \end{function}
+%
+% \subsubsection{Points on a vector basis}
+%
+% As well as giving explicit values, it is possible to describe points
+% in terms of underlying direction vectors. The latter are initially
+% co-incident with the standard Cartesian axes, but may be altered by
+% the user.
+%
+% \begin{function}{\draw_xvec_set:n, \draw_yvec_set:n, \draw_zvec_set:n}
+% \begin{syntax}
+% \cs{draw_xvec_set:n} \Arg{point}
+% \end{syntax}
+% Defines the appropriate base vector to point toward the \meta{point}
+% on the canvas. The standard settings for the $x$- and $y$-vectors are
+% $1\,\mathrm{cm}$ along the relevant canvas axis, whilst for the
+% $z$-vector an appropriate direction is taken.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_vec:nn, \draw_point_vec:nnn}
+% \begin{syntax}
+% \cs{draw_point_vec:nn} \Arg{xscale} \Arg{yscale}
+% \cs{draw_point_vec:nnn} \Arg{xscale} \Arg{yscale} \Arg{zscale}
+% \end{syntax}
+% Expands to the co-ordinate of the point at \meta{xscale} times the
+% $x$-vector and \meta{yscale} times the $y$-vector. The three-argument
+% version extends this to include the $z$-vector.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_vec_polar:nn, \draw_point_vec_polar:nnn}
+% \begin{syntax}
+% \cs{draw_point_vec_polar:nn} \Arg{angle} \Arg{radius}
+% \cs{draw_point_vec_polar:nnn} \Arg{angle} \Arg{radius-a} \Arg{radius-b}
+% \end{syntax}
+% Gives the co-ordinates of the point at \meta{angle} (an \meta{fp expr} in
+% \emph{degrees}) and \meta{radius}, relative to the prevailing
+% $x$- and $y$-vectors. The three-argument version accepts two radii of
+% different lengths.
+%
+% Note the interface here is somewhat different from that in \pkg{pgf}:
+% the one- and two-radii versions in \pkg{l3draw} use separate functions,
+% whilst in \pkg{pgf} they use the same function and a keyword.
+% \end{function}
+%
+% \subsubsection{Intersections}
+%
+% \begin{function}[EXP]{\draw_point_intersect_lines:nnnn}
+% \begin{syntax}
+% \cs{draw_point_intersect_lines:nnnn} \Arg{point1} \Arg{point2} \Arg{point3} \Arg{point4}
+% \end{syntax}
+% Evaluates the point at the intersection of one line, joining
+% \meta{point1} and \meta{point2}, and a second line joining \meta{point3}
+% and \meta{point4}. If the lines do not intersect, or are coincident, and
+% error will occur.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_intersect_circles:nnnn}
+% \begin{syntax}
+% \cs{draw_point_intersect_circles:nnnnn}
+% \Arg{center1} \Arg{radius1} \Arg{center2} \Arg{radius2} \Arg{root}
+% \end{syntax}
+% Evaluates the point at the intersection of one circle with
+% \meta{center1} and \meta{radius1}, and a second circle with \meta{center2}
+% and \meta{radius2}. If the circles do not intersect, or are coincident, and
+% error will occur.
+%
+% Note the interface here has a different argument ordering from that in
+% \pkg{pgf}, which has the two centers then the two radii.
+% \end{function}
+%
+% \subsubsection{Interpolations}
+%
+% \begin{function}[EXP]{\draw_point_interpolate_line:nnn}
+% \begin{syntax}
+% \cs{draw_point_interpolate_line:nnn} \Arg{part} \Arg{point1} \Arg{point2}
+% \end{syntax}
+% Expands to the point which is \meta{part} way along the line joining
+% \meta{point1} and \meta{point2}. The \meta{part} may be an interpolation or
+% an extrapolation, and is a floating point value expressing a percentage
+% along the line, \emph{e.g.}~a value of \texttt{0.5} would be half-way
+% between the two points.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_interpolate_distance:nnn}
+% \begin{syntax}
+% \cs{draw_point_interpolate_distance:nnn} \Arg{distance} \Arg{point expr1} \Arg{point expr2}
+% \end{syntax}
+% Expands to the point which is \meta{distance} way along the line joining
+% \meta{point1} and \meta{point2}. The \meta{distance} may be an interpolation
+% or an extrapolation.
