summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2017-07-27 21:26:25 +0000
committerKarl Berry <karl@freefriends.org>2017-07-27 21:26:25 +0000
commitfe6cc7d43e9608cb5bb2533480000837d7cf4827 (patch)
tree3098f2a8b1933b247a3aa7f6b58bb4e7dcca58f0 /Master/texmf-dist/source/generic
parent654d2d2ad9ef4fc4de9cfd3b3d6038ef14ad4161 (diff)
xint (27jul17)
git-svn-id: svn://tug.org/texlive/trunk@44900 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/generic')
-rw-r--r--Master/texmf-dist/source/generic/xint/xint.dtx5869
-rw-r--r--Master/texmf-dist/source/generic/xint/xint.ins2
2 files changed, 3248 insertions, 2623 deletions
diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx
index b41bba65760..8e22f7797dd 100644
--- a/Master/texmf-dist/source/generic/xint/xint.dtx
+++ b/Master/texmf-dist/source/generic/xint/xint.dtx
@@ -3,27 +3,27 @@
% Extract all files via "etex xint.dtx" and do "make help"
% or follow instructions from extracted README.md.
%<*dtx>
-\def\xintdtxtimestamp {Time-stamp: <06-01-2017 at 22:41:03 CET>}
+\def\xintdtxtimestamp {Time-stamp: <26-07-2017 at 19:42:16 CEST>}
%</dtx>
%<*drv>
%% ---------------------------------------------------------------
-\def\xintdocdate {2017/01/06}
-\def\xintbndldate{2017/01/06}
-\def\xintbndlversion {1.2k}
+\def\xintdocdate {2017/07/26}
+\def\xintbndldate{2017/07/26}
+\def\xintbndlversion {1.2l}
%</drv>
%<readme>% README
%<changes>% CHANGE LOG
-%<readme|changes>% xint 1.2k
-%<readme|changes>% 2017/01/06
+%<readme|changes>% xint 1.2l
+%<readme|changes>% 2017/07/26
%<readme|changes>
-%<readme|changes> Source: xint.dtx 1.2k 2017/01/06 (doc 2017/01/06)
+%<readme|changes> Source: xint.dtx 1.2l 2017/07/26 (doc 2017/07/26)
%<readme|changes> Author: Jean-Francois Burnol
%<readme|changes> Info: Expandable operations on big integers, decimals, fractions
%<readme|changes> License: LPPL 1.3c
%<readme|changes>
%<*!readme&!changes&!dohtmlsh&!dopdfsh&!makefile>
%% ---------------------------------------------------------------
-%% The xint bundle 1.2k 2017/01/06
+%% The xint bundle 1.2l 2017/07/26
%% Copyright (C) 2013-2017 by Jean-Francois Burnol
%<xintkernel>%% xintkernel: Paraphernalia for the xint packages
%<xinttools>%% xinttools: Expandable and non-expandable utilities
@@ -68,7 +68,7 @@ Float computations are possible at an adjustable precision (default 16).
\xintDigits:=48;\xintthefloatexpr 123456789^1000.5\relax
->3.63692761822782679930738270515740797370813691938e8095
-
+
However, only integer and half-integer exponents are currently allowed.
The `sqrt` operation achieves correct rounding in arbitrary precision.
@@ -243,6 +243,73 @@ Makefile.mk.</div>
%</readme>--------------------------------------------------------
%<*changes>-------------------------------------------------------
+`1.2l (2017/07/26)`
+----
+
+### Removed
+
+ - `\xintiiSumExpr`, `\xintiiPrdExpr` (**xint**) and `\xintSumExpr`,
+ `\xintPrdExpr` (**xintfrac**). They had not been formally deprecated,
+ but had been left un-documented since `1.09d (2013/10/22)`.
+
+### Improvements and new features
+
+ - the underscore character `_` is accepted by the **xintexpr** parsers
+ as a digit separator (the space character already could be used for
+ improved readability of big numbers). It is not allowed as *first*
+ character of a number, as it would then be mis-interpreted as the
+ start of a possible variable name.
+
+ - some refactoring in **xintcore** auxiliary routines and in
+ `\xintiiSub` and `\xintiiCmp` for some small efficiency gains.
+
+ - code comments in **xintcore** are better formatted, but remain
+ sparse.
+
+ - **xintcore**, **xint**, **xintfrac**, ... : some macros were not
+ robust against arguments whose expansion looks forward for some
+ termination (e.g. ``\number\mathcode`\-``), and particularly, most
+ were fragile against inputs using non-terminated ``\numexpr`` (such
+ as `\xintiiAdd{\the\numexpr1}{2}` or `\xintRaw{\numexpr1}`). This was
+ not a bug per se, as the user manual did not claim such inputs were
+ legal, but it was slightly inconvenient. Most macros (particularly
+ those of **xintfrac**) have now been made robust against such inputs.
+ Some macros from **xintcore** primarily destined to internal usage
+ still accept only properly terminated arguments such as
+ ``\the\mathcode`\-<space>`` or ``\the\numexpr1\relax``.
+
+ The situation with expressions is unchanged: syntax such as
+ `\xintexpr \numexpr1+2\relax` is illegal as the ending `\relax` token
+ will get swallowed by the `\numexpr`; but it is needed by the
+ ``xintexpr``-ession parser, hence the parser will expand forward and
+ presumably end with in an "illegal token" error, or provoke some
+ low-level TeX error (N.B.: a closing brace `}` for example can not
+ terminate an ``xintexpr``-ession, the parser must find a `\relax`
+ token at some point). Thus there must be in this example a second
+ `\relax`.
+
+ - experimental code for error conditions; there is no complete user
+ interface yet, it is done in preparation for next major release and
+ is completely unstable and undocumented.
+
+### Bug fixes
+
+ - **xintbinhex**: since `1.2 (2015/10/10)`, `\xintHexToDec` was
+ broken due to an undefined macro (it was in `xint.sty`, but the
+ module by itself is supposedly dependent only upon `xintcore.sty`).
+
+ - **xintgcd**: macro `\xintBezout` produced partially wrong output if
+ one of its two arguments was zero.
+
+ - **xintfrac**: the manual said one could use directly `\numexpr`
+ compatible expressions in arithmetic macros (without even a
+ `\numexpr` encapsulation) if they were expressed with up to 8 tokens.
+ There was a bug if these 8 tokens evaluated to zero. The bug has been
+ fixed, and up to 9 tokens are now accepted. But it is simpler to use
+ `\the\numexpr` prefix and not to worry about the token count... The
+ ending `\relax` is now un-needed.
+
+
`1.2k (2017/01/06)`
----
@@ -333,13 +400,14 @@ Makefile.mk.</div>
### Incompatible changes
- - some macros which had been marked as deprecated are removed (they are
- available under different names): `\xintifTrue`, `\xintifTrueFalse`,
- `\xintQuo`, `\xintRem`, `\xintquo`, `\xintrem`.
-
- `\xintDecSplit` second argument must have no sign (former code
replaced it with its absolute value, a sign now may cause an error.)
+### Removed
+
+ - deprecated macros `\xintifTrue`, `\xintifTrueFalse`, `\xintQuo`,
+ `\xintRem`, `\xintquo`, `\xintrem`.
+
### Improvements and new features
- **xintkernel**: `\xintLength` is faster. New macros:
@@ -632,6 +700,14 @@ Makefile.mk.</div>
`1.2 (2015/10/10)`
----
+### Removed
+
+ - the macros `\xintAdd`, `\xintSub`, `\xintMul`, `\xintMax`,
+ `\xintMin`, `\xintMaxof`, `\xintMinof` are removed from package
+ **xint**, and only exist in the versions from **xintfrac**. With only
+ **xintcore** or **xint** loaded, one _must_ use `\xintiiAdd`,
+ `\xintiiSub`, ..., or `\xintiAdd`, `\xintiSub`, etc...
+
### Improvements and new features
- the basic arithmetic implemented in **xintcore** has been entirely
@@ -656,11 +732,6 @@ Makefile.mk.</div>
inside `\xintfloatexpr` maps to this new macro rather than to the
exact factorial as used by `\xintexpr` and `\xintiiexpr`.
- - the macros `\xintAdd`, `\xintSub`, ..., now require package
- **xintfrac**. With only **xintcore** or **xint** loaded, one _must_
- use `\xintiiAdd`, `\xintiiSub`, ..., or `\xintiAdd`, `\xintiSub`,
- etc...
-
- there is more flexibility in the parsing done by the macros from
**xintfrac** on fractional input: the decimal parts of both the
numerator and the denominator may arise from a separate expansion via
@@ -756,20 +827,34 @@ Makefile.mk.</div>
`N` will end up as is in a `\numexpr`, it is not parsed by the
`\xintexpr`-ession scanner),
- - although `&` and `|` are still available as Boolean operators the
- use of `&&` and `||` is strongly recommended. The single
- letter operators might be assigned some other meaning in later releases
- (bitwise operations, perhaps). Do not use them.
-
- in earlier releases, place holders for `\xintNewExpr` could either
be denoted `#1`, `#2`, ... or also `$1`, `$2`, ...
Only the usual `#` form is now accepted and the special cases previously
treated via the second form are now managed via a `protect(...)` function.
+### Removed
+
+ - `\xintnumexpr`, `\xintthenumexpr`, `\xintNewNumExpr`: use
+ `\xintiexpr`, `\xinttheiexpr`, `\xintNewIExpr`.
+
+### Deprecated
+
+ - `\xintDivision`, `\xintQuo`, `\xintRem`: use `\xintiDivision`,
+ `\xintiQuo`, `\xintiRem`.
+
+ - `\xintMax`, `\xintMin`, `\xintAdd`, `\xintSub`, `\xintMul`
+ (**xint**): their usage without **xintfrac** is deprecated; use
+ `\xintiMax`, `\xintiMin`, `\xintiAdd`, `\xintiSub`, `\xintiMul`.
+
+ - the `&` and `|` as Boolean operators in `xintexpr`-essions are
+ deprecated in favour of `&&` and `||`. The single letter operators
+ might be assigned some other meaning in some later release (bitwise
+ operations, perhaps). Do not use them.
+
### Improvements and new features
* new package **xintcore** has been split off **xint**. It contains the
- core arithmetic macros. It is loaded by package **bnumexpr**,
+ core arithmetic macros (it is loaded by LaTeX package **bnumexpr**),
* neither **xint** nor **xintfrac** load **xinttools**. Only
**xintexpr** does,
@@ -1009,9 +1094,9 @@ Makefile.mk.</div>
optimized to deal only with (long) integers, `/` does a euclidean
quotient.
- * `\xintnumexpr`, `\xintthenumexpr`, `\xintNewNumExpr` are renamed,
- respectively, `\xintiexpr`, `\xinttheiexpr`, `\xintNewIExpr`. The
- earlier denominations are kept but to be removed at some point.
+ * *deprecated*: `\xintnumexpr`, `\xintthenumexpr`, `\xintNewNumExpr` are
+ renamed, respectively, `\xintiexpr`, `\xinttheiexpr`, `\xintNewIExpr`. The
+ earlier denominations are kept but are to be removed at some point.
* it is now possible within `\xintexpr...\relax` and its variants to
use count, dimen, and skip registers or variables without
@@ -1056,6 +1141,8 @@ Makefile.mk.</div>
the `[0]`'s which were supposed to have been removed since release
`1.09b`.
+ * *deprecated*: `\xintifTrueFalse`, `\xintifTrue`; use `\xintifTrueAelseB`.
+
`1.09h (2013/11/28)`
----
@@ -1174,7 +1261,7 @@ Makefile.mk.</div>
* (**xintexpr**) added `bool` and `togl` to the `\xintexpr` syntax;
also added `\xintboolexpr` and `\xintifboolexpr`.
- * added `\xintNewNumExpr` (now `\xintNewIExpr` and `\xintNewBoolExpr`),
+ * added `\xintNewNumExpr`.
* the factorial `!` and branching `?`, `:`, operators (in
`\xintexpr...\relax`) have now less precedence than a function
@@ -2095,10 +2182,10 @@ dvipdfmx CHANGES.dvi
}
{}
{\noindent
- \llap{\makebox[\margegauchetoc][l]{\ttzfamily\bfseries\etoclink
+ \etocifnumbered{\llap{\makebox[\margegauchetoc][l]{\ttzfamily\bfseries\etoclink
{\ifinmanualmaintoc\expandafter\textcolor\sectioncouleur
{\normalfont\bfseries\ETOCsectionnumber}\fi
- .\expandafter\gobbletodot\etocthenumber}}}%
+ .\expandafter\gobbletodot\etocthenumber}}}}{\kern-\margegauchetoc}%
\strut\etocname\nobreak
\unless\ifinmanualmaintoc\leaders\etoctoclineleaders\fi
\hfill\nobreak
@@ -2119,6 +2206,8 @@ dvipdfmx CHANGES.dvi
\strut\makebox[\MARGEPAGENO][r]{\small\etocpage}\endgraf }
{\endgroup }%
+\etocsetlevel{table}{6}
+
\makeatother
\addtocontents{toc}{\protect\hypersetup{hidelinks}}
@@ -2150,25 +2239,25 @@ dvipdfmx CHANGES.dvi
% Ajouté le 9 mars 2016
-\DeclareFontShape{T1}{newtxttb}{m}{sc}{ %cap & small cap
+\DeclareFontShape{T1}{newtxttb}{m}{sc}{%cap & small cap
<-> s*[\newtxtt@scale]newtxttscbq
}{}
-\DeclareFontShape{T1}{newtxttb}{b}{sc}{ %bold cap & small cap
+\DeclareFontShape{T1}{newtxttb}{b}{sc}{%bold cap & small cap
<-> s*[\newtxtt@scale]newtxbttscbq
}{}
-\DeclareFontShape{T1}{newtxttb}{b}{sl}{ %bold slanted
+\DeclareFontShape{T1}{newtxttb}{b}{sl}{%bold slanted
<-> s*[\newtxtt@scale]newtxbttslbq
}{}
-\DeclareFontShape{T1}{newtxttb}{b}{it}{ %bold italic
+\DeclareFontShape{T1}{newtxttb}{b}{it}{%bold italic
<-> ssub * newtxttb/b/sl%
}{}
-\DeclareFontShape{T1}{newtxttb}{bx}{sc}{ %bold extended cap & small cap
+\DeclareFontShape{T1}{newtxttb}{bx}{sc}{%bold extended cap & small cap
<-> ssub * newtxttb/b/sc%
}{}
-\DeclareFontShape{T1}{newtxttb}{bx}{sl}{ %bold extended slanted
+\DeclareFontShape{T1}{newtxttb}{bx}{sl}{%bold extended slanted
<-> ssub * newtxttb/b/sl%
}{}
-\DeclareFontShape{T1}{newtxttb}{bx}{it}{ %bold extended italic
+\DeclareFontShape{T1}{newtxttb}{bx}{it}{%bold extended italic
<-> ssub * newtxttb/b/sl%
}{}
@@ -2176,40 +2265,40 @@ dvipdfmx CHANGES.dvi
\DeclareEncodingSubset{TS1}{newtxttb}{0}
\DeclareFontFamily{TS1}{newtxttb}{\hyphenchar\font\m@ne}
-\DeclareFontShape{TS1}{newtxttb}{m}{n}{ %medium
+\DeclareFontShape{TS1}{newtxttb}{m}{n}{%medium
<-> s*[\newtxtt@scale]tcxtt%
}{}
-\DeclareFontShape{TS1}{newtxttb}{m}{sc}{ %cap & small cap
+\DeclareFontShape{TS1}{newtxttb}{m}{sc}{%cap & small cap
<->ssub * newtxttb/m/n%
}{}
-\DeclareFontShape{TS1}{newtxttb}{m}{sl}{ %slanted
+\DeclareFontShape{TS1}{newtxttb}{m}{sl}{%slanted
<-> s*[\newtxtt@scale]tcxttsl%
}{}
-\DeclareFontShape{TS1}{newtxttb}{m}{it}{ %italic
+\DeclareFontShape{TS1}{newtxttb}{m}{it}{%italic
<->ssub * newtxttb/m/sl%
}{}
-\DeclareFontShape{TS1}{newtxttb}{b}{n}{ %bold
+\DeclareFontShape{TS1}{newtxttb}{b}{n}{%bold
<-> s*[\newtxtt@scale]tcxbtt%
}{}
-\DeclareFontShape{TS1}{newtxttb}{b}{sc}{ %bold cap & small cap
+\DeclareFontShape{TS1}{newtxttb}{b}{sc}{%bold cap & small cap
<->ssub * newtxttb/b/n%
}{}
-\DeclareFontShape{TS1}{newtxttb}{b}{sl}{ %bold slanted
+\DeclareFontShape{TS1}{newtxttb}{b}{sl}{%bold slanted
<-> s*[\newtxtt@scale]tcxbttsl%
}{}
-\DeclareFontShape{TS1}{newtxttb}{b}{it}{ %bold italic
+\DeclareFontShape{TS1}{newtxttb}{b}{it}{%bold italic
<->ssub * newtxttb/b/sl%
}{}
-\DeclareFontShape{TS1}{newtxttb}{bx}{n}{ %bold extended
+\DeclareFontShape{TS1}{newtxttb}{bx}{n}{%bold extended
<->ssub * newtxttb/b/n%
}{}
\DeclareFontShape{TS1}{newtxttb}{bx}{sc}{ %bold extended cap & small cap
<->ssub * newtxttb/b/sc%
}{}
-\DeclareFontShape{TS1}{newtxttb}{bx}{sl}{ %bold extended slanted
+\DeclareFontShape{TS1}{newtxttb}{bx}{sl}{%bold extended slanted
<->ssub * newtxttb/b/sl%
}{}
-\DeclareFontShape{TS1}{newtxttb}{bx}{it}{ %bold extended italic
+\DeclareFontShape{TS1}{newtxttb}{bx}{it}{%bold extended italic
<->ssub * newtxttb/b/it%
}{}
@@ -2276,6 +2365,8 @@ pdfkeywords={Expansion, arithmetic, TeX},%
pdfstartview=FitH,%
pdfpagemode=UseOutlines}
+\usepackage{hypcap}
+
\ifnum\dosourcexint=1
\hypersetup{pdftitle={The xint bundle source code}}
\fi
@@ -2577,7 +2668,21 @@ pdfpagemode=UseOutlines}
% --- \lverb
% Définition de \lverb
-\makeatletter
+% Has become more complicated for 1.2l
+\makeatletter\catcode`_ 11
+{\catcode32\active%
+\gdef\myobeyspaces{\catcode32\active\def {\leavevmode\kern\fontcharwd\font`X}}}
+\def\lverbpercent {\catcode32\active\lverbpercent_a}%
+\def\lverbpercent_a #1{%
+ \if\XINT_sptoken\detokenize{#1}\xint_dothis{\catcode32 10 }\fi
+ \if-\detokenize{#1}\xint_dothis{\par #1}\fi
+ \if(\detokenize{#1}\xint_dothis{\par\bgroup\myobeyspaces\obeylines}\fi
+ \if:\detokenize{#1}\xint_dothis{}\fi
+ \if)\detokenize{#1}\xint_dothis{\egroup\everypar{\hskip-\parindent\everypar{}}}\fi
+ \ifx#1\lverbpercent\xint_dothis{\catcode32 10 \par #1}\fi
+ \xint_orthat{\catcode32 10 #1}%
+}
+\catcode`_ 8
\long\def\lverb {%
\relax\par\smallskip\noindent\null
\begingroup
@@ -2586,7 +2691,9 @@ pdfpagemode=UseOutlines}
\let\do\do@noligs \verbatim@nolig@list
\let\do\@makeother \dospecials
\def\PrivateObelus{\par\noindent\textdiv}%
- \catcode32 10 \catcode`\% 9 \catcode`\& 14 \catcode`\$ 0
+ \catcode32 10 \catcode`\& 14 \catcode`\$ 0
+ \catcode`\% \active
+ \begingroup\lccode`\~`\%\lowercase{\endgroup\let~\lverbpercent}%
\MicroFont % sera donc en couleur.
\@lverb
}
@@ -2926,6 +3033,28 @@ pdfpagemode=UseOutlines}
\fi
\tableofcontents
+\begingroup\makeatletter
+\etocsetlevel{table}{0}
+\etocsetstyle{table}
+ {}
+ {\normalfont}
+ {%\SKIPSECTIONINTERSPACE
+ \rightskip \MARGEPAGENO\relax
+ \parfillskip -\MARGEPAGENO\relax
+ \leftskip \z@skip
+ \noindent\strut Table of \etocname
+ \nobreak\leaders\etoctoclineleaders\hfill\nobreak\strut
+ \makebox[\MARGEPAGENO][r]{\etocpage}\par
+ }%
+ {}%
+\etocsettagdepth{description}{table}
+\etocsettagdepth{macros}{none}
+\etocsettagdepth{implementation}{none}
+\etocsettocstyle{}{}
+\smallskip
+\tableofcontents
+\endgroup
+
\etocignoredepthtags
\etocmulticolstyle [1]{%
\phantomsection% \section* {Contents}
@@ -3701,9 +3830,6 @@ documentation are not hard-coded in the source file of this document but are
obtained via the expansion of the package macros during the \TeX{}
run.%
%
-\footnote{The CPU of my computer hates me for all those re-compilations
- after changing a single letter in the \LaTeX{} source, which require each
- time to do all the zillions of evaluations contained in this document\dots}
@@ -3755,27 +3881,36 @@ file with name |README.md|. Further help and options will be found therein.
This is release \expandafter|\xintbndlversion| of \expandafter|\xintbndldate|.
-The \xintfracname floating point macros since |1.2f| round their arguments to
-the target precision |P| before further processing. This rounding is now exact
-(aka correct) in all cases, even with fractions having long numerators and
-denominators.
-This change has little influence on float expressions, as the
-\csbxint{floatexpr} parser handles there the |/| symbol as an operator hence
-it does not (except for special constructs) get to see fractions as such.
-Half-integer powers |A^x| (only available in float expressions, not via
-macros) proceed by an integer power and then a square-root extraction: the
-|1.2f| implementation did the latter on an already rounded value, |1.2k| keeps
-some of the guard digits to make the computed value |Z| closer to the exact
-one: a difference of less than |0.52 ulp(Z)| is guaranteed in all cases.
-Macro |\xintnewdummy| is made a public one, it serves to declare additional
-letters as dummy variables in expressions. This is for Unicode engines,
-mainly, as all Latin letters are already predefined to act as such.
-See |CHANGES.html| or |CHANGES.pdf| for more (|texdoc --list xint| or on the
-internet via
+The underscore |_| is accepted inside the expression parsers as an ignored
+digit separator\footnote{The space character has already always been accepted
+ in this rôle by the \xintexprname parsers, contrarily to the
+ situation inside |\numexpr|.}, for long numbers:
+\begin{everbatim*}
+\xinttheiiexpr 123_456_789^3\relax\newline
+\xintthefloatexpr \xintexpr 123_456_789.1111_1111_1111^-3\relax \relax
+\end{everbatim*}
+
+It is not accepted in the arguments of the macros
+from \xintfracname or \xintname though, only in expressions from
+\xintexprname.
+
+Macro usage with non properly terminated inputs such as
+|\xintiiAdd{\the\numexpr1}{2}| or |\xintDecToHex{\number\mathcode`\-}| caused
+crashes. This has been fixed: the arithmetic macros of \xintcorename, the
+macros of \xintfracname, those of \xintgcdname and \xintbinhexname have been
+made robust against such inputs. Some routines of \xintcorename principally
+destined to internal usage such as \csbxint{Inc} remain incompatible though
+(to avoid adding some overhead; check |sourcexint.pdf| for details).
+
+Some refactoring took place in the sources of \xintcorename for efficiency
+gains. Some improvements in the user documentation and the code comments.
+
+See |CHANGES.html| or |CHANGES.pdf| for more information (either |texdoc
+--list xint| or on the internet via
\href{http://mirrors.ctan.org/macros/generic/xint/CHANGES.html}{this link}.)
@@ -3813,29 +3948,31 @@ internet via
\def\@floatboxreset{\@setminipage}% faudra contrôler celui-là
\makeatother
\begin{table}[htbp]\ht\strutbox12pt\dp\strutbox5pt
+\capstart
\centering\begin{tabular}{|c|p{.5\textwidth}|}
\hline
Precedence&``Operators'' at this level\strut\\
\hline\hline
\mylink{$\infty$}&
- functions and variables, decimal mark |.|, |e| and |E| of scientific notation, hexadecimal prefix |"|.\strut\\\hline
+ functions and variables, decimal mark |.|, |e| and |E| of scientific notation, hexadecimal prefix |"|\strut\\\hline
\mylink{$10$}& postfix |!| (factorial) and conditional branching operators |?| and |??| \strut\\\hline
\mylink{$=$}& minus sign |-| as unary operator acquires the
- precedence level of the previous infix operator.\strut\\\hline
- \mylink{$9$}&|^|, |**| and list operators |^[|, |**[|, |]^|, |]**|.\strut\\\hline
- \mylink{$8$}&tacit multiplication.\strut\\\hline
- \mylink{$7$}&|*|, |/|, and list operators |*[|, |/[|, |]*|, |]/|.\strut\\\hline
- \mylink{$6$}&|+|, |-|, and list operators |+[|, |-[|, |]+|, |]-|.\strut\\\hline
- \mylink{$5$}&|<|, |>|, |==| (or |=|), |<=|, |>=|, |!=|.\strut\\\hline
- \mylink{$4$}&|&&| and its equivalent |'and'|.\strut\\\hline
- \mylink{$3$}&\verb+||+, its equivalent |'or'|, and |'xor'|; also the
- sequence generators |..|, |..[|, |]..|, and the Python slicer |:|.\strut\\\hline
- \mylink{$2$}& the comma |,|.\strut\\\hline
+ precedence level of the previous infix operator\strut\\\hline
+ \mylink{$9$}&|^|, |**| and list operators |^[|, |**[|, |]^|, |]**|\strut\\\hline
+ \mylink{$8$}&tacit multiplication\strut\\\hline
+ \mylink{$7$}&|*|, |/|, |//|, |/:| (aka |'mod'|), and list operators |*[|, |/[|, |]*|, |]/|\strut\\\hline
+ \mylink{$6$}&|+|, |-|, and list operators |+[|, |-[|, |]+|, |]-|\strut\\\hline
+ \mylink{$5$}&|<|, |>|, |==| (or |=|), |<=|, |>=|, |!=|\strut\\\hline
+ \mylink{$4$}&|&&| and its equivalent |'and'|\strut\\\hline
+ \mylink{$3$}&\verb+||+ (aka |'or'|), and |'xor'|; also the
+ sequence generators |..|, |..[|, |]..|, and the Python slicer |:|\strut\\\hline
+ \mylink{$2$}& the comma |,|\strut\\\hline
\mylink{$1$}& the parentheses |(|, |)|, list brackets |[|, |]|, and semi-colon |;| in an |iter| or
- |rseq|.\strut\\\hline
+ |rseq|\strut\\\hline
\end{tabular}
- \caption{Precedence levels}
+ \caption{Precedence levels (click on levels)}
\label{tab:precedences}
+\addcontentsline {toc}{table}{Precedence levels of operators in expressions}
\end{table}
The \autoref{tab:precedences} is hyperlinked to the more detailed discussion
@@ -3959,13 +4096,19 @@ when using variables.
not \xinttheiexpr 100/(50/2)\relax.
%
\endgroup
- Inside \csbxint{iiexpr}, |/| does \emph{rounded} division.
+
+ Also the truncated division |//| and modulo |/:| (equivalently |'mod'|,
+ quotes mandatory).
Also at this level the list operators |*[|, |/[|, |]*| and |]/|.
- Also the truncated division |//| and modulo |/:| (equivalently |'mod'|,
- quotes mandatory). Operators all at the same level of precedence are
- left-associative. Apply parentheses for disambiguation.
+ In an \csbxint{iiexpr}-ession, |/| does \emph{rounded} division, to behave
+ like the |/| of |\numexpr|.
+
+ Infix operators all at the same level of precedence are
+ left-associative.\footnote{i.e. the first two operands are operated upon
+ first.}
+ Apply parentheses for disambiguation.
\begin{everbatim*}
\xinttheexpr 100000//13, 100000/:13, 100000 'mod' 13, trunc(100000/13,10),
trunc(100000/:13/13,10)\relax
@@ -4029,29 +4172,31 @@ when using variables.
\subsection{Built-in functions}
+See \autoref{tab:functions} whose elements are hyperlinked to the
+corresponding definitions.
+
Functions are at the same top level of priority. All functions even
|?| and |!| (as prefix) require parentheses around their arguments.
\begin{table}[htbp]
+\capstart
\centering
\cnta0
\begin{tabular}{|c|c|c|c|c|c|}
\hline
- \xintFor #1 in {abs, sgn, num, reduce, float, round, trunc, floor, ceil,
- frac, sqr, sqrt, sqrtr, factorial, binomial, pfactorial, mod, quo, rem, gcd,
- lcm, max, min, |`+`|, |`*`|, ?, !, not, all, any, xor, if, ifsgn, even, odd,
- first, last, reversed, len, subs, add, mul, seq, rseq, iter, rrseq, iterr,
- bool, togl, qint, qfrac, qfloat}\do
+ \xintFor #1 in {!, ?, |`*`|, |`+`|, abs, add, all, any, binomial, bool,
+ ceil, even, factorial, first, float, floor, frac, gcd, if, ifsgn, iter,
+ iterr, last, lcm, len, max, min, mod, mul, not, num, odd, pfactorial,
+ qfloat, qfrac, qint, quo, reduce, rem, reversed, round, rrseq, rseq, seq,
+ sgn, sqr, sqrt, sqrtr, subs, togl, trunc, xor}\do
{\hyperlink{\detokenize{builtinfunc-#1}}{#1}\global\advance\cnta1
- \ifnumequal{\cnta}{6}{\global\cnta0 \\\hline}{&}}%
- \ifnumgreater{\cnta}{0}{\xintFor*#1in{\xintSeq[1]{\cnta}{4}}\do{&}\\\hline}{}%
+ \ifnumequal{\cnta}{4}{\global\cnta0 \\\hline}{&}}%
+% \ifnumgreater{\cnta}{0}{\xintFor*#1in{\xintSeq[1]{\cnta}{4}}\do{&}\\\hline}{}%
\end{tabular}
-\caption{Functions}\label{tab:functions}
+\caption{Functions (click on names)}\label{tab:functions}
+\addcontentsline{toc}{table}{Functions in expressions}
\end{table}
-See \autoref{tab:functions} whose elements are hyperlinked to the
-corresponding definitions.
-
Miscellaneous notes:
\begin{itemize}[nosep]
\item \fbox{|gcd| and |lcm| require explicit loading of \xintgcdname},
@@ -4260,15 +4405,29 @@ Recall that this is NOT done automatically, for example when adding fractions.
\end{description}
\item[functions with one mandatory and a second but optional argument:]\mbox{}
\begin{description}[listparindent=\leftmarginiii]
- \myitem{round} Rounds to a fixed point number with the given number of digits
- after the decimal mark. For example
+ \myitem{round} Rounds its first argument to a fixed point number, having a
+ number of digits
+ after decimal mark given by the second argument. For example
|round(-2^9/3^5,12)=|\dtt{\xinttheexpr round(-2^9/3^5,12)\relax.}
- \myitem{trunc} Truncates to a fixed point number with the given number of
- digits after the decimal mark. For example
+ \myitem{trunc} Truncates its first argument to a fixed point number, having
+ a number of digits
+ after decimal mark given by the second argument. For example
|trunc(-2^9/3^5,12)=|\dtt{\xinttheexpr trunc(-2^9/3^5,12)\relax.}
- \myitem{float} Rounds to a floating point number with a mantissa having the given number of
- digits. For example
+ \myitem{float} Rounds its first argument to a floating point number, with a
+ precision given by the second argument.
|float(-2^9/3^5,12)=|\dtt{\xinttheexpr float(-2^9/3^5,12)\relax.}
+
+ % AUCTeX EXTREMEMENT PENIBLE AVEC L'INDENTATION FORCEE SOUS M-q
+
+ Note for this example and the earlier ones that when the surrounding
+ parser is \csbxint{floatexpr}|...\relax| the fraction first argument (here
+ |2^9/3^5|) will already have been computed as floating point number (with
+ numerator and denominator handled separately first), even before the
+ second argument is seen and a fortiori before the |round|, |trunc| or
+ |float| is executed. The general float precision is the one governing
+ these initial steps. To avoid that, use |\xintexpr2^9/3^5\relax| wrapper.
+ Then the rounding or truncation will be applied on the exact fraction.
+
\item[sqrt] in \csa{xintexpr}|...\relax| and \csa{xintfloatexpr}|...\relax|
it achieves the precision given by the optional second argument. For
legacy reasons the |sqrt| function in \csa{xintiiexpr} \emph{truncates}
@@ -4790,13 +4949,27 @@ and let it be known to the parsers of \xintexprname.
\end{everbatim*}
Legal variable names are composed of letters, digits, |@| and |_| signs.
-They can not start with a digit. They may start with |@| or |_|. Currently
-|@|, |@1|, |@2|, |@3|, and |@4| are reserved because they have special
-meanings for use in iterations. The |@@|, |@@@|, |@@@@| are also reserved but
-are technically functions, not variables. Thus a user may possibly use |@@| as
+\begin{itemize}[nosep]
+\item the first character must not be a digit,
+\item it may be a |@| or |_| but such variable names may be used either now or
+ in the future by \xintname for special purposes, hence should be avoided:
+ \begin{itemize}[nosep]
+ \item currently |@|, |@1|, |@2|, |@3|, and |@4| are reserved because they
+ have special meanings for use in iterations.
+ \item the |@@|, |@@@|, |@@@@| are also reserved but
+are technically functions, not variables: a user may possibly define |@@| as
a variable name, but if it is followed by parentheses, the function
interpretation will be applied, rather than the variable interpretation
followed by a tacit multiplication.
+ \item since 1.2l, the underscore |_| may be used as separator of digits in
+ long numbers.
+ Hence a variable whose name starts with it will not play well with the
+ mechanism of tacit multiplication of variables by numbers: the underscore
+ will be removed from input stream by the number scanner, thus creating
+ an undefined or wrong variable name, or none at all if the variable
+ name was an initial |_| followed by digits.
+ \end{itemize}
+\end{itemize}
|x_1x| is a licit variable name, as well as |x_1x_| and |x_1x_2| and |x_1x_2y|
etc... hence we can not rely on tacit multiplication being applied to
@@ -5280,7 +5453,11 @@ variants:
to \dtt{\detokenize\expandafter{\the\numexpr 7 + 3 5\relax}\unskip}, whereas
|\xintthe\xintiiexpr 7 + 3 5\relax| expands (in two steps) to
\dtt{\detokenize\expandafter\expandafter\expandafter {\xintthe\xintiiexpr 7
- + 3 5\relax}}.
+ + 3 5\relax}}.%
+%
+\footnote {Since |1.2l| one can also use the underscore |_| to separate digits
+for readability of long numbers.}
+
\item Inside an |\edef|, expressions |\xintiiexpr...\relax| get fully
evaluated, but to a private format which needs the prefix \csbxint{the} to
get printed or used as arguments to some macros; on the other hand
@@ -6157,22 +6334,30 @@ register |\mycountA| or |\count 255| is admissible as numerator or also as
denominator, with no need to be prefixed by |\the| or |\number|. It is possible
to have as argument an algebraic expression as would be acceptable by a
|\numexpr...\relax|, under this condition: \emph{each of the numerator and
- denominator is expressed with at most \emph{eight}
+ denominator is expressed with at most \emph{nine}
tokens}.%
%
-\footnote{Attention! there is no problem with a \LaTeX{}
- \csa{value}\texttt{\{countername\}} if if comes first, but if it comes later
- in the input it will not get expanded, and braces around the name will be
- removed and chaos\IMPORTANT{} will ensue inside a \csa{numexpr}. One should
- enclose the whole input in \csa{the}\csa{numexpr}|...|\csa{relax} in such
- cases.}
+\footnote{The |1.2k| and earlier versions manual claimed up to 8
+ tokens, but low-level TeX error arose if the |\numexpr...\relax| occupied
+ exactly 8 tokens \emph{and} evaluated to zero. With |1.2l| and later, up to
+ 9 tokens are always safe and one may even drop the ending |\relax|. But
+ well, all these explanations are somewhat silly because prefixing by |\the|
+ or |\number| is always working with arbitrarily many tokens.}
%
-The slash for rounded division in a |\numexpr| should be written with
+%
+\footnote{Attention! in the \LaTeX{} context a
+ \csa{value}\texttt{\{countername\}} will behave ok only if it is first in
+ the input, if not it will not get expanded, and braces around the name will
+ be removed and chaos\IMPORTANT{} will ensue inside a \csa{numexpr}. One
+ should enclose the whole input in \csa{the}\csa{numexpr}|...|\csa{relax} in
+ such cases.}
+%
+Important: a slash for rounded division in a |\numexpr| should be written with
braces |{/}| to not be confused with the \xintfracname delimiter between
-numerator and denominator (braces will be removed internally). Example:
+numerator and denominator (braces will be removed internally and the slash
+will count for one token). Example:
|\mycountA+\mycountB{/}17/1+\mycountA*\mycountB|, or |\count 0+\count
-2{/}17/1+\count 0*\count 2|, but in the latter case the numerator has the
-maximal allowed number of tokens (the braced slash counts for only one).
+2{/}17/1+\count 0*\count 2|.
%
\leftedline{|\cnta 10 \cntb 35 \xintRaw
{\cnta+\cntb{/}17/1+\cnta*\cntb}|\dtt{->\cnta 10 \cntb 35 \xintRaw
@@ -6560,30 +6745,65 @@ others are more annoying as they may pass through unsignaled.
\subsection{Error messages}
-In situations such as division by zero, the package will insert in the
-\TeX{} processing an undefined control sequence (we copy this method
-from the |bigintcalc| package). This will trigger the writing to the log
-of a message signaling an undefined control sequence. The name of the
-control sequence is the message. The error is raised \emph{before} the
-end of the expansion so as to not disturb further processing of the
-token stream, after completion of the operation. Generally the problematic
-operation will output a zero. Possible such error message control
-sequences:
+In situations such as division by zero, the \TeX{} run will be interrupted
+with some error message. The user is asked to hit the RETURN key thrice, which
+will display additional information.\CHANGED{1.2l} In non-interactive
+|nonstopmode| the \TeX{} run goes on uninterrupted and the error data will be
+found in the compilation log.
+
+Here is an example interactive run:
+\begin{everbatim}
+! Undefined control sequence.
+<argument> \ ! /
+ DivisionByZero (hit <RET> thrice)
+l.11 \xintiiDivision{123}{0}
+
+?
+! Undefined control sequence.
+<argument> \ ! /
+ Division of 123 by 0
+l.11 \xintiiDivision{123}{0}
+
+?
+! Undefined control sequence.
+<argument> \ ! /
+ next: {0}{0}
+l.11 \xintiiDivision{123}{0}
+
+?
+[1] (./temptest.aux) )
+Output written on temptest.dvi (1 page, 216 bytes).
+Transcript written on temptest.log.
+\end{everbatim}
+
+This is an experimental feature, which is in preparation for next major
+release.%
+%
+\footnote{The related macros checking or resetting error flags are implemented
+ in embryonic form but no user interface is provided with |1.2l| release.}
+%
+For the good functioning of this the macro with the weird appearance
+{\catcode`/ 11 \catcode`! 11 \catcode32 11 |\ ! /|} (yes, this is a single
+control sequence) must be left undefined. I trust it will be |;-)|.%
+%
+\footnote{The implementation is cloned from \LaTeX3, the
+ {\catcode`/ 11 \catcode`! 11 \catcode32 11 |\ ! /|} was chosen for its
+ shortness.}
+
+
+The expression parsers are at |1.2l| still using a slightly less evolved
+method which lets \TeX{} display an undefined control sequence name giving
+some indication of the underlying problem (we copied this method from the
+|bigintcalc| package). The name of the control sequence is the message.
+% The
+% error is raised \emph{before} the end of the expansion so as to not disturb
+% further processing of the token stream, after completion of the operation.
+% Generally the problematic operation will output a zero. Possible such error
+% message control sequences:
\begin{multicols}{2}\parskip0pt\relax
\begin{everbatim}
-\xintError:ArrayIndexIsNegative
-\xintError:ArrayIndexBeyondLimit
-\xintError:FactorialOfNegative
-\xintError:TooBigFactorial
-\xintError:DivisionByZero
-\xintError:NaN
-\xintError:FractionRoundedToZero
-\xintError:NotAnInteger
-\xintError:ExponentTooBig
-\xintError:RootOfNegative
-\xintError:NoBezoutForZeros
\xintError:ignored
\xintError:removed
\xintError:inserted
@@ -6594,41 +6814,49 @@ sequences:
\end{multicols}
-There are now a few more if for example one attempts to use |\xintAdd| without
-having loaded \xintfracname (with only \xintname loaded, only |\xintiAdd| and
-|\xintiiAdd| are legal) or to use deprecated macros.
+Some additional errors are raised when using deprecated macros (or trying to
+invoke \csbxint{Add} with only \xintname.sty loaded for example.)
\begin{multicols}{2}\parskip0pt\relax
\begin{everbatim}
-\Did_you_mean_iiAbs?or_load_xintfrac
-\Did_you_mean_iiOpp?or_load_xintfrac
-\Did_you_mean_iiAdd?or_load_xintfrac
-\Did_you_mean_iiSub?or_load_xintfrac
-\Did_you_mean_iiMul?or_load_xintfrac
-\Did_you_mean_iiPow?or_load_xintfrac
-\Did_you_mean_iiSqr?or_load_xintfrac
-\Did_you_mean_iiMax?or_load_xintfrac
-\Did_you_mean_iiMin?or_load_xintfrac
-\Did_you_mean_iMaxof?or_load_xintfrac
-\Did_you_mean_iMinof?or_load_xintfrac
-\Did_you_mean_iiSum?or_load_xintfrac
-\Did_you_mean_iiPrd?or_load_xintfrac
-\Did_you_mean_iiPrdExpr?or_load_xintfrac
-\Did_you_mean_iiSumExpr?or_load_xintfrac
+\Did_you_mean_iiAbs?or_load_xintfrac!
+\Did_you_mean_iiOpp?or_load_xintfrac!
+\Did_you_mean_iiAdd?or_load_xintfrac!
+\Did_you_mean_iiSub?or_load_xintfrac!
+\Did_you_mean_iiMul?or_load_xintfrac!
+\Did_you_mean_iiPow?or_load_xintfrac!
+\Did_you_mean_iiSqr?or_load_xintfrac!
+\Did_you_mean_iiMax?or_load_xintfrac!
+\Did_you_mean_iiMin?or_load_xintfrac!
+\Did_you_mean_iMaxof?or_load_xintfrac!
+\Did_you_mean_iMinof?or_load_xintfrac!
+\Did_you_mean_iiSum?or_load_xintfrac!
+\Did_you_mean_iiPrd?or_load_xintfrac!
\Removed!use_xintiQuo_or_xintiiQuo!
\Removed!use_xintiRem_or_xintiiRem!
\end{everbatim}
\end{multicols}
-One should set |\errorcontextlines| to at least |2| to get from \LaTeX\
-more meaningful error messages. Errors occuring during the parsing of
-|\xintexpr-essions| try to provide helpful information about the offending
-token.
-
-Release |1.1| employs in some situations delimited macros and there is
-the possibility in case of an ill-formed expression to end up beyond the
-|\relax| end-marker. The errors inevitably arising could then lead to very
-cryptic messages; but nothing unusual or especially traumatizing for the
-daring experienced \TeX/\LaTeX\ user.
+For such type of error sequences one should set |\errorcontextlines| to at
+least |2| to get from \LaTeX\ more context. Errors occuring during the parsing
+of |\xintexpr-essions| try to provide helpful information about the offending
+token. But for the newer |1.2l| type of expandable error messages it is
+already ok with |\errorcontextlines| left at its \LaTeX\ default. Future
+releases of \xintname will presumably use only the newer method.
+
+Some constructs in \xintexprname-essions use delimited macros and there is
+thus possibility in case of an ill-formed expression to end up beyond the
+|\relax| end-marker. Such a situation can also occur from a non-terminated
+|\numexpr|:
+\begin{everbatim}
+\xinttheexpr 3 + \numexpr 5+4\relax followed by some LaTeX code...
+\end{everbatim}
+as the |\numexpr| will swallow the |\relax| whose presence is mandatory for
+|\xinttheexpr|, errors will inevitably arise and may
+lead to very cryptic messages; but nothing unusual or especially traumatizing
+for the daring experienced \TeX/\LaTeX\ user, whose has seen zillions of
+un-helpful error messages already in her daily practice of
+\TeX/\LaTeX.\footnote{not to mention the \LaTeX\ error messages used by
+ Emacs AUC\TeX\ mode also for Plain \TeX\ runs...}
\subsection{Package namespace, catcodes}
@@ -6675,6 +6903,8 @@ un-expandable action).
other and letters have category code letter. Nothing else is assumed.
\end{framed}
+As pointed out in previous section the control sequence {\catcode`/ 11
+ \catcode`! 11 \catcode32 11 |\ ! /|} must be left undefined.
\subsection{Origins of the package}
\label{ssec:origins}
@@ -9429,59 +9659,71 @@ replacement text.
%
defines (without checking if something gets overwritten) the control sequences
on the right of \csa{to} to expand to the successive tokens or braced items
-found one after the other on the left of \csa{to}. It is not expandable.
+located to the left of \csa{to}. \csa{xintAssign} is not an expandable macro.
-A `full' expansion is first applied to the material in front of
-\csa{xintAssign}, which may thus be a macro expanding to a list of braced items.
+\fexpan sion is first applied to the material in front of \csa{xintAssign}
+which is fetched as one argument if it is braced. Then the expansion of this
+argument is examined and successive items are assigned to the macros following
+|\to|. There must be exactly as many macros as items. No check is done. The
+macro assignments are done with removal of one level of brace pairs from each
+item.
+
+After the initial \fexpan sion, each assigned (brace-stripped) item will be
+expanded according to the setting of the optional parameter.
-\xintAssign \xintiiPow {7}{13}\to\SevenToThePowerThirteen
+For example |\xintAssign [e]...| means that all assignments are done using
+|\edef|. With |[f]| the assignments will be made using
+\hyperref[fdef]{\ttfamily\char92fdef}. The default is simply to make the
+definitions with |\def|, corresponding to an empty optional paramter |[]|.
+Possibilities for the optional parameter are: |[], [g], [e], [x], [o], [go],
+[oo], [goo], [f], [gf]|. For example |[oo]| means a double expansion.
+\begin{everbatim*}
\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R
+\meaning\Q\newline
+\meaning\R\newline
+\xintAssign {{\xintiiDivision{1000000000000}{133333333}}}\to\X
+\meaning\X\newline
+\xintAssign [oo]{{\xintiiDivision{1000000000000}{133333333}}}\to\X
+\meaning\X\newline
+\xintAssign \xintiiPow{7}{13}\to\SevenToThePowerThirteen
+\meaning\SevenToThePowerThirteen\par
+\end{everbatim*}
-Special case: if after this initial expansion no brace is found immediately
-after \csa{xintAssign}, it is assumed that there is only one control sequence
-following |\to|, and this control sequence is then defined via
-|\def| to expand to the material between
-\csa{xintAssign} and \csa{to}. Other types of expansions are specified through
-an optional parameter to \csa{xintAssign}, see \emph{infra}.
-%
-\leftedline{|\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R|}
-%
-\leftedline{|\meaning\Q: |\dtt{\meaning\Q}, |\meaning\R:|
- \dtt{\meaning\R}} %
-%
-\leftedline{|\xintAssign \xintiiPow
- {7}{13}\to\SevenToThePowerThirteen|}
-%
-\leftedline{|\SevenToThePowerThirteen|\dtt{=\SevenToThePowerThirteen}}
-%
-\leftedline{(same as |\edef\SevenToThePowerThirteen{\xintiPow {7}{13}}|)}
+Two special cases:
+\begin{itemize}[nosep]
+\item if after this initial expansion no brace is found immediately after
+ \csa{xintAssign}, it is assumed that there is only one control sequence
+ following |\to|, and this control sequence is then defined via |\def| (or
+ what is set-up by the optional parameter) to expand to the material between
+ \csa{xintAssign} and \csa{to}.
+\item if the material between \csa{xintAssign} and |\to| is enclosed in two
+ brace pairs, the first brace pair is removed, then the \fexpan sion is
+ immediately stopped by the inner brace pair, hence \csa{xintAssign} now
+ finds a unique item and thus defines only a single macro to be this item,
+ which is now stripped of the second pair of braces.
+\end{itemize}
+
+
+\emph{Note:} prior to release |1.09j|, |\xintAssign| did an |\edef| by default
+for each item assignment but it now does |\def| corresponding to no or empty
+optional parameter.
+
+It is allowed for the successive braced items to be separated by spaces. They
+are removed during the assignments. But if a single macro is defined (which
+happens if the argument after \fexpan sion does not start with a brace),
+naturally the scooped up material has all intervening spaces, as it is
+considered a
+single item. But an upfront initial space will have been absorbed by \fexpan
+sion.
+\begin{everbatim*}
+\def\X{ {a} {b} {c} {d} }\def\Y { u {a} {b} {c} {d} }
+\xintAssign\X\to\A\B\C\D
+\xintAssign\Y\to\Z
+\meaning\A, \meaning\B, \meaning\C, \meaning\D+++\newline
+\meaning\Z+++\par
+\end{everbatim*}
+As usual successive space characters in input make for a single \TeX\ space token.
-\noindent\csa{xintAssign} admits since |1.09i| an
-optional parameter, for example |\xintAssign [e]...| or |\xintAssign [oo]
-...|. With |[f]| for example the definitions of the macros initially on the
-right of |\to| will be made with \hyperref[fdef]{\ttfamily\char92fdef} which
-\fexpan ds the replacement text. The default is simply to make the
-definitions with |\def|, corresponding to an empty optional paramter |[]|.
-Possibilities: |[], [g], [e], [x], [o], [go], [oo], [goo], [f], [gf]|.
-
-In all cases, recall that |\xintAssign| starts with an \fexpan sion of what
-comes next; this produces some list of tokens or braced items, and the
-optional parameter only intervenes to decide the expansion type to be applied
-then to each one of these items.
-
-\emph{Note:} prior to release |1.09j|, |\xintAssign| did an |\edef| by
-default, but it now does |\def|. Use the optional parameter |[e]| to force use
-of |\edef|.
-
-{\small \emph{Remark:} since |xinttools 1.1c|, \csa{xintAssign} is less picky
- and a stray space right before the |\to| causes no surprises, and the
- successive braced items may be separated by spaces, which will get
- discarded. In case the contents up to |\to| did not start with a brace a
- single macro is defined and it will contain the spaces. Contrarily to the
- earlier version, there is no problem if such contents do contain braces
- after the first non-brace token.
-\par
-}
\subsection{\csbh{xintAssignArray}}\label{xintAssignArray}
@@ -9506,16 +9748,14 @@ successive elements are \csa{myArray}|{1}|, \dots, \csa{myArray}|{M}|.
\dtt{(\Bez3)${}\times{}$\Bez1${}-{}$(\Bez4)${}\times{}$\Bez2${}={}$\Bez5.}
This macro is incompatible with expansion-only contexts.
-\csa{xintAssignArray} admits now an optional
-parameter, for example |\xintAssignArray [e]...|. This means that the
-definitions of the macros will be made with |\edef|. The default is
-|[]|, which makes the definitions with |\def|. Other possibilities: |[],
-[o], [oo], [f]|. Contrarily to \csbxint{Assign} one can not use the |g|
-here to make the definitions global. For this, one should rather do
-|\xintAssignArray| within a group starting with |\globaldefs 1|.
+\csa{xintAssignArray} admits an optional parameter, for example
+|\xintAssignArray [e]| means that the definitions of the macros will be made
+with |\edef|. The empty optional parameter (default) means that definitions
+are done with |\def|. Other possibilities: |[], [o], [oo], [f]|. Contrarily to
+\csbxint{Assign} one can not use the |g| here to make the definitions global.
+For this, one should rather do |\xintAssignArray| within a group starting with
+|\globaldefs 1|.
-Note that prior to release |1.09j| each item (token or braced material) was
-submitted to an |\edef|, but the default is now to use |\def|.
\subsection{\csbh{xintDigitsOf}}\label{xintDigitsOf}
@@ -9674,6 +9914,17 @@ The variant \csa{xintLDg}\etype{\Numf} uses |\xintNum|.
\csa{xintiiAdd} skips the \csbxint{Num} overhead.\etype{ff}
+\subsection{\csbh{xintCmp}, \csbh{xintiiCmp}}
+
+|\xintCmp|\n\m\etype{\Numf\Numf} returns \dtt{1} if |N>M|, \dtt{0} if |N=M|,
+and \dtt{-1} if |N<M|.
+
+\csa{xintiiCmp} skips the \csbxint{Num} overhead.\etype{ff}
+
+\csbxint{Cmp} is re-defined by \xintfracname to accept fractions.
+
+|1.2l| has moved this macro from \xintname to \xintcorename.
+
\subsection{\csbh{xintiSub}, \csbh{xintiiSub}}\label{xintiSub}\label{xintiiSub}
|\xintiSub|\n\m\etype{\Numf\Numf} computes the difference |N-M|.
@@ -9891,29 +10142,22 @@ important background information.
\subsection{\csbh{xintReverseDigits}} \label{xintReverseDigits}
|\xintReverseDigits|\n\etype{f} will reverse the order of the digits of the
-number, preserving an optional upfront minus sign. \csa{xintRev} is the former
-denomination and is kept as an alias to it. Leading zeroes resulting from the
-operation are not removed. Contrarily to \csbxint{ReverseOrder} this macro can
-only be used with digits and it first expands its argument (but beware that
-|-\x| will give an unexpected result as the minus sign immediately stops this
-expansion; one can use |\xintiiOpp{\x}| as argument.)
+number. \csa{xintRev} is the former
+denomination and is kept as an alias. Leading zeroes resulting from the
+operation are not removed. Contrarily to \csbxint{ReverseOrder} this macro
+expands its argument; it is only usable with digit tokens. It does accept a
+leading minus sign which is left upfront in output.
-This macro has been rewritten for |1.2| and is faster for very long inputs.
-It is (almost) not used internally by the \xintcorename code, but the use
-of related routines explains to some extent the higher speed of release |1.2|.
\begingroup
\begin{everbatim*}
\fdef\x{\xintReverseDigits
- {-98765432109876543210987654321098765432109876543210}}\meaning\x\par
+ {98765432109876543210987654321098765432109876543210}}\meaning\x\par
\noindent\fdef\x{\xintReverseDigits {\xintReverseDigits
- {-98765432109876543210987654321098765432109876543210}}}\meaning\x\par
+ {98765432109876543210987654321098765432109876543210}}}\meaning\x\par
\end{everbatim*}
\endgroup
-Notice that the output in this case with its leading zero is not in the strict
-integer format expected by the `|ii|' arithmetic macros.
-
\subsection{\csbh{xintLen}}\label{xintiLen}
|\xintLen|\n\etype{\Numf} returns the length of the number, not counting the
@@ -9939,14 +10183,18 @@ less than circa $2^{31}$, but this is a bit theoretical.
\xinttoolsname. See also \csbxint{Length} from \xintkernelname for counting
tokens (or rather braced groups), more generally.
-\subsection{\csbh{xintCmp}, \csbh{xintiiCmp}}
+\subsection{\csbh{xintCmp}, \csbh{xintiiCmp}}\label{xintiiCmp}
|\xintCmp|\n\m\etype{\Numf\Numf} returns \dtt{1} if |N>M|, \dtt{0} if |N=M|,
-and \dtt{-1} if |N<M|. Extended by \xintfracname to fractions (its output
-naturally still being either |1|, |0|, or |-1|).
+and \dtt{-1} if |N<M|.
\csa{xintiiCmp} skips the \csbxint{Num} overhead.\etype{ff}
+\csbxint{Cmp} is re-defined by \xintfracname to accept fractions.
+
+Since |1.2l| these macros are actually provided by package \xintcorename.sty
+(which is loaded by \xintname).
+
\subsection{\csbh{xintEq}, \csbh{xintiiEq}}\label{xintEq}
|\xintEq|\n\m\etype{\Numf\Numf} returns 1 if |N=M|, 0 otherwise. Extended
@@ -10799,10 +11047,10 @@ This also puts the fraction\etype{\Ff} into its unique irreducible form:
%
This is faster than \csa{xintIrr} for fractions having some big common
factor in the numerator and the denominator.\par
-{\centering |\xintJrr {\xintiPow{\xintiiFac {15}}{3}/\xintiiPrdExpr
-{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}\relax }|\dtt{=%
- \xintJrr {\xintiPow{\xintiiFac {15}}{3}/\xintiiPrdExpr
-{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}\relax }}\par} But to notice the
+{\centering |\xintJrr {\xintiPow{\xintiiFac {15}}{3}/\xintiiPrd
+{{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}}}|\dtt{=%
+ \xintJrr {\xintiPow{\xintiiFac {15}}{3}/\xintiiPrd
+{{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}}}}\par} But to notice the
difference one would need computations with much bigger numbers than in this
example.
Starting with release |1.08|, \csa{xintJrr} does not remove the trailing |/1|
@@ -11274,7 +11522,7 @@ Within an \csbxint{iiexpr}|..\relax| the infix operator |^| is mapped to
\csa{xintPow}.
-\subsection{\csbh{xintSum}}\label{xintSum}\label{xintSumExpr}
+\subsection{\csbh{xintSum}}\label{xintSum}
This\etype{f{$\to$}{\lowast\Ff}} computes the sum of fractions. The output
will now always be in the form |A/B[n]|. The original, for big integers only
@@ -11286,7 +11534,7 @@ will now always be in the form |A/B[n]|. The original, for big integers only
No simplification attempted.
-\subsection{\csbh{xintPrd}}\label{xintPrd}\label{xintPrdExpr}
+\subsection{\csbh{xintPrd}}\label{xintPrd}
TThis\etype{f{$\to$}{\lowast\Ff}} computes the product of fractions. The output
will now always be in the form |A/B[n]|. The original, for big integers only
@@ -11517,8 +11765,6 @@ places or to the precision from |\xintDigits|. It then produces
the sum |f'+g'|, correctly rounded to nearest with the same number of
significant places.
-See \autoref{ssec:floatingpoint} for more.
-
\subsection{\csbh{xintFloatSub}}\label{xintFloatSub}
@@ -11528,8 +11774,6 @@ and |g| with their float approximations |f'| and |g'| to |P| significant
places or to the precision from |\xintDigits|. It then produces
the difference |f'-g'| correctly rounded to nearest |P|-float.
-See \autoref{ssec:floatingpoint} for more.
-
\subsection{\csbh{xintFloatMul}}\label{xintFloatMul}
@@ -11562,10 +11806,11 @@ the fraction |f'/g'| to nearest |P|-float.
See \autoref{ssec:floatingpoint} for more.
-Notice that if |f| and |g| are integers and one wants the fraction |f/g|
-correctly rounded one should use \csbxint{Float}|[P]{f/g}| and not
-|\xintFloatDiv [P]{f}{g}|, because the latter will first round |f| and |g| to
-scientific numbers with mantissas of |P| digits.
+Notice in the special situation with |f| and |g| integers that |\xintFloatDiv
+[P]{f}{g}| will \emph{not necessarily} give the correct rounding of the
+exact fraction |f/g|. Indeed the macro arguments are each first individually
+rounded to |P| digits of precision. The correct syntax to get the correctly
+rounded integer fraction |f/g| is \csbxint{Float}|[P]{f/g}|.
\subsection{\csbh{xintFloatFac}}\label{xintFloatFac}
@@ -13014,16 +13259,23 @@ principles are necessarily different due to the aim of achieving expandability.
This package was first included in the |1.08| (|2013/06/07|) release of
\xintname. It provides expandable conversions of arbitrarily big integers to and
-from binary and hexadecimal.
+from binary and hexadecimal. Routines have not been modified since.
+
+The argument is first \fexpan ded.
-The argument is first \fexpan ded. It then may start with an optional minus
-sign (unique, of category code other), followed with optional leading zeroes
-(arbitrarily many, category code other) and then ``digits'' (hexadecimal
-letters may be of category code letter or other, and must be
-uppercased). The optional (unique) minus sign (plus sign is not allowed) is
-kept in the output. Leading zeroes are allowed, and stripped. The
-hexadecimal letters on output are of category code letter, and
-uppercased.
+It may optionally have a leading minus sign (explicit plus sign is not
+allowed), then leading zeroes, then digits. Hexadecimal digits |A..F| must be
+in uppercase. Category code for them on input may be \emph{letter} or
+\emph{other}. The hexadecimal letters on output are of category code
+\emph{letter}, and again in uppercase.
+
+Input must not be within quotes or with |0b|, |0x|, |#x| or similar prefixes:
+simply decimal, binary, or hexadecimal digits.
+
+With this package loaded additionally to \xintexprname, hexadecimal input
+becomes possible in expressions with the prefix |"|. Such hexadecimal numbers
+may have an hexadecimal mark and fractional digits. The letters must be in
+uppercase.
% \clearpage
@@ -13133,63 +13385,41 @@ macro, it is \fexpan ded first and must contain at least one item.
\subsection{\csbh{xintBezout}}\label{xintBezout}
-\xintAssign{{\xintBezout {10000}{1113}}}\to\X
-\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D
-
|\xintBezout|\n\m\etype{\Numf\Numf} returns five numbers |A|, |B|, |U|, |V|,
|D| within braces. |A| is the first (expanded, as usual) input number, |B| the
-second, |D| is the GCD, and \dtt{UA - VB = D}. %
-%
-\leftedline{|\xintAssign
- {{\xintBezout {10000}{1113}}}\to\X|} %
-%
-\leftedline{|\meaning\X:
- |\dtt{\meaning\X }.}
-\noindent{|\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D|}\\
-|\A: |\dtt{\A },
-|\B: |\dtt{\B },
-|\U: |\dtt{\U },
-|\V: |\dtt{\V },
-|\D: |\dtt{\D }.\\
+second, |D| is the GCD, and \dtt{UA - VB = D}.
+\begin{everbatim*}
+\xintAssign[oo]{{\xintBezout {10000}{1113}}}\to\X
+\meaning\X\newline
+\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D
+A: \meaning\A\newline
+B: \meaning\B\newline
+U: \meaning\U\newline
+V: \meaning\V\newline
+D: \meaning\D\par
+\end{everbatim*}
+For more than three years (from |1.09j 2014/01/09| to |1.2l| in 2017...) this
+documentation looked strange (also in the next two sub-sections,) because
+\csbxint{Assign} was modified at |1.09j| but the example above was missing the
+now needed |[oo]| (or |[f]|, or |[e]|) hence |\X| was simply displayed as
+|\xintBezout {10000}{1113}|.
