summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-09-25 23:46:58 +0000
committerKarl Berry <karl@freefriends.org>2006-09-25 23:46:58 +0000
commitd4f96dc70d6aad918f541123e66589a2e44e18f1 (patch)
treebc933bc54a70e3ab4cf699a6c2d778b062287d16 /Master/texmf-dist/doc
parent66d540bf33713d5f36291b9e7c8a8f8039aebdb4 (diff)
new package cool (25sep06)
git-svn-id: svn://tug.org/texlive/trunk@2199 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.pdfbin0 -> 159960 bytes
-rw-r--r--Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.tex2225
-rw-r--r--Master/texmf-dist/doc/latex/cool/README43
-rw-r--r--Master/texmf-dist/doc/latex/cool/cool.pdfbin0 -> 311475 bytes
4 files changed, 2268 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.pdf b/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.pdf
new file mode 100644
index 00000000000..0bff259ca5b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.tex b/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.tex
new file mode 100644
index 00000000000..4a2d5f757b1
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/cool/Content_LaTeX_Package_Demo.tex
@@ -0,0 +1,2225 @@
+\documentclass[12pt]{article} % Specifies the document class
+
+% The preamble begins here.
+
+%<-------------------------------------------Included Packages---------------------------------------------------->
+%\usepackage[dvips]{epsfig}
+ % for displaying pictures
+%\usepackage[b]{esvect}
+\usepackage{amssymb}
+\usepackage{amsmath}
+\usepackage{ifthen}
+\usepackage{cool}
+\usepackage{makeidx}
+\makeindex
+%<-----------------------------------------End Included Packages-------------------------------------------------->
+
+
+%<------------------------------------------Document Properties--------------------------------------------------->
+\title{Content \LaTeXe} % Declares the document's title.
+\author{N. Setzer} % Declares the author's name.
+%\date{} % Declares the date. Aren't you glad you have that kind of power?
+%\setlength{\topmargin}{-0.8in}
+%\setlength{\topskip}{0.2in} % between header and text
+%\setlength{\textheight}{9.0in} % height of main text
+%\setlength{\textwidth}{7.3in} % width of text
+%\setlength{\oddsidemargin}{-0.4in} % odd page left margin
+%\setlength{\evensidemargin}{-0.4in} % even page left margin
+%<----------------------------------------End Document Properties------------------------------------------------->
+
+
+%<----------------------------------------Modified LaTeX Command Definitions--------------------------------------->
+\newcommand{\var}[1]{}
+\newenvironment{declaration}{\hide}{}
+\newcommand{\hide}[1]{}
+\newenvironment{derivation}{\begin{eqnarray*}}{\end{eqnarray*}}
+\newenvironment{der}{\begin{eqnarray*}}{\end{eqnarray*}}
+%<--------------------------------------End Modified LaTeX Command Definitions------------------------------------->
+
+%<-------------------------------------------Command Definitions--------------------------------------------------->
+%%%%%%%%%%%%% Formatting
+\newcommand{\headerRow}{\bf \textrm Command & \bf \textrm Inline & \bf \textrm Display \\}
+%%%%%%%%%%%%% Indexing
+\newcommand{\bs}{\symbol{'134}}% backslash
+\newcommand{\idxc}[2][]{\texttt{\bs#2}\index{#2#1@\texttt{\bs#2}#1}}
+%<-----------------------------------------End Command Definitions------------------------------------------------->
+
+
+%############################################Sectioning Templates###################################################
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%\section{}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%\subsection{}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%
+%\subsubsubsection{}
+%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% | % | % | % | % | % | % | % | % | % | % | % | % | % | % |
+%\appendix
+% | % | % | % | % | % | % | % | % | % | % | % | % | % | % |
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%##########################################End Sectioning Templates#################################################
+
+
+\begin{document} % End of preamble and beginning of text.
+
+\maketitle
+
+
+%%%%%%%%%%%%%% IMPORTANT: we can have seemingly UNLIMITE number of booleans !!!!!!
+%%%%%%%%%%%%%% however, we can only create an 'array' of 746 of them
+
+% STRING capacity exceeded---this just won't work the way you want it to.
+%\newcounter{testing}
+%\setcounter{testing}{0}
+%\whiledo{\value{testing}<6430}%
+%{%
+%\addtocounter{testing}{1}%
+%\newboolean{j\arabic{testing}}%
+%}
+
+% no errors but is not effective
+%\newcounter{arrayTrav}
+%\def\newarray#1#2{\def#1##1{%
+%\ifthenelse{\equal{##1}{length}}
+% {%
+% #2
+% }%
+%% Else
+%\ifcase##1{0}
+%\forLoop{1}{#2}{arrayTrav}%
+% {%
+% \or{0}
+% }%
+%\fi
+%}}
+%\def\setval#1#2#3{%
+%\def#1##1{%
+%\ifcase##1%
+%\forLoop{1}{#1{length}}{arrayTrav}
+% {%
+% \or
+% \ifthenelse{\value{arrayTrav}=#2}
+% {#3}
+% {#1{\arabic{arrayTrav}}}
+% }%
+%\fi
+%}}
+%
+%\newarray{\joker}{10}
+%\joker{2}
+%\setval{\joker}{2}{t}
+%\joker{2}
+
+
+%% Works but costs alot of counters and only allows integers and single characters
+%\newcommand{\newarray}[3][0]{%
+%\newcounter{length#2}%
+%\setcounter{length#2}{#3}
+%\newcounter{fill#2}
+%\forLoop{1}{\value{length#2}}{fill#2}%
+% {%
+% \newcounter{values#2\arabic{fill#2}}
+% \setcounter{values#2\arabic{fill#2}}{#1}
+% }%
+%}
+%
+%\newcommand{\newstring}[3][0]{%
+%\newcounter{strlen#2}%
+%\setcounter{strlen#2}{#3}
+%\newcounter{charfill#2}
+%\forLoop{1}{\value{strlen#2}}{charfill#2}%
+% {%
+% \newcounter{strchar#2\arabic{charfill#2}}
+% \setcounter{strchar#2\arabic{charfill#2}}{`#1}
+% }%
+%}
+%\newcommand{\setchar}[3]{\setcounter{strchar#1#2}{`#3}}
+%\newcommand{\strchar}[2]{\char\value{strchar#1#2}}
+%\newcommand{\setstr}[2]
+%{%
+%\forLoop{1}{\value{strlen#1}}{charfill#1}%
+% {%
+% }%
+%}
+%
+%\newcommand{\setval}[3]{\setcounter{values#1#2}{#3}}
+%\newcommand{\arrayval}[2]{\arabic{values#1#2}}
+%
+%\newarray{joker}{13}
+%
+%\arrayval{joker}{2}
+%\setval{joker}{2}{3}
+%\arrayval{joker}{2}
+%\setval{joker}{3}{12}
+%\arrayval{joker}{3}
+%
+%\newstring{string}{114}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Commands}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+\label{Section:Commands}
+%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Constants}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+\idxc[ ($\sqrt{-1}$)]{I} & $\I$ & $\displaystyle \I$ \\
+\idxc[ (base of natural log)]{E}& $\E$ & $\displaystyle \E$ \\
+\idxc{PI} & $\PI$ & $\displaystyle \PI$ \\
+\idxc{GoldenRatio} & $\GoldenRatio$ & $\displaystyle \GoldenRatio$ \\
+\idxc{EulerGamma} & $\EulerGamma$ & $\displaystyle \EulerGamma$ \\
+\idxc{Catalan} & $\Catalan$ & $\displaystyle \Catalan$ \\
+\idxc{Glaisher} & $\Glaisher$ & $\displaystyle \Glaisher$ \\
+\idxc{Khinchin} & $\Khinchin$ & $\displaystyle \Khinchin$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Symbols}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\idxc{Infinity} & $\Infinity$ & $\displaystyle \Infinity$ \\
+\idxc{Indeterminant} & $\Indeterminant$ & $\displaystyle \Indeterminant$ \\
+\idxc{DirectedInfinity}\verb|{z}| & $\DirectedInfinity{z}$ & $\displaystyle \DirectedInfinity{z}$ \\
+\idxc{DirInfty}\verb|{z}| & $\DirInfty{z}$ & $\displaystyle \DirInfty{z}$ \\
+\idxc{ComplexInfinity} & $\ComplexInfinity$ & $\displaystyle \ComplexInfinity$ \\
+\idxc{CInfty} & $\CInfty$ & $\displaystyle \CInfty$ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Exponential and Logarithmic Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+\idxc{Exp}\verb|{5x}| & $\Exp{5x}$ & $\displaystyle \Exp{5x}$ \\
+\verb|\Style{ExpParen=b}|%
+\Style{ExpParen=b} \\
+\idxc{Exp}\verb|{5x}| & $\Exp{5x}$ & $\displaystyle \Exp{5x}$ \\
+\verb|\Style{ExpParen=br}|%
+\Style{ExpParen=br} \\
+\idxc{Exp}\verb|{5x}| & $\Exp{5x}$ & $\displaystyle \Exp{5x}$ \\
+\idxc{Log}\verb|{5}| & $\Log{5}$ & $\displaystyle \Log{5}$ \\