+% \end{function}
+%
+% \begin{function}[EXP]{\draw_point_interpolate_curve:nnnnnn}
+% \begin{syntax}
+% \cs{draw_point_interpolate_curve:nnnnnn} \Arg{part}
+% \Arg{start} \Arg{control1} \Arg{control2} \Arg{end}
+% \end{syntax}
+% Expands to the point which is \meta{part} way along the curve between
+% \meta{start} and \meta{end} and defined by \meta{control1} and
+% \meta{control2}. The \meta{part} may be an interpolation or
+% an extrapolation, and is a floating point value expressing a percentage
+% along the curve, \emph{e.g.}~a value of \texttt{0.5} would be half-way
+% along the curve.
+% \end{function}
+%
+% \subsection{Paths}
+%
+% Paths are constructed by combining one or more operations before applying
+% one or more actions. Thus until a path is \enquote{used}, it may be
+% manipulated or indeed discarded entirely. Only one path is active at
+% any one time, and the path is \emph{not} affected by \TeX{} grouping.
+%
+% \begin{function}{\draw_path_corner_arc:n}
+% \begin{syntax}
+% \cs{draw_path_corner_arc:n} \Arg{length}
+% \end{syntax}
+% Sets the degree of rounding applied to corners in a path: if the
+% \meta{length} is \texttt{0pt} then no rounding applies. The value of the
+% \meta{length} is local to the current \TeX{} group. \emph{At present,
+% corner arcs are not activated in the code.}
+% \end{function}
+%
+% \begin{function}{\draw_path_moveto:n}
+% \begin{syntax}
+% \cs{draw_path_moveto:n} \Arg{point}
+% \end{syntax}
+% Moves the reference point of the path to the \meta{point}, but will
+% not join this to any previous point.
+% \end{function}
+%
+% \begin{function}{\draw_path_lineto:n}
+% \begin{syntax}
+% \cs{draw_path_lineto:n} \Arg{point}
+% \end{syntax}
+% Joins the current path to the \meta{point} with a straight line.
+% \end{function}
+%
+% \begin{function}{\draw_path_curveto:nnn}
+% \begin{syntax}
+% \cs{draw_path_curveto:nnn} \Arg{control1} \Arg{control2} \Arg{end}
+% \end{syntax}
+% Joins the current path to the \meta{end} with a curved line defined by
+% cubic Bézier points \meta{control1} and \meta{control2}.
+% \end{function}
+%
+% \begin{function}{\draw_path_curveto:nn}
+% \begin{syntax}
+% \cs{draw_path_curveto:nn} \Arg{control} \Arg{end}
+% \end{syntax}
+% Joins the current path to the \meta{end} with a curved line defined by
+% quadratic Bézier point \meta{control}.
+% \end{function}
+%
+% \begin{function}{\draw_path_arc:nnn, \draw_path_arc:nnnn}
+% \begin{syntax}
+% \cs{draw_path_arc:nnn} \Arg{angle1} \Arg{angle2} \Arg{radius}
+% \cs{draw_path_arc:nnnn} \Arg{angle1} \Arg{angle2} \Arg{radius-a} \Arg{radius-b}
+% \end{syntax}
+% Joins the current path with an arc between \meta{angle1} and \meta{angle2}
+% and of \meta{radius}. The four-argument version accepts two radii of
+% different lengths.
+%
+% Note the interface here has a different argument ordering from that in
+% \pkg{pgf}, which has the two centers then the two radii.