+\begin{everbatim*}
\xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D
-\noindent{|\xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D
-|}\\
-|\A: |\dtt{\A },
-|\B: |\dtt{\B },
-|\U: |\dtt{\U },
-|\V: |\dtt{\V },
-|\D: |\dtt{\D }.
+A: \meaning\A\newline
+B: \meaning\B\newline
+U: \meaning\U\newline
+V: \meaning\V\newline
+D: \meaning\D\par
+\end{everbatim*}
\subsection{\csbh{xintEuclideAlgorithm}}\label{xintEuclideAlgorithm}
-\xintAssign {{\xintEuclideAlgorithm {10000}{1113}}}\to\X
-
-\def\restorebracecatcodes
- {\catcode`\{=1 \catcode`\}=2 }
-
-\def\allowlistsplit
- {\catcode`\{=12 \catcode`\}=12 \allowlistsplita }
-
-\def\allowlistsplitx {\futurelet\listnext\allowlistsplitxx }
-
-\def\allowlistsplitxx {\ifx\listnext\relax \restorebracecatcodes
- \else \expandafter\allowlistsplitxxx \fi }
-\begingroup
-\catcode`\[=1
-\catcode`\]=2
-\catcode`\{=12
-\catcode`\}=12
-\gdef\allowlistsplita #1{[#1\allowlistsplitx {]
-\gdef\allowlistsplitxxx {#1}%
- [{#1}\hskip 0pt plus 1pt \allowlistsplitx ]
-\endgroup
-
|\xintEuclideAlgorithm|\n\m\etype{\Numf\Numf} applies the Euclide algorithm
-and keeps a copy of all quotients and remainders. %
-%
-\leftedline{|\xintAssign {{\xintEuclideAlgorithm {10000}{1113}}}\to\X|}
-
-|\meaning\X: |\dtt{\expandafter\allowlistsplit\meaning\X\relax .}
+and keeps a copy of all quotients and remainders.
+\begin{everbatim*}
+\xintAssign [oo]{{\xintEuclideAlgorithm {10000}{1113}}}\to\X
+\meaning\X
+\end{everbatim*}
The first token is the number of steps, the second is |N|, the
third is the GCD, the fourth is |M| then the first quotient and
@@ -13198,17 +13428,15 @@ final quotient and last (zero) remainder.
\subsection{\csbh{xintBezoutAlgorithm}}\label{xintBezoutAlgorithm}
-\xintAssign {{\xintBezoutAlgorithm {10000}{1113}}}\to\X
-
|\xintBezoutAlgorithm|\n\m\etype{\Numf\Numf} applies the Euclide algorithm
and keeps a copy of all quotients and remainders. Furthermore it computes the
entries of the successive products of the 2 by 2 matrices
$\left(\vcenter{\halign {\,#&\,#\cr q & 1 \cr 1 & 0 \cr}}\right)$ formed from
-the quotients arising in the algorithm. %
-%
-\leftedline{|\xintAssign {{\xintBezoutAlgorithm {10000}{1113}}}\to\X|}
-
-|\meaning\X: |\dtt{\expandafter\allowlistsplit\meaning\X \relax .}
+the quotients arising in the algorithm.
+\begin{everbatim*}
+\xintAssign [oo]{{\xintBezoutAlgorithm {10000}{1113}}}\to\X
+\printnumber{\meaning\X}
+\end{everbatim*}
The first token is the number of steps, the second is |N|, then
|0|, |1|, the GCD, |M|, |1|, |0|, the first quotient, the first
@@ -13334,8 +13562,8 @@ factor of \dtt{\xintNum {\xintDenominator\w/\xintDenominator\z}}.
\def\coeff #1{\xintiTrunc {40}
{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%
- \csa{xintiSeries}|{A}{B}{\coeff}|\etype{\numx\numx f} computes
- $\sum_{\text{|n=A|}}^{\text{|n=B|}}|\coeff{n}|$ where |\coeff{n}|
+\csa{xintiSeries}|{A}{B}{\coeff}|\etype{\numx\numx f} computes
+ $\sum_{\text{|n=A|}}^{\text{|n=B|}}$|\coeff{n}| where |\coeff{n}|
must \fexpan d to a (possibly long) integer in the strict format.
\everb|@
\def\coeff #1{\xintiTrunc {40}{\xintMON{#1}/#1.5}}%
@@ -14993,10 +15221,22 @@ $1$ or $-1$.
% This is \expandafter|\xintbndlversion| of \expandafter|\xintbndldate|.
%
% \begin{itemize}
-% \item Some portions of the code still date back to the initial release, and
-% at that time I was learning my trade in expandable TeX macro programming.
-% At some point in the future, I will have to re-examine the older parts of
-% the code.
+% \item Release |1.2l| of |2017/07/26| refactored the subtraction and also
+% |\xintiiCmp| got a rewrite. It should presumably use |\pdfstrcmp| and
+% related PDF\TeX\ utilities, but I do not want to have to worry about
+% multi-engine usage.
+%
+% Some utility routines in \xintcorenameimp manipulating blocks of eight
+% digits and still in |O(N^2)| style have been re-written analogously to the
+% |1.2i| version of macros such as |\xintInc|. Also |\xintiNum| was
+% revisited.
+%
+% The arithmetic macros of \xintcorenameimp and all macros of
+% \xintfracnameimp using |\XINT_infrac| were made compatible with arguments
+% using non-delimited |\the\numexpr| or |\the\mathcode| etc... But
+% |\xintiiAbs| and |\xintiiOpp| were not modified (to avoid some overhead)
+% as well as routines such as |\xintInc| which are primarily for internal
+% usage.
%
% \item Release |1.2i| of |2016/12/13| has rewritten some legacy macros like
% |\xintDSR| or |\xintDecSplit| in the style of the techniques of |1.2|. But
@@ -15028,6 +15268,11 @@ $1$ or $-1$.
%
% \end{itemize}
%
+% Some parts of the code still date back to the initial release, and
+% at that time I was learning my trade in expandable TeX macro programming.
+% At some point in the future, I will have to re-examine the older parts of
+% the code.
+%
% Warning: pay attention when looking at the code to the catcode configuration
% as found in |\XINT_setcatcodes|. Additional temporary configuration is used
% at some locations. For example |!| is of catcode letter in \xintexprnameimp
@@ -15058,21 +15303,6 @@ $1$ or $-1$.
% The method for catcodes was also initially directly inspired by these
% packages.
%
-% Starting with version |1.06| of the package, also |`| must be
-% catcode-protected, because we replace everywhere in the code the
-% twice-expansion done with |\expandafter| by the systematic use of
-% |\romannumeral-`0| (later with |1.2a 2015/10/19| this was replaced
-% by a fancier |\romannumeral`&&@|, with |&| of catcode 7.)
-%
-% Starting with version |1.06b| I decide that I suffer from an indigestion of @
-% signs, so I replace them all with underscores |_|, \`a la \LaTeX 3.
-%
-% Release |1.09b| is more economical: some macros are defined already in
-% |xint.sty| (now in |xintkernel.sty|) and re-used in other modules. All catcode
-% changes have been unified and \csa{XINT_storecatcodes} will be used by each
-% module to redefine |\XINT_restorecatcodes_endinput| in case catcodes have
-% changed in-between the loading of |xint.sty| (now |xintkernel.sty|) and the
-% module (not very probable but...).
% \begin{macrocode}
\begingroup\catcode61\catcode48\catcode32=10\relax%
\catcode13=5 % ^^M
@@ -15105,6 +15335,8 @@ $1$ or $-1$.
\fi
\fi
\ifx\z\relax\else\expandafter\z\fi%
+% \end{macrocode}
+% \begin{macrocode}
\def\PrepareCatcodes
{%
\endgroup
@@ -15175,7 +15407,7 @@ $1$ or $-1$.
\catcode36=3 % $
\catcode91=12 % [
\catcode93=12 % ]
- \catcode33=12 % !
+ \catcode33=12 % ! (xintexpr.sty will use catcode 11)
\catcode64=11 % @ LETTER
\catcode38=7 % & for \romannumeral`&&@ trick.
\catcode124=12 % |
@@ -15219,11 +15451,9 @@ $1$ or $-1$.
\fi
\XINT_providespackage
\ProvidesPackage {xintkernel}%
- [2017/01/06 1.2k Paraphernalia for the xint packages (JFB)]%
+ [2017/07/26 1.2l Paraphernalia for the xint packages (JFB)]%
% \end{macrocode}
% \subsection{Constants}
-% |1.2| decides to move them to \xintkernelnameimp from \xintcorenameimp and
-% \xintnameimp. The |\count|'s are left in their respective packages.
% \begin{macrocode}
\chardef\xint_c_ 0
\chardef\xint_c_i 1
@@ -15236,6 +15466,7 @@ $1$ or $-1$.
\chardef\xint_c_viii 8
\chardef\xint_c_ix 9
\chardef\xint_c_x 10
+\chardef\xint_c_xii 12
\chardef\xint_c_xiv 14
\chardef\xint_c_xvi 16
\chardef\xint_c_xviii 18
@@ -15290,9 +15521,6 @@ $1$ or $-1$.
% |
%
% \subsection{``gob til'' macros and UD style fork}
-% Some moved here from \xintcorenameimp by release |1.2|.
-%
-% |1.2i| finally makes all gobbling macros long.
% \begin{macrocode}
\long\def\xint_gob_til_R #1\R {}%
\long\def\xint_gob_til_W #1\W {}%
@@ -15302,11 +15530,9 @@ $1$ or $-1$.
\long\def\xint_gob_til_zeros_iii #1000{}%
\long\def\xint_gob_til_zeros_iv #10000{}%
\long\def\xint_gob_til_eightzeroes #100000000{}%
-\long\def\xint_gob_til_exclam #1!{}% catcode 12 exclam
\long\def\xint_gob_til_dot #1.{}%
\long\def\xint_gob_til_G #1G{}%
\long\def\xint_gob_til_minus #1-{}%
-\long\def\xint_gob_til_relax #1\relax {}%
\long\def\xint_UDzerominusfork #10-#2#3\krof {#2}%
\long\def\xint_UDzerofork #10#2#3\krof {#2}%
\long\def\xint_UDsignfork #1-#2#3\krof {#2}%
@@ -15315,9 +15541,11 @@ $1$ or $-1$.
\long\def\xint_UDzerosfork #100#2#3\krof {#2}%
\long\def\xint_UDonezerofork #110#2#3\krof {#2}%
\long\def\xint_UDsignsfork #1--#2#3\krof {#2}%
-\let\xint_relax\relax
-\def\xint_brelax {\xint_relax }%
-\long\def\xint_gob_til_xint_relax #1\xint_relax {}%
+\let\xint:\char
+\long\def\xint_gob_til_xint:#1\xint:{}%
+\def\xint_bracedstopper{\xint:}%
+\long\def\xint_gob_til_exclam #1!{}%
+\long\def\xint_gob_til_sc #1;{}%
% \end{macrocode}
% \subsection{\csh{xint_afterfi}}
% \begin{macrocode}
@@ -15361,21 +15589,11 @@ $1$ or $-1$.
% This is not really robust as it may switch the expansion order of macros,
% and the \xint_zapspaces token might end up being fetched up by a macro. But
% it is enough for our purposes, for example:
-% $centeredline
-% $bgroup\the\numexpr \xint_zapspaces 1 2 \xint_gobble_i\relax$egroup
-% expands to 12, and not 12\relax. Imagine also:
-% $centeredline
-% $bgroup\the\numexpr 1 2\expandafter.\the\numexpr ...$egroup
-%
-% The spaces will stop the \numexpr, and the \expandafter will not be
-% immediately executed. Thus we have to get rid of spaces in
-% contexts where arguments are fetched by delimited macros and fed to
-% \numexpr (or for any reason can contain spaces). I apply this corrective
-% treatment so far only in $xintexprnameimp but perhaps I should in
-% $xintfracnameimp too. As said above, perhaps the zapspaces should force
-% expansion too, but I leave it standing.
-%
-% 1.2e adds \xint_zapspaces_o. Expansion of #1 should not gobble a space !
+% $centeredline$bgroup\the\numexpr \xint_zapspaces 1 2 \xint_gobble_i\relax$egroup
+% expands to 12, and not 12\relax.
+%
+%
+% 1.2e adds \xint_zapspaces_o. Expansion of #1 should not gobble a space!
%
% Made long with 1.2i.|
% \begin{macrocode}
@@ -15396,35 +15614,38 @@ $1$ or $-1$.
\ifdefined\fdef\else\let\fdef\xintfdef\fi
% \end{macrocode}
% \subsection{\csh{xintReverseOrder}}
-% \lverb|\xintReverseOrder: does not expand its argument. Thus one must use
-% some \expandafter if argument is a macro. Attention: removes braces.
+% \lverb|\xintReverseOrder: does NOT expand its argument.
%
-% A faster reverse, but only usable with digits, is provided by
-% \xintReverseDigits macro from 1.2 xintcore.sty.
+% Attention: removes brace pairs.
%
-% 1.2g has (not user documented) \xintCSVReverse in xinttools.sty.|
+% For digit tokens only a faster reverse macro is provided as
+% \xintReverseDigits from 1.2 xintcore.sty.
+%
+% For comma separated items, 1.2g has (not user documented) \xintCSVReverse in
+% xinttools.sty.|
% \begin{macrocode}
\def\xintReverseOrder {\romannumeral0\xintreverseorder }%
\long\def\xintreverseorder #1%
{%
\XINT_rord_main {}#1%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
+ \xint:
}%
\long\def\XINT_rord_main #1#2#3#4#5#6#7#8#9%
{%
\xint_bye #9\XINT_rord_cleanup\xint_bye
\XINT_rord_main {#9#8#7#6#5#4#3#2#1}%
}%
-\long\edef\XINT_rord_cleanup\xint_bye\XINT_rord_main #1#2\xint_relax
+\def\XINT_rord_cleanup #1{%
+\long\def\XINT_rord_cleanup\xint_bye\XINT_rord_main ##1##2\xint:
{%
- \noexpand\expandafter\space\noexpand\xint_gob_til_xint_relax #1%
-}%
+ \expandafter#1\xint_gob_til_xint: ##1%
+}}\XINT_rord_cleanup { }%
% \end{macrocode}
% \subsection{\csh{xintLength}}
-% \lverb|\xintLength does not expand its argument. See \xintNthElt{0} from
+% \lverb|\xintLength does NOT expand its argument. See \xintNthElt{0} from
% xinttools.sty which f-expands its argument.
%
% 1.2g has (not user documented) \xintCSVLength in xinttools.sty.
@@ -15436,18 +15657,17 @@ $1$ or $-1$.
\def\xintlength #1{\long\def\xintlength ##1%
{%
\expandafter#1\the\numexpr\XINT_length_loop
- ##1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
- \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
+ ##1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
+ \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
+ \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
\relax
}}\xintlength{ }%
\long\def\XINT_length_loop #1#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_xint_relax #9\XINT_length_finish_a\xint_relax
+ \xint_gob_til_xint: #9\XINT_length_finish_a\xint:
\xint_c_ix+\XINT_length_loop
}%
-\def\XINT_length_finish_a\xint_relax\xint_c_ix+\XINT_length_loop
+\def\XINT_length_finish_a\xint:\xint_c_ix+\XINT_length_loop
#1#2#3#4#5#6#7#8#9%
{%
#9\xint_bye
@@ -15455,22 +15675,22 @@ $1$ or $-1$.
% \end{macrocode}
% \subsection{\csh{xintLastItem}}
% \lverb|New with 1.2i (2016/12/10). Output empty if input empty. One level
-% of braces removed in output.
+% of braces removed in output. Does NOT expand its argument.
% |
% \begin{macrocode}
\def\xintLastItem {\romannumeral0\xintlastitem }%
\long\def\xintlastitem #1%
{%
\XINT_last_loop {}.#1%
- {\xint_relax\XINT_last_loop_enda}{\xint_relax\XINT_last_loop_endb}%
- {\xint_relax\XINT_last_loop_endc}{\xint_relax\XINT_last_loop_endd}%
- {\xint_relax\XINT_last_loop_ende}{\xint_relax\XINT_last_loop_endf}%
- {\xint_relax\XINT_last_loop_endg}{\xint_relax\XINT_last_loop_endh}\xint_bye
+ {\xint:\XINT_last_loop_enda}{\xint:\XINT_last_loop_endb}%
+ {\xint:\XINT_last_loop_endc}{\xint:\XINT_last_loop_endd}%
+ {\xint:\XINT_last_loop_ende}{\xint:\XINT_last_loop_endf}%
+ {\xint:\XINT_last_loop_endg}{\xint:\XINT_last_loop_endh}\xint_bye
}%
\long\def\XINT_last_loop #1.#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_xint_relax #9%
- {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint_relax
+ \xint_gob_til_xint: #9%
+ {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint:
\XINT_last_loop {#9}.%
}%
\long\def\XINT_last_loop_enda #1#2\xint_bye{ #1}%
@@ -15496,8 +15716,7 @@ $1$ or $-1$.
\long\def\xintlengthupto #1#2%
{%
\expandafter\XINT_lengthupto_loop
- \the\numexpr#1.#2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax
+ \the\numexpr#1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv
\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%
}%
@@ -15511,10 +15730,10 @@ $1$ or $-1$.
\long\def\XINT_lengthupto_gt #1\xint_bye.{-0}%
\long\def\XINT_lengthupto_loop #1.#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_xint_relax #9\XINT_lengthupto_finish_a\xint_relax
+ \xint_gob_til_xint: #9\XINT_lengthupto_finish_a\xint:%
\expandafter\XINT_lengthupto_loop_a\the\numexpr #1-\xint_c_viii.%
}%
-\def\XINT_lengthupto_finish_a\xint_relax\expandafter\XINT_lengthupto_loop_a
+\def\XINT_lengthupto_finish_a\xint:\expandafter\XINT_lengthupto_loop_a
\the\numexpr #1-\xint_c_viii.#2#3#4#5#6#7#8#9%
{%
\expandafter\XINT_lengthupto_finish_b\the\numexpr #1-#9\xint_bye
@@ -15717,10 +15936,30 @@ $1$ or $-1$.
% extended range of output streams, in LuaTeX in particular.|
% \begin{macrocode}
\def\xintMessage #1#2#3{%
- \immediate\write128{Package #1 #2: (on line \the\inputlineno)}%
- \immediate\write128{\space\space\space\space#3}%
+ \immediate\write128{Package #1 #2: (on line \the\inputlineno)}%
+ \immediate\write128{\space\space\space\space#3}%
}%
\newif\ifxintverbose
+% \end{macrocode}
+% \subsection{(WIP) Expandable error message}
+% \lverb|&
+% Incorporated in 1.2l release, but really belongs to next major release.
+%
+% This is copied over from l3kernel code. I am using \ ! / control sequence
+% though, which must be left undefined. \xintError: would be 6 letters more
+% already. Utiliser \FPE: ? (mais ce n'est pas uniquement du « floating point »)
+%
+% Always used in context where expansion was launched by a
+% \romannumeral0 or \romannumeral`^^@.|
+% \begin{macrocode}
+\def\XINT_expandableerror #1#2{%
+ \def\XINT_expandableerror ##1{%
+ \expandafter\expandafter\expandafter
+ \XINT_expandableerror_continue\xint_firstofone{#2#1##1#1}}%
+ \def\XINT_expandableerror_continue ##1#1##2#1{##1}%
+}%
+\begingroup\lccode`$ 32 \catcode`/ 11 \catcode`! 11 \catcode32 11 %
+\lowercase{\endgroup\XINT_expandableerror$\ ! /}%
\XINT_restorecatcodes_endinput%
% \end{macrocode}
%
@@ -15798,7 +16037,7 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xinttools}%
- [2017/01/06 1.2k Expandable and non-expandable utilities (JFB)]%
+ [2017/07/26 1.2l Expandable and non-expandable utilities (JFB)]%
% \end{macrocode}
% \lverb|\XINT_toks is used in macros such as \xintFor. It is not used
% elsewhere in the xint bundle.|
@@ -15817,7 +16056,7 @@ $1$ or $-1$.
% \lverb|New with 1.06. Makes the expansion of its argument and then reverses
% the resulting tokens or braced tokens, adding a pair of braces to each (thus,
% maintaining it when it was already there.) The reason for
-% \xint_relax, here and in other locations, is in case #1 expands to nothing,
+% \xint:, here and in other locations, is in case #1 expands to nothing,
% the \romannumeral-`0 must be stopped|
% \begin{macrocode}
\def\xintRevWithBraces {\romannumeral0\xintrevwithbraces }%
@@ -15825,21 +16064,21 @@ $1$ or $-1$.
\long\def\xintrevwithbraces #1%
{%
\expandafter\XINT_revwbr_loop\expandafter{\expandafter}%
- \romannumeral`&&@#1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye
+ \romannumeral`&&@#1\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
}%
\long\def\xintrevwithbracesnoexpand #1%
{%
\XINT_revwbr_loop {}%
- #1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye
+ #1\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
}%
\long\def\XINT_revwbr_loop #1#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_xint_relax #9\XINT_revwbr_finish_a\xint_relax
+ \xint_gob_til_xint: #9\XINT_revwbr_finish_a\xint:%
\XINT_revwbr_loop {{#9}{#8}{#7}{#6}{#5}{#4}{#3}{#2}#1}%
}%
-\long\def\XINT_revwbr_finish_a\xint_relax\XINT_revwbr_loop #1#2\xint_bye
+\long\def\XINT_revwbr_finish_a\xint:\XINT_revwbr_loop #1#2\xint_bye
{%
\XINT_revwbr_finish_b #2\R\R\R\R\R\R\R\Z #1%
}%
@@ -15858,7 +16097,9 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|1.1c revisited this old code and improved upon the earlier endings.|
% \begin{macrocode}
-\edef\XINT_revwbr_finish_c #1#2\Z {\noexpand\expandafter\space #1}%
+\def\XINT_revwbr_finish_c#1{%
+\def\XINT_revwbr_finish_c##1##2\Z{\expandafter#1##1}%
+}\XINT_revwbr_finish_c{ }%
% \end{macrocode}
% \subsection{\csh{xintZapFirstSpaces}}
% \lverb|1.09f, written [2013/11/01]. Modified (2014/10/21) for release 1.1 to
@@ -15867,13 +16108,9 @@ $1$ or $-1$.
% the initial one. This macro does NOT expand its argument.|
% \begin{macrocode}
\def\xintZapFirstSpaces {\romannumeral0\xintzapfirstspaces }%
-% \end{macrocode}
-% \lverb|defined via an \edef in order to inject space tokens inside.|
-% \begin{macrocode}
-\long\edef\xintzapfirstspaces #1%
- {\noexpand\XINT_zapbsp_a \space #1\xint_relax \space\space\xint_relax }%
-\xint_firstofone {\long\edef\XINT_zapbsp_a #1 } %<- space token here
-{%
+\def\xintzapfirstspaces#1{\long
+\def\xintzapfirstspaces ##1{\XINT_zapbsp_a #1##1\xint:#1#1\xint:}%
+}\xintzapfirstspaces{ }%
% \end{macrocode}
% \lverb|If the original #1 started with a space, the grabbed #1 is empty. Thus
% _again? will see #1=\xint_bye, and hand over control to _again which will loop
@@ -15882,25 +16119,24 @@ $1$ or $-1$.
% then an extract of the original #1, not empty and not starting with a space,
% which contains what was up to the first <sp><sp> present in original #1, or,
% if none preexisted, <sptoken> and all of #1 (possibly empty) plus an ending
-% \xint_relax. The added initial space will stop later the \romannumeral0. No
+% \xint:. The added initial space will stop later the \romannumeral0. No
% brace stripping is possible. Control is handed over to \XINT_zapbsp_b which
-% strips out the ending \xint_relax<sp><sp>\xint_relax|
+% strips out the ending \xint:<sp><sp>\xint:|
% \begin{macrocode}
- \noexpand\XINT_zapbsp_again? #1\noexpand\xint_bye\noexpand\XINT_zapbsp_b #1\space\space
-}%
+\def\XINT_zapbsp_a#1{\long\def\XINT_zapbsp_a ##1#1#1{%
+ \XINT_zapbsp_again?##1\xint_bye\XINT_zapbsp_b ##1#1#1}%
+}\XINT_zapbsp_a{ }%
\long\def\XINT_zapbsp_again? #1{\xint_bye #1\XINT_zapbsp_again }%
\xint_firstofone{\def\XINT_zapbsp_again\XINT_zapbsp_b} {\XINT_zapbsp_a }%
-\long\def\XINT_zapbsp_b #1\xint_relax #2\xint_relax {#1}%
+\long\def\XINT_zapbsp_b #1\xint:#2\xint:{#1}%
% \end{macrocode}
% \subsection{\csh{xintZapLastSpaces}}
% \lverb+1.09f, written [2013/11/01]. +
% \begin{macrocode}
\def\xintZapLastSpaces {\romannumeral0\xintzaplastspaces }%
-% \end{macrocode}
-% \lverb|Next macro is defined via an \edef for the space tokens.|
-% \begin{macrocode}
-\long\edef\xintzaplastspaces #1{\noexpand\XINT_zapesp_a {}\noexpand\empty#1%
- \space\space\noexpand\xint_bye\xint_relax}%
+\def\xintzaplastspaces#1{\long
+\def\xintzaplastspaces ##1{\XINT_zapesp_a {}\empty##1#1#1\xint_bye\xint:}%
+}\xintzaplastspaces{ }%
% \end{macrocode}
% \lverb|The \empty from \xintzaplastspaces is to prevent brace removal in the
% #2 below. The \expandafter chain removes it.|
@@ -15911,12 +16147,12 @@ $1$ or $-1$.
% \lverb|Notice again an \empty added here. This is in preparation for possibly looping
% back to \XINT_zapesp_a. If the initial #1 had no <sp><sp>, the stuff however
% will not loop, because #3 will already be <some spaces>\xint_bye. Notice
-% that this macro fetches all way to the ending \xint_relax. This looks not
+% that this macro fetches all way to the ending \xint:. This looks not
% very efficient, but how often do we have to strip ending spaces from
% something which also has inner stretches of _multiple_ space tokens ?;-). |
% \begin{macrocode}
-\long\def\XINT_zapesp_b #1#2#3\xint_relax
- {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint_relax }%
+\long\def\XINT_zapesp_b #1#2#3\xint:%
+ {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint:}%
% \end{macrocode}
% \lverb|When we have been over all possible <sp><sp> things, we reach the
% ending space tokens, and #3 will be a bunch of spaces (possibly none)
@@ -15930,12 +16166,14 @@ $1$ or $-1$.
% \lverb|We are done. The #1 here has accumulated all the previous material,
% and is stripped of its ending spaces, if any.|
% \begin{macrocode}
-\long\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint_relax { #1}%
+\long\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint:{ #1}%
% \end{macrocode}
% \lverb|We haven't yet reached the end, so we need to re-inject two space
% tokens after what we have gotten so far. Then we loop.|
% \begin{macrocode}
-\long\edef\XINT_zapesp_e #1{\noexpand \XINT_zapesp_a {#1\space\space}}%
+\def\XINT_zapesp_e#1{%
+\long\def\XINT_zapesp_e ##1{\XINT_zapesp_a {##1#1#1}}%
+}\XINT_zapesp_e{ }%
% \end{macrocode}
% \subsection{\csh{xintZapSpaces}}
% \lverb+1.09f, written [2013/11/01]. Modified for 1.1, 2014/10/21 as it has the
@@ -15943,32 +16181,38 @@ $1$ or $-1$.
% then \xintZapLastSpaces.+
% \begin{macrocode}
\def\xintZapSpaces {\romannumeral0\xintzapspaces }%
-\long\edef\xintzapspaces #1% like \xintZapFirstSpaces.
- {\noexpand\XINT_zapsp_a \space #1\xint_relax \space\space\xint_relax }%
-\xint_firstofone {\long\edef\XINT_zapsp_a #1 } %
- {\noexpand\XINT_zapsp_again? #1\noexpand\xint_bye\noexpand\XINT_zapsp_b #1\space\space}%
+\def\xintzapspaces#1{%
+\long\def\xintzapspaces ##1% like \xintZapFirstSpaces.
+ {\XINT_zapsp_a #1##1\xint:#1#1\xint:}%
+}\xintzapspaces{ }%
+\def\XINT_zapsp_a#1{%
+\long\def\XINT_zapsp_a ##1#1#1%
+ {\XINT_zapsp_again?##1\xint_bye\XINT_zapsp_b##1#1#1}%
+}\XINT_zapsp_a{ }%
\long\def\XINT_zapsp_again? #1{\xint_bye #1\XINT_zapsp_again }%
\xint_firstofone{\def\XINT_zapsp_again\XINT_zapsp_b} {\XINT_zapsp_a }%
\xint_firstofone{\def\XINT_zapsp_b} {\XINT_zapsp_c }%
-\long\edef\XINT_zapsp_c #1\xint_relax #2\xint_relax {\noexpand\XINT_zapesp_a
- {}\noexpand \empty #1\space\space\noexpand\xint_bye\xint_relax }%
+\def\XINT_zapsp_c#1{%
+\long\def\XINT_zapsp_c ##1\xint:##2\xint:%
+ {\XINT_zapesp_a{}\empty ##1#1#1\xint_bye\xint:}%
+}\XINT_zapsp_c{ }%
% \end{macrocode}
% \subsection{\csh{xintZapSpacesB}}
% \lverb+1.09f, written [2013/11/01]. Strips up to one pair of braces (but then
% does not strip spaces inside).+
% \begin{macrocode}
\def\xintZapSpacesB {\romannumeral0\xintzapspacesb }%
-\long\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint_relax\xint_relax
+\long\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint:\xint:%
\xint_bye\xintzapspaces {#1}}%
\long\def\XINT_zapspb_one? #1#2%
- {\xint_gob_til_xint_relax #1\XINT_zapspb_onlyspaces\xint_relax
- \xint_gob_til_xint_relax #2\XINT_zapspb_bracedorone\xint_relax
+ {\xint_gob_til_xint: #1\XINT_zapspb_onlyspaces\xint:%
+ \xint_gob_til_xint: #2\XINT_zapspb_bracedorone\xint:%
\xint_bye {#1}}%
-\def\XINT_zapspb_onlyspaces\xint_relax
- \xint_gob_til_xint_relax\xint_relax\XINT_zapspb_bracedorone\xint_relax
+\def\XINT_zapspb_onlyspaces\xint:%
+ \xint_gob_til_xint:\xint:\XINT_zapspb_bracedorone\xint:%
\xint_bye #1\xint_bye\xintzapspaces #2{ }%
-\long\def\XINT_zapspb_bracedorone\xint_relax
- \xint_bye #1\xint_relax\xint_bye\xintzapspaces #2{ #1}%
+\long\def\XINT_zapspb_bracedorone\xint:%
+ \xint_bye #1\xint:\xint_bye\xintzapspaces #2{ #1}%
% \end{macrocode}
% \subsection{\csh{xintCSVtoList}, \csh{xintCSVtoListNonStripped}}
% \lverb|\xintCSVtoList transforms a,b,..,z into {a}{b}...{z}. The comma
@@ -16102,8 +16346,7 @@ $1$ or $-1$.
\long\def\XINT_nthelt_neg #1.#2%
{%
\expandafter\XINT_nthelt_neg_a\the\numexpr\xint_c_i+\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
-#1.#2\xint_bye
@@ -16123,13 +16366,13 @@ $1$ or $-1$.
{%
\expandafter\XINT_nthelt_pos_done
\romannumeral0\expandafter\XINT_trim_loop\the\numexpr#1-\xint_c_x.%
- #2\xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint:%
\xint_bye
}%
\def\XINT_nthelt_pos_done #1{%
\long\def\XINT_nthelt_pos_done ##1##2\xint_bye{%
- \xint_gob_til_xint_relax##1\expandafter#1\xint_gobble_ii\xint_relax#1##1}%
+ \xint_gob_til_xint:##1\expandafter#1\xint_gobble_ii\xint:#1##1}%
}\XINT_nthelt_pos_done{ }%
% \end{macrocode}
% \subsection{\csh{xintKeep}}
@@ -16176,8 +16419,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_keep_neg_a\the\numexpr
#1-\numexpr\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.#2%
}%
@@ -16193,8 +16435,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_keep_loop
\the\numexpr#1-\XINT_lengthupto_loop
- #1.#2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax
+ #1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv
\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%
-\xint_c_viii.{}#2\xint_bye%
@@ -16256,8 +16497,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_keepunbr_loop
\the\numexpr#1-\XINT_lengthupto_loop
- #1.#2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax
+ #1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv
\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%
-\xint_c_viii.{}#2\xint_bye%
@@ -16327,8 +16567,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_trim_neg_a\the\numexpr
#1-\numexpr\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
.{}#2\xint_bye
@@ -16340,7 +16579,9 @@ $1$ or $-1$.
-\XINT_trim_trimall
\krof
}%
-\edef\XINT_trim_trimall {\noexpand\expandafter\space\noexpand\xint_bye}%
+\def\XINT_trim_trimall#1{%
+\def\XINT_trim_trimall {\expandafter#1\xint_bye}%
+}\XINT_trim_trimall{ }%
% \end{macrocode}
% \lverb|This branch doesn't pre-evaluate the length of the list argument.
% Redone again for 1.2j, manages to trim nine by nine. Some non optimal
@@ -16350,8 +16591,8 @@ $1$ or $-1$.
{%
\expandafter\XINT_trim_pos_done\expandafter\space
\romannumeral0\expandafter\XINT_trim_loop\the\numexpr#1-\xint_c_ix.%
- #2\xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint:%
\xint_bye
}%
\def\XINT_trim_loop #1#2.%
@@ -16361,9 +16602,9 @@ $1$ or $-1$.
}%
\long\def\XINT_trim_loop_trimnine #1#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_xint_relax #9\XINT_trim_toofew\xint_relax-\xint_c_ix.%
+ \xint_gob_til_xint: #9\XINT_trim_toofew\xint:-\xint_c_ix.%
}%
-\def\XINT_trim_toofew\xint_relax{*\xint_c_}%
+\def\XINT_trim_toofew\xint:{*\xint_c_}%
\def\XINT_trim_finish#1{%
\def\XINT_trim_finish-%
\expandafter\XINT_trim_loop\the\numexpr-##1\XINT_trim_loop_trimnine
@@ -16371,7 +16612,7 @@ $1$ or $-1$.
\expandafter\expandafter\expandafter#1%
\csname xint_gobble_\romannumeral\numexpr\xint_c_ix-##1\endcsname
}}\XINT_trim_finish{ }%
-\long\def\XINT_trim_pos_done #1\xint_relax #2\xint_bye {#1}%
+\long\def\XINT_trim_pos_done #1\xint:#2\xint_bye {#1}%
% \end{macrocode}
% \subsection{\csh{xintTrimUnbraced}}
% \lverb?1.2a. Modified in 1.2i like \xintTrim?
@@ -16395,8 +16636,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_trimunbr_neg_a\the\numexpr
#1-\numexpr\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
.{}#2\xint_bye
@@ -17032,7 +17272,7 @@ $1$ or $-1$.
\long\def\XINT_assign_a #1\to
{%
\def\XINT_flet_macro{\XINT_assign_b}%
- \expandafter\XINT_flet_zapsp\romannumeral`&&@#1\xint_relax\to
+ \expandafter\XINT_flet_zapsp\romannumeral`&&@#1\xint:\to
}%
\long\def\XINT_assign_b
{%
@@ -17041,14 +17281,14 @@ $1$ or $-1$.
\else\expandafter\XINT_assign_f
\fi
}%
-\long\def\XINT_assign_f #1\xint_relax\to #2%
+\long\def\XINT_assign_f #1\xint:\to #2%
{%
\XINT_assign_def #2{#1}%
}%
\long\def\XINT_assign_c #1%
{%
\def\xint_temp {#1}%
- \ifx\xint_temp\xint_brelax
+ \ifx\xint_temp\xint_bracedstopper
\expandafter\XINT_assign_e
\else
\expandafter\XINT_assign_d
@@ -17100,7 +17340,7 @@ $1$ or $-1$.
\expandafter\def\expandafter\xint_arrayname\expandafter {\string #2}%
\XINT_restoreescapechar
\def\xint_itemcount {0}%
- \expandafter\XINT_assignarray_loop \romannumeral`&&@#1\xint_relax
+ \expandafter\XINT_assignarray_loop \romannumeral`&&@#1\xint:
\csname\xint_arrayname 00\expandafter\endcsname
\csname\xint_arrayname 0\expandafter\endcsname
\expandafter {\xint_arrayname}#2%
@@ -17108,7 +17348,7 @@ $1$ or $-1$.
\long\def\XINT_assignarray_loop #1%
{%
\def\xint_temp {#1}%
- \ifx\xint_brelax\xint_temp
+ \ifx\xint_temp\xint_bracedstopper
\expandafter\def\csname\xint_arrayname 0\expandafter\endcsname
\expandafter{\the\numexpr\xint_itemcount}%
\expandafter\expandafter\expandafter\XINT_assignarray_end
@@ -17130,11 +17370,12 @@ $1$ or $-1$.
\def #1##1%
{%
\ifnum ##1<\xint_c_
- \xint_afterfi {\xintError:ArrayIndexIsNegative\space }%
+ \xint_afterfi{\XINT_expandableerror{Array index negative: 0 > ##1} }%
\else
\xint_afterfi {%
\ifnum ##1>#2
- \xint_afterfi {\xintError:ArrayIndexBeyondLimit\space }%
+ \xint_afterfi
+ {\XINT_expandableerror{Array index beyond range: ##1 > #2} }%
\else\xint_afterfi
{\expandafter\expandafter\expandafter\space\csname #3##1\endcsname}%
\fi}%
@@ -17223,8 +17464,8 @@ $1$ or $-1$.
\def\xintlength:f:csv #1%
{\long\def\xintlength:f:csv ##1{%
\expandafter#1\the\numexpr\expandafter\XINT_length:f:csv_a
- \romannumeral`&&@##1\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ \romannumeral`&&@##1\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:,%
\xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%
\xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye
\relax
@@ -17234,15 +17475,15 @@ $1$ or $-1$.
% \begin{macrocode}
\long\def\XINT_length:f:csv_a #1%
{%
- \xint_gob_til_xint_relax #1\xint_c_\xint_bye\xint_relax
+ \xint_gob_til_xint: #1\xint_c_\xint_bye\xint:%
\XINT_length:f:csv_loop #1%
}%
\long\def\XINT_length:f:csv_loop #1,#2,#3,#4,#5,#6,#7,#8,#9,%
{%
- \xint_gob_til_xint_relax #9\XINT_length:f:csv_finish\xint_relax
+ \xint_gob_til_xint: #9\XINT_length:f:csv_finish\xint:%
\xint_c_ix+\XINT_length:f:csv_loop
}%
-\def\XINT_length:f:csv_finish\xint_relax\xint_c_ix+\XINT_length:f:csv_loop
+\def\XINT_length:f:csv_finish\xint:\xint_c_ix+\XINT_length:f:csv_loop
#1,#2,#3,#4,#5,#6,#7,#8,#9,{#9\xint_bye}%
% \end{macrocode}
% \subsubsection{\csh{xintLengthUpTo:f:csv}}
@@ -17256,8 +17497,8 @@ $1$ or $-1$.
{%
\expandafter\XINT_lengthupto:f:csv_a
\the\numexpr#1\expandafter.%
- \romannumeral`&&@#2\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ \romannumeral`&&@#2\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,%
\xint_c_viii,\xint_c_vii,\xint_c_vi,\xint_c_v,%
\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye.%
}%
@@ -17266,10 +17507,10 @@ $1$ or $-1$.
% \begin{macrocode}
\long\def\XINT_lengthupto:f:csv_a #1.#2%
{%
- \xint_gob_til_xint_relax #2\XINT_lengthupto:f:csv_empty\xint_relax
+ \xint_gob_til_xint: #2\XINT_lengthupto:f:csv_empty\xint:%
\XINT_lengthupto:f:csv_loop_b #1.#2%
}%
-\def\XINT_lengthupto:f:csv_empty\xint_relax
+\def\XINT_lengthupto:f:csv_empty\xint:%
\XINT_lengthupto:f:csv_loop_b #1.#2\xint_bye.{ #1}%
\def\XINT_lengthupto:f:csv_loop_a #1%
{%
@@ -17281,10 +17522,10 @@ $1$ or $-1$.
\long\def\XINT_lengthupto:f:csv_gt #1\xint_bye.{-0}%
\long\def\XINT_lengthupto:f:csv_loop_b #1.#2,#3,#4,#5,#6,#7,#8,#9,%
{%
- \xint_gob_til_xint_relax #9\XINT_lengthupto:f:csv_finish_a\xint_relax
+ \xint_gob_til_xint: #9\XINT_lengthupto:f:csv_finish_a\xint:%
\expandafter\XINT_lengthupto:f:csv_loop_a\the\numexpr #1-\xint_c_viii.%
}%
-\def\XINT_lengthupto:f:csv_finish_a\xint_relax
+\def\XINT_lengthupto:f:csv_finish_a\xint:
\expandafter\XINT_lengthupto:f:csv_loop_a
\the\numexpr #1-\xint_c_viii.#2,#3,#4,#5,#6,#7,#8,#9,%
{%
@@ -17331,8 +17572,8 @@ $1$ or $-1$.
\romannumeral0%
\expandafter\XINT_keep:f:csv_neg_a\the\numexpr
#1-\numexpr\XINT_length:f:csv_a
- #2\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ #2\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:,%
\xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%
\xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye
.#2\xint_bye
@@ -17361,8 +17602,8 @@ $1$ or $-1$.
{%
\expandafter\XINT_keep:f:csv_pos_fork
\romannumeral0\XINT_lengthupto:f:csv_a
- #1.#2\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ #1.#2\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,%
\xint_c_viii,\xint_c_vii,\xint_c_vi,\xint_c_v,%
\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye.%
.#1.{}#2\xint_bye%
@@ -17427,8 +17668,8 @@ $1$ or $-1$.
{%
\expandafter\XINT_trim:f:csv_neg_a\the\numexpr
#1-\numexpr\XINT_length:f:csv_a
- #2\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ #2\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:,%
\xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%
\xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye
.{}#2\xint_bye
@@ -17446,8 +17687,8 @@ $1$ or $-1$.
\expandafter\XINT_trim:f:csv_pos_done\expandafter,%
\romannumeral0%
\expandafter\XINT_trim:f:csv_loop\the\numexpr#1-\xint_c_ix.%
- #2\xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax\xint_bye
+ #2\xint:,\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:\xint_bye
}%
\def\XINT_trim:f:csv_loop #1#2.%
{%
@@ -17456,9 +17697,9 @@ $1$ or $-1$.
}%
\long\def\XINT_trim:f:csv_loop_trimnine #1,#2,#3,#4,#5,#6,#7,#8,#9,%
{%
- \xint_gob_til_xint_relax #9\XINT_trim:f:csv_toofew\xint_relax-\xint_c_ix.%
+ \xint_gob_til_xint: #9\XINT_trim:f:csv_toofew\xint:-\xint_c_ix.%
}%
-\def\XINT_trim:f:csv_toofew\xint_relax{*\xint_c_}%
+\def\XINT_trim:f:csv_toofew\xint:{*\xint_c_}%
\def\XINT_trim:f:csv_finish-%
\expandafter\XINT_trim:f:csv_loop\the\numexpr-#1\XINT_trim:f:csv_loop_trimnine
{%
@@ -17481,7 +17722,7 @@ $1$ or $-1$.
\long\expandafter\def\csname XINT_trim:f:csv_finish8\endcsname
#1,{ }%
\expandafter\let\csname XINT_trim:f:csv_finish9\endcsname\space
-\long\def\XINT_trim:f:csv_pos_done #1\xint_relax #2\xint_bye{#1}%
+\long\def\XINT_trim:f:csv_pos_done #1\xint:#2\xint_bye{#1}%
% \end{macrocode}
% \subsubsection{\csh{xintNthEltPy:f:csv}}
% \lverb|Counts like Python starting at zero. Last refactored with 1.2j.
@@ -17505,8 +17746,8 @@ $1$ or $-1$.
{%
\expandafter\XINT_nthelt:f:csv_neg_fork
\the\numexpr\XINT_length:f:csv_a
- #2\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
+ #2\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:,%
\xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%
\xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye
-#1.#2,\xint_bye
@@ -17524,23 +17765,23 @@ $1$ or $-1$.
\expandafter\XINT_nthelt:f:csv_pos_done
\romannumeral0%
\expandafter\XINT_trim:f:csv_loop\the\numexpr#1-\xint_c_ix.%
- #2\xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,%
- \xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_relax,\xint_bye
+ #2\xint:,\xint:,\xint:,\xint:,\xint:,%
+ \xint:,\xint:,\xint:,\xint:,\xint:,\xint_bye
}%
\def\XINT_nthelt:f:csv_pos_done #1{%
\long\def\XINT_nthelt:f:csv_pos_done ##1,##2\xint_bye{%
- \xint_gob_til_xint_relax##1\XINT_nthelt:f:csv_pos_cleanup\xint_relax#1##1}%
+ \xint_gob_til_xint:##1\XINT_nthelt:f:csv_pos_cleanup\xint:#1##1}%
}\XINT_nthelt:f:csv_pos_done{ }%
% \end{macrocode}
% \lverb|This strange thing is in case the picked item was the last one, hence
-% there was an ending \xint_relax (we could not put a comma earlier for
+% there was an ending \xint: (we could not put a comma earlier for
% matters of not confusing empty list with a singleton list), and we do this
% here to activate brace-stripping of item as all other items may be
% brace-stripped if picked. This is done for coherence. Of course, in the
% context of the xintexpr.sty parsers, there are no braces in list items...|
% \begin{macrocode}
-\xint_firstofone{\long\def\XINT_nthelt:f:csv_pos_cleanup\xint_relax} %
- #1\xint_relax{ #1}%
+\xint_firstofone{\long\def\XINT_nthelt:f:csv_pos_cleanup\xint:} %
+ #1\xint:{ #1}%
% \end{macrocode}
% \subsubsection{\csh{xintReverse:f:csv}}
% \lverb|1.2g. Contrarily to \xintReverseOrder from xintkernel.sty, this
@@ -17552,23 +17793,23 @@ $1$ or $-1$.
{%
\expandafter\XINT_reverse:f:csv_loop
\expandafter{\expandafter}\romannumeral`&&@#1,%
- \xint_relax,%
+ \xint:,%
\xint_bye,\xint_bye,\xint_bye,\xint_bye,%
\xint_bye,\xint_bye,\xint_bye,\xint_bye,%
- \xint_relax
+ \xint:
}%
\long\def\XINT_reverse:f:csv_loop #1#2,#3,#4,#5,#6,#7,#8,#9,%
{%
\xint_bye #9\XINT_reverse:f:csv_cleanup\xint_bye
\XINT_reverse:f:csv_loop {,#9,#8,#7,#6,#5,#4,#3,#2#1}%
}%
-\long\def\XINT_reverse:f:csv_cleanup\xint_bye\XINT_reverse:f:csv_loop #1#2\xint_relax
+\long\def\XINT_reverse:f:csv_cleanup\xint_bye\XINT_reverse:f:csv_loop #1#2\xint:
{%
\XINT_reverse:f:csv_finish #1%
}%
-\long\def\XINT_reverse:f:csv_finish #1\xint_relax,{ }%
+\long\def\XINT_reverse:f:csv_finish #1\xint:,{ }%
% \end{macrocode}
-% \subsection{\csh{xintFirstItem:f:csv}}
+% \subsubsection{\csh{xintFirstItem:f:csv}}
% \lverb|Added with 1.2k for use by first() in
% \xintexpr-essions, and some amount of compatibility with \xintNewExpr.|
% \begin{macrocode}
@@ -17579,7 +17820,7 @@ $1$ or $-1$.
}%
\long\def\XINT_first:f:csv_a #1,#2\xint_bye{ #1}%
% \end{macrocode}
-% \subsection{\csh{xintLastItem:f:csv}}
+% \subsubsection{\csh{xintLastItem:f:csv}}
% \lverb|Added with 1.2k, based on and sharing code with xintkernel's
% \xintLastItem from 1.2i. Output empty if input empty. f-expands its argument
% (hence first item, if not protected.) For use by last() in
@@ -17590,15 +17831,15 @@ $1$ or $-1$.
{%
\expandafter\XINT_last:f:csv_loop\expandafter{\expandafter}\expandafter.%
\romannumeral`&&@#1,%
- \xint_relax\XINT_last_loop_enda,\xint_relax\XINT_last_loop_endb,%
- \xint_relax\XINT_last_loop_endc,\xint_relax\XINT_last_loop_endd,%
- \xint_relax\XINT_last_loop_ende,\xint_relax\XINT_last_loop_endf,%
- \xint_relax\XINT_last_loop_endg,\xint_relax\XINT_last_loop_endh,\xint_bye
+ \xint:\XINT_last_loop_enda,\xint:\XINT_last_loop_endb,%
+ \xint:\XINT_last_loop_endc,\xint:\XINT_last_loop_endd,%
+ \xint:\XINT_last_loop_ende,\xint:\XINT_last_loop_endf,%
+ \xint:\XINT_last_loop_endg,\xint:\XINT_last_loop_endh,\xint_bye
}%
\long\def\XINT_last:f:csv_loop #1.#2,#3,#4,#5,#6,#7,#8,#9,%
{%
- \xint_gob_til_xint_relax #9%
- {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint_relax
+ \xint_gob_til_xint: #9%
+ {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint:
\XINT_last:f:csv_loop {#9}.%
}%
% \end{macrocode}
@@ -17633,23 +17874,15 @@ $1$ or $-1$.
%
% \localtableofcontents
%
-% Got split off from \xintnameimp with release |1.1|, which also added
-% the new macro |\xintiiDivRound|.
+% Got split off from \xintnameimp with release |1.1|.
%
-% \begin{framed}
% The core arithmetic routines have been entirely rewritten for release
-% |1.2|.
+% |1.2|. The |1.2i| and |1.2l| brought again some improvements.
%
% The commenting continues (\xintdocdate) to be very sparse: actually it got
% worse than ever with release |1.2|. I will possibly add comments at a
% later date, but for the time being the new routines are not commented at
% all.
-% \end{framed}
-%
-% Also, starting with |1.2|, |\xintAdd| etc... are defined only via
-% \xintfracnameimp. Only |\xintiAdd| and |\xintiiAdd| (etc...) are provided
-% via \xintcorenameimp.
-%
%
% \subsection{Catcodes, \protect\eTeX{} and reload detection}
%
@@ -17708,7 +17941,143 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintcore}%
- [2017/01/06 1.2k Expandable arithmetic on big integers (JFB)]%
+ [2017/07/26 1.2l Expandable arithmetic on big integers (JFB)]%
+% \end{macrocode}
+% \subsection{(WIP!) Error conditions and exceptions}
+% \lverb|As per the Mike Cowlishaw/IBM's General Decimal Arithmetic Specification
+%
+% http://speleotrove.com/decimal/decarith.html
+%
+% and the Python3 implementation in its Decimal module.
+%
+% Clamped, ConversionSyntax, DivisionByZero, DivisionImpossible,
+% DivisionUndefined, Inexact, InsufficientStorage, InvalidContext,
+% InvalidOperation, Overflow, Inexact, Rounded, Subnormal,
+% Underflow.
+%
+% X3.274 rajoute LostDigits
+%
+% Python rajoute FloatOperation (et n'inclut pas InsufficientStorage)
+%
+% quote de decarith.pdf:
+% The Clamped, Inexact, Rounded, and Subnormal conditions can coincide with
+% each other or with other conditions. In these cases then any trap enabled
+% for another condition takes precedence over (is handled before) all of
+% these, any Subnormal trap takes precedence over Inexact, any Inexact trap
+% takes precedence over Rounded, and any Rounded trap takes precedence over
+% Clamped.
+%
+% WORK IN PROGRESS ! (1.2l, 2017/07/26)
+%
+% I follow the Python terminology: a trapped signal means it raises an
+% exception which for us means an expandable error message with some possible
+% user interaction. In this WIP
+% state, the interaction is commented out. A non-trapped signal or condition
+% would activate a (presumably silent) handler.
+%
+% Here, no signal-raising condition is "ignored" and all are "trapped" which
+% means that error handlers are never activated, thus left in garbage state in
+% the code.
+%
+% Various conditions can raise the same signal.
+%
+% Only signals, not conditions, raise Flags.
+%
+% If a signal is ignored it does not raise a Flag, but it activates the signal
+% handler (by default now no signal is ignored.)
+%
+% If a signal is not ignored it raises a Flag and then if it is not trapped it
+% activates the handler of the _condition_.
+%
+% If trapped (which is default now) an «exception» is raised, which means an
+% expandable error message (I copied over the LaTeX3 code for expandable error
+% messages, basically)
+% interrupts the TeX run. In future, user input could
+% be solicited, but currently this is commented out.
+%
+% For now macros to reset flags are done but without public interface nor
+% documentation.
+%
+% Only four conditions are currently possibly encountered:
+%- InvalidOperation
+%- DivisionByZero
+%- DivisionUndefined (which signals InvalidOperation)
+%- Underflow
+%
+% I did it quickly, anyhow this will become more palpable when some of the
+% Decimal Specification is actually implemented. The plan is to first do the
+% X3.274 norm, then more complete implementation will follow... perhaps...
+% |
+% \begin{macrocode}
+\csname XINT_Clamped_istrapped\endcsname
+\csname XINT_ConversionSyntax_istrapped\endcsname
+\csname XINT_DivisionByZero_istrapped\endcsname
+\csname XINT_DivisionImpossible_istrapped\endcsname
+\csname XINT_DivisionUndefined_istrapped\endcsname
+\csname XINT_InvalidOperation_istrapped\endcsname
+\csname XINT_Overflow_istrapped\endcsname
+\csname XINT_Underflow_istrapped\endcsname
+\catcode`- 11
+\def\XINT_ConversionSyntax-signal {{InvalidOperation}}%
+\let\XINT_DivisionImpossible-signal\XINT_ConversionSyntax-signal
+\let\XINT_DivisionUndefined-signal \XINT_ConversionSyntax-signal
+\let\XINT_InvalidContext-signal \XINT_ConversionSyntax-signal
+\catcode`- 12
+\def\XINT_signalcondition #1{\expandafter\XINT_signalcondition_a
+ \romannumeral0\ifcsname XINT_#1-signal\endcsname
+ \xint_dothis{\csname XINT_#1-signal\endcsname}%
+ \fi\xint_orthat{{#1}}{#1}}%
+\def\XINT_signalcondition_a #1#2#3#4#5{% copied over from Python Decimal module
+% #1=signal, #2=condition, #3=explanation for user,
+% #4=context for error handlers, #5=used
+ \ifcsname XINT_#1_isignoredflag\endcsname
+ \xint_dothis{\csname XINT_#1.handler\endcsname {#4}}%
+ \fi
+ \expandafter\xint_gobble_i\csname XINT_#1Flag_ON\endcsname
+ \unless\ifcsname XINT_#1_istrapped\endcsname
+ \xint_dothis{\csname XINT_#2.handler\endcsname {#4}}%
+ \fi
+ \xint_orthat{%
+ % the flag raised is named after the signal #1, but we show condition #2
+ \XINT_expandableerror{#2 (hit <RET> thrice)}%
+ \XINT_expandableerror{#3}%
+ \XINT_expandableerror{next: #5}%
+ % not for X3.274
+ %\XINT_expandableerror{<RET>, or I\xintUse{...}<RET>, or I\xintCTRLC<RET>}%
+ \xint_firstofone_thenstop{#5}%
+ }%
+}%
+%% \let\xintUse\xint_firstofthree_thenstop % defined in xint.sty
+\def\XINT_ifFlagRaised #1{%
+ \ifcsname XINT_#1Flag_ON\endcsname
+ \expandafter\xint_firstoftwo
+ \else
+ \expandafter\xint_secondoftwo
+ \fi}%
+\def\XINT_resetFlag #1%
+ {\expandafter\let\csname XINT_#1Flag_ON\endcsname\XINT_undefined}%
+\def\XINT_resetFlags {% WIP
+ \XINT_resetFlag{InvalidOperation}% also from DivisionUndefined
+ \XINT_resetFlag{DivisionByZero}%
+ \XINT_resetFlag{Underflow}% (\xintiiPow with negative exponent)
+ \XINT_resetFlag{Overflow}% not encountered so far in xint code 1.2l
+ % .. others ..
+}%
+%% NOT IMPLEMENTED! WORK IN PROGRESS! (ALL SIGNALS TRAPPED, NO HANDLERS USED)
+\catcode`. 11
+\let\XINT_Clamped.handler\xint_firstofone % WIP
+\def\XINT_InvalidOperation.handler#1{_NaN}% WIP
+\def\XINT_ConversionSyntax.handler#1{_NaN}% WIP
+\def\XINT_DivisionByZero.handler#1{_SignedInfinity(#1)}% WIP
+\def\XINT_DivisionImpossible.handler#1{_NaN}% WIP
+\def\XINT_DivisionUndefined.handler#1{_NaN}% WIP
+\let\XINT_Inexact.handler\xint_firstofone % WIP
+\def\XINT_InvalidContext.handler#1{_NaN}% WIP
+\let\XINT_Rounded.handler\xint_firstofone % WIP
+\let\XINT_Subnormal.handler\xint_firstofone% WIP
+\def\XINT_Overflow.handler#1{_NaN}% WIP
+\def\XINT_Underflow.handler#1{_NaN}% WIP
+\catcode`. 12
% \end{macrocode}
% \subsection{Counts for holding needed constants}
% \begin{macrocode}
@@ -17719,384 +18088,109 @@ $1$ or $-1$.
\newcount\xint_c_x^viii_mone \xint_c_x^viii_mone 99999999
\newcount\xint_c_xii_e_viii \xint_c_xii_e_viii 1200000000
\newcount\xint_c_xi_e_viii_mone \xint_c_xi_e_viii_mone 1099999999
-\newcount\xint_c_xii_e_viii_mone\xint_c_xii_e_viii_mone 1199999999
% \end{macrocode}
% \subsection{\csh{xintNum}}
% \lverb|&
-% For example \xintNum {----+-+++---+----000000000000003}$\
-% |
-% \begin{macrocode}
-\def\xintiNum {\romannumeral0\xintinum }%
-\def\xintinum #1%
-{%
- \expandafter\XINT_num_loop
- \romannumeral`&&@#1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
-}%
-\let\xintNum\xintiNum \let\xintnum\xintinum
-\def\XINT_num #1%
-{%
- \XINT_num_loop #1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
-}%
-\def\XINT_num_loop #1#2#3#4#5#6#7#8%
-{%
- \xint_gob_til_xint_relax #8\XINT_num_end\xint_relax
- \XINT_num_NumEight #1#2#3#4#5#6#7#8%
-}%
-\edef\XINT_num_end\xint_relax\XINT_num_NumEight #1\xint_relax #2\Z
-{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1+\xint_c_\relax
-}%
-\def\XINT_num_NumEight #1#2#3#4#5#6#7#8%
-{%
- \ifnum \numexpr #1#2#3#4#5#6#7#8+\xint_c_= \xint_c_
- \xint_afterfi {\expandafter\XINT_num_keepsign_a
- \the\numexpr #1#2#3#4#5#6#7#81\relax}%
- \else
- \xint_afterfi {\expandafter\XINT_num_finish
- \the\numexpr #1#2#3#4#5#6#7#8\relax}%
- \fi
-}%
-\def\XINT_num_keepsign_a #1%
-{%
- \xint_gob_til_one#1\XINT_num_gobacktoloop 1\XINT_num_keepsign_b
-}%
-\def\XINT_num_gobacktoloop 1\XINT_num_keepsign_b {\XINT_num_loop }%
-\def\XINT_num_keepsign_b #1{\XINT_num_loop -}%
-\def\XINT_num_finish #1\xint_relax #2\Z { #1}%
-% \end{macrocode}
-% \subsection{Zeroes}
-% \lverb|Everything had to be changed for 1.2 as it does computations by
-% blocks of eight digits rather than four.
+% For example \xintNum {----+-+++---+----000000000000003}
%
-% Currently many macros are launched by a \romannumeral0. Perhaps I should
-% have used \romannumeral and end expansion by \z@ (\xint_c_).
+% Very old routine got completely rewritten for 1.2l.
%
-% \XINT_cuz_small removes leading zeroes from the first eight digits. Supposed
-% to have been launched by a \romannumeral0. At least one digit is produced.|
-% \begin{macrocode}
-\edef\XINT_cuz_small #1#2#3#4#5#6#7#8%
-{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax
-}%
-% \end{macrocode}
-% \lverb|This iterately removes all leading zeroes from a sequence of 8N
-% digits ended by \R.
+% New code uses \numexpr governed expansion and fixes some issues of former
+% version particularly regarding inputs of the \numexpr...\relax type without
+% \the or \number prefix, and/or possibly no terminating \relax.
%
-% Note 2015/11/28: with only four digits the gob_til_fourzeroes had proved
-% in some old testing faster than \ifnum test. But with eight digits, the
-% execution times are much closer, as I tested only now. Thus, one could as
-% well use \ifnum test here. Besides the tests were not exactly for a
-% situation like here where \XINT_cuz_z has two 00000000 blocks to grab.|
-% \begin{macrocode}
-\def\XINT_cuz #1#2#3#4#5#6#7#8#9%
-{%
- \xint_gob_til_R #9\XINT_cuz_e \R
- \xint_gob_til_eightzeroes #1#2#3#4#5#6#7#8\XINT_cuz_z 00000000%
- \XINT_cuz_done #1#2#3#4#5#6#7#8#9%
-}%
-\def\XINT_cuz_z 00000000\XINT_cuz_done 00000000{\XINT_cuz }%
-\edef\XINT_cuz_done #1#2#3#4#5#6#7#8#9\R
- {\noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax #9}%
-\edef\XINT_cuz_e\R #1\XINT_cuz_done #2\R
- {\noexpand\expandafter\space\noexpand\the\numexpr #2\relax }%
-% \end{macrocode}
-% \lverb|This removes eight by eight leading zeroes from a sequence of 8N digits
-% ended by \R. Thus, we still have 8N digits on output.|
-% \begin{macrocode}
-\def\XINT_cuz_byviii #1#2#3#4#5#6#7#8#9%
-{%
- \xint_gob_til_R #9\XINT_cuz_byviii_e \R
- \xint_gob_til_eightzeroes #1#2#3#4#5#6#7#8\XINT_cuz_byviii_z 00000000%
- \XINT_cuz_byviii_done #1#2#3#4#5#6#7#8#9%
-}%
-\def\XINT_cuz_byviii_z 00000000\XINT_cuz_byviii_done 00000000{\XINT_cuz_byviii}%
-\def\XINT_cuz_byviii_done #1\R { #1}%
-\def\XINT_cuz_byviii_e\R #1\XINT_cuz_byviii_done #2\R{ #2}%
-% \end{macrocode}
-% \subsection{Blocks of eight digits}
-% \lverb|Lingua of release 1.2.
