diff options
author | Karl Berry <karl@freefriends.org> | 2023-04-14 20:29:42 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2023-04-14 20:29:42 +0000 |
commit | b282a5e45e5152fe478cb2e50cf67e71b8cda1cd (patch) | |
tree | f644fe5cf5e4c4776989b2231dcfcf17c4e79d6d /Master/texmf-dist/doc | |
parent | e97b7bcb9d952da9d1ce6b1cc335f9732b5ed2d5 (diff) |
drawing-with-metapost (14apr23)
git-svn-id: svn://tug.org/texlive/trunk@66846 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
447 files changed, 26169 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/Drawing-with-Metapost.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/Drawing-with-Metapost.pdf Binary files differnew file mode 100644 index 00000000000..780071b759f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/Drawing-with-Metapost.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/README.md b/Master/texmf-dist/doc/metapost/drawing-with-metapost/README.md new file mode 100644 index 00000000000..5b84892242f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/README.md @@ -0,0 +1,37 @@ +# Drawing-with-Metapost + +This project provides a document that discusses how to draw technical diagrams +with John Hobby's Metapost language. It includes over 200 illustrations +created with Metapost, complete with source code as inspiration and examples. +The intended level is for intermediate to advanced users rather than complete +beginners. For introductions, tutorials, and other articles about Metapost, +see http://www.tug.org/metapost.html + +Start with "Drawing-with-Metapost.pdf" in the top directory. + +The `src` directory contains +- the TeX source for the main document +- the style file used for marking up Metapost source code +- the Metapost source for each illustration used in the main document +- the corresponding PDF file created from the MP source + +You might like to read the main document first, but you might also like to +browse through the PDFs in the src directory, and when you find one that is +interesting, have a look at the corresponding MP source file. There is a +one-to-one match between the PDF names and the MP source names, so +"apollonius.pdf" is created from "apollonius.mp". The src directory contains +a few drawings that are not (yet) included in the main document. + +To update the main PDF document I follow these steps + +- build any new or updated Metapost source files with `lualatex` to create PDFs in the src directory +- build the main tex file with `lualatex -output-directory=.. -recorder Drawing-with-Metapost` +- run a Python script to read the .fls and `git add` all the files used +- git commit and push + +Toby Thurston -- 14 Apr 2023 + +Copyright (c) 2023 by Toby Thurston. This material may be distributed only +subject to the terms and conditions set forth in the Open Publication License, +v1.0 or later (the latest version is presently available at +http://www.opencontent.org/openpub/). diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/Drawing-with-Metapost.tex b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/Drawing-with-Metapost.tex new file mode 100644 index 00000000000..e7143f43334 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/Drawing-with-Metapost.tex @@ -0,0 +1,8193 @@ +% Copyright (c) 2023 by Toby Thurston. This material may be distributed only +% subject to the terms and conditions set forth in the Open Publication License, +% v1.0 or later (the latest version is presently available at +% http://www.opencontent.org/openpub/). +\documentclass[a4paper,landscape]{article} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\usepackage{fontspec} +\newfontfamily{\demo}{TeX Gyre Pagella} +\DeclareTextFontCommand{\textdemo}{\demo} +\usepackage{unicode-math} +\usepackage[inner=1in,textwidth=5in,textheight=6in, marginparsep=0.5in, marginparwidth=4.2in]{geometry} +\usepackage{sectsty} +\allsectionsfont{\normalfont\sffamily\bfseries} +\usepackage{graphicx} +\usepackage{mflogo} +\def\mfbook{\textsl{The \MF\kern1pt book}} +\def\texbook{\textsl{The \TeX\kern1pt