+% \end{function}
+%
+% \begin{function}{\draw_path_arc_axes:nnnn}
+% \begin{syntax}
+% \cs{draw_path_arc_axes:nnn} \Arg{angle1} \Arg{angle2} \Arg{vector1} \Arg{vector2}
+% \end{syntax}
+% Appends the portion of an ellipse from \meta{angle1} to \meta{angle2} of an
+% ellipse with axes along \meta{vector1} and \meta{vector2} to the current path.
+% \end{function}
+%
+% \begin{function}{\draw_path_ellipse:nnnn}
+% \begin{syntax}
+% \cs{draw_path_ellipse:nnn} \Arg{center} \Arg{vector1} \Arg{vector2}
+% \end{syntax}
+% Appends an ellipse at \meta{center} with axes along \meta{vector1} and
+% \meta{vector2} to the current path.
+% \end{function}
+%
+% \begin{function}{\draw_path_circle:nn}
+% \begin{syntax}
+% \cs{draw_path_circle:nn} \Arg{center} \Arg{radius}
+% \end{syntax}
+% Appends a circle of \meta{radius} at \meta{center} to the current path.
+% \end{function}
+%
+% \begin{function}{\draw_path_rectangle:nn, \draw_path_rectangle_corners:nn}
+% \begin{syntax}
+% \cs{draw_path_rectangle:nn} \Arg{lower-left} \Arg{displacement}
+% \cs{draw_path_rectangle_corners:nn} \Arg{lower-left} \Arg{top-right}
+% \end{syntax}
+% Appends a rectangle starting at \meta{lower-left} to the current path,
+% with the size of the rectangle determined either by a \meta{displacement}
+% or the position of the \meta{top-right}.
+% \end{function}
+%
+% \begin{function}{\draw_path_grid:nnnn}
+% \begin{syntax}
+% \cs{draw_path_grid:nnnn} \Arg{xspace} \Arg{yspace} \Arg{lower-left} \Arg{upper-right}
+% \end{syntax}
+% Constructs a grid of \meta{xspace} and \meta{yspace} from the
+% \meta{lower-left} to the \meta{upper-right}, and appends this to the
+% current path.
+% \end{function}
+%
+% \begin{function}{\draw_path_close:}
+% \begin{syntax}
+% \cs{draw_path_close:}
+% \end{syntax}
+% Closes the current part of the path by appending a straight line from
+% the current point to the starting point of the path.
+% \end{function}
+%
+% \begin{function}{\draw_path_use:n, \draw_path_use_clear:n}
+% \begin{syntax}
+% \cs{draw_path_use:n} \Arg{action(s)}
+% \end{syntax}
+% Inserts the current path, carrying out one ore more possible \meta{actions}
+% (a comma list):
+% \begin{itemize}
+% \item \texttt{clear} Resets the path to empty
+% \item \texttt{clip} Clips any content outside of the path
+% \item \texttt{draw}
+% \item \texttt{fill} Fills the interior of the path with the current
+% file color
+% \item \texttt{stroke} Draws a line along the current path
+% \end{itemize}
+% \end{function}
+%
+% \subsection{Color}
+%
+% \begin{function}{\draw_color:n, \draw_fill:n, \draw_stroke:n}
+% \begin{syntax}
+% \cs{draw_color:n} \Arg{color expression}
+% \end{syntax}
+% Evaluates the \meta{color expression} as described for \pkg{l3color}.
+% \end{function}
+%
+% \subsection{Transformations}
+%
+% Points are normally used unchanged relative to the canvas axes. This can
+% be modified by applying a transformation matrix. The canvas axes themselves
+% may be adjusted using \cs{driver_draw_transformcm:nnnnnn}: note that this
+% is transparent to the drawing code so is not tracked.
+%
+% \begin{function}{\draw_transform_reset:}
+% \begin{syntax}
+% \cs{draw_transform_reset:}
+% \end{syntax}
+% Resets the matrix to the identity.