+\idxc{Log}\verb|[10]{5}| & $\Log[10]{5}$ & $\displaystyle \Log[10]{5}$ \\
+\idxc{Log}\verb|[4]{5}| & $\Log[4]{5}$ & $\displaystyle \Log[4]{5}$ \\
+\verb|\Style{LogBaseESymb=log}|%
+\Style{LogBaseESymb=log} \\
+\idxc{Log}\verb|{5}| & $\Log{5}$ & $\displaystyle \Log{5}$ \\
+\idxc{Log}\verb|[10]{5}| & $\Log[10]{5}$ & $\displaystyle \Log[10]{5}$ \\
+\idxc{Log}\verb|[4]{5}| & $\Log[4]{5}$ & $\displaystyle \Log[4]{5}$ \\
+\verb|\Style{LogShowBase=always}|%
+\Style{LogBaseESymb=ln}%
+\Style{LogShowBase=always} \\
+\idxc{Log}\verb|{5}| & $\Log{5}$ & $\displaystyle \Log{5}$ \\
+\idxc{Log}\verb|[10]{5}| & $\Log[10]{5}$ & $\displaystyle \Log[10]{5}$ \\
+\idxc{Log}\verb|[4]{5}| & $\Log[4]{5}$ & $\displaystyle \Log[4]{5}$ \\
+\verb|\Style{LogShowBase=at will}|%
+\Style{LogShowBase=at will} \\
+\idxc{Log}\verb|{5}| & $\Log{5}$ & $\displaystyle \Log{5}$ \\
+\idxc{Log}\verb|[10]{5}| & $\Log[10]{5}$ & $\displaystyle \Log[10]{5}$ \\
+\idxc{Log}\verb|[4]{5}| & $\Log[4]{5}$ & $\displaystyle \Log[4]{5}$ \\
+\verb|\Style{LogParen=p}|%
+\Style{LogParen=p} \\
+\idxc{Log}\verb|[4]{5}| & $\Log[4]{5}$ & $\displaystyle \Log[4]{5}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Trigonometric Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Trigonometric Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Trigonometric Functions
+\idxc{Sin}\verb|{x}| & $\Sin{x}$ & $\displaystyle \Sin{x}$ \\
+\idxc{Cos}\verb|{x}| & $\Cos{x}$ & $\displaystyle \Cos{x}$ \\
+\idxc{Tan}\verb|{x}| & $\Tan{x}$ & $\displaystyle \Tan{x}$ \\
+\idxc{Csc}\verb|{x}| & $\Csc{x}$ & $\displaystyle \Csc{x}$ \\
+\idxc{Sec}\verb|{x}| & $\Sec{x}$ & $\displaystyle \Sec{x}$ \\
+\idxc{Cot}\verb|{x}| & $\Cot{x}$ & $\displaystyle \Cot{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Inverse Trigonometric Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Trigonometric Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Inverse Trigonometric Functions
+\Style{ArcTrig=inverse}%
+\verb|\Style{ArcTrig=inverse}| (default)%
+ \\
+\idxc{ArcSin}\verb|{x}| & $\ArcSin{x}$ & $\displaystyle \ArcSin{x}$ \\
+\idxc{ArcCos}\verb|{x}| & $\ArcCos{x}$ & $\displaystyle \ArcCos{x}$ \\
+\idxc{ArcTan}\verb|{x}| & $\ArcTan{x}$ & $\displaystyle \ArcTan{x}$ \\
+%
+\Style{ArcTrig=arc}%
+\verb|\Style{ArcTrig=arc}|%
+ \\
+\idxc{ArcSin}\verb|{x}| & $\ArcSin{x}$ & $\displaystyle \ArcSin{x}$ \\
+\idxc{ArcCos}\verb|{x}| & $\ArcCos{x}$ & $\displaystyle \ArcCos{x}$ \\
+\idxc{ArcTan}\verb|{x}| & $\ArcTan{x}$ & $\displaystyle \ArcTan{x}$ \\
+ \\
+\idxc{ArcCsc}\verb|{x}| & $\ArcCsc{x}$ & $\displaystyle \ArcCsc{x}$ \\
+\idxc{ArcSec}\verb|{x}| & $\ArcSec{x}$ & $\displaystyle \ArcSec{x}$ \\
+\idxc{ArcCot}\verb|{x}| & $\ArcCot{x}$ & $\displaystyle \ArcCot{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Hyberbolic Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Hyperbolic Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Hyperbolic Functions
+\idxc{Sinh}\verb|{x}| & $\Sinh{x}$ & $\displaystyle \Sinh{x}$ \\
+\idxc{Cosh}\verb|{x}| & $\Cosh{x}$ & $\displaystyle \Cosh{x}$ \\
+\idxc{Tanh}\verb|{x}| & $\Tanh{x}$ & $\displaystyle \Tanh{x}$ \\
+\idxc{Csch}\verb|{x}| & $\Csch{x}$ & $\displaystyle \Csch{x}$ \\
+\idxc{Sech}\verb|{x}| & $\Sech{x}$ & $\displaystyle \Sech{x}$ \\
+\idxc{Coth}\verb|{x}| & $\Coth{x}$ & $\displaystyle \Coth{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Inverse Hyberbolic Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Hyperbolic Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Inverse Hyberbolic Functions
+\idxc{ArcSinh}\verb|{x}| & $\ArcSinh{x}$ & $\displaystyle \ArcSinh{x}$ \\
+\idxc{ArcCosh}\verb|{x}| & $\ArcCosh{x}$ & $\displaystyle \ArcCosh{x}$ \\
+\idxc{ArcTanh}\verb|{x}| & $\ArcTanh{x}$ & $\displaystyle \ArcTanh{x}$ \\
+\idxc{ArcCsch}\verb|{x}| & $\ArcCsch{x}$ & $\displaystyle \ArcCsch{x}$ \\
+\idxc{ArcSech}\verb|{x}| & $\ArcSech{x}$ & $\displaystyle \ArcSech{x}$ \\
+\idxc{ArcCoth}\verb|{x}| & $\ArcCoth{x}$ & $\displaystyle \ArcCoth{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Product Logarithms}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Lambert Function}
+\index{Lambert Function!Generalized}
+\index{Generalized Lambert Function}
+\index{Product Logarithms}
+\index{Logarithms!Product}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%%% Lambert Function
+\idxc{LambertW}\verb|{z}| & $\LambertW{z}$ & $\displaystyle \LambertW{z}$ \\
+%%%%%%%% Lambert Function
+\idxc{ProductLog}\verb|{z}| & $\ProductLog{z}$ & $\displaystyle \ProductLog{z}$ \\
+ \\
+
+%%%%%%% Generalized Lambert Function
+\idxc{LambertW}\verb|{k,z}| & $\LambertW{k,z}$ & $\displaystyle \LambertW{k,z}$ \\
+%%%%%%%% Generalized Lambert Function
+\idxc{ProductLog}\verb|{k,z}| & $\ProductLog{k,z}$ & $\displaystyle \ProductLog{k,z}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Max and Min}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Max and Min
+\idxc{Max}\verb|{1,2,3,4,5}| & $\Max{1,2,3,4,5}$ & $\displaystyle \Max{1,2,3,4,5}$ \\
+\idxc{Min}\verb|{1,2,3,4,5}| & $\Min{1,2,3,4,5}$ & $\displaystyle \Min{1,2,3,4,5}$
+\end{tabular}
+\end{center}
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Bessel, Airy, and Struve Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Bessel}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Bessel functions can be `renamed' with the \verb|\Style| tag. For example, \verb|\Style{BesselYSymb=N}| yields \Style{BesselYSymb=N} $\BesselY{\nu}{x}$ \Style{BesselYSymb=Y}
+
+\index{Bessel Functions}
+
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Bessel
+% Bessel Function of the first Kind
+\idxc{BesselJ}\verb|{0}{x}| & $\BesselJ{0}{x}$ & $\displaystyle \BesselJ{0}{x}$ \\
+% Bessel Function of the second Kind
+\idxc{BesselY}\verb|{0}{x}| & $\BesselY{0}{x}$ & $\displaystyle \BesselY{0}{x}$ \\
+% Modified Bessel Function of the first Kind
+\idxc{BesselI}\verb|{0}{x}| & $\BesselI{0}{x}$ & $\displaystyle \BesselI{0}{x}$ \\
+% Modified Bessel Function of the second Kind
+\idxc{BesselK}\verb|{0}{x}| & $\BesselK{0}{x}$ & $\displaystyle \BesselK{0}{x}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Airy}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Airy Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Airy
+\idxc{AiryAi}\verb|{x}| & $\AiryAi{x}$ & $\displaystyle \AiryAi{x}$ \\
+\idxc{AiryBi}\verb|{x}| & $\AiryBi{x}$ & $\displaystyle \AiryBi{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Struve}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Struve Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Struve
+\idxc{StruveH}\verb|{\nu}{x}| & $\StruveH{\nu}{x}$ & $\displaystyle \StruveH{\nu}{x}$ \\
+\idxc{StruveL}\verb|{\nu}{x}| & $\StruveL{\nu}{x}$ & $\displaystyle \StruveL{\nu}{x}$
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Integer Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+% Floor
+\idxc{Floor}\verb|{x}| & $\Floor{x}$ & $\displaystyle \Floor{x}$ \\
+\idxc{Ceiling}\verb|{x}| & $\Ceiling{x}$ & $\displaystyle \Ceiling{x}$ \\
+\idxc{Round}\verb|{x}| & $\Round{x}$ & $\displaystyle \Round{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{int@\textrm{int}|see{\texttt{\bs iPart}}}
+\index{frac@\textrm{frac}|see{\texttt{\bs fPart}}}
+
+\begin{center}
+\begin{tabular}{ccc}
+\idxc{iPart}\verb|{x}| & $\iPart{x}$ & $\displaystyle \iPart{x}$ \\
+\idxc{IntegerPart}\verb|{x}| & $\IntegerPart{x}$ & $\displaystyle \IntegerPart{x}$ \\
+\idxc{fPart}\verb|{x}| & $\fPart{x}$ & $\displaystyle \fPart{x}$ \\
+\idxc{FractionalPart}\verb|{x}| & $\FractionalPart{x}$ & $\displaystyle \FractionalPart{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Greatest Common Divisor}
+\index{Least Common Multiple}
+
+\begin{center}
+\begin{tabular}{ccc}
+\verb|\Style{ModDisplay=mod}| (default)%
+\Style{ModDisplay=mod} \\
+\idxc{Mod}\verb|{m}{n}| & $\Mod{m}{n}$ & $\displaystyle \Mod{m}{n}$ \\
+\verb|\Style{ModDisplay=bmod}|%
+\Style{ModDisplay=bmod} \\
+\idxc{Mod}\verb|{m}{n}| & $\Mod{m}{n}$ & $\displaystyle \Mod{m}{n}$ \\