book}} +\usepackage{shortvrb}\MakeShortVerb{"} +\usepackage{dwmpcode} +\title{Drawing with Metapost} +\author{Toby Thurston} +\date{March 2017 – April 2023} +\overfullrule=2pt +\def\kw#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textbf{#1}}\else\hbox{\bf#1\/}\fi\endgroup} +\def\op#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textrm{#1}}\else\hbox{\rm#1\/}\fi\endgroup} +\def\id#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textit{#1}}\else\hbox{\it#1\/}\fi\endgroup} +\def\cycle{{\rm cycle}} +\def\vpic#1#2{\moveright5.5in\vbox to 0pt{\hsize4in\vskip#1\centerline{\includegraphics{#2}}\vss}} +\def\mpic#1#2{\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip#1\centerline{\includegraphics{#2}}\vss}}} +\def\mnote#1#2{\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip#1\noindent #2\par\vss}}} +\def\mwpic#1#2{\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip#1\centerline{\includegraphics[width=4in]{#2}}\vss}}} +\def\mxpic#1#2#3{\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip#1\centerline{\includegraphics[width=#2]{#3}}\vss}}} +\def\nb{$\vcenter{\begin{mplibcode}beginfig(1); +for t=0 upto 3: fill unitsquare scaled 4 shifted right shifted up rotated 45 rotated 90t; +endfor currentpicture := currentpicture scaled 1/2; endfig;\end{mplibcode}}$\ } +\def\unit#1{\ifmmode\,\else\thinspace\fi\hbox{#1}} +\def\to{\mathrel{\ldotp\ldotp}} +\def\<#1>{\ensuremath{\langle\hbox{#1}\rangle}} +\newfontface\ding{Zapf Dingbats} +\def\hey{\llap{\ding ☞\ }} +% +\begin{document} +\let\folio\thepage +\renewcommand{\thepage}{\rlap{\hbox to 5in{\hss\small\folio}}} +\pagestyle{myheadings} +\raggedbottom +% title & toc in the margin +\makeatletter +\moveright 6in\vbox to +0pt{\vskip23pt\noindent\sffamily{\Large\bfseries\@title}\par\bigskip + \noindent\@author\ --- \@date\par + \bigskip\noindent + \includegraphics{archimedes.pdf} +\vss} +\makeatother +\thispagestyle{empty} +\section{Start here} + +This document contains a collection of ideas and techniques for producing attractive +technical drawings with John Hobby’s \MP\ language. I’m assuming that you already +know the basics of the language, that you have it installed as part of your up to +date \TeX\ ecosystem, and that you have established a reasonable workflow that +let’s you write a Metapost program, compile it, and include the results in your +\TeX\ document. If not, you might like to start at the \MP\ page on CTAN, and read +some of the excellent tutorials, including "mpintro.pdf". If you have already done +this, please read on. + +These notes are partly based on the examples I have developed as answers +to questions about technical drawing on the \TeX\ Stack Exchange site. In +accordance with their terms and conditions, I’ve only included material here that +I’ve written myself --- if you want other people’s code then visit the site; +while most answers there focus on writing \LaTeX\ documents, there are a great +many questions about drawing, and some of the answers are very illuminating. + +My approach here will be to explore plain \MP, with examples grouped +into themes. One approach to using this document would be to read it end to end. +Another would be to flick through until you see something that looks like it might +be useful and then see how it’s done. + +And when I say \textit{plain} \MP\ I mean \MP\ with the default format (as defined +in the file "plain.mp") loaded and only a few simple external packages (like +"boxes.mp" occasionally). Nearly all of the examples here are supposed to be self +contained, and any macros are defined locally so you can get to grips with what’s +going on. \MP\ is a very subtle language, and it’s possible to do some very clever +and completely inscrutable things with it; in contrast I’ve tried to be as clear as +possible in my examples. + +\newpage +\section{Some features of the syntax} + +\begin{itemize} + \item Assignment or equation: the equation "a=3;" means “"a" is the same as "3" throughout the + current scope”; the assignment "a:=3;" means “update the value of "a" to the