+% \xintiNum{\numexpr 1}\foo in earlier versions caused premature expansion of
+% \foo.
%
-% \romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W$newline
-% produces a string of k 0's such that k+length(#1) is smallest bigger multiple
-% of eight.|
-% \begin{macrocode}
-\def\XINT_zeroes_forviii #1#2#3#4#5#6#7#8%
-{%
- \xint_gob_til_R #8\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii
-}%
-\edef\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii #1#2#3#4#5#6#7#8#9\W
-{%
- \noexpand\expandafter\space\noexpand\xint_gob_til_one #2#3#4#5#6#7#8%
-}%
-% \end{macrocode}
-% \lverb|This is used as$bgroup$obeyspaces$obeylines
-% \the\numexpr1\XINT_rsepbyviii <8Ndigits>$%
-% \XINT_rsepbyviii_end_A 2345678$%
-% \XINT_rsepbyviii_end_B 2345678\relax UV$egroup
-%
-% $noindent
-% and will produce 1<8digits>!1<8digits>.1<8digits>!... where the original
-% digits are organized by eight, and the order inside successive pairs of
-% blocks separated by ! has been reversed. The output ends with a final 1U. or
-% 1V. The former happens when we had an even number of eight blocks, the
-% latter an odd number: 1<8d>!1<8d>.1U. or 1<8d>!1<8d>.1<8d>.1V.|
-% \begin{macrocode}
-\def\XINT_rsepbyviii #1#2#3#4#5#6#7#8%
-{%
- \XINT_rsepbyviii_b {#1#2#3#4#5#6#7#8}%
-}%
-\def\XINT_rsepbyviii_b #1#2#3#4#5#6#7#8#9%
-{%
- #2#3#4#5#6#7#8#9\expandafter!\the\numexpr
- 1#1\expandafter.\the\numexpr 1\XINT_rsepbyviii
-}%
-\def\XINT_rsepbyviii_end_B #1\relax #2#3{#2.}%
-\def\XINT_rsepbyviii_end_A #11#2\expandafter #3\relax #4#5{#2.1#5.}%
-% \end{macrocode}
-% \lverb|This is used typically as$bgroup$obeyspaces$obeylines
-% \romannumeral0\expandafter\XINT_sepandrev <8Ndigits>$%
-% \XINT_rsepbyviii_end_A 2345678$%
-% \XINT_rsepbyviii_end_B 2345678\relax UV\R.\R.\R.\R.\R.\R.\R.\R.\W$egroup
+% \xintiNum{\the\numexpr 1} was ok, but a bit luckily so.
%
-% $noindent
-% and will produce 1<8digits>!1<8digits>!1<8digits>!... where the blocks have
-% been globally reversed. The UV here are only place holders to share same
-% syntax as \XINT_sepandrev_andcount, they are gobbled (#2 in
-% \XINT_sepandrev_done).|
-% \begin{macrocode}
-\def\XINT_sepandrev
-{%
- \expandafter\XINT_sepandrev_a\the\numexpr 1\XINT_rsepbyviii
-}%
-\def\XINT_sepandrev_a {\XINT_sepandrev_b {}}%
-\def\XINT_sepandrev_b #1#2.#3.#4.#5.#6.#7.#8.#9.%
-{%
- \xint_gob_til_R #9\XINT_sepandrev_end\R
- \XINT_sepandrev_b {#9!#8!#7!#6!#5!#4!#3!#2!#1}%
-}%
-\def\XINT_sepandrev_end\R\XINT_sepandrev_b #1#2\W {\XINT_sepandrev_done #1}%
-\def\XINT_sepandrev_done #11#2!{ }%
-% \end{macrocode}
-% \lverb|This is used typically as$bgroup$obeyspaces$obeylines
-% \romannumeral0\expandafter\XINT_sepandrev_andcount
-% \the\numexpr1\XINT_rsepbyviii <8Ndigits>$%
-% \XINT_rsepbyviii_end_A 2345678$%
-% \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
-% \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
-% \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W$egroup
-%
-% $noindent
-% and will produce <length>.1<8digits>!1<8digits>!1<8digits>!... where the
-% blocks have been globally reversed and <length> is the number of blocks.|
+% Also, up to 1.2k inclusive, the macro fetched tokens eight by eight, and not
+% nine by nine as is done now. I have no idea why.
+% |
% \begin{macrocode}
-\def\XINT_sepandrev_andcount
+\def\xintiNum {\romannumeral0\xintinum }%
+\def\xintinum #1%
{%
- \expandafter\XINT_sepandrev_andcount_a\the\numexpr 1\XINT_rsepbyviii
+ \expandafter\XINT_num_cleanup\the\numexpr\expandafter\XINT_num_loop
+ \romannumeral`&&@#1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
-\def\XINT_sepandrev_andcount_a {\XINT_sepandrev_andcount_b 0.{}}%
-\def\XINT_sepandrev_andcount_b #1.#2#3.#4.#5.#6.#7.#8.#9.%
+\let\xintNum\xintiNum \let\xintnum\xintinum
+\def\XINT_num #1%
{%
- \xint_gob_til_R #9\XINT_sepandrev_andcount_end\R
- \expandafter\XINT_sepandrev_andcount_b \the\numexpr #1+\xint_c_xiv.%
- {#9!#8!#7!#6!#5!#4!#3!#2}%
+ \expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop
+ #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
-\def\XINT_sepandrev_andcount_end\R
- \expandafter\XINT_sepandrev_andcount_b\the\numexpr #1+\xint_c_xiv.#2#3#4\W
-{\expandafter\XINT_sepandrev_andcount_done\the\numexpr \xint_c_ii*#3+#1.#2}%
-\edef\XINT_sepandrev_andcount_done #1.#21#3!%
- {\noexpand\expandafter\space\noexpand\the\numexpr #1-#3.}%
-% \end{macrocode}
-% \lverb|Used as \romannumeral0\XINT_unrevbyviii 1<8d>!....1<8d>! terminated
-% by$newline 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
-%
-% The \romannumeral in unrevbyviii_a is for special effects (expand some token
-% which was put as 1<token>! at the end of the original blocks). Used by
-% subtraction during \XINT_sub_out, in particular.|
-% \begin{macrocode}
-\def\XINT_unrevbyviii #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
+\def\XINT_num_loop #1#2#3#4#5#6#7#8#9%
{%
- \xint_gob_til_R #9\XINT_unrevbyviii_a\R
- \XINT_unrevbyviii {#9#8#7#6#5#4#3#2#1}%
-}%
-\edef\XINT_unrevbyviii_a\R\XINT_unrevbyviii #1#2\W
- {\noexpand\expandafter\space
- \noexpand\romannumeral`&&@\noexpand\xint_gob_til_Z #1}%
+ \xint_gob_til_xint: #9\XINT_num_end\xint:
+ #1#2#3#4#5#6#7#8#9%
+ \ifnum \numexpr #1#2#3#4#5#6#7#8#9+\xint_c_ = \xint_c_
% \end{macrocode}
-% \lverb|Can work with shorter ending pattern: 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!\W
-% but the longer one of unrevbyviii is ok here too. Used currently (1.2) only
-% by addition, now (1.2c) with long ending pattern. Does the final clean up of
-% leading zeroes contrarily to general \XINT_unrevbyviii.|
+% \lverb|&
+% means that so far only signs encountered, (if syntax is legal) then possibly
+% zeroes
+% or a terminated or not terminated \numexpr evaluating to zero
+% In that latter case a correct zero will be produced in the end.
+% |
% \begin{macrocode}
-\def\XINT_smallunrevbyviii 1#1!1#2!1#3!1#4!1#5!1#6!1#7!1#8!#9\W%
-{%
- \expandafter\XINT_cuz_small\xint_gob_til_Z #8#7#6#5#4#3#2#1%
-}%
+ \expandafter\XINT_num_loop
+ \else
% \end{macrocode}
-% \lverb|This is used as$bgroup$obeyspaces$obeylines
-% \the\numexpr\XINT_sepbyviii_andcount <8Ndigits>$%
-% \XINT_sepbyviii_end 2345678\relax
-% \xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%
-% \xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W $egroup
-%
-% $noindent
-% It will produce 1<8d>!1<8d>!....1<8d>!1.<count of blocks>. Used by
-% \XINT_div_prepare_g for \XINT_div_prepare_h.|
+% \lverb|&
+% non terminated \numexpr (with nine tokens total) are
+% safe as after \fi, there is then \xint:
+% |
% \begin{macrocode}
-\def\XINT_sepbyviii_andcount
-{%
- \expandafter\XINT_sepbyviii_andcount_a\the\numexpr\XINT_sepbyviii
-}%
-\def\XINT_sepbyviii #1#2#3#4#5#6#7#8%
-{%
- 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii
-}%
-\def\XINT_sepbyviii_end #1\relax {\relax\XINT_sepbyviii_andcount_end!}%
-\def\XINT_sepbyviii_andcount_a {\XINT_sepbyviii_andcount_b \xint_c_.}%
-\def\XINT_sepbyviii_andcount_b #1.#2!#3!#4!#5!#6!#7!#8!#9!%
-{%
- #2\expandafter!\the\numexpr#3\expandafter!\the\numexpr#4\expandafter
- !\the\numexpr#5\expandafter!\the\numexpr#6\expandafter!\the\numexpr
- #7\expandafter!\the\numexpr#8\expandafter!\the\numexpr#9\expandafter!\the\numexpr
- \expandafter\XINT_sepbyviii_andcount_b\the\numexpr #1+\xint_c_viii.%
+ \expandafter\relax
+ \fi
}%
-\def\XINT_sepbyviii_andcount_end #1\XINT_sepbyviii_andcount_b\the\numexpr
- #2+\xint_c_viii.#3#4\W {\expandafter.\the\numexpr #2+#3.}%
+\def\XINT_num_end\xint:#1\xint:{#1+\xint_c_\xint:}% empty input ok
+\def\XINT_num_cleanup #1\xint:#2\Z { #1}%
% \end{macrocode}
-% \lverb|This is used as$newline
-% \romannumeral0\XINT_rev_nounsep {}<blocks 1<8d>!>\R!\R!\R!\R!\R!\R!\R!\R!\W
+% \subsection*{Routines handling integers as lists of token digits}
+% \addcontentsline{toc}{subsection}{Routines handling integers as lists of token digits}
+% \lverb|&
+% Routines handling big integers which are lists of digit tokens with no
+% special additional structure. The argument is only subjected to a
+% \romannumeral`^^@ expansion when macros have "ii" in their names.
%
-% It reverses the blocks, keeping the 1's and ! separators. Used multiple
-% times in the division algorithm. The inserted {} here is *not* optional.
-% Attention does not make disappear a 1!.|
-% \begin{macrocode}
-\def\XINT_rev_nounsep #1#2!#3!#4!#5!#6!#7!#8!#9!%
-{%
- \xint_gob_til_R #9\XINT_rev_nounsep_end\R
- \XINT_rev_nounsep {#9!#8!#7!#6!#5!#4!#3!#2!#1}%
-}%
-\def\XINT_rev_nounsep_end\R\XINT_rev_nounsep #1#2\W {\XINT_rev_nounsep_done #1}%
-\def\XINT_rev_nounsep_done #11{ 1}%
-% \end{macrocode}
-% \lverb|This is used as$newline
-% \the\numexpr\XINT_sepbyviii_Z <8Ndigits>\XINT_sepbyviii_Z_end 2345678\relax
+% Some
+% routines do not accept non properly terminated inputs like "\the\numexpr1",
+% or "\the\mathcode`\-", others do.
%
-% It produces 1<8d>!...1<8d>!1\Z!|
-% \begin{macrocode}
-\def\XINT_sepbyviii_Z #1#2#3#4#5#6#7#8%
-{%
- 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii_Z
-}%
-\def\XINT_sepbyviii_Z_end #1\relax {\relax\Z!}%
-% \end{macrocode}
-% \lverb|This is used as$newline
-% \romannumeral0\XINT_unsep_cuzsmall {}<blocks of 1<8d>!>1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+% These routines or their sub-routines are mainly for internal usage.
+% |
%
-% En fait le {} est optionnel, s'il est absent le premier #1 sera vide, tout
-% simplement. It removes the 1's and !'s, and removes the leading zeroes *of
-% the first block*. This could have been done with \numexpr and a \cleanup but
-% would have restricted due to maximal expansion depth. Probably there where
-% already O(N^2) macros, thus I decided that this one would be too.|
-% \begin{macrocode}
-\def\XINT_unsep_cuzsmall #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
-{%
- \xint_gob_til_R #9\XINT_unsep_cuzsmall_end\R
- \XINT_unsep_cuzsmall {#1#2#3#4#5#6#7#8#9}%
-}%
-\def\XINT_unsep_cuzsmall_end\R
- \XINT_unsep_cuzsmall #1{\XINT_unsep_cuzsmall_done #1}%
-\def\XINT_unsep_cuzsmall_done #1\R #2\W{\XINT_cuz_small #1}%
-\def\XINT_unsep_delim {1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}%
-% \end{macrocode}
-% \lverb|This is used by division to remove separators from the produced
-% quotient. The quotient is produced in the correct order. The routine will
-% also remove leading zeroes. An extra intial block of 8 zeroes is possible
-% and thus if present must be removed. Then the next eight digits must be
-% cleaned of leading zeroes.|
-% \begin{macrocode}
-\def\XINT_div_unsepQ #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
-{%
- \xint_gob_til_R #9\XINT_div_unsepQ_end\R
- \XINT_div_unsepQ {#1#2#3#4#5#6#7#8#9}%
-}%
-\def\XINT_div_unsepQ_end\R\XINT_div_unsepQ #1{\XINT_div_unsepQ_x #1}%
-\def\XINT_div_unsepQ_x #1#2#3#4#5#6#7#8#9%
-{%
- \xint_gob_til_R #9\XINT_div_unsepQ_e \R
- \xint_gob_til_eightzeroes #1#2#3#4#5#6#7#8\XINT_div_unsepQ_y 00000000%
- \expandafter\XINT_div_unsepQ_done \the\numexpr #1#2#3#4#5#6#7#8.#9%
-}%
-\def\XINT_div_unsepQ_e\R\xint_gob_til_eightzeroes #1\XINT_div_unsepQ_y #2\W
- {\the\numexpr #1\relax \Z}%
-\def\XINT_div_unsepQ_y #1.#2\R #3\W{\XINT_cuz_small #2\Z}%
-\def\XINT_div_unsepQ_done #1.#2\R #3\W { #1#2\Z}%
-% \end{macrocode}
-% \lverb|This is used by division to remove separators from the produced
-% remainder. The remainder is here in correct order. It must be cleaned of
-% leading zeroes, possibly all the way. Terminator was
-% 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W|
-% \begin{macrocode}
-\def\XINT_div_unsepR #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
-{%
- \xint_gob_til_R #9\XINT_div_unsepR_end\R
- \XINT_div_unsepR {#1#2#3#4#5#6#7#8#9}%
-}%
-\def\XINT_div_unsepR_end\R\XINT_div_unsepR #1{\XINT_div_unsepR_done #1}%
-\def\XINT_div_unsepR_done #1\R #2\W {\XINT_cuz #1\R}%
-% \end{macrocode}
-% \subsection{\csh{xintReverseDigits}}
-% \lverb|1.2.|
+% \subsection{\csh{XINT_cuz_small}}
+% \lverb|&
+% \XINT_cuz_small removes leading zeroes from the first eight digits. Expands
+% following \romannumeral0. At least one digit is produced.|
% \begin{macrocode}
-\def\XINT_microrevsep #1#2#3#4#5#6#7#8%
-{%
- 1#8#7#6#5#4#3#2#1\expandafter!\the\numexpr\XINT_microrevsep
-}%
-\def\XINT_microrevsep_end #1\W #2\expandafter #3\Z{#2!}%
-\def\xintReverseDigits {\romannumeral0\xintreversedigits }%
-\def\xintreversedigits #1{\expandafter\XINT_reversedigits\romannumeral`&&@#1\Z}%
-\def\XINT_reversedigits #1%
-{%
- \xint_UDsignfork
- #1{\expandafter-\romannumeral0\XINT_reversedigits_a}%
- -{\XINT_reversedigits_a #1}%
- \krof
-}%
-\def\XINT_reversedigits_a #1\Z
+\def\XINT_cuz_small#1{%
+\def\XINT_cuz_small ##1##2##3##4##5##6##7##8%
{%
- \expandafter\XINT_revdigits_a\the\numexpr\expandafter\XINT_microrevsep
- \romannumeral`&&@#1{\XINT_microrevsep_end\W}\XINT_microrevsep_end
- \XINT_microrevsep_end\XINT_microrevsep_end
- \XINT_microrevsep_end\XINT_microrevsep_end
- \XINT_microrevsep_end\XINT_microrevsep_end\Z
- 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
-}%
-\def\XINT_revdigits_a {\XINT_revdigits_b {}}%
-\def\XINT_revdigits_b #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
-{%
- \xint_gob_til_R #9\XINT_revdigits_end\R
- \XINT_revdigits_b {#9#8#7#6#5#4#3#2#1}%
-}%
-\edef\XINT_revdigits_end\R\XINT_revdigits_b #1#2\W
- {\noexpand\expandafter\space\noexpand\xint_gob_til_Z #1}%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax
+}}\XINT_cuz_small{ }%
% \end{macrocode}
% \subsection{\csh{xintSgn}, \csh{xintiiSgn}, \csh{XINT_Sgn}, \csh{XINT_cntSgn}}
% \lverb|&
-% xintfrac.sty will overwrite \xintsgn with use of \xintraw rather than
-% \xintnum, naturally.
-%|
+% xintfrac.sty will rewrite \xintSgn to let it accept general input as recognized by
+% xintfrac.sty macros
+%
+% 1.2l: \xintiiSgn made robust against non terminated input.
+% |
% \begin{macrocode}
\def\xintiiSgn {\romannumeral0\xintiisgn }%
\def\xintiisgn #1%
{%
- \expandafter\XINT_sgn \romannumeral`&&@#1\Z%
+ \expandafter\XINT_sgn \romannumeral`&&@#1\xint:
}%
\def\xintSgn {\romannumeral0\xintsgn }%
\def\xintsgn #1%
{%
- \expandafter\XINT_sgn \romannumeral0\xintnum{#1}\Z%
+ \expandafter\XINT_sgn \romannumeral0\xintnum{#1}\xint:
}%
-\def\XINT_sgn #1#2\Z
+\def\XINT_sgn #1#2\xint:
{%
\xint_UDzerominusfork
#1-{ 0}%
@@ -18104,7 +18198,7 @@ $1$ or $-1$.
0-{ 1}%
\krof
}%
-\def\XINT_Sgn #1#2\Z
+\def\XINT_Sgn #1#2\xint:
{%
\xint_UDzerominusfork
#1-{0}%
@@ -18112,7 +18206,7 @@ $1$ or $-1$.
0-{1}%
\krof
}%
-\def\XINT_cntSgn #1#2\Z
+\def\XINT_cntSgn #1#2\xint:
{%
\xint_UDzerominusfork
#1-\xint_c_
@@ -18122,6 +18216,9 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintiOpp}, \csh{xintiiOpp}}
+% \lverb|Attention, \xintiiOpp non robust against non terminated inputs.
+% Reason is I don't want to have to grab a delimiter at the end, as everything
+% happens "upfront".|
% \begin{macrocode}
\def\xintiiOpp {\romannumeral0\xintiiopp }%
\def\xintiiopp #1%
@@ -18144,6 +18241,7 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintiAbs}, \csh{xintiiAbs}}
+% \lverb|Attention \xintiiAbs non robust against non terminated input.|
% \begin{macrocode}
\def\xintiiAbs {\romannumeral0\xintiiabs }%
\def\xintiiabs #1%
@@ -18164,18 +18262,22 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintFDg}, \csh{xintiiFDg}}
+% \lverb|&
+% FIRST DIGIT.
+%
+% 1.2l: \xintiiFDg made robust against non terminated input.|
% \begin{macrocode}
\def\xintiiFDg {\romannumeral0\xintiifdg }%
\def\xintiifdg #1%
{%
- \expandafter\XINT_fdg \romannumeral`&&@#1\W\Z
+ \expandafter\XINT_fdg \romannumeral`&&@#1\xint:\Z
}%
\def\xintFDg {\romannumeral0\xintfdg }%
\def\xintfdg #1%
{%
- \expandafter\XINT_fdg \romannumeral0\xintnum{#1}\W\Z
+ \expandafter\XINT_fdg \romannumeral0\xintnum{#1}\xint:\Z
}%
-\def\XINT_FDg #1{\romannumeral0\XINT_fdg #1\W\Z }%
+\def\XINT_FDg #1{\romannumeral0\XINT_fdg #1\xint:\Z }%
\def\XINT_fdg #1#2#3\Z
{%
\xint_UDzerominusfork
@@ -18187,8 +18289,12 @@ $1$ or $-1$.
% \end{macrocode}
% \subsection{\csh{xintLDg}, \csh{xintiiLDg}}
% \lverb|&
-% Rewritten for 1.2i (2016/12/10). Surprisingly perhaps, faster than
-% \xintLastItem despite the \numexpr operations.
+% LAST DIGIT.
+%
+% Rewritten for 1.2i (2016/12/10). Surprisingly perhaps, it is faster than
+% \xintLastItem from xintkernel.sty despite the \numexpr operations.
+%
+% Attention \xintiiLDg non robust against non terminated input.
% |
% \begin{macrocode}
\def\xintLDg {\romannumeral0\xintldg }%
@@ -18204,21 +18310,20 @@ $1$ or $-1$.
-{\XINT_ldg#1}%
\krof
}%
-\edef\XINT_ldg #1#2#3#4#5#6#7#8#9%
- {\noexpand\expandafter\space
- \noexpand\the\numexpr#9#8#7#6#5#4#3#2#1*\xint_c_+\noexpand\XINT_ldg_a#9}%
+\def\XINT_ldg #1{%
+\def\XINT_ldg ##1##2##3##4##5##6##7##8##9%
+ {\expandafter#1%
+ \the\numexpr##9##8##7##6##5##4##3##2##1*\xint_c_+\XINT_ldg_a##9}%
+}\XINT_ldg{ }%
\def\XINT_ldg_a#1#2{\XINT_ldg_cbye#2\XINT_ldg_d#1\XINT_ldg_c\XINT_ldg_b#2}%
\def\XINT_ldg_b#1#2#3#4#5#6#7#8#9{#9#8#7#6#5#4#3#2#1*\xint_c_+\XINT_ldg_a#9}%
\def\XINT_ldg_c #1#2\xint_bye{#1}%
\def\XINT_ldg_cbye #1\XINT_ldg_c{}%
\def\XINT_ldg_d#1#2\xint_bye{#1}%
% \end{macrocode}
+%
% \subsection{\csh{xintDouble}}
-% \lverb|1.08. Rewritten for 1.2. Again rewritten for 1.2i (one year
-% later...)! oh no... 1.2i simply forgot to handle negative numbers... and I
-% made no testing. In fact I didn't remember if the macro was for non-negative
-% input only. Looking at earlier code, no, it did handle negative inputs too.
-% 1.2k has a regression test suite, which caught that.|
+% \lverb|Attention \xintDouble non robust against non terminated input.|
% \begin{macrocode}
\def\xintDouble {\romannumeral0\xintdouble}%
\def\xintdouble #1{\expandafter\XINT_dbl_fork\romannumeral`&&@#1%
@@ -18231,14 +18336,16 @@ $1$ or $-1$.
\krof #1%
}%
\def\XINT_dbl_neg-{\expandafter-\romannumeral0\XINT_dbl}%
-\def\XINT_dbl #1#2#3#4#5#6#7#8%
- {\expandafter\space\the\numexpr#1#2#3#4#5#6#7#8\XINT_dbl_a}%
+\def\XINT_dbl #1{%
+\def\XINT_dbl ##1##2##3##4##5##6##7##8%
+ {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8\XINT_dbl_a}%
+}\XINT_dbl{ }%
\def\XINT_dbl_a #1#2#3#4#5#6#7#8%
{\expandafter\XINT_dbl_e\the\numexpr 1#1#2#3#4#5#6#7#8\XINT_dbl_a}%
\def\XINT_dbl_e#1{*\xint_c_ii\if#13+\xint_c_i\fi\relax}%
% \end{macrocode}
% \subsection{\csh{xintHalf}}
-% \lverb|1.08. Rewritten for 1.2. Again rewritten for 1.2i.|
+% \lverb|Attention \xintHalf non robust against non terminated input.|
% \begin{macrocode}
\def\xintHalf {\romannumeral0\xinthalf}%
\def\xinthalf #1{\expandafter\XINT_half_fork\romannumeral`&&@#1%
@@ -18252,20 +18359,22 @@ $1$ or $-1$.
\krof #1%
}%
\def\XINT_half_neg-{\xintiiopp\XINT_half}%
-\def\XINT_half #1#2#3#4#5#6#7#8%
- {\expandafter\space\the\numexpr(#1#2#3#4#5#6#7#8\XINT_half_a}%
+\def\XINT_half #1{%
+\def\XINT_half ##1##2##3##4##5##6##7##8%
+ {\expandafter#1\the\numexpr(##1##2##3##4##5##6##7##8\XINT_half_a}%
+}\XINT_half{ }%
\def\XINT_half_a#1{\xint_Bye#1\xint_bye\XINT_half_b#1}%
\def\XINT_half_b #1#2#3#4#5#6#7#8%
{\expandafter\XINT_half_e\the\numexpr(1#1#2#3#4#5#6#7#8\XINT_half_a}%
\def\XINT_half_e#1{*\xint_c_v+#1-\xint_c_v)\relax}%
% \end{macrocode}
% \subsection{\csh{xintInc}}
-% \lverb|1.2i much delayed complete rewrite in 1.2 style. I should have
-% done that at the time of 1.2 release (I modified \xintInc at that time but
-% wasn't very lucid after all the work done on 1.2).
+% \lverb|1.2i much delayed complete rewrite in 1.2 style.
%
% As we take 9 by 9 with the input save stack at 5000 this allows a bit less
-% than 9 times 2500 = 22500 digits on input.|
+% than 9 times 2500 = 22500 digits on input.
+%
+% Attention \xintInc non robust against non terminated input.|
% \begin{macrocode}
\def\xintInc {\romannumeral0\xintinc}%
\def\xintinc #1{\expandafter\XINT_inc_fork\romannumeral`&&@#1%
@@ -18279,15 +18388,19 @@ $1$ or $-1$.
}%
\def\XINT_inc_neg-#1\xint_bye#2\relax
{\xintiiopp\XINT_dec #1\XINT_dec_bye234567890\xint_bye}%
-\def\XINT_inc #1#2#3#4#5#6#7#8#9%
- {\expandafter\space\the\numexpr#1#2#3#4#5#6#7#8#9\XINT_inc_a}%
+\def\XINT_inc #1{%
+\def\XINT_inc ##1##2##3##4##5##6##7##8##9%
+ {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_inc_a}%
+}\XINT_inc{ }%
\def\XINT_inc_a #1#2#3#4#5#6#7#8#9%
{\expandafter\XINT_inc_e\the\numexpr 1#1#2#3#4#5#6#7#8#9\XINT_inc_a}%
\def\XINT_inc_e#1{\if#12+\xint_c_i\fi\relax}%
% \end{macrocode}
% \subsection{\csh{xintDec}}
% \lverb|1.2i much delayed complete rewrite in the 1.2 style. Things are a
-% bit more complicated than \xintInc because 2999999999 is too big for TeX.|
+% bit more complicated than \xintInc because 2999999999 is too big for TeX.
+%
+% Attention \xintDec non robust against non terminated input.|
% \begin{macrocode}
\def\xintDec {\romannumeral0\xintdec}%
\def\xintdec #1{\expandafter\XINT_dec_fork\romannumeral`&&@#1%
@@ -18302,8 +18415,10 @@ $1$ or $-1$.
\def\XINT_dec_neg-#1\XINT_dec_bye#2\xint_bye
{\expandafter-%
\romannumeral0\XINT_inc #1\xint_bye23456789\xint_bye+\xint_c_i\relax}%
-\def\XINT_dec #1#2#3#4#5#6#7#8#9%
- {\expandafter\space\the\numexpr#1#2#3#4#5#6#7#8#9\XINT_dec_a}%
+\def\XINT_dec #1{%
+\def\XINT_dec ##1##2##3##4##5##6##7##8##9%
+ {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_dec_a}%
+}\XINT_dec{ }%
\def\XINT_dec_a #1#2#3#4#5#6#7#8#9%
{\expandafter\XINT_dec_e\the\numexpr 1#1#2#3#4#5#6#7#8#9\XINT_dec_a}%
\def\XINT_dec_bye #1\XINT_dec_a#2#3\xint_bye
@@ -18313,17 +18428,22 @@ $1$ or $-1$.
% \subsection{\csh{xintDSL}}
% \lverb|DECIMAL SHIFT LEFT (=MULTIPLICATION PAR 10). Rewritten for 1.2i.
% This was very old code... I never came back to it, but I should have
-% rewritten it long time ago.|
+% rewritten it long time ago.
+%
+% Attention \xintDSL non robust against non terminated input.|
% \begin{macrocode}
\def\xintDSL {\romannumeral0\xintdsl }%
\def\xintdsl #1{\expandafter\XINT_dsl\romannumeral`&&@#10}%
-\edef\XINT_dsl #1%
- {\noexpand\xint_gob_til_zero #1\noexpand\xint_dsl_zero 0\space #1}%
+\def\XINT_dsl#1{%
+\def\XINT_dsl ##1{\xint_gob_til_zero ##1\xint_dsl_zero 0#1##1}%
+}\XINT_dsl{ }%
\def\xint_dsl_zero 0 0{ }%
% \end{macrocode}
% \subsection{\csh{xintDSR}}
% \lverb|Decimal shift right, truncates towards zero. Rewritten for 1.2i.
-% Limited to 22483 digits on input.|
+% Limited to 22483 digits on input.
+%
+% Attention \xintDSR non robust against non terminated input.|
% \begin{macrocode}
\def\xintDSR{\romannumeral0\xintdsr}%
\def\xintdsr #1{\expandafter\XINT_dsr_fork\romannumeral`&&@#1%
@@ -18336,8 +18456,10 @@ $1$ or $-1$.
\krof #1%
}%
\def\XINT_dsr_neg-{\xintiiopp\XINT_dsr}%
-\def\XINT_dsr #1#2#3#4#5#6#7#8#9%
- {\expandafter\space\the\numexpr(#1#2#3#4#5#6#7#8#9\XINT_dsr_a}%
+\def\XINT_dsr #1{%
+\def\XINT_dsr ##1##2##3##4##5##6##7##8##9%
+ {\expandafter#1\the\numexpr(##1##2##3##4##5##6##7##8##9\XINT_dsr_a}%
+}\XINT_dsr{ }%
\def\XINT_dsr_a#1{\xint_Bye#1\xint_bye\XINT_dsr_b#1}%
\def\XINT_dsr_b #1#2#3#4#5#6#7#8#9%
{\expandafter\XINT_dsr_e\the\numexpr(1#1#2#3#4#5#6#7#8#9\XINT_dsr_a}%
@@ -18347,7 +18469,10 @@ $1$ or $-1$.
% \lverb|New with 1.2i. Decimal shift right, rounds away from zero; done in
% the 1.2 spirit (with much delay, sorry). Used by \xintRound, \xintDivRound.
%
-% This is about the first time I am happy that the division in \numexpr rounds!|
+% This is about the first time I am happy that the division in \numexpr
+% rounds!
+%
+% Attention \xintDSRr non robust against non terminated input.|
% \begin{macrocode}
\def\xintDSRr{\romannumeral0\xintdsrr}%
\def\xintdsrr #1{\expandafter\XINT_dsrr_fork\romannumeral`&&@#1%
@@ -18360,14 +18485,372 @@ $1$ or $-1$.
\krof #1%
}%
\def\XINT_dsrr_neg-{\xintiiopp\XINT_dsrr}%
-\def\XINT_dsrr #1#2#3#4#5#6#7#8#9%
- {\expandafter\space\the\numexpr#1#2#3#4#5#6#7#8#9\XINT_dsrr_a}%
+\def\XINT_dsrr #1{%
+\def\XINT_dsrr ##1##2##3##4##5##6##7##8##9%
+ {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_dsrr_a}%
+}\XINT_dsrr{ }%
\def\XINT_dsrr_a#1{\xint_Bye#1\xint_bye\XINT_dsrr_b#1}%
\def\XINT_dsrr_b #1#2#3#4#5#6#7#8#9%
{\expandafter\XINT_dsrr_e\the\numexpr1#1#2#3#4#5#6#7#8#9\XINT_dsrr_a}%
\let\XINT_dsrr_e\XINT_inc_e
% \end{macrocode}
-% \subsection{Core arithmetic}
+% \subsection*{Blocks of eight digits}
+% \addcontentsline{toc}{subsection}{Blocks of eight digits}
+% \lverb|The lingua of release 1.2.|
+%
+% \subsection{\csh{XINT_cuz}}
+% \lverb|This (launched by \romannumeral0) iterately removes all leading
+% zeroes from a sequence of 8N digits ended by \R.
+%
+% Rewritten for 1.2l, now uses \numexpr governed expansion and \ifnum test
+% rather than delimited gobbling macros.
+%
+% Note 2015/11/28: with only four digits the gob_til_fourzeroes had proved
+% in some old testing faster than \ifnum test. But with eight digits, the
+% execution times are much closer, as I tested back then.
+% |
+% \begin{macrocode}
+\def\XINT_cuz #1{%
+\def\XINT_cuz {\expandafter#1\the\numexpr\XINT_cuz_loop}%
+}\XINT_cuz{ }%
+\def\XINT_cuz_loop #1#2#3#4#5#6#7#8#9%
+{%
+ #1#2#3#4#5#6#7#8%
+ \xint_gob_til_R #9\XINT_cuz_hitend\R
+ \ifnum #1#2#3#4#5#6#7#8>\xint_c_
+ \expandafter\XINT_cuz_cleantoend
+ \else\expandafter\XINT_cuz_loop
+ \fi #9%
+}%
+\def\XINT_cuz_hitend\R #1\R{\relax}%
+\def\XINT_cuz_cleantoend #1\R{\relax #1}%
+% \end{macrocode}
+% \subsection{\csh{XINT_cuz_byviii}}
+% \lverb|This removes eight by eight leading zeroes from a sequence of 8N digits
+% ended by \R. Thus, we still have 8N digits on output. Expansion started by
+% \romannumeral0 |
+% \begin{macrocode}
+\def\XINT_cuz_byviii #1#2#3#4#5#6#7#8#9%
+{%
+ \xint_gob_til_R #9\XINT_cuz_byviii_e \R
+ \xint_gob_til_eightzeroes #1#2#3#4#5#6#7#8\XINT_cuz_byviii_z 00000000%
+ \XINT_cuz_byviii_done #1#2#3#4#5#6#7#8#9%
+}%
+\def\XINT_cuz_byviii_z 00000000\XINT_cuz_byviii_done 00000000{\XINT_cuz_byviii}%
+\def\XINT_cuz_byviii_done #1\R { #1}%
+\def\XINT_cuz_byviii_e\R #1\XINT_cuz_byviii_done #2\R{ #2}%
+% \end{macrocode}
+% \subsection{\csh{XINT_unsep_loop}}
+%
+% \lverb|This is used as
+%( \the\numexpr0\XINT_unsep_loop (blocks of 1<8d>!)%
+%: \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax
+%)
+% It removes the 1's and !'s, from the 8N digits and outputs them prefixed by
+% a 0 token.
+%
+% Done at 1.2l for usage by other macros. The similar code in earlier releases
+% was strangely in O(N^2) style, apparently to avoid some memory constraints.
+% But these memory constraints related to \numexpr chaining seems to be in
+% many places in xint code base. The 1.2l version is written in the 1.2i style
+% of \xintInc etc... and is compatible with some 1! block without digits
+% among the treated blocks, they will disappear.|
+% \begin{macrocode}
+\def\XINT_unsep_loop #1!#2!#3!#4!#5!#6!#7!#8!#9!%
+{%
+ \expandafter\XINT_unsep_clean
+ \the\numexpr #1\expandafter\XINT_unsep_clean
+ \the\numexpr #2\expandafter\XINT_unsep_clean
+ \the\numexpr #3\expandafter\XINT_unsep_clean
+ \the\numexpr #4\expandafter\XINT_unsep_clean
+ \the\numexpr #5\expandafter\XINT_unsep_clean
+ \the\numexpr #6\expandafter\XINT_unsep_clean
+ \the\numexpr #7\expandafter\XINT_unsep_clean
+ \the\numexpr #8\expandafter\XINT_unsep_clean
+ \the\numexpr #9\XINT_unsep_loop
+}%
+\def\XINT_unsep_clean 1{\relax}%
+% \end{macrocode}
+% \subsection{\csh{XINT_unsep_cuzsmall}}
+%
+% \lverb|This is used as
+%( \romannumeral0\XINT_unsep_cuzsmall (blocks of 1<8d>!)%
+%: \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax
+%)
+% It removes the 1's and !'s, and removes the leading zeroes *of
+% the first block*.
+%
+% Redone for 1.2l: the 1.2 variant was strangely in O(N^2) style.|
+% \begin{macrocode}
+\def\XINT_unsep_cuzsmall
+{%
+ \expandafter\XINT_unsep_cuzsmall_x\the\numexpr0\XINT_unsep_loop
+}%
+\def\XINT_unsep_cuzsmall_x #1{%
+\def\XINT_unsep_cuzsmall_x 0##1##2##3##4##5##6##7##8%
+{%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax
+}}\XINT_unsep_cuzsmall_x{ }%
+% \end{macrocode}
+% \subsection{\csh{XINT_div_unsepQ}}
+%
+% \lverb|This is used by division to remove separators from the produced
+% quotient. The quotient is produced in the correct order. The routine will
+% also remove leading zeroes. An extra initial block of 8 zeroes is possible
+% and thus if present must be removed. Then the next eight digits must be
+% cleaned of leading zeroes. Attention that there might be a single
+% block of 8 zeroes. Expansion launched by \romannumeral0.
+%
+% Rewritten for 1.2l in 1.2i style.|
+% \begin{macrocode}
+\def\XINT_div_unsepQ_delim {\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\Z}%
+\def\XINT_div_unsepQ
+{%
+ \expandafter\XINT_div_unsepQ_x\the\numexpr0\XINT_unsep_loop
+}%
+\def\XINT_div_unsepQ_x #1{%
+\def\XINT_div_unsepQ_x 0##1##2##3##4##5##6##7##8##9%
+{%
+ \xint_gob_til_Z ##9\XINT_div_unsepQ_one\Z
+ \xint_gob_til_eightzeroes ##1##2##3##4##5##6##7##8\XINT_div_unsepQ_y 00000000%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax ##9%
+}}\XINT_div_unsepQ_x{ }%
+\def\XINT_div_unsepQ_y #1{%
+\def\XINT_div_unsepQ_y ##1\relax ##2##3##4##5##6##7##8##9%
+{%
+ \expandafter#1\the\numexpr ##2##3##4##5##6##7##8##9\relax
+}}\XINT_div_unsepQ_y{ }%
+\def\XINT_div_unsepQ_one#1\expandafter{\expandafter}%
+% \end{macrocode}
+% \subsection{\csh{XINT_div_unsepR}}
+%
+% \lverb|This is used by division to remove separators from the produced
+% remainder. The remainder is here in correct order. It must be cleaned of
+% leading zeroes, possibly all the way.
+%
+% Also rewritten for 1.2l, the 1.2 version was O(N^2) style.
+%
+% Terminator \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\R
+%
+% We have a need for something like \R because it is not guaranteed the thing
+% is not actually zero.|
+% \begin{macrocode}
+\def\XINT_div_unsepR
+{%
+ \expandafter\XINT_div_unsepR_x\the\numexpr0\XINT_unsep_loop
+}%
+\def\XINT_div_unsepR_x#1{%
+\def\XINT_div_unsepR_x 0{\expandafter#1\the\numexpr\XINT_cuz_loop}%
+}\XINT_div_unsepR_x{ }%
+% \end{macrocode}
+% \subsection{\csh{XINT_zeroes_forviii}}
+%
+% \lverb|&
+%( \romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W
+%)
+% produces a string of k 0's such that k+length(#1) is smallest bigger multiple
+% of eight.|
+% \begin{macrocode}
+\def\XINT_zeroes_forviii #1#2#3#4#5#6#7#8%
+{%
+ \xint_gob_til_R #8\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii
+}%
+\def\XINT_zeroes_forviii_end#1{%
+\def\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii ##1##2##3##4##5##6##7##8##9\W
+{%
+ \expandafter#1\xint_gob_til_one ##2##3##4##5##6##7##8%
+}}\XINT_zeroes_forviii_end{ }%
+% \end{macrocode}
+% \subsection{\csh{XINT_sepbyviii_Z}}
+%
+% \lverb|This is used as
+%( \the\numexpr\XINT_sepbyviii_Z <8Ndigits>\XINT_sepbyviii_Z_end 2345678\relax
+%)
+% It produces 1<8d>!...1<8d>!1;!
+%
+% Prior to 1.2l it used \Z as terminator not the semi-colon (hence the name).
+% The switch to ; was done at a time I thought perhaps I would use an internal
+% format maintaining such 8 digits blocks, and this has to be compatible with
+% the \csname...\endcsname encapsulation in \xintexpr parsers.|
+% \begin{macrocode}
+\def\XINT_sepbyviii_Z #1#2#3#4#5#6#7#8%
+{%
+ 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii_Z
+}%
+\def\XINT_sepbyviii_Z_end #1\relax {;!}%
+% \end{macrocode}
+% \subsection{\csh{XINT_sepbyviii_andcount}}
+%
+% \lverb|This is used as
+%( \the\numexpr\XINT_sepbyviii_andcount <8Ndigits>$%
+%: \XINT_sepbyviii_end 2345678\relax
+%: \xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!$%
+%: \xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W
+%)
+% It will produce
+%( 1<8d>!1<8d>!....1<8d>!1\xint:<count of blocks>\xint:
+%)
+% Used by
+% \XINT_div_prepare_g for \XINT_div_prepare_h, and also by \xintiiCmp.|
+% \begin{macrocode}
+\def\XINT_sepbyviii_andcount
+{%
+ \expandafter\XINT_sepbyviii_andcount_a\the\numexpr\XINT_sepbyviii
+}%
+\def\XINT_sepbyviii #1#2#3#4#5#6#7#8%
+{%
+ 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii
+}%
+\def\XINT_sepbyviii_end #1\relax {\relax\XINT_sepbyviii_andcount_end!}%
+\def\XINT_sepbyviii_andcount_a {\XINT_sepbyviii_andcount_b \xint_c_\xint:}%
+\def\XINT_sepbyviii_andcount_b #1\xint:#2!#3!#4!#5!#6!#7!#8!#9!%
+{%
+ #2\expandafter!\the\numexpr#3\expandafter!\the\numexpr#4\expandafter
+ !\the\numexpr#5\expandafter!\the\numexpr#6\expandafter!\the\numexpr
+ #7\expandafter!\the\numexpr#8\expandafter!\the\numexpr#9\expandafter!\the\numexpr
+ \expandafter\XINT_sepbyviii_andcount_b\the\numexpr #1+\xint_c_viii\xint:%
+}%
+\def\XINT_sepbyviii_andcount_end #1\XINT_sepbyviii_andcount_b\the\numexpr
+ #2+\xint_c_viii\xint:#3#4\W {\expandafter\xint:\the\numexpr #2+#3\xint:}%
+% \end{macrocode}
+% \subsection{\csh{XINT_rsepbyviii}}
+%
+% \lverb|This is used as
+%( \the\numexpr1\XINT_rsepbyviii <8Ndigits>$%
+%: \XINT_rsepbyviii_end_A 2345678$%
+%: \XINT_rsepbyviii_end_B 2345678\relax UV$%
+%)
+% and will produce
+%( 1<8digits>!1<8digits>\xint:1<8digits>!...
+%)
+% where the original
+% digits are organized by eight, and the order inside successive pairs of
+% blocks separated by \xint: has been reversed. Output ends either in
+% 1<8d>!1<8d>\xint:1U\xint: (even) or 1<8d>!1<8d>\xint:1V!1<8d>\xint: (odd)
+%
+% The U an V should be \numexpr1 stoppers (or will expand and be ended by !).
+% This macro is currently (1.2..1.2l) exclusively used in combination with
+% \XINT_sepandrev_andcount or \XINT_sepandrev.
+% |
+% \begin{macrocode}
+\def\XINT_rsepbyviii #1#2#3#4#5#6#7#8%
+{%
+ \XINT_rsepbyviii_b {#1#2#3#4#5#6#7#8}%
+}%
+\def\XINT_rsepbyviii_b #1#2#3#4#5#6#7#8#9%
+{%
+ #2#3#4#5#6#7#8#9\expandafter!\the\numexpr
+ 1#1\expandafter\xint:\the\numexpr 1\XINT_rsepbyviii
+}%
+\def\XINT_rsepbyviii_end_B #1\relax #2#3{#2\xint:}%
+\def\XINT_rsepbyviii_end_A #11#2\expandafter #3\relax #4#5{#5!1#2\xint:}%
+% \end{macrocode}
+% \subsection{\csh{XINT_sepandrev}}
+% \lverb|This is used typically as
+%( \romannumeral0\XINT_sepandrev <8Ndigits>$%
+%: \XINT_rsepbyviii_end_A 2345678$%
+%: \XINT_rsepbyviii_end_B 2345678\relax UV$%
+%: \R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\W
+%)
+% and will produce
+%( 1<8digits>!1<8digits>!1<8digits>!...
+%)
+% where the blocks have
+% been globally reversed. The UV here are only place holders (must be \numexpr1
+% stoppers) to share same
+% syntax as \XINT_sepandrev_andcount, they are gobbled (#2 in \XINT_sepandrev_done).|
+% \begin{macrocode}
+\def\XINT_sepandrev
+{%
+ \expandafter\XINT_sepandrev_a\the\numexpr 1\XINT_rsepbyviii
+}%
+\def\XINT_sepandrev_a {\XINT_sepandrev_b {}}%
+\def\XINT_sepandrev_b #1#2\xint:#3\xint:#4\xint:#5\xint:#6\xint:#7\xint:#8\xint:#9\xint:%
+{%
+ \xint_gob_til_R #9\XINT_sepandrev_end\R
+ \XINT_sepandrev_b {#9!#8!#7!#6!#5!#4!#3!#2!#1}%
+}%
+\def\XINT_sepandrev_end\R\XINT_sepandrev_b #1#2\W {\XINT_sepandrev_done #1}%
+\def\XINT_sepandrev_done #11#2!{ }%
+% \end{macrocode}
+% \subsection{\csh{XINT_sepandrev_andcount}}
+% \lverb|This is used typically as
+%( \romannumeral0\XINT_sepandrev_andcount <8Ndigits>$%
+%: \XINT_rsepbyviii_end_A 2345678$%
+%: \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+%: \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+%: \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
+%)
+% and will produce
+%( <length>.1<8digits>!1<8digits>!1<8digits>!...
+%)
+% where the
+% blocks have been globally reversed and <length> is the number of blocks.|
+% \begin{macrocode}
+\def\XINT_sepandrev_andcount
+{%
+ \expandafter\XINT_sepandrev_andcount_a\the\numexpr 1\XINT_rsepbyviii
+}%
+\def\XINT_sepandrev_andcount_a {\XINT_sepandrev_andcount_b 0!{}}%
+\def\XINT_sepandrev_andcount_b #1!#2#3\xint:#4\xint:#5\xint:#6\xint:#7\xint:#8\xint:#9\xint:%
+{%
+ \xint_gob_til_R #9\XINT_sepandrev_andcount_end\R
+ \expandafter\XINT_sepandrev_andcount_b \the\numexpr #1+\xint_c_i!%
+ {#9!#8!#7!#6!#5!#4!#3!#2}%
+}%
+\def\XINT_sepandrev_andcount_end\R
+ \expandafter\XINT_sepandrev_andcount_b\the\numexpr #1+\xint_c_i!#2#3#4\W
+{\expandafter\XINT_sepandrev_andcount_done\the\numexpr #3+\xint_c_xiv*#1!#2}%
+\def\XINT_sepandrev_andcount_done#1{%
+\def\XINT_sepandrev_andcount_done##1!##21##3!{\expandafter#1\the\numexpr##1-##3\xint:}%
+}\XINT_sepandrev_andcount_done{ }%
+% \end{macrocode}
+% \subsection{\csh{XINT_rev_nounsep}}
+% \lverb|This is used as
+%( \romannumeral0\XINT_rev_nounsep {}<blocks 1<8d>!>\R!\R!\R!\R!\R!\R!\R!\R!\W
+%)
+% It reverses the blocks, keeping the 1's and ! separators. Used multiple
+% times in the division algorithm. The inserted {} here is not optional.|
+% \begin{macrocode}
+\def\XINT_rev_nounsep #1#2!#3!#4!#5!#6!#7!#8!#9!%
+{%
+ \xint_gob_til_R #9\XINT_rev_nounsep_end\R
+ \XINT_rev_nounsep {#9!#8!#7!#6!#5!#4!#3!#2!#1}%
+}%
+\def\XINT_rev_nounsep_end\R\XINT_rev_nounsep #1#2\W {\XINT_rev_nounsep_done #1}%
+\def\XINT_rev_nounsep_done #11{ 1}%
+% \end{macrocode}
+% \subsection{\csh{XINT_unrevbyviii}}
+% \lverb|Used as \romannumeral0\XINT_unrevbyviii 1<8d>!....1<8d>! terminated
+% by
+%( 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+%)
+% The \romannumeral in unrevbyviii_a is for special effects (expand some token
+% which was put as 1<token>! at the end of the original blocks). This
+% mechanism is used by 1.2 subtraction (still true for 1.2l).|
+% \begin{macrocode}
+\def\XINT_unrevbyviii #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
+{%
+ \xint_gob_til_R #9\XINT_unrevbyviii_a\R
+ \XINT_unrevbyviii {#9#8#7#6#5#4#3#2#1}%
+}%
+\def\XINT_unrevbyviii_a#1{%
+\def\XINT_unrevbyviii_a\R\XINT_unrevbyviii ##1##2\W
+ {\expandafter#1\romannumeral`&&@\xint_gob_til_sc ##1}%
+}\XINT_unrevbyviii_a{ }%
+% \end{macrocode}
+% \lverb|Can work with shorter ending pattern: 1;!1\R!1\R!1\R!1\R!1\R!1\R!\W
+% but the longer one of unrevbyviii is ok here too. Used currently (1.2) only
+% by addition, now (1.2c) with long ending pattern. Does the final clean up of
+% leading zeroes contrarily to general \XINT_unrevbyviii.|
+% \begin{macrocode}
+\def\XINT_smallunrevbyviii 1#1!1#2!1#3!1#4!1#5!1#6!1#7!1#8!#9\W%
+{%
+ \expandafter\XINT_cuz_small\xint_gob_til_sc #8#7#6#5#4#3#2#1%
+}%
+% \end{macrocode}
+% \subsection*{Core arithmetic}
+% \addcontentsline{toc}{subsection}{Core arithmetic}
% \lverb|The four operations have been rewritten entirely for release 1.2.
% The new routines works with separated blocks of eight digits. They all measure
% first the lengths of the arguments, even addition and subtraction (this was
@@ -18384,20 +18867,22 @@ $1$ or $-1$.
% digits.|
%
% \subsection{\csbh{xintiAdd}, \csbh{xintiiAdd}}
+% \lverb|1.2l: \xintiiAdd made robust against non terminated input.|
% \begin{macrocode}
\def\xintiAdd {\romannumeral0\xintiadd }%
-\def\xintiadd #1{\expandafter\XINT_iadd\romannumeral0\xintnum{#1}\Z }%
+\def\xintiadd #1{\expandafter\XINT_iadd\romannumeral0\xintnum{#1}\xint:}%
\def\xintiiAdd {\romannumeral0\xintiiadd }%
-\def\xintiiadd #1{\expandafter\XINT_iiadd\romannumeral`&&@#1\Z }%
-\def\XINT_iiadd #1#2\Z #3%
+\def\xintiiadd #1{\expandafter\XINT_iiadd\romannumeral`&&@#1\xint:}%
+\def\XINT_iiadd #1#2\xint:#3%
{%
- \expandafter\XINT_add_nfork\expandafter #1\romannumeral`&&@#3\Z #2\Z
+ \expandafter\XINT_add_nfork\expandafter#1\romannumeral`&&@#3\xint:#2\xint:
}%
-\def\XINT_iadd #1#2\Z #3%
+\def\XINT_iadd #1#2\xint:#3%
{%
- \expandafter\XINT_add_nfork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z
+ \expandafter\XINT_add_nfork\expandafter
+ #1\romannumeral0\xintnum{#3}\xint:#2\xint:
}%
-\def\XINT_add_fork #1#2\Z #3\Z {\XINT_add_nfork #1#3\Z #2\Z}%
+\def\XINT_add_fork #1#2\xint:#3\xint:{\XINT_add_nfork #1#3\xint:#2\xint:}%
\def\XINT_add_nfork #1#2%
{%
\xint_UDzerofork
@@ -18412,56 +18897,58 @@ $1$ or $-1$.
--\XINT_add_plusplus
\krof #1#2%
}%
-\def\XINT_add_firstiszero #1\krof 0#2#3\Z #4\Z { #2#3}%
-\def\XINT_add_secondiszero #1\krof #20#3\Z #4\Z { #2#4}%
+\def\XINT_add_firstiszero #1\krof 0#2#3\xint:#4\xint:{ #2#3}%
+\def\XINT_add_secondiszero #1\krof #20#3\xint:#4\xint:{ #2#4}%
\def\XINT_add_minusminus #1#2%
{\expandafter-\romannumeral0\XINT_add_pp_a {}{}}%
\def\XINT_add_minusplus #1#2{\XINT_sub_mm_a {}#2}%
\def\XINT_add_plusminus #1#2%
{\expandafter\XINT_opp\romannumeral0\XINT_sub_mm_a #1{}}%
-\def\XINT_add_pp_a #1#2#3\Z
+\def\XINT_add_pp_a #1#2#3\xint:
{%
\expandafter\XINT_add_pp_b
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W
#2#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\X #1%
}%
\let\XINT_add_plusplus \XINT_add_pp_a
-\def\XINT_add_pp_b #1.#2\X #3\Z
+% \end{macrocode}
+% \begin{macrocode}
+\def\XINT_add_pp_b #1\xint:#2\X #3\xint:
{%
\expandafter\XINT_add_checklengths
- \the\numexpr #1\expandafter.%
+ \the\numexpr #1\expandafter\xint:%
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- 1\Z!1\Z!1\Z!1\Z!\W #21\Z!1\Z!1\Z!1\Z!\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
+ 1;!1;!1;!1;!\W #21;!1;!1;!1;!\W
1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
}%
% \end{macrocode}
% \lverb|I keep #1.#2. to check if at most 6 + 6 base 10^8 digits which can be
% treated faster for final reverse. But is this overhead at all useful ? |
% \begin{macrocode}
-\def\XINT_add_checklengths #1.#2.%
+\def\XINT_add_checklengths #1\xint:#2\xint:%
{%
\ifnum #2>#1
\expandafter\XINT_add_exchange
\else
\expandafter\XINT_add_A
\fi
- #1.#2.%
+ #1\xint:#2\xint:%
}%
-\def\XINT_add_exchange #1.#2.#3\W #4\W
+\def\XINT_add_exchange #1\xint:#2\xint:#3\W #4\W
{%
- \XINT_add_A #2.#1.#4\W #3\W
+ \XINT_add_A #2\xint:#1\xint:#4\W #3\W
}%
-\def\XINT_add_A #1.#2.%
+\def\XINT_add_A #1\xint:#2\xint:%
{%
\ifnum #1>\xint_c_vi
\expandafter\XINT_add_aa
@@ -18475,105 +18962,247 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|2 as first token of #1 stands for "no carry", 3 will mean a carry (we
% are adding 1<8digits> to 1<8digits>.) Version 1.2c has terminators of the
-% shape 1\Z!, replacing the \Z! used in 1.2.
+% shape 1;!, replacing the \Z! used in 1.2.
%
-% Call: \the\numexpr\XINT_add_a 2#11\Z!1\Z!1\Z!1\Z!\W #21\Z!1\Z!1\Z!1\Z!\W
+% Call: \the\numexpr\XINT_add_a 2#11;!1;!1;!1;!\W #21;!1;!1;!1;!\W
% where #1 and #2 are blocks of 1<8d>!, and #1 is at most as long as #2. This
% last requirement is a bit annoying (if one wants to do recursive algorithms
% but not have to check lengths), and I will probably remove it at some point.
%
% Output: blocks of 1<8d>! representing the addition, (least significant
-% first), and a final 1\Z!. In recursive algotithm this 1\Z! terminator can
+% first), and a final 1;!. In recursive algotithm this 1;! terminator can
% thus conveniently be reused as part of input terminator (up to the length
-% problem).|
+% problem).
+%
+%|
% \begin{macrocode}
-\def\XINT_add_a #1!#2!#3!#4!#5\W #6!#7!#8!#9!%
+\def\XINT_add_a #1!#2!#3!#4!#5\W
+ #6!#7!#8!#9!%
{%
- \XINT_add_b #1!#6!#2!#7!#3!#8!#4!#9!#5\W
+ \XINT_add_b
+ #1!#6!#2!#7!#3!#8!#4!#9!%
+ #5\W
}%
\def\XINT_add_b #11#2#3!#4!%
{%
- \xint_gob_til_Z #2\XINT_add_bi \Z
- \expandafter\XINT_add_c\the\numexpr#1+1#2#3+#4-\xint_c_ii.%
+ \xint_gob_til_sc #2\XINT_add_bi ;%
+ \expandafter\XINT_add_c\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%
}%
-\def\XINT_add_bi\Z\expandafter\XINT_add_c
- \the\numexpr#1+#2+#3-\xint_c_ii.#4!#5!#6!#7!#8!#9!\W
+\def\XINT_add_bi;\expandafter\XINT_add_c
+ \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6!#7!#8!#9!\W
{%
\XINT_add_k #1#3!#5!#7!#9!%
}%
-\def\XINT_add_c #1#2.%
+\def\XINT_add_c #1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_add_d #1%
}%
\def\XINT_add_d #11#2#3!#4!%
{%
- \xint_gob_til_Z #2\XINT_add_di \Z
- \expandafter\XINT_add_e\the\numexpr#1+1#2#3+#4-\xint_c_ii.%
+ \xint_gob_til_sc #2\XINT_add_di ;%
+ \expandafter\XINT_add_e\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%
}%
-\def\XINT_add_di\Z\expandafter\XINT_add_e
- \the\numexpr#1+#2+#3-\xint_c_ii.#4!#5!#6!#7!#8\W
+\def\XINT_add_di;\expandafter\XINT_add_e
+ \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6!#7!#8\W
{%
\XINT_add_k #1#3!#5!#7!%
}%
-\def\XINT_add_e #1#2.%
+\def\XINT_add_e #1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_add_f #1%
}%
\def\XINT_add_f #11#2#3!#4!%
{%
- \xint_gob_til_Z #2\XINT_add_fi \Z
- \expandafter\XINT_add_g\the\numexpr#1+1#2#3+#4-\xint_c_ii.%
+ \xint_gob_til_sc #2\XINT_add_fi ;%
+ \expandafter\XINT_add_g\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%
}%
-\def\XINT_add_fi\Z\expandafter\XINT_add_g
- \the\numexpr#1+#2+#3-\xint_c_ii.#4!#5!#6\W
+\def\XINT_add_fi;\expandafter\XINT_add_g
+ \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6\W
{%
\XINT_add_k #1#3!#5!%
}%
-\def\XINT_add_g #1#2.%
+\def\XINT_add_g #1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_add_h #1%
}%
\def\XINT_add_h #11#2#3!#4!%
{%
- \xint_gob_til_Z #2\XINT_add_hi \Z
- \expandafter\XINT_add_i\the\numexpr#1+1#2#3+#4-\xint_c_ii.%
+ \xint_gob_til_sc #2\XINT_add_hi ;%
+ \expandafter\XINT_add_i\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%
}%
-\def\XINT_add_hi\Z
- \expandafter\XINT_add_i\the\numexpr#1+#2+#3-\xint_c_ii.#4\W
+\def\XINT_add_hi;%
+ \expandafter\XINT_add_i\the\numexpr#1+#2+#3-\xint_c_ii\xint:#4\W
{%
\XINT_add_k #1#3!%
}%
-\def\XINT_add_i #1#2.%
+\def\XINT_add_i #1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_add_a #1%
}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_add_k #1{\if #12\expandafter\XINT_add_ke\else\expandafter\XINT_add_l \fi}%
-\def\XINT_add_ke #11\Z #2\W {\XINT_add_kf #11\Z!}%
+\def\XINT_add_ke #11;#2\W {\XINT_add_kf #11;!}%
\def\XINT_add_kf 1{1\relax }%
-\def\XINT_add_l 1#1#2{\xint_gob_til_Z #1\XINT_add_lf \Z \XINT_add_m 1#1#2}%
-\def\XINT_add_lf #1\W {1\relax 00000001!1\Z!}%
-\def\XINT_add_m #1!{\expandafter\XINT_add_n\the\numexpr\xint_c_i+#1.}%
-\def\XINT_add_n #1#2.{1#2\expandafter!\the\numexpr\XINT_add_o #1}%
+\def\XINT_add_l 1#1#2{\xint_gob_til_sc #1\XINT_add_lf ;\XINT_add_m 1#1#2}%
+\def\XINT_add_lf #1\W {1\relax 00000001!1;!}%
+\def\XINT_add_m #1!{\expandafter\XINT_add_n\the\numexpr\xint_c_i+#1\xint:}%
+\def\XINT_add_n #1#2\xint:{1#2\expandafter!\the\numexpr\XINT_add_o #1}%
% \end{macrocode}
% \lverb|Here 2 stands for "carry", and 1 for "no carry" (we have been adding
% 1 to 1<8digits>.)|
% \begin{macrocode}
\def\XINT_add_o #1{\if #12\expandafter\XINT_add_l\else\expandafter\XINT_add_ke \fi}%
% \end{macrocode}
+% \subsection{\csh{xintCmp}, \csh{xintiiCmp}}
+% \lverb|Moved from xint.sty to xintcore.sty and rewritten for 1.2l.