+\verb|\Style{ModDisplay=pmod}|%
+\Style{ModDisplay=pmod} \\
+\idxc{Mod}\verb|{m}{n}| & $\Mod{m}{n}$ & $\displaystyle \Mod{m}{n}$ \\
+\verb|\Style{ModDisplay=pod}|%
+\Style{ModDisplay=pod} \\
+\idxc{Mod}\verb|{m}{n}| & $\Mod{m}{n}$ & $\displaystyle \Mod{m}{n}$ \\
+ \\
+\idxc{Quotient}\verb|{m}{n}| & $\Quotient{m}{n}$ & $\displaystyle \Quotient{m}{n}$ \\
+\idxc{GCD}\verb|{m, n}| & $\GCD{m, n}$ & $\displaystyle \GCD{m, n}$ \\
+\idxc{ExtendedGCD}\verb|{m}{n}| & $\ExtendedGCD{m}{n}$ & $\displaystyle \ExtendedGCD{m}{n}$ \\
+\idxc{EGCD}\verb|{m}{n}| & $\EGCD{m}{n}$ & $\displaystyle \EGCD{m}{n}$ \\
+\idxc{LCM}\verb|{m, n}| & $\LCM{m, n}$ & $\displaystyle \LCM{m, n}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Fibonacci Number}
+
+\begin{center}
+\begin{tabular}{ccc}
+\idxc{Fibonacci}\verb|{\nu}| & $\Fibonacci{\nu}$ & $\displaystyle \Fibonacci{\nu}$ \\
+\idxc{Euler}\verb|{m}| & $\Euler{m}$ & $\displaystyle \Euler{m}$ \\
+\idxc{Bernoulli}\verb|{m}| & $\Bernoulli{m}$ & $\displaystyle \Bernoulli{m}$ \\
+\idxc{StirlingSOne}\verb|{n}{m}| & $\StirlingSOne{n}{m}$ & $\displaystyle \StirlingSOne{n}{m}$ \\
+\idxc{StirlingSTwo}\verb|{n}{m}| & $\StirlingSTwo{n}{m}$ & $\displaystyle \StirlingSTwo{n}{m}$ \\
+\idxc{PartitionsP}\verb|{n}| & $\PartitionsP{n}$ & $\displaystyle \PartitionsP{n}$ \\
+\idxc{PartitionsQ}\verb|{n}| & $\PartitionsQ{n}$ & $\displaystyle \PartitionsQ{n}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\idxc{DiscreteDelta}\verb|{n, m}| & $\DiscreteDelta{n, m}$ & $\displaystyle \DiscreteDelta{n, m}$
+ \\
+\idxc{KroneckerDelta}\verb|{n m}| & $\KroneckerDelta{n m}$ & $\displaystyle \KroneckerDelta{n m}$
+ \\
+\idxc{KroneckerDelta}\verb|[d]{n m}| & $\KroneckerDelta[d]{n m}$ & $\displaystyle \KroneckerDelta[d]{n m}$
+ \\
+\idxc{LeviCivita}\verb|{i j k}| & $\LeviCivita{i j k}$ & $\displaystyle \LeviCivita{i j k}$
+ \\
+\idxc{LeviCivita}\verb|[d]{i j k}| & $\LeviCivita[d]{i j k}$ & $\displaystyle \LeviCivita[d]{i j k}$
+ \\
+\idxc{Signature}\verb|{i j k}| & $\Signature{i j k}$ & $\displaystyle \Signature{i j k}$
+ \\
+\verb|\Style{LeviCivitaIndicies=up}|%
+\Style{LeviCivitaIndicies=up} \\
+\idxc{LeviCivita}\verb|[d]{i j k}| & $\LeviCivita[d]{i j k}$ & $\displaystyle \LeviCivita[d]{i j k}$
+ \\
+\verb|\Style{LeviCivitaIndicies=local}|%
+\Style{LeviCivitaIndicies=local} \\
+\idxc{LeviCivita}\verb|[d]{i j k}| & $\LeviCivita[d]{i j k}$ & $\displaystyle \LeviCivita[d]{i j k}$
+ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Polynomials}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Polynomials can be `renamed' with the \verb|\Style| command:
+
+\begin{center}
+\verb|\Style{| $\langle\mbox{\textit{Polynomial command} }\rangle$%
+ \verb|Symb=|$\langle\mbox{\textit{Symbol} }\rangle$%
+ \verb|}|
+\end{center}
+
+As in \verb|\Style{HermiteHSymb=h,LegendrePSymb=p}| \verb|$\HermiteH{n}{x}$| \verb|$\LegendreP{n,x}$| yielding:
+\Style{HermiteHSymb=h,LegendrePSymb=p} $\HermiteH{n}{x}$ $\LegendreP{n,x}$
+\Style{HermiteHSymb=H,LegendrePSymb=P}
+
+\index{Polynomials!Hermite}
+\index{Polynomials!Laugerre}
+\index{Polynomials!Legendre}
+\index{Polynomials!Chebyshev}
+\index{Polynomials!Jacobi}
+\index{Polynomials!Gegenbauer}
+\index{Polynomials!Cyclotomic}
+\index{Polynomials!Fibonacci}
+\index{Polynomials!Euler}
+\index{Polynomials!Bernoulli}
+\index{Generalized Laugerre}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+% Hermite H
+\idxc{HermiteH}\verb|{n}{x}| & $\HermiteH{n}{x}$ & $\displaystyle \HermiteH{n}{x}$ \\
+% Laugerre L
+\idxc{LaugerreL}\verb|{n,x}| & $\LaugerreL{n,x}$ & $\displaystyle \LaugerreL{n,x}$ \\
+% Legendre P
+\idxc{LegendreP}\verb|{n,x}| & $\LegendreP{n,x}$ & $\displaystyle \LegendreP{n,x}$ \\
+% Chebyshev T
+\idxc{ChebyshevT}\verb|{n}{x}| & $\ChebyshevT{n}{x}$ & $\displaystyle \ChebyshevT{n}{x}$ \\
+% Chebyshev U
+\idxc{ChebyshevU}\verb|{n}{x}| & $\ChebyshevU{n}{x}$ & $\displaystyle \ChebyshevU{n}{x}$ \\
+% Jacobi P
+\idxc{JacobiP}\verb|{n}{a}{b}{x}| & $\JacobiP{n}{a}{b}{x}$& $\displaystyle \JacobiP{n}{a}{b}{x}$ \\
+ \\
+% Associated Legendre P
+\idxc{AssocLegendreP}\verb|{\ell}{m}{x}|
+ & $\AssocLegendreP{\ell}{m}{x}$
+ & $\displaystyle \AssocLegendreP{\ell}{m}{x}$
+ \\
+% Associated Legendre Q
+\idxc{AssocLegendreQ}\verb|{\ell}{m}{x}|
+ & $\AssocLegendreQ{\ell}{m}{x}$
+ & $\displaystyle \AssocLegendreQ{\ell}{m}{x}$
+ \\
+% Generalized Laugerre Polynomial
+\idxc{LaugerreL}\verb|{n,\lambda,x}|
+ & $\LaugerreL{n,\lambda,x}$
+ & $\displaystyle \LaugerreL{n,\lambda,x}$
+ \\
+% Gegenbauer Polynomial
+\idxc{GegenbauerC}\verb|{n}{\lambda}{x}|
+ & $\GegenbauerC{n}{\lambda}{x}$
+ & $\displaystyle \GegenbauerC{n}{\lambda}{x}$
+ \\
+% Spherical Harmonics
+\idxc{SphericalHarmY}\verb|{n}{m}{\theta}{\phi}|
+ & $\SphericalHarmY{n}{m}{\theta}{\phi}$
+ & $\displaystyle \SphericalHarmY{n}{m}{\theta}{\phi}$
+ \\
+ \\
+% Cyclotomic
+\idxc{CyclotomicC}\verb|{n}{x}| & $\CyclotomicC{n}{x}$ & $\displaystyle \CyclotomicC{n}{x}$ \\
+% Fibonacci
+\idxc{FibonacciF}\verb|{n}{x}| & $\FibonacciF{n}{x}$ & $\displaystyle \FibonacciF{n}{x}$ \\
+% Euler
+\idxc{EulerE}\verb|{n}{x}| & $\EulerE{n}{x}$ & $\displaystyle \EulerE{n}{x}$ \\
+% Bernoulli
+\idxc{BernoulliB}\verb|{n}{x}| & $\BernoulliB{n}{x}$ & $\displaystyle \BernoulliB{n}{x}$ \\
+\end{tabular}
+\end{center}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Gamma, Beta, and Error Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Factorials}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%% Gamma, Beta, Error Functions
+\begin{center}
+
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Factorial
+\idxc{Factorial}\verb|{n}| & $\Factorial{n}$ & $\displaystyle \Factorial{n}$ \\
+\idxc{DblFactorial}\verb|{n}| & $\DblFactorial{n}$ & $\displaystyle \DblFactorial{n}$ \\
+\idxc{Binomial}\verb|{n}{k}| & $\Binomial{n}{k}$ & $\displaystyle \Binomial{n}{k}$ \\
+\idxc{Multinomial}\verb|{1,2,3,4}| & $\Multinomial{1,2,3,4}$
+ & $\displaystyle \Multinomial{1,2,3,4}$ \\
+\end{tabular}
+
+\vspace{0.25cm}
+
+\begin{tabular}{c}
+\idxc{Multinomial}\verb|{n_1, n_2, \ldots, n_m}|
+\\
+ \begin{tabular}{cc}
+ {\bf Inline:} & $\Multinomial{n_1,n_2,\ldots,n_m}$ \\
+ {\bf Display:} & $\displaystyle \Multinomial{n_1, n_2, \ldots, n_m}$ \\
+ \end{tabular}
+\\
+\\
+\end{tabular}
+
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Gamma Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Incomplete Gamma Function}
+\index{Gamma Functions}
+\index{Gamma Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Gamma Functions
+\idxc{GammaFunc}\verb|{x}| & $\GammaFunc{x}$ & $\displaystyle \GammaFunc{x}$ \\
+% incomplete Gamma function G(a,x)
+\idxc{IncGamma}\verb|{a}{x}| & $\IncGamma{a}{x}$ & $\displaystyle \IncGamma{a}{x}$ \\
+% Generalized Incomplete Gamma G(a, x, y)
+\idxc{GenIncGamma}\verb|{a}{x}{y}| & $\GenIncGamma{a}{x}{y}$
+ & $\displaystyle \GenIncGamma{a}{x}{y}$ \\
+% Regularized Incomplete Gamma Q(a,x)
+\idxc{RegIncGamma}\verb|{a}{x}| & $\RegIncGamma{a}{x}$ & $\displaystyle \RegIncGamma{a}{x}$ \\
+% Inverse of Regularized Incomplete Gamma InvQ(a,x)
+% \ArcRegIncGamma
+\idxc{RegIncGammaInv}\verb|{a}{x}| & $\RegIncGammaInv{a}{x}$
+ & $\displaystyle \RegIncGammaInv{a}{x}$ \\
+% Generalized Regularized Incomplete Gamma Q(a, x, y)
+\idxc{GenRegIncGamma}\verb|{a}{x}{y}|
+ & $\GenRegIncGamma{a}{x}{y}$
+ & $\displaystyle \GenRegIncGamma{a}{x}{y}$
+ \\
+% Inverse of Gen. Reg. Incomplete Gamma InvQ(a, x, y)
+% \ArcGenRegIncGamma
+\idxc{GenRegIncGammaInv}\verb|{a}{x}{y}|
+ & $\GenRegIncGammaInv{a}{x}{y}$
+ & $\displaystyle \GenRegIncGammaInv{a}{x}{y}$
+ \\
+% Pochhammer Symbol (a)_n
+\idxc{Pochhammer}\verb|{a}{n}| & $\Pochhammer{a}{n}$ & $\displaystyle \Pochhammer{a}{n}$ \\
+% Log Gamma Func
+\idxc{LogGamma}\verb|{x}| & $\LogGamma{x}$ & $\displaystyle \LogGamma{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Derivatives of Gamma Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Derivatives!of Gamma Functions}
+\index{Beta Functions}