value "3" + immediately”. The difference becomes apparent when you try to update a + variable in the same scope. + \mwpic{0pt}{tiling} + + This difference also lets you write linear equations + like "a=-b;". After this, as soon as you give a value to "a", \MP\ immediately works + out the value of "b". + This is clever but has its limitations. As the following snippet reveals: +\begin{code} + % if you run this you will get this in the log + a + b = 0; show (a,b); % >> (a,-a) + a=42; show (a,b); % >> (42,-42) + a:=43; show (a,b); % >> (43,-42) +\end{code} + As soon as you assign to variable with ":=" \MP\ breaks any previously + established equations. + + \item Variable types: + + — + \<numeric> "a", + \<pair> "(a,b)" + + — + \<color> "(r,g,b)", + \<cmykcolor> "(c,m,y,k)" + \<transform> "(x,y,xx,xy,yx,yy)" + + — + \<string>, + \<path>, + \<picture> + + + If you don’t declare a variable, it’s assumed that it’s a \<numeric>. + When you do declare a variable --- \<numeric> or otherwise — any value that it + already had in the current scope is removed. + + \item Implicit multiplication: \MP\ inherits a rich set of rules about numerical + expressions from \MF, and of special interest is the scalar multiplication + operator. Any simple number, like "42", "3.1415", or ".6931", or any simple + fraction like "1/2" or "355/113" standing on it’s own (technically at the + primary level) and not followed by "+" or "-" becomes a scalar + multiplication operator that applies to the next token (which should be variable + of some appropriate type). + So you can write things like "3a", or even "1/2 a" + (the space between the number and the variable name is optional). This + lets you write very readable mathematical expressions. It’s quite + addictive after a while. + +\end{itemize} + +\vskip -22pt +\moveright5.5in\vbox to 0pt{\vss\hsize 4in\noindent +The \mpl{sqrt} operator is defined at the same (top) level of precedence, so +that \mpl{sqrt2+1} is read as \mpl{(sqrt2)+1} and not \mpl{sqrt(2+1)}, but fractions +trump even that, so \mpl{sqrt 1/2 = 0.7071} is true.} + +\newpage +\section{Workflow} + +This document is not meant for beginners, so you won't find step by step tutorials +for something so simple as running \MP. But since you might not find it all that +simple, and since the basic tutorials can go out of date, here are descriptions of +my own workflows that you might find helpful. You might also think I'm being really +inefficient; if so please drop me a line and suggest an improvement. + +The common features of each of these workflows are: mac os, the MacVim editor to +edit \MP\ source code, and +Skim.app to view PostScript and PDF files. I have the complete MacTeX distribution +installed; any commands mentioned below are supplied by MacTeX. + +\subsection{Stand alone graphics with plain \MP}\label{sec:plain-flow} + +\MP\ source files have the extension ".mp", when I open a file in MacVim that +matches "*.mp", my editor profile sets the file type to "mp" (which picks up the +highlight and indentation rules supplied with MacVim), and adds some relevant +directories to the search tree. Finally, if the file is a new file, then the +profile loads this template: +\begin{smallcode} +prologues := 3; +outputtemplate := "%j%c.%{outputformat}"; +beginfig(1); + +endfig; +end. +\end{smallcode} +The first two lines are important: "prologues := 3;" makes \MP\ put the full font +details in the output so that the files are self-contained; the "outputtemplate" +line means that the output will be written to files with an extension that matches +the chosen output format, which will be "png", "svg", or more usually "eps", which +is the default (and suggests that the output is Encapsulated PostScript). + +I then add drawing and label commands, using all the traditional facilities for +typesetting labels described in section \ref{sec:trad-labels}. I compile the source +with "mpost". I usually do this from within MacVim using the command line ":!mpost %" +where "!" means “this is an external command” and the "%" picks up the current file +name. Usually I need several attempts to get a diagram right, so I open Skim to preview the +output with ":!open -a Skim %:r1.eps". I have Skim set up so that when I recompile +the source, it automatically updates the view of the PostScript output. +\vadjust{\moveright5.4in\vbox to 0pt{\vss\hsize 4in\noindent +$$\includegraphics[width=4in]{workflow-plain.pdf}$$ +If I want to use the diagram in a \LaTeX\ document I can include the EPS file +directly with +\begin{texcode} + \includegraphics{some-diagram1.eps} +\end{texcode} +but usually I prefer to convert the EPS to PDF using "epstopdf" rather than rely on +the automatic conversion. This is mainly because the PDFs are generally more useful +files to have about (I can include them in presentations etc). Sometimes I do this +manually but usually I use a small Python script to automate this process: run +"mpost" with the "-recorder" option; scan the list of files to see what got +produced; check which ones are PostScript; call "esptopdf" to make each one into a +PDF file; remove each EPS file if successful. Your mileage may vary.\par +}} + +\subsection{Stand alone graphics with Lua\LaTeX}\label{sec:sa-lua-flow} + +For graphics with more complicated text formatting, I prefer now to use +\texttt{lualatex} with the \texttt{luamplib} package. \mpic{0cm}{workflow} +The work flow is a bit simpler because there are no intermediate EPS files to worry +about. Instead of compiling with plain "mpost" I use "lualatex" with the "luamplib" +package, which calls \MP\ from within the Lua environment. The \MP\ engine actually +used is exactly the same. Here is +the template I use: +\begin{texcode} +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +\end{texcode} +\vskip-12pt +\begin{smallcode} + beginfig(1); + + endfig; +\end{smallcode} +\vskip-12pt +\begin{texcode} +\end{mplibcode} +\end{document} +\end{texcode} +As you can see, we have \MP\ source code wrapped up in a minimal \LaTeX\ document +using the \texttt{standalone} class, which automatically adjusts the page size to +fit the contents of document, so is ideal for single diagrams. One small +disadvantage is that you can only produce a single PDF output file, so you need to have a +separate file for each picture, but the good news is that you get a much simpler and +more effective integration with \LaTeX, in particular with the font environment. +Since this only works with "lualatex" you have to use the "fontspec" package, as +explained in section \ref{sec:neo-labels}. + +\subsection{Integrated graphics with Lua\LaTeX} + +If you are ready to use "lualatex" for processing your entire document, then you can +directly embed your \MP\ drawings in a series of "mplibcode" environments. Each one +produces a horizontal-mode box. For details try "texdoc luamplib". The only +drawback of this all-in-one approach is that you have to compile all the drawings +every time you compile the document, which might slow you down --- although on a +modern machine this is not really an issue any more. + +\newpage +\section{Making and using paths} +\label{plain-shapes} + +In \MP\ there are two sorts of paths: open and closed. +\mpic{-12pt}{closed-triangles} +A closed path is called a cycle, and is created with the \mpl{cycle} primitive like this: +\begin{code} +path t; t = origin -- (55,0) -- (55,34) -- cycle; +\end{code} +You can think of \mpl{cycle} as meaning ‘connect back to the start and close the path’. +Note that you have explicitly put \mpl{cycle} to make a closed path. If you wrote +\begin{code}[xrightmargin=-32pt] +path u; u = origin {right} .. (55,0) .. (55,34) .. {-2,-1} origin; +\end{code} +then $u$ would be an open path even though the last point is the same as the +first. Any path that does not have \mpl{cycle} at the end is an open +path.