+%
+% 1.2l's \xintiiCmp is robust against non terminated input.
+% |
+% \begin{macrocode}
+\def\xintCmp {\romannumeral0\xintcmp }%
+\def\xintcmp #1{\expandafter\XINT_icmp\romannumeral0\xintnum{#1}\xint:}%
+\def\xintiiCmp {\romannumeral0\xintiicmp }%
+\def\xintiicmp #1{\expandafter\XINT_iicmp\romannumeral`&&@#1\xint:}%
+\def\XINT_iicmp #1#2\xint:#3%
+{%
+ \expandafter\XINT_cmp_nfork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:
+}%
+\def\XINT_icmp #1#2\xint:#3%
+{%
+ \expandafter\XINT_cmp_nfork\expandafter #1\romannumeral0\xintnum{#3}\xint:#2\xint:
+}%
+\def\XINT_cmp_nfork #1#2%
+{%
+ \xint_UDzerofork
+ #1\XINT_cmp_firstiszero
+ #2\XINT_cmp_secondiszero
+ 0{}%
+ \krof
+ \xint_UDsignsfork
+ #1#2\XINT_cmp_minusminus
+ #1-\XINT_cmp_minusplus
+ #2-\XINT_cmp_plusminus
+ --\XINT_cmp_plusplus
+ \krof #1#2%
+}%
+\def\XINT_cmp_firstiszero #1\krof 0#2#3\xint:#4\xint:
+{%
+ \xint_UDzerominusfork
+ #2-{ 0}%
+ 0#2{ 1}%
+ 0-{ -1}%
+ \krof
+}%
+\def\XINT_cmp_secondiszero #1\krof #20#3\xint:#4\xint:
+{%
+ \xint_UDzerominusfork
+ #2-{ 0}%
+ 0#2{ -1}%
+ 0-{ 1}%
+ \krof
+}%
+\def\XINT_cmp_plusminus #1\xint:#2\xint:{ 1}%
+\def\XINT_cmp_minusplus #1\xint:#2\xint:{ -1}%
+\def\XINT_cmp_minusminus
+ --{\expandafter\XINT_opp\romannumeral0\XINT_cmp_plusplus {}{}}%
+\def\XINT_cmp_plusplus #1#2#3\xint:
+{%
+ \expandafter\XINT_cmp_pp
+ \the\numexpr\expandafter\XINT_sepbyviii_andcount
+ \romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W
+ #2#3\XINT_sepbyviii_end 2345678\relax
+ \xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%
+ \xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W
+ #1%
+}%
+\def\XINT_cmp_pp #1\xint:#2\xint:#3\xint:
+{%
+ \expandafter\XINT_cmp_checklengths
+ \the\numexpr #2\expandafter\xint:%
+ \the\numexpr\expandafter\XINT_sepbyviii_andcount
+ \romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
+ #3\XINT_sepbyviii_end 2345678\relax
+ \xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%
+ \xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W
+ #1;!1;!1;!1;!\W
+}%
+\def\XINT_cmp_checklengths #1\xint:#2\xint:#3\xint:
+{%
+ \ifnum #1=#3
+ \expandafter\xint_firstoftwo
+ \else
+ \expandafter\xint_secondoftwo
+ \fi
+ \XINT_cmp_a {\XINT_cmp_distinctlengths {#1}{#3}}#2;!1;!1;!1;!\W
+}%
+\def\XINT_cmp_distinctlengths #1#2#3\W #4\W
+{%
+ \ifnum #1>#2
+ \expandafter\xint_firstoftwo
+ \else
+ \expandafter\xint_secondoftwo
+ \fi
+ { -1}{ 1}%
+}%
+\def\XINT_cmp_a 1#1!1#2!1#3!1#4!#5\W 1#6!1#7!1#8!1#9!%
+{%
+ \xint_gob_til_sc #1\XINT_cmp_equal ;%
+ \ifnum #1>#6 \XINT_cmp_gt\fi
+ \ifnum #1<#6 \XINT_cmp_lt\fi
+ \xint_gob_til_sc #2\XINT_cmp_equal ;%
+ \ifnum #2>#7 \XINT_cmp_gt\fi
+ \ifnum #2<#7 \XINT_cmp_lt\fi
+ \xint_gob_til_sc #3\XINT_cmp_equal ;%
+ \ifnum #3>#8 \XINT_cmp_gt\fi
+ \ifnum #3<#8 \XINT_cmp_lt\fi
+ \xint_gob_til_sc #4\XINT_cmp_equal ;%
+ \ifnum #4>#9 \XINT_cmp_gt\fi
+ \ifnum #4<#9 \XINT_cmp_lt\fi
+ \XINT_cmp_a #5\W
+}%
+\def\XINT_cmp_lt#1{\def\XINT_cmp_lt\fi ##1\W ##2\W {\fi#1-1}}\XINT_cmp_lt{ }%
+\def\XINT_cmp_gt#1{\def\XINT_cmp_gt\fi ##1\W ##2\W {\fi#11}}\XINT_cmp_gt{ }%
+\def\XINT_cmp_equal #1\W #2\W { 0}%
+% \end{macrocode}
% \subsection{\csh{xintiSub}, \csh{xintiiSub}}
-% \lverb|Entirely rewritten for 1.2.|
+% \lverb|Entirely rewritten for 1.2.
+%
+% Refactored at 1.2l. I was initially aiming at clinching some internal format
+% of the type 1<8digits>!....1<8digits>! for chaining the arithmetic
+% operations (as a preliminary step to decided upon some internal format for
+% $xintfracnameimp macros), thus I wanted to uniformize delimiters in
+% particular and have some core macros inputting and outputting such formats.
+% But the way division is implemented makes it currently very hard to obtain a
+% satisfactory solution. For subtraction I got there almost, but there was
+% added overhead and, as the core sub-routine still assumed the shorter number
+% will be positioned first, one would need to record the length also in the
+% basic internal format, or add the overhead to not make assumption on which
+% one is shorter. I thus but back-tracked my steps but in passing I improved
+% the efficiency (probably) in the worst case branch.
+%
+% The other reason for backtracking was in relation with the decimal numbers.
+% Having a core format in base 10^8 but ultimately the radix is actually 10
+% leads to complications. I could use radix 10^8 for \xintiiexpr only, but
+% then I need to make it compatible with sub-\xintiiexpr in \xintexpr, etc...
+% there are many issues of this type.
+%
+% I considered also an approach like in the 1.2l \xintiiCmp, but decided to
+% stick with the method here for now.|
% \begin{macrocode}
\def\xintiiSub {\romannumeral0\xintiisub }%
-\def\xintiisub #1{\expandafter\XINT_iisub\romannumeral`&&@#1\Z }%
-\def\XINT_iisub #1#2\Z #3%
+\def\xintiisub #1{\expandafter\XINT_iisub\romannumeral`&&@#1\xint:}%
+\def\XINT_iisub #1#2\xint:#3%
{%
- \expandafter\XINT_sub_nfork\expandafter #1\romannumeral`&&@#3\Z #2\Z
+ \expandafter\XINT_sub_nfork\expandafter
+ #1\romannumeral`&&@#3\xint:#2\xint:
}%
-\def\xintiSub {\romannumeral0\xintisub }%
-\def\xintisub #1{\expandafter\XINT_isub\romannumeral0\xintnum{#1}\Z }%
-\def\XINT_isub #1#2\Z #3%
+\def\xintiSub {\romannumeral0\xintisub }%
+\def\xintisub #1{\expandafter\XINT_isub\romannumeral0\xintnum{#1}\xint:}%
+\def\XINT_isub #1#2\xint:#3%
{%
- \expandafter\XINT_sub_nfork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z
+ \expandafter\XINT_sub_nfork\expandafter
+ #1\romannumeral0\xintnum{#3}\xint:#2\xint:
}%
\def\XINT_sub_nfork #1#2%
{%
@@ -18589,38 +19218,43 @@ $1$ or $-1$.
--\XINT_sub_plusplus
\krof #1#2%
}%
-\def\XINT_sub_firstiszero #1\krof 0#2#3\Z #4\Z {\XINT_opp #2#3}%
-\def\XINT_sub_secondiszero #1\krof #20#3\Z #4\Z { #2#4}%
+\def\XINT_sub_firstiszero #1\krof 0#2#3\xint:#4\xint:{\XINT_opp #2#3}%
+\def\XINT_sub_secondiszero #1\krof #20#3\xint:#4\xint:{ #2#4}%
\def\XINT_sub_plusminus #1#2{\XINT_add_pp_a #1{}}%
\def\XINT_sub_plusplus #1#2%
{\expandafter\XINT_opp\romannumeral0\XINT_sub_mm_a #1#2}%
\def\XINT_sub_minusplus #1#2%
{\expandafter-\romannumeral0\XINT_add_pp_a {}#2}%
\def\XINT_sub_minusminus #1#2{\XINT_sub_mm_a {}{}}%
-\def\XINT_sub_mm_a #1#2#3\Z
+% \end{macrocode}
+% \begin{macrocode}
+\def\XINT_sub_mm_a #1#2#3\xint:
{%
\expandafter\XINT_sub_mm_b
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W
#2#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\X #1%
}%
-\def\XINT_sub_mm_b #1.#2\X #3\Z
+\def\XINT_sub_mm_b #1\xint:#2\X #3\xint:
{%
\expandafter\XINT_sub_checklengths
- \the\numexpr #1\expandafter.%
+ \the\numexpr #1\expandafter\xint:%
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax \xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- \Z!\Z!\Z!\Z!\W #2\Z!\Z!\Z!\Z!\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
+ 1;!1;!1;!1;!\W
+ #21;!1;!1;!1;!\W
+ 1;!1\R!1\R!1\R!1\R!%
+ 1\R!1\R!1\R!1\R!\W
}%
-\def\XINT_sub_checklengths #1.#2.%
+\def\XINT_sub_checklengths #1\xint:#2\xint:%
{%
\ifnum #2>#1
\expandafter\XINT_sub_exchange
@@ -18632,142 +19266,133 @@ $1$ or $-1$.
{%
\expandafter\XINT_opp\romannumeral0\XINT_sub_aa #2\W #1\W
}%
-\def\XINT_sub_aa {\expandafter\XINT_sub_out\the\numexpr\XINT_sub_a \xint_c_i }%
-% \end{macrocode}
-% \lverb|The {} after \XINT_unrevbyviii could be removed, but attention then
-% at \XINT_sub_startrescue which must be modified (no need for #1).|
-% \begin{macrocode}
-\def\XINT_sub_out #1\Z #2#3\W
+\def\XINT_sub_aa
{%
- \if-#2\expandafter\XINT_sub_startrescue\fi
- \expandafter\XINT_cuz_small
- \romannumeral0\XINT_unrevbyviii {}#11\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+ \expandafter\XINT_sub_out\the\numexpr\XINT_sub_a\xint_c_i
}%
% \end{macrocode}
+% \lverb|The post-processing (clean-up of zeros, or rescue of situation with
+% A-B where actually B turns out bigger than A) will be done by a macro which
+% depends on circumstances and will be initially last token before the
+% reversion done by \XINT_unrevbyviii.|
+% \begin{macrocode}
+\def\XINT_sub_out {\XINT_unrevbyviii{}}%
+% \end{macrocode}
% \lverb|1 as first token of #1 stands for "no carry", 0 will mean a carry.
%
-% Call: \the\numexpr
-% \XINT_sub_a 1#1\Z!\Z!\Z!\Z!\W #2\Z!\Z!\Z!\Z!\W where #1 and #2
-% are blocks of 1<8d>!, and #1 *must* be at most as long as #2.
+%( Call: \the\numexpr
+%: \XINT_sub_a 1#11;!1;!1;!1;!\W
+%: #21;!1;!1;!1;!\W
+%)
+% where #1 and #2
+% are blocks of 1<8d>!, #1 (=B) *must* be at most as long as #2 (=A),
+% (in radix 10^8)
+% and the routine wants to compute #2-#1 = A - B
%
-% The routine wants to compute #2-#1.
-%
-% Notice that currently the terminators on input differ from those for
-% addition. Also, currently (1.2f) the routine can not be called without final
-% reversal and clean up of the result.
+% 1.2l uses 1;! delimiters to match those of addition (and multiplication).
+% But in the end I reverted the code branch which made it possible to chain
+% such operations keeping internal format in 8 digits blocks throughout.
%
% \numexpr governed expansion stops with various possibilities:
%
-% 1. #1 was shorter (in number of 8 digits blocks) than #2.
-%
-% *1a There may be no carry in which case we end up with$\
-% 1<8d>!...1<8d>!\Z!\Z!\Z!\Z!\W
-%
-% If there is a carry things are more complicated.
-%
-% *1b If the first hit block of #2 is > 1 no problem we are like in the
-% no-carry case.
-%
-% *1c If it is exactly 1 then we will have leading zeros; but there may be
-% also before that arbitrarily many produced zeros, all these leading zeros
-% will have to be cleaned up. This is done via ending the expansion with the
-% shape
-%
-% 1<8d>!...1<8d>!1\XINT_cuz_byviii!\Z 0\W\R
+%- Type Ia: #1 shorter than #2, no final carry
+%- Type Ib: #1 shorter than #2, a final carry but next block of #2 > 1
+%- Type Ica: #1 shorter than #2, a final carry, next block of #2 is final and = 1
+%- Type Icb: as Ica except that 00000001 block from #2 was not final
+%- Type Id: #1 shorter than #2, a final carry, next block of #2 = 0
+%- Type IIa: #1 same length as #2, turns out it was <= #2.
+%- Type IIb: #1 same length as #2, but turned out > #2.
%
-% *1d If the block value is zero, subtraction produces 99999999 and goes on.
-% This is the only situation where the carry can propagate. This case can
-% never produce extra blocks of leading zeros but may well end up with an ending
-% zero block. In this subcase, the \numexpr is then made to stop with a 1!.
-% This 1! will disappear during final reverse.
+% Various type of post actions are then needed:
%
-% 2a. #1 was of same length as #2, but <= #2. Then we end up expansion with$\
-% 1<8d>!...1<8d>!1\XINT_cuz_byviii!\Z 0\W\R$\
-% and the blocks will have to cleaned up of leading zeroes after reversal.
+%- Ia: clean up of zeros in most significant block of 8 digits
%
-% 2b. #1 was of same length as #2, but > #2. Then we end up with blocks
-% 1<8d>!...1<8d>! followed by -1\Z-\W
+%- Ib: as Ia
%
-% Thus \XINT_sub_out examines the token after the first \Z, which may be ! or
-% 0 or -. If ! or 0, \XINT_unrevbyviii will be executed (gobbling a possible
-% final 1!), and followed in case 2a or 1c by \XINT_cuz_byviii (note the extra \R
-% which terminates it), and then in both 1* and 2a by \XINT_cuz_small.
+%- Ic: there may be significant blocks of 8 zeros to clean up from result.
+% Only case Ica may have arbitrarily many of them, case Icb has only one such
+% block.
%
-% If we were in 2b we proceed to \XINT_sub_startrescue which I will comment
-% another day (the extra -1 at the end from -1\Z-\W will become a -1! and the
-% - will serve in \XINT_sub_rescue_d as loop terminator).
+%- Id: blocks of 99999999 may propagate and there might a be final zero block
+% created which has to be cleaned up.
%
-% Currently (1.2f) we can not easily use these low level routines in a binary
-% split approach due to the fact that first input must be at most as long as
-% second but also because the final reversal is not in a common second stage,
-% due to the separate treatment for case 2b.
+%- IIa: arbitrarily many zeros might have to be removed.
%
-% For the record: subtraction was correct (I think) in xint releases up to
-% 1.2, but 1.2 had a broken treatment of the 1d case. For example \xintiiSub
-% {10000000112345678}{12345679} produced 99999999. This got fixed in 1.2c, but
-% that fix broke the 1c case :((, for example \xintiiSub
-% {10000000000000000}{9999999999999997} was now returning 000000003. Alas.
+%- IIb: We wanted #2-#1 = - (#1-#2), but we got 10^{8N}+#2 -#1 = 10^{8N}-(#1-#2).
+% We need to do the correction then we are as in IIa situation, except that
+% final result can not be zero.
%
-% This was only realized later on 2016/02/29 (in fact it impacted
-% \xintiiSqrt). Hopefully 1.2f got it right at last. |
+% The 1.2l method for this correction is (presumably, testing takes lots of
+% time, which I do not have) more efficient than in 1.2 release. |
% \begin{macrocode}
\def\XINT_sub_a #1!#2!#3!#4!#5\W #6!#7!#8!#9!%
{%
- \XINT_sub_b #1!#6!#2!#7!#3!#8!#4!#9!#5\W
+ \XINT_sub_b
+ #1!#6!#2!#7!#3!#8!#4!#9!%
+ #5\W
}%
-\def\XINT_sub_b #1#2#3!#4!%
+% \end{macrocode}
+% \lverb|As 1.2l code uses 1<8digits>! blocks one has to be careful with
+% the carry digit 1 or 0: A #11#2#3 pattern would result into an empty #1
+% if the carry digit which is upfront is 1, rather than setting #1=1.|
+% \begin{macrocode}
+\def\XINT_sub_b #1#2#3#4!#5!%
{%
- \xint_gob_til_Z #2\XINT_sub_bi \Z
- \expandafter\XINT_sub_c\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \xint_gob_til_sc #3\XINT_sub_bi ;%
+ \expandafter\XINT_sub_c\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:%
}%
-\def\XINT_sub_c 1#1#2.%
+\def\XINT_sub_c 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_sub_d #1%
}%
-\def\XINT_sub_d #1#2#3!#4!%
+\def\XINT_sub_d #1#2#3#4!#5!%
{%
- \xint_gob_til_Z #2\XINT_sub_di \Z
- \expandafter\XINT_sub_e\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \xint_gob_til_sc #3\XINT_sub_di ;%
+ \expandafter\XINT_sub_e\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:
}%
-\def\XINT_sub_e 1#1#2.%
+\def\XINT_sub_e 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_sub_f #1%
}%
-\def\XINT_sub_f #1#2#3!#4!%
+\def\XINT_sub_f #1#2#3#4!#5!%
{%
- \xint_gob_til_Z #2\XINT_sub_fi \Z
- \expandafter\XINT_sub_g\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \xint_gob_til_sc #3\XINT_sub_fi ;%
+ \expandafter\XINT_sub_g\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:
}%
-\def\XINT_sub_g 1#1#2.%
+\def\XINT_sub_g 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_sub_h #1%
}%
-\def\XINT_sub_h #1#2#3!#4!%
+\def\XINT_sub_h #1#2#3#4!#5!%
{%
- \xint_gob_til_Z #2\XINT_sub_hi \Z
- \expandafter\XINT_sub_i\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \xint_gob_til_sc #3\XINT_sub_hi ;%
+ \expandafter\XINT_sub_i\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:
}%
-\def\XINT_sub_i 1#1#2.%
+\def\XINT_sub_i 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_sub_a #1%
}%
-\def\XINT_sub_bi\Z
- \expandafter\XINT_sub_c\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8!#9!\W
+\def\XINT_sub_bi;%
+ \expandafter\XINT_sub_c\the\numexpr#1+1#2-#3\xint:
+ #4!#5!#6!#7!#8!#9!\W
{%
\XINT_sub_k #1#2!#5!#7!#9!%
}%
-\def\XINT_sub_di\Z
- \expandafter\XINT_sub_e\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8\W
+\def\XINT_sub_di;%
+ \expandafter\XINT_sub_e\the\numexpr#1+1#2-#3\xint:
+ #4!#5!#6!#7!#8\W
{%
\XINT_sub_k #1#2!#5!#7!%
}%
-\def\XINT_sub_fi\Z
- \expandafter\XINT_sub_g\the\numexpr#1+1#2-#3.#4!#5!#6\W
+\def\XINT_sub_fi;%
+ \expandafter\XINT_sub_g\the\numexpr#1+1#2-#3\xint:
+ #4!#5!#6\W
{%
\XINT_sub_k #1#2!#5!%
}%
-\def\XINT_sub_hi\Z
- \expandafter\XINT_sub_i\the\numexpr#1+1#2-#3.#4\W
+\def\XINT_sub_hi;%
+ \expandafter\XINT_sub_i\the\numexpr#1+1#2-#3\xint:
+ #4\W
{%
\XINT_sub_k #1#2!%
}%
@@ -18777,113 +19402,141 @@ $1$ or $-1$.
%
% If not, then we are certain that even if there is carry it will not
% propagate beyond the end of A. But it may propagate far transforming chains
-% of 00000000 into 99999999, and if it does go to the final block which is
-% just 1<00000001>!, we will have those eight zeros to clean up. (but we have
-% to be careful that if we encounter 1<00000001>! and this is not the final
-% block, we should not make something silly either).
-%
-% There is the possibility that A has exactly one more <eight-digits> block
-% than B and that this block is exactly 1. In that case there can be
-% arbitrarily many leading zeros to clean up from A-B. This was done correctly
-% up to 1.2b but got broken in 1.2c. Belatedly fixed in 1.2f.
+% of 00000000 into 99999999, and if it does go to the final block which possibly is
+% just 1<00000001>!, we will have those eight zeros to clean up.
%
-% If we have simultaneously reached the end of A, then if B was smaller there
-% might be arbitrarily many zeroes to clean up, if it was larger, we will have
-% to rescue the whole thing.|
+% If A and B have the same length (in base 10^8) then arbitrarily many zeros
+% might have to be cleaned up, and if A<B, the whole result will have to be
+% complemented first.|
% \begin{macrocode}
-\def\XINT_sub_k #1#2%
+\def\XINT_sub_k #1#2#3%
{%
- \xint_gob_til_Z #2\XINT_sub_p\Z \XINT_sub_l #1#2%
+ \xint_gob_til_sc #3\XINT_sub_p;\XINT_sub_l #1#2#3%
}%
-\def\XINT_sub_l #1{\xint_UDzerofork #1\XINT_sub_l_carry 0\XINT_sub_l_nocarry\krof}%
-\def\XINT_sub_l_nocarry 1{1\relax }%
+\def\XINT_sub_l #1%
+ {\xint_UDzerofork #1\XINT_sub_l_carry 0\XINT_sub_l_Ia\krof}%
+\def\XINT_sub_l_Ia 1#1;!#2\W{1\relax#1;!1\XINT_sub_fix_none!}%
+% \end{macrocode}
+% \lverb|
+%
+% |
+% \begin{macrocode}
\def\XINT_sub_l_carry 1#1!{\ifcase #1
- \expandafter \XINT_sub_l_zeroa\or\expandafter\XINT_sub_l_one\else
- \expandafter \XINT_sub_l_done\fi 1#1!}%
-\def\XINT_sub_l_done {-\xint_c_i+}%
-\def\XINT_sub_l_one 1#1!#2%
+ \expandafter \XINT_sub_l_Id
+ \or \expandafter \XINT_sub_l_Ic
+ \else\expandafter \XINT_sub_l_Ib\fi 1#1!}%
+\def\XINT_sub_l_Ib #1;#2\W {-\xint_c_i+#1;!1\XINT_sub_fix_none!}%
+\def\XINT_sub_l_Ic 1#1!1#2#3!#4;#5\W
+{%
+ \xint_gob_til_sc #2\XINT_sub_l_Ica;%
+ 1\relax 00000000!1#2#3!#4;!1\XINT_sub_fix_none!%
+}%
+% \end{macrocode}
+% \lverb|&
+% We need to add some extra delimiters at the end for post-action by
+% \XINT_num, so we first grab the material up to \W
+% |
+% \begin{macrocode}
+\def\XINT_sub_l_Ica#1\W
{%
- \xint_gob_til_Z #2\XINT_sub_l_oneone\Z 1\relax 00000000!#2%
+ 1;!1\XINT_sub_fix_cuz!%
+ 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+ \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
-\def\XINT_sub_l_oneone #1\W {1\relax \XINT_cuz_byviii!\Z 0\W\R }%
-\def\XINT_sub_l_zeroa 1#1!{199999999\expandafter!\the\numexpr \XINT_sub_l_zerob }%
-\def\XINT_sub_l_zerob 1#1!{\ifcase #1
- \expandafter \XINT_sub_l_zeroa\or\expandafter\XINT_sub_l_zone\else
- \expandafter \XINT_sub_l_done\fi 1#1!}%
-\def\XINT_sub_l_zone 1#1!#2%
+\def\XINT_sub_l_Id 1#1!%
+ {199999999\expandafter!\the\numexpr \XINT_sub_l_Id_a}%
+\def\XINT_sub_l_Id_a 1#1!{\ifcase #1
+ \expandafter \XINT_sub_l_Id
+ \or \expandafter \XINT_sub_l_Id_b
+ \else\expandafter \XINT_sub_l_Ib\fi 1#1!}%
+\def\XINT_sub_l_Id_b 1#1!1#2#3!#4;#5\W
{%
- \xint_gob_til_Z #2\XINT_sub_l_zoneone\Z 1\relax 00000000!#2%
+ \xint_gob_til_sc #2\XINT_sub_l_Ida;%
+ 1\relax 00000000!1#2#3!#4;!1\XINT_sub_fix_none!%
}%
-\def\XINT_sub_l_zoneone\Z 1\relax 00000000{1}%
+\def\XINT_sub_l_Ida#1\XINT_sub_fix_none{1;!1\XINT_sub_fix_none!}%
% \end{macrocode}
-% \lverb|Here we are in the situation were the two inputs had the same length
-% in base 10^8. If #1=0 we bitterly discover that first input was greater than
-% second input despite having same length (in base 10^8). The \numexpr will
-% expand beyond the -1 or 1. If #1=1 we had no carry but perhaps the result
-% will have plenty of zeroes to clean-up. The result might even be simply zero.|
+% \lverb|&
+% This is the case where both operands have same 10^8-base length.
+%
+% We were handling A-B but perhaps B>A. The situation with A=B is also
+% annoying because we then have to clean up all zeros but don't know where to
+% stop (if A>B the first non-zero 8 digits block would tell use when).
+%
+% Here again we need to grab #3\W to position the actually used terminating
+% delimiters.
+% |
% \begin{macrocode}
-\def\XINT_sub_p\Z\XINT_sub_l #1#2\W
+\def\XINT_sub_p;\XINT_sub_l #1#2\W #3\W
{%
\xint_UDzerofork
- #1{-1\relax\Z -\W}%
- 0{1\relax \XINT_cuz_byviii!\Z 0\W\R }%
+ #1{1;!1\XINT_sub_fix_neg!%
+ 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+ \xint_bye2345678\xint_bye1099999988\relax}% A - B, B > A
+ 0{1;!1\XINT_sub_fix_cuz!%
+ 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}%
\krof
+ \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
% \end{macrocode}
-% \lverb|We arrive here if #2-#1 concluded #1>#2 (both of the same length in
-% base 10^8). To be commented. Here also before the \XINT_sub_rescue_finish
-% there will be an ending 1! which will disappear only due to
-% \XINT_unrevbyviii. The final \R is for \XINT_cuz.|
+% \lverb|Routines for post-processing after reversal, and removal of
+% separators. It is a matter of cleaning up zeros, and possibly in the bad
+% case to take a complement before that.|
% \begin{macrocode}
-\def\XINT_sub_startrescue\expandafter\XINT_cuz_small
- \romannumeral0\XINT_unrevbyviii #1#2\Z!#3\W
-{%
- \expandafter\XINT_sub_rescue_finish
- \the\numexpr\XINT_sub_rescue_a #2!%
- 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W \R
-}%
-\def\XINT_sub_rescue_finish
- {\expandafter-\romannumeral0\expandafter\XINT_cuz\romannumeral0\XINT_unrevbyviii {}}%
-\def\XINT_sub_rescue_a #1!%
-{%
- \expandafter\XINT_sub_rescue_c\the\numexpr \xint_c_xii_e_viii-#1.%
-}%
-\def\XINT_sub_rescue_c 1#1#2.%
+\def\XINT_sub_fix_none;{\XINT_cuz_small}%
+\def\XINT_sub_fix_cuz ;{\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop}%
+% \end{macrocode}
+% \lverb|Case with A and B same number of digits in base 10^8 and B>A.
+%
+% 1.2l subtle chaining on the model of the 1.2i rewrite of \xintInc and
+% similar routines. After taking complement, leading zeroes need to be
+% cleaned up as in B<=A branch.|
+% \begin{macrocode}
+\def\XINT_sub_fix_neg;%
{%
- 1#2\expandafter!\the\numexpr\XINT_sub_rescue_d #1%
+ \expandafter-\romannumeral0\expandafter
+ \XINT_sub_comp_finish\the\numexpr\XINT_sub_comp_loop
}%
-\def\XINT_sub_rescue_d #1#2#3!%
+\def\XINT_sub_comp_finish 0{\XINT_sub_fix_cuz;}%
+\def\XINT_sub_comp_loop #1#2#3#4#5#6#7#8%
{%
- \xint_gob_til_minus #2\XINT_sub_rescue_z -%
- \expandafter\XINT_sub_rescue_c\the\numexpr \xint_c_xii_e_viii_mone-#2#3+#1.%
+ \expandafter\XINT_sub_comp_clean
+ \the\numexpr \xint_c_xi_e_viii_mone-#1#2#3#4#5#6#7#8\XINT_sub_comp_loop
}%
-\def\XINT_sub_rescue_z #1.{1!}%
+% \end{macrocode}
+% \lverb|#1 = 0 signifie une retenue, #1 = 1 pas de retenue, ce qui ne peut
+% arriver que tant qu'il n'y a que des zéros du côté non significatif.
+% Lorsqu'on est revenu au début on a forcément une retenue.|
+% \begin{macrocode}
+\def\XINT_sub_comp_clean 1#1{+#1\relax}%
% \end{macrocode}
% \subsection{\csh{xintiMul}, \csh{xintiiMul}}
-% \lverb|Completely rewritten for 1.2.|
+% \lverb|Completely rewritten for 1.2.
+%
+% 1.2l: \xintiiMul made robust against non terminated input.|
% \begin{macrocode}
\def\xintiMul {\romannumeral0\xintimul }%
\def\xintimul #1%
{%
- \expandafter\XINT_imul\romannumeral0\xintnum{#1}\Z
+ \expandafter\XINT_imul\romannumeral0\xintnum{#1}\xint:
}%
-\def\XINT_imul #1#2\Z #3%
+\def\XINT_imul #1#2\xint:#3%
{%
- \expandafter\XINT_mul_nfork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z
+ \expandafter\XINT_mul_nfork\expandafter #1\romannumeral0\xintnum{#3}\xint:#2\xint:
}%
\def\xintiiMul {\romannumeral0\xintiimul }%
\def\xintiimul #1%
{%
- \expandafter\XINT_iimul\romannumeral`&&@#1\Z
+ \expandafter\XINT_iimul\romannumeral`&&@#1\xint:
}%
-\def\XINT_iimul #1#2\Z #3%
+\def\XINT_iimul #1#2\xint:#3%
{%
- \expandafter\XINT_mul_nfork\expandafter #1\romannumeral`&&@#3\Z #2\Z
+ \expandafter\XINT_mul_nfork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:
}%
% \end{macrocode}
-% \lverb|I have changed the fork, and it complicates matters elsewhere.|
+% \lverb|(1.2) I have changed the fork, and it complicates matters elsewhere.|
% \begin{macrocode}
-\def\XINT_mul_fork #1#2\Z #3\Z{\XINT_mul_nfork #1#3\Z #2\Z}%
+\def\XINT_mul_fork #1#2\xint:#3\xint:{\XINT_mul_nfork #1#3\xint:#2\xint:}%
\def\XINT_mul_nfork #1#2%
{%
\xint_UDzerofork
@@ -18898,40 +19551,40 @@ $1$ or $-1$.
--\XINT_mul_plusplus
\krof #1#2%
}%
-\def\XINT_mul_zero #1\krof #2#3\Z #4\Z { 0}%
+\def\XINT_mul_zero #1\krof #2#3\xint:#4\xint:{ 0}%
\def\XINT_mul_minusminus #1#2{\XINT_mul_plusplus {}{}}%
\def\XINT_mul_minusplus #1#2%
{\expandafter-\romannumeral0\XINT_mul_plusplus {}#2}%
\def\XINT_mul_plusminus #1#2%
{\expandafter-\romannumeral0\XINT_mul_plusplus #1{}}%
-\def\XINT_mul_plusplus #1#2#3\Z
+\def\XINT_mul_plusplus #1#2#3\xint:
{%
\expandafter\XINT_mul_pre_b
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W
#2#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\W #1%
}%
-\def\XINT_mul_pre_b #1.#2\W #3\Z
+\def\XINT_mul_pre_b #1\xint:#2\W #3\xint:
{%
\expandafter\XINT_mul_checklengths
- \the\numexpr #1\expandafter.%
+ \the\numexpr #1\expandafter\xint:%
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- 1\Z!\W #21\Z!%
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
+ 1;!\W #21;!%
1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
}%
% \end{macrocode}
% \lverb|Cooking recipe, 2015/10/05.|
% \begin{macrocode}
-\def\XINT_mul_checklengths #1.#2.%
+\def\XINT_mul_checklengths #1\xint:#2\xint:%
{%
\ifnum #2=\xint_c_i\expandafter\XINT_mul_smallbyfirst\fi
\ifnum #1=\xint_c_i\expandafter\XINT_mul_smallbysecond\fi
@@ -18946,13 +19599,13 @@ $1$ or $-1$.
\fi
\XINT_mul_start
}%
-\def\XINT_mul_smallbyfirst #1\XINT_mul_start 1#2!1\Z!\W
+\def\XINT_mul_smallbyfirst #1\XINT_mul_start 1#2!1;!\W
{%
\ifnum#2=\xint_c_i\expandafter\XINT_mul_oneisone\fi
\ifnum#2<\xint_c_xxii\expandafter\XINT_mul_verysmall\fi
\expandafter\XINT_mul_out\the\numexpr\XINT_smallmul 1#2!%
}%
-\def\XINT_mul_smallbysecond #1\XINT_mul_start #2\W 1#3!1\Z!%
+\def\XINT_mul_smallbysecond #1\XINT_mul_start #2\W 1#3!1;!%
{%
\ifnum#3=\xint_c_i\expandafter\XINT_mul_oneisone\fi
\ifnum#3<\xint_c_xxii\expandafter\XINT_mul_verysmall\fi
@@ -18961,53 +19614,31 @@ $1$ or $-1$.
\def\XINT_mul_oneisone #1!{\XINT_mul_out }%
\def\XINT_mul_verysmall\expandafter\XINT_mul_out
\the\numexpr\XINT_smallmul 1#1!%
- {\expandafter\XINT_mul_out\the\numexpr\XINT_verysmallmul 0.#1!}%
-\def\XINT_mul_exchange #1\XINT_mul_start #2\W #31\Z!%
- {\fi\fi\XINT_mul_start #31\Z!\W #2}%
+ {\expandafter\XINT_mul_out\the\numexpr\XINT_verysmallmul 0\xint:#1!}%
+\def\XINT_mul_exchange #1\XINT_mul_start #2\W #31;!%
+ {\fi\fi\XINT_mul_start #31;!\W #2}%
% \end{macrocode}
-% \lverb|1.2c: earlier version of addition had sometimes a final 1!, but not
-% in all cases. Version 1.2c of \XINT_add_a always has an ending 1\Z!, which
-% is thus expected by \XINT_mul_loop.|
+% \lverb|&
+% |
% \begin{macrocode}
\def\XINT_mul_start
- {\expandafter\XINT_mul_out\the\numexpr\XINT_mul_loop 100000000!1\Z!\W}%
+ {\expandafter\XINT_mul_out\the\numexpr\XINT_mul_loop 100000000!1;!\W}%
\def\XINT_mul_out
{\expandafter\XINT_cuz_small\romannumeral0\XINT_unrevbyviii {}}%
% \end{macrocode}
-% \lverb|The 1.2 \XINT_mul_loop could *not* be called directly with a small
-% multiplicand, due to problems caused in case the addition done in
-% \XINT_mul_a produced only 1 block the second one being either empty or a 1!
-% which had to be handled by \XINT_mul_loop and \XINT_mul_e. But
-% \XINT_mul_loop was only called via \xintiiMul for arguments with at least 2
-% digits in base 10^8, thus no problem. But this made it annoying for
-% \xintiiPow and \xintiiSqr which had to check if the intended multiplier had
-% only 1 digit in base 10^8. It also made it annoying to create recursive
-% algorithms which did multiplications maintaining the result reverses, for
-% iterative use of output as input.
-%
-% Finally on 2015/11/14 during 1.2c preparation I modified the addition to
-% *always* have the ending 1\Z!.\numexpr expands even through spaces to find
-% operators and even something like 1<space>\Z will try to expand the \Z. Thus
-% we have to not forget that #2 in \XINT_mul_e might be \Z! (a #2=1\Z! in
-% \XINT_mul_a hence \XINT_add_a is no problem). Again this can only happen if
-% we use \XINT_mul_loop directly with a small first argument (in place of
-% smallmul). Anyway, now the routine \XINT_mul_loop can handle a small #2,
-% with no black magic with delimiters and checking if #1 empty, although it
-% never happens when called via \xintiiMul.
-%
-% The delimiting patterns for addition was changed to use 1\Z! to fit what is
-% used on output (by necessity).
-%
-% Call: \the\numexpr \XINT_mul_loop 100000000!1\Z!\W #11\Z!\W #21\Z!$newline
+% \lverb|&
+%
+%( Call:
+%: \the\numexpr \XINT_mul_loop 100000000!1;!\W #11;!\W #21;!
+%)
% where #1 and #2 are (globally reversed) blocks 1<8d>!. Its is generally more
-% efficient to have #1 as the shorter one, but a better recipe is implemented
-% in \XINT_mul_checklengths which as executed earlier. One may call
-% \XINT_mul_loop directly (but multiplication by zero will produce many
-% 100000000! blocks on output).
+% efficient if #1 is the shorter one, but a better recipe is implemented in
+% \XINT_mul_checklengths. One may call \XINT_mul_loop directly (but
+% multiplication by zero will produce many 100000000! blocks on output).
%
-% Ends after having produced: 1<8d>!....1<8d>!1\Z!. The most significant
-% digit block is the last one. It can not be 100000000! except if naturally
-% the loop was called with a zero operand.
+% Ends after having produced: 1<8d>!....1<8d>!1;!. The last 8-digits block is
+% significant one. It can not be 100000000! except if the loop was called with
+% a zero operand.
%
% Thus \XINT_mul_loop can be conveniently called directly in recursive
% routines, as the output terminator can serve as input terminator, we can
@@ -19015,20 +19646,20 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_mul_loop #1\W #2\W 1#3!%
{%
- \xint_gob_til_Z #3\XINT_mul_e \Z
+ \xint_gob_til_sc #3\XINT_mul_e ;%
\expandafter\XINT_mul_a\the\numexpr \XINT_smallmul 1#3!#2\W
#1\W #2\W
}%
% \end{macrocode}
-% \lverb|Each of #1 and #2 brings its 1\Z! for \XINT_add_a.|
+% \lverb|Each of #1 and #2 brings its 1;! for \XINT_add_a.|
% \begin{macrocode}
\def\XINT_mul_a #1\W #2\W
{%
\expandafter\XINT_mul_b\the\numexpr
- \XINT_add_a \xint_c_ii #21\Z!1\Z!1\Z!\W #11\Z!1\Z!1\Z!\W\W
+ \XINT_add_a \xint_c_ii #21;!1;!1;!\W #11;!1;!1;!\W\W
}%
\def\XINT_mul_b 1#1!{1#1\expandafter!\the\numexpr\XINT_mul_loop }%
-\def\XINT_mul_e\Z #1\W 1#2\W #3\W {1\relax #2}%
+\def\XINT_mul_e;#1\W 1#2\W #3\W {1\relax #2}%
% \end{macrocode}
% \lverb|1.2 small and mini multiplication in base 10^8 with carry. Used by
% the main multiplication routines. But division, float factorial, etc.. have
@@ -19040,63 +19671,63 @@ $1$ or $-1$.
% new 8digits carry as argument. The \XINT_smallmul_a fetches a new 1<8d>!
% block to multiply, and calls back \XINT_minimul_wc having stored the
% multiplicand for re-use later. When the loop terminates, the final carry is
-% checked for being nul, and in all cases the output is terminated by a 1\Z!
+% checked for being nul, and in all cases the output is terminated by a 1;!
%
% Multiplication by zero will produce blocks of zeros.|
% \begin{macrocode}
-\def\XINT_minimulwc_a 1#1.#2.#3!#4#5#6#7#8.%
+\def\XINT_minimulwc_a 1#1\xint:#2\xint:#3!#4#5#6#7#8\xint:%
{%
\expandafter\XINT_minimulwc_b
- \the\numexpr \xint_c_x^ix+#1+#3*#8.#3*#4#5#6#7+#2*#8.#2*#4#5#6#7.%
+ \the\numexpr \xint_c_x^ix+#1+#3*#8\xint:
+ #3*#4#5#6#7+#2*#8\xint:
+ #2*#4#5#6#7\xint:%
}%
-\def\XINT_minimulwc_b 1#1#2#3#4#5#6.#7.%
+\def\XINT_minimulwc_b 1#1#2#3#4#5#6\xint:#7\xint:%
{%
\expandafter\XINT_minimulwc_c
- \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7.#6.%
+ \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7\xint:#6\xint:%
}%
-\def\XINT_minimulwc_c 1#1#2#3#4#5#6.#7.#8.%
+\def\XINT_minimulwc_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%
{%
1#6#7\expandafter!%
\the\numexpr\expandafter\XINT_smallmul_a
- \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8.%
+ \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8\xint:%
}%
-\def\XINT_smallmul 1#1#2#3#4#5!{\XINT_smallmul_a 100000000.#1#2#3#4.#5!}%
-\def\XINT_smallmul_a #1.#2.#3!1#4!%
+\def\XINT_smallmul 1#1#2#3#4#5!{\XINT_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!}%
+\def\XINT_smallmul_a #1\xint:#2\xint:#3!1#4!%
{%
- \xint_gob_til_Z #4\XINT_smallmul_e\Z
- \XINT_minimulwc_a #1.#2.#3!#4.#2.#3!%
+ \xint_gob_til_sc #4\XINT_smallmul_e;%
+ \XINT_minimulwc_a #1\xint:#2\xint:#3!#4\xint:#2\xint:#3!%
}%
-\def\XINT_smallmul_e\Z\XINT_minimulwc_a 1#1.#2\Z #3!%
- {\xint_gob_til_eightzeroes #1\XINT_smallmul_f 000000001\relax #1!1\Z!}%
+\def\XINT_smallmul_e;\XINT_minimulwc_a 1#1\xint:#2;#3!%
+ {\xint_gob_til_eightzeroes #1\XINT_smallmul_f 000000001\relax #1!1;!}%
\def\XINT_smallmul_f 000000001\relax 00000000!1{1\relax}%
% \end{macrocode}
-% \lverb|This is multiplication by 1 up to 21. Last time I checked it is never
-% called with a wasteful multiplicand of 1. Here also always the output
-% terminated by a 1\Z! and the last block of digits is not zero. I imagine
-% multiplication by zero produces blocks of zeroes. Will check another day.|
+% \lverb|&
+% |
% \begin{macrocode}
-\def\XINT_verysmallmul #1.#2!1#3!%
+\def\XINT_verysmallmul #1\xint:#2!1#3!%
{%
- \xint_gob_til_Z #3\XINT_verysmallmul_e\Z
+ \xint_gob_til_sc #3\XINT_verysmallmul_e;%
\expandafter\XINT_verysmallmul_a
- \the\numexpr #2*#3+#1.#2!%
+ \the\numexpr #2*#3+#1\xint:#2!%
}%
-\def\XINT_verysmallmul_e\Z\expandafter\XINT_verysmallmul_a\the\numexpr
- #1+#2#3.#4!%
-{\xint_gob_til_zero #2\XINT_verysmallmul_f 0\xint_c_x^viii+#2#3!1\Z!}%
+\def\XINT_verysmallmul_e;\expandafter\XINT_verysmallmul_a\the\numexpr
+ #1+#2#3\xint:#4!%
+{\xint_gob_til_zero #2\XINT_verysmallmul_f 0\xint_c_x^viii+#2#3!1;!}%
\def\XINT_verysmallmul_f #1!1{1\relax}%
-\def\XINT_verysmallmul_a #1#2.%
+\def\XINT_verysmallmul_a #1#2\xint:%
{%
\unless\ifnum #1#2<\xint_c_x^ix
\expandafter\XINT_verysmallmul_bi\else
\expandafter\XINT_verysmallmul_bj\fi
- \the\numexpr \xint_c_x^ix+#1#2.%
+ \the\numexpr \xint_c_x^ix+#1#2\xint:%
}%
\def\XINT_verysmallmul_bj{\expandafter\XINT_verysmallmul_cj }%
-\def\XINT_verysmallmul_cj 1#1#2.%
- {1#2\expandafter!\the\numexpr\XINT_verysmallmul #1.}%
-\def\XINT_verysmallmul_bi\the\numexpr\xint_c_x^ix+#1#2#3.%
- {1#3\expandafter!\the\numexpr\XINT_verysmallmul #1#2.}%
+\def\XINT_verysmallmul_cj 1#1#2\xint:%
+ {1#2\expandafter!\the\numexpr\XINT_verysmallmul #1\xint:}%
+\def\XINT_verysmallmul_bi\the\numexpr\xint_c_x^ix+#1#2#3\xint:%
+ {1#3\expandafter!\the\numexpr\XINT_verysmallmul #1#2\xint:}%
% \end{macrocode}
% \lverb|Used by division and by squaring, not by multiplication itself.
%
@@ -19104,400 +19735,21 @@ $1$ or $-1$.
% format <4 high digits>.<4 low digits>!<8 digits>!, and on output
% 1<8d>!1<8d>!, with least significant block first.|
% \begin{macrocode}
-\def\XINT_minimul_a #1.#2!#3#4#5#6#7!%
+\def\XINT_minimul_a #1\xint:#2!#3#4#5#6#7!%
{%
\expandafter\XINT_minimul_b
- \the\numexpr \xint_c_x^viii+#2*#7.#2*#3#4#5#6+#1*#7.#1*#3#4#5#6.%
+ \the\numexpr \xint_c_x^viii+#2*#7\xint:#2*#3#4#5#6+#1*#7\xint:#1*#3#4#5#6\xint:%
}%
-\def\XINT_minimul_b 1#1#2#3#4#5.#6.%
+\def\XINT_minimul_b 1#1#2#3#4#5\xint:#6\xint:%
{%
\expandafter\XINT_minimul_c
- \the\numexpr \xint_c_x^ix+#1#2#3#4+#6.#5.%
+ \the\numexpr \xint_c_x^ix+#1#2#3#4+#6\xint:#5\xint:%
}%
-\def\XINT_minimul_c 1#1#2#3#4#5#6.#7.#8.%
+\def\XINT_minimul_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%
{%
1#6#7\expandafter!\the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8!%
}%
% \end{macrocode}
-% \subsection{\csh{xintiSqr}, \csh{xintiiSqr}}
-% \lverb|Rewritten for 1.2.|
-% \begin{macrocode}
-\def\xintiiSqr {\romannumeral0\xintiisqr }%
-\def\xintiisqr #1%
-{%
- \expandafter\XINT_sqr\romannumeral0\xintiiabs{#1}\Z
-}%
-\def\xintiSqr {\romannumeral0\xintisqr }%
-\def\xintisqr #1%
-{%
- \expandafter\XINT_sqr\romannumeral0\xintiabs{#1}\Z
-}%
-\def\XINT_sqr #1\Z
-{%
- \expandafter\XINT_sqr_a
- \romannumeral0\expandafter\XINT_sepandrev_andcount
- \romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W
- #1\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- \Z
-}%
-% \end{macrocode}
-% \lverb|1.2c \XINT_mul_loop can now be called directly even with small
-% arguments, thus the following check is not anymore a necessity.|
-% \begin{macrocode}
-\def\XINT_sqr_a #1.%
-{%
- \ifnum #1=\xint_c_i \expandafter\XINT_sqr_small
- \else\expandafter\XINT_sqr_start\fi
-}%
-\def\XINT_sqr_small 1#1#2#3#4#5!\Z
-{%
- \ifnum #1#2#3#4#5<46341 \expandafter\XINT_sqr_verysmall\fi
- \expandafter\XINT_sqr_small_out
- \the\numexpr\XINT_minimul_a #1#2#3#4.#5!#1#2#3#4#5!%
-}%
-\edef\XINT_sqr_verysmall
- \expandafter\XINT_sqr_small_out\the\numexpr\XINT_minimul_a #1!#2!%
- {\noexpand\expandafter\space\noexpand\the\numexpr #2*#2\relax}%
-\def\XINT_sqr_small_out 1#1!1#2!%
-{%
- \XINT_cuz #2#1\R
-}%
-% \end{macrocode}
-% \lverb|An ending 1\Z! is produced on output for \XINT_mul_loop and gets
-% incorporated to the delimiter needed by the \XINT_unrevbyviii done by
-% \XINT_mul_out.|
-% \begin{macrocode}
-\def\XINT_sqr_start #1\Z
-{%
- \expandafter\XINT_mul_out
- \the\numexpr\XINT_mul_loop 100000000!1\Z!\W #11\Z!\W #11\Z!%
- 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
-}%
-% \end{macrocode}
-% \subsection{\csh{xintiPow}, \csh{xintiiPow}}
-% \lverb|&
-% The exponent is not limited but with current default settings of tex memory,
-% with xint 1.2, the maximal exponent for 2^N is N = 2^17 = 131072.
-%
-% 1.2f Modifies the initial steps: 1) in order to be able to let more easily
-% \xintiPow use \xintNum on the exponent once xintfrac.sty is loaded; 2) also
-% because I noticed it was not very well coded. And it did only a \numexpr on
-% the exponent, contradicting the documentation related to the "i" convention
-% in names.|
-% \begin{macrocode}
-\def\xintiiPow {\romannumeral0\xintiipow }%
-\def\xintiipow #1#2%
-{%
- \expandafter\xint_pow\the\numexpr #2\expandafter.\romannumeral`&&@#1\Z%
-}%
-\def\xintiPow {\romannumeral0\xintipow }%
-\def\xintipow #1#2%
-{%
- \expandafter\xint_pow\the\numexpr #2\expandafter.\romannumeral0\xintnum{#1}\Z%
-}%
-\def\xint_pow #1.#2%#3\Z
-{%
- \xint_UDzerominusfork
- #2-\XINT_pow_AisZero
- 0#2\XINT_pow_Aneg
- 0-{\XINT_pow_Apos #2}%
- \krof {#1}%
-}%
-\def\XINT_pow_AisZero #1#2\Z
-{%
- \ifcase\XINT_cntSgn #1\Z
- \xint_afterfi { 1}%
- \or
- \xint_afterfi { 0}%
- \else
- \xint_afterfi {\xintError:DivisionByZero\space 0}%
- \fi
-}%
-\def\XINT_pow_Aneg #1%
-{%
- \ifodd #1
- \expandafter\XINT_opp\romannumeral0%
- \fi
- \XINT_pow_Apos {}{#1}%
-}%
-\def\XINT_pow_Apos #1#2{\XINT_pow_Apos_a {#2}#1}%
-\def\XINT_pow_Apos_a #1#2#3%
-{%
- \xint_gob_til_Z #3\XINT_pow_Apos_short\Z
- \XINT_pow_AatleastTwo {#1}#2#3%
-}%
-\def\XINT_pow_Apos_short\Z\XINT_pow_AatleastTwo #1#2\Z
-{%
- \ifcase #2
- \xintError:thiscannothappen!
- \or \expandafter\XINT_pow_AisOne
- \else\expandafter\XINT_pow_AatleastTwo
- \fi {#1}#2\Z
-}%
-\def\XINT_pow_AisOne #1\Z{ 1}%
-\def\XINT_pow_AatleastTwo #1%
-{%
- \ifcase\XINT_cntSgn #1\Z
- \expandafter\XINT_pow_BisZero
- \or
- \expandafter\XINT_pow_I_in
- \else
- \expandafter\XINT_pow_BisNegative
- \fi
- {#1}%
-}%
-\edef\XINT_pow_BisNegative #1\Z
- {\noexpand\xintError:FractionRoundedToZero\space 0}%
-\def\XINT_pow_BisZero #1\Z{ 1}%
-% \end{macrocode}
-% \lverb|B = #1 > 0, A = #2 > 1. Earlier code checked if size of B did not
-% exceed a given limit (for example 131000).|
-% \begin{macrocode}
-\def\XINT_pow_I_in #1#2\Z
-{%
- \expandafter\XINT_pow_I_loop
- \the\numexpr #1\expandafter.%
- \romannumeral0\expandafter\XINT_sepandrev
- \romannumeral0\XINT_zeroes_forviii #2\R\R\R\R\R\R\R\R{10}0000001\W
- #2\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax XX%
- \R.\R.\R.\R.\R.\R.\R.\R.\W 1\Z!\W
- 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
-}%
-\def\XINT_pow_I_loop #1.%
-{%
- \ifnum #1 = \xint_c_i\expandafter\XINT_pow_I_exit\fi
- \ifodd #1
- \expandafter\XINT_pow_II_in
- \else
- \expandafter\XINT_pow_I_squareit
- \fi #1.%
-}%
-\def\XINT_pow_I_exit \ifodd #1\fi #2.#3\W {\XINT_mul_out #3}%
-% \end{macrocode}
-% \lverb|The 1.2c \XINT_mul_loop can be called directly even with small
-% arguments, hence the "butcheckifsmall" is not a necessity as it was earlier
-% with 1.2. On 2^30, it does bring roughly a 40$char37 $space time gain
-% though, and 30$char37 $space gain for 2^60. The overhead on big computations
-% should be negligible.|
-% \begin{macrocode}
-\def\XINT_pow_I_squareit #1.#2\W%
-{%
- \expandafter\XINT_pow_I_loop
- \the\numexpr #1/\xint_c_ii\expandafter.%
- \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W
-}%
-\def\XINT_pow_mulbutcheckifsmall #1!1#2%
-{%
- \xint_gob_til_Z #2\XINT_pow_mul_small\Z
- \XINT_mul_loop 100000000!1\Z!\W #1!1#2%
-}%
-\def\XINT_pow_mul_small\Z \XINT_mul_loop 100000000!1\Z!\W 1#1!1\Z!\W
-{%
- \XINT_smallmul 1#1!%
-}%
-\def\XINT_pow_II_in #1.#2\W
-{%
- \expandafter\XINT_pow_II_loop
- \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter.%
- \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W #2\W
-}%
-\def\XINT_pow_II_loop #1.%
-{%
- \ifnum #1 = \xint_c_i\expandafter\XINT_pow_II_exit\fi
- \ifodd #1
- \expandafter\XINT_pow_II_odda
- \else
- \expandafter\XINT_pow_II_even
- \fi #1.%
-}%
-\def\XINT_pow_II_exit\ifodd #1\fi #2.#3\W #4\W
-{%
- \expandafter\XINT_mul_out
- \the\numexpr\XINT_pow_mulbutcheckifsmall #4\W #3%
-}%
-\def\XINT_pow_II_even #1.#2\W
-{%
- \expandafter\XINT_pow_II_loop
- \the\numexpr #1/\xint_c_ii\expandafter.%
- \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W
-}%
-\def\XINT_pow_II_odda #1.#2\W #3\W
-{%
- \expandafter\XINT_pow_II_oddb
- \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter.%
- \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #2\W #2\W
-}%
-\def\XINT_pow_II_oddb #1.#2\W #3\W
-{%
- \expandafter\XINT_pow_II_loop
- \the\numexpr #1\expandafter.%
- \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #3\W #2\W
-}%
-% \end{macrocode}
-% \subsection{\csh{xintiFac}, \csh{xintiiFac}}
-% \lverb|Moved here from xint.sty with release 1.2 (to be usable by \bnumexpr).
-%
-% The routine has been partially rewritten with release 1.2 to exploit the new
-% inner structure of multiplication. I impose an intrinsic limit of the
-% argument at maximal value 9999 (1.2f sets it at 10000, there was no reason
-% for 9999 and not 10000). Anyhow with current default settings of the
-% etex memory and the current 1.2 routine (last commit: eada1b1), the maximal
-% possible computation is 5971! (which has 19956 digits). Also, I add
-% \xintiiFac which does only \romannumeral-`0 and not \numexpr on its
-% argument. This is for a silly slight optimization of the \xintiiexpr (and
-% \bnumexpr) parsers. If the argument is >=2^31 an arithmetic overflow will
-% occur in the \ifnum. This is not as good as in the \numexpr, but well.
-%
-% 2015/11/14 added note on the implementation: we can roughly estimate for big
-% n that we do n/2 multiplications alpha*X where alpha=(k+1)(k+2)<10^8 and
-% X=k! has size of order k log(k), with k along a step 2 arithmetic sequence
-% up to n. Each small multiplication should have a linear cost hence O(k
-% log(k)) (as we maintain the reversed representation) hence a total cost of
-% O(n^2 log(n)); on computing n! for n=100, 200, ..., 2000 I obtained a good
-% fit (only roughly 20$char37 $space variation) of the computation time with
-% the square of the length of n! -- to the extent that the big variability of
-% \pdfelapsedtime allows to draw any conclusion -- I did not repeat the
-% computations as many times as I should have. I currently do not quite
-% understand why in this range it seems computation times are better fitted by
-% O(n^2 log^2 n) than by O(n^2 log n). True, final reverse is O(N^2) with N of
-% order n log n, but for this range of n's this is marginal (and I tested also
-% with this final reverse skipped).
-%
-% On the other hand with an approach based on binary splitting n!=AB and
-% A=[n/2]! each of A and B will be of size n/2 log(n), but xint schoolbook
-% multiplication in TeX is worse than quadratic due to penalty when TeX needs
-% to fetch arguments and it didn't seem promising. I didn't even test. Binary
-% splitting is good when a fast multiplication is available.
-%
-% No wait! incredibly a very naive recursive implementation with five lines of
-% code via a binary splitting approach with \xintiiMul is only about 1.6x--2x
-% slower in the range N=200 to 2000 ! this seems to say that the reversing
-% done by \xintiiMul both on input and for output is quite efficient. The best
-% case seems to be around N=1000, hence multiplication of 500 digits numbers,
-% after that the impact of over-quadratic computation time seems to show: for
-% N=4000, the naive binary splitting approach is about 3.4x slower than the
-% naive iterated small multiplications as here (naturally with sub-quadratic
-% multiplication that would be otherwise).
-%
-%
-% 2015/11/29 for 1.2f: no more a \xintFac, only \xintiFac/\xintiiFac. I could
-% not go on like this with \xintFac/\xintiFac/\xintiiFac.|
-% \begin{macrocode}
-\def\xintiiFac {\romannumeral0\xintiifac }%
-\def\xintiifac #1{\expandafter\XINT_fac_fork\the\numexpr#1.}%
-\def\xintiFac {\romannumeral0\xintifac }%
-\let\xintifac\xintiifac
-% \end{macrocode}
-% \lverb|Vieux style. Bon je modifie pour 1.2f. Le cas négatif devrait faire
-% un 1/0 et créer un Inf.|
-% \begin{macrocode}
-\def\XINT_fac_fork #1#2.%
-{%
- \xint_UDzerominusfork
- #1-\XINT_fac_zero
- 0#1\XINT_fac_neg
- 0-\XINT_fac_checksize
- \krof #1#2.%
-}%
-\def\XINT_fac_zero #1.{ 1}%
-\edef\XINT_fac_neg #1.{\noexpand\xintError:FactorialOfNegative\space 1}%
-\def\XINT_fac_checksize #1.%
-{%
- \ifnum #1>\xint_c_x^iv
- \xint_dothis{\expandafter\xintError:TooBigFactorial
- \expandafter\space\expandafter 1\xint_gob_til_W }\fi
- \ifnum #1>465 \xint_dothis{\XINT_fac_bigloop_a #1.}\fi
- \ifnum #1>101 \xint_dothis{\XINT_fac_medloop_a #1.\XINT_mul_out}\fi
- \xint_orthat{\XINT_fac_smallloop_a #1.\XINT_mul_out}%
- 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
-}%
-\def\XINT_fac_bigloop_a #1.%
-{%
- \expandafter\XINT_fac_bigloop_b \the\numexpr
- #1+\xint_c_i-\xint_c_ii*((#1-464)/\xint_c_ii).#1.%
-}%
-\def\XINT_fac_bigloop_b #1.#2.%
-{%
- \expandafter\XINT_fac_medloop_a
- \the\numexpr #1-\xint_c_i.{\XINT_fac_bigloop_loop #1.#2.}%
-}%
-\def\XINT_fac_bigloop_loop #1.#2.%
-{%
- \ifnum #1>#2 \expandafter\XINT_fac_bigloop_exit\fi
- \expandafter\XINT_fac_bigloop_loop
- \the\numexpr #1+\xint_c_ii\expandafter.%
- \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_bigloop_mul #1!%
-}%
-\def\XINT_fac_bigloop_exit #1!{\XINT_mul_out}%
-\def\XINT_fac_bigloop_mul #1!%
-{%
- \expandafter\XINT_smallmul
- \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%
-}%
-\def\XINT_fac_medloop_a #1.%
-{%
- \expandafter\XINT_fac_medloop_b
- \the\numexpr #1+\xint_c_i-\xint_c_iii*((#1-100)/\xint_c_iii).#1.%
-}%
-\def\XINT_fac_medloop_b #1.#2.%
-{%
- \expandafter\XINT_fac_smallloop_a
- \the\numexpr #1-\xint_c_i.{\XINT_fac_medloop_loop #1.#2.}%
-}%
-\def\XINT_fac_medloop_loop #1.#2.%
-{%
- \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi
- \expandafter\XINT_fac_medloop_loop
- \the\numexpr #1+\xint_c_iii\expandafter.%
- \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_medloop_mul #1!%
-}%
-\def\XINT_fac_medloop_mul #1!%
-{%
- \expandafter\XINT_smallmul
- \the\numexpr
- \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%
-}%
-\def\XINT_fac_smallloop_a #1.%
-{%
- \csname
- XINT_fac_smallloop_\the\numexpr #1-\xint_c_iv*(#1/\xint_c_iv)\relax
- \endcsname #1.%
-}%
-\expandafter\def\csname XINT_fac_smallloop_1\endcsname #1.%
-{%
- \XINT_fac_smallloop_loop 2.#1.100000001!1\Z!%
-}%
-\expandafter\def\csname XINT_fac_smallloop_-2\endcsname #1.%
-{%
- \XINT_fac_smallloop_loop 3.#1.100000002!1\Z!%
-}%
-\expandafter\def\csname XINT_fac_smallloop_-1\endcsname #1.%
-{%
- \XINT_fac_smallloop_loop 4.#1.100000006!1\Z!%
-}%
-\expandafter\def\csname XINT_fac_smallloop_0\endcsname #1.%
-{%
- \XINT_fac_smallloop_loop 5.#1.1000000024!1\Z!%
-}%
-\def\XINT_fac_smallloop_loop #1.#2.%
-{%
- \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi
- \expandafter\XINT_fac_smallloop_loop
- \the\numexpr #1+\xint_c_iv\expandafter.%
- \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_smallloop_mul #1!%
-}%
-\def\XINT_fac_smallloop_mul #1!%
-{%
- \expandafter\XINT_smallmul
- \the\numexpr
- \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%
-}%
-\def\XINT_fac_loop_exit #1!#2\Z!#3{#3#2\Z!}%
-% \end{macrocode}
% \subsection{\csh{xintiDivision}, \csh{xintiQuo}, \csh{xintiRem},
% \csh{xintiiDivision}, \csh{xintiiQuo}, \csh{xintiiRem}}
% \lverb|Completely rewritten for 1.2.