+\index{Beta Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Derivative of Gamma Functions
+% Digamma function
+\idxc{DiGamma}\verb|{x}| & $\DiGamma{x}$ & $\displaystyle \DiGamma{x}$ \\
+% PolyGamma function psi^(\nu) (x)
+\idxc{PolyGamma}\verb|{\nu}{x}| & $\PolyGamma{\nu}{x}$ & $\displaystyle \PolyGamma{\nu}{x}$ \\
+% Harmonic Number H_x
+\idxc{HarmNum}\verb|{x}| & $\HarmNum{x}$ & $\displaystyle \HarmNum{x}$ \\
+% Generalized Harmonic Number H_x^(r)
+\idxc{HarmNum}\verb|{x,r}| & $\HarmNum{x,r}$ & $\displaystyle \HarmNum{x,r}$ \\
+% Beta Function B(a, b)
+\idxc{Beta}\verb|{a,b}| & $\Beta{a,b}$ & $\displaystyle \Beta{a,b}$ \\
+% Incomplete Beta Function B_z(a, b)
+\idxc{IncBeta}\verb|{z}{a}{b}| & $\IncBeta{z}{a}{b}$ & $\displaystyle \IncBeta{z}{a}{b}$ \\
+% Generalized Inc. Beta Func. B_(x,y) (a, b)
+\idxc{GenIncBeta}\verb|{x}{y}{a}{b}|
+ & $\GenIncBeta{x}{y}{a}{b}$
+ & $\displaystyle \GenIncBeta{x}{y}{a}{b}$
+ \\
+% Regularized Incomplete Beta Function I_z(a,b)
+\idxc{RegIncBeta}\verb|{z}{a}{b}| & $\RegIncBeta{z}{a}{b}$
+ & $\displaystyle \RegIncBeta{z}{a}{b}$ \\
+% Inverse of Reg. Incomplete Beta Function InvI_z(a,b)
+% \ArcRegIncBeta
+\idxc{RegIncBetaInv}\verb|{z}{a}{b}|
+ & $\RegIncBetaInv{z}{a}{b}$
+ & $\displaystyle \RegIncBetaInv{z}{a}{b}$
+ \\
+% Gen. Regularized Inc. Beta Func. I_(x,y) (a, b)
+\idxc{GenRegIncBeta}\verb|{x}{y}{a}{b}|
+ & $\GenRegIncBeta{x}{y}{a}{b}$
+ & $\displaystyle \GenRegIncBeta{x}{y}{a}{b}$
+ \\
+% Inv. of Gen. Reg. Inc. Beta InvI_(x,y) (a, b)
+%\ArcGenRegIncBeta
+\idxc{GenRegIncBetaInv}\verb|{x}{y}{a}{b}|
+ & $\GenRegIncBetaInv{x}{y}{a}{b}$
+ & $\displaystyle \GenRegIncBetaInv{x}{y}{a}{b}$
+ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Error Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Error Functions}
+\index{Error Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Error Functions
+% Error Function
+\idxc{Erf}\verb|{x}| & $\Erf{x}$ & $\displaystyle \Erf{x}$ \\
+% Inverse of Error Function
+%\ArcErf
+\idxc{InvErf}\verb|{x}| & $\ErfInv{x}$ & $\displaystyle \ErfInv{x}$ \\
+% Generalized Error Function
+\idxc{GenErf}\verb|{x}|{y} & $\GenErf{x}{y}$ & $\displaystyle \GenErf{x}{y}$ \\
+% Inverse of Generalized Error Function
+%\ArcGenErf
+\idxc{GenErfInv}\verb|{x}{y}| & $\GenErfInv{x}{y}$ & $\displaystyle \GenErfInv{x}{y}$ \\
+% Complimentary Error Function
+\idxc{Erfc}\verb|{x}| & $\Erfc{x}$ & $\displaystyle \Erfc{x}$ \\
+% Inverse of Complimentary Error Function
+% \ArcErfc
+\idxc{ErfcInv}\verb|{x}| & $\ErfcInv{x}$ & $\displaystyle \ErfcInv{x}$ \\
+% Imaginary Error Function
+\idxc{Erfi}\verb|{x}| & $\Erfi{x}$ & $\displaystyle \Erfi{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Fresnel Integrals}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Fresnel Integrals}
+\index{Integrals!Fresnel}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Fresnel
+\idxc{FresnelS}\verb|{x}| & $\FresnelS{x}$ & $\displaystyle \FresnelS{x}$ \\
+\idxc{FresnelC}\verb|{x}| & $\FresnelC{x}$ & $\displaystyle \FresnelC{x}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Exponential Integrals}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Exponential Integrals}
+\index{Integrals!Exponential}
+
+\begin{center}
+\begin{tabular}{ccc}
+%%%%%% Exponential Integrals
+% Exponential Integral E_\nu (x)
+\idxc{ExpIntE}\verb|{\nu}{x}| & $\ExpIntE{\nu}{x}$ & $\displaystyle \ExpIntE{\nu}{x}$ \\
+% Exponential Integral Ei(x)
+\idxc{ExpIntEi}\verb|{x}| & $\ExpIntEi{x}$ & $\displaystyle \ExpIntEi{x}$ \\
+% Logarithmic Integral li(x)
+\idxc{LogInt}\verb|{x}| & $\LogInt{x}$ & $\displaystyle \LogInt{x}$ \\
+% Sine Integral
+\idxc{SinInt}\verb|{x}| & $\SinInt{x}$ & $\displaystyle \SinInt{x}$ \\
+% Cosine Integral
+\idxc{CosInt}\verb|{x}| & $\CosInt{x}$ & $\displaystyle \CosInt{x}$ \\
+% Hyperbolic Sine Integral
+\idxc{SinhInt}\verb|{x}| & $\SinhInt{x}$ & $\displaystyle \SinhInt{x}$ \\
+% Hyperbolic Cosine Integral
+\idxc{CoshInt}\verb|{x}| & $\CoshInt{x}$ & $\displaystyle \CoshInt{x}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Hypergeometric Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Hypergeometric Function}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Hypergeometric Functions}
+
+\begin{center}
+\begin{tabular}{c}
+\idxc{Hypergeometric}\verb|{0}{0}{}{}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{0}{0}{}{}{x}$ & $\displaystyle \Hypergeometric{0}{0}{}{}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{0}{1}{}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{0}{1}{}{b}{x}$ & $\displaystyle \Hypergeometric{0}{1}{}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{1}{1}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{1}{1}{a}{b}{x}$ & $\displaystyle \Hypergeometric{1}{1}{a}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{1}{1}{1}{1}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{1}{1}{1}{1}{x}$ & $\displaystyle \Hypergeometric{1}{1}{1}{1}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{3}{5}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{3}{5}{a}{b}{x}$ & $\displaystyle \Hypergeometric{3}{5}{a}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{3}{5}{1,2,3}{1,2,3,4,5}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$ & $\displaystyle \Hypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{p}{5}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{p}{5}{a}{b}{x}$ & $\displaystyle \Hypergeometric{p}{5}{a}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{p}{3}{a}{1,2,3}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{p}{3}{a}{1,2,3}{x}$ $\displaystyle \Hypergeometric{p}{3}{a}{1,2,3}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{Hypergeometric}\verb|{p}{q}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\Hypergeometric{p}{q}{a}{b}{x}$ & $\displaystyle \Hypergeometric{p}{q}{a}{b}{x}$ \\
+
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Regularized Hypergeometric Function}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Hypergeometric Functions!Regularized}
+
+\begin{center}
+\begin{tabular}{c}
+\idxc{RegHypergeometric}\verb|{0}{0}{}{}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{0}{0}{}{}{x}$ & $\displaystyle \RegHypergeometric{0}{0}{}{}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{0}{1}{}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{0}{1}{}{b}{x}$ & $\displaystyle \RegHypergeometric{0}{1}{}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{3}{5}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{3}{5}{a}{b}{x}$ & $\displaystyle \RegHypergeometric{3}{5}{a}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{3}{5}{1,2,3}{1,2,3,4,5}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$ & $\displaystyle \RegHypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{p}{5}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{p}{5}{a}{b}{x}$ & $\displaystyle \RegHypergeometric{p}{5}{a}{b}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{p}{3}{a}{1,2,3}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{p}{3}{a}{1,2,3}{x}$ & $\displaystyle \RegHypergeometric{p}{3}{a}{1,2,3}{x}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{RegHypergeometric}\verb|{p}{q}{a}{b}{x}|
+\\
+ \begin{tabular}{cc}
+ $\RegHypergeometric{p}{q}{a}{b}{x}$ & $\displaystyle \RegHypergeometric{p}{q}{a}{b}{x}$ \\
+
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Meijer G-Function}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Meijer G-Function}
+\index{G-Function}
+
+\begin{center}
+\begin{tabular}{c}
+\idxc{MeijerG}\verb|[a,b]{n}{p}{m}{q}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a,b]{n}{p}{m}{q}{x}$
+ & $\displaystyle \MeijerG[a,b]{n}{p}{m}{q}{x}$
+ \end{tabular}
+\\
+\end{tabular}
+
+\vspace{0.5cm}
+
+\begin{tabular}{c}
+\idxc{MeijerG}\verb|{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}$
+ & $\displaystyle \MeijerG{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}$