+% \end{function}
+%
+% \begin{function}{\draw_transform_concat:nnnnn}
+% \begin{syntax}
+% \cs{draw_transform_concat:nnnnn}
+% \Arg{a} \Arg{b} \Arg{c} \Arg{d} \Arg{vector}
+% \end{syntax}
+% Appends the given transformation to the currently-active one. The
+% transformation is made up of a matrix \meta{a}, \meta{b}, \meta{c} and
+% \meta{d}, and a shift by the \meta{vector}.
+% \end{function}
+%
+% \begin{function}{\draw_transform:nnnnn}
+% \begin{syntax}
+% \cs{draw_transform:nnnnn}
+% \Arg{a} \Arg{b} \Arg{c} \Arg{d} \Arg{vector}
+% \end{syntax}
+% Applies the transformation matrix specified, over-writing any existing
+% matrix. The transformation is made up of a matrix \meta{a}, \meta{b},
+% \meta{c} and \meta{d}, and a shift by the \meta{vector}.
+% \end{function}
+%
+% \begin{function}{\draw_transform_triangle:nnn}
+% \begin{syntax}
+% \cs{draw_transform_triangle:nnn}
+% \Arg{origin} \Arg{point1} \Arg{point2}
+% \end{syntax}
+% Applies a transformation such that the co-ordinates $(0, 0)$, $(1, 0)$
+% and $(0, 1)$ are given by the \meta{origin}, \meta{point1} and
+% \meta{point2}, respectively.
+% \end{function}
+%
+% \begin{function}{\draw_transform_invert:}
+% \begin{syntax}
+% \cs{draw_transform_invert:}
+% \end{syntax}
+% Inverts the current transformation matrix and reverses the current
+% shift vector.
+% \end{function}
+%
+% \end{documentation}
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3draw} implementation}
+%
+% \begin{macrocode}
+%<*initex|package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=draw>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*package>
+\ProvidesExplPackage{l3draw}{2018/02/21}{}
+ {L3 Experimental core drawing support}
+%</package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+\RequirePackage { l3color }
+% \end{macrocode}
+%
+% Everything else is in the sub-files!
+%
+% \begin{macrocode}
+%</initex|package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.ins b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.ins
new file mode 100644
index 00000000000..d7c3616c607
--- /dev/null
+++ b/Master/texmf-dist/source/latex/l3experimental/l3draw/l3draw.ins
@@ -0,0 +1,66 @@
+\iffalse meta-comment
+
+File l3draw.ins Copyright (C) 2018 The LaTeX3 Project
+
+It may be distributed and/or modified under the conditions of the
+LaTeX Project Public License (LPPL), either version 1.3c of this
+license or (at your option) any later version. The latest version
+of this license is in the file
+
+ http://www.latex-project.org/lppl.txt
+
+This file is part of the "l3experimental bundle" (The Work in LPPL)
+and all files in that bundle must be distributed together.
+
+-----------------------------------------------------------------------
+
+The development version of the bundle can be found at
+
+ https://github.com/latex3/latex3
+
+for those people who are interested.
+
+-----------------------------------------------------------------------
+
+Any modification of this file should ensure that the copyright and
+license information is placed in the derived files.
+
+\fi
+
+\input l3docstrip.tex
+\askforoverwritefalse
+
+\preamble
+
+Copyright (C) 2018 The LaTeX3 Project
+
+It may be distributed and/or modified under the conditions of
+the LaTeX Project Public License (LPPL), either version 1.3c of
+this license or (at your option) any later version. The latest
+version of this license is in the file:
+
+ http://www.latex-project.org/lppl.txt
+
+This file is part of the "l3experimental bundle" (The Work in LPPL)
+and all files in that bundle must be distributed together.