@@ -19518,12 +19770,8 @@ $1$ or $-1$.
% parameters now need handle less such parameters. Thus, some rationale for
% the way the code was structured has disappeared.
%
-% 1.2 2015/10/15 had a bad bug which got corrected in 1.2b of 2015/10/29: a
-% divisor starting with 99999999xyz... would cause a failure, simply because
-% it was attempted to use the \XINT_div_mini routine with a divisor of
-% 1+99999999=100000000 having 9 digits. Fortunately the origin of the bug was
-% easy to find out. Too bad that my obviously very deficient test files
-% did not detect it.|
+%
+% 1.2l: \xintiiDivision et al. made robust against non terminated input.|
% \begin{macrocode}
\def\xintiiQuo {\romannumeral0\xintiiquo }%
\def\xintiiRem {\romannumeral0\xintiirem }%
@@ -19540,26 +19788,29 @@ $1$ or $-1$.
% euclidienne de A par B: A=BQ+R, 0<= R < |B|.-
% \begin{macrocode}
\def\xintiDivision {\romannumeral0\xintidivision }%
-\def\xintidivision #1{\expandafter\XINT_idivision\romannumeral0\xintnum{#1}\Z }%
-\def\XINT_idivision #1#2\Z #3{\expandafter\XINT_iidivision_a\expandafter #1%
- \romannumeral0\xintnum{#3}\Z #2\Z }%
+\def\xintidivision #1{\expandafter\XINT_idivision\romannumeral0\xintnum{#1}\xint:}%
+\def\XINT_idivision #1#2\xint:#3{\expandafter\XINT_iidivision_a\expandafter #1%
+ \romannumeral0\xintnum{#3}\xint:#2\xint:}%
\def\xintiiDivision {\romannumeral0\xintiidivision }%
-\def\xintiidivision #1{\expandafter\XINT_iidivision \romannumeral`&&@#1\Z }%
-\def\XINT_iidivision #1#2\Z #3{\expandafter\XINT_iidivision_a\expandafter #1%
- \romannumeral`&&@#3\Z #2\Z }%
+\def\xintiidivision #1{\expandafter\XINT_iidivision \romannumeral`&&@#1\xint:}%
+\def\XINT_iidivision #1#2\xint:#3{\expandafter\XINT_iidivision_a\expandafter #1%
+ \romannumeral`&&@#3\xint:#2\xint:}%
% \end{macrocode}
% \lverb|On regarde les signes de A et de B.|
% \begin{macrocode}
\def\XINT_iidivision_a #1#2% #1 de A, #2 de B.
{%
- \if0#2\xint_dothis\XINT_iidivision_divbyzero\fi
+ \if0#2\xint_dothis{\XINT_iidivision_divbyzero #1#2}\fi
\if0#1\xint_dothis\XINT_iidivision_aiszero\fi
\if-#2\xint_dothis{\expandafter\XINT_iidivision_bneg
\romannumeral0\XINT_iidivision_bpos #1}\fi
\xint_orthat{\XINT_iidivision_bpos #1#2}%
}%
-\def\XINT_iidivision_divbyzero #1\Z #2\Z {\xintError:DivisionByZero{0}{0}}%
-\def\XINT_iidivision_aiszero #1\Z #2\Z {{0}{0}}%
+\def\XINT_iidivision_divbyzero#1#2#3\xint:#4\xint:
+ {\if0#1\xint_dothis{\XINT_signalcondition{DivisionUndefined}}\fi
+ \xint_orthat{\XINT_signalcondition{DivisionByZero}}%
+ {Division of #1#4 by #2#3}{}{{0}{0}}}%
+\def\XINT_iidivision_aiszero #1\xint:#2\xint:{{0}{0}}%
\def\XINT_iidivision_bneg #1% q->-q, r unchanged
{\expandafter{\romannumeral0\XINT_opp #1}}%
\def\XINT_iidivision_bpos #1%
@@ -19578,11 +19829,11 @@ $1$ or $-1$.
% négatif. Je n'ai pas fait beaucoup d'efforts pour être un minimum efficace
% si A ou B n'est pas positif.|
% \begin{macrocode}
-\def\XINT_iidivision_apos #1#2\Z #3\Z{\XINT_div_prepare {#2}{#1#3}}%
-\def\XINT_iidivision_aneg #1\Z #2\Z
+\def\XINT_iidivision_apos #1#2\xint:#3\xint:{\XINT_div_prepare {#2}{#1#3}}%
+\def\XINT_iidivision_aneg #1\xint:#2\xint:
{\expandafter
\XINT_iidivision_aneg_b\romannumeral0\XINT_div_prepare {#1}{#2}{#1}}%
-\def\XINT_iidivision_aneg_b #1#2{\if0\XINT_Sgn #2\Z
+\def\XINT_iidivision_aneg_b #1#2{\if0\XINT_Sgn #2\xint:
\expandafter\XINT_iidivision_aneg_rzero
\else
\expandafter\XINT_iidivision_aneg_rpos
@@ -19596,7 +19847,7 @@ $1$ or $-1$.
\def\XINT_iidivision_aneg_end #1#2#3%
{%
\expandafter\xint_exchangetwo_keepbraces
- \expandafter{\romannumeral0\XINT_sub_mm_a {}{}#3\Z #2\Z}{#1}% r-> b-r
+ \expandafter{\romannumeral0\XINT_sub_mm_a {}{}#3\xint:#2\xint:}{#1}% r-> b-r
}%
% \end{macrocode}
% \lverb|Le diviseur B va être étendu par des zéros pour que sa longueur soit
@@ -19645,7 +19896,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_div_small_b
\the\numexpr #1/\xint_c_ii\expandafter
- .\the\numexpr \xint_c_x^viii+#1\expandafter!%
+ \xint:\the\numexpr \xint_c_x^viii+#1\expandafter!%
\romannumeral0%
\XINT_div_small_ba #2\R\R\R\R\R\R\R\R{10}0000001\W
#2\XINT_sepbyviii_Z_end 2345678\relax
@@ -19677,18 +19928,18 @@ $1$ or $-1$.
\the\numexpr\expandafter\XINT_sepbyviii_Z
\romannumeral0\XINT_zeroes_forviii #1\R #2\relax
{{\XINT_div_dosmallsmall}{#1}}%
-\def\XINT_div_dosmallsmall #1.1#2!#3%
+\def\XINT_div_dosmallsmall #1\xint:1#2!#3%
{%
\expandafter\XINT_div_smallsmallend
- \the\numexpr (#3+#1)/#2-\xint_c_i.#2.#3.%
+ \the\numexpr (#3+#1)/#2-\xint_c_i\xint:#2\xint:#3\xint:%
}%
-\def\XINT_div_smallsmallend #1.#2.#3.{\expandafter
+\def\XINT_div_smallsmallend #1\xint:#2\xint:#3\xint:{\expandafter
{\the\numexpr #1\expandafter}\expandafter{\the\numexpr #3-#1*#2}}%
% \end{macrocode}
-% \lverb|Si A>=10^8, il est maintenant sous la forme 1<8d>!...1<8d>!1\Z! avec
+% \lverb|Si A>=10^8, il est maintenant sous la forme 1<8d>!...1<8d>!1;! avec
% plus significatifs en premier. Donc on poursuit par$newline
% \expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a
-% x.1B!1<8d>!...1<8d>!1\Z! avec x =round(B/2), 1B=10^8+B.|
+% x.1B!1<8d>!...1<8d>!1;! avec x =round(B/2), 1B=10^8+B.|
% \begin{macrocode}
\def\XINT_div_dosmalldiv
{{\expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a}}%
@@ -19722,17 +19973,16 @@ $1$ or $-1$.
{%
\expandafter\XINT_div_prepare_g
\the\numexpr #1#2#3#4#5#6#7#8+\xint_c_i\expandafter
- .\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter
- .\the\numexpr #1#2#3#4#5#6#7#8\expandafter
- .\romannumeral0\XINT_sepandrev_andcount
+ \xint:\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter
+ \xint:\the\numexpr #1#2#3#4#5#6#7#8\expandafter
+ \xint:\romannumeral0\XINT_sepandrev_andcount
#1#2#3#4#5#6#7#8#9\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678%
- \relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\X
}%
-\def\XINT_div_prepare_g #1.#2.#3.#4.#5\X #6#7#8%
+\def\XINT_div_prepare_g #1\xint:#2\xint:#3\xint:#4\xint:#5\X #6#7#8%
{%
\expandafter\XINT_div_prepare_h
\the\numexpr\expandafter\XINT_sepbyviii_andcount
@@ -19742,7 +19992,7 @@ $1$ or $-1$.
\xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W
{#1}{#2}{#3}{#4}{#5}{#6}%
}%
-\def\XINT_div_prepare_h #11.#2.#3#4#5#6%#7#8%
+\def\XINT_div_prepare_h #11\xint:#2\xint:#3#4#5#6%#7#8%
{%
\XINT_div_start_a {#2}{#6}{#1}{#3}{#4}{#5}%{#7}{#8}%
}%
@@ -19765,23 +20015,23 @@ $1$ or $-1$.
{%
\expandafter\XINT_div_zeroQ_end
\romannumeral0\XINT_unsep_cuzsmall
- #31\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W .%
+ #3\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\xint:
}%
-\def\XINT_div_zeroQ_end #1.#2%
- {\expandafter{\expandafter0\expandafter}\XINT_div_cleanR #1#2.}%
+\def\XINT_div_zeroQ_end #1\xint:#2%
+ {\expandafter{\expandafter0\expandafter}\XINT_div_cleanR #1#2\xint:}%
% \end{macrocode}
% \lverb|L, K, A, x',y,x, B, «c»->K.A.x{LK{x'y}x}B«c»|
% \begin{macrocode}
\def\XINT_div_start_b #1#2#3#4#5#6%
{%
\expandafter\XINT_div_finish\the\numexpr
- \XINT_div_start_c {#2}.#3.{#6}{{#1}{#2}{{#4}{#5}}{#6}}%
+ \XINT_div_start_c {#2}\xint:#3\xint:{#6}{{#1}{#2}{{#4}{#5}}{#6}}%
}%
\def\XINT_div_finish
{%
\expandafter\XINT_div_finish_a \romannumeral`&&@\XINT_div_unsepQ
}%
-\def\XINT_div_finish_a #1\Z #2.{\XINT_div_finish_b #2.{#1}}%
+\def\XINT_div_finish_a #1\Z #2\xint:{\XINT_div_finish_b #2\xint:{#1}}%
% \end{macrocode}
% \lverb|Ici ce sont routines de fin. Le reste déjà nettoyé. R.Q«c».|
% \begin{macrocode}
@@ -19794,12 +20044,12 @@ $1$ or $-1$.
\fi
#1%
}%
-\def\XINT_div_finish_bRzero 0.#1#2{{#1}{0}}%
-\def\XINT_div_finish_bRpos #1.#2#3%
+\def\XINT_div_finish_bRzero 0\xint:#1#2{{#1}{0}}%
+\def\XINT_div_finish_bRpos #1\xint:#2#3%
{%
- \expandafter\xint_exchangetwo_keepbraces\XINT_div_cleanR #1#3.{#2}%
+ \expandafter\xint_exchangetwo_keepbraces\XINT_div_cleanR #1#3\xint:{#2}%
}%
-\def\XINT_div_cleanR #100000000.{{#1}}%
+\def\XINT_div_cleanR #100000000\xint:{{#1}}%
% \end{macrocode}
% \lverb|Kalpha.A.x{LK{x'y}x}, B, «c», au début #2=alpha est vide. On fait une
% boucle pour prendre K unités de A (on a au moins L égal à K) et les mettre
@@ -19813,31 +20063,31 @@ $1$ or $-1$.
\expandafter\XINT_div_start_cb
\fi {#1}%
}%
-\def\XINT_div_start_ca #1#2.#3!#4!#5!#6!#7!#8!#9!%
+\def\XINT_div_start_ca #1#2\xint:#3!#4!#5!#6!#7!#8!#9!%
{%
\expandafter\XINT_div_start_c\expandafter
- {\the\numexpr #1-\xint_c_vii}#2#3!#4!#5!#6!#7!#8!#9!.%
+ {\the\numexpr #1-\xint_c_vii}#2#3!#4!#5!#6!#7!#8!#9!\xint:%
}%
\def\XINT_div_start_cb #1%
{\csname XINT_div_start_c_\romannumeral\numexpr#1\endcsname}%
-\def\XINT_div_start_c_i #1.#2!%
- {\XINT_div_start_c_ #1#2!.}%
-\def\XINT_div_start_c_ii #1.#2!#3!%
- {\XINT_div_start_c_ #1#2!#3!.}%
-\def\XINT_div_start_c_iii #1.#2!#3!#4!%
- {\XINT_div_start_c_ #1#2!#3!#4!.}%
-\def\XINT_div_start_c_iv #1.#2!#3!#4!#5!%
- {\XINT_div_start_c_ #1#2!#3!#4!#5!.}%
-\def\XINT_div_start_c_v #1.#2!#3!#4!#5!#6!%
- {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!.}%
-\def\XINT_div_start_c_vi #1.#2!#3!#4!#5!#6!#7!%
- {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!#7!.}%
+\def\XINT_div_start_c_i #1\xint:#2!%
+ {\XINT_div_start_c_ #1#2!\xint:}%
+\def\XINT_div_start_c_ii #1\xint:#2!#3!%
+ {\XINT_div_start_c_ #1#2!#3!\xint:}%
+\def\XINT_div_start_c_iii #1\xint:#2!#3!#4!%
+ {\XINT_div_start_c_ #1#2!#3!#4!\xint:}%
+\def\XINT_div_start_c_iv #1\xint:#2!#3!#4!#5!%
+ {\XINT_div_start_c_ #1#2!#3!#4!#5!\xint:}%
+\def\XINT_div_start_c_v #1\xint:#2!#3!#4!#5!#6!%
+ {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!\xint:}%
+\def\XINT_div_start_c_vi #1\xint:#2!#3!#4!#5!#6!#7!%
+ {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!#7!\xint:}%
% \end{macrocode}
% \lverb|#1=a, #2=alpha (de longueur K, à l'endroit).#3=reste de A.#4=x,
% #5={LK{x'y}x},#6=B,«c» -> a, x, alpha, B, {00000000}, L, K, {x'y},x,
% alpha'=reste de A, B«c».|
% \begin{macrocode}
-\def\XINT_div_start_c_ 1#1!#2.#3.#4#5#6%
+\def\XINT_div_start_c_ 1#1!#2\xint:#3\xint:#4#5#6%
{%
\XINT_div_I_a {#1}{#4}{1#1!#2}{#6}{00000000}#5{#3}{#6}%
}%
@@ -19847,7 +20097,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_div_I_a #1#2%
{%
- \expandafter\XINT_div_I_b\the\numexpr #1/#2.{#1}{#2}%
+ \expandafter\XINT_div_I_b\the\numexpr #1/#2\xint:{#1}{#2}%
}%
\def\XINT_div_I_b #1%
{%
@@ -19858,15 +20108,15 @@ $1$ or $-1$.
% {x'y}, x, alpha', B«c» -> on lâche un q puis {alpha} L, K, {x'y}, x,
% alpha', B«c».|
% \begin{macrocode}
-\def\XINT_div_I_czero 0\XINT_div_I_c 0.#1#2#3#4#5{1#5\XINT_div_I_g {#3}}%
-\def\XINT_div_I_c #1.#2#3%
+\def\XINT_div_I_czero 0\XINT_div_I_c 0\xint:#1#2#3#4#5{1#5\XINT_div_I_g {#3}}%
+\def\XINT_div_I_c #1\xint:#2#3%
{%
- \expandafter\XINT_div_I_da\the\numexpr #2-#1*#3.#1.{#2}{#3}%
+ \expandafter\XINT_div_I_da\the\numexpr #2-#1*#3\xint:#1\xint:{#2}{#3}%
}%
% \end{macrocode}
% \lverb|r.q.alpha, B, q0, L, K, {x'y}, x, alpha', B«c»|
% \begin{macrocode}
-\def\XINT_div_I_da #1.%
+\def\XINT_div_I_da #1\xint:%
{%
\ifnum #1>\xint_c_ix
\expandafter\XINT_div_I_dP
@@ -19881,16 +20131,16 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|attention très mauvaises notations avec _b et _db.|
% \begin{macrocode}
-\def\XINT_div_I_dN #1.%
+\def\XINT_div_I_dN #1\xint:%
{%
- \expandafter\XINT_div_I_b\the\numexpr #1-\xint_c_i.%
+ \expandafter\XINT_div_I_b\the\numexpr #1-\xint_c_i\xint:%
}%
-\def\XINT_div_I_db #1.#2#3#4#5%
+\def\XINT_div_I_db #1\xint:#2#3#4#5%
{%
\expandafter\XINT_div_I_dc\expandafter #1%
\romannumeral0\expandafter\XINT_div_sub\expandafter
{\romannumeral0\XINT_rev_nounsep {}#4\R!\R!\R!\R!\R!\R!\R!\R!\W}%
- {\the\numexpr\XINT_div_verysmallmul #1!#51\Z!}%
+ {\the\numexpr\XINT_div_verysmallmul #1!#51;!}%
\Z {#4}{#5}%
}%
% \end{macrocode}
@@ -19905,7 +20155,7 @@ $1$ or $-1$.
\def\XINT_div_I_dd #1-\Z
{%
\if #11\expandafter\XINT_div_I_dz\fi
- \expandafter\XINT_div_I_dP\the\numexpr #1-\xint_c_i.XX%
+ \expandafter\XINT_div_I_dP\the\numexpr #1-\xint_c_i\xint: XX%
}%
\def\XINT_div_I_dz #1XX#2#3#4%
{%
@@ -19916,12 +20166,12 @@ $1$ or $-1$.
% \lverb|q.alpha, B, q0, L, K, {x'y},x, alpha'B«c» (q=0 has been intercepted)
% -> 1nouveauq.nouvel alpha, L, K, {x'y}, x, alpha',B«c»|
% \begin{macrocode}
-\def\XINT_div_I_dP #1.#2#3#4#5#6%
+\def\XINT_div_I_dP #1\xint:#2#3#4#5#6%
{%
1#6+#1\expandafter\XINT_div_I_g\expandafter
{\romannumeral0\expandafter\XINT_div_sub\expandafter
{\romannumeral0\XINT_rev_nounsep {}#4\R!\R!\R!\R!\R!\R!\R!\R!\W}%
- {\the\numexpr\XINT_div_verysmallmul #1!#51\Z!}%
+ {\the\numexpr\XINT_div_verysmallmul #1!#51;!}%
}%
}%
% \end{macrocode}
@@ -19939,26 +20189,27 @@ $1$ or $-1$.
\else
\expandafter\XINT_div_I_h
\fi
- {#4}#1.#6.{{#4}{#5}{#3}{#2}}{#7}%
+ {#4}#1\xint:#6\xint:{{#4}{#5}{#3}{#2}}{#7}%
}%
% \end{macrocode}
% \lverb|{x'y}alpha.alpha'.{{x'y}xKL}B«c» -> Attention retour à l'envoyeur ici
% par terminaison des \the\numexpr. On doit reprendre le Q déjà sorti, qui n'a
% plus de séparateurs, ni de leading 1. Ensuite R sans leading zeros.«c»|
% \begin{macrocode}
-\def\XINT_div_exittofinish #1#2.#3.#4#5%
+\def\XINT_div_exittofinish #1#2\xint:#3\xint:#4#5%
{%
- 1\expandafter\expandafter\expandafter!\expandafter\XINT_unsep_delim
- \romannumeral0\XINT_div_unsepR #2#31\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W.%
+ 1\expandafter\expandafter\expandafter!\expandafter\XINT_div_unsepQ_delim
+ \romannumeral0\XINT_div_unsepR #2#3%
+ \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\R\xint:
}%
% \end{macrocode}
% \lverb|ATTENTION DESCRIPTION OBSOLÈTE. #1={x'y}alpha.#2!#3=reste de A.
% #4={{x'y},x,K,L},#5=B,«c» devient {x'y},alpha sur K+4 chiffres.B,
% {{x'y},x,K,L}, #6= nouvel alpha',B,«c»|
% \begin{macrocode}
-\def\XINT_div_I_h #1.#2!#3.#4#5%
+\def\XINT_div_I_h #1\xint:#2!#3\xint:#4#5%
{%
- \XINT_div_II_b #1#2!.{#5}{#4}{#3}{#5}%
+ \XINT_div_II_b #1#2!\xint:{#5}{#4}{#3}{#5}%
}%
% \end{macrocode}
% \lverb|{x'y}alpha.B, {{x'y},x,K,L}, nouveau alpha',B,«c»|
@@ -19973,7 +20224,7 @@ $1$ or $-1$.
% «c» -> {x'y}x,K,L (à diminuer de 4), {alpha sur
% K}B{q1=00000000}{alpha'}B,«c»|
% \begin{macrocode}
-\def\XINT_div_II_skipc 00000000\XINT_div_II_c #1#2#3#4#5.#6#7%
+\def\XINT_div_II_skipc 00000000\XINT_div_II_c #1#2#3#4#5\xint:#6#7%
{%
\XINT_div_II_k #7{#4!#5}{#6}{00000000}%
}%
@@ -19981,21 +20232,12 @@ $1$ or $-1$.
% \lverb|x'ya->1qx'yalpha.B, {{x'y},x,K,L}, nouveau alpha',B, «c». En fait,
% attention, ici #3 et #4 sont les 16 premiers chiffres du numérateur,sous la
% forme blocs 1<8chiffres>.
-%
-% ATTENTION!
-%
-% 2015/10/29 :j'avais introduit un bug ici dans 1.2 2015/10/15, car
-% \XINT_div_mini veut un diviseur de huit chiffres, or si le dénominateur B
-% débute par x=99999999, on aura x'=100000000, d'où évidemment un bug. Bon il
-% faut intercepter x'=100000000.
-%
-% I need to recognize x'=100000000 in some not too penalizing way. Anyway,
-% will try to optimize some other day.|
+% |
% \begin{macrocode}
\def\XINT_div_II_c #1#2#3#4%
{%
\expandafter\XINT_div_II_d\the\numexpr\XINT_div_xmini
- #1.#2!#3!#4!{#1}{#2}#3!#4!%
+ #1\xint:#2!#3!#4!{#1}{#2}#3!#4!%
}%
\def\XINT_div_xmini #1%
{%
@@ -20012,19 +20254,19 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|x'=10^8 and we return #1=1<8digits>.|
% \begin{macrocode}
-\def\XINT_div_xmini_c 0\XINT_div_mini 100000000.50000000!#1!#2!{#1!}%
+\def\XINT_div_xmini_c 0\XINT_div_mini 100000000\xint:50000000!#1!#2!{#1!}%
% \end{macrocode}
% \lverb|1 suivi de q1 sur huit chiffres! #2=x', #3=y, #4=alpha.#5=B,
% {{x'y},x,K,L}, alpha', B, «c» --> nouvel alpha.x',y,B,q1,{{x'y},x,K,L},
% alpha', B, «c» |
% \begin{macrocode}
-\def\XINT_div_II_d 1#1#2#3#4#5!#6#7#8.#9%
+\def\XINT_div_II_d 1#1#2#3#4#5!#6#7#8\xint:#9%
{%
\expandafter\XINT_div_II_e
\romannumeral0\expandafter\XINT_div_sub\expandafter
{\romannumeral0\XINT_rev_nounsep {}#8\R!\R!\R!\R!\R!\R!\R!\R!\W}%
- {\the\numexpr\XINT_div_smallmul_a 100000000.#1#2#3#4.#5!#91\Z!}%
- .{#6}{#7}{#9}{#1#2#3#4#5}%
+ {\the\numexpr\XINT_div_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!#91;!}%
+ \xint:{#6}{#7}{#9}{#1#2#3#4#5}%
}%
% \end{macrocode}
% \lverb|alpha.x',y,B,q1, {{x'y},x,K,L}, alpha', B, «c». Attention la
@@ -20036,11 +20278,11 @@ $1$ or $-1$.
\XINT_div_II_f 1#1!%
}%
% \end{macrocode}
-% \lverb|100000000!alpha sur K chiffres.#2=x',#3=y,#4=B,#5=q1, #6={{x'y},x,K,L},
+% \lverb|100000000! alpha sur K chiffres.#2=x',#3=y,#4=B,#5=q1, #6={{x'y},x,K,L},
% #7=alpha',B«c» -> {x'y}x,K,L (à diminuer de 1),
% {alpha sur K}B{q1}{alpha'}B«c»|
% \begin{macrocode}
-\def\XINT_div_II_skipf 00000000\XINT_div_II_f 100000000!#1.#2#3#4#5#6%
+\def\XINT_div_II_skipf 00000000\XINT_div_II_f 100000000!#1\xint:#2#3#4#5#6%
{%
\XINT_div_II_k #6{#1}{#4}{#5}%
}%
@@ -20051,13 +20293,13 @@ $1$ or $-1$.
% Here also we are dividing with x' which could be 10^8 in the exceptional
% case x=99999999. Must intercept it before sending to \XINT_div_mini.|
% \begin{macrocode}
-\def\XINT_div_II_f #1!#2!#3.%
+\def\XINT_div_II_f #1!#2!#3\xint:%
{%
\XINT_div_II_fa {#1!#2!}{#1!#2!#3}%
}%
\def\XINT_div_II_fa #1#2#3#4%
{%
- \expandafter\XINT_div_II_g \the\numexpr\XINT_div_xmini #3.#4!#1{#2}%
+ \expandafter\XINT_div_II_g \the\numexpr\XINT_div_xmini #3\xint:#4!#1{#2}%
}%
% \end{macrocode}
% \lverb|#1=q, #2=alpha (K+4), #3=B, #4=q1, {{x'y},x,K,L}, alpha', BQ«c»
@@ -20068,11 +20310,11 @@ $1$ or $-1$.
{%
\expandafter \XINT_div_II_h
\the\numexpr 1#1#2#3#4#5+#8\expandafter\expandafter\expandafter
- .\expandafter\expandafter\expandafter
+ \xint:\expandafter\expandafter\expandafter
{\expandafter\xint_gob_til_exclam
\romannumeral0\expandafter\XINT_div_sub\expandafter
{\romannumeral0\XINT_rev_nounsep {}#6\R!\R!\R!\R!\R!\R!\R!\R!\W}%
- {\the\numexpr\XINT_div_smallmul_a 100000000.#1#2#3#4.#5!#71\Z!}}%
+ {\the\numexpr\XINT_div_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!#71;!}}%
{#7}%
}%
% \end{macrocode}
@@ -20080,7 +20322,7 @@ $1$ or $-1$.
% #3=B, #4={{x'y},x,K,L} avec L à ajuster, alpha', BQ«c»
% -> {x'y}x,K,L à diminuer de 1, {alpha}B{q}, alpha', BQ«c»|
% \begin{macrocode}
-\def\XINT_div_II_h 1#1.#2#3#4%
+\def\XINT_div_II_h 1#1\xint:#2#3#4%
{%
\XINT_div_II_k #4{#2}{#3}{#1}%
}%
@@ -20091,9 +20333,9 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_div_II_k #1#2#3#4#5%
{%
- \expandafter\XINT_div_II_l \the\numexpr #4-\xint_c_i.{#3}#1{#2}#5.%
+ \expandafter\XINT_div_II_l \the\numexpr #4-\xint_c_i\xint:{#3}#1{#2}#5\xint:%
}%
-\def\XINT_div_II_l #1.#2#3#4#51#6!%
+\def\XINT_div_II_l #1\xint:#2#3#4#51#6!%
{%
\XINT_div_II_m {{#1}{#2}{{#3}{#4}}{#5}}{#5}{#6}1#6!%
}%
@@ -20101,56 +20343,56 @@ $1$ or $-1$.
% \lverb|{LK{x'y}x},x,a,alpha.B{q}alpha'B -> a, x, alpha, B, q,
% L, K, {x'y}, x, alpha', B«c» |
% \begin{macrocode}
-\def\XINT_div_II_m #1#2#3#4.#5#6%
+\def\XINT_div_II_m #1#2#3#4\xint:#5#6%
{%
\XINT_div_I_a {#3}{#2}{#4}{#5}{#6}#1%
}%
% \end{macrocode}
% \lverb|This multiplication is exactly like \XINT_smallmul -- apart from not
-% inserting an ending 1\Z! --, but keeps ever a vanishing ending carry.|
+% inserting an ending 1;! --, but keeps ever a vanishing ending carry.|
% \begin{macrocode}
-\def\XINT_div_minimulwc_a 1#1.#2.#3!#4#5#6#7#8.%
+\def\XINT_div_minimulwc_a 1#1\xint:#2\xint:#3!#4#5#6#7#8\xint:%
{%
\expandafter\XINT_div_minimulwc_b
- \the\numexpr \xint_c_x^ix+#1+#3*#8.#3*#4#5#6#7+#2*#8.#2*#4#5#6#7.%
+ \the\numexpr \xint_c_x^ix+#1+#3*#8\xint:#3*#4#5#6#7+#2*#8\xint:#2*#4#5#6#7\xint:%
}%
-\def\XINT_div_minimulwc_b 1#1#2#3#4#5#6.#7.%
+\def\XINT_div_minimulwc_b 1#1#2#3#4#5#6\xint:#7\xint:%
{%
\expandafter\XINT_div_minimulwc_c
- \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7.#6.%
+ \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7\xint:#6\xint:%
}%
-\def\XINT_div_minimulwc_c 1#1#2#3#4#5#6.#7.#8.%
+\def\XINT_div_minimulwc_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%
{%
1#6#7\expandafter!%
\the\numexpr\expandafter\XINT_div_smallmul_a
- \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8.%
+ \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8\xint:%
}%
-\def\XINT_div_smallmul_a #1.#2.#3!1#4!%
+\def\XINT_div_smallmul_a #1\xint:#2\xint:#3!1#4!%
{%
- \xint_gob_til_Z #4\XINT_div_smallmul_e\Z
- \XINT_div_minimulwc_a #1.#2.#3!#4.#2.#3!%
+ \xint_gob_til_sc #4\XINT_div_smallmul_e;%
+ \XINT_div_minimulwc_a #1\xint:#2\xint:#3!#4\xint:#2\xint:#3!%
}%
-\def\XINT_div_smallmul_e\Z\XINT_div_minimulwc_a 1#1.#2\Z #3!{1\relax #1!}%
+\def\XINT_div_smallmul_e;\XINT_div_minimulwc_a 1#1\xint:#2;#3!{1\relax #1!}%
% \end{macrocode}
% \lverb|Special very small multiplication for division. We only need to cater
% for multiplicands from 1 to 9. The ending is different from standard
-% verysmallmul, a zero carry is not suppressed. And no final 1\Z! is added. If
+% verysmallmul, a zero carry is not suppressed. And no final 1;! is added. If
% multiplicand is just 1 let's not forget to add the zero carry 100000000! at
% the end.|
% \begin{macrocode}
\def\XINT_div_verysmallmul #1%
- {\xint_gob_til_one #1\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0.#1}%
-\def\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0.1!1#11\Z!%
+ {\xint_gob_til_one #1\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0\xint:#1}%
+\def\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0\xint:1!1#11;!%
{1\relax #1100000000!}%
-\def\XINT_div_verysmallmul_a #1.#2!1#3!%
+\def\XINT_div_verysmallmul_a #1\xint:#2!1#3!%
{%
- \xint_gob_til_Z #3\XINT_div_verysmallmul_e\Z
+ \xint_gob_til_sc #3\XINT_div_verysmallmul_e;%
\expandafter\XINT_div_verysmallmul_b
- \the\numexpr \xint_c_x^ix+#2*#3+#1.#2!%
+ \the\numexpr \xint_c_x^ix+#2*#3+#1\xint:#2!%
}%
-\def\XINT_div_verysmallmul_b 1#1#2.%
- {1#2\expandafter!\the\numexpr\XINT_div_verysmallmul_a #1.}%
-\def\XINT_div_verysmallmul_e\Z #1\Z +#2#3!{1\relax 0000000#2!}%
+\def\XINT_div_verysmallmul_b 1#1#2\xint:%
+ {1#2\expandafter!\the\numexpr\XINT_div_verysmallmul_a #1\xint:}%
+\def\XINT_div_verysmallmul_e;#1;+#2#3!{1\relax 0000000#2!}%
% \end{macrocode}
% \lverb|Special subtraction for division purposes. If the subtracted thing
% turns out to be bigger, then just return a -. If not, then we must reverse
@@ -20160,7 +20402,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_div_sub_clean
\the\numexpr\expandafter\XINT_div_sub_a\expandafter
- 1#2\Z!\Z!\Z!\Z!\Z!\W #1\Z!\Z!\Z!\Z!\Z!\W
+ 1#2;!;!;!;!;!\W #1;!;!;!;!;!\W
}%
\def\XINT_div_sub_clean #1-#2#3\W
{%
@@ -20174,57 +20416,57 @@ $1$ or $-1$.
}%
\def\XINT_div_sub_b #1#2#3!#4!%
{%
- \xint_gob_til_Z #4\XINT_div_sub_bi \Z
- \expandafter\XINT_div_sub_c\the\numexpr#1-#3+1#4-\xint_c_i.%
+ \xint_gob_til_sc #4\XINT_div_sub_bi ;%
+ \expandafter\XINT_div_sub_c\the\numexpr#1-#3+1#4-\xint_c_i\xint:%
}%
-\def\XINT_div_sub_c 1#1#2.%
+\def\XINT_div_sub_c 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_div_sub_d #1%
}%
\def\XINT_div_sub_d #1#2#3!#4!%
{%
- \xint_gob_til_Z #4\XINT_div_sub_di \Z
- \expandafter\XINT_div_sub_e\the\numexpr#1-#3+1#4-\xint_c_i.%
+ \xint_gob_til_sc #4\XINT_div_sub_di ;%
+ \expandafter\XINT_div_sub_e\the\numexpr#1-#3+1#4-\xint_c_i\xint:%
}%
-\def\XINT_div_sub_e 1#1#2.%
+\def\XINT_div_sub_e 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_div_sub_f #1%
}%
\def\XINT_div_sub_f #1#2#3!#4!%
{%
- \xint_gob_til_Z #4\XINT_div_sub_fi \Z
- \expandafter\XINT_div_sub_g\the\numexpr#1-#3+1#4-\xint_c_i.%
+ \xint_gob_til_sc #4\XINT_div_sub_fi ;%
+ \expandafter\XINT_div_sub_g\the\numexpr#1-#3+1#4-\xint_c_i\xint:%
}%
-\def\XINT_div_sub_g 1#1#2.%
+\def\XINT_div_sub_g 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_div_sub_h #1%
}%
\def\XINT_div_sub_h #1#2#3!#4!%
{%
- \xint_gob_til_Z #4\XINT_div_sub_hi \Z
- \expandafter\XINT_div_sub_i\the\numexpr#1-#3+1#4-\xint_c_i.%
+ \xint_gob_til_sc #4\XINT_div_sub_hi ;%
+ \expandafter\XINT_div_sub_i\the\numexpr#1-#3+1#4-\xint_c_i\xint:%
}%
-\def\XINT_div_sub_i 1#1#2.%
+\def\XINT_div_sub_i 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_div_sub_a #1%
}%
-\def\XINT_div_sub_bi\Z
- \expandafter\XINT_div_sub_c\the\numexpr#1-#2+#3.#4!#5!#6!#7!#8!#9!\Z !\W
+\def\XINT_div_sub_bi;%
+ \expandafter\XINT_div_sub_c\the\numexpr#1-#2+#3\xint:#4!#5!#6!#7!#8!#9!;!\W
{%
\XINT_div_sub_l #1#2!#5!#7!#9!%
}%
-\def\XINT_div_sub_di\Z
- \expandafter\XINT_div_sub_e\the\numexpr#1-#2+#3.#4!#5!#6!#7!#8\W
+\def\XINT_div_sub_di;%
+ \expandafter\XINT_div_sub_e\the\numexpr#1-#2+#3\xint:#4!#5!#6!#7!#8\W
{%
\XINT_div_sub_l #1#2!#5!#7!%
}%
-\def\XINT_div_sub_fi\Z
- \expandafter\XINT_div_sub_g\the\numexpr#1-#2+#3.#4!#5!#6\W
+\def\XINT_div_sub_fi;%
+ \expandafter\XINT_div_sub_g\the\numexpr#1-#2+#3\xint:#4!#5!#6\W
{%
\XINT_div_sub_l #1#2!#5!%
}%
-\def\XINT_div_sub_hi\Z
- \expandafter\XINT_div_sub_i\the\numexpr#1-#2+#3.#4\W
+\def\XINT_div_sub_hi;%
+ \expandafter\XINT_div_sub_i\the\numexpr#1-#2+#3\xint:#4\W
{%
\XINT_div_sub_l #1#2!%
}%
@@ -20243,7 +20485,7 @@ $1$ or $-1$.
% \lverb|Ici B<10^8 (et est >2). On
% exécute$newline
% \expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a
-% x.1B!1<8d>!...1<8d>!1\Z!$newline
+% x.1B!1<8d>!...1<8d>!1;!$newline
% avec x =round(B/2), 1B=10^8+B, et A déjà en
% blocs 1<8d>! (non renversés). Le \the\numexpr\XINT_smalldivx_a va produire
% Q\Z R\W avec un R<10^8, et un Q sous forme de blocs 1<8d>! terminé par 1!
@@ -20252,18 +20494,19 @@ $1$ or $-1$.
%
% |
% \begin{macrocode}
-\def\XINT_sdiv_out #1\Z!#2!%
+\def\XINT_sdiv_out #1;!#2!%
{\expandafter
- {\romannumeral0\XINT_unsep_cuzsmall#11\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}%
+ {\romannumeral0\XINT_unsep_cuzsmall
+ #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax}%
{#2}}%
% \end{macrocode}
% \lverb|La toute première étape fait la première division pour être sûr par
% la suite d'avoir un premier bloc pour A qui sera < B.|
% \begin{macrocode}
-\def\XINT_smalldivx_a #1.1#2!1#3!%
+\def\XINT_smalldivx_a #1\xint:1#2!1#3!%
{%
\expandafter\XINT_smalldivx_b
- \the\numexpr (#3+#1)/#2-\xint_c_i!#1.#2!#3!%
+ \the\numexpr (#3+#1)/#2-\xint_c_i!#1\xint:#2!#3!%
}%
\def\XINT_smalldivx_b #1#2!%
{%
@@ -20271,62 +20514,57 @@ $1$ or $-1$.
\xint_c_x^viii+#1#2\xint_afterfi{\expandafter!\the\numexpr}\fi
\XINT_smalldiv_c #1#2!%
}%
-\def\XINT_smalldiv_c #1!#2.#3!#4!%
+\def\XINT_smalldiv_c #1!#2\xint:#3!#4!%
{%
- \expandafter\XINT_smalldiv_d\the\numexpr #4-#1*#3!#2.#3!%
+ \expandafter\XINT_smalldiv_d\the\numexpr #4-#1*#3!#2\xint:#3!%
}%
% \end{macrocode}
% \lverb|On va boucler ici: #1 est un reste, #2 est x.B (avec B sans le 1 mais
% sur huit chiffres). #3#4 est le premier bloc qui reste de A. Si on a terminé
-% avec A, alors #1 est le reste final. Le quotient lui est terminé par un 1!:
-% ce 1! disparaîtra dans le nettoyage par \XINT_unsep_cuzsmall. Ce dernier,
-% malgré le fait qu'on soit dans le bon ordre déjà fait une macro dans le
-% style O(N^2) car sinon le nombre maximal de chiffres serait moitié moins à
-% cause des nettoyages nécessaires après \numexpr. Je suis obligé de faire un
-% nettoyage final car comme l'expansion est engendrée par \numexpr, elle me
-% boufferait des leading zeros si je ne mettais pas un 1 devant chaque bloc en
-% sortie de Q.|
+% avec A, alors #1 est le reste final. Le quotient lui est terminé par un 1!
+% ce 1! disparaîtra dans le nettoyage par \XINT_unsep_cuzsmall.
+% |
% \begin{macrocode}
\def\XINT_smalldiv_d #1!#2!1#3#4!%
{%
- \xint_gob_til_Z #3\XINT_smalldiv_end \Z
+ \xint_gob_til_sc #3\XINT_smalldiv_end ;%
\XINT_smalldiv_e #1!#2!1#3#4!%
}%
-\def\XINT_smalldiv_end\Z\XINT_smalldiv_e #1!#2!1\Z!{1!\Z!#1!}%
+\def\XINT_smalldiv_end;\XINT_smalldiv_e #1!#2!1;!{1!;!#1!}%
% \end{macrocode}
% \lverb|Il est crucial que le reste #1 est < #3. J'ai documenté cette routine
% dans le fichier où j'ai préparé 1.2, il faudra transférer ici. Il n'est pas
% nécessaire pour cette routine que le diviseur B ait au moins 8 chiffres.
% Mais il doit être < 10^8.|
% \begin{macrocode}
-\def\XINT_smalldiv_e #1!#2.#3!%
+\def\XINT_smalldiv_e #1!#2\xint:#3!%
{%
\expandafter\XINT_smalldiv_f\the\numexpr
- \xint_c_xi_e_viii_mone+#1*\xint_c_x^viii/#3!#2.#3!#1!%
+ \xint_c_xi_e_viii_mone+#1*\xint_c_x^viii/#3!#2\xint:#3!#1!%
}%
-\def\XINT_smalldiv_f 1#1#2#3#4#5#6!#7.#8!%
+\def\XINT_smalldiv_f 1#1#2#3#4#5#6!#7\xint:#8!%
{%
\xint_gob_til_zero #1\XINT_smalldiv_fz 0%
\expandafter\XINT_smalldiv_g
- \the\numexpr\XINT_minimul_a #2#3#4#5.#6!#8!#2#3#4#5#6!#7.#8!%
+ \the\numexpr\XINT_minimul_a #2#3#4#5\xint:#6!#8!#2#3#4#5#6!#7\xint:#8!%
}%
\def\XINT_smalldiv_fz 0%
\expandafter\XINT_smalldiv_g\the\numexpr\XINT_minimul_a
- 9999.9999!#1!99999999!#2!0!1#3!%
+ 9999\xint:9999!#1!99999999!#2!0!1#3!%
{%
- \XINT_smalldiv_i .#3!\xint_c_!#2!%
+ \XINT_smalldiv_i \xint:#3!\xint_c_!#2!%
}%
\def\XINT_smalldiv_g 1#1!1#2!#3!#4!#5!#6!%
{%
- \expandafter\XINT_smalldiv_h\the\numexpr 1#6-#1.#2!#5!#3!#4!%
+ \expandafter\XINT_smalldiv_h\the\numexpr 1#6-#1\xint:#2!#5!#3!#4!%
}%
-\def\XINT_smalldiv_h 1#1#2.#3!#4!%
+\def\XINT_smalldiv_h 1#1#2\xint:#3!#4!%
{%
- \expandafter\XINT_smalldiv_i\the\numexpr #4-#3+#1-\xint_c_i.#2!%
+ \expandafter\XINT_smalldiv_i\the\numexpr #4-#3+#1-\xint_c_i\xint:#2!%
}%
-\def\XINT_smalldiv_i #1.#2!#3!#4.#5!%
+\def\XINT_smalldiv_i #1\xint:#2!#3!#4\xint:#5!%
{%
- \expandafter\XINT_smalldiv_j\the\numexpr (#1#2+#4)/#5-\xint_c_i!#3!#1#2!#4.#5!%
+ \expandafter\XINT_smalldiv_j\the\numexpr (#1#2+#4)/#5-\xint_c_i!#3!#1#2!#4\xint:#5!%
}%
\def\XINT_smalldiv_j #1!#2!%
{%
@@ -20336,9 +20574,9 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|On boucle vers \XINT_smalldiv_d.|
% \begin{macrocode}
-\def\XINT_smalldiv_k #1!#2!#3.#4!%
+\def\XINT_smalldiv_k #1!#2!#3\xint:#4!%
{%
- \expandafter\XINT_smalldiv_d\the\numexpr #2-#1*#4!#3.#4!%
+ \expandafter\XINT_smalldiv_d\the\numexpr #2-#1*#4!#3\xint:#4!%
}%
% \end{macrocode}
% \lverb|Cette routine fait la division euclidienne d'un nombre de seize
@@ -20351,70 +20589,75 @@ $1$ or $-1$.
% principale va utiliser ce quotient pour déterminer le "grand" reste, et le
% petit reste ici ne nous serait d'à peu près aucune utilité.
%
-% ATTENTION UNIQUEMENT UTILISÉ POUR DES SITUATIONS OÙ IL EST GARANTI QUE X < C
-% !! (et C au moins 10^7) le quotient euclidien de X*10^8+Y par C sera donc <
+% ATTENTION UNIQUEMENT UTILISÉ POUR DES SITUATIONS OÙ IL EST GARANTI QUE X <
+% C ! (et C au moins 10^7) le quotient euclidien de X*10^8+Y par C sera donc <
% 10^8. Il sera renvoyé sous la forme 1<8chiffres>.|
% \begin{macrocode}
-\def\XINT_div_mini #1.#2!1#3!%
+\def\XINT_div_mini #1\xint:#2!1#3!%
{%
\expandafter\XINT_div_mini_a\the\numexpr
- \xint_c_xi_e_viii_mone+#3*\xint_c_x^viii/#1!#1.#2!#3!%
+ \xint_c_xi_e_viii_mone+#3*\xint_c_x^viii/#1!#1\xint:#2!#3!%
}%
% \end{macrocode}
% \lverb|Note (2015/10/08). Attention à la différence dans l'ordre des
% arguments avec ce que je vois en dans \XINT_smalldiv_f. Je ne me souviens
% plus du tout s'il y a une raison quelconque.|
% \begin{macrocode}
-\def\XINT_div_mini_a 1#1#2#3#4#5#6!#7.#8!%
+\def\XINT_div_mini_a 1#1#2#3#4#5#6!#7\xint:#8!%
{%
\xint_gob_til_zero #1\XINT_div_mini_w 0%
\expandafter\XINT_div_mini_b
- \the\numexpr\XINT_minimul_a #2#3#4#5.#6!#7!#2#3#4#5#6!#7.#8!%
+ \the\numexpr\XINT_minimul_a #2#3#4#5\xint:#6!#7!#2#3#4#5#6!#7\xint:#8!%
}%
\def\XINT_div_mini_w 0%
\expandafter\XINT_div_mini_b\the\numexpr\XINT_minimul_a
- 9999.9999!#1!99999999!#2.#3!00000000!#4!%
+ 9999\xint:9999!#1!99999999!#2\xint:#3!00000000!#4!%
{%
\xint_c_x^viii_mone+(#4+#3)/#2!%
}%
\def\XINT_div_mini_b 1#1!1#2!#3!#4!#5!#6!%
{%
\expandafter\XINT_div_mini_c
- \the\numexpr 1#6-#1.#2!#5!#3!#4!%
+ \the\numexpr 1#6-#1\xint:#2!#5!#3!#4!%
}%
-\def\XINT_div_mini_c 1#1#2.#3!#4!%
+\def\XINT_div_mini_c 1#1#2\xint:#3!#4!%
{%
\expandafter\XINT_div_mini_d
- \the\numexpr #4-#3+#1-\xint_c_i.#2!%
+ \the\numexpr #4-#3+#1-\xint_c_i\xint:#2!%
}%
-\def\XINT_div_mini_d #1.#2!#3!#4.#5!%
+\def\XINT_div_mini_d #1\xint:#2!#3!#4\xint:#5!%
{%
\xint_c_x^viii_mone+#3+(#1#2+#5)/#4!%
}%
% \end{macrocode}
+% \subsection*{Derived arithmetic}
+% \addcontentsline{toc}{subsection}{Derived arithmetic}
% \subsection{\csh{xintiDivRound}, \csh{xintiiDivRound}}
% \lverb|1.1, transferred from first release of bnumexpr. Rewritten for 1.2.
-% Ending rewritten for 1.2i. (new \xintDSRr).|
+% Ending rewritten for 1.2i. (new \xintDSRr).
+%
+% 1.2l: \xintiiDivRound made robust against non terminated input.|
% \begin{macrocode}
\def\xintiDivRound {\romannumeral0\xintidivround }%
\def\xintidivround #1%
- {\expandafter\XINT_idivround\romannumeral0\xintnum{#1}\Z }%
+ {\expandafter\XINT_idivround\romannumeral0\xintnum{#1}\xint:}%
\def\xintiiDivRound {\romannumeral0\xintiidivround }%
-\def\xintiidivround #1{\expandafter\XINT_iidivround \romannumeral`&&@#1\Z }%
-\def\XINT_idivround #1#2\Z #3%
+\def\xintiidivround #1{\expandafter\XINT_iidivround\romannumeral`&&@#1\xint:}%
+\def\XINT_idivround #1#2\xint:#3%
{\expandafter\XINT_iidivround_a\expandafter #1%
- \romannumeral0\xintnum{#3}\Z #2\Z }%
-\def\XINT_iidivround #1#2\Z #3%
- {\expandafter\XINT_iidivround_a\expandafter #1\romannumeral`&&@#3\Z #2\Z }%
+ \romannumeral0\xintnum{#3}\xint:#2\xint:}%
+\def\XINT_iidivround #1#2\xint:#3%
+ {\expandafter\XINT_iidivround_a\expandafter #1\romannumeral`&&@#3\xint:#2\xint:}%
\def\XINT_iidivround_a #1#2% #1 de A, #2 de B.
{%
- \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi
+ \if0#2\xint_dothis{\XINT_iidivround_divbyzero#1#2}\fi
\if0#1\xint_dothis\XINT_iidivround_aiszero\fi
\if-#2\xint_dothis{\XINT_iidivround_bneg #1}\fi
\xint_orthat{\XINT_iidivround_bpos #1#2}%
}%
-\def\XINT_iidivround_divbyzero #1\Z #2\Z {\xintError:DivisionByZero\space 0}%
-\def\XINT_iidivround_aiszero #1\Z #2\Z { 0}%
+\def\XINT_iidivround_divbyzero #1#2#3\xint:#4\xint:
+ {\XINT_signalcondition{DivisionByZero}{Division of #1#4 by #2#3}{}{0}}%
+\def\XINT_iidivround_aiszero #1\xint:#2\xint:{ 0}%
\def\XINT_iidivround_bpos #1%
{%
\xint_UDsignfork
@@ -20429,7 +20672,7 @@ $1$ or $-1$.
-{\xintiiopp\XINT_iidivround_pos #1}%
\krof
}%
-\def\XINT_iidivround_pos #1#2\Z #3\Z
+\def\XINT_iidivround_pos #1#2\xint:#3\xint:
{%
\expandafter\expandafter\expandafter\XINT_dsrr
\expandafter\xint_firstoftwo
@@ -20438,16 +20681,17 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintiDivTrunc}, \csh{xintiiDivTrunc}}
+% \lverb|1.2l: \xintiiDivTrunc made robust against non terminated input.|
% \begin{macrocode}
\def\xintiDivTrunc {\romannumeral0\xintidivtrunc }%
-\def\xintidivtrunc #1{\expandafter\XINT_iidivtrunc\romannumeral0\xintnum{#1}\Z }%
+\def\xintidivtrunc #1{\expandafter\XINT_iidivtrunc\romannumeral0\xintnum{#1}\xint:}%
\def\xintiiDivTrunc {\romannumeral0\xintiidivtrunc }%
-\def\xintiidivtrunc #1{\expandafter\XINT_iidivtrunc \romannumeral`&&@#1\Z }%
-\def\XINT_iidivtrunc #1#2\Z #3{\expandafter\XINT_iidivtrunc_a\expandafter #1%
- \romannumeral`&&@#3\Z #2\Z }%
+\def\xintiidivtrunc #1{\expandafter\XINT_iidivtrunc\romannumeral`&&@#1\xint:}%
+\def\XINT_iidivtrunc #1#2\xint:#3{\expandafter\XINT_iidivtrunc_a\expandafter #1%
+ \romannumeral`&&@#3\xint:#2\xint:}%
\def\XINT_iidivtrunc_a #1#2% #1 de A, #2 de B.
{%
- \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi
+ \if0#2\xint_dothis{\XINT_iidivround_divbyzero#1#2}\fi
\if0#1\xint_dothis\XINT_iidivround_aiszero\fi
\if-#2\xint_dothis{\XINT_iidivtrunc_bneg #1}\fi
\xint_orthat{\XINT_iidivtrunc_bpos #1#2}%
@@ -20466,21 +20710,21 @@ $1$ or $-1$.
-{\xintiiopp\XINT_iidivtrunc_pos #1}%
\krof
}%
-\def\XINT_iidivtrunc_pos #1#2\Z #3\Z%
+\def\XINT_iidivtrunc_pos #1#2\xint:#3\xint:
{\expandafter\xint_firstoftwo_thenstop
\romannumeral0\XINT_div_prepare {#2}{#1#3}}%
% \end{macrocode}
% \subsection{\csh{xintiMod}, \csh{xintiiMod}}
% \begin{macrocode}
\def\xintiMod {\romannumeral0\xintimod }%
-\def\xintimod #1{\expandafter\XINT_iimod\romannumeral0\xintnum{#1}\Z }%
+\def\xintimod #1{\expandafter\XINT_iimod\romannumeral0\xintnum{#1}\xint:}%
\def\xintiiMod {\romannumeral0\xintiimod }%
-\def\xintiimod #1{\expandafter\XINT_iimod \romannumeral`&&@#1\Z }%
-\def\XINT_iimod #1#2\Z #3{\expandafter\XINT_iimod_a\expandafter #1%
- \romannumeral`&&@#3\Z #2\Z }%
+\def\xintiimod #1{\expandafter\XINT_iimod\romannumeral`&&@#1\xint:}%
+\def\XINT_iimod #1#2\xint:#3{\expandafter\XINT_iimod_a\expandafter #1%
+ \romannumeral`&&@#3\xint:#2\xint:}%
\def\XINT_iimod_a #1#2% #1 de A, #2 de B.
{%
- \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi
+ \if0#2\xint_dothis{\XINT_iidivround_divbyzero#1#2}\fi
\if0#1\xint_dothis\XINT_iidivround_aiszero\fi
\if-#2\xint_dothis{\XINT_iimod_bneg #1}\fi
\xint_orthat{\XINT_iimod_bpos #1#2}%
@@ -20499,11 +20743,408 @@ $1$ or $-1$.
-{\XINT_iimod_pos #1}%
\krof
}%
-\def\XINT_iimod_pos #1#2\Z #3\Z%
+\def\XINT_iimod_pos #1#2\xint:#3\xint:
{\expandafter\xint_secondoftwo_thenstop\romannumeral0\XINT_div_prepare
{#2}{#1#3}}%
% \end{macrocode}
-% \subsection{``Load \xintfracnameimp'' macros}
+% \subsection{\csh{xintiSqr}, \csh{xintiiSqr}}
+% \lverb|1.2l: \xintiiSqr made robust against non terminated input.|
+% \begin{macrocode}
+\def\xintiiSqr {\romannumeral0\xintiisqr }%
+\def\xintiisqr #1%
+{%
+ \expandafter\XINT_sqr\romannumeral0\xintiiabs{#1}\xint:
+}%
+\def\xintiSqr {\romannumeral0\xintisqr }%
+\def\xintisqr #1%
+{%
+ \expandafter\XINT_sqr\romannumeral0\xintiabs{#1}\xint:
+}%
+\def\XINT_sqr #1\xint:
+{%
+ \expandafter\XINT_sqr_a
+ \romannumeral0\expandafter\XINT_sepandrev_andcount
+ \romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W
+ #1\XINT_rsepbyviii_end_A 2345678%
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
+ \xint:
+}%
+% \end{macrocode}
+% \lverb|1.2c \XINT_mul_loop can now be called directly even with small
+% arguments, thus the following check is not anymore a necessity.|
+% \begin{macrocode}
+\def\XINT_sqr_a #1\xint:
+{%
+ \ifnum #1=\xint_c_i \expandafter\XINT_sqr_small
+ \else\expandafter\XINT_sqr_start\fi
+}%
+\def\XINT_sqr_small 1#1#2#3#4#5!\xint:
+{%
+ \ifnum #1#2#3#4#5<46341 \expandafter\XINT_sqr_verysmall\fi
+ \expandafter\XINT_sqr_small_out
+ \the\numexpr\XINT_minimul_a #1#2#3#4\xint:#5!#1#2#3#4#5!%
+}%
+\def\XINT_sqr_verysmall#1{%
+\def\XINT_sqr_verysmall
+ \expandafter\XINT_sqr_small_out\the\numexpr\XINT_minimul_a ##1!##2!%
+ {\expandafter#1\the\numexpr ##2*##2\relax}%
+}\XINT_sqr_verysmall{ }%
+\def\XINT_sqr_small_out 1#1!1#2!%
+{%
+ \XINT_cuz #2#1\R
+}%
+% \end{macrocode}
+% \lverb|An ending 1;! is produced on output for \XINT_mul_loop and gets
+% incorporated to the delimiter needed by the \XINT_unrevbyviii done by
+% \XINT_mul_out.|
+% \begin{macrocode}
+\def\XINT_sqr_start #1\xint:
+{%
+ \expandafter\XINT_mul_out
+ \the\numexpr\XINT_mul_loop
+ 100000000!1;!\W #11;!\W #11;!%
+ 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+}%
+% \end{macrocode}
+% \subsection{\csh{xintiPow}, \csh{xintiiPow}}
+% \lverb|&
+% The exponent is not limited but with current default settings of tex memory,
+% with xint 1.2, the maximal exponent for 2^N is N = 2^17 = 131072.
+%
+% 1.2f Modifies the initial steps: 1) in order to be able to let more easily
+% \xintiPow use \xintNum on the exponent once xintfrac.sty is loaded; 2) also
+% because I noticed it was not very well coded. And it did only a \numexpr on
+% the exponent, contradicting the documentation related to the "i" convention
+% in names.
+%
+% 1.2l: \xintiiPow made robust against non terminated input.|
+% \begin{macrocode}
+\def\xintiiPow {\romannumeral0\xintiipow }%
+\def\xintiipow #1#2%
+{%
+ \expandafter\xint_pow\the\numexpr #2\expandafter
+ .\romannumeral`&&@#1\xint:
+}%
+\def\xintiPow {\romannumeral0\xintipow }%
+\def\xintipow #1#2%
+{%
+ \expandafter\xint_pow\the\numexpr #2\expandafter
+ .\romannumeral0\xintnum{#1}\xint:
+}%
+\def\xint_pow #1.#2%#3\xint:
+{%
+ \xint_UDzerominusfork
+ #2-\XINT_pow_AisZero
+ 0#2\XINT_pow_Aneg
+ 0-{\XINT_pow_Apos #2}%
+ \krof {#1}%
+}%
+\def\XINT_pow_AisZero #1#2\xint:
+{%
+ \ifcase\XINT_cntSgn #1\xint:
+ \xint_afterfi { 1}%
+ \or
+ \xint_afterfi { 0}%
+ \else
+ \xint_afterfi
+ {\XINT_signalcondition{DivisionByZero}{Zero to power #1}{}{0}}%
+ \fi
+}%
+\def\XINT_pow_Aneg #1%
+{%
+ \ifodd #1
+ \expandafter\XINT_opp\romannumeral0%
+ \fi
+ \XINT_pow_Apos {}{#1}%
+}%
+\def\XINT_pow_Apos #1#2{\XINT_pow_Apos_a {#2}#1}%
+\def\XINT_pow_Apos_a #1#2#3%
+{%
+ \xint_gob_til_xint: #3\XINT_pow_Apos_short\xint:
+ \XINT_pow_AatleastTwo {#1}#2#3%
+}%
+\def\XINT_pow_Apos_short\xint:\XINT_pow_AatleastTwo #1#2\xint:
+{%
+ \ifcase #2
+ \xintError:thiscannothappen
+ \or \expandafter\XINT_pow_AisOne
+ \else\expandafter\XINT_pow_AatleastTwo
+ \fi {#1}#2\xint:
+}%
+\def\XINT_pow_AisOne #1\xint:{ 1}%
+\def\XINT_pow_AatleastTwo #1%
+{%
+ \ifcase\XINT_cntSgn #1\xint:
+ \expandafter\XINT_pow_BisZero
+ \or
+ \expandafter\XINT_pow_I_in
+ \else
+ \expandafter\XINT_pow_BisNegative
+ \fi
+ {#1}%
+}%
+\def\XINT_pow_BisNegative #1\xint:{\XINT_signalcondition{Underflow}{Inverse power
+ can not be represented by an integer}{}{0}}%
+\def\XINT_pow_BisZero #1\xint:{ 1}%
+% \end{macrocode}
+% \lverb|B = #1 > 0, A = #2 > 1. Earlier code checked if size of B did not
+% exceed a given limit (for example 131000).|
+% \begin{macrocode}
+\def\XINT_pow_I_in #1#2\xint:
+{%
+ \expandafter\XINT_pow_I_loop
+ \the\numexpr #1\expandafter\xint:%
+ \romannumeral0\expandafter\XINT_sepandrev
+ \romannumeral0\XINT_zeroes_forviii #2\R\R\R\R\R\R\R\R{10}0000001\W
+ #2\XINT_rsepbyviii_end_A 2345678%
+ \XINT_rsepbyviii_end_B 2345678\relax XX%
+ \R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\W
+ 1;!\W
+ 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+}%
+\def\XINT_pow_I_loop #1\xint:%
+{%
+ \ifnum #1 = \xint_c_i\expandafter\XINT_pow_I_exit\fi
+ \ifodd #1
+ \expandafter\XINT_pow_II_in
+ \else
+ \expandafter\XINT_pow_I_squareit
+ \fi #1\xint:%
+}%
+\def\XINT_pow_I_exit \ifodd #1\fi #2\xint:#3\W {\XINT_mul_out #3}%
+% \end{macrocode}
+% \lverb|The 1.2c \XINT_mul_loop can be called directly even with small
+% arguments, hence the "butcheckifsmall" is not a necessity as it was earlier
+% with 1.2. On 2^30, it does bring roughly a 40$char37 $space time gain
+% though, and 30$char37 $space gain for 2^60. The overhead on big computations
+% should be negligible.|
+% \begin{macrocode}
+\def\XINT_pow_I_squareit #1\xint:#2\W%
+{%
+ \expandafter\XINT_pow_I_loop
+ \the\numexpr #1/\xint_c_ii\expandafter\xint:%
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W
+}%
+\def\XINT_pow_mulbutcheckifsmall #1!1#2%
+{%
+ \xint_gob_til_sc #2\XINT_pow_mul_small;%
+ \XINT_mul_loop 100000000!1;!\W #1!1#2%
+}%
+\def\XINT_pow_mul_small;\XINT_mul_loop
+ 100000000!1;!\W 1#1!1;!\W
+{%
+ \XINT_smallmul 1#1!%
+}%
+\def\XINT_pow_II_in #1\xint:#2\W
+{%
+ \expandafter\XINT_pow_II_loop
+ \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter\xint:%
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W #2\W
+}%
+\def\XINT_pow_II_loop #1\xint:%
+{%
+ \ifnum #1 = \xint_c_i\expandafter\XINT_pow_II_exit\fi
+ \ifodd #1
+ \expandafter\XINT_pow_II_odda
+ \else
+ \expandafter\XINT_pow_II_even
+ \fi #1\xint:%
+}%
+\def\XINT_pow_II_exit\ifodd #1\fi #2\xint:#3\W #4\W
+{%
+ \expandafter\XINT_mul_out
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #4\W #3%
+}%
+\def\XINT_pow_II_even #1\xint:#2\W
+{%
+ \expandafter\XINT_pow_II_loop
+ \the\numexpr #1/\xint_c_ii\expandafter\xint:%
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W
+}%
+\def\XINT_pow_II_odda #1\xint:#2\W #3\W
+{%
+ \expandafter\XINT_pow_II_oddb
+ \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter\xint:%
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #2\W #2\W
+}%
+\def\XINT_pow_II_oddb #1\xint:#2\W #3\W
+{%
+ \expandafter\XINT_pow_II_loop
+ \the\numexpr #1\expandafter\xint:%
+ \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #3\W #2\W
+}%
+% \end{macrocode}
+% \subsection{\csh{xintiFac}, \csh{xintiiFac}}
+% \lverb|Moved here from xint.sty with release 1.2 (to be usable by \bnumexpr).