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a,b]{4}{6}{3}{8}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a,b]{4}{6}{3}{8}{x}$
+ & $\displaystyle \MeijerG[a,b]{4}{6}{3}{8}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a,b]{4}{p}{3}{8}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a,b]{4}{p}{3}{8}{x}$
+ & $\displaystyle \MeijerG[a,b]{4}{p}{3}{8}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a,b]{n}{p}{3}{8}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a,b]{n}{p}{3}{8}{x}$
+ & $\displaystyle \MeijerG[a,b]{n}{p}{3}{8}{x}$
+ \\
+ \end{tabular}
+\\
+\end{tabular}
+
+\begin{tabular}{c}
+\idxc{MeijerG}\verb|[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}$
+ & $\displaystyle \MeijerG[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}$
+ & $\displaystyle \MeijerG[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}$
+ & $\displaystyle \MeijerG[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}$
+ & $\displaystyle \MeijerG[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}$
+ \\
+ \end{tabular}
+\\
+\end{tabular}
+
+\begin{tabular}{c}
+\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{3}{8}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[,b]{1,2,3,4}{5,6}{3}{8}{x}$
+ & $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{3}{8}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{3}{q}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[,b]{1,2,3,4}{5,6}{3}{q}{x}$
+ & $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{3}{q}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{m}{q}{x}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[,b]{1,2,3,4}{5,6}{m}{q}{x}$
+ & $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{m}{q}{x}$
+ \\
+ \end{tabular}
+\\
+\\
+\end{tabular}
+
+\index{Generalized Meijer G-Function}
+\index{Meijer G-Function!Generalized}
+
+\begin{tabular}{c}
+\idxc{MeijerG}\verb|[a,b]{n}{p}{m}{q}{x, r}| \vspace{0.10cm}
+\\
+ \begin{tabular}{cc}
+ $\MeijerG[a,b]{n}{p}{m}{q}{x, r}$
+ & $\displaystyle \MeijerG[a,b]{n}{p}{m}{q}{x, r}$
+ \end{tabular}
+\\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Appell Hypergeometric Function $F_1$}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Appell Hypergeometric Function}
+\index{Hypergeometric Functions!Appell}
+
+\begin{center}
+\begin{tabular}{c}
+\idxc{AppellFOne}\verb|{a}{b_1, b_2}{c}{x, y}|
+\\
+ \begin{tabular}{cc}
+ $\AppellFOne{a}{b_1,b_2}{c}{x,y}$ & $\displaystyle \AppellFOne{a}{b_1, b_2}{c}{x, y}$ \\
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Tricomi Confluent Hypergeometric Function}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Tricomi Confluent Hypergeometric Function}
+\index{Hypergeometric Functions!Tricomi Confluent}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+\idxc{HypergeometricU}\verb|{a}{b}{x}|
+ & $\HypergeometricU{a}{b}{x}$
+ & $\displaystyle \HypergeometricU{a}{b}{x}$ \\
+\end{tabular}
+\end{center}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Angular Momentum Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Clebsch-Gordon Coefficients}
+\index{6-j Symbol}
+\index{Six-j Symbol@6-j Symbol}
+\index{Racah 6-j Symbol}
+\index{3-j Symbol}
+\index{Three-j Symbol@3-j Symbol}
+\index{Wigner 3-j Symbol}
+
+
+\begin{center}
+\begin{tabular}{c}
+\idxc{ClebschGordon}\verb|{j_1,m_1}{j_2,m_2}{j,m}|
+\\
+ \begin{tabular}{cc}
+ $\ClebschGordon{j_1, m_1}{j_2, m_2}{j, m}$ & $\displaystyle \ClebschGordon{j_1, m_1}{j_2, m_2}{j, m}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{SixJSymbol}\verb|{j_1,j_2,j_3}{j_4,j_5,j_6}|
+\\
+ \begin{tabular}{cc}
+ $\SixJSymbol{j_1,j_2,j_3}{j_4,j_5,j_6}$ & $\displaystyle \SixJSymbol{j_1,j_2,j_3}{j_4,j_5,j_6}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{ThreeJSymbol}\verb|{j_1,m_1}{j_2,m_2}{j_3,m_3}|
+\\
+ \begin{tabular}{cc}
+ $\ThreeJSymbol{j_1,m_1}{j_2,m_2}{j_3,m_3}$ & $\displaystyle \ThreeJSymbol{j_1,m_1}{j_2,m_2}{j_3,m_3}$
+ \\
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Elliptic Integrals}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Elliptic!Integrals}
+\index{Integrals!Elliptic}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Complete Elliptic Integrals}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Complete Elliptic Integrals}
+\index{Integrals!Elliptic!Complete}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Complete Elliptic Integrals
+% Complete Elliptic Integral of the First Kind
+\idxc{EllipticK}\verb|{x}| & $\EllipticK{x}$ & $\displaystyle \EllipticK{x}$ \\
+% Complete Elliptic Integral of the Second Kind
+\idxc{EllipticE}\verb|{x}| & $\EllipticE{x}$ & $\displaystyle \EllipticE{x}$ \\
+% Complete Elliptic Integral of the Third Kind
+\idxc{EllipticPi}\verb|{n,m}| & $\EllipticPi{n,m}$ & $\displaystyle \EllipticPi{n,m}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Incomplete Elliptic Integrals}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Incomplete Elliptic Integrals}
+\index{Integrals!Elliptic!Incomplete}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Incomplete Elliptic Integrals
+% Incomplete Elliptic Integral of the First Kind
+\idxc{IncEllipticF}\verb|{x}{m}| & $\IncEllipticF{x}{m}$ & $\displaystyle \IncEllipticF{x}{m}$ \\
+% Incomplete Elliptic Integral of the Second Kind
+\idxc{IncEllipticE}\verb|{x}{m}| & $\IncEllipticE{x}{m}$ & $\displaystyle \IncEllipticE{x}{m}$ \\
+% Complete Elliptic Integral of the Third Kind
+\idxc{IncEllipticPi}\verb|{n}{x}{m}|
+ & $\IncEllipticPi{n}{x}{m}$
+ & $\displaystyle \IncEllipticPi{n}{x}{m}$
+ \\
+\idxc{JacobiZeta}\verb|{x}{m}| & $\JacobiZeta{x}{m}$ & $\displaystyle \JacobiZeta{x}{m}$ \\
+\end{tabular}
+\end{center}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Elliptic Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Elliptic!Functions}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Jacobi Theta Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Theta Functions!Jacobi}
+\index{Jacobi Theta Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Jacobi Theta Functions
+% Jacobi Theta 1 .. 4
+\idxc{EllipticTheta}\verb|{1}{x}{q}|
+ & $\EllipticTheta{1}{x}{q}$
+ & $\displaystyle \EllipticTheta{1}{x}{q}$
+ \\
+% Jacobi Theta 1 ... 4 (Alternate Notation)
+\idxc{JacobiTheta}\verb|{1}{x}{q}| & $\JacobiTheta{1}{x}{q}$
+ & $\displaystyle \JacobiTheta{1}{x}{q}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Neville Theta Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Theta Functions!Neville}
+\index{Neville Theta Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Neville Theta Functions
+% Neville Theta D
+\idxc{NevilleThetaC}\verb|{x}{m}| & $\NevilleThetaC{x}{m}$
+ & $\displaystyle \NevilleThetaC{x}{m}$ \\
+\idxc{NevilleThetaD}\verb|{x}{m}| & $\NevilleThetaD{x}{m}$
+ & $\displaystyle \NevilleThetaD{x}{m}$ \\
+\idxc{NevilleThetaN}\verb|{x}{m}| & $\NevilleThetaN{x}{m}$
+ & $\displaystyle \NevilleThetaN{x}{m}$ \\
+\idxc{NevilleThetaS}\verb|{x}{m}| & $\NevilleThetaS{x}{m}$
+ & $\displaystyle \NevilleThetaS{x}{m}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Weierstrass Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Weierstrass Functions}
+
+\begin{center}
+\begin{tabular}{c}
+%%%%%% Weierstrass Functions
+\idxc{WeierstrassP}\verb|{z}{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassP{z}{g_2,g_3}$ & $\displaystyle \WeierstrassP{z}{g_2,g_3}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassPInv}\verb|{z}{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassPInv{z}{g_2,g_3}$ & $\displaystyle \WeierstrassPInv{z}{g_2,g_3}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassPGenInv}\verb|{z_1}{z_2}{g_2}{g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassPGenInv{z_1}{z_2}{g_2}{g_3}$
+ & $\displaystyle \WeierstrassPGenInv{z_1}{z_2}{g_2}{g_3}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassSigma}\verb|{z}{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassSigma{z}{g_2,g_3}$ & $\displaystyle \WeierstrassSigma{z}{g_2,g_3}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{AssocWeierstrassSigma}\verb|{n}{z}{g_2}{g_3}|