+
+\endpreamble
+% stop docstrip adding \endinput
+\postamble
+\endpostamble
+
+\keepsilent
+
+\generate{\file{l3draw.sty}
+ {
+ \from{l3draw.dtx} {package}
+ \from{l3draw-paths.dtx} {package}
+ \from{l3draw-points.dtx} {package}
+ \from{l3draw-scopes.dtx} {package}
+ \from{l3draw-softpath.dtx} {package}
+ \from{l3draw-state.dtx} {package}
+ \from{l3draw-transforms.dtx} {package}
+ }
+}
+
+\endbatchfile
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-convert.dtx b/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-convert.dtx
index ed2ae18ad5d..5691eb65ec9 100644
--- a/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-convert.dtx
+++ b/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-convert.dtx
@@ -47,7 +47,7 @@
% }^^A
% }
%
-% \date{Released 2017/12/16}
+% \date{Released 2018/02/21}
%
% \maketitle
%
@@ -252,7 +252,7 @@
% \end{macrocode}
%
% \begin{macrocode}
-\ProvidesExplPackage{l3str-convert}{2017/12/16}{}
+\ProvidesExplPackage{l3str-convert}{2018/02/21}{}
{L3 Experimental string encoding conversions}
% \end{macrocode}
%
@@ -617,7 +617,7 @@
\cs_new_protected:Npn \@@_if_flag_error:nnx #1
{
\flag_if_raised:nTF {#1}
- { \__msg_kernel_error:nnx { str } }
+ { \__kernel_msg_error:nnx { str } }
{ \use_none:nn }
}
\cs_new_protected:Npn \@@_if_flag_no_error:nnx #1#2#3
@@ -761,7 +761,7 @@
{
\if_meaning:w #1 #5
\tl_if_empty:nF {#3}
- { \__msg_kernel_error:nnx { str } { native-escaping } {#3} }
+ { \__kernel_msg_error:nnx { str } { native-escaping } {#3} }
#1
\else:
#4 #2 #1
@@ -833,7 +833,7 @@
}
{
\tl_clear:N \l_@@_internal_tl
- \__msg_kernel_error:nnxx { str } { unknown-#2 } {#4} {#1}
+ \__kernel_msg_error:nnxx { str } { unknown-#2 } {#4} {#1}
}
}
\cs_if_exist:cF { @@_convert_#3_#1: }
@@ -1073,7 +1073,7 @@
\@@_output_byte:n {#1}
\fi:
}
- \__msg_kernel_new:nnnn { str } { pdfTeX-native-overflow }
+ \__kernel_msg_new:nnnn { str } { pdfTeX-native-overflow }
{ Character~code~too~large~for~pdfTeX. }
{
The~pdfTeX~engine~only~supports~8-bit~characters:~
@@ -1303,18 +1303,18 @@
% General messages, and messages for the encodings and escapings loaded
% by default (\enquote{native}, and \enquote{bytes}).
% \begin{macrocode}
-\__msg_kernel_new:nnn { str } { unknown-esc }
+\__kernel_msg_new:nnn { str } { unknown-esc }
{ Escaping~scheme~'#1'~(filtered:~'#2')~unknown. }
-\__msg_kernel_new:nnn { str } { unknown-enc }
+\__kernel_msg_new:nnn { str } { unknown-enc }
{ Encoding~scheme~'#1'~(filtered:~'#2')~unknown. }
-\__msg_kernel_new:nnnn { str } { native-escaping }
+\__kernel_msg_new:nnnn { str } { native-escaping }
{ The~'native'~encoding~scheme~does~not~support~any~escaping. }
{
Since~native~strings~do~not~consist~in~bytes,~
none~of~the~escaping~methods~make~sense.~
The~specified~escaping,~'#1',~will be ignored.
}
-\__msg_kernel_new:nnn { str } { file-not-found }
+\__kernel_msg_new:nnn { str } { file-not-found }
{ File~'l3str-#1.def'~not~found. }
% \end{macrocode}
%
@@ -1330,7 +1330,7 @@
\sys_if_engine_xetex_p:
}
{
- \__msg_kernel_new:nnnn { str } { non-byte }
+ \__kernel_msg_new:nnnn { str } { non-byte }
{ String~invalid~in~escaping~'#1':~it~may~only~contain~bytes. }
{
Some~characters~in~the~string~you~asked~to~convert~are~not~
@@ -1348,13 +1348,13 @@
%
% Those messages are used when converting to and from 8-bit encodings.