+%
+% Partially rewritten with release 1.2 to benefit from the inner format of the
+% 1.2 multiplication.
+%
+% With current default settings of the etex memory and a.t.t.o.w (11/2015) the
+% maximal possible computation is 5971! (which has 19956 digits).
+%
+%
+%
+% Note (end november 2015): I also tried out a quickly written recursive
+% (binary split) implementation
+%
+%( \catcode`_ 11
+%: \catcode`^ 11
+%: \long\def\xint_firstofthree #1#2#3{#1}$%
+%: \long\def\xint_secondofthree #1#2#3{#2}$%
+%: \long\def\xint_thirdofthree #1#2#3{#3}$%
+%: $% quickly written factorial using binary split recursive method
+%: \def\tFac {\romannumeral-`0\tfac }$%
+%: \def\tfac #1{\expandafter\XINT_mul_out
+%: \romannumeral-`0\ufac {1}{#1}1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}$%
+%: \def\ufac #1#2{\ifcase\numexpr#2-#1\relax
+%: \expandafter\xint_firstofthree
+%: \or
+%: \expandafter\xint_secondofthree
+%: \else
+%: \expandafter\xint_thirdofthree
+%: \fi
+%: {\the\numexpr\xint_c_x^viii+#1!1;!}$%
+%: {\the\numexpr\xint_c_x^viii+#1*#2!1;!}$%
+%: {\expandafter\vfac\the\numexpr (#1+#2)/\xint_c_ii.#1.#2.}$%
+%: }$%
+%: \def\vfac #1.#2.#3.$%
+%: {$%
+%: \expandafter
+%: \wfac\expandafter
+%: {\romannumeral-`0\expandafter
+%: \ufac\expandafter{\the\numexpr #1+\xint_c_i}{#3}}$%
+%: {\ufac {#2}{#1}}$%
+%: }$%
+%: \def\wfac #1#2{\expandafter\zfac\romannumeral-`0#2\W #1}$%
+%: \def\zfac {\the\numexpr\XINT_mul_loop 100000000!1;!\W }$% core multiplication...
+%: \catcode`_ 8
+%: \catcode`^ 7
+%)
+% and I was quite surprised that it was only about 1.6x--2x slower in the range
+% N=200 to 2000 than the \xintiiFac here which attempts to be smarter...
+%
+% Note (2017, 1.2l): I found out some code comment of mine that the code here
+% should be more in the style of \xintiiBinomial, but I left matters
+% untouched.
+%
+%
+% |
+% \begin{macrocode}
+\def\xintiiFac {\romannumeral0\xintiifac }%
+\def\xintiifac #1{\expandafter\XINT_fac_fork\the\numexpr#1.}%
+\def\xintiFac {\romannumeral0\xintifac }%
+\let\xintifac\xintiifac
+\def\XINT_fac_fork #1#2.%
+{%
+ \xint_UDzerominusfork
+ #1-\XINT_fac_zero
+ 0#1\XINT_fac_neg
+ 0-\XINT_fac_checksize
+ \krof #1#2.%
+}%
+\def\XINT_fac_zero #1.{ 1}%
+\def\XINT_fac_neg #1.{\XINT_signalcondition{InvalidOperation}{Factorial of
+ negative: (#1)!}{}{0}}%
+% \end{macrocode}
+% \begin{macrocode}
+\def\XINT_fac_checksize #1.%
+{%
+ \ifnum #1>\xint_c_x^iv \xint_dothis{\XINT_fac_toobig #1.}\fi
+ \ifnum #1>465 \xint_dothis{\XINT_fac_bigloop_a #1.}\fi
+ \ifnum #1>101 \xint_dothis{\XINT_fac_medloop_a #1.\XINT_mul_out}\fi
+ \xint_orthat{\XINT_fac_smallloop_a #1.\XINT_mul_out}%
+ 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+}%
+\def\XINT_fac_toobig #1.#2\W{\XINT_signalcondition{InvalidOperation}{Factorial
+ of too big argument: #1 > 10000}{}{0}}%
+\def\XINT_fac_bigloop_a #1.%
+{%
+ \expandafter\XINT_fac_bigloop_b \the\numexpr
+ #1+\xint_c_i-\xint_c_ii*((#1-464)/\xint_c_ii).#1.%
+}%
+\def\XINT_fac_bigloop_b #1.#2.%
+{%
+ \expandafter\XINT_fac_medloop_a
+ \the\numexpr #1-\xint_c_i.{\XINT_fac_bigloop_loop #1.#2.}%
+}%
+\def\XINT_fac_bigloop_loop #1.#2.%
+{%
+ \ifnum #1>#2 \expandafter\XINT_fac_bigloop_exit\fi
+ \expandafter\XINT_fac_bigloop_loop
+ \the\numexpr #1+\xint_c_ii\expandafter.%
+ \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_bigloop_mul #1!%
+}%
+\def\XINT_fac_bigloop_exit #1!{\XINT_mul_out}%
+\def\XINT_fac_bigloop_mul #1!%
+{%
+ \expandafter\XINT_smallmul
+ \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%
+}%
+\def\XINT_fac_medloop_a #1.%
+{%
+ \expandafter\XINT_fac_medloop_b
+ \the\numexpr #1+\xint_c_i-\xint_c_iii*((#1-100)/\xint_c_iii).#1.%
+}%
+\def\XINT_fac_medloop_b #1.#2.%
+{%
+ \expandafter\XINT_fac_smallloop_a
+ \the\numexpr #1-\xint_c_i.{\XINT_fac_medloop_loop #1.#2.}%
+}%
+\def\XINT_fac_medloop_loop #1.#2.%
+{%
+ \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi
+ \expandafter\XINT_fac_medloop_loop
+ \the\numexpr #1+\xint_c_iii\expandafter.%
+ \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_medloop_mul #1!%
+}%
+\def\XINT_fac_medloop_mul #1!%
+{%
+ \expandafter\XINT_smallmul
+ \the\numexpr
+ \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%
+}%
+\def\XINT_fac_smallloop_a #1.%
+{%
+ \csname
+ XINT_fac_smallloop_\the\numexpr #1-\xint_c_iv*(#1/\xint_c_iv)\relax
+ \endcsname #1.%
+}%
+\expandafter\def\csname XINT_fac_smallloop_1\endcsname #1.%
+{%
+ \XINT_fac_smallloop_loop 2.#1.100000001!1;!%
+}%
+\expandafter\def\csname XINT_fac_smallloop_-2\endcsname #1.%
+{%
+ \XINT_fac_smallloop_loop 3.#1.100000002!1;!%
+}%
+\expandafter\def\csname XINT_fac_smallloop_-1\endcsname #1.%
+{%
+ \XINT_fac_smallloop_loop 4.#1.100000006!1;!%
+}%
+\expandafter\def\csname XINT_fac_smallloop_0\endcsname #1.%
+{%
+ \XINT_fac_smallloop_loop 5.#1.1000000024!1;!%
+}%
+\def\XINT_fac_smallloop_loop #1.#2.%
+{%
+ \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi
+ \expandafter\XINT_fac_smallloop_loop
+ \the\numexpr #1+\xint_c_iv\expandafter.%
+ \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_smallloop_mul #1!%
+}%
+\def\XINT_fac_smallloop_mul #1!%
+{%
+ \expandafter\XINT_smallmul
+ \the\numexpr
+ \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%
+}%
+\def\XINT_fac_loop_exit #1!#2;!#3{#3#2;!}%
+% \end{macrocode}
+% \subsection*{``Load \xintfracnameimp'' macros}
+% \addcontentsline{toc}{subsection}{``Load \xintfracnameimp'' macros}
% \lverb|Originally was used in \xintiiexpr. Transferred from xintfrac for 1.1.|
% \begin{macrocode}
\catcode`! 11
@@ -20516,6 +21157,7 @@ $1$ or $-1$.
\def\xintSqr {\Did_you_mean_iiSqr?or_load_xintfrac!}%
\def\xintQuo {\Removed!use_xintiQuo_or_xintiiQuo!}%
\def\xintRem {\Removed!use_xintiRem_or_xintiiRem!}%
+\catcode`! 12
\XINT_restorecatcodes_endinput%
% \end{macrocode}
%
@@ -20585,7 +21227,7 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xint}%
- [2017/01/06 1.2k Expandable operations on big integers (JFB)]%
+ [2017/07/26 1.2l Expandable operations on big integers (JFB)]%
% \end{macrocode}
% \subsection{More token management}
% \begin{macrocode}
@@ -20595,10 +21237,6 @@ $1$ or $-1$.
\long\def\xint_firstofthree_thenstop #1#2#3{ #1}% 1.09i
\long\def\xint_secondofthree_thenstop #1#2#3{ #2}%
\long\def\xint_thirdofthree_thenstop #1#2#3{ #3}%
-\edef\xint_cleanupzeros_andstop #1#2#3#4%
-{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4\relax
-}%
% \end{macrocode}
% \subsection{\csh{xintSgnFork}}
% \lverb|Expandable three-way fork added in 1.07. The argument #1 must expand
@@ -20633,40 +21271,70 @@ $1$ or $-1$.
\unless\if#11\xint_dothis{ 0}\fi
\xint_orthat{ 1}%
}%
-\def\XINT_isOne #1{\XINT_is_one#1XY}%
-\def\XINT_is_one #1#2#3Y%
+\def\XINT_isOne #1{\XINT_is_One#1XY}%
+\def\XINT_is_One #1#2#3Y%
{%
\unless\if#2X\xint_dothis0\fi
\unless\if#11\xint_dothis0\fi
\xint_orthat1%
}%
% \end{macrocode}
-% \subsection{\csh{xintRev}}
+% \subsection{\csh{xintReverseDigits}}
% \lverb|&
-% \xintRev: expands fully its argument \romannumeral-`0, and checks the sign.
-% However this last aspect does not appear like a very useful thing. And despite
-% the fact that a special check is made for a sign, actually the input is not
-% given to \xintnum, contrarily to \xintLen. This is all a bit incoherent.
-% Should be fixed.
+% 1.2.
+%
+% This puts digits in reverse order, not suppressing leading zeros
+% after reverse. Despite lacking the "ii" in its name, it does not apply
+% \xintNum to its argument (contrarily to \xintLen, this is not very coherent).
+%
+% 1.2l variant is robust against non terminated \the\numexpr input.
%
-% 1.2 has \xintReverseDigits and I thus make \xintRev an alias. Remarks above
-% not addressed.|
+% This macro is currently not used elsewhere in xint code.
+% |
% \begin{macrocode}
+\def\xintReverseDigits {\romannumeral0\xintreversedigits }%
+\def\xintreversedigits #1%
+{%
+ \expandafter\XINT_revdigits\romannumeral`&&@#1%
+ {\XINT_microrevsep_end\W}\XINT_microrevsep_end
+ \XINT_microrevsep_end\XINT_microrevsep_end
+ \XINT_microrevsep_end\XINT_microrevsep_end
+ \XINT_microrevsep_end\XINT_microrevsep_end\XINT_microrevsep_end\Z
+ 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
+}%
+\def\XINT_revdigits #1%
+{%
+ \xint_UDsignfork
+ #1{\expandafter-\romannumeral0\XINT_revdigits_a}%
+ -{\XINT_revdigits_a #1}%
+ \krof
+}%
+\def\XINT_revdigits_a
+{%
+ \expandafter\XINT_revdigits_b\expandafter{\expandafter}%
+ \the\numexpr\XINT_microrevsep
+}%
+\def\XINT_microrevsep #1#2#3#4#5#6#7#8#9%
+{%
+ 1#9#8#7#6#5#4#3#2#1\expandafter!\the\numexpr\XINT_microrevsep
+}%
+\def\XINT_microrevsep_end #1\W #2\expandafter #3\Z{\relax#2!}%
+\def\XINT_revdigits_b #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%
+{%
+ \xint_gob_til_R #9\XINT_revdigits_end\R
+ \XINT_revdigits_b {#9#8#7#6#5#4#3#2#1}%
+}%
+\def\XINT_revdigits_end#1{%
+\def\XINT_revdigits_end\R\XINT_revdigits_b ##1##2\W
+ {\expandafter#1\xint_gob_til_Z ##1}%
+}\XINT_revdigits_end{ }%
\let\xintRev\xintReverseDigits
% \end{macrocode}
% \subsection{\csh{xintLen}}
% \lverb|\xintLen is ONLY for (possibly long) integers. Gets extended to
-% fractions by xintfrac.sty.
-%
-% 2016/12/23. For no reason at all I botchered this venerable macro at the
-% time of 1.2i release (I came here to update the pattern of the length loop
-% which had been modified) and got tricked by \unexpanded which I used in an
-% \edef to insert a space token and avoid having to put many \noexpand's. But
-% this converted a #1 into a ##1 with deplorable effect that \xintLen{-1}
-% outputted 3 and not 1 :(( awful. Also, I did another error in the \xintLen
-% of xintfrac.sty, simply forgetting there to not count the sign. Too bad I
-% become aware of this after having already released 1.2j. I know, regression
-% suite is highest priority. Fixed in 1.2k.
+% fractions by xintfrac.sty. It applies \xintNum to its argument. A minus sign
+% is accepted and ignored.
+%
% |
% \begin{macrocode}
\def\xintLen {\romannumeral0\xintlen }%
@@ -20674,8 +21342,7 @@ $1$ or $-1$.
{%
\expandafter#1\the\numexpr
\expandafter\XINT_len_fork\romannumeral0\xintnum{##1}%
- \xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye\relax
}}\xintlen{ }%
@@ -20899,176 +21566,6 @@ $1$ or $-1$.
\fi
}%
% \end{macrocode}
-% \subsection{\csh{xintCmp}, \csh{xintiiCmp}}
-% \lverb|Faster than doing the full subtraction.|
-% \begin{macrocode}
-\def\xintCmp {\romannumeral0\xintcmp }%
-\def\xintcmp #1{\expandafter\XINT_icmp\romannumeral0\xintnum{#1}\Z }%
-\def\xintiiCmp {\romannumeral0\xintiicmp }%
-\def\xintiicmp #1{\expandafter\XINT_iicmp\romannumeral`&&@#1\Z }%
-\def\XINT_iicmp #1#2\Z #3%
-{%
- \expandafter\XINT_cmp_nfork\expandafter #1\romannumeral`&&@#3\Z #2\Z
-}%
-\let\XINT_Cmp \xintiiCmp
-\def\XINT_icmp #1#2\Z #3%
-{%
- \expandafter\XINT_cmp_nfork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z
-}%
-\def\XINT_cmp_nfork #1#2%
-{%
- \xint_UDzerofork
- #1\XINT_cmp_firstiszero
- #2\XINT_cmp_secondiszero
- 0{}%
- \krof
- \xint_UDsignsfork
- #1#2\XINT_cmp_minusminus
- #1-\XINT_cmp_minusplus
- #2-\XINT_cmp_plusminus
- --\XINT_cmp_plusplus
- \krof #1#2%
-}%
-\def\XINT_cmp_firstiszero #1\krof 0#2#3\Z #4\Z
-{%
- \xint_UDzerominusfork
- #2-{ 0}%
- 0#2{ 1}%
- 0-{ -1}%
- \krof
-}%
-\def\XINT_cmp_secondiszero #1\krof #20#3\Z #4\Z
-{%
- \xint_UDzerominusfork
- #2-{ 0}%
- 0#2{ -1}%
- 0-{ 1}%
- \krof
-}%
-\def\XINT_cmp_plusminus #1\Z #2\Z{ 1}%
-\def\XINT_cmp_minusplus #1\Z #2\Z{ -1}%
-\def\XINT_cmp_minusminus
- --{\expandafter\XINT_opp\romannumeral0\XINT_cmp_plusplus {}{}}%
-\def\XINT_cmp_plusplus #1#2#3\Z
-{%
- \expandafter\XINT_cmp_pp
- \romannumeral0\expandafter\XINT_sepandrev_andcount
- \romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W
- #2#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- \X #1%
-}%
-\def\XINT_cmp_pp #1.#2\X #3\Z
-{%
- \expandafter\XINT_cmp_checklengths
- \the\numexpr #1\expandafter.%
- \romannumeral0\expandafter\XINT_sepandrev_andcount
- \romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
- #3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax \xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
- \Z!\Z!\Z!\Z!\Z!\W #2\Z!\Z!\Z!\Z!\Z!\W
-}%
-\def\XINT_cmp_checklengths #1.#2.%
-{%
- \ifnum #1=#2
- \expandafter\xint_firstoftwo
- \else
- \expandafter\xint_secondoftwo
- \fi
- \XINT_cmp_aa {\XINT_cmp_distinctlengths {#1}{#2}}%
-}%
-\def\XINT_cmp_distinctlengths #1#2#3\W #4\W
-{%
- \ifnum #1>#2
- \expandafter\xint_firstoftwo
- \else
- \expandafter\xint_secondoftwo
- \fi
- { -1}{ 1}%
-}%
-\def\XINT_cmp_aa {\expandafter\XINT_cmp_w\the\numexpr\XINT_cmp_a \xint_c_i }%
-\def\XINT_cmp_a #1!#2!#3!#4!#5\W #6!#7!#8!#9!%
-{%
- \XINT_cmp_b #1!#6!#2!#7!#3!#8!#4!#9!#5\W
-}%
-\def\XINT_cmp_b #1#2#3!#4!%
-{%
- \xint_gob_til_Z #2\XINT_cmp_bi \Z
- \expandafter\XINT_cmp_c\the\numexpr#1+1#4-#3-\xint_c_i.%
-}%
-\def\XINT_cmp_c 1#1#2.%
-{%
- 1#2\expandafter!\the\numexpr\XINT_cmp_d #1%
-}%
-\def\XINT_cmp_d #1#2#3!#4!%
-{%
- \xint_gob_til_Z #2\XINT_cmp_di \Z
- \expandafter\XINT_cmp_e\the\numexpr#1+1#4-#3-\xint_c_i.%
-}%
-\def\XINT_cmp_e 1#1#2.%
-{%
- 1#2\expandafter!\the\numexpr\XINT_cmp_f #1%
-}%
-\def\XINT_cmp_f #1#2#3!#4!%
-{%
- \xint_gob_til_Z #2\XINT_cmp_fi \Z
- \expandafter\XINT_cmp_g\the\numexpr#1+1#4-#3-\xint_c_i.%
-}%
-\def\XINT_cmp_g 1#1#2.%
-{%
- 1#2\expandafter!\the\numexpr\XINT_cmp_h #1%
-}%
-\def\XINT_cmp_h #1#2#3!#4!%
-{%
- \xint_gob_til_Z #2\XINT_cmp_hi \Z
- \expandafter\XINT_cmp_i\the\numexpr#1+1#4-#3-\xint_c_i.%
-}%
-\def\XINT_cmp_i 1#1#2.%
-{%
- 1#2\expandafter!\the\numexpr\XINT_cmp_a #1%
-}%
-\def\XINT_cmp_bi\Z
- \expandafter\XINT_cmp_c\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8!#9!\Z !\W
-{%
- \XINT_cmp_k #1#2!#5!#7!#9!%
-}%
-\def\XINT_cmp_di\Z
- \expandafter\XINT_cmp_e\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8\W
-{%
- \XINT_cmp_k #1#2!#5!#7!%
-}%
-\def\XINT_cmp_fi\Z
- \expandafter\XINT_cmp_g\the\numexpr#1+1#2-#3.#4!#5!#6\W
-{%
- \XINT_cmp_k #1#2!#5!%
-}%
-\def\XINT_cmp_hi\Z
- \expandafter\XINT_cmp_i\the\numexpr#1+1#2-#3.#4\W
-{%
- \XINT_cmp_k #1#2!%
-}%
-\def\XINT_cmp_k #1#2\W
-{%
- \xint_UDzerofork
- #1{-1\relax \XINT_cmp_greater}%
- 0{-1\relax \XINT_cmp_lessorequal}%
- \krof
-}%
-\def\XINT_cmp_w #1-1#2{#2#11\Z!\W}%
-\def\XINT_cmp_greater #1\Z!\W{ 1}%
-\def\XINT_cmp_lessorequal 1#1!%
- {\xint_gob_til_Z #1\XINT_cmp_equal\Z
- \xint_gob_til_eightzeroes #1\XINT_cmp_continue 00000000%
- \XINT_cmp_less }%
-\def\XINT_cmp_less #1\W { -1}%
-\def\XINT_cmp_continue 00000000\XINT_cmp_less {\XINT_cmp_lessorequal }%
-\def\XINT_cmp_equal\Z\xint_gob_til_eightzeroes\Z\XINT_cmp_continue
- 00000000\XINT_cmp_less\W { 0}%
-% \end{macrocode}
% \subsection{\csh{xintEq}, \csh{xintGt}, \csh{xintLt}}
% \lverb|1.09a.|
% \begin{macrocode}
@@ -21137,66 +21634,73 @@ $1$ or $-1$.
\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi }%
% \end{macrocode}
% \subsection{\csh{xintANDof}}
-% \lverb|New with 1.09a. \xintANDof works also with an empty list.|
+% \lverb|New with 1.09a. \xintANDof works also with an empty list. Empty items
+% however are not accepted.|
+% \lverb|1.2l made \xintANDof robust against non terminated items.|
% \begin{macrocode}
\def\xintANDof {\romannumeral0\xintandof }%
-\def\xintandof #1{\expandafter\XINT_andof_a\romannumeral`&&@#1\relax }%
-\def\XINT_andof_a #1{\expandafter\XINT_andof_b\romannumeral`&&@#1\Z }%
+\def\xintandof #1{\expandafter\XINT_andof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_andof_a #1{\expandafter\XINT_andof_b\romannumeral`&&@#1!}%
\def\XINT_andof_b #1%
- {\xint_gob_til_relax #1\XINT_andof_e\relax\XINT_andof_c #1}%
-\def\XINT_andof_c #1\Z
+ {\xint_gob_til_xint: #1\XINT_andof_e\xint:\XINT_andof_c #1}%
+\def\XINT_andof_c #1!%
{\xintifTrueAelseB {#1}{\XINT_andof_a}{\XINT_andof_no}}%
-\def\XINT_andof_no #1\relax { 0}%
-\def\XINT_andof_e #1\Z { 1}%
+\def\XINT_andof_no #1\xint:{ 0}%
+\def\XINT_andof_e #1!{ 1}%
% \end{macrocode}
% \subsection{\csh{xintORof}}
-% \lverb|New with 1.09a. Works also with an empty list.|
+% \lverb|New with 1.09a. Works also with an empty list. Empty items
+% however are not accepted.|
+% \lverb|1.2l made \xintORof robust against non terminated items.|
% \begin{macrocode}
\def\xintORof {\romannumeral0\xintorof }%
-\def\xintorof #1{\expandafter\XINT_orof_a\romannumeral`&&@#1\relax }%
-\def\XINT_orof_a #1{\expandafter\XINT_orof_b\romannumeral`&&@#1\Z }%
+\def\xintorof #1{\expandafter\XINT_orof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_orof_a #1{\expandafter\XINT_orof_b\romannumeral`&&@#1!}%
\def\XINT_orof_b #1%
- {\xint_gob_til_relax #1\XINT_orof_e\relax\XINT_orof_c #1}%
-\def\XINT_orof_c #1\Z
+ {\xint_gob_til_xint: #1\XINT_orof_e\xint:\XINT_orof_c #1}%
+\def\XINT_orof_c #1!%
{\xintifTrueAelseB {#1}{\XINT_orof_yes}{\XINT_orof_a}}%
-\def\XINT_orof_yes #1\relax { 1}%
-\def\XINT_orof_e #1\Z { 0}%
+\def\XINT_orof_yes #1\xint:{ 1}%
+\def\XINT_orof_e #1!{ 0}%
% \end{macrocode}
% \subsection{\csh{xintXORof}}
-% \lverb|New with 1.09a. Works with an empty list, too. \XINT_xorof_c more
-% efficient in 1.09i|
+% \lverb|New with 1.09a. Works with an empty list, too. Empty items
+% however are not accepted. \XINT_xorof_c more
+% efficient in 1.09i.|
+% \lverb|1.2l made \xintXORof robust against non terminated items.|
% \begin{macrocode}
\def\xintXORof {\romannumeral0\xintxorof }%
\def\xintxorof #1{\expandafter\XINT_xorof_a\expandafter
- 0\romannumeral`&&@#1\relax }%
-\def\XINT_xorof_a #1#2{\expandafter\XINT_xorof_b\romannumeral`&&@#2\Z #1}%
+ 0\romannumeral`&&@#1\xint:}%
+\def\XINT_xorof_a #1#2{\expandafter\XINT_xorof_b\romannumeral`&&@#2!#1}%
\def\XINT_xorof_b #1%
- {\xint_gob_til_relax #1\XINT_xorof_e\relax\XINT_xorof_c #1}%
-\def\XINT_xorof_c #1\Z #2%
+ {\xint_gob_til_xint: #1\XINT_xorof_e\xint:\XINT_xorof_c #1}%
+\def\XINT_xorof_c #1!#2%
{\xintifTrueAelseB {#1}{\if #20\xint_afterfi{\XINT_xorof_a 1}%
\else\xint_afterfi{\XINT_xorof_a 0}\fi}%
{\XINT_xorof_a #2}%
}%
-\def\XINT_xorof_e #1\Z #2{ #2}%
+\def\XINT_xorof_e #1!#2{ #2}%
% \end{macrocode}
% \subsection{\csh{xintGeq}, \csh{xintiiGeq}}
% \lverb|&
% PLUS GRAND OU ÉGAL
% attention compare les **valeurs absolues**|
+% \lverb|1.2l made \xintiiGeq robust against non terminated items.|
% \begin{macrocode}
\def\xintGeq {\romannumeral0\xintgeq }%
-\def\xintgeq #1{\expandafter\XINT_geq\romannumeral0\xintnum{#1}\Z }%
+\def\xintgeq #1{\expandafter\XINT_geq\romannumeral0\xintnum{#1}\xint:}%
\def\xintiiGeq {\romannumeral0\xintiigeq }%
-\def\xintiigeq #1{\expandafter\XINT_iigeq\romannumeral`&&@#1\Z }%
-\def\XINT_iigeq #1#2\Z #3%
+\def\xintiigeq #1{\expandafter\XINT_iigeq\romannumeral`&&@#1\xint:}%
+\def\XINT_iigeq #1#2\xint:#3%
{%
- \expandafter\XINT_geq_fork\expandafter #1\romannumeral`&&@#3\Z #2\Z
+ \expandafter\XINT_geq_fork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:
}%
\let\XINT_geq_pre \xintiigeq % TEMPORAIRE (oui, mais depuis quand ?)
\let\XINT_Geq \xintGeq % TEMPORAIRE ATTENTION FAIT xintNum (et alors?)
-\def\XINT_geq #1#2\Z #3%
+\def\XINT_geq #1#2\xint:#3%
{%
- \expandafter\XINT_geq_fork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z
+ \expandafter\XINT_geq_fork\expandafter #1\romannumeral0\xintnum{#3}\xint:#2\xint:
}%
\def\XINT_geq_fork #1#2%
{%
@@ -21212,37 +21716,37 @@ $1$ or $-1$.
--\XINT_geq_plusplus
\krof #1#2%
}%
-\def\XINT_geq_firstiszero #1\krof 0#2#3\Z #4\Z
+\def\XINT_geq_firstiszero #1\krof 0#2#3\xint:#4\xint:
{\xint_UDzerofork #2{ 1}0{ 0}\krof }%
-\def\XINT_geq_secondiszero #1\krof #20#3\Z #4\Z { 1}%
+\def\XINT_geq_secondiszero #1\krof #20#3\xint:#4\xint:{ 1}%
\def\XINT_geq_plusminus #1-{\XINT_geq_plusplus #1{}}%
\def\XINT_geq_minusplus -#1{\XINT_geq_plusplus {}#1}%
\def\XINT_geq_minusminus --{\XINT_geq_plusplus {}{}}%
-\def\XINT_geq_plusplus #1#2#3\Z #4\Z {\XINT_geq_pp #1#4\Z #2#3\Z }%
-\def\XINT_geq_pp #1\Z
+\def\XINT_geq_plusplus #1#2#3\xint:#4\xint:{\XINT_geq_pp #1#4\xint:#2#3\xint:}%
+\def\XINT_geq_pp #1\xint:
{%
\expandafter\XINT_geq_pp_a
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W
#1\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\X
}%
-\def\XINT_geq_pp_a #1.#2\X #3\Z
+\def\XINT_geq_pp_a #1\xint:#2\X #3\xint:
{%
\expandafter\XINT_geq_checklengths
- \the\numexpr #1\expandafter.%
+ \the\numexpr #1\expandafter\xint:%
\romannumeral0\expandafter\XINT_sepandrev_andcount
\romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W
#3\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678\relax \xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\Z!\Z!\Z!\Z!\Z!\W #2\Z!\Z!\Z!\Z!\Z!\W
}%
-\def\XINT_geq_checklengths #1.#2.%
+\def\XINT_geq_checklengths #1\xint:#2\xint:
{%
\ifnum #1=#2
\expandafter\xint_firstoftwo
@@ -21268,56 +21772,56 @@ $1$ or $-1$.
\def\XINT_geq_b #1#2#3!#4!%
{%
\xint_gob_til_Z #2\XINT_geq_bi \Z
- \expandafter\XINT_geq_c\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \expandafter\XINT_geq_c\the\numexpr#1+1#4-#3-\xint_c_i\xint:%
}%
-\def\XINT_geq_c 1#1#2.%
+\def\XINT_geq_c 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_geq_d #1%
}%
\def\XINT_geq_d #1#2#3!#4!%
{%
\xint_gob_til_Z #2\XINT_geq_di \Z
- \expandafter\XINT_geq_e\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \expandafter\XINT_geq_e\the\numexpr#1+1#4-#3-\xint_c_i\xint:%
}%
-\def\XINT_geq_e 1#1#2.%
+\def\XINT_geq_e 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_geq_f #1%
}%
\def\XINT_geq_f #1#2#3!#4!%
{%
\xint_gob_til_Z #2\XINT_geq_fi \Z
- \expandafter\XINT_geq_g\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \expandafter\XINT_geq_g\the\numexpr#1+1#4-#3-\xint_c_i\xint:%
}%
-\def\XINT_geq_g 1#1#2.%
+\def\XINT_geq_g 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_geq_h #1%
}%
\def\XINT_geq_h #1#2#3!#4!%
{%
\xint_gob_til_Z #2\XINT_geq_hi \Z
- \expandafter\XINT_geq_i\the\numexpr#1+1#4-#3-\xint_c_i.%
+ \expandafter\XINT_geq_i\the\numexpr#1+1#4-#3-\xint_c_i\xint:%
}%
-\def\XINT_geq_i 1#1#2.%
+\def\XINT_geq_i 1#1#2\xint:%
{%
1#2\expandafter!\the\numexpr\XINT_geq_a #1%
}%
\def\XINT_geq_bi\Z
- \expandafter\XINT_geq_c\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8!#9!\Z !\W
+ \expandafter\XINT_geq_c\the\numexpr#1+1#2-#3\xint:#4!#5!#6!#7!#8!#9!\Z !\W
{%
\XINT_geq_k #1#2!#5!#7!#9!%
}%
\def\XINT_geq_di\Z
- \expandafter\XINT_geq_e\the\numexpr#1+1#2-#3.#4!#5!#6!#7!#8\W
+ \expandafter\XINT_geq_e\the\numexpr#1+1#2-#3\xint:#4!#5!#6!#7!#8\W
{%
\XINT_geq_k #1#2!#5!#7!%
}%
\def\XINT_geq_fi\Z
- \expandafter\XINT_geq_g\the\numexpr#1+1#2-#3.#4!#5!#6\W
+ \expandafter\XINT_geq_g\the\numexpr#1+1#2-#3\xint:#4!#5!#6\W
{%
\XINT_geq_k #1#2!#5!%
}%
\def\XINT_geq_hi\Z
- \expandafter\XINT_geq_i\the\numexpr#1+1#2-#3.#4\W
+ \expandafter\XINT_geq_i\the\numexpr#1+1#2-#3\xint:#4\W
{%
\XINT_geq_k #1#2!%
}%
@@ -21405,28 +21909,36 @@ $1$ or $-1$.
% \end{macrocode}
% \subsection{\csh{xintiMaxof}, \csh{xintiiMaxof}}
% \lverb|New with 1.09a. 1.2 has NO MORE \xintMaxof, requires \xintfracname.
-% 1.2a adds \xintiiMaxof, as \xintiiMaxof:csv is not public.|
+% 1.2a adds \xintiiMaxof, as \xintiiMaxof:csv is not public.
+%
+% NOT compatible with empty list.|
+% \lverb|1.2l made \xintiiMaxof robust against non terminated items.|
% \begin{macrocode}
\def\xintiMaxof {\romannumeral0\xintimaxof }%
-\def\xintimaxof #1{\expandafter\XINT_imaxof_a\romannumeral`&&@#1\relax }%
-\def\XINT_imaxof_a #1{\expandafter\XINT_imaxof_b\romannumeral0\xintnum{#1}\Z }%
-\def\XINT_imaxof_b #1\Z #2%
- {\expandafter\XINT_imaxof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintimaxof #1{\expandafter\XINT_imaxof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_imaxof_a
+#1{\expandafter\XINT_imaxof_b\romannumeral0\xintnum{#1}!}%
+% \end{macrocode}
+% \lverb|No \xintnum on #2 which might be \xint:, of course. But if list not
+% terminated the \xintNum will be done via \xintimax.|
+% \begin{macrocode}
+\def\XINT_imaxof_b #1!#2%
+ {\expandafter\XINT_imaxof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_imaxof_c #1%
- {\xint_gob_til_relax #1\XINT_imaxof_e\relax\XINT_imaxof_d #1}%
-\def\XINT_imaxof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_imaxof_e\xint:\XINT_imaxof_d #1}%
+\def\XINT_imaxof_d #1!%
{\expandafter\XINT_imaxof_b\romannumeral0\xintimax {#1}}%
-\def\XINT_imaxof_e #1\Z #2\Z { #2}%
+\def\XINT_imaxof_e #1!#2!{ #2}%
\def\xintiiMaxof {\romannumeral0\xintiimaxof }%
-\def\xintiimaxof #1{\expandafter\XINT_iimaxof_a\romannumeral`&&@#1\relax }%
-\def\XINT_iimaxof_a #1{\expandafter\XINT_iimaxof_b\romannumeral`&&@#1\Z }%
-\def\XINT_iimaxof_b #1\Z #2%
- {\expandafter\XINT_iimaxof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintiimaxof #1{\expandafter\XINT_iimaxof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_iimaxof_a #1{\expandafter\XINT_iimaxof_b\romannumeral`&&@#1!}%
+\def\XINT_iimaxof_b #1!#2%
+ {\expandafter\XINT_iimaxof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_iimaxof_c #1%
- {\xint_gob_til_relax #1\XINT_iimaxof_e\relax\XINT_iimaxof_d #1}%
-\def\XINT_iimaxof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_iimaxof_e\xint:\XINT_iimaxof_d #1}%
+\def\XINT_iimaxof_d #1!%
{\expandafter\XINT_iimaxof_b\romannumeral0\xintiimax {#1}}%
-\def\XINT_iimaxof_e #1\Z #2\Z { #2}%
+\def\XINT_iimaxof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintiMin}, \csh{xintiiMin}}
% \lverb|\xintnum added New with 1.09a. I add \xintiiMin in 1.1 and mark as
@@ -21506,59 +22018,55 @@ $1$ or $-1$.
% \lverb|1.09a. 1.2a adds \xintiiMinof which was lacking.|
% \begin{macrocode}
\def\xintiMinof {\romannumeral0\xintiminof }%
-\def\xintiminof #1{\expandafter\XINT_iminof_a\romannumeral`&&@#1\relax }%
-\def\XINT_iminof_a #1{\expandafter\XINT_iminof_b\romannumeral0\xintnum{#1}\Z }%
-\def\XINT_iminof_b #1\Z #2%
- {\expandafter\XINT_iminof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintiminof #1{\expandafter\XINT_iminof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_iminof_a #1{\expandafter\XINT_iminof_b\romannumeral0\xintnum{#1}!}%
+\def\XINT_iminof_b #1!#2%
+ {\expandafter\XINT_iminof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_iminof_c #1%
- {\xint_gob_til_relax #1\XINT_iminof_e\relax\XINT_iminof_d #1}%
-\def\XINT_iminof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_iminof_e\xint:\XINT_iminof_d #1}%
+\def\XINT_iminof_d #1!%
{\expandafter\XINT_iminof_b\romannumeral0\xintimin {#1}}%
-\def\XINT_iminof_e #1\Z #2\Z { #2}%
+\def\XINT_iminof_e #1!#2!{ #2}%
\def\xintiiMinof {\romannumeral0\xintiiminof }%
-\def\xintiiminof #1{\expandafter\XINT_iiminof_a\romannumeral`&&@#1\relax }%
-\def\XINT_iiminof_a #1{\expandafter\XINT_iiminof_b\romannumeral`&&@#1\Z }%
-\def\XINT_iiminof_b #1\Z #2%
- {\expandafter\XINT_iiminof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintiiminof #1{\expandafter\XINT_iiminof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_iiminof_a #1{\expandafter\XINT_iiminof_b\romannumeral`&&@#1!}%
+\def\XINT_iiminof_b #1!#2%
+ {\expandafter\XINT_iiminof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_iiminof_c #1%
- {\xint_gob_til_relax #1\XINT_iiminof_e\relax\XINT_iiminof_d #1}%
-\def\XINT_iiminof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_iiminof_e\xint:\XINT_iiminof_d #1}%
+\def\XINT_iiminof_d #1!%
{\expandafter\XINT_iiminof_b\romannumeral0\xintiimin {#1}}%
-\def\XINT_iiminof_e #1\Z #2\Z { #2}%
+\def\XINT_iiminof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintiiSum}}
-% \lverb|\xintiiSum {{a}{b}...{z}}, \xintiiSumExpr {a}{b}...{z}\relax
+% \lverb|\xintiiSum {{a}{b}...{z}}
%|
% \begin{macrocode}
\def\xintiiSum {\romannumeral0\xintiisum }%
-\def\xintiisum #1{\xintiisumexpr #1\relax }%
-\def\xintiiSumExpr {\romannumeral0\xintiisumexpr }%
-\def\xintiisumexpr {\expandafter\XINT_sumexpr\romannumeral`&&@}%
+\def\xintiisum #1{\expandafter\XINT_sumexpr\romannumeral`&&@#1\xint:}%
\def\XINT_sumexpr {\XINT_sum_loop_a 0\Z }%
\def\XINT_sum_loop_a #1\Z #2%
- {\expandafter\XINT_sum_loop_b \romannumeral`&&@#2\Z #1\Z \Z}%
+ {\expandafter\XINT_sum_loop_b \romannumeral`&&@#2\xint:#1\xint:\Z}%
\def\XINT_sum_loop_b #1%
- {\xint_gob_til_relax #1\XINT_sum_finished\relax\XINT_sum_loop_c #1}%
+ {\xint_gob_til_xint: #1\XINT_sum_finished\xint:\XINT_sum_loop_c #1}%
\def\XINT_sum_loop_c
{\expandafter\XINT_sum_loop_a\romannumeral0\XINT_add_fork }%
-\def\XINT_sum_finished #1\Z #2\Z \Z { #2}%
+\def\XINT_sum_finished\xint:\XINT_sum_loop_c\xint:\xint:#1\xint:\Z{ #1}%
% \end{macrocode}
% \subsection{\csh{xintiiPrd}}
-% \lverb|\xintiiPrd {{a}...{z}}, \xintiiPrdExpr {a}...{z}\relax
+% \lverb|\xintiiPrd {{a}...{z}}
%|
% \begin{macrocode}
\def\xintiiPrd {\romannumeral0\xintiiprd }%
-\def\xintiiprd #1{\xintiiprdexpr #1\relax }%
-\def\xintiiPrdExpr {\romannumeral0\xintiiprdexpr }%
-\def\xintiiprdexpr {\expandafter\XINT_prdexpr\romannumeral`&&@}%
+\def\xintiiprd #1{\expandafter\XINT_prdexpr\romannumeral`&&@#1\xint:}%
\def\XINT_prdexpr {\XINT_prod_loop_a 1\Z }%
\def\XINT_prod_loop_a #1\Z #2%
- {\expandafter\XINT_prod_loop_b \romannumeral`&&@#2\Z #1\Z \Z}%
+ {\expandafter\XINT_prod_loop_b\romannumeral`&&@#2\xint:#1\xint:\Z}%
\def\XINT_prod_loop_b #1%
- {\xint_gob_til_relax #1\XINT_prod_finished\relax\XINT_prod_loop_c #1}%
+ {\xint_gob_til_xint: #1\XINT_prod_finished\xint:\XINT_prod_loop_c #1}%
\def\XINT_prod_loop_c
{\expandafter\XINT_prod_loop_a\romannumeral0\XINT_mul_fork }%
-\def\XINT_prod_finished\relax\XINT_prod_loop_c #1\Z #2\Z \Z { #2}%
+\def\XINT_prod_finished\xint:\XINT_prod_loop_c\xint:\xint:#1\xint:\Z { #1}%
% \end{macrocode}
% \lverb|&
% &
@@ -21715,7 +22223,7 @@ $1$ or $-1$.
%
% Rewritten for 1.2i, this was old code.
%
-%!
+% !
% \begin{macrocode}
\def\xintDSx {\romannumeral0\xintdsx }%
\def\xintdsx #1#2%
@@ -21802,6 +22310,8 @@ $1$ or $-1$.
% leading sign (+ or -).
%
% Entirely rewritten for 1.2i (2016/12/11).
+%
+% Attention: \xintDecSplit not robust against non terminated second argument.
% !
% \begin{macrocode}
\def\xintDecSplit {\romannumeral0\xintdecsplit }%
@@ -21882,8 +22392,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_split_fromright_a
\the\numexpr#1-\numexpr\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
.#2\xint_bye
@@ -21955,19 +22464,20 @@ $1$ or $-1$.
\def\XINT_sqrtr_post #1#2{\xintiiifLt {#2}{#1}%
{ #1}{\XINT_dec #1\XINT_dec_bye234567890\xint_bye}}%
\def\xintisquareroot #1%
- {\expandafter\XINT_sqrt_checkin\romannumeral0\xintnum{#1}\xint_relax }%
-\def\xintiisquareroot #1{\expandafter\XINT_sqrt_checkin\romannumeral`&&@#1\xint_relax }%
+ {\expandafter\XINT_sqrt_checkin\romannumeral0\xintnum{#1}\xint:}%
+\def\xintiisquareroot #1{\expandafter\XINT_sqrt_checkin\romannumeral`&&@#1\xint:}%
\def\XINT_sqrt_checkin #1%
{%
\xint_UDzerominusfork
#1-\XINT_sqrt_iszero
0#1\XINT_sqrt_isneg
- 0-{\XINT_sqrt #1}%
- \krof
+ 0-\XINT_sqrt
+ \krof #1%
}%
-\def\XINT_sqrt_iszero #1\xint_relax {{1}{1}}%
-\def\XINT_sqrt_isneg #1\xint_relax {\xintError:RootOfNegative{1}{1}}%
-\def\XINT_sqrt #1\xint_relax
+\def\XINT_sqrt_iszero #1\xint:{{1}{1}}%
+\def\XINT_sqrt_isneg #1\xint:{\XINT_signalcondition{InvalidOperation}{square
+ root of negative: #1}{}{{0}{0}}}%
+\def\XINT_sqrt #1\xint:
{%
\expandafter\XINT_sqrt_start\romannumeral0\xintlength {#1}.#1.%
}%
@@ -22222,7 +22732,7 @@ $1$ or $-1$.
}%
\def\XINT_sqrt_big_ke #1%
{%
- \if0\XINT_Sgn #1\Z
+ \if0\XINT_Sgn #1\xint:
\expandafter \XINT_sqrt_big_end
\else \expandafter \XINT_sqrt_big_kf
\fi {#1}%
@@ -22268,12 +22778,15 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_binom_fork #1#2.#3#4.#5#6.%
{%
- \if-#5\xint_dothis{\xintError:OutOfRangeBinomial\space 0}\fi
+ \if-#5\xint_dothis{\XINT_signalcondition{InvalidOperation}{Binomial with
+ negative first arg: #5#6}{}{0}}\fi
\if-#1\xint_dothis{ 0}\fi
\if-#3\xint_dothis{ 0}\fi
\if0#1\xint_dothis{ 1}\fi
\if0#3\xint_dothis{ 1}\fi
- \ifnum #5#6>\xint_c_x^viii_mone\xint_dothis{\xintError:OutOfRangeBinomial\space 0}\fi
+ \ifnum #5#6>\xint_c_x^viii_mone\xint_dothis
+ {\XINT_signalcondition{InvalidOperation}{Binomial with too
+ large argument: 99999999 < #5#6}{}{0}}\fi
\ifnum #1#2>#3#4 \xint_dothis{\XINT_binom_a #1#2.#3#4.}\fi
\xint_orthat{\XINT_binom_a #3#4.#1#2.}%
}%
@@ -22282,12 +22795,12 @@ $1$ or $-1$.
% quotient un terminateur 1!\Z!0!. On va procéder par petite multiplication
% suivie par petite division. Donc ici on met le 1!\Z!0! pour amorcer.
%
-% Le 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W est le terminateur pour le
+% Le \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax est le terminateur pour le
% \XINT_unsep_cuzsmall final.|
% \begin{macrocode}
\def\XINT_binom_a #1.#2.%
{%
- \expandafter\XINT_binom_b\the\numexpr \xint_c_i+#1.1.#2.100000001!1!\Z!0!%
+ \expandafter\XINT_binom_b\the\numexpr \xint_c_i+#1.1.#2.100000001!1!;!0!%
}%
% \end{macrocode}
% \lverb|y=x-k+1.j=1.k. On va évaluer par y/1*(y+1)/2*(y+2)/3 etc... On essaie
@@ -22310,7 +22823,7 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \lverb|y.j.k. Au départ on avait x-k+1.1.k. Ensuite on a des blocs 1<8d>!
-% donnant le résultat intermédiaire, dans l'ordre, et à la fin on a 1!1\Z!0!.
+% donnant le résultat intermédiaire, dans l'ordre, et à la fin on a 1!1;!0!.
% Dans smallloop on peut prendre 4 par 4.|
% \begin{macrocode}
\def\XINT_binom_smallloop #1.#2.#3.%
@@ -22452,20 +22965,22 @@ $1$ or $-1$.
\the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)*(#2+\xint_c_iii)\expandafter
!\the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%
}%
-\def\XINT_binom_mul #1!#21!\Z!0!%
+% \end{macrocode}
+% \begin{macrocode}
+\def\XINT_binom_mul #1!#21!;!0!%
{%
\expandafter\XINT_rev_nounsep\expandafter{\expandafter}%
\the\numexpr\expandafter\XINT_smallmul
\the\numexpr\xint_c_x^viii+#1\expandafter
- !\romannumeral0\XINT_rev_nounsep {}1\Z!#2%
+ !\romannumeral0\XINT_rev_nounsep {}1;!#2%
\R!\R!\R!\R!\R!\R!\R!\R!\W
\R!\R!\R!\R!\R!\R!\R!\R!\W
- 1\Z!%
+ 1;!%
}%
-\def\XINT_binom_div #1!1\Z!%
+\def\XINT_binom_div #1!1;!%
{%
\expandafter\XINT_smalldivx_a
- \the\numexpr #1/\xint_c_ii\expandafter.%
+ \the\numexpr #1/\xint_c_ii\expandafter\xint:
\the\numexpr \xint_c_x^viii+#1!%
}%
% \end{macrocode}
@@ -22507,8 +23022,10 @@ $1$ or $-1$.
\the\numexpr\expandafter\XINT_binom_div\the\numexpr #2\expandafter
!\romannumeral0\XINT_binom_mul #1!%
}%
-\def\XINT_binom_finish #1\Z!0!%
- {\XINT_unsep_cuzsmall #11\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W }%
+% \end{macrocode}
+% \begin{macrocode}
+\def\XINT_binom_finish #1;!0!%
+ {\XINT_unsep_cuzsmall #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax}%
% \end{macrocode}
% \lverb|Duplication de code seulement pour la boucle avec très
% petits coeffs, mais en plus on fait au maximum des possibilités. (on
@@ -22560,8 +23077,9 @@ $1$ or $-1$.
\expandafter\XINT_binom_vsmallfinish
\the\numexpr\XINT_binom_vsmallmuldiv #2!#1!%
}%
-\edef\XINT_binom_vsmallfinish 1#1!1!\Z!0!%
- {\noexpand\expandafter\space\noexpand\the\numexpr #1\relax}%
+\def\XINT_binom_vsmallfinish#1{%
+\def\XINT_binom_vsmallfinish1##1!1!;!0!{\expandafter#1\the\numexpr##1\relax}%
+}\XINT_binom_vsmallfinish{ }%
% \end{macrocode}
% \subsection{\csh{xintiiPFactorial}, \csh{xintiPFactorial}}
% \lverb?2015/11/29 for 1.2f. Partial factorial pfac(a,b)=(a+1)...b, only for
@@ -22594,7 +23112,9 @@ $1$ or $-1$.
\ifnum #3#4>\xint_c_x^viii_mone\xint_dothis\XINT_pfac_outofrange\fi
\xint_orthat \XINT_pfac_a #1#2.#3#4.%
}%
-\def\XINT_pfac_outofrange #1.#2.{\xintError:OutOfRangePFac\space 0}%
+\def\XINT_pfac_outofrange #1.#2.%
+ {\XINT_signalcondition{InvalidOperation}{PFactorial with
+ too big second arg: 99999999 < #2}{}{0}}%
\def\XINT_pfac_one #1.#2.{ 1}%
\def\XINT_pfac_zero #1.#2.{ 0}%
\def\XINT_pfac_neg -#1.-#2.%
@@ -22607,7 +23127,7 @@ $1$ or $-1$.
}%
\def\XINT_pfac_a #1.#2.%
{%
- \expandafter\XINT_pfac_b\the\numexpr \xint_c_i+#1.#2.100000001!1\Z!%
+ \expandafter\XINT_pfac_b\the\numexpr \xint_c_i+#1.#2.100000001!1;!%
1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W
}%
\def\XINT_pfac_b #1.%
@@ -22740,7 +23260,8 @@ $1$ or $-1$.
{\expandafter\XINT_dsx_append\romannumeral\XINT_rep #1\endcsname 0.}%
\def\XINT_iie_neg #1.#2;{ #2}%
% \end{macrocode}
-% \subsection{``Load \xintfracnameimp'' macros}
+% \subsection*{``Load \xintfracnameimp'' macros}
+% \addcontentsline{toc}{subsection}{``Load \xintfracnameimp'' macros}
% \lverb|Originally was used in \xintiiexpr. Transferred from xintfrac for 1.1.|
% \begin{macrocode}
\catcode`! 11
@@ -22750,8 +23271,7 @@ $1$ or $-1$.
\def\xintMinof {\Did_you_mean_iMinof?or_load_xintfrac!}%
\def\xintSum {\Did_you_mean_iiSum?or_load_xintfrac!}%
\def\xintPrd {\Did_you_mean_iiPrd?or_load_xintfrac!}%
-\def\xintPrdExpr {\Did_you_mean_iiPrdExpr?or_load_xintfrac!}%
-\def\xintSumExpr {\Did_you_mean_iiSumExpr?or_load_xintfrac!}%
+\catcode`! 12
\XINT_restorecatcodes_endinput%
% \end{macrocode}
%
@@ -22827,7 +23347,17 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintbinhex}%
- [2017/01/06 1.2k Expandable binary and hexadecimal conversions (JFB)]%
+ [2017/07/26 1.2l Expandable binary and hexadecimal conversions (JFB)]%
+% \end{macrocode}
+% \subsection{Antique helper macro}
+% \lverb!At 1.2, it was left in xint.sty rather than being moved to
+% xintcore.sty, thus breaking \xintHexToDec here.!
+% \begin{macrocode}
+\def\xint_cleanupzeros_andstop#1{%
+\def\xint_cleanupzeros_andstop ##1##2##3##4%
+{%
+ \expandafter#1\the\numexpr ##1##2##3##4\relax
+}}\xint_cleanupzeros_andstop{ }%
% \end{macrocode}
% \subsection{Constants, etc...}
% \lverb!1.08!
@@ -23110,10 +23640,11 @@ $1$ or $-1$.
{%
\expandafter\XINT_dtb_end_d\the\numexpr #1#2#3#4#5#6#7#8\relax
}%
-\edef\XINT_dtb_end_d #1#2#3#4#5#6#7#8#9%
+\def\XINT_dtb_end_d#1{%
+\def\XINT_dtb_end_d ##1##2##3##4##5##6##7##8##9%
{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8#9\relax
-}%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8##9\relax
+}}\XINT_dtb_end_d{ }%
% \end{macrocode}
% \subsection{\csh{xintHexToDec}}
% \lverb!1.08!
@@ -23149,10 +23680,10 @@ $1$ or $-1$.
{%
\expandafter\xint_cleanupzeros_andstop
\romannumeral0\XINT_rord_main {}#1%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
+ \xint:
}%
\def\XINT_htd_II_ci #1\XINT_htd_II_ciii
#2\W\W\W {\XINT_htd_II_d {}{"#2}{\xint_c_xvi}}%
@@ -23197,10 +23728,11 @@ $1$ or $-1$.
{%
\XINT_htd_II_end_b #1#3%
}%
-\edef\XINT_htd_II_end_b #1#2#3#4#5#6#7#8%
+\def\XINT_htd_II_end_b#1{%
+\def\XINT_htd_II_end_b ##1##2##3##4##5##6##7##8%
{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax
-}%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax
+}}\XINT_htd_II_end_b{ }%
% \end{macrocode}
% \subsection{\csh{xintBinToDec}}
% \lverb!1.08!
@@ -23240,15 +23772,16 @@ $1$ or $-1$.
{%
\expandafter\XINT_btd_II_c_end
\romannumeral0\XINT_rord_main {}#2%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
+ \xint:
}%
-\edef\XINT_btd_II_c_end #1#2#3#4#5#6%
+\def\XINT_btd_II_c_end#1{%
+\def\XINT_btd_II_c_end ##1##2##3##4##5##6%
{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6\relax
-}%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6\relax
+}}\XINT_btd_II_c_end{ }%
\def\XINT_btd_II_ci #1\XINT_btd_II_cvii #2\W\W\W\W\W\W\W
{\XINT_btd_II_d {}{#2}{\xint_c_ii }}%
\def\XINT_btd_II_cii #1\XINT_btd_II_cvii #2\W\W\W\W\W\W
@@ -23285,10 +23818,11 @@ $1$ or $-1$.
{%
\XINT_btd_II_end_b #1#3%
}%
-\edef\XINT_btd_II_end_b #1#2#3#4#5#6#7#8#9%
+\def\XINT_btd_II_end_b#1{%
+\def\XINT_btd_II_end_b ##1##2##3##4##5##6##7##8##9%
{%
- \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8#9\relax
-}%
+ \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8##9\relax
+}}\XINT_btd_II_end_b{ }%
\def\XINT_btd_I_a #1#2#3#4#5#6#7#8%
{%
\xint_gob_til_Z #3\XINT_btd_I_end_a\Z
@@ -23317,10 +23851,9 @@ $1$ or $-1$.
\def\xintbintohex #1%
{%
\expandafter\XINT_bth_checkin
- \romannumeral0\expandafter\XINT_num_loop
- \romannumeral`&&@#1\xint_relax\xint_relax
- \xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
+ \romannumeral0\expandafter\XINT_num_cleanup
+ \the\numexpr\expandafter\XINT_num_loop
+ \romannumeral`&&@#1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
\R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W
}%
\def\XINT_bth_checkin #1%
@@ -23392,9 +23925,9 @@ $1$ or $-1$.
}%
\def\XINT_htb_II_b #1#2#3\T
{%
- \XINT_num_loop #2#1%
- \xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
+ \expandafter\XINT_num_cleanup
+ \the\numexpr\expandafter\XINT_num_loop #2#1%
+ \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
% \end{macrocode}
% \subsection{\csh{xintCHexToBin}}
@@ -23436,12 +23969,12 @@ $1$ or $-1$.
\XINT_chtb_I\expandafter\expandafter\expandafter #1%
{%
\XINT_chtb_end_b #1%
- \xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
+ \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
}%
\def\XINT_chtb_end_b #1\W#2\W#3\W#4\W#5\W#6\W#7\W#8\W\endcsname
{%
- \XINT_num_loop
+ \expandafter\XINT_num_cleanup
+ \the\numexpr\expandafter\XINT_num_loop
}%
\XINT_restorecatcodes_endinput%
% \end{macrocode}
@@ -23527,7 +24060,7 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintgcd}%
- [2017/01/06 1.2k Euclide algorithm with xint package (JFB)]%
+ [2017/07/26 1.2l Euclide algorithm with xint package (JFB)]%
% \end{macrocode}
% \subsection{\csh{xintGCD}, \csh{xintiiGCD}}
% \begin{macrocode}
@@ -23566,9 +24099,9 @@ $1$ or $-1$.
\def\XINT_gcd_BisZero #1#2{ #2}%
\def\XINT_gcd_CheckRem #1#2\Z
{%
- \xint_gob_til_zero #1\xint_gcd_end0\XINT_gcd_loop {#1#2}%
+ \xint_gob_til_zero #1\XINT_gcd_end0\XINT_gcd_loop {#1#2}%
}%
-\def\xint_gcd_end0\XINT_gcd_loop #1#2{ #2}%
+\def\XINT_gcd_end0\XINT_gcd_loop #1#2{ #2}%
% \end{macrocode}
% \lverb|#1=B, #2=A|
% \begin{macrocode}
@@ -23616,18 +24149,23 @@ $1$ or $-1$.
\def\XINT_lcm_notzero #1#2#3{\xintiimul {#2}{\xintiiQuo{#3}{#1}}}%
% \end{macrocode}
% \subsection{\csh{xintBezout}}
+% \lverb|&
+% Produces {A}{B}{U}{V}{D} with UA-VB=D, D = PGCD(A,B) (positive).
+%
+% 1.2l raises InvalidOperation if both A and B vanish.
+%|
% \begin{macrocode}
\def\xintBezout {\romannumeral0\xintbezout }%
\def\xintbezout #1%
{%
- \expandafter\xint_bezout\expandafter {\romannumeral0\xintnum{#1}}%
+ \expandafter\XINT_bezout\expandafter {\romannumeral0\xintnum{#1}}%
}%
-\def\xint_bezout #1#2%
+\def\XINT_bezout #1#2%
{%
\expandafter\XINT_bezout_fork \romannumeral0\xintnum{#2}\Z #1\Z
}%
% \end{macrocode}
-% \lverb|#3#4 = A, #1#2=B|
+% \lverb|#3#4 = A, #1#2=B. Micro improvement for 1.2l.|
% \begin{macrocode}
\def\XINT_bezout_fork #1#2\Z #3#4\Z
{%
@@ -23635,39 +24173,39 @@ $1$ or $-1$.