+\\
+\idxc{WeiSigma}\verb|{n,z}{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\AssocWeierstrassSigma{n}{z}{g_2}{g_3}$
+ & $\displaystyle \WeiSigma{n,z}{g_2,g_3}$
+ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassZeta}\verb|{z}{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassZeta{z}{g_2,g_3}$ & $\displaystyle \WeierstrassZeta{z}{g_2,g_3}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassHalfPeriods}\verb|{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassHalfPeriods{g_2,g_3}$ & $\displaystyle \WeierstrassHalfPeriods{g_2,g_3}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{WeierstrassInvariants}\verb|{\omega_1,\omega_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassInvariants{\omega_1,\omega_3}$
+ & $\displaystyle \WeierstrassInvariants{\omega_1,\omega_3}$
+ \\
+ \end{tabular}
+\\
+\end{tabular}
+
+\vspace{1.0cm}
+
+\begin{tabular}{c}
+\verb|\Style{WeierstrassPHalfPeriodValuesDisplay=sf}| (Default)%
+\Style{WeierstrassPHalfPeriodValuesDisplay=sf}
+\\
+\idxc{WeierstrassPHalfPeriodValues}\verb|{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassPHalfPeriodValues{g_2,g_3}$
+ & $\displaystyle \WeierstrassPHalfPeriodValues{g_2,g_3}$
+ \\
+ \end{tabular}
+\\
+\\
+\\
+\verb|\Style{WeierstrassPHalfPeriodValuesDisplay=ff}|%
+\Style{WeierstrassPHalfPeriodValuesDisplay=ff}
+\\
+\idxc{WeierstrassPHalfPeriodValues}\verb|{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassPHalfPeriodValues{g_2,g_3}$
+ & $\displaystyle \WeierstrassPHalfPeriodValues{g_2,g_3}$
+ \\
+ \end{tabular}
+\\
+\end{tabular}
+
+\vspace{1cm}
+
+\begin{tabular}{c}
+\verb|\Style{WeierstrassZetaHalfPeriodValuesDisplay=sf}| (Default)%
+\Style{WeierstrassZetaHalfPeriodValuesDisplay=sf}
+\\
+\idxc{WeierstrassZetaHalfPeriodValues}\verb|{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassZetaHalfPeriodValues{g_2,g_3}$
+ & $\displaystyle \WeierstrassZetaHalfPeriodValues{g_2,g_3}$
+ \\
+ \end{tabular}
+\\
+\\
+\\
+\verb|\Style{WeierstrassZetaHalfPeriodValuesDisplay=ff}|%
+\Style{WeierstrassZetaHalfPeriodValuesDisplay=ff}
+\\
+\idxc{WeierstrassZetaHalfPeriodValues}\verb|{g_2,g_3}|
+\\
+ \begin{tabular}{cc}
+ $\WeierstrassZetaHalfPeriodValues{g_2,g_3}$
+ & $\displaystyle \WeierstrassZetaHalfPeriodValues{g_2,g_3}$
+ \\
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Jacobi Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Jacobi Functions}
+\index{Jacobi Functions!Inverse}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Jacobi Functions
+% am(z | m)
+\idxc{JacobiAmplitude}\verb|{z}{m}| & $\JacobiAmplitude{z}{m}$
+ & $\displaystyle \JacobiAmplitude{z}{m}$
+ \\
+% cd(z | m)
+\idxc{JacobiCD}\verb|{z}{m}| & $\JacobiCD{z}{m}$ & $\displaystyle \JacobiCD{z}{m}$ \\
+\idxc{JacobiCDInv}\verb|{z}{m}| & $\JacobiCDInv{z}{m}$ & $\displaystyle \JacobiCDInv{z}{m}$ \\
+% cn(z | m)
+\idxc{JacobiCN}\verb|{z}{m}| & $\JacobiCN{z}{m}$ & $\displaystyle \JacobiCN{z}{m}$ \\
+\idxc{JacobiCNInv}\verb|{z}{m}| & $\JacobiCNInv{z}{m}$ & $\displaystyle \JacobiCNInv{z}{m}$ \\
+% cs(z | m)
+\idxc{JacobiCS}\verb|{z}{m}| & $\JacobiCS{z}{m}$ & $\displaystyle \JacobiCS{z}{m}$ \\
+\idxc{JacobiCSInv}\verb|{z}{m}| & $\JacobiCSInv{z}{m}$ & $\displaystyle \JacobiCSInv{z}{m}$ \\
+% dc(z | m)
+\idxc{JacobiDC}\verb|{z}{m}| & $\JacobiDC{z}{m}$ & $\displaystyle \JacobiDC{z}{m}$ \\
+\idxc{JacobiDCInv}\verb|{z}{m}| & $\JacobiDCInv{z}{m}$ & $\displaystyle \JacobiDCInv{z}{m}$ \\
+% dn(z | m)
+\idxc{JacobiDN}\verb|{z}{m}| & $\JacobiDN{z}{m}$ & $\displaystyle \JacobiDN{z}{m}$ \\
+\idxc{JacobiDNInv}\verb|{z}{m}| & $\JacobiDNInv{z}{m}$ & $\displaystyle \JacobiDNInv{z}{m}$ \\
+% dn(z | m)
+\idxc{JacobiDS}\verb|{z}{m}| & $\JacobiDS{z}{m}$ & $\displaystyle \JacobiDS{z}{m}$ \\
+\idxc{JacobiDSInv}\verb|{z}{m}| & $\JacobiDSInv{z}{m}$ & $\displaystyle \JacobiDSInv{z}{m}$ \\
+% nc(z | m)
+\idxc{JacobiNC}\verb|{z}{m}| & $\JacobiNC{z}{m}$ & $\displaystyle \JacobiNC{z}{m}$ \\
+\idxc{JacobiNCInv}\verb|{z}{m}| & $\JacobiNCInv{z}{m}$ & $\displaystyle \JacobiNCInv{z}{m}$ \\
+% nd(z | m)
+\idxc{JacobiND}\verb|{z}{m}| & $\JacobiND{z}{m}$ & $\displaystyle \JacobiND{z}{m}$ \\
+\idxc{JacobiNDInv}\verb|{z}{m}| & $\JacobiNDInv{z}{m}$ & $\displaystyle \JacobiNDInv{z}{m}$ \\
+% ns(z | m)
+\idxc{JacobiNS}\verb|{z}{m}| & $\JacobiNS{z}{m}$ & $\displaystyle \JacobiNS{z}{m}$ \\
+\idxc{JacobiNSInv}\verb|{z}{m}| & $\JacobiNSInv{z}{m}$ & $\displaystyle \JacobiNSInv{z}{m}$ \\
+% sc(z | m)
+\idxc{JacobiSC}\verb|{z}{m}| & $\JacobiSC{z}{m}$ & $\displaystyle \JacobiSC{z}{m}$ \\
+\idxc{JacobiSCInv}\verb|{z}{m}| & $\JacobiSCInv{z}{m}$ & $\displaystyle \JacobiSCInv{z}{m}$ \\
+% sd(z | m)
+\idxc{JacobiSD}\verb|{z}{m}| & $\JacobiSD{z}{m}$ & $\displaystyle \JacobiSD{z}{m}$ \\
+\idxc{JacobiSDInv}\verb|{z}{m}| & $\JacobiSDInv{z}{m}$ & $\displaystyle \JacobiSDInv{z}{m}$ \\
+% sn(z | m)
+\idxc{JacobiSN}\verb|{z}{m}| & $\JacobiSN{z}{m}$ & $\displaystyle \JacobiSN{z}{m}$ \\
+\idxc{JacobiSNInv}\verb|{z}{m}| & $\JacobiSNInv{z}{m}$ & $\displaystyle \JacobiSNInv{z}{m}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Modular Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Modular Functions}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Modular Functions
+\idxc{DedekindEta}\verb|{z}| & $\DedekindEta{z}$ & $\displaystyle \DedekindEta{z}$ \\
+\idxc{KleinInvariantJ}\verb|{z}| & $\KleinInvariantJ{z}$ & $\displaystyle \KleinInvariantJ{z}$ \\
+\idxc{ModularLambda}\verb|{z}| & $\ModularLambda{z}$ & $\displaystyle \ModularLambda{z}$ \\
+\idxc{EllipticNomeQ}\verb|{z}| & $\EllipticNomeQ{z}$ & $\displaystyle \EllipticNomeQ{z}$ \\
+\idxc{EllipticNomeQInv}\verb|{z}| & $\EllipticNomeQInv{z}$
+ & $\displaystyle \EllipticNomeQInv{z}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Arithmetic Geometric Mean}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Arithmetic Geometric Mean}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Arithmetic Geometric Mean
+\idxc{ArithGeoMean}\verb|{a}{b}| & $\ArithGeoMean{a}{b}$ & $\displaystyle \ArithGeoMean{a}{b}$ \\
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Elliptic Exp and Log}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Elliptic!Exponential}
+\index{Elliptic!Logarithm}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Elliptic Exp and Log
+\idxc{EllipticExp}\verb|{x}{a,b}| & $\EllipticExp{x}{a,b}$
+ & $\displaystyle \EllipticExp{x}{a,b}$ \\
+% elog(z_1, z_2; a,b)
+\idxc{EllipticLog}\verb|{x,y}{a,b}|
+ & $\EllipticLog{x,y}{a,b}$
+ & $\displaystyle \EllipticLog{x,y}{a,b}$
+ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Zeta Functions and Polylogarithms}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Zeta!Functions}
+\index{Polylogarithm}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Zeta Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Zeta!Riemann}
+\index{Zeta!Hurwitz}
+\index{Zeta}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Riemann Zeta Function
+\idxc{RiemannZeta}\verb|{s}| & $\RiemannZeta{s}$ & $\displaystyle \RiemannZeta{s}$ \\
+\idxc{Zeta}\verb|{s}| & $\Zeta{s}$ & $\displaystyle \Zeta{s}$ \\
+ \\
+%%%%%% Hurwitz Zeta Function
+\idxc{HurwitzZeta}\verb|{s}{a}| & $\HurwitzZeta{s}{a}$ & $\displaystyle \HurwitzZeta{s}{a}$ \\
+\idxc{Zeta}\verb|{s,a}| & $\Zeta{s,a}$ & $\displaystyle \Zeta{s,a}$ \\
+ \\
+%%%%%% Riemann-Siegel Theta Function
+\idxc{RiemannSiegelTheta}\verb|{x}|
+ & $\RiemannSiegelTheta{x}$ & $\displaystyle \RiemannSiegelTheta{x}$ \\
+%%%%%% Riemann-Siegel Z Function
+\idxc{RiemannSiegelZ}\verb|{x}| & $\RiemannSiegelZ{x}$ & $\displaystyle \RiemannSiegelZ{x}$ \\
+%%%%%% Stieltjes Constant [\gamma_n]
+\idxc{StieltjesGamma}\verb|{n}| & $\StieltjesGamma{n}$ & $\displaystyle \StieltjesGamma{n}$ \\
+%%%%%% Lerch transcendent [\Phi(z,s,a)]
+\idxc{LerchPhi}\verb|{z}{s}{a}| & $\LerchPhi{z}{s}{a}$ & $\displaystyle \LerchPhi{z}{s}{a}$ \\
+ \\
+%%%%%% Nielsen Polylogarithm [S_\nu^p(z)]