% \begin{macrocode}
-\__msg_kernel_new:nnnn { str } { decode-8-bit }
+\__kernel_msg_new:nnnn { str } { decode-8-bit }
{ Invalid~string~in~encoding~'#1'. }
{
LaTeX~came~across~a~byte~which~is~not~defined~to~represent~
any~character~in~the~encoding~'#1'.
}
-\__msg_kernel_new:nnnn { str } { encode-8-bit }
+\__kernel_msg_new:nnnn { str } { encode-8-bit }
{ Unicode~string~cannot~be~converted~to~encoding~'#1'. }
{
The~encoding~'#1'~only~contains~a~subset~of~all~Unicode~characters.~
@@ -1435,7 +1435,7 @@
\@@_unescape_hex_auxii:N
}
}
-\__msg_kernel_new:nnnn { str } { unescape-hex }
+\__kernel_msg_new:nnnn { str } { unescape-hex }
{ String~invalid~in~escaping~'hex':~only~hexadecimal~digits~allowed. }
{
Some~characters~in~the~string~you~asked~to~convert~are~not~
@@ -1512,7 +1512,7 @@
\@@_output_end:
\use_i:nnn #3 ##2##3
}
- \__msg_kernel_new:nnnn { str } { unescape-#2 }
+ \__kernel_msg_new:nnnn { str } { unescape-#2 }
{ String~invalid~in~escaping~'#2'. }
{
LaTeX~came~across~the~escape~character~'#1'~not~followed~by~
@@ -1641,7 +1641,7 @@
\if_charcode:w ^^J #2 \else: ^^J \fi:
\@@_unescape_string_newlines:wN #2
}
- \__msg_kernel_new:nnnn { str } { unescape-string }
+ \__kernel_msg_new:nnnn { str } { unescape-string }
{ String~invalid~in~escaping~'string'. }
{
LaTeX~came~across~an~escape~character~'\c_backslash_str'~
@@ -1920,7 +1920,7 @@
\flag_clear_new:n { str_extra }
\flag_clear_new:n { str_overlong }
\flag_clear_new:n { str_overflow }
-\__msg_kernel_new:nnnn { str } { utf8-decode }
+\__kernel_msg_new:nnnn { str } { utf8-decode }
{
Invalid~UTF-8~string: \exp_last_unbraced:Nf \use_none:n
\@@_if_flag_times:nT { str_missing } { ,~missing~continuation~byte }
@@ -2237,14 +2237,14 @@
\flag_clear_new:n { str_missing }
\flag_clear_new:n { str_extra }
\flag_clear_new:n { str_end }
- \__msg_kernel_new:nnnn { str } { utf16-encode }
+ \__kernel_msg_new:nnnn { str } { utf16-encode }
{ Unicode~string~cannot~be~expressed~in~UTF-16:~surrogate. }
{
Surrogate~code~points~(in~the~range~[U+D800,~U+DFFF])~
can~be~expressed~in~the~UTF-8~and~UTF-32~encodings,~
but~not~in~the~UTF-16~encoding.