#1#3\XINT_bezout_botharezero
#10\XINT_bezout_secondiszero
#30\XINT_bezout_firstiszero
- 00{\xint_UDsignsfork
+ 00\xint_UDsignsfork
+ \krof
#1#3\XINT_bezout_minusminus % A < 0, B < 0
#1-\XINT_bezout_minusplus % A > 0, B < 0
#3-\XINT_bezout_plusminus % A < 0, B > 0
--\XINT_bezout_plusplus % A > 0, B > 0
- \krof }%
\krof
{#2}{#4}#1#3{#3#4}{#1#2}% #1#2=B, #3#4=A
}%
-\edef\XINT_bezout_botharezero #1#2#3#4#5#6%
-{%
- \noexpand\xintError:NoBezoutForZeros\space {0}{0}{0}{0}{0}%
-}%
+\def\XINT_bezout_botharezero #1\krof#2#3#4#5#6#7%
+ {\XINT_signalcondition{InvalidOperation}
+ {No Bezout identity for 0 and 0}{}{{0}{0}{0}{0}{0}}}%
% \end{macrocode}
-% \lverb|&
-% attention première entrée doit être ici (-1)^n donc 1$\
-% #4#2 = 0 = A, B = #3#1|
+% \lverb|I stayed without looking at this file for perhaps three years and
+% much to my dismay I realized in January 2017 that both \xintBezout{0}{B} and
+% \xintBezout{A}{0} were completely buggy, due to a confusion about macro
+% parameters I guess... and no testing ! I must have tested, I don't
+% understand. (regression testing for xint was put in place only late 2016)
+%
+% Thus rewritten for 1.2l.|
% \begin{macrocode}
-\def\XINT_bezout_firstiszero #1#2#3#4#5#6%
+\def\XINT_bezout_firstiszero #1\krof#2#3#4#5#6#7%
{%
\xint_UDsignfork
- #3{ {0}{#3#1}{0}{1}{#1}}%
- -{ {0}{#3#1}{0}{-1}{#1}}%
+ #4{{0}{#7}{0}{1}{#2}}%
+ -{{0}{#7}{0}{-1}{#7}}%
\krof
}%
-% \end{macrocode}
-% \lverb|#4#2 = A, B = #3#1 = 0|
-% \begin{macrocode}
-\def\XINT_bezout_secondiszero #1#2#3#4#5#6%
+\def\XINT_bezout_secondiszero #1\krof#2#3#4#5#6#7%
{%
\xint_UDsignfork
- #4{ {#4#2}{0}{-1}{0}{#2}}%
- -{ {#4#2}{0}{1}{0}{#2}}%
+ #5{{#6}{0}{-1}{0}{#3}}%
+ -{{#6}{0}{1}{0}{#6}}%
\krof
}%
% \end{macrocode}
@@ -23687,10 +24225,11 @@ $1$ or $-1$.
{%
\expandafter\XINT_bezout_mm_postc\expandafter {#2}{#1}%
}%
-\edef\XINT_bezout_mm_postc #1#2#3#4#5%
-{%
- \space {#4}{#5}{#1}{#2}{#3}%
-}%
+% \end{macrocode}
+% \lverb|I was using \edef to insert a space token upfront, where there is in
+% fact no need for it ! Such ignorance is appalling ... |
+% \begin{macrocode}
+\def\XINT_bezout_mm_postc #1#2#3#4#5{{#4}{#5}{#1}{#2}{#3}}%
% \end{macrocode}
% \lverb|minusplus #4#2= A > 0, B < 0|
% \begin{macrocode}
@@ -23704,10 +24243,7 @@ $1$ or $-1$.
\expandafter\XINT_bezout_mp_postb\expandafter
{\romannumeral0\xintiiopp {#2}}{#1}%
}%
-\edef\XINT_bezout_mp_postb #1#2#3#4#5%
-{%
- \space {#4}{#5}{#2}{#1}{#3}%
-}%
+\def\XINT_bezout_mp_postb #1#2#3#4#5{{#4}{#5}{#2}{#1}{#3}}%
% \end{macrocode}
% \lverb|plusminus A < 0, B > 0|
% \begin{macrocode}
@@ -23721,10 +24257,7 @@ $1$ or $-1$.
\expandafter \XINT_bezout_pm_postb \expandafter
{\romannumeral0\xintiiopp{#1}}%
}%
-\edef\XINT_bezout_pm_postb #1#2#3#4#5%
-{%
- \space {#4}{#5}{#1}{#2}{#3}%
-}%
+\def\XINT_bezout_pm_postb #1#2#3#4#5{{#4}{#5}{#1}{#2}{#3}}%
% \end{macrocode}
% \lverb|plusplus|
% \begin{macrocode}
@@ -23736,10 +24269,7 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|la parité (-1)^N est en #1, et on la jette ici.|
% \begin{macrocode}
-\edef\XINT_bezout_pp_post #1#2#3#4#5%
-{%
- \space {#4}{#5}{#1}{#2}{#3}%
-}%
+\def\XINT_bezout_pp_post #1#2#3#4#5{{#4}{#5}{#1}{#2}{#3}}%
% \end{macrocode}
% \lverb|&
% n = 0: 1BAalpha(0)beta(0)alpha(-1)beta(-1)$\
@@ -23749,8 +24279,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_bezout_loop_a #1#2#3%
{%
- \expandafter\XINT_bezout_loop_b
- \expandafter{\the\numexpr -#1\expandafter }%
+ \expandafter\XINT_bezout_loop_b\the\numexpr -#1\expandafter.%
\romannumeral0\XINT_div_prepare {#2}{#3}{#2}%
}%
% \end{macrocode}
@@ -23761,11 +24290,11 @@ $1$ or $-1$.
% De plus ce n'est plus (-1)^n que l'on veut mais n. (ou dans un autre ordre)$\
% {-(-1)^n}{q(n)}{r(n)}{r(n-1)}{alpha(n-1)}{beta(n-1)}{alpha(n-2)}{beta(n-2)}|
% \begin{macrocode}
-\def\XINT_bezout_loop_b #1#2#3#4#5#6#7#8%
+\def\XINT_bezout_loop_b #1.#2#3#4#5#6#7#8%
{%
- \expandafter \XINT_bezout_loop_c \expandafter
- {\romannumeral0\xintiiadd{\XINT_mul_fork #5\Z #2\Z}{#7}}%
- {\romannumeral0\xintiiadd{\XINT_mul_fork #6\Z #2\Z}{#8}}%
+ \expandafter\XINT_bezout_loop_c\expandafter
+ {\romannumeral0\xintiiadd{\XINT_mul_fork #5\xint:#2\xint:}{#7}}%
+ {\romannumeral0\xintiiadd{\XINT_mul_fork #6\xint:#2\xint:}{#8}}%
{#1}{#3}{#4}{#5}{#6}%
}%
% \end{macrocode}
@@ -23773,8 +24302,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_bezout_loop_c #1#2%
{%
- \expandafter \XINT_bezout_loop_d \expandafter
- {#2}{#1}%
+ \expandafter\XINT_bezout_loop_d\expandafter{#2}{#1}%
}%
% \end{macrocode}
% \lverb|{beta(n)}{alpha(n)}{(-1)^(n+1)}{r(n)}{r(n-1)}{alpha(n-1)}{beta(n-1)}|
@@ -23788,35 +24316,26 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_bezout_loop_e #1#2\Z
{%
- \xint_gob_til_zero #1\xint_bezout_loop_exit0\XINT_bezout_loop_f
- {#1#2}%
+ \xint_gob_til_zero #1\XINT_bezout_loop_exit0\XINT_bezout_loop_f {#1#2}%
}%
% \end{macrocode}
-% \lverb|{r(n)}{(-1)^(n+1)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}|
+% \lverb|{r(n)}{(-1)^(n+1)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}
+% ->{(-1)^(n+1)}{r(n)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}
+% et itération|
% \begin{macrocode}
\def\XINT_bezout_loop_f #1#2%
{%
\XINT_bezout_loop_a {#2}{#1}%
}%
-% \end{macrocode}
-% \lverb|{(-1)^(n+1)}{r(n)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}
-% et itération|
-% \begin{macrocode}
-\def\xint_bezout_loop_exit0\XINT_bezout_loop_f #1#2%
+\def\XINT_bezout_loop_exit0\XINT_bezout_loop_f #1#2%
{%
\ifcase #2
\or \expandafter\XINT_bezout_exiteven
\else\expandafter\XINT_bezout_exitodd
\fi
}%
-\edef\XINT_bezout_exiteven #1#2#3#4#5%
-{%
- \space {#5}{#4}{#1}%
-}%
-\edef\XINT_bezout_exitodd #1#2#3#4#5%
-{%
- \space {-#5}{-#4}{#1}%
-}%
+\def\XINT_bezout_exiteven #1#2#3#4#5{{#5}{#4}{#1}}%
+\def\XINT_bezout_exitodd #1#2#3#4#5{{-#5}{-#4}{#1}}%
% \end{macrocode}
% \subsection{\csh{xintEuclideAlgorithm}}
% \lverb|&
@@ -23827,11 +24346,11 @@ $1$ or $-1$.
\def\xintEuclideAlgorithm {\romannumeral0\xinteuclidealgorithm }%
\def\xinteuclidealgorithm #1%
{%
- \expandafter \XINT_euc \expandafter{\romannumeral0\xintiabs {#1}}%
+ \expandafter\XINT_euc\expandafter{\romannumeral0\xintiabs {#1}}%
}%
\def\XINT_euc #1#2%
{%
- \expandafter\XINT_euc_fork \romannumeral0\xintiabs {#2}\Z #1\Z
+ \expandafter\XINT_euc_fork\romannumeral0\xintiabs {#2}\Z #1\Z
}%
% \end{macrocode}
% \lverb|Ici #3#4=A, #1#2=B|
@@ -23852,8 +24371,8 @@ $1$ or $-1$.
% On va renvoyer:$\
% {N}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}|
% \begin{macrocode}
-\def\XINT_euc_AisZero #1#2#3#4#5#6{ {1}{0}{#2}{#2}{0}{0}}%
-\def\XINT_euc_BisZero #1#2#3#4#5#6{ {1}{0}{#3}{#3}{0}{0}}%
+\def\XINT_euc_AisZero #1#2#3#4#5#6{{1}{0}{#2}{#2}{0}{0}}%
+\def\XINT_euc_BisZero #1#2#3#4#5#6{{1}{0}{#3}{#3}{0}{0}}%
% \end{macrocode}
% \lverb|&
% {n}{rn}{an}{{qn}{rn}}...{{A}{B}}{}\Z$\
@@ -23862,14 +24381,13 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_euc_a #1#2#3%
{%
- \expandafter\XINT_euc_b
- \expandafter {\the\numexpr #1+1\expandafter }%
+ \expandafter\XINT_euc_b\the\numexpr #1+\xint_c_i\expandafter.%
\romannumeral0\XINT_div_prepare {#2}{#3}{#2}%
}%
% \end{macrocode}
% \lverb|{n+1}{q(n+1)}{r(n+1)}{rn}{{qn}{rn}}...|
% \begin{macrocode}
-\def\XINT_euc_b #1#2#3#4%
+\def\XINT_euc_b #1.#2#3#4%
{%
\XINT_euc_c #3\Z {#1}{#3}{#4}{{#2}{#3}}%
}%
@@ -23879,7 +24397,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_euc_c #1#2\Z
{%
- \xint_gob_til_zero #1\xint_euc_end0\XINT_euc_a
+ \xint_gob_til_zero #1\XINT_euc_end0\XINT_euc_a
}%
% \end{macrocode}
% \lverb|&
@@ -23888,20 +24406,17 @@ $1$ or $-1$.
% {n+1}{0}{r(n)}{{q(n+1)}{r(n+1)}}.....{{q1}{r1}}{{A}{B}}{}\Z$\
% On veut renvoyer: {N=n+1}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}|
% \begin{macrocode}
-\def\xint_euc_end0\XINT_euc_a #1#2#3#4\Z%
+\def\XINT_euc_end0\XINT_euc_a #1#2#3#4\Z%
{%
- \expandafter\xint_euc_end_
+ \expandafter\XINT_euc_end_a
\romannumeral0%
\XINT_rord_main {}#4{{#1}{#3}}%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
-}%
-\edef\xint_euc_end_ #1#2#3%
-{%
- \space {#1}{#3}{#2}%
+ \xint:
}%
+\def\XINT_euc_end_a #1#2#3{{#1}{#3}{#2}}%
% \end{macrocode}
% \subsection{\csh{xintBezoutAlgorithm}}
% \lverb|&
@@ -23931,8 +24446,8 @@ $1$ or $-1$.
\krof
0{#1#2}{#3#4}1001{{#3#4}{#1#2}}{}\Z
}%
-\def\XINT_bezalg_AisZero #1#2#3\Z{ {1}{0}{0}{1}{#2}{#2}{1}{0}{0}{0}{0}{1}}%
-\def\XINT_bezalg_BisZero #1#2#3#4\Z{ {1}{0}{0}{1}{#3}{#3}{1}{0}{0}{0}{0}{1}}%
+\def\XINT_bezalg_AisZero #1#2#3\Z{{1}{0}{0}{1}{#2}{#2}{1}{0}{0}{0}{0}{1}}%
+\def\XINT_bezalg_BisZero #1#2#3#4\Z{{1}{0}{0}{1}{#3}{#3}{1}{0}{0}{0}{0}{1}}%
% \end{macrocode}
% \lverb|&
% pour préparer l'étape n+1 il faut
@@ -23942,15 +24457,14 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_bezalg_a #1#2#3%
{%
- \expandafter\XINT_bezalg_b
- \expandafter {\the\numexpr #1+1\expandafter }%
+ \expandafter\XINT_bezalg_b\the\numexpr #1+\xint_c_i\expandafter.%
\romannumeral0\XINT_div_prepare {#2}{#3}{#2}%
}%
% \end{macrocode}
% \lverb|&
% {n+1}{q(n+1)}{r(n+1)}{r(n)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}...|
% \begin{macrocode}
-\def\XINT_bezalg_b #1#2#3#4#5#6#7#8%
+\def\XINT_bezalg_b #1.#2#3#4#5#6#7#8%
{%
\expandafter\XINT_bezalg_c\expandafter
{\romannumeral0\xintiiadd {\xintiiMul {#6}{#2}}{#8}}%
@@ -23979,7 +24493,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_bezalg_e #1#2\Z
{%
- \xint_gob_til_zero #1\xint_bezalg_end0\XINT_bezalg_a
+ \xint_gob_til_zero #1\XINT_bezalg_end0\XINT_bezalg_a
}%
% \end{macrocode}
% \lverb|&
@@ -23990,15 +24504,15 @@ $1$ or $-1$.
% {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\
% {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}|
% \begin{macrocode}
-\def\xint_bezalg_end0\XINT_bezalg_a #1#2#3#4#5#6#7#8\Z
+\def\XINT_bezalg_end0\XINT_bezalg_a #1#2#3#4#5#6#7#8\Z
{%
- \expandafter\xint_bezalg_end_
+ \expandafter\XINT_bezalg_end_a
\romannumeral0%
\XINT_rord_main {}#8{{#1}{#3}}%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
+ \xint:
}%
% \end{macrocode}
% \lverb|&
@@ -24008,31 +24522,30 @@ $1$ or $-1$.
% {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\
% {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}|
% \begin{macrocode}
-\edef\xint_bezalg_end_ #1#2#3#4%
-{%
- \space {#1}{#3}{0}{1}{#2}{#4}{1}{0}%
-}%
+\def\XINT_bezalg_end_a #1#2#3#4{{#1}{#3}{0}{1}{#2}{#4}{1}{0}}%
% \end{macrocode}
% \subsection{\csh{xintGCDof}}
+% \lverb|1.2l adds protection against items being non-terminated \the\numexpr...|
% \begin{macrocode}
\def\xintGCDof {\romannumeral0\xintgcdof }%
-\def\xintgcdof #1{\expandafter\XINT_gcdof_a\romannumeral`&&@#1\relax }%
-\def\XINT_gcdof_a #1{\expandafter\XINT_gcdof_b\romannumeral`&&@#1\Z }%
-\def\XINT_gcdof_b #1\Z #2{\expandafter\XINT_gcdof_c\romannumeral`&&@#2\Z {#1}\Z}%
-\def\XINT_gcdof_c #1{\xint_gob_til_relax #1\XINT_gcdof_e\relax\XINT_gcdof_d #1}%
-\def\XINT_gcdof_d #1\Z {\expandafter\XINT_gcdof_b\romannumeral0\xintgcd {#1}}%
-\def\XINT_gcdof_e #1\Z #2\Z { #2}%
+\def\xintgcdof #1{\expandafter\XINT_gcdof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_gcdof_a #1{\expandafter\XINT_gcdof_b\romannumeral`&&@#1!}%
+\def\XINT_gcdof_b #1!#2{\expandafter\XINT_gcdof_c\romannumeral`&&@#2!{#1}!}%
+\def\XINT_gcdof_c #1{\xint_gob_til_xint: #1\XINT_gcdof_e\xint:\XINT_gcdof_d #1}%
+\def\XINT_gcdof_d #1!{\expandafter\XINT_gcdof_b\romannumeral0\xintgcd {#1}}%
+\def\XINT_gcdof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintLCMof}}
% \lverb|New with 1.09a|
+% \lverb|1.2l adds protection against items being non-terminated \the\numexpr...|
% \begin{macrocode}
\def\xintLCMof {\romannumeral0\xintlcmof }%
-\def\xintlcmof #1{\expandafter\XINT_lcmof_a\romannumeral`&&@#1\relax }%
-\def\XINT_lcmof_a #1{\expandafter\XINT_lcmof_b\romannumeral`&&@#1\Z }%
-\def\XINT_lcmof_b #1\Z #2{\expandafter\XINT_lcmof_c\romannumeral`&&@#2\Z {#1}\Z}%
-\def\XINT_lcmof_c #1{\xint_gob_til_relax #1\XINT_lcmof_e\relax\XINT_lcmof_d #1}%
-\def\XINT_lcmof_d #1\Z {\expandafter\XINT_lcmof_b\romannumeral0\xintlcm {#1}}%
-\def\XINT_lcmof_e #1\Z #2\Z { #2}%
+\def\xintlcmof #1{\expandafter\XINT_lcmof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_lcmof_a #1{\expandafter\XINT_lcmof_b\romannumeral`&&@#1!}%
+\def\XINT_lcmof_b #1!#2{\expandafter\XINT_lcmof_c\romannumeral`&&@#2!{#1}!}%
+\def\XINT_lcmof_c #1{\xint_gob_til_xint: #1\XINT_lcmof_e\xint:\XINT_lcmof_d #1}%
+\def\XINT_lcmof_d #1!{\expandafter\XINT_lcmof_b\romannumeral0\xintlcm {#1}}%
+\def\XINT_lcmof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintTypesetEuclideAlgorithm}}
% \lverb|&
@@ -24214,7 +24727,7 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintfrac}%
- [2017/01/06 1.2k Expandable operations on fractions (JFB)]%
+ [2017/07/26 1.2l Expandable operations on fractions (JFB)]%
% \end{macrocode}
% \subsection{\csh{XINT_cntSgnFork}}
% \lverb|1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or
@@ -24243,8 +24756,7 @@ $1$ or $-1$.
{%
\expandafter#1%
\the\numexpr \XINT_abs##1+%
- \XINT_len_fork ##2##3\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ \XINT_len_fork ##2##3\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye-\xint_c_i
\relax
@@ -24260,7 +24772,7 @@ $1$ or $-1$.
% \begin{macrocode}
\def\XINT_outfrac #1#2#3%
{%
- \ifcase\XINT_cntSgn #3\Z
+ \ifcase\XINT_cntSgn #3\xint:
\expandafter \XINT_outfrac_divisionbyzero
\or
\expandafter \XINT_outfrac_P
@@ -24269,14 +24781,14 @@ $1$ or $-1$.
\fi
{#2}{#3}[#1]%
}%
-\def\XINT_outfrac_divisionbyzero #1#2{\xintError:DivisionByZero\space #1/0}%
-\edef\XINT_outfrac_P #1#2%
+\def\XINT_outfrac_divisionbyzero #1#2%
{%
- \noexpand\if0\noexpand\XINT_Sgn #1\noexpand\Z
- \noexpand\expandafter\noexpand\XINT_outfrac_Zero
- \noexpand\fi
- \space #1/#2%
+ \XINT_signalcondition{DivisionByZero}{Division of #1 by #2}{}{0/1[0]}%
}%
+\def\XINT_outfrac_P#1{%
+\def\XINT_outfrac_P ##1##2%
+ {\if0\XINT_Sgn ##1\xint:\expandafter\XINT_outfrac_Zero\fi#1##1/##2}%
+}\XINT_outfrac_P{ }%
\def\XINT_outfrac_Zero #1[#2]{ 0/1[0]}%
\def\XINT_outfrac_N #1#2%
{%
@@ -24351,18 +24863,25 @@ $1$ or $-1$.
% allowing decimal digits and scientific part and possibly multiple leading
% signs.
%
+% 1.2l fixes frailty of \XINT_infrac (hence basically of all xintfrac macros)
+% respective to non terminated \numexpr input: \xintRaw{\the\numexpr1} for
+% example. The issue was that \numexpr sees the / and expands what's next.
+% But even \numexpr 1// for example creates an error, and to my mind this is
+% a defect of \numexpr. It should be able to trace back and see that / was
+% used as delimiter not as operator. Anyway, I thus fixed this problem
+% belatedly here regarding \XINT_infrac.
% |
% \begin{macrocode}
\def\XINT_inFrac {\romannumeral0\XINT_infrac }%
\def\XINT_infrac #1%
{%
- \expandafter\XINT_infrac_fork\romannumeral`&&@#1/\XINT_W[\XINT_W\XINT_T
+ \expandafter\XINT_infrac_fork\romannumeral`&&@#1\xint:/\XINT_W[\XINT_W\XINT_T
}%
\def\XINT_infrac_fork #1[#2%
{%
\xint_UDXINTWfork
- #2\XINT_frac_gen
- \XINT_W\XINT_infrac_res_a % strict A[N] or A/B[N] input
+ #2\XINT_frac_gen % input has no brackets [N]
+ \XINT_W\XINT_infrac_res_a % there is some [N], must be strict A[N] or A/B[N] input
\krof
#1[#2%
}%
@@ -24370,12 +24889,15 @@ $1$ or $-1$.
{%
\xint_gob_til_zero #1\XINT_infrac_res_zero 0\XINT_infrac_res_b #1%
}%
+% \end{macrocode}
+% \lverb|Note that input exponent is here ignored and forced to be zero.|
+% \begin{macrocode}
\def\XINT_infrac_res_zero 0\XINT_infrac_res_b #1\XINT_T {{0}{0}{1}}%
\def\XINT_infrac_res_b #1/#2%
{%
\xint_UDXINTWfork
- #2\XINT_infrac_res_ca
- \XINT_W\XINT_infrac_res_cb
+ #2\XINT_infrac_res_ca % it was A[N] input
+ \XINT_W\XINT_infrac_res_cb % it was A/B[N] input
\krof
#1/#2%
}%
@@ -24384,11 +24906,11 @@ $1$ or $-1$.
% 1.2f). As nobody reads xint documentation, no one will have noticed the
% fleeting possibility.|
% \begin{macrocode}
-\def\XINT_infrac_res_ca #1[#2]/\XINT_W[\XINT_W\XINT_T
+\def\XINT_infrac_res_ca #1[#2]\xint:/\XINT_W[\XINT_W\XINT_T
{\expandafter{\the\numexpr #2}{#1}{1}}%
\def\XINT_infrac_res_cb #1/#2[%
{\expandafter\XINT_infrac_res_cc\romannumeral`&&@#2~#1[}%
-\def\XINT_infrac_res_cc #1~#2[#3]/\XINT_W[\XINT_W\XINT_T
+\def\XINT_infrac_res_cc #1~#2[#3]\xint:/\XINT_W[\XINT_W\XINT_T
{\expandafter{\the\numexpr #3}{#2}{#1}}%
% \end{macrocode}
% \subsection{\csh{XINT_frac_gen}}
@@ -24407,13 +24929,16 @@ $1$ or $-1$.
\def\XINT_frac_gen #1/#2%
{%
\xint_UDXINTWfork
- #2\XINT_frac_gen_A
- \XINT_W\XINT_frac_gen_B
+ #2\XINT_frac_gen_A % there was no /
+ \XINT_W\XINT_frac_gen_B % there was a /
\krof
#1/#2%
}%
-\def\XINT_frac_gen_A #1/\XINT_W [\XINT_W {\XINT_frac_gen_C 0~1!#1ee.\XINT_W }%
-\def\XINT_frac_gen_B #1/#2/\XINT_W[%\XINT_W
+% \end{macrocode}
+% \lverb|Note that #1 is only expanded so far up to decimal mark or "e".|
+% \begin{macrocode}
+\def\XINT_frac_gen_A #1\xint:/\XINT_W [\XINT_W {\XINT_frac_gen_C 0~1!#1ee.\XINT_W }%
+\def\XINT_frac_gen_B #1/#2\xint:/\XINT_W[%\XINT_W
{%
\expandafter\XINT_frac_gen_Ba
\romannumeral`&&@#2ee.\XINT_W\XINT_Z #1ee.%\XINT_W
@@ -24432,12 +24957,13 @@ $1$ or $-1$.
{%
\expandafter\XINT_frac_gen_Bd\romannumeral`&&@#2.#1e%
}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_frac_gen_Bd #1.#2e#3e#4\XINT_Z
{%
\expandafter\XINT_frac_gen_C\the\numexpr #3-%
\numexpr\XINT_length_loop
- #1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
~#2#1!%
@@ -24453,9 +24979,8 @@ $1$ or $-1$.
\def\XINT_frac_gen_Ca #1~#2!#3e#4e#5\XINT_T
{%
\expandafter\XINT_frac_gen_F\the\numexpr #4-#1\expandafter
- ~\romannumeral0\XINT_num_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z~#3~%
+ ~\romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#3~%
}%
\def\XINT_frac_gen_Cb #1.#2e%
{%
@@ -24465,13 +24990,12 @@ $1$ or $-1$.
{%
\expandafter\XINT_frac_gen_F\the\numexpr #5-#2-%
\numexpr\XINT_length_loop
- #1\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
- \relax\expandafter~\romannumeral0\XINT_num_loop
- #3\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z
+ \relax\expandafter~%
+ \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop
+ #3\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z
~#4#1~%
}%
\def\XINT_frac_gen_F #1~#2%
@@ -24485,20 +25009,18 @@ $1$ or $-1$.
\def\XINT_frac_gen_Gdivbyzero #1~~#2~%
{%
\expandafter\XINT_frac_gen_Gdivbyzero_a
- \romannumeral0\XINT_num_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z~#1~%
+ \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#1~%
}%
\def\XINT_frac_gen_Gdivbyzero_a #1~#2~%
{%
- \xintError:DivisionByZero {#2}{#1}{0}%
+ \XINT_signalcondition{DivisionByZero}{Division of #1 by zero}{}{{#2}{#1}{0}}%
}%
\def\XINT_frac_gen_G #1#2#3~#4~#5~%
{%
\expandafter\XINT_frac_gen_Ga
- \romannumeral0\XINT_num_loop
- #1#5\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\Z~#3~{#2#4}%
+ \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop
+ #1#5\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#3~{#2#4}%
}%
\def\XINT_frac_gen_Ga #1#2~#3~%
{%
@@ -24514,10 +25036,10 @@ $1$ or $-1$.
{%
\expandafter\XINT_cuz_cnt_loop\expandafter
{\expandafter}\romannumeral0\XINT_rord_main {}#1%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax
+ \xint:
\R\R\R\R\R\R\R\R\Z
}%
\def\XINT_cuz_cnt #1%
@@ -24598,10 +25120,10 @@ $1$ or $-1$.
{%
\expandafter\space\expandafter
{\romannumeral0\XINT_rord_main {}#2%
- \xint_relax
+ \xint:
\xint_bye\xint_bye\xint_bye\xint_bye
\xint_bye\xint_bye\xint_bye\xint_bye
- \xint_relax }{#1}%
+ \xint:}{#1}%
}%
% \end{macrocode}
% \subsection{\csh{xintRaw}}
@@ -24694,7 +25216,7 @@ $1$ or $-1$.
}%
\def\XINT_numer #1%
{%
- \ifcase\XINT_cntSgn #1\Z
+ \ifcase\XINT_cntSgn #1\xint:
\expandafter\XINT_numer_B
\or
\expandafter\XINT_numer_A
@@ -24923,8 +25445,14 @@ $1$ or $-1$.
\krof
{#3#4}{#1#2}{#3#4}{#1#2}%
}%
-\def\XINT_irr_indeterminate #1#2#3#4#5{\xintError:NaN\space 0/0}%
-\def\XINT_irr_divisionbyzero #1#2#3#4#5{\xintError:DivisionByZero #5#2/0}%
+\def\XINT_irr_indeterminate #1#2#3#4#5%
+{%
+ \XINT_signalcondition{DivisionUndefined}{indeterminate: 0/0}{}{0/1}%
+}%
+\def\XINT_irr_divisionbyzero #1#2#3#4#5%
+{%
+ \XINT_signalcondition{DivisionByZero}{vanishing denominator: #5#2/0}{}{0/1}%
+}%
\def\XINT_irr_zero #1#2#3#4#5{ 0/1}% changed in 1.08
\def\XINT_irr_loop_a #1#2%
{%
@@ -24996,8 +25524,14 @@ $1$ or $-1$.
\krof
{#3#4}{#1#2}1001%
}%
-\def\XINT_jrr_indeterminate #1#2#3#4#5#6#7{\xintError:NaN\space 0/0}%
-\def\XINT_jrr_divisionbyzero #1#2#3#4#5#6#7{\xintError:DivisionByZero #7#2/0}%
+\def\XINT_jrr_indeterminate #1#2#3#4#5#6#7%
+{%
+ \XINT_signalcondition{DivisionUndefined}{indeterminate: 0/0}{}{0/1}%
+}%
+\def\XINT_jrr_divisionbyzero #1#2#3#4#5#6#7%
+{%
+ \XINT_signalcondition{DivisionByZero}{Vanishing denominator: #7#2/0}{}{0/1}%
+}%
\def\XINT_jrr_zero #1#2#3#4#5#6#7{ 0/1}% changed in 1.08
\def\XINT_jrr_loop_a #1#2%
{%
@@ -25007,8 +25541,8 @@ $1$ or $-1$.
\def\XINT_jrr_loop_b #1#2#3#4#5#6#7%
{%
\expandafter \XINT_jrr_loop_c \expandafter
- {\romannumeral0\xintiiadd{\XINT_mul_fork #4\Z #1\Z}{#6}}%
- {\romannumeral0\xintiiadd{\XINT_mul_fork #5\Z #1\Z}{#7}}%
+ {\romannumeral0\xintiiadd{\XINT_mul_fork #4\xint:#1\xint:}{#6}}%
+ {\romannumeral0\xintiiadd{\XINT_mul_fork #5\xint:#1\xint:}{#7}}%
{#2}{#3}{#4}{#5}%
}%
\def\XINT_jrr_loop_c #1#2%
@@ -25075,8 +25609,8 @@ $1$ or $-1$.
}%
\def\XINT_trunc_a #1#2#3#4.#5%
{%
- \if0\XINT_Sgn#2\Z\xint_dothis\XINT_trunc_zero\fi
- \if1\XINT_is_one#3XY\xint_dothis\XINT_trunc_sp_b\fi
+ \if0\XINT_Sgn#2\xint:\xint_dothis\XINT_trunc_zero\fi
+ \if1\XINT_is_One#3XY\xint_dothis\XINT_trunc_sp_b\fi
\xint_orthat\XINT_trunc_b #1+#4.{#2}{#3}#5#4.%
}%
\def\XINT_trunc_zero #1.#2.{ 0}%
@@ -25115,8 +25649,7 @@ $1$ or $-1$.
\expandafter\XINT_trunc_sp_Cc
\romannumeral0\expandafter\XINT_split_fromright_a
\the\numexpr#3-\numexpr\XINT_length_loop
- #2\xint_relax\xint_relax\xint_relax\xint_relax
- \xint_relax\xint_relax\xint_relax\xint_relax\xint_relax
+ #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:
\xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v
\xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye
.#2\xint_bye2345678\xint_bye..#1%
@@ -25213,8 +25746,8 @@ $1$ or $-1$.
}%
\def\XINT_round_a #1#2#3#4.%
{%
- \if0\XINT_Sgn#2\Z\xint_dothis\XINT_trunc_zero\fi
- \if1\XINT_is_one#3XY\xint_dothis\XINT_trunc_sp_b\fi
+ \if0\XINT_Sgn#2\xint:\xint_dothis\XINT_trunc_zero\fi
+ \if1\XINT_is_One#3XY\xint_dothis\XINT_trunc_sp_b\fi
\xint_orthat\XINT_trunc_b #1+#4.{#2}{#3}%
}%
\def\XINT_round_A{\expandafter\XINT_trunc_G\romannumeral0\XINT_round_B}%
@@ -25258,7 +25791,8 @@ $1$ or $-1$.
\def\XINT_xtrunc_zero #1#2]{0.\romannumeral\xintreplicate{#1}0}%
\def\XINT_xtrunc_d #1#2#3/#4[#5]%
{%
- \XINT_xtrunc_prepare_a#4\R\R\R\R\R\R\R\R {10}0000001\W !{#4};{#5}{#2}{#1#3}%
+ \XINT_xtrunc_prepare_a#4\R\R\R\R\R\R\R\R {10}0000001\W
+ !{#4};{#5}{#2}{#1#3}%
}%
\def\XINT_xtrunc_prepare_a #1#2#3#4#5#6#7#8#9%
{%
@@ -25308,12 +25842,13 @@ $1$ or $-1$.
{%
\expandafter\XINT_xtrunc_e\expandafter
{\expandafter\XINT_xtrunc_small_a
- \the\numexpr #1/\xint_c_ii\expandafter.\the\numexpr \xint_c_x^viii+#1!}%
+ \the\numexpr #1/\xint_c_ii\expandafter
+ .\the\numexpr \xint_c_x^viii+#1!}%
}%
\def\XINT_xtrunc_small_a #1.#2!#3%
{%
\expandafter\XINT_div_small_b\the\numexpr #1\expandafter
- .\the\numexpr #2\expandafter!%
+ \xint:\the\numexpr #2\expandafter!%
\romannumeral0\XINT_div_small_ba #3\R\R\R\R\R\R\R\R{10}0000001\W
#3\XINT_sepbyviii_Z_end 2345678\relax
}%
@@ -25325,7 +25860,8 @@ $1$ or $-1$.
}%
\def\XINT_xtrunc_prepare_d #1#2#3#4#5#6#7#8#9%
{%
- \expandafter\XINT_xtrunc_prepare_e\xint_gob_til_dot #1#2#3#4#5#6#7#8#9!%
+ \expandafter\XINT_xtrunc_prepare_e
+ \xint_gob_til_dot #1#2#3#4#5#6#7#8#9!%
}%
\def\XINT_xtrunc_prepare_e #1!#2!#3#4%
{%
@@ -25336,14 +25872,13 @@ $1$ or $-1$.
\expandafter\XINT_xtrunc_prepare_g\expandafter
\XINT_div_prepare_g
\the\numexpr #1#2#3#4#5#6#7#8+\xint_c_i\expandafter
- .\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter
- .\the\numexpr #1#2#3#4#5#6#7#8\expandafter
- .\romannumeral0\XINT_sepandrev_andcount
+ \xint:\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter
+ \xint:\the\numexpr #1#2#3#4#5#6#7#8\expandafter
+ \xint:\romannumeral0\XINT_sepandrev_andcount
#1#2#3#4#5#6#7#8#9\XINT_rsepbyviii_end_A 2345678%
- \XINT_rsepbyviii_end_B 2345678%
- \relax\xint_c_ii\xint_c_iii
- \R.\xint_c_vi\R.\xint_c_v\R.\xint_c_iv\R.\xint_c_iii
- \R.\xint_c_ii\R.\xint_c_i\R.\xint_c_\W
+ \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i
+ \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi
+ \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W
\X
}%
\def\XINT_xtrunc_prepare_g #1;{\XINT_xtrunc_e {#1}}%
@@ -25353,15 +25888,15 @@ $1$ or $-1$.
\expandafter\XINT_xtrunc_I
\else
\expandafter\XINT_xtrunc_II
- \fi #2.{#1}%
+ \fi #2\xint:{#1}%
}%
-\def\XINT_xtrunc_I -#1.#2#3#4%
+\def\XINT_xtrunc_I -#1\xint:#2#3#4%
{%
\expandafter\XINT_xtrunc_I_a\romannumeral0#2{#4}{#2}{#1}{#3}%
}%
\def\XINT_xtrunc_I_a #1#2#3#4#5%
{%
- \expandafter\XINT_xtrunc_I_b\the\numexpr #4-#5.#4.{#5}{#2}{#3}{#1}%
+ \expandafter\XINT_xtrunc_I_b\the\numexpr #4-#5\xint:#4\xint:{#5}{#2}{#3}{#1}%
}%
\def\XINT_xtrunc_I_b #1%
{%
@@ -25370,12 +25905,12 @@ $1$ or $-1$.
-\XINT_xtrunc_IB_c
\krof #1%
}%
-\def\XINT_xtrunc_IA_c -#1.#2.#3#4#5#6%
+\def\XINT_xtrunc_IA_c -#1\xint:#2\xint:#3#4#5#6%
{%
\expandafter\XINT_xtrunc_IA_d
- \the\numexpr#2-\xintLength{#6}.{#6}%
+ \the\numexpr#2-\xintLength{#6}\xint:{#6}%
\expandafter\XINT_xtrunc_IA_xd
- \the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i.#1.{#5}{#4}%
+ \the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\xint:#1\xint:{#5}{#4}%
}%
\def\XINT_xtrunc_IA_d #1%
{%
@@ -25384,56 +25919,56 @@ $1$ or $-1$.
-\XINT_xtrunc_IAB_e
\krof #1%
}%
-\def\XINT_xtrunc_IAA_e -#1.#2%
+\def\XINT_xtrunc_IAA_e -#1\xint:#2%
{%
\romannumeral0\XINT_split_fromleft
#1.#2\xint_gobble_i\xint_bye2345678\xint_bye..%
}%
-\def\XINT_xtrunc_IAB_e #1.#2%
+\def\XINT_xtrunc_IAB_e #1\xint:#2%
{%
0.\romannumeral\XINT_rep#1\endcsname0#2%
}%
-\def\XINT_xtrunc_IA_xd #1.#2.%
+\def\XINT_xtrunc_IA_xd #1\xint:#2\xint:%
{%
- \expandafter\XINT_xtrunc_IA_xe\the\numexpr #2-\xint_c_ii^vi*#1.#1.%
+ \expandafter\XINT_xtrunc_IA_xe\the\numexpr #2-\xint_c_ii^vi*#1\xint:#1\xint:%
}%
-\def\XINT_xtrunc_IA_xe #1.#2.#3#4%
+\def\XINT_xtrunc_IA_xe #1\xint:#2\xint:#3#4%
{%
\XINT_xtrunc_loop {#2}{#4}{#3}{#1}%
}%
-\def\XINT_xtrunc_IB_c #1.#2.#3#4#5#6%
+\def\XINT_xtrunc_IB_c #1\xint:#2\xint:#3#4#5#6%
{%
\expandafter\XINT_xtrunc_IB_d
\romannumeral0\XINT_split_xfork #1.#6\xint_bye2345678\xint_bye..{#3}%
}%
\def\XINT_xtrunc_IB_d #1.#2.#3%
{%
- \expandafter\XINT_xtrunc_IA_d\the\numexpr#3-\xintLength {#1}.{#1}%
+ \expandafter\XINT_xtrunc_IA_d\the\numexpr#3-\xintLength {#1}\xint:{#1}%
}%
-\def\XINT_xtrunc_II #1.%
+\def\XINT_xtrunc_II #1\xint:%
{%
- \expandafter\XINT_xtrunc_II_a\romannumeral\xintreplicate{#1}0.%
+ \expandafter\XINT_xtrunc_II_a\romannumeral\xintreplicate{#1}0\xint:%
}%
-\def\XINT_xtrunc_II_a #1.#2#3#4%
+\def\XINT_xtrunc_II_a #1\xint:#2#3#4%
{%
\expandafter\XINT_xtrunc_II_b
- \the\numexpr (#3+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\expandafter.%
- \the\numexpr #3\expandafter.\romannumeral0#2{#4#1}{#2}%
+ \the\numexpr (#3+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\expandafter\xint:%
+ \the\numexpr #3\expandafter\xint:\romannumeral0#2{#4#1}{#2}%
}%
-\def\XINT_xtrunc_II_b #1.#2.%
+\def\XINT_xtrunc_II_b #1\xint:#2\xint:%
{%
- \expandafter\XINT_xtrunc_II_c\the\numexpr #2-\xint_c_ii^vi*#1.#1.%
+ \expandafter\XINT_xtrunc_II_c\the\numexpr #2-\xint_c_ii^vi*#1\xint:#1\xint:%
}%
-\def\XINT_xtrunc_II_c #1.#2.#3#4#5%
+\def\XINT_xtrunc_II_c #1\xint:#2\xint:#3#4#5%
{%
#3.\XINT_xtrunc_loop {#2}{#4}{#5}{#1}%
}%
\def\XINT_xtrunc_loop #1%
{%
\ifnum #1=\xint_c_ \expandafter\XINT_xtrunc_transition\fi
- \expandafter\XINT_xtrunc_loop_a\the\numexpr #1-\xint_c_i.%
+ \expandafter\XINT_xtrunc_loop_a\the\numexpr #1-\xint_c_i\xint:%
}%
-\def\XINT_xtrunc_loop_a #1.#2#3%
+\def\XINT_xtrunc_loop_a #1\xint:#2#3%
{%
\expandafter\XINT_xtrunc_loop_b\romannumeral0#3%
{#20000000000000000000000000000000000000000000000000000000000000000}%
@@ -25445,7 +25980,7 @@ $1$ or $-1$.
\XINT_xtrunc_loop {#3}{#2}%
}%
\def\XINT_xtrunc_transition
- \expandafter\XINT_xtrunc_loop_a\the\numexpr #1.#2#3#4%
+ \expandafter\XINT_xtrunc_loop_a\the\numexpr #1\xint:#2#3#4%
{%
\ifnum #4=\xint_c_ \expandafter\xint_gobble_vi\fi
\expandafter\XINT_xtrunc_finish\expandafter
@@ -25465,11 +26000,11 @@ $1$ or $-1$.
\expandafter\XINT_xtrunc_sp_I
\else
\expandafter\XINT_xtrunc_sp_II
- \fi #1.%
+ \fi #1\xint:%
}%
-\def\XINT_xtrunc_sp_I -#1.#2#3%
+\def\XINT_xtrunc_sp_I -#1\xint:#2#3%
{%
- \expandafter\XINT_xtrunc_sp_I_a\the\numexpr #1-#3.#1.{#3}{#2}%
+ \expandafter\XINT_xtrunc_sp_I_a\the\numexpr #1-#3\xint:#1\xint:{#3}{#2}%
}%
\def\XINT_xtrunc_sp_I_a #1%
{%
@@ -25478,10 +26013,10 @@ $1$ or $-1$.
-\XINT_xtrunc_sp_IB_b
\krof #1%
}%
-\def\XINT_xtrunc_sp_IA_b -#1.#2.#3#4%
+\def\XINT_xtrunc_sp_IA_b -#1\xint:#2\xint:#3#4%
{%
\expandafter\XINT_xtrunc_sp_IA_c
- \the\numexpr#2-\xintLength{#4}.{#4}\romannumeral\XINT_rep#1\endcsname0%
+ \the\numexpr#2-\xintLength{#4}\xint:{#4}\romannumeral\XINT_rep#1\endcsname0%
}%
\def\XINT_xtrunc_sp_IA_c #1%
{%
@@ -25490,25 +26025,25 @@ $1$ or $-1$.
-\XINT_xtrunc_sp_IAB
\krof #1%
}%
-\def\XINT_xtrunc_sp_IAA -#1.#2%
+\def\XINT_xtrunc_sp_IAA -#1\xint:#2%
{%
\romannumeral0\XINT_split_fromleft
#1.#2\xint_gobble_i\xint_bye2345678\xint_bye..%
}%
-\def\XINT_xtrunc_sp_IAB #1.#2%
+\def\XINT_xtrunc_sp_IAB #1\xint:#2%
{%
0.\romannumeral\XINT_rep#1\endcsname0#2%
}%
-\def\XINT_xtrunc_sp_IB_b #1.#2.#3#4%
+\def\XINT_xtrunc_sp_IB_b #1\xint:#2\xint:#3#4%
{%
\expandafter\XINT_xtrunc_sp_IB_c
\romannumeral0\XINT_split_xfork #1.#4\xint_bye2345678\xint_bye..{#3}%
}%
\def\XINT_xtrunc_sp_IB_c #1.#2.#3%
{%
- \expandafter\XINT_xtrunc_sp_IA_c\the\numexpr#3-\xintLength {#1}.{#1}%
+ \expandafter\XINT_xtrunc_sp_IA_c\the\numexpr#3-\xintLength {#1}\xint:{#1}%
}%
-\def\XINT_xtrunc_sp_II #1.#2#3%
+\def\XINT_xtrunc_sp_II #1\xint:#2#3%
{%
#2\romannumeral\XINT_rep#1\endcsname0.\romannumeral\XINT_rep#3\endcsname0%
}%
@@ -25577,7 +26112,7 @@ $1$ or $-1$.
}%
\def\XINT_fadd_E #1#2%
{%
- \if0\XINT_Sgn #2\Z
+ \if0\XINT_Sgn #2\xint:
\expandafter\XINT_fadd_F
\else\expandafter\XINT_fadd_K
\fi {#1}%
@@ -25593,7 +26128,7 @@ $1$ or $-1$.
}%
\def\XINT_fadd_Ea #1#2%
{%
- \if0\XINT_Sgn #2\Z
+ \if0\XINT_Sgn #2\xint:
\expandafter\XINT_fadd_Fa
\else\expandafter\XINT_fadd_K
\fi {#1}%
@@ -25603,18 +26138,20 @@ $1$ or $-1$.
\expandafter\XINT_fadd_G
\romannumeral0\xintiiadd {\xintiiMul {#4}{#1}}{#5}/#3%[#6]%
}%
-\def\XINT_fadd_G #1{\if0#1\XINT_fadd_iszero\fi\space #1}%
+\def\XINT_fadd_G #1{%
+\def\XINT_fadd_G ##1{\if0##1\expandafter\XINT_fadd_iszero\fi#1##1}%
+}\XINT_fadd_G{ }%
\def\XINT_fadd_K #1#2#3#4#5%
{%
\expandafter\XINT_fadd_L
\romannumeral0\xintiiadd {\xintiiMul {#2}{#5}}{\xintiiMul {#3}{#4}}.%
{{#2}{#3}}%
}%
-\def\XINT_fadd_L #1{\if0#1\XINT_fadd_iszero\fi \XINT_fadd_M #1}%
+\def\XINT_fadd_L #1{\if0#1\expandafter\XINT_fadd_iszero\fi\XINT_fadd_M #1}%
\def\XINT_fadd_M #1.#2{\expandafter\XINT_fadd_N \expandafter
{\romannumeral0\xintiimul #2}{#1}}%
\def\XINT_fadd_N #1#2{ #2/#1}%
-\edef\XINT_fadd_iszero\fi #1[#2]{\noexpand\fi\space 0/1[0]}% ou [#2] originel?
+\def\XINT_fadd_iszero #1[#2]{ 0/1[0]}% ou [#2] originel?
% \end{macrocode}
% \subsection{\csh{xintSub}}
% \begin{macrocode}
@@ -25631,26 +26168,27 @@ $1$ or $-1$.
\krof }%
% \end{macrocode}
% \subsection{\csh{xintSum}}
+% \lverb|There was (not documented anymore since 1.09d, 2013/10/22) a macro
+% \xintSumExpr, but it has been deleted at 1.2l.
+%
+% Empty items are not accepted by this macro.|
% \begin{macrocode}
\def\xintSum {\romannumeral0\xintsum }%
-\def\xintsum #1{\xintsumexpr #1\relax }%
-\def\xintSumExpr {\romannumeral0\xintsumexpr }%
-\def\xintsumexpr {\expandafter\XINT_fsumexpr\romannumeral`&&@}%
+\def\xintsum #1{\expandafter\XINT_fsumexpr\romannumeral`&&@#1\xint:}%
\def\XINT_fsumexpr {\XINT_fsum_loop_a {0/1[0]}}%
\def\XINT_fsum_loop_a #1#2%
{%
- \expandafter\XINT_fsum_loop_b \romannumeral`&&@#2\Z {#1}%
+ \expandafter\XINT_fsum_loop_b \romannumeral`&&@#2\xint:{#1}%
}%
\def\XINT_fsum_loop_b #1%
{%
- \xint_gob_til_relax #1\XINT_fsum_finished\relax
- \XINT_fsum_loop_c #1%
+ \xint_gob_til_xint: #1\XINT_fsum_finished\xint:\XINT_fsum_loop_c #1%
}%
-\def\XINT_fsum_loop_c #1\Z #2%
+\def\XINT_fsum_loop_c #1\xint:#2%
{%
\expandafter\XINT_fsum_loop_a\expandafter{\romannumeral0\xintadd {#2}{#1}}%
}%
-\def\XINT_fsum_finished #1\Z #2{ #2}%
+\def\XINT_fsum_finished #1\xint:\xint:#2{ #2}%
% \end{macrocode}
% \subsection{\csh{xintMul}}
% \begin{macrocode}
@@ -25703,7 +26241,8 @@ $1$ or $-1$.
% \begin{macrocode}
\def\xintipow #1#2%
{%
- \expandafter\xint_pow\the\numexpr \xintNum{#2}\expandafter.\romannumeral0\xintnum{#1}\Z%
+ \expandafter\xint_pow\the\numexpr \xintNum{#2}\expandafter
+ .\romannumeral0\xintnum{#1}\xint:
}%
\def\xintPow {\romannumeral0\xintpow }%
\def\xintpow #1%
@@ -25777,26 +26316,26 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintPrd}}
+% \lverb|There was (not documented anymore since 1.09d, 2013/10/22) a macro
+% \xintPrdExpr, but it has been deleted at 1.2l
+% |
% \begin{macrocode}
\def\xintPrd {\romannumeral0\xintprd }%
-\def\xintprd #1{\xintprdexpr #1\relax }%
-\def\xintPrdExpr {\romannumeral0\xintprdexpr }%
-\def\xintprdexpr {\expandafter\XINT_fprdexpr \romannumeral`&&@}%
+\def\xintprd #1{\expandafter\XINT_fprdexpr \romannumeral`&&@#1\xint:}%
\def\XINT_fprdexpr {\XINT_fprod_loop_a {1/1[0]}}%
\def\XINT_fprod_loop_a #1#2%
{%
- \expandafter\XINT_fprod_loop_b \romannumeral`&&@#2\Z {#1}%
+ \expandafter\XINT_fprod_loop_b \romannumeral`&&@#2\xint:{#1}%
}%
\def\XINT_fprod_loop_b #1%
{%
- \xint_gob_til_relax #1\XINT_fprod_finished\relax
- \XINT_fprod_loop_c #1%
+ \xint_gob_til_xint: #1\XINT_fprod_finished\xint:\XINT_fprod_loop_c #1%
}%
-\def\XINT_fprod_loop_c #1\Z #2%
+\def\XINT_fprod_loop_c #1\xint:#2%
{%
\expandafter\XINT_fprod_loop_a\expandafter{\romannumeral0\xintmul {#1}{#2}}%
}%
-\def\XINT_fprod_finished #1\Z #2{ #2}%
+\def\XINT_fprod_finished#1\xint:\xint:#2{ #2}%
% \end{macrocode}
% \subsection{\csh{xintDiv}}
% \begin{macrocode}
@@ -25851,7 +26390,7 @@ $1$ or $-1$.
{\expandafter\XINT_mod_b\expandafter #1\romannumeral0\xintraw{#3}#2.}%
\def\XINT_mod_b #1#2% #1 de A, #2 de B.
{%
- \if0#2\xint_dothis\XINT_mod_divbyzero\fi
+ \if0#2\xint_dothis{\XINT_mod_divbyzero #1#2}\fi
\if0#1\xint_dothis\XINT_mod_aiszero\fi
\if-#2\xint_dothis{\XINT_mod_bneg #1}\fi
\xint_orthat{\XINT_mod_bpos #1#2}%
@@ -25870,7 +26409,10 @@ $1$ or $-1$.
-{\XINT_mod_pos #1}%
\krof
}%
-\def\XINT_mod_divbyzero #1.{\xintError:DivisionByZero\space 0/1[0]}%
+\def\XINT_mod_divbyzero #1#2[#3]#4.%
+{%
+ \XINT_signalcondition{DivisionByZero}{Division by #2[#3] of #1#4}{}{0/1[0]}%
+}%
\def\XINT_mod_aiszero #1.{ 0/1[0]}%
\def\XINT_mod_pos #1#2/#3[#4]#5/#6[#7].%
{%
@@ -25890,7 +26432,7 @@ $1$ or $-1$.
\def\xintisone #1{\expandafter\XINT_fracisone
\romannumeral0\xintrawwithzeros{#1}\Z }%
\def\XINT_fracisone #1/#2\Z
- {\if0\XINT_Cmp {#1}{#2}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}%
+ {\if0\xintiiCmp {#1}{#2}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}%
% \end{macrocode}
% \subsection{\csh{xintGeq}}
% \begin{macrocode}
@@ -25926,7 +26468,7 @@ $1$ or $-1$.
\def\XINT_fgeq_D #1#2#3%
{%
\expandafter\XINT_cntSgnFork\romannumeral`&&@\expandafter\XINT_cntSgn
- \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z
+ \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\xint:
{ 0}{\XINT_fgeq_E #2\Z {#3}{#1}}{ 1}%
}%
\def\XINT_fgeq_E #1%
@@ -25986,17 +26528,21 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintMaxof}}
+% \lverb|1.2l protects \xintMaxof against items with non terminated
+% \the\numexpr expressions.
+%
+% The macro is not compatible with an empty list.|
% \begin{macrocode}
\def\xintMaxof {\romannumeral0\xintmaxof }%
-\def\xintmaxof #1{\expandafter\XINT_maxof_a\romannumeral`&&@#1\relax }%
-\def\XINT_maxof_a #1{\expandafter\XINT_maxof_b\romannumeral0\xintraw{#1}\Z }%
-\def\XINT_maxof_b #1\Z #2%
- {\expandafter\XINT_maxof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintmaxof #1{\expandafter\XINT_maxof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_maxof_a #1{\expandafter\XINT_maxof_b\romannumeral0\xintraw{#1}!}%
+\def\XINT_maxof_b #1!#2%
+ {\expandafter\XINT_maxof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_maxof_c #1%
- {\xint_gob_til_relax #1\XINT_maxof_e\relax\XINT_maxof_d #1}%
-\def\XINT_maxof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_maxof_e\xint:\XINT_maxof_d #1}%
+\def\XINT_maxof_d #1!%
{\expandafter\XINT_maxof_b\romannumeral0\xintmax {#1}}%
-\def\XINT_maxof_e #1\Z #2\Z { #2}%
+\def\XINT_maxof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintMin}}
% \begin{macrocode}
@@ -26036,21 +26582,25 @@ $1$ or $-1$.
}%
% \end{macrocode}
% \subsection{\csh{xintMinof}}
+% \lverb|1.2l protects \xintMinof against items with non terminated
+% \the\numexpr expressions.
+%
+% The macro is not compatible with an empty list.|
% \begin{macrocode}
\def\xintMinof {\romannumeral0\xintminof }%
-\def\xintminof #1{\expandafter\XINT_minof_a\romannumeral`&&@#1\relax }%
-\def\XINT_minof_a #1{\expandafter\XINT_minof_b\romannumeral0\xintraw{#1}\Z }%
-\def\XINT_minof_b #1\Z #2%
- {\expandafter\XINT_minof_c\romannumeral`&&@#2\Z {#1}\Z}%
+\def\xintminof #1{\expandafter\XINT_minof_a\romannumeral`&&@#1\xint:}%
+\def\XINT_minof_a #1{\expandafter\XINT_minof_b\romannumeral0\xintraw{#1}!}%
+\def\XINT_minof_b #1!#2%
+ {\expandafter\XINT_minof_c\romannumeral`&&@#2!{#1}!}%
\def\XINT_minof_c #1%
- {\xint_gob_til_relax #1\XINT_minof_e\relax\XINT_minof_d #1}%
-\def\XINT_minof_d #1\Z
+ {\xint_gob_til_xint: #1\XINT_minof_e\xint:\XINT_minof_d #1}%
+\def\XINT_minof_d #1!%
{\expandafter\XINT_minof_b\romannumeral0\xintmin {#1}}%
-\def\XINT_minof_e #1\Z #2\Z { #2}%
+\def\XINT_minof_e #1!#2!{ #2}%
% \end{macrocode}
% \subsection{\csh{xintCmp}}
% \begin{macrocode}
-%\def\xintCmp {\romannumeral0\xintcmp }%
+\def\xintCmp {\romannumeral0\xintcmp }%
\def\xintcmp #1%
{%
\expandafter\XINT_fcmp\expandafter {\romannumeral0\xintraw {#1}}%
@@ -26104,7 +26654,7 @@ $1$ or $-1$.
\def\XINT_fcmp_D #1#2#3%
{%
\expandafter\XINT_cntSgnFork\romannumeral`&&@\expandafter\XINT_cntSgn
- \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z
+ \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\xint:
{ -1}{\XINT_fcmp_E #2\Z {#3}{#1}}{ 1}%
}%
\def\XINT_fcmp_E #1%
@@ -26139,7 +26689,7 @@ $1$ or $-1$.
% \subsection{\csh{xintSgn}}
% \begin{macrocode}
\def\xintSgn {\romannumeral0\xintsgn }%
-\def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\Z }%
+\def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\xint:}%
% \end{macrocode}
% \subsection{Floating point macros}
%
@@ -26248,19 +26798,19 @@ $1$ or $-1$.
% simply make now \xintFloat a wrapper of \XINTinFloat.|
% \begin{macrocode}
\def\xintFloat {\romannumeral0\xintfloat }%
-\def\xintfloat #1{\XINT_float_chkopt #1\xint_relax }%
+\def\xintfloat #1{\XINT_float_chkopt #1\xint:}%
\def\XINT_float_chkopt #1%
{%
\ifx [#1\expandafter\XINT_float_opt
\else\expandafter\XINT_float_noopt
\fi #1%
}%
-\def\XINT_float_noopt #1\xint_relax
+\def\XINT_float_noopt #1\xint:%
{%
\expandafter\XINT_float_post
\romannumeral0\XINTinfloat[\XINTdigits]{#1}\XINTdigits.%
}%
-\def\XINT_float_opt [\xint_relax #1]%
+\def\XINT_float_opt [\xint:#1]%
{%
\expandafter\XINT_float_opt_a\the\numexpr #1.%
}%
@@ -26358,7 +26908,7 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|micro boost au lieu d'utiliser \XINT_isOne{#4}, mais pas bon style.|
% \begin{macrocode}
- \if1\XINT_is_one#4XY%
+ \if1\XINT_is_One#4XY%
\expandafter\XINT_infloat_sp
\else\expandafter\XINT_infloat_fork
\fi #3.{#1}{#2}{#4}%
@@ -26669,19 +27219,19 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintPFloat {\romannumeral0\xintpfloat }%
-\def\xintpfloat #1{\XINT_pfloat_chkopt #1\xint_relax }%
+\def\xintpfloat #1{\XINT_pfloat_chkopt #1\xint:}%
\def\XINT_pfloat_chkopt #1%
{%
\ifx [#1\expandafter\XINT_pfloat_opt
\else\expandafter\XINT_pfloat_noopt
\fi #1%
}%
-\def\XINT_pfloat_noopt #1\xint_relax
+\def\XINT_pfloat_noopt #1\xint:%
{%
\expandafter\XINT_pfloat_a
\romannumeral0\xintfloat [\XINTdigits]{#1};\XINTdigits.%
}%
-\def\XINT_pfloat_opt [\xint_relax #1]%
+\def\XINT_pfloat_opt [\xint:#1]%
{%
\expandafter\XINT_pfloat_opt_a \the\numexpr #1.%
}%
@@ -26778,22 +27328,22 @@ $1$ or $-1$.
%|
% \begin{macrocode}
\def\xintFloatAdd {\romannumeral0\xintfloatadd }%
-\def\xintfloatadd #1{\XINT_fladd_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatadd #1{\XINT_fladd_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatAdd {\romannumeral0\XINTinfloatadd }%
-\def\XINTinfloatadd #1{\XINT_fladd_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatadd #1{\XINT_fladd_chkopt \XINTinfloatS #1\xint:}%
\def\XINT_fladd_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_fladd_opt
\else\expandafter\XINT_fladd_noopt
\fi #1#2%
}%
-\def\XINT_fladd_noopt #1#2\xint_relax #3%
+\def\XINT_fladd_noopt #1#2\xint:#3%
{%
#1[\XINTdigits]%
{\expandafter\XINT_FL_add_a
\romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.{#3}}%
}%
-\def\XINT_fladd_opt #1[\xint_relax #2]%#3#4%
+\def\XINT_fladd_opt #1[\xint:#2]%#3#4%
{%
\expandafter\XINT_fladd_opt_a\the\numexpr #2.#1%
}%
@@ -26829,22 +27379,22 @@ $1$ or $-1$.
%
% \begin{macrocode}
\def\xintFloatSub {\romannumeral0\xintfloatsub }%
-\def\xintfloatsub #1{\XINT_flsub_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatsub #1{\XINT_flsub_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatSub {\romannumeral0\XINTinfloatsub }%
-\def\XINTinfloatsub #1{\XINT_flsub_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatsub #1{\XINT_flsub_chkopt \XINTinfloatS #1\xint:}%
\def\XINT_flsub_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flsub_opt
\else\expandafter\XINT_flsub_noopt
\fi #1#2%
}%
-\def\XINT_flsub_noopt #1#2\xint_relax #3%
+\def\XINT_flsub_noopt #1#2\xint:#3%
{%
#1[\XINTdigits]%
{\expandafter\XINT_FL_add_a
\romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.{\xintOpp{#3}}}%
}%
-\def\XINT_flsub_opt #1[\xint_relax #2]%#3#4%
+\def\XINT_flsub_opt #1[\xint:#2]%#3#4%
{%
\expandafter\XINT_flsub_opt_a\the\numexpr #2.#1%
}%
@@ -26868,22 +27418,22 @@ $1$ or $-1$.