+\idxc{NielsenPolyLog}\verb|{\nu}{p}{z}|
+ & $\NielsenPolyLog{\nu}{p}{z}$ & $\displaystyle \NielsenPolyLog{\nu}{p}{z}$ \\
+\idxc{PolyLog}\verb|{\nu,p,z}| & $\PolyLog{\nu,p,z}$ & $\displaystyle \PolyLog{\nu,p,z}$ \\
+ \\
+%%%%%% Polylogarithm [Li_\nu (z)]
+\idxc{PolyLog}\verb|{\nu,z}| & $\PolyLog{\nu,z}$ & $\displaystyle \PolyLog{\nu,z}$ \\
+%%%%%% Dilogarithm [\PolyLog{2,x}]
+\idxc{DiLog}\verb|{z}| & $\DiLog{z}$ & $\displaystyle \DiLog{z}$ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Mathieu Functions and Characteristics}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Mathieu!Functions}
+\index{Mathieu!Characteristics}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Mathieu Functions}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Mathieu Functions
+%%%%%%%% Even Mathieu Function Ce(a,q,z)
+\idxc{MathieuC}\verb|{a}{q}{z}| & $\MathieuC{a}{q}{z}$ & $\displaystyle \MathieuC{a}{q}{z}$ \\
+%%%%%%%% Odd Mathieu Function Se(a,q,z)
+\idxc{MathieuS}\verb|{a}{q}{z}| & $\MathieuS{a}{q}{z}$ & $\displaystyle \MathieuS{a}{q}{z}$ \\
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Mathieu Characteristics}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Mathieu Characteristics
+%%%%%%%% Characteristic Value of Even Mathieu Fucntion a_r(q)
+\idxc{MathieuCharacteristicA}\verb|{r}{q}|
+ & $\MathieuCharacteristicA{r}{q}$ & $\displaystyle \MathieuCharacteristicA{r}{q}$ \\
+\idxc{MathieuCharisticA}\verb|{r}{q}|
+ & $\MathieuCharisticA{r}{q}$ & $\displaystyle \MathieuCharisticA{r}{q}$ \\
+ \\
+%%%%%%%% Characteristic Value of Even Mathieu Fucntion b_r(q)
+\idxc{MathieuCharacteristicB}\verb|{r}{q}|
+ & $\MathieuCharacteristicB{r}{q}$ & $\displaystyle \MathieuCharacteristicB{r}{q}$ \\
+\idxc{MathieuCharisticB}\verb|{r}{q}|
+ & $\MathieuCharisticB{r}{q}$ & $\displaystyle \MathieuCharisticB{r}{q}$ \\
+ \\
+%%%%%%%% Characteristic Exponent of a Mathieu Fucntion r(a,q)
+\idxc{MathieuCharacteristicExponent}\verb|{a}{q}|
+ & $\MathieuCharacteristicExponent{a}{q}$
+ & $\displaystyle \MathieuCharacteristicExponent{a}{q}$
+ \\
+\idxc{MathieuCharisticExp}\verb|{a}{q}|
+ & $\MathieuCharisticExp{a}{q}$
+ & $\displaystyle \MathieuCharisticExp{a}{q}$
+ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Complex Components}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Complex Components}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+\idxc{Abs}\verb|{z}| & $\Abs{z}$ & $\displaystyle \Abs{z}$ \\
+\idxc{Arg}\verb|{z}| & $\Arg{z}$ & $\displaystyle \Arg{z}$ \\
+\idxc{Conj}\verb|{z}| & $\Conj{z}$ & $\displaystyle \Conj{z}$ \\
+\Style{Conjugate=bar}%
+\verb|\Style{Conjugate=bar}|%
+\idxc{Conj}\verb|{z}| & $\Conj{z}$ & $\displaystyle \Conj{z}$ \\
+\Style{Conjugate=overline}%
+\verb|\Style{Conjugate=overline}|%
+\idxc{Conj}\verb|{z}| & $\Conj{z}$ & $\displaystyle \Conj{z}$ \\
+\idxc{Real}\verb|{z}| & $\Real{z}$ & $\displaystyle \Real{z}$ \\
+\idxc{Imag}\verb|{z}| & $\Imag{z}$ & $\displaystyle \Imag{z}$ \\
+\idxc{Sign}\verb|{z}| & $\Sign{z}$ & $\displaystyle \Sign{z}$ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Number Theory Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Number Theory}
+\index{Functions!Number Theory}
+\index{Totient Function}
+\index{Euler Totient Function}
+\index{Moebius Function}
+\index{Jacobi!Symbol}
+\index{Symbol!Jacobi}
+\index{Charmicheal Lambda Function}
+\index{Lambda Function!Charmicheal}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+\idxc{FactorInteger}\verb|{n}| & $\FactorInteger{n}$ & $\displaystyle \FactorInteger{n}$ \\
+\idxc{Factors}\verb|{n}| & $\Factors{n}$ & $\displaystyle \Factors{n}$ \\
+ \\
+%%%%%% Divisors
+\idxc{Divisors}\verb|{n}| & $\Divisors{n}$ & $\displaystyle \Divisors{n}$ \\
+%%%%%% Prime
+\idxc{Prime}\verb|{n}| & $\Prime{n}$ & $\displaystyle \Prime{n}$ \\
+%%%%%% pi(x)
+\idxc{PrimePi}\verb|{x}| & $\PrimePi{x}$ & $\displaystyle \PrimePi{x}$ \\
+%%%%%% Sum of divisor powers \DivisorSigma{k}{n}
+\idxc{DivisorSigma}\verb|{k}{n}| & $\DivisorSigma{k}{n}$ & $\displaystyle \DivisorSigma{k}{n}$ \\
+%%%%%% Euler Totient Function
+\idxc{EulerPhi}\verb|{n}| & $\EulerPhi{n}$ & $\displaystyle \EulerPhi{n}$ \\
+%%%%%% Moebius Function
+\idxc{MoebiusMu}\verb|{n}| & $\MoebiusMu{n}$ & $\displaystyle \MoebiusMu{n}$ \\
+%%%%%% Jacobi Symbol \JacobiSymbol{n}{m}
+\idxc{JacobiSymbol}\verb|{n}{m}| & $\JacobiSymbol{n}{m}$ & $\displaystyle \JacobiSymbol{n}{m}$ \\
+ \\
+%%%%%% Carmichael Lambda Function
+\idxc{CarmichaelLambda}\verb|{n}| & $\CarmichaelLambda{n}$
+ & $\displaystyle \CarmichaelLambda{n}$ \\
+\end{tabular}
+
+\begin{tabular}{c}
+\idxc{DigitCount}\verb|{n}{b}|
+\\
+ \begin{tabular}{cc}
+ {\bf Inline:} & $\DigitCount{n}{b}$ \\
+ {\bf Display:} & $\displaystyle \DigitCount{n}{b}$ \\
+ \end{tabular}
+\\
+\\
+\idxc{DigitCount}\verb|{n}{6}|
+\\
+ \begin{tabular}{cc}
+ {\bf Inline:} & $\DigitCount{n}{6}$ \\
+ {\bf Display:} & $\displaystyle \DigitCount{n}{6}$ \\
+ \end{tabular}
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Generalized Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Generalized Functions}
+\index{Functions!Generalized}
+\index{Heaviside Step}
+%\index{Functions!Heaviside Step}
+\index{Unit Step}
+%\index{Functions!Unit Step}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+%%%%%% Dirac Delta Function
+\idxc{DiracDelta}\verb|{x}| & $\DiracDelta{x}$ & $\displaystyle \DiracDelta{x}$ \\
+\idxc{DiracDelta}\verb|{x_1, x_2}| & $\DiracDelta{x_1, x_2}$ & $\displaystyle \DiracDelta{x_1, x_2}$ \\
+ \\
+%%%%%% Heaviside Step Function
+\idxc{HeavisideStep}\verb|{x}| & $\HeavisideStep{x}$ & $\displaystyle \HeavisideStep{x}$ \\
+\idxc{HeavisideStep}\verb|{x, y}| & $\HeavisideStep{x,y}$ & $\displaystyle \HeavisideStep{x,y}$ \\
+\idxc{UnitStep}\verb|{x}| & $\UnitStep{x}$ & $\displaystyle \UnitStep{x}$ \\
+\idxc{UnitStep}\verb|{x,y}| & $\UnitStep{x,y}$ & $\displaystyle \UnitStep{x,y}$ \\
+\end{tabular}
+\end{center}
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+\subsection{Calculus Functions}
+% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Calculus}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Derivatives}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Calculus!Derivatives}
+\index{Derivatives!Total}
+\index{Total Derivatives}
+
+\begin{center}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=inset,DShorten=true}| (Default)%
+\Style{DDisplayFunc=inset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{D}\verb|{f}{x}| & $\D{f}{x}$ & $\displaystyle \D{f}{x}$ \\
+ \\
+\idxc{D}\verb|[n]{f}{x}| & $\D[n]{f}{x}$ & $\displaystyle \D[n]{f}{x}$ \\
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=outset,DShorten=false}|%
+\Style{DDisplayFunc=outset,DShorten=false} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{D}\verb|{f}{x}| & $\D{f}{x}$ & $\displaystyle \D{f}{x}$ \\
+ \\
+\idxc{D}\verb|[n]{f}{x}| & $\D[n]{f}{x}$ & $\displaystyle \D[n]{f}{x}$ \\
+ \\
+\idxc{D}\verb|{f}{x,y,z}| & $\D{f}{x,y,z}$ & $\displaystyle \D{f}{x,y,z}$ \\
+ \\
+\idxc{D}\verb|[2,n,3]{f}{x,y,z}| & $\D[2,n,3]{f}{x,y,z}$ & $\displaystyle \D[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{D}\verb|[1,n,3]{f}{x,y,z}| & $\D[1,n,3]{f}{x,y,z}$ & $\displaystyle \D[1,n,3]{f}{x,y,z}$
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=outset,DShorten=true}|%
+\Style{DDisplayFunc=outset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{D}\verb|{f}{x}| & $\D{f}{x}$ & $\displaystyle \D{f}{x}$ \\
+ \\
+\idxc{D}\verb|[n]{f}{x}| & $\D[n]{f}{x}$ & $\displaystyle \D[n]{f}{x}$ \\
+ \\
+\idxc{D}\verb|{f}{x,y,z}| & $\D{f}{x,y,z}$ & $\displaystyle \D{f}{x,y,z}$ \\
+ \\
+\idxc{D}\verb|[2,n,3]{f}{x,y,z}| & $\D[2,n,3]{f}{x,y,z}$ & $\displaystyle \D[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{D}\verb|[1,n,3]{f}{x,y,z}| & $\D[1,n,3]{f}{x,y,z}$ & $\displaystyle \D[1,n,3]{f}{x,y,z}$
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{0.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=inset,DShorten=true}|