}
- \__msg_kernel_new:nnnn { str } { utf16-decode }
+ \__kernel_msg_new:nnnn { str } { utf16-decode }
{
Invalid~UTF-16~string: \exp_last_unbraced:Nf \use_none:n
\@@_if_flag_times:nT { str_missing } { ,~missing~trail~surrogate }
@@ -2536,7 +2536,7 @@
% \begin{macrocode}
\flag_clear_new:n { str_overflow }
\flag_clear_new:n { str_end }
- \__msg_kernel_new:nnnn { str } { utf32-decode }
+ \__kernel_msg_new:nnnn { str } { utf32-decode }
{
Invalid~UTF-32~string: \exp_last_unbraced:Nf \use_none:n
\@@_if_flag_times:nT { str_overflow } { ,~code~point~too~large }
diff --git a/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-format.dtx b/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-format.dtx
index 75413e2def3..14f6874216c 100644
--- a/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-format.dtx
+++ b/Master/texmf-dist/source/latex/l3experimental/l3str/l3str-format.dtx
@@ -47,7 +47,7 @@
% }^^A
% }
%
-% \date{Released 2017/12/16}
+% \date{Released 2018/02/21}
%
% \maketitle
%
@@ -163,7 +163,7 @@
%
% \begin{macrocode}
%<*package>
-\ProvidesExplPackage{l3str-format}{2017/12/16}{}
+\ProvidesExplPackage{l3str-format}{2018/02/21}{}
{L3 Experimental string formatting}
%</package>
% \end{macrocode}
@@ -304,7 +304,7 @@
\cs_new:Npn \@@_parse_end:nwn #1 #2 \s__stop \s__stop #3
{
\tl_if_empty:nF {#2}
- { \__msg_kernel_expandable_error:nnn { str } { invalid-format } {#3} }
+ { \__kernel_msg_expandable_error:nnn { str } { invalid-format } {#3} }
#1
}
% \end{macrocode}
@@ -464,7 +464,7 @@
{
\token_if_eq_charcode:NNTF #2 =
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-align-format } {#2} {tl}
\@@_put:nw { #1 < }
}
@@ -475,7 +475,7 @@
}
\token_if_eq_charcode:NNF #3 ?
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-sign-format } {#3} {tl}
}
\@@_put:nw { {#4} }
@@ -486,7 +486,7 @@
{
\token_if_eq_charcode:NNF #6 ?
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-style-format } {#6} {tl}
}
}
@@ -640,7 +640,7 @@
\@@_put:nw { {#4} }
\tl_if_empty:nF {#5}
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-precision-format } {#5} {int}
}
\str_case:nnF {#6}
@@ -652,7 +652,7 @@
{ X } { \@@_int:NwnnNNn \int_to_Hex:n }
}
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-style-format } {#6} { int }
\@@_int:NwnnNNn \use:n
}
@@ -762,7 +762,7 @@
{ ? } { \@@_fp:wnnnNNw \@@_fp_g:wn }
}
{
- \__msg_kernel_expandable_error:nnnn
+ \__kernel_msg_expandable_error:nnnn
{ str } { invalid-style-format } {#6} { fp }
\@@_fp:wnnnNNw \@@_fp_g:wn
}
@@ -927,15 +927,15 @@
% All of the messages are produced expandably, so there is no need for
% an extra-text.
% \begin{macrocode}
-\__msg_kernel_new:nnn { str } { invalid-format }
+\__kernel_msg_new:nnn { str } { invalid-format }
{ Invalid~format~'#1'. }
-\__msg_kernel_new:nnn { str } { invalid-align-format }
+\__kernel_msg_new:nnn { str } { invalid-align-format }
{ Invalid~alignment~'#1'~for~type~'#2'. }
-\__msg_kernel_new:nnn { str } { invalid-sign-format }
+\__kernel_msg_new:nnn { str } { invalid-sign-format }
{ Invalid~sign~'#1'~for~type~'#2'. }
-\__msg_kernel_new:nnn { str } { invalid-precision-format }