% one was amply enough).|
% \begin{macrocode}
\def\xintFloatMul {\romannumeral0\xintfloatmul }%
-\def\xintfloatmul #1{\XINT_flmul_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatmul #1{\XINT_flmul_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatMul {\romannumeral0\XINTinfloatmul }%
-\def\XINTinfloatmul #1{\XINT_flmul_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatmul #1{\XINT_flmul_chkopt \XINTinfloatS #1\xint:}%
\def\XINT_flmul_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flmul_opt
\else\expandafter\XINT_flmul_noopt
\fi #1#2%
}%
-\def\XINT_flmul_noopt #1#2\xint_relax #3%
+\def\XINT_flmul_noopt #1#2\xint:#3%
{%
#1[\XINTdigits]%
{\expandafter\XINT_FL_mul_a
\romannumeral0\XINTinfloatS[\XINTdigits]{#2}\XINTdigits.{#3}}%
}%
-\def\XINT_flmul_opt #1[\xint_relax #2]%#3#4%
+\def\XINT_flmul_opt #1[\xint:#2]%#3#4%
{%
\expandafter\XINT_flmul_opt_a\the\numexpr #2.#1%
}%
@@ -26914,22 +27464,22 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintFloatDiv {\romannumeral0\xintfloatdiv }%
-\def\xintfloatdiv #1{\XINT_fldiv_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatdiv #1{\XINT_fldiv_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatDiv {\romannumeral0\XINTinfloatdiv }%
-\def\XINTinfloatdiv #1{\XINT_fldiv_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatdiv #1{\XINT_fldiv_chkopt \XINTinfloatS #1\xint:}%
\def\XINT_fldiv_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_fldiv_opt
\else\expandafter\XINT_fldiv_noopt
\fi #1#2%
}%
-\def\XINT_fldiv_noopt #1#2\xint_relax #3%
+\def\XINT_fldiv_noopt #1#2\xint:#3%
{%
#1[\XINTdigits]%
{\expandafter\XINT_FL_div_a
\romannumeral0\XINTinfloatS[\XINTdigits]{#3}\XINTdigits.{#2}}%
}%
-\def\XINT_fldiv_opt #1[\xint_relax #2]%#3#4%
+\def\XINT_fldiv_opt #1[\xint:#2]%#3#4%
{%
\expandafter\XINT_fldiv_opt_a\the\numexpr #2.#1%
}%
@@ -26960,9 +27510,9 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintFloatPow {\romannumeral0\xintfloatpow}%
-\def\xintfloatpow #1{\XINT_flpow_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatpow #1{\XINT_flpow_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatPow {\romannumeral0\XINTinfloatpow }%
-\def\XINTinfloatpow #1{\XINT_flpow_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatpow #1{\XINT_flpow_chkopt \XINTinfloatS #1\xint:}%
\def\XINT_flpow_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flpow_opt
@@ -26970,12 +27520,12 @@ $1$ or $-1$.
\fi
#1#2%
}%
-\def\XINT_flpow_noopt #1#2\xint_relax #3%
+\def\XINT_flpow_noopt #1#2\xint:#3%
{%
\expandafter\XINT_flpow_checkB_a
\the\numexpr #3.\XINTdigits.{#2}{#1[\XINTdigits]}%
}%
-\def\XINT_flpow_opt #1[\xint_relax #2]%
+\def\XINT_flpow_opt #1[\xint:#2]%
{%
\expandafter\XINT_flpow_opt_a\the\numexpr #2.#1%
}%
@@ -26997,6 +27547,8 @@ $1$ or $-1$.
\expandafter\XINT_flpow_checkB_c
\the\numexpr\xintLength{#2}+\xint_c_iii.#3.#2.{#1}%
}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_flpow_checkB_c #1.#2.%
{%
\expandafter\XINT_flpow_checkB_d\the\numexpr#1+#2.#1.#2.%
@@ -27025,8 +27577,10 @@ $1$ or $-1$.
}%
\def\XINT_flpow_zero #1[#2]#3#4#5#6%
{%
- \if 1#51\xint_afterfi {#6{0[0]}}\else
- \xint_afterfi {\xintError:DivisionByZero #6{1[2147483648]}}\fi
+ #6{\if 1#51\xint_dothis {0[0]}\fi
+ \xint_orthat
+ {\XINT_signalcondition{DivisionByZero}{0 to the power #4}{}{0[0]}}%
+ }%
}%
\def\XINT_flpow_b #1#2[#3]#4#5%
{%
@@ -27156,9 +27710,9 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintFloatPower {\romannumeral0\xintfloatpower}%
-\def\xintfloatpower #1{\XINT_flpower_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatpower #1{\XINT_flpower_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatPower {\romannumeral0\XINTinfloatpower }%
-\def\XINTinfloatpower #1{\XINT_flpower_chkopt \XINTinfloatS #1\xint_relax }%
+\def\XINTinfloatpower #1{\XINT_flpower_chkopt \XINTinfloatS #1\xint:}%
% \end{macrocode}
% \lverb|First the special macro for use by the expression parser which checks
% if one raises to an half-integer exponent. This is always with \XINTdigits
@@ -27219,12 +27773,12 @@ $1$ or $-1$.
\fi
#1#2%
}%
-\def\XINT_flpower_noopt #1#2\xint_relax #3%
+\def\XINT_flpower_noopt #1#2\xint:#3%
{%
\expandafter\XINT_flpower_checkB_a
\romannumeral0\xintnum{#3}.\XINTdigits.{#2}{#1[\XINTdigits]}%
}%
-\def\XINT_flpower_opt #1[\xint_relax #2]%
+\def\XINT_flpower_opt #1[\xint:#2]%
{%
\expandafter\XINT_flpower_opt_a\the\numexpr #2.#1%
}%
@@ -27342,9 +27896,9 @@ $1$ or $-1$.
% \subsection{\csh{xintFloatFac}, \csh{XINTFloatFac}}
% \begin{macrocode}
\def\xintFloatFac {\romannumeral0\xintfloatfac}%
-\def\xintfloatfac #1{\XINT_flfac_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatfac #1{\XINT_flfac_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatFac {\romannumeral0\XINTinfloatfac }%
-\def\XINTinfloatfac #1{\XINT_flfac_chkopt \XINTinfloat #1\xint_relax }%
+\def\XINTinfloatfac #1{\XINT_flfac_chkopt \XINTinfloat #1\xint:}%
\def\XINT_flfac_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flfac_opt
@@ -27352,12 +27906,12 @@ $1$ or $-1$.
\fi
#1#2%
}%
-\def\XINT_flfac_noopt #1#2\xint_relax
+\def\XINT_flfac_noopt #1#2\xint:
{%
\expandafter\XINT_FL_fac_fork_a
\the\numexpr \xintNum{#2}.\xint_c_i \XINTdigits\XINT_FL_fac_out{#1[\XINTdigits]}%
}%
-\def\XINT_flfac_opt #1[\xint_relax #2]%
+\def\XINT_flfac_opt #1[\xint:#2]%
{%
\expandafter\XINT_flfac_opt_a\the\numexpr #2.#1%
}%
@@ -27377,7 +27931,11 @@ $1$ or $-1$.
% \end{macrocode}
% \lverb|1.2f XINT_FL_fac_isneg returns 0, earlier versions used 1 here.|
% \begin{macrocode}
-\def\XINT_FL_fac_isneg #1.#2#3#4#5{\expandafter\xintError:FactorialOfNegative #5{0[0]}}%
+\def\XINT_FL_fac_isneg #1.#2#3#4#5%
+{%
+ #5{\XINT_signalcondition{InvalidOperation}
+ {Factorial of negative: (-#1)!}{}{0[0]}}%
+}%
\def\XINT_FL_fac_fork_b #1.%
{%
\ifnum #1>\xint_c_x^viii_mone\xint_dothis\XINT_FL_fac_toobig\fi
@@ -27387,7 +27945,11 @@ $1$ or $-1$.
\xint_orthat\XINT_FL_fac_small
#1.%
}%
-\def\XINT_FL_fac_toobig #1.#2#3#4#5{\expandafter\xintError:TooBigFactorial #5{1[0]}}%
+\def\XINT_FL_fac_toobig #1.#2#3#4#5%
+{%
+ #5{\XINT_signalcondition{InvalidOperation}
+ {Factorial of too big: (#1)!}{}{0[0]}}%
+}%
% \end{macrocode}
% \lverb?Computations are done with Q blocks of eight digits. When a
% multiplication has a carry, hence creates Q+1 blocks, the least significant
@@ -27447,8 +28009,10 @@ $1$ or $-1$.
}%
\def\XINT_FL_fac_countdigits #1#2#3#4#5#6#7#8{\XINT_FL_fac_countdone }%
\def\XINT_FL_fac_countdone #1#2\Z {#1}%
-\def\XINT_FL_fac_out #1\Z![#2]#3{#3{\romannumeral0\XINT_mul_out
- #1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W [#2]}}%
+\def\XINT_FL_fac_out #1;![#2]#3%
+ {#3{\romannumeral0\XINT_mul_out
+ #1;!1\R!1\R!1\R!1\R!%
+ 1\R!1\R!1\R!1\R!\W [#2]}}%
\def\XINT_FL_fac_vbigloop_a #1.#2.%
{%
\XINT_FL_fac_bigloop_a \xint_c_x^iv.#2.%
@@ -27532,15 +28096,16 @@ $1$ or $-1$.
\def\XINT_FL_fac_addzeros #1.%
{%
\ifnum #1=\xint_c_viii \expandafter\XINT_FL_fac_addzeros_exit\fi
- \expandafter\XINT_FL_fac_addzeros\the\numexpr #1-\xint_c_viii.100000000!%
+ \expandafter\XINT_FL_fac_addzeros
+ \the\numexpr #1-\xint_c_viii.100000000!%
}%
% \end{macrocode}
% \lverb|We will manipulate by successive *small* multiplications Q blocks
-% 1<8d>!, terminated by 1\Z!. We need a custom small multiplication which
+% 1<8d>!, terminated by 1;!. We need a custom small multiplication which
% tells us when it has create a new block, and the least significant one
% should be dropped.|
% \begin{macrocode}
-\def\XINT_FL_fac_addzeros_exit #1.#2.#3#4{\XINT_FL_fac_smallloop_loop #3#21\Z![-#4]}%
+\def\XINT_FL_fac_addzeros_exit #1.#2.#3#4{\XINT_FL_fac_smallloop_loop #3#21;![-#4]}%
\def\XINT_FL_fac_smallloop_loop #1.#2.%
{%
\ifnum #1>#2 \expandafter\XINT_FL_fac_loop_exit\fi
@@ -27560,7 +28125,7 @@ $1$ or $-1$.
\def\XINT_FL_fac_mul_a #1-#2%
{%
\if#21\xint_afterfi{\expandafter\space\xint_gob_til_exclam}\else
- \expandafter\space\fi #11\Z!%
+ \expandafter\space\fi #11;!%
}%
\def\XINT_FL_fac_minimulwc_a #1#2#3#4#5!#6#7#8#9%
{%
@@ -27569,18 +28134,18 @@ $1$ or $-1$.
\def\XINT_FL_fac_minimulwc_b #1#2#3#4!#5%
{%
\expandafter\XINT_FL_fac_minimulwc_c
- \the\numexpr \xint_c_x^ix+#5+#2*#4.{{#1}{#2}{#3}{#4}}%
+ \the\numexpr \xint_c_x^ix+#5+#2*#4!{{#1}{#2}{#3}{#4}}%
}%
-\def\XINT_FL_fac_minimulwc_c 1#1#2#3#4#5#6.#7%
+\def\XINT_FL_fac_minimulwc_c 1#1#2#3#4#5#6!#7%
{%
\expandafter\XINT_FL_fac_minimulwc_d {#1#2#3#4#5}#7{#6}%
}%
\def\XINT_FL_fac_minimulwc_d #1#2#3#4#5%
{%
\expandafter\XINT_FL_fac_minimulwc_e
- \the\numexpr \xint_c_x^ix+#1+#2*#5+#3*#4.{#2}{#4}%
+ \the\numexpr \xint_c_x^ix+#1+#2*#5+#3*#4!{#2}{#4}%
}%
-\def\XINT_FL_fac_minimulwc_e 1#1#2#3#4#5#6.#7#8#9%
+\def\XINT_FL_fac_minimulwc_e 1#1#2#3#4#5#6!#7#8#9%
{%
1#6#9\expandafter!%
\the\numexpr\expandafter\XINT_FL_fac_smallmul
@@ -27588,7 +28153,7 @@ $1$ or $-1$.
}%
\def\XINT_FL_fac_smallmul 1#1!#21#3!%
{%
- \xint_gob_til_Z #3\XINT_FL_fac_smallmul_end\Z
+ \xint_gob_til_sc #3\XINT_FL_fac_smallmul_end;%
\XINT_FL_fac_minimulwc_a #2!#3!{#1}{#2}%
}%
% \end{macrocode}
@@ -27600,7 +28165,7 @@ $1$ or $-1$.
% (a \numexpr muste be stopped, and leaving a - as delimiter is good as it
% will not arise earlier.)|
% \begin{macrocode}
-\def\XINT_FL_fac_smallmul_end\Z\XINT_FL_fac_minimulwc_a #1!\Z!#2#3[#4]%
+\def\XINT_FL_fac_smallmul_end;\XINT_FL_fac_minimulwc_a #1!;!#2#3[#4]%
{%
\ifnum #2=\xint_c_
\expandafter\xint_firstoftwo\else
@@ -27619,9 +28184,9 @@ $1$ or $-1$.
% condition 0<=a<=b<10^8 is violated. Same as for \xintiiPFactorial.|
% \begin{macrocode}
\def\xintFloatPFactorial {\romannumeral0\xintfloatpfactorial}%
-\def\xintfloatpfactorial #1{\XINT_flpfac_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatpfactorial #1{\XINT_flpfac_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatPFactorial {\romannumeral0\XINTinfloatpfactorial }%
-\def\XINTinfloatpfactorial #1{\XINT_flpfac_chkopt \XINTinfloat #1\xint_relax }%
+\def\XINTinfloatpfactorial #1{\XINT_flpfac_chkopt \XINTinfloat #1\xint:}%
\def\XINT_flpfac_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flpfac_opt
@@ -27629,13 +28194,13 @@ $1$ or $-1$.
\fi
#1#2%
}%
-\def\XINT_flpfac_noopt #1#2\xint_relax #3%
+\def\XINT_flpfac_noopt #1#2\xint:#3%
{%
\expandafter\XINT_FL_pfac_fork
\the\numexpr \xintNum{#2}\expandafter.%
\the\numexpr \xintNum{#3}.\xint_c_i{\XINTdigits}{#1[\XINTdigits]}%
}%
-\def\XINT_flpfac_opt #1[\xint_relax #2]%
+\def\XINT_flpfac_opt #1[\xint:#2]%
{%
\expandafter\XINT_flpfac_opt_b\the\numexpr #2.#1%
}%
@@ -27653,7 +28218,11 @@ $1$ or $-1$.
\ifnum #3#4>\xint_c_x^viii_mone\xint_dothis\XINT_FL_pfac_outofrange\fi
\xint_orthat \XINT_FL_pfac_increaseP #1#2.#3#4.%
}%
-\def\XINT_FL_pfac_outofrange #1.#2.#3#4#5{\xintError:OutOfRangePFac #5{0[0]}}%
+\def\XINT_FL_pfac_outofrange #1.#2.#3#4#5%
+{%
+ #5{\XINT_signalcondition{InvalidOperation}
+ {pfactorial second arg too big: 99999999 < #2}{}{0[0]}}%
+}%
\def\XINT_FL_pfac_one #1.#2.#3#4#5{#5{1[0]}}%
\def\XINT_FL_pfac_zero #1.#2.#3#4#5{#5{0[0]}}%
\def\XINT_FL_pfac_neg -#1.-#2.%
@@ -27687,7 +28256,7 @@ $1$ or $-1$.
{%
\expandafter\XINT_FL_pfac_b\the\numexpr \xint_c_i+#2\expandafter.%
\the\numexpr#3\expandafter.%
- \romannumeral0\XINT_FL_pfac_addzeroes #1.100000001!1\Z![-#1]%
+ \romannumeral0\XINT_FL_pfac_addzeroes #1.100000001!1;![-#1]%
}%
\def\XINT_FL_pfac_addzeroes #1.%
{%
@@ -27822,21 +28391,21 @@ $1$ or $-1$.
% integers.|
% \begin{macrocode}
\def\xintFloatBinomial {\romannumeral0\xintfloatbinomial}%
-\def\xintfloatbinomial #1{\XINT_flbinom_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatbinomial #1{\XINT_flbinom_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatBinomial {\romannumeral0\XINTinfloatbinomial }%
-\def\XINTinfloatbinomial #1{\XINT_flbinom_chkopt \XINTinfloat #1\xint_relax }%
+\def\XINTinfloatbinomial #1{\XINT_flbinom_chkopt \XINTinfloat #1\xint:}%
\def\XINT_flbinom_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flbinom_opt
\else\expandafter\XINT_flbinom_noopt
\fi #1#2%
}%
-\def\XINT_flbinom_noopt #1#2\xint_relax #3%
+\def\XINT_flbinom_noopt #1#2\xint:#3%
{%
\expandafter\XINT_FL_binom_a
\the\numexpr\xintNum{#2}\expandafter.\the\numexpr\xintNum{#3}.\XINTdigits.#1%
}%
-\def\XINT_flbinom_opt #1[\xint_relax #2]#3#4%
+\def\XINT_flbinom_opt #1[\xint:#2]#3#4%
{%
\expandafter\XINT_FL_binom_a
\the\numexpr\xintNum{#3}\expandafter.\the\numexpr\xintNum{#4}\expandafter.%
@@ -27848,20 +28417,30 @@ $1$ or $-1$.
}%
\def\XINT_FL_binom_fork #1#2.#3#4.#5#6.%
{%
- \if-#5\xint_dothis \XINT_FL_binom_outofrange\fi
+ \if-#5\xint_dothis \XINT_FL_binom_neg\fi
\if-#1\xint_dothis \XINT_FL_binom_zero\fi
\if-#3\xint_dothis \XINT_FL_binom_zero\fi
\if0#1\xint_dothis \XINT_FL_binom_one\fi
\if0#3\xint_dothis \XINT_FL_binom_one\fi
- \ifnum #5#6>\xint_c_x^viii_mone \xint_dothis\XINT_FL_binom_outofrange\fi
+ \ifnum #5#6>\xint_c_x^viii_mone \xint_dothis\XINT_FL_binom_toobig\fi
\ifnum #1#2>#3#4 \xint_dothis\XINT_FL_binom_ab \fi
\xint_orthat\XINT_FL_binom_aa
#1#2.#3#4.#5#6.%
}%
-\def\XINT_FL_binom_outofrange #1.#2.#3.#4.#5%
- {\xintError:OutOfRangeBinomial #5[#4]{0[0]}}%
+\def\XINT_FL_binom_neg #1.#2.#3.#4.#5%
+{%
+ #5[#4]{\XINT_signalcondition{InvalidOperation}
+ {binomial with first arg negative: #3}{}{0[0]}}%
+}%
+\def\XINT_FL_binom_toobig #1.#2.#3.#4.#5%
+{%
+ #5[#4]{\XINT_signalcondition{InvalidOperation}
+ {binomial with first arg too big: 99999999 < #3}{}{0[0]}}%
+}%
\def\XINT_FL_binom_one #1.#2.#3.#4.#5{#5[#4]{1[0]}}%
\def\XINT_FL_binom_zero #1.#2.#3.#4.#5{#5[#4]{0[0]}}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_FL_binom_aa #1.#2.#3.#4.#5%
{%
#5[#4]{\xintDiv{\XINT_FL_pfac_increaseP
@@ -27904,21 +28483,21 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintFloatSqrt {\romannumeral0\xintfloatsqrt }%
-\def\xintfloatsqrt #1{\XINT_flsqrt_chkopt \xintfloat #1\xint_relax }%
+\def\xintfloatsqrt #1{\XINT_flsqrt_chkopt \xintfloat #1\xint:}%
\def\XINTinFloatSqrt {\romannumeral0\XINTinfloatsqrt }%
-\def\XINTinfloatsqrt #1{\XINT_flsqrt_chkopt \XINTinfloat #1\xint_relax }%
+\def\XINTinfloatsqrt #1{\XINT_flsqrt_chkopt \XINTinfloat #1\xint:}%
\def\XINT_flsqrt_chkopt #1#2%
{%
\ifx [#2\expandafter\XINT_flsqrt_opt
\else\expandafter\XINT_flsqrt_noopt
\fi #1#2%
}%
-\def\XINT_flsqrt_noopt #1#2\xint_relax
+\def\XINT_flsqrt_noopt #1#2\xint:%
{%
\expandafter\XINT_FL_sqrt_a
\romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.#1%
}%
-\def\XINT_flsqrt_opt #1[\xint_relax #2]%#3%
+\def\XINT_flsqrt_opt #1[\xint:#2]%#3%
{%
\expandafter\XINT_flsqrt_opt_a\the\numexpr #2.#1%
}%
@@ -27935,7 +28514,15 @@ $1$ or $-1$.
\krof
}%[
\def\XINT_FL_sqrt_iszero #1]#2.#3{#3[#2]{0[0]}}%
-\def\XINT_FL_sqrt_isneg #1]#2.#3{\xintError:RootOfNegative #3[#2]{0[0]}}%
+\def\XINT_FL_sqrt_isneg #1]#2.#3%
+{%
+ #3[#2]{\XINT_signalcondition{InvalidOperation}
+ {Square root of negative: -#1]}{}{0[0]}}%
+}%
+% \end{macrocode}
+%\lverb|&
+% |
+% \begin{macrocode}
\def\XINT_FL_sqrt_pos #1[#2]#3.%
{%
\expandafter\XINT_flsqrt
@@ -28002,19 +28589,19 @@ $1$ or $-1$.
% |
% \begin{macrocode}
\def\xintFloatE {\romannumeral0\xintfloate }%
-\def\xintfloate #1{\XINT_floate_chkopt #1\xint_relax }%
+\def\xintfloate #1{\XINT_floate_chkopt #1\xint:}%
\def\XINT_floate_chkopt #1%
{%
\ifx [#1\expandafter\XINT_floate_opt
\else\expandafter\XINT_floate_noopt
\fi #1%
}%
-\def\XINT_floate_noopt #1\xint_relax
+\def\XINT_floate_noopt #1\xint:%
{%
\expandafter\XINT_floate_post
\romannumeral0\XINTinfloat[\XINTdigits]{#1}\XINTdigits.%
}%
-\def\XINT_floate_opt [\xint_relax #1]%
+\def\XINT_floate_opt [\xint:#1]%
{%
\expandafter\XINT_floate_opt_a\the\numexpr #1.%
}%
@@ -28127,7 +28714,7 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintseries}%
- [2017/01/06 1.2k Expandable partial sums with xint package (JFB)]%
+ [2017/07/26 1.2l Expandable partial sums with xint package (JFB)]%
% \end{macrocode}
% \subsection{\csh{xintSeries}}
% \begin{macrocode}
@@ -28438,7 +29025,7 @@ $1$ or $-1$.
% just adapted the code to the case of floats.|
% \begin{macrocode}
\def\xintFloatPowerSeries {\romannumeral0\xintfloatpowerseries }%
-\def\xintfloatpowerseries #1{\XINT_flpowseries_chkopt #1\xint_relax }%
+\def\xintfloatpowerseries #1{\XINT_flpowseries_chkopt #1\xint:}%
\def\XINT_flpowseries_chkopt #1%
{%
\ifx [#1\expandafter\XINT_flpowseries_opt
@@ -28446,13 +29033,13 @@ $1$ or $-1$.
\fi
#1%
}%
-\def\XINT_flpowseries_noopt #1\xint_relax #2%
+\def\XINT_flpowseries_noopt #1\xint:#2%
{%
\expandafter\XINT_flpowseries\expandafter
{\the\numexpr #1\expandafter}\expandafter
{\the\numexpr #2}\XINTdigits
}%
-\def\XINT_flpowseries_opt [\xint_relax #1]#2#3%
+\def\XINT_flpowseries_opt [\xint:#1]#2#3%
{%
\expandafter\XINT_flpowseries\expandafter
{\the\numexpr #2\expandafter}\expandafter
@@ -28507,7 +29094,7 @@ $1$ or $-1$.
% \lverb|1.08a|
% \begin{macrocode}
\def\xintFloatPowerSeriesX {\romannumeral0\xintfloatpowerseriesx }%
-\def\xintfloatpowerseriesx #1{\XINT_flpowseriesx_chkopt #1\xint_relax }%
+\def\xintfloatpowerseriesx #1{\XINT_flpowseriesx_chkopt #1\xint:}%
\def\XINT_flpowseriesx_chkopt #1%
{%
\ifx [#1\expandafter\XINT_flpowseriesx_opt
@@ -28515,13 +29102,13 @@ $1$ or $-1$.
\fi
#1%
}%
-\def\XINT_flpowseriesx_noopt #1\xint_relax #2%
+\def\XINT_flpowseriesx_noopt #1\xint:#2%
{%
\expandafter\XINT_flpowseriesx\expandafter
{\the\numexpr #1\expandafter}\expandafter
{\the\numexpr #2}\XINTdigits
}%
-\def\XINT_flpowseriesx_opt [\xint_relax #1]#2#3%
+\def\XINT_flpowseriesx_opt [\xint:#1]#2#3%
{%
\expandafter\XINT_flpowseriesx\expandafter
{\the\numexpr #2\expandafter}\expandafter
@@ -28625,25 +29212,25 @@ $1$ or $-1$.
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintcfrac}%
- [2017/01/06 1.2k Expandable continued fractions with xint package (JFB)]%
+ [2017/07/26 1.2l Expandable continued fractions with xint package (JFB)]%
% \end{macrocode}
% \subsection{\csh{xintCFrac}}
% \begin{macrocode}
\def\xintCFrac {\romannumeral0\xintcfrac }%
\def\xintcfrac #1%
{%
- \XINT_cfrac_opt_a #1\xint_relax
+ \XINT_cfrac_opt_a #1\xint:
}%
\def\XINT_cfrac_opt_a #1%
{%
\ifx[#1\XINT_cfrac_opt_b\fi \XINT_cfrac_noopt #1%
}%
-\def\XINT_cfrac_noopt #1\xint_relax
+\def\XINT_cfrac_noopt #1\xint:
{%
\expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z
\relax\relax
}%
-\def\XINT_cfrac_opt_b\fi\XINT_cfrac_noopt [\xint_relax #1]%
+\def\XINT_cfrac_opt_b\fi\XINT_cfrac_noopt [\xint:#1]%
{%
\fi\csname XINT_cfrac_opt#1\endcsname
}%
@@ -28707,30 +29294,30 @@ $1$ or $-1$.
% \subsection{\csh{xintGCFrac}}
% \begin{macrocode}
\def\xintGCFrac {\romannumeral0\xintgcfrac }%
-\def\xintgcfrac #1{\XINT_gcfrac_opt_a #1\xint_relax }%
+\def\xintgcfrac #1{\XINT_gcfrac_opt_a #1\xint:}%
\def\XINT_gcfrac_opt_a #1%
{%
\ifx[#1\XINT_gcfrac_opt_b\fi \XINT_gcfrac_noopt #1%
}%
-\def\XINT_gcfrac_noopt #1\xint_relax
+\def\XINT_gcfrac_noopt #1\xint:%
{%
- \XINT_gcfrac #1+\xint_relax/\relax\relax
+ \XINT_gcfrac #1+!/\relax\relax
}%
-\def\XINT_gcfrac_opt_b\fi\XINT_gcfrac_noopt [\xint_relax #1]%
+\def\XINT_gcfrac_opt_b\fi\XINT_gcfrac_noopt [\xint:#1]%
{%
\fi\csname XINT_gcfrac_opt#1\endcsname
}%
\def\XINT_gcfrac_optl #1%
{%
- \XINT_gcfrac #1+\xint_relax/\relax\hfill
+ \XINT_gcfrac #1+!/\relax\hfill
}%
\def\XINT_gcfrac_optc #1%
{%
- \XINT_gcfrac #1+\xint_relax/\relax\relax
+ \XINT_gcfrac #1+!/\relax\relax
}%
\def\XINT_gcfrac_optr #1%
{%
- \XINT_gcfrac #1+\xint_relax/\hfill\relax
+ \XINT_gcfrac #1+!/\hfill\relax
}%
\def\XINT_gcfrac
{%
@@ -28739,23 +29326,23 @@ $1$ or $-1$.
\def\XINT_gcfrac_enter {\XINT_gcfrac_loop {}}%
\def\XINT_gcfrac_loop #1#2+#3/%
{%
- \xint_gob_til_xint_relax #3\XINT_gcfrac_endloop\xint_relax
+ \xint_gob_til_exclam #3\XINT_gcfrac_endloop!%
\XINT_gcfrac_loop {{#3}{#2}#1}%
}%
-\def\XINT_gcfrac_endloop\xint_relax\XINT_gcfrac_loop #1#2#3%
+\def\XINT_gcfrac_endloop!\XINT_gcfrac_loop #1#2#3%
{%
- \XINT_gcfrac_T #2#3#1\xint_relax\xint_relax
+ \XINT_gcfrac_T #2#3#1!!%
}%
\def\XINT_gcfrac_T #1#2#3#4{\XINT_gcfrac_U #1#2{\xintFrac{#4}}}%
\def\XINT_gcfrac_U #1#2#3#4#5%
{%
- \xint_gob_til_xint_relax #5\XINT_gcfrac_end\xint_relax\XINT_gcfrac_U
+ \xint_gob_til_exclam #5\XINT_gcfrac_end!\XINT_gcfrac_U
#1#2{\xintFrac{#5}%
\ifcase\xintSgn{#4}
+\or+\else-\fi
\cfrac{#1\xintFrac{\xintAbs{#4}}#2}{#3}}%
}%
-\def\XINT_gcfrac_end\xint_relax\XINT_gcfrac_U #1#2#3%
+\def\XINT_gcfrac_end!\XINT_gcfrac_U #1#2#3%
{%
\XINT_gcfrac_end_b #3%
}%
@@ -28765,30 +29352,30 @@ $1$ or $-1$.
% \lverb|New with 1.09m|
% \begin{macrocode}
\def\xintGGCFrac {\romannumeral0\xintggcfrac }%
-\def\xintggcfrac #1{\XINT_ggcfrac_opt_a #1\xint_relax }%
+\def\xintggcfrac #1{\XINT_ggcfrac_opt_a #1\xint:}%
\def\XINT_ggcfrac_opt_a #1%
{%
\ifx[#1\XINT_ggcfrac_opt_b\fi \XINT_ggcfrac_noopt #1%
}%
-\def\XINT_ggcfrac_noopt #1\xint_relax
+\def\XINT_ggcfrac_noopt #1\xint:
{%
- \XINT_ggcfrac #1+\xint_relax/\relax\relax
+ \XINT_ggcfrac #1+!/\relax\relax
}%
-\def\XINT_ggcfrac_opt_b\fi\XINT_ggcfrac_noopt [\xint_relax #1]%
+\def\XINT_ggcfrac_opt_b\fi\XINT_ggcfrac_noopt [\xint:#1]%
{%
\fi\csname XINT_ggcfrac_opt#1\endcsname
}%
\def\XINT_ggcfrac_optl #1%
{%
- \XINT_ggcfrac #1+\xint_relax/\relax\hfill
+ \XINT_ggcfrac #1+!/\relax\hfill
}%
\def\XINT_ggcfrac_optc #1%
{%
- \XINT_ggcfrac #1+\xint_relax/\relax\relax
+ \XINT_ggcfrac #1+!/\relax\relax
}%
\def\XINT_ggcfrac_optr #1%
{%
- \XINT_ggcfrac #1+\xint_relax/\hfill\relax
+ \XINT_ggcfrac #1+!/\hfill\relax
}%
\def\XINT_ggcfrac
{%
@@ -28797,20 +29384,20 @@ $1$ or $-1$.
\def\XINT_ggcfrac_enter {\XINT_ggcfrac_loop {}}%
\def\XINT_ggcfrac_loop #1#2+#3/%
{%
- \xint_gob_til_xint_relax #3\XINT_ggcfrac_endloop\xint_relax
+ \xint_gob_til_exclam #3\XINT_ggcfrac_endloop!%
\XINT_ggcfrac_loop {{#3}{#2}#1}%
}%
-\def\XINT_ggcfrac_endloop\xint_relax\XINT_ggcfrac_loop #1#2#3%
+\def\XINT_ggcfrac_endloop!\XINT_ggcfrac_loop #1#2#3%
{%
- \XINT_ggcfrac_T #2#3#1\xint_relax\xint_relax
+ \XINT_ggcfrac_T #2#3#1!!%
}%
\def\XINT_ggcfrac_T #1#2#3#4{\XINT_ggcfrac_U #1#2{#4}}%
\def\XINT_ggcfrac_U #1#2#3#4#5%
{%
- \xint_gob_til_xint_relax #5\XINT_ggcfrac_end\xint_relax\XINT_ggcfrac_U
+ \xint_gob_til_exclam #5\XINT_ggcfrac_end!\XINT_ggcfrac_U
#1#2{#5+\cfrac{#1#4#2}{#3}}%
}%
-\def\XINT_ggcfrac_end\xint_relax\XINT_ggcfrac_U #1#2#3%
+\def\XINT_ggcfrac_end!\XINT_ggcfrac_U #1#2#3%
{%
\XINT_ggcfrac_end_b #3%
}%
@@ -28823,17 +29410,17 @@ $1$ or $-1$.
{%
\expandafter\XINT_gctgcx_start\expandafter {\romannumeral`&&@#3}{#1}{#2}%
}%
-\def\XINT_gctgcx_start #1#2#3{\XINT_gctgcx_loop_a {}{#2}{#3}#1+\xint_relax/}%
+\def\XINT_gctgcx_start #1#2#3{\XINT_gctgcx_loop_a {}{#2}{#3}#1+!/}%
\def\XINT_gctgcx_loop_a #1#2#3#4+#5/%
{%
- \xint_gob_til_xint_relax #5\XINT_gctgcx_end\xint_relax
+ \xint_gob_til_exclam #5\XINT_gctgcx_end!%
\XINT_gctgcx_loop_b {#1{#4}}{#2{#5}#3}{#2}{#3}%
}%
\def\XINT_gctgcx_loop_b #1#2%
{%
\XINT_gctgcx_loop_a {#1#2}%
}%
-\def\XINT_gctgcx_end\xint_relax\XINT_gctgcx_loop_b #1#2#3#4{ #1}%
+\def\XINT_gctgcx_end!\XINT_gctgcx_loop_b #1#2#3#4{ #1}%
% \end{macrocode}
% \subsection{\csh{xintFtoCs}}
% \lverb|Modified in 1.09m: a space is added after the inserted commas.|
@@ -29062,12 +29649,12 @@ $1$ or $-1$.
\def\xintCstoF {\romannumeral0\xintcstof }%
\def\xintcstof #1%
{%
- \expandafter\XINT_ctf_prep \romannumeral0\xintcsvtolist{#1}\xint_relax
+ \expandafter\XINT_ctf_prep \romannumeral0\xintcsvtolist{#1}!%
}%
\def\xintCtoF {\romannumeral0\xintctof }%
\def\xintctof #1%
{%
- \expandafter\XINT_ctf_prep \romannumeral`&&@#1\xint_relax
+ \expandafter\XINT_ctf_prep \romannumeral`&&@#1!%
}%
\def\XINT_ctf_prep
{%
@@ -29075,17 +29662,19 @@ $1$ or $-1$.
}%
\def\XINT_ctf_loop_a #1#2#3#4#5%
{%
- \xint_gob_til_xint_relax #5\XINT_ctf_end\xint_relax
+ \xint_gob_til_exclam #5\XINT_ctf_end!%
\expandafter\XINT_ctf_loop_b
\romannumeral0\xintrawwithzeros {#5}.{#1}{#2}{#3}{#4}%
}%
\def\XINT_ctf_loop_b #1/#2.#3#4#5#6%
{%
\expandafter\XINT_ctf_loop_c\expandafter
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #6\Z}{\XINT_mul_fork #1\Z #4\Z}}%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #5\Z}{\XINT_mul_fork #1\Z #3\Z}}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%
+ {\XINT_mul_fork #1\xint:#4\xint:}}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%
+ {\XINT_mul_fork #1\xint:#3\xint:}}%
}%
\def\XINT_ctf_loop_c #1#2%
{%
@@ -29106,7 +29695,7 @@ $1$ or $-1$.
\def\xintiCstoF {\romannumeral0\xinticstof }%
\def\xinticstof #1%
{%
- \expandafter\XINT_icstf_prep \romannumeral`&&@#1,\xint_relax,%
+ \expandafter\XINT_icstf_prep \romannumeral`&&@#1,!,%
}%
\def\XINT_icstf_prep
{%
@@ -29114,15 +29703,15 @@ $1$ or $-1$.
}%
\def\XINT_icstf_loop_a #1#2#3#4#5,%
{%
- \xint_gob_til_xint_relax #5\XINT_icstf_end\xint_relax
+ \xint_gob_til_exclam #5\XINT_icstf_end!%
\expandafter
\XINT_icstf_loop_b \romannumeral`&&@#5.{#1}{#2}{#3}{#4}%
}%
\def\XINT_icstf_loop_b #1.#2#3#4#5%
{%
\expandafter\XINT_icstf_loop_c\expandafter
- {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\Z #3\Z}}%
- {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\Z #2\Z}}%
+ {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%
+ {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%
{#2}{#3}%
}%
\def\XINT_icstf_loop_c #1#2%
@@ -29136,7 +29725,7 @@ $1$ or $-1$.
\def\xintGCtoF {\romannumeral0\xintgctof }%
\def\xintgctof #1%
{%
- \expandafter\XINT_gctf_prep \romannumeral`&&@#1+\xint_relax/%
+ \expandafter\XINT_gctf_prep \romannumeral`&&@#1+!/%
}%
\def\XINT_gctf_prep
{%
@@ -29150,10 +29739,12 @@ $1$ or $-1$.
\def\XINT_gctf_loop_b #1/#2.#3#4#5#6%
{%
\expandafter\XINT_gctf_loop_c\expandafter
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #6\Z}{\XINT_mul_fork #1\Z #4\Z}}%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #5\Z}{\XINT_mul_fork #1\Z #3\Z}}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%
+ {\XINT_mul_fork #1\xint:#4\xint:}}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%
+ {\XINT_mul_fork #1\xint:#3\xint:}}%
}%
\def\XINT_gctf_loop_c #1#2%
{%
@@ -29169,17 +29760,17 @@ $1$ or $-1$.
}%
\def\XINT_gctf_loop_f #1#2/%
{%
- \xint_gob_til_xint_relax #2\XINT_gctf_end\xint_relax
+ \xint_gob_til_exclam #2\XINT_gctf_end!%
\expandafter\XINT_gctf_loop_g
\romannumeral0\xintrawwithzeros {#2}.#1%
}%
\def\XINT_gctf_loop_g #1/#2.#3#4#5#6%
{%
\expandafter\XINT_gctf_loop_h\expandafter
- {\romannumeral0\XINT_mul_fork #1\Z #6\Z }%
- {\romannumeral0\XINT_mul_fork #1\Z #5\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
+ {\romannumeral0\XINT_mul_fork #1\xint:#6\xint:}%
+ {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
}%
\def\XINT_gctf_loop_h #1#2%
{%
@@ -29200,7 +29791,7 @@ $1$ or $-1$.
\def\xintiGCtoF {\romannumeral0\xintigctof }%
\def\xintigctof #1%
{%
- \expandafter\XINT_igctf_prep \romannumeral`&&@#1+\xint_relax/%
+ \expandafter\XINT_igctf_prep \romannumeral`&&@#1+!/%
}%
\def\XINT_igctf_prep
{%
@@ -29214,8 +29805,8 @@ $1$ or $-1$.
\def\XINT_igctf_loop_b #1.#2#3#4#5%
{%
\expandafter\XINT_igctf_loop_c\expandafter
- {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\Z #3\Z}}%
- {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\Z #2\Z}}%
+ {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%
+ {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%
{#2}{#3}%
}%
\def\XINT_igctf_loop_c #1#2%
@@ -29224,15 +29815,15 @@ $1$ or $-1$.
}%
\def\XINT_igctf_loop_f #1#2#3#4/%
{%
- \xint_gob_til_xint_relax #4\XINT_igctf_end\xint_relax
+ \xint_gob_til_exclam #4\XINT_igctf_end!%
\expandafter\XINT_igctf_loop_g
\romannumeral`&&@#4.{#2}{#3}#1%
}%
\def\XINT_igctf_loop_g #1.#2#3%
{%
\expandafter\XINT_igctf_loop_h\expandafter
- {\romannumeral0\XINT_mul_fork #1\Z #3\Z }%
- {\romannumeral0\XINT_mul_fork #1\Z #2\Z }%
+ {\romannumeral0\XINT_mul_fork #1\xint:#3\xint:}%
+ {\romannumeral0\XINT_mul_fork #1\xint:#2\xint:}%
}%
\def\XINT_igctf_loop_h #1#2%
{%
@@ -29253,12 +29844,12 @@ $1$ or $-1$.
\def\xintCstoCv {\romannumeral0\xintcstocv }%
\def\xintcstocv #1%
{%
- \expandafter\XINT_ctcv_prep\romannumeral0\xintcsvtolist{#1}\xint_relax
+ \expandafter\XINT_ctcv_prep\romannumeral0\xintcsvtolist{#1}!%
}%
\def\xintCtoCv {\romannumeral0\xintctocv }%
\def\xintctocv #1%
{%
- \expandafter\XINT_ctcv_prep\romannumeral`&&@#1\xint_relax
+ \expandafter\XINT_ctcv_prep\romannumeral`&&@#1!%
}%
\def\XINT_ctcv_prep
{%
@@ -29266,17 +29857,19 @@ $1$ or $-1$.
}%
\def\XINT_ctcv_loop_a #1#2#3#4#5#6%
{%
- \xint_gob_til_xint_relax #6\XINT_ctcv_end\xint_relax
+ \xint_gob_til_exclam #6\XINT_ctcv_end!%
\expandafter\XINT_ctcv_loop_b
\romannumeral0\xintrawwithzeros {#6}.{#2}{#3}{#4}{#5}{#1}%
}%
\def\XINT_ctcv_loop_b #1/#2.#3#4#5#6%
{%
\expandafter\XINT_ctcv_loop_c\expandafter
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #6\Z}{\XINT_mul_fork #1\Z #4\Z}}%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #5\Z}{\XINT_mul_fork #1\Z #3\Z}}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%
+ {\XINT_mul_fork #1\xint:#4\xint:}}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%
+ {\XINT_mul_fork #1\xint:#3\xint:}}%
}%
\def\XINT_ctcv_loop_c #1#2%
{%
@@ -29303,7 +29896,7 @@ $1$ or $-1$.
\def\xintiCstoCv {\romannumeral0\xinticstocv }%
\def\xinticstocv #1%
{%
- \expandafter\XINT_icstcv_prep \romannumeral`&&@#1,\xint_relax,%
+ \expandafter\XINT_icstcv_prep \romannumeral`&&@#1,!,%
}%
\def\XINT_icstcv_prep
{%
@@ -29311,15 +29904,15 @@ $1$ or $-1$.
}%
\def\XINT_icstcv_loop_a #1#2#3#4#5#6,%
{%
- \xint_gob_til_xint_relax #6\XINT_icstcv_end\xint_relax
+ \xint_gob_til_exclam #6\XINT_icstcv_end!%
\expandafter
\XINT_icstcv_loop_b \romannumeral`&&@#6.{#2}{#3}{#4}{#5}{#1}%
}%
\def\XINT_icstcv_loop_b #1.#2#3#4#5%
{%
\expandafter\XINT_icstcv_loop_c\expandafter
- {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\Z #3\Z}}%
- {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\Z #2\Z}}%
+ {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%
+ {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%
{{#2}{#3}}%
}%
\def\XINT_icstcv_loop_c #1#2%
@@ -29339,7 +29932,7 @@ $1$ or $-1$.
\def\xintGCtoCv {\romannumeral0\xintgctocv }%
\def\xintgctocv #1%
{%
- \expandafter\XINT_gctcv_prep \romannumeral`&&@#1+\xint_relax/%
+ \expandafter\XINT_gctcv_prep \romannumeral`&&@#1+!/%
}%
\def\XINT_gctcv_prep
{%
@@ -29353,10 +29946,12 @@ $1$ or $-1$.
\def\XINT_gctcv_loop_b #1/#2.#3#4#5#6%
{%
\expandafter\XINT_gctcv_loop_c\expandafter
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #6\Z}{\XINT_mul_fork #1\Z #4\Z}}%
- {\romannumeral0\xintiiadd {\XINT_mul_fork #2\Z #5\Z}{\XINT_mul_fork #1\Z #3\Z}}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%
+ {\XINT_mul_fork #1\xint:#4\xint:}}%
+ {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%
+ {\XINT_mul_fork #1\xint:#3\xint:}}%
}%
\def\XINT_gctcv_loop_c #1#2%
{%
@@ -29381,17 +29976,17 @@ $1$ or $-1$.
}%
\def\XINT_gctcv_loop_h #1#2#3/%
{%
- \xint_gob_til_xint_relax #3\XINT_gctcv_end\xint_relax
+ \xint_gob_til_exclam #3\XINT_gctcv_end!%
\expandafter\XINT_gctcv_loop_i
\romannumeral0\xintrawwithzeros {#3}.#2{#1}%
}%
\def\XINT_gctcv_loop_i #1/#2.#3#4#5#6%
{%
\expandafter\XINT_gctcv_loop_j\expandafter
- {\romannumeral0\XINT_mul_fork #1\Z #6\Z }%
- {\romannumeral0\XINT_mul_fork #1\Z #5\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #4\Z }%
- {\romannumeral0\XINT_mul_fork #2\Z #3\Z }%
+ {\romannumeral0\XINT_mul_fork #1\xint:#6\xint:}%
+ {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%
+ {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%
}%
\def\XINT_gctcv_loop_j #1#2%
{%
@@ -29413,7 +30008,7 @@ $1$ or $-1$.
\def\xintiGCtoCv {\romannumeral0\xintigctocv }%
\def\xintigctocv #1%
{%
- \expandafter\XINT_igctcv_prep \romannumeral`&&@#1+\xint_relax/%
+ \expandafter\XINT_igctcv_prep \romannumeral`&&@#1+!/%
}%
\def\XINT_igctcv_prep
{%
@@ -29427,8 +30022,8 @@ $1$ or $-1$.
\def\XINT_igctcv_loop_b #1.#2#3#4#5%
{%
\expandafter\XINT_igctcv_loop_c\expandafter
- {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\Z #3\Z}}%
- {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\Z #2\Z}}%
+ {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%
+ {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%
{{#2}{#3}}%
}%
\def\XINT_igctcv_loop_c #1#2%
@@ -29437,15 +30032,15 @@ $1$ or $-1$.
}%
\def\XINT_igctcv_loop_f #1#2#3#4/%
{%
- \xint_gob_til_xint_relax #4\XINT_igctcv_end_a\xint_relax
+ \xint_gob_til_exclam #4\XINT_igctcv_end_a!%
\expandafter\XINT_igctcv_loop_g
\romannumeral`&&@#4.#1#2{#3}%
}%
\def\XINT_igctcv_loop_g #1.#2#3#4#5%
{%
\expandafter\XINT_igctcv_loop_h\expandafter
- {\romannumeral0\XINT_mul_fork #1\Z #5\Z }%
- {\romannumeral0\XINT_mul_fork #1\Z #4\Z }%
+ {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%
+ {\romannumeral0\XINT_mul_fork #1\xint:#4\xint:}%
{{#2}{#3}}%
}%
\def\XINT_igctcv_loop_h #1#2%
@@ -29682,28 +30277,28 @@ $1$ or $-1$.
\def\xintCstoGC {\romannumeral0\xintcstogc }%
\def\xintcstogc #1%
{%
- \expandafter\XINT_cstc_prep \romannumeral`&&@#1,\xint_relax,%
+ \expandafter\XINT_cstc_prep \romannumeral`&&@#1,!,%
}%
\def\XINT_cstc_prep #1,{\XINT_cstc_loop_a {{#1}}}%
\def\XINT_cstc_loop_a #1#2,%
{%
- \xint_gob_til_xint_relax #2\XINT_cstc_end\xint_relax
+ \xint_gob_til_exclam #2\XINT_cstc_end!%
\XINT_cstc_loop_b {#1}{#2}%
}%
\def\XINT_cstc_loop_b #1#2{\XINT_cstc_loop_a {#1+1/{#2}}}%
-\def\XINT_cstc_end\xint_relax\XINT_cstc_loop_b #1#2{ #1}%
+\def\XINT_cstc_end!\XINT_cstc_loop_b #1#2{ #1}%
% \end{macrocode}
% \subsection{\csh{xintGCtoGC}}
% \begin{macrocode}
\def\xintGCtoGC {\romannumeral0\xintgctogc }%
\def\xintgctogc #1%
{%
- \expandafter\XINT_gctgc_start \romannumeral`&&@#1+\xint_relax/%
+ \expandafter\XINT_gctgc_start \romannumeral`&&@#1+!/%
}%
\def\XINT_gctgc_start {\XINT_gctgc_loop_a {}}%
\def\XINT_gctgc_loop_a #1#2+#3/%
{%
- \xint_gob_til_xint_relax #3\XINT_gctgc_end\xint_relax
+ \xint_gob_til_exclam #3\XINT_gctgc_end!%
\expandafter\XINT_gctgc_loop_b\expandafter
{\romannumeral`&&@#2}{#3}{#1}%
}%
@@ -29716,7 +30311,7 @@ $1$ or $-1$.
{%
\XINT_gctgc_loop_a {#3{#2}+{#1}/}%
}%
-\def\XINT_gctgc_end\xint_relax\expandafter\XINT_gctgc_loop_b
+\def\XINT_gctgc_end!\expandafter\XINT_gctgc_loop_b
{%
\expandafter\XINT_gctgc_end_b
}%
@@ -29863,11 +30458,14 @@ $1$ or $-1$.
\XINTsetupcatcodes%
% \end{macrocode}
% \subsection{Package identification}
+% \lverb|&
+% |
% \begin{macrocode}
\XINT_providespackage
\ProvidesPackage{xintexpr}%
- [2017/01/06 1.2k Expandable expression parser (JFB)]%
+ [2017/07/26 1.2l Expandable expression parser (JFB)]%
\catcode`! 11
+\let\XINT_Cmp \xintiiCmp
% \end{macrocode}
% \subsection{Locking and unlocking}
% \lverb|Some renaming and modifications here with release 1.2 to switch from
@@ -29896,11 +30494,13 @@ $1$ or $-1$.
% could probably be made faster by using techniques similar as the ones 1.2
% uses in xintcore.sty.|
% \begin{macrocode}
-\def\xint_gob_til_! #1!{}% catcode 11 ! default in xintexpr.sty code.
-\edef\XINT_expr_lockscan#1!% not used for decimal numbers in xintexpr 1.2
- {\noexpand\expandafter\space\noexpand\csname .=#1\endcsname }%
-\edef\XINT_expr_lockit
- #1{\noexpand\expandafter\space\noexpand\csname .=#1\endcsname }%
+\def\xint_gob_til_! #1!{}% ! with catcode 11
+\def\XINT_expr_lockscan#1{% not used for decimal numbers in xintexpr 1.2
+\def\XINT_expr_lockscan##1!{\expandafter#1\csname .=##1\endcsname}%
+}\XINT_expr_lockscan{ }%
+\def\XINT_expr_lockit#1{%
+\def\XINT_expr_lockit##1{\expandafter#1\csname .=##1\endcsname}%
+}\XINT_expr_lockit{ }%
\def\XINT_expr_unlock_hex_in #1% expanded inside \csname..\endcsname
{\expandafter\XINT_expr_inhex\romannumeral`&&@\XINT_expr_unlock#1;}%
\def\XINT_expr_inhex #1.#2#3;% expanded inside \csname..\endcsname
@@ -30162,7 +30762,7 @@ $1$ or $-1$.
\if ^#1\xint_dothis\XINT_:::_end\fi
\xint_orthat\XINT_pfloat::_d #1}%
\def\XINT_pfloat::_d #1,#2%
- {\expandafter\XINT_pfloat::_e\romannumeral0\XINT_pfloat_opt [\xint_relax #2]{#1},{#2}}%
+ {\expandafter\XINT_pfloat::_e\romannumeral0\XINT_pfloat_opt [\xint:#2]{#1},{#2}}%
\def\XINT_pfloat::_e #1,#2#3{\XINT_pfloat::_b {#2}{#3, #1}}%
% \end{macrocode}
% \subsection{\csh{XINT_expr_getnext}: fetching some number then an operator}
@@ -30311,10 +30911,14 @@ $1$ or $-1$.
% handing over back control to \XINT_expr_getop. Earlier we had to identify
% the catcode 11 ! signaling a sub-expression here. With no \string applied
% we can do it in \XINT_expr_getop. As a corollary of this displacement,
-% parsing of big numbers should be a tiny bit faster now.|
+% parsing of big numbers should be a tiny bit faster now.
+%
+% Extended for 1.2l to ignore underscore character _ if encountered within
+% digits; so it can serve as separator for better readability.|
% \begin{macrocode}
\def\XINT_expr_scanint_c\string #1\XINT_expr_scanint_d
{%
+ \if _#1\xint_dothis\XINT_expr_scanint_d\fi
\if e#1\xint_dothis{[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\if E#1\xint_dothis{[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\if .#1\xint_dothis{\XINT_expr_startdec_a .}\fi
@@ -30338,6 +30942,7 @@ $1$ or $-1$.
\def\XINT_expr_gobz_scanint_endbycs#1#2\XINT_expr_scanint_d{0\endcsname #1}%
\def\XINT_expr_gobz_scanint_c\string #1\XINT_expr_scanint_d
{%
+ \if _#1\xint_dothis\XINT_expr_gobz_scanint_d\fi
\if e#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\if E#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\if .#1\xint_dothis{\XINT_expr_gobz_startdec_a .}\fi
@@ -30382,10 +30987,13 @@ $1$ or $-1$.
}%
\def\XINT_expr_scandec_c\string #1#2\the\numexpr#3-\xint_c_i.%
{%
+ \if _#1\xint_dothis{\XINT_expr_scandec_d#3.}\fi
\if e#1\xint_dothis{[\the\numexpr#3\XINT_expr_scanexp_a +}\fi
\if E#1\xint_dothis{[\the\numexpr#3\XINT_expr_scanexp_a +}\fi
\xint_orthat {[#3]\endcsname #1}%
}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_expr_gobz_scandec_b #1.#2%
{%
\ifcat \relax #2\expandafter\XINT_expr_gobz_scandec_endbycs\expandafter#2\fi
@@ -30394,9 +31002,12 @@ $1$ or $-1$.
{\expandafter\XINT_expr_gobz_scandec_b}%
{\string#2\expandafter\XINT_expr_scandec_d}\the\numexpr#1-\xint_c_i.%
}%
+% \end{macrocode}
+% \begin{macrocode}
\def\XINT_expr_gobz_scandec_endbycs #1#2\xint_c_i.{0[0]\endcsname #1}%
-\def\XINT_expr_gobz_scandec_c\if0#1#2\fi #3\xint_c_i.%
+\def\XINT_expr_gobz_scandec_c\if0#1#2\fi #3\numexpr#4-\xint_c_i.%
{%
+ \if _#1\xint_dothis{\XINT_expr_gobz_scandec_b #4.}\fi
\if e#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\if E#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi
\xint_orthat {0[0]\endcsname #1}%
@@ -30423,6 +31034,7 @@ $1$ or $-1$.
}%
\def\XINT_expr_scanexp_c\string #1\XINT_expr_scanexp_d
{%
+ \if _#1\xint_dothis \XINT_expr_scanexp_d \fi
\if +#1\xint_dothis {\XINT_expr_scanexp_a +}\fi
\if -#1\xint_dothis {\XINT_expr_scanexp_a -}\fi
\xint_orthat {]\endcsname #1}%
@@ -30438,7 +31050,11 @@ $1$ or $-1$.
{%
\expandafter\XINT_expr_scanexp_bb\romannumeral`&&@#1%
}%
-\def\XINT_expr_scanexp_cb\string #1\XINT_expr_scanexp_db {]\endcsname #1}%
+\def\XINT_expr_scanexp_cb\string #1\XINT_expr_scanexp_db
+{%
+ \if _#1\xint_dothis\XINT_expr_scanexp_d\fi
+ \xint_orthat{]\endcsname #1}%
+}%
% \end{macrocode}
% \subsubsection{Hexadecimal numbers}
% \lverb|1.2d has moved most of the handling of tacit multiplication to
@@ -30447,7 +31063,10 @@ $1$ or $-1$.
% in \XINT_expr_scanhexI_a, because it is its higher precedence variant which
% will is expected, to do the same as when a non-hexadecimal number prefixes a
% sub-expression. Tacit multiplication in front of variable or function names
-% will not work (because of this \string).|
+% will not work (because of this \string).
+%
+% Extended for 1.2l to ignore underscore character _ if encountered within
+% digits.|
% \begin{macrocode}
\def\XINT_expr_scanhex_I #1% #1="
{%
@@ -30469,12 +31088,9 @@ $1$ or $-1$.
0\else1\fi\else0\fi\else1\fi\else0\fi 1%
\expandafter\XINT_expr_scanhexI_b
\else
- \if .#1%
- \expandafter\xint_firstoftwo
- \else % gather what we got so far, leave catcode 12 #1 in stream
- \expandafter\xint_secondoftwo
- \fi
- {\expandafter\XINT_expr_scanhex_transition}%
+ \if _#1\xint_dothis{\expandafter\XINT_expr_scanhexI_bgob}\fi
+ \if .#1\xint_dothis{\expandafter\XINT_expr_scanhex_transition}\fi
+ \xint_orthat % gather what we got so far, leave catcode 12 #1 in stream
{\xint_afterfi {.>\endcsname\endcsname}}%
\fi
#1%
@@ -30483,6 +31099,10 @@ $1$ or $-1$.
{%
#1\expandafter\XINT_expr_scanhexI_a\romannumeral`&&@#2%
}%
+\def\XINT_expr_scanhexI_bgob #1#2%
+{%
+ \expandafter\XINT_expr_scanhexI_a\romannumeral`&&@#2%
+}%
\def\XINT_expr_scanhex_transition .#1%
{%
\expandafter.\expandafter.\expandafter
@@ -30503,7 +31123,8 @@ $1$ or $-1$.
0\else1\fi\else0\fi\else1\fi\else0\fi 1%
\expandafter\XINT_expr_scanhexII_b
\else
- \xint_afterfi {\endcsname\endcsname}%
+ \if _#1\xint_dothis{\expandafter\XINT_expr_scanhexII_bgob}\fi
+ \xint_orthat{\xint_afterfi {\endcsname\endcsname}}%
\fi
#1%
}%
@@ -30511,6 +31132,10 @@ $1$ or $-1$.
{%
#1\expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#2%
}%
+\def\XINT_expr_scanhexII_bgob #1#2%
+{%
+ \expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#2%
+}%
% \end{macrocode}
% \subsubsection{Parsing names of functions and variables}
% \begin{macrocode}
@@ -31206,8 +31831,7 @@ $1$ or $-1$.
% by expression parser (as <digits><variable> is allowed by the syntax and does
% tacit multiplication).|
% \begin{macrocode}
-\edef\XINT_expr_op_][: #1{\xint_c_ii \expandafter\noexpand
- \csname XINT_expr_itself_][\endcsname #10\string :}%
+\edef\XINT_expr_op_][: #1{\xint_c_ii\noexpand\XINT_expr_itself_][#10\string :}%
\let\XINT_flexpr_op_][: \XINT_expr_op_][:
\let\XINT_iiexpr_op_][: \XINT_expr_op_][:
\catcode`[ 12 \catcode`] 12
@@ -33659,7 +34283,7 @@ $1$ or $-1$.
\toks0 \expandafter{\the\toks0
\def\xintListSel:x:csv {~xintListSel:f:csv }%
}%
-\odef\XINT_expr_redefinemacros {\the\toks0}% Not \edef ! (subtle)
+\odef\XINT_expr_redefinemacros {\the\toks0}%
\def\XINT_expr_redefineprints
{%
\def\XINT_flexpr_noopt
@@ -33840,34 +34464,34 @@ $1$ or $-1$.
%<*dtx>-----------------------------------------------------------
\iffalse
% grep -c -e "^{%" xint*sty
-xint.sty:215
-xintbinhex.sty:69
+xint.sty:196
+xintbinhex.sty:70
xintcfrac.sty:183
-xintcore.sty:273
-xintexpr.sty:165
-xintfrac.sty:428
-xintgcd.sty:59
+xintcore.sty:278
+xintexpr.sty:168
+xintfrac.sty:439
+xintgcd.sty:50
xintkernel.sty:13
xintseries.sty:48
-xinttools.sty:139
+xinttools.sty:138
\fi
% grep -o "^{%" xint*sty | wc -l
-\def\totala{ 1592}
+\def\totala{ 1583}
\iffalse
% grep -c -e "^}%" xint*sty
-xint.sty:214
-xintbinhex.sty:69
+xint.sty:195
+xintbinhex.sty:65
xintcfrac.sty:183
-xintcore.sty:273
-xintexpr.sty:196
-xintfrac.sty:426
-xintgcd.sty:61
+xintcore.sty:275
+xintexpr.sty:199
+xintfrac.sty:437
+xintgcd.sty:52
xintkernel.sty:14
xintseries.sty:48
-xinttools.sty:138
+xinttools.sty:137
\fi
% grep -o "^}%" xint*sty | wc -l
-\def\totalb{ 1622}
+\def\totalb{ 1605}
\DeleteShortVerb{\|}
\def\mymacro #1{\mymacroaux #1}
\def\mymacroaux #1#2{\strut \csname #1nameimp\endcsname:& \dtt{ #2.}\tabularnewline }
@@ -33904,7 +34528,8 @@ xinttools.sty:138
Right bracket \] Circumflex \^ Underscore \_
Grave accent \` Left brace \{ Vertical bar \|
Right brace \} Tilde \~}
-\CheckSum {30677}% était 30303 pour 1.2h, 30403 pour 1.2i, 30750 pour 1.2j
+\CheckSum {30931}% 30303 pour 1.2h, 30403 pour 1.2i, 30750 pour 1.2j,
+ % 30677 pour 1.2k
\makeatletter\check@checksum\makeatother
\Finale
%% End of file xint.dtx
diff --git a/Master/texmf-dist/source/generic/xint/xint.ins b/Master/texmf-dist/source/generic/xint/xint.ins
index 8f6eefb7c91..9389268dca2 100644
--- a/Master/texmf-dist/source/generic/xint/xint.ins
+++ b/Master/texmf-dist/source/generic/xint/xint.ins
@@ -21,7 +21,7 @@
%% same distribution. (The sources need not necessarily be
%% in the same archive or directory.)
%% ---------------------------------------------------------------
-%% The xint bundle 1.2k 2017/01/06
+%% The xint bundle 1.2l 2017/07/26
%% Copyright (C) 2013-2017 by Jean-Francois Burnol
%% ---------------------------------------------------------------
%%