+\Style{DDisplayFunc=inset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{D}\verb|{f}{x}| & $\D{f}{x}$ & $\displaystyle \D{f}{x}$ \\
+ \\
+\idxc{D}\verb|[n]{f}{x}| & $\D[n]{f}{x}$ & $\displaystyle \D[n]{f}{x}$ \\
+ \\
+\idxc{D}\verb|{f}{x,y,z}| & $\D{f}{x,y,z}$ & $\displaystyle \D{f}{x,y,z}$ \\
+ \\
+\idxc{D}\verb|[2,n,3]{f}{x,y,z}| & $\D[2,n,3]{f}{x,y,z}$ & $\displaystyle \D[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{D}\verb|[1,n,3]{f}{x,y,z}| & $\D[1,n,3]{f}{x,y,z}$ & $\displaystyle \D[1,n,3]{f}{x,y,z}$
+\end{tabular}
+\end{tabular}
+
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Partial Derivatives}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Calculus!Derivatives}
+\index{Derivatives!Partial}
+\index{Partial Derivatives}
+
+\begin{center}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=inset,DShorten=true}| (Default)%
+\Style{DDisplayFunc=inset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{pderiv}\verb|{f}{x}| & $\pderiv{f}{x}$ & $\displaystyle \pderiv{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|[n]{f}{x}| & $\pderiv[n]{f}{x}$ & $\displaystyle \pderiv[n]{f}{x}$ \\
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=outset,DShorten=false}|%
+\Style{DDisplayFunc=outset,DShorten=false} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{pderiv}\verb|{f}{x}| & $\pderiv{f}{x}$ & $\displaystyle \pderiv{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|[n]{f}{x}| & $\pderiv[n]{f}{x}$ & $\displaystyle \pderiv[n]{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|{f}{x,y,z}| & $\pderiv{f}{x,y,z}$ & $\displaystyle \pderiv{f}{x,y,z}$ \\
+ \\
+\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}| & $\pderiv[2,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}| & $\pderiv[1,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=outset,DShorten=true}|%
+\Style{DDisplayFunc=outset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{pderiv}\verb|{f}{x}| & $\pderiv{f}{x}$ & $\displaystyle \pderiv{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|[n]{f}{x}| & $\pderiv[n]{f}{x}$ & $\displaystyle \pderiv[n]{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|{f}{x,y,z}| & $\pderiv{f}{x,y,z}$ & $\displaystyle \pderiv{f}{x,y,z}$ \\
+ \\
+\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}| & $\pderiv[2,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}| & $\pderiv[1,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
+ \\
+\end{tabular}
+\end{tabular}
+
+\vspace{0.5cm}
+
+\begin{tabular}{c}
+\verb|\Style{DDisplayFunc=inset,DShorten=true}|
+\Style{DDisplayFunc=inset,DShorten=true} \\
+ \\
+\begin{tabular}{ccc}
+\idxc{pderiv}\verb|{f}{x}| & $\pderiv{f}{x}$ & $\displaystyle \pderiv{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|[n]{f}{x}| & $\pderiv[n]{f}{x}$ & $\displaystyle \pderiv[n]{f}{x}$ \\
+ \\
+\idxc{pderiv}\verb|{f}{x,y,z}| & $\pderiv{f}{x,y,z}$ & $\displaystyle \pderiv{f}{x,y,z}$ \\
+ \\
+\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}| & $\pderiv[2,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$
+ \\
+ \\
+\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}| & $\pderiv[1,n,3]{f}{x,y,z}$ & $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
+\end{tabular}
+\end{tabular}
+
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Integrals}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Calculus!Integrals}
+\index{Integrals}
+\index{Integrals!Definite}
+\index{Integrals!Indefinite}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+ \\
+\idxc{Integrate}\verb|{f}{x}| & $\Integrate{f}{x}$ & $\displaystyle \Integrate{f}{x}$
+ \\
+ \\
+\idxc{Int}\verb|{f(x)}{x}| & $\Int{f(x)}{x}$ & $\displaystyle \Int{f(x)}{x}$ \\
+ \\
+\idxc{Int}\verb|{f}{S,C}| & $\Int{f}{S,C}$ & $\displaystyle \Int{f}{S,C}$ \\
+ \\
+\idxc{Int}\verb|{f(x)}{x,a,b}| & $\Int{f(x)}{x,a,b}$ & $\displaystyle \Int{f(x)}{x,a,b}$
+ \\
+ \\
+\idxc{Int}\verb|{f(x)}{x,0,b}| & $\Int{f(x)}{x,0,b}$ & $\displaystyle \Int{f(x)}{x,0,b}$
+ \\
+\idxc{Int}\verb|{\Int{f(x)}{x,0,y}}{y,0,z}|
+ & $\Int{ \Int{f(x)}{x,0,y} }{y,0,z}$
+ & $\displaystyle \Int{ \Int{f(x)}{x,0,y} }{y,0,z}$
+\end{tabular}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Sums and Products}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow
+ \\
+\idxc{Sum}\verb|{a(k)}{k}| & $\Sum{a(k)}{k}$ & $\displaystyle \Sum{a(k)}{k}$ \\
+ \\
+\idxc{Sum}\verb|{a(k)}{k,1,n}| & $\Sum{a(k)}{k,1,n}$ & $\displaystyle \Sum{a(k)}{k,1,n}$
+ \\
+ \\
+\idxc{Prod}\verb|{a(k)}{k}| & $\Prod{a(k)}{k}$ & $\displaystyle \Prod{a(k)}{k}$
+ \\
+ \\
+\idxc{Prod}\verb|{a(k)}{k,1,n}| & $\Prod{a(k)}{k,1,n}$ & $\displaystyle \Prod{a(k)}{k,1,n}$
+\end{tabular}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+\subsubsection{Matrices}
+%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\index{Matrix!Identity}
+\index{Matrices!Identity}
+
+\begin{center}
+\begin{tabular}{ccc}
+\headerRow \\
+\idxc{IdentityMatrix} & $\IdentityMatrix$ & $\displaystyle \IdentityMatrix$ \\
+\verb|\Style{IdentityMatrixParen=p}| (Default)%
+\Style{IdentityMatrixParen=p} \\
+\idxc{IdentityMatrix[2]} & $\IdentityMatrix[2]$ & $\displaystyle \IdentityMatrix[2]$ \\
+\verb|\Style{IdentityMatrixParen=b}|%
+\Style{IdentityMatrixParen=b} \\
+\idxc{IdentityMatrix[2]} & $\IdentityMatrix[2]$ & $\displaystyle \IdentityMatrix[2]$ \\
+\verb|\Style{IdentityMatrixParen=br}|%
+\Style{IdentityMatrixParen=br} \\
+\idxc{IdentityMatrix[2]} & $\IdentityMatrix[2]$ & $\displaystyle \IdentityMatrix[2]$ \\
+\verb|\Style{IdentityMatrixParen=none}|%
+\Style{IdentityMatrixParen=none} \\
+\idxc{IdentityMatrix[2]} & $\IdentityMatrix[2]$ & $\displaystyle \IdentityMatrix[2]$%
+\Style{IdentityMatrixParen=p} \\
+\end{tabular}
+\end{center}
+
+\idxc{IdentityMatrix}\verb|[20]| yields
+
+$$
+\IdentityMatrix[20]
+$$
+
+\printindex
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ REFERENCES ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%\newpage
+
+%\begin{thebibliography}{hello}
+%\end{thebibliography}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ END REFERENCES ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\end{document} % End of document
diff --git a/Master/texmf-dist/doc/latex/cool/README b/Master/texmf-dist/doc/latex/cool/README
new file mode 100644
index 00000000000..9d5710e2993
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/cool/README
@@ -0,0 +1,43 @@
+Description
+-----------
+
+The cool of the cool package stands for COntent Oriented LaTeX. It is designed
+to give LaTeX the power to retain mathematical meaning of its expressions in
+addition to the typsetting instructions.
+
+One advantage of keeping mathematical meaning is that conversion of LaTeX
+documents to other executable formats (such as Content MathML or Mathematica
+code) is greatly simplified.
+
+This package requires the following, non-standard LaTeX packages
+(all of which are available on www.ctan.org):
+
+* coolstr
+* coollist
+* forloop
+
+
+Installation
+------------
+
+To install this package, run cool.ins through LaTeX. This will generate
+a file called cool.sty. Put this file somewhere where LaTeX will find
+it---for instance localtexmf/tex/latex/cool/ (note that you will need
+to create the folder cool).
+
+If you are using MikTeX, you then need to refresh the file name database
+by using MikTeX Options
+
+
+License
+-------
+
+This pacakge is released under the Lesser GNU General Public License. See
+http://www.gnu.org/licenses/licenses.html#LGPL for more details.
+
+Contact
+-------
+
+Any bugs may be reported to the author by sending an email to the address with
+the first part being nsetzer, then an at sign, the next part is umd, and
+finally it ends in dot edu. \ No newline at end of file
diff --git a/Master/texmf-dist/doc/latex/cool/cool.pdf b/Master/texmf-dist/doc/latex/cool/cool.pdf
new file mode 100644
index 00000000000..47917b2d216
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/cool/cool.pdf
Binary files differ