+\__kernel_msg_new:nnn { str } { invalid-precision-format }
{ Invalid~precision~'#1'~for~type~'#2'. }
-\__msg_kernel_new:nnn { str } { invalid-style-format }
+\__kernel_msg_new:nnn { str } { invalid-style-format }
{ Invalid~style~'#1'~for~type~'#2'. }
% \end{macrocode}
%
diff --git a/Master/texmf-dist/source/latex/l3experimental/xcoffins/xcoffins.dtx b/Master/texmf-dist/source/latex/l3experimental/xcoffins/xcoffins.dtx
index 9e1e0141cc5..dd801e51ae0 100644
--- a/Master/texmf-dist/source/latex/l3experimental/xcoffins/xcoffins.dtx
+++ b/Master/texmf-dist/source/latex/l3experimental/xcoffins/xcoffins.dtx
@@ -54,7 +54,7 @@
% }^^A
% }
%
-% \date{Released 2017/12/16}
+% \date{Released 2018/02/21}
%
% \maketitle
%
@@ -673,7 +673,7 @@
% \end{macrocode}
%
% \begin{macrocode}
-\ProvidesExplPackage{xcoffins}{2017/12/16}{}
+\ProvidesExplPackage{xcoffins}{2018/02/21}{}
{L3 Experimental design level coffins}
% \end{macrocode}
%
diff --git a/Master/texmf-dist/source/latex/l3experimental/xgalley/l3galley.dtx b/Master/texmf-dist/source/latex/l3experimental/xgalley/l3galley.dtx
index b114d9f7f8d..7533b90e087 100644
--- a/Master/texmf-dist/source/latex/l3experimental/xgalley/l3galley.dtx
+++ b/Master/texmf-dist/source/latex/l3experimental/xgalley/l3galley.dtx
@@ -24,8 +24,8 @@
%<*driver|package>
% The version of expl3 required is tested as early as possible, as
% some really old versions do not define \ProvidesExplPackage.
-\RequirePackage{expl3}[2017/12/16]
-%<package>\@ifpackagelater{expl3}{2017/12/16}
+\RequirePackage{expl3}[2018/02/21]
+%<package>\@ifpackagelater{expl3}{2018/02/21}
%<package> {}
%<package> {%
%<package> \PackageError{l3galley}{Support package l3kernel too old}
@@ -59,7 +59,7 @@
% }^^A
% }
%
-% \date{Released 2017/12/16}
+% \date{Released 2018/02/21}
%
% \maketitle
%
@@ -685,7 +685,7 @@
%
% \begin{macrocode}
%<*package>
-\ProvidesExplPackage{l3galley}{2017/12/16}{}
+\ProvidesExplPackage{l3galley}{2018/02/21}{}
{L3 Experimental galley code}
%</package>
% \end{macrocode}
@@ -2157,7 +2157,7 @@
\cs_new_protected:Npn \galley_break_line:Nn #1#2
{
\mode_if_vertical:TF
- { \__msg_kernel_error:nn { galley } { no-line-to-end } }
+ { \__kernel_msg_error:nn { galley } { no-line-to-end } }
{
\tex_unskip:D
\bool_if:NF #1
@@ -2490,7 +2490,7 @@
% \subsection{Messages}
%
% \begin{macrocode}
-\__msg_kernel_new:nnn { galley } { no-line-to-end }
+\__kernel_msg_new:nnn { galley } { no-line-to-end }
{ There's~no~line~here~to~end. }
% \end{macrocode}
%
diff --git a/Master/texmf-dist/source/latex/l3experimental/xgalley/xgalley.dtx b/Master/texmf-dist/source/latex/l3experimental/xgalley/xgalley.dtx
index 5e6ff4615ea..d0e62a385c5 100644
--- a/Master/texmf-dist/source/latex/l3experimental/xgalley/xgalley.dtx
+++ b/Master/texmf-dist/source/latex/l3experimental/xgalley/xgalley.dtx
@@ -45,7 +45,7 @@
% }^^A
% }
%
-% \date{Released 2017/12/16}
+% \date{Released 2018/02/21}
%
% \maketitle
%
@@ -732,7 +732,7 @@
% \end{macrocode}
%
% \begin{macrocode}
-\ProvidesExplPackage{xgalley}{2017/12/16}{}
+\ProvidesExplPackage{xgalley}{2018/02/21}{}
{L3 Experimental galley}
\RequirePackage{xparse,xtemplate,l3galley}
% \end{macrocode}