\mpic{-12pt}{open-triangle} + +You can use \mpl{draw} with either sort of path, but you can only use \mpl{fill} with a +cycle. This concept is common to most drawing languages but it’s often hidden: an +open path might be automatically closed for you when you try to fill it. \MP\ takes +a more cautious approach; if you pass an open path to \mpl{fill} you will get an error +that says ‘Not a cycle’, even if the first and last points are the same like path +$u$ above. + +If you want to write a macro that deals differently with the two types +of path, then you can use \mpl{cycle} in a boolean context to test +whether a given path $p$ is closed: +\begin{code} + if cycle p: + % do something for closed path p + else: + % do something for open path p + fi +\end{code} + +\smallskip\noindent +\MP\ inherits the rich path-making syntax directly from \MF, so if you want a +general refresher, or you are not +quite sure what the five joiners do, $\longrightarrow$\marginpar{% + \vbox to 0pt{\vss\halign{\kern .5in\mpl{#}\hfil\quad&#\hfil\cr +..&free curve\cr +...&bounded curve\cr +--&straight line\cr +---&tense line\cr +\&&splice.\cr}\vss}} or you would like to bone up on exactly what \mpl{curl} and +\mpl{tension} are for, then you are recommended to review Chapter 14 of \mfbook. + +\vfill\noindent +Most of the examples in this document use only the two simple joiners \mpl{--} and +\mpl{..} with the occasional use of a direction-specifying pair before or after a +point. + +\clearpage +\subsection{Predefined closed paths} + +There are several closed paths defined for you in plain \MP. +\mpic{0pt}{closed-standards} +\begin{itemize} + \item "unitsquare" is defined as the path + \mpl{(0,0)--(1,0)--(1,1)--(0,1)--cycle}. It runs counter-clockwise from the + origin, and you can use it to draw any rectangle with appropriate + use of \mpl{xscaled} and \mpl{yscaled}, or a parallelogram with \mpl{slanted}, + or a diamond with \mpl{rotated} --- but note that the definition means + that is it centred on point \mpl{(1/2, 1/2)} so you might want to + shift it by \mpl{-(1/2,1/2)} before you transform it. + + \item "fullcircle" which you can use to draw any circle or ellipse with + appropriate use of \mpl{xscaled} and \mpl{yscaled}. Unlike the square, it is defined so that it is centred + at the origin. But beware that it has unit \textit{diameter}, so its radius + is $0.5\unit{bp}$ long. The path runs counter-clockwise and starts at 3 + o’clock; which means \mpl{point 0 of fullcircle = 1/2 right} is true. + + \item "superellipse()" which creates the shape beloved of the Danish designer Piet Hein. Unlike the + other two, this one is defined as a function rather than a \<path> constant, so you need to call it + like this: +\begin{code} +path s; +s = superellipse(1/2 right, 1/2 up, 1/2 left, 1/2 down, .8); +\end{code} + to create a ‘unit’ shape that matches \mpl{fullcircle} as shown on the right. + The fifth parameter is the ‘superness’: the value + 1 makes it look almost square, 0.8 is about right, 0.5 gives you a diamond, + and values outside the range $(0.5,1)$ give you rather weird propeller + shapes. + + Note that, unaccountably, $\id{superellipse}()$ is defined +in \texttt{plain.mp} with a \kw{def} rather than a \kw{vardef}. +This means you need to enclose it in a group before you can +transform it in any way. One way to do this is to use parentheses; or you +can assign it to a \<path> variable, as shown above. + +\end{itemize} + + +\newpage\subsection{Points on the standard closed paths} + +\noindent\mpic{-10pt}{closed-points}% +\textsc{Here are the three shapes} centred on the origin and labelled to show the points +along them. \textbf{Note} that the \textit{unitsquare} shape has been shifted so that it is +centred on the origin in all of these examples. The small red circle marks the +\textit{origin}, and the labelled red dots are the points of each path. The +\textit{unitsquare} has four points, while the other two shapes both have eight. +The small +arrows between point~0 and point~1 of each shape indicate the direction of the path +that makes up the shape. + +\vfill\noindent +If you want to highlight a segment of your shape, there’s a neat way to define it +using "subpath". Assuming "p" is the path of your shape, then this: +\begin{code} +center p -- subpath(1,2) of p -- cycle +\end{code} +creates a useful wedge shape which looks like this in our three ‘standard’ +shapes. + +\vfill\noindent +Better still, you are not limited to integer points along the path of your closed shape. +So if you wanted a wedge that was exactly $1/5$ of the area of your shape, you +could try +\begin{code} +center p -- subpath(0,1/5 length p) of p -- cycle +\end{code} +Clearly this works rather better with more circular shapes. Indeed for a circle you +can convert directly between circumference angle and points along the path. So +you have defined path $c$ to be scaled copy of \mpl{fullcircle}, then +\mpl{point 1 of c} is $45^\circ$ round and 1~radian is \mpl{point 1.27324 of c}, (because +$4/\pi \simeq 1.27324$). + +\vfill\noindent +In a closed path, the point numbering in \MP\ wraps round: so in a +circle, point $n$ is the same as point $n+8$; and in general point $n$ is the same as +point $n+\hbox{\bf length }p$. This works with negative numbers too, so we could use +\begin{code} +center p -- subpath(-1,1) of p -- cycle +\end{code} +to get wedge that extends either side of point 0. +The same idea was used to draw the arrows in the first row: +\begin{code} +drawarrow subpath(1/2, length p + 1/2) of p; +\end{code} + +\newpage +\subsection{Regular polygons of a given radius}\label{polygons} + +\noindent\mpic{-10pt}{closed-polygons}% +\textsc{Regular polygons} with a given radius can be defined or drawn directly with a simple inline loop: +\vadjust{\moveright -60pt \vbox to 0pt{\vskip-3pt\includegraphics{little-hexagon.pdf}\vss}} +\begin{code} +draw for i=0 upto 5: 20 dir 60i -- endfor cycle; +\end{code} +which works because \mpl{dir d} expands to \mpl{right rotated d}. But +you might prefer to make a macro: +\begin{code} +vardef polygon(expr n, r) = + for i=0 upto n-1: (r, 0) rotated (360/n * i) -- endfor cycle +enddef; +\end{code} +This produces a closed path to represent an $n$-sided polygon that fits in a circle +of radius $r$ centred at the origin and that starts at \mpl{(r, 0)}, like the +corresponding circular path, as shown in this polygonal version of the +previous segment chart.\rlap{\ $\rightarrow$}\\ +If you need polygon paths that start at the top, you can just swap the +coordinates: +\begin{code} +vardef polygon(expr n, r) = + for i=0 upto n-1: (0, r) rotated (360/n * i) -- endfor cycle +enddef; +\end{code} +$$\includegraphics[width=0.66\textwidth]{closed-polygon-tops.pdf}$$ +\hey Note also that some extra care is required to find the centres of these shapes. The +\mpl{center} macro defined in "plain.mp" gives you the centre of the bounding box, +but this is not the same as the centre of the polygon when the number of sides is +odd. What you need instead is the geometric median: +\begin{code} +vardef median primary p = + origin for i=1 upto length p: + point i of p / length p endfor +enddef; +\end{code} +This should work for any closed path, not just regular polygons. + +\newpage +\subsection{Regular polygons of a given side length}\label{polygons-given-side} +But you might want a polygon with a fixed side instead of a fixed radius. This needs +a little trigonometry, using the sine rule:\mpic{-42pt}{closed-fixed-polygon} +\begin{code} +vardef polygon_with_side(expr n, s) = + save a, b, r; numeric a, b, r; + a * n = 360; a + 2b = 180; r = s * sind(b) / sind(a); + for i = 0 upto n-1: (0, r) rotated (a * i) -- endfor cycle +enddef; +\end{code} +Which you can use like this to produce a nest of polygons $\rightarrow$ +\begin{smallcode} +for n = 11 downto 3: path p; p = polygon_with_side(n, 72); + fill p withcolor (n/32)[white, 3/4 if odd n: red else: blue fi]; + draw p; +endfor +\end{smallcode} +These polygon paths are centred on $(0, 0)$ but +sometimes it is more convenient to construct a polygon on a known segment +rather than working out how to rotate and shift it into place. +$$\includegraphics[width=0.9\textwidth]{closed-polygon-chain.pdf}$$ +Here is a way to do that using the \mpl{of} syntax in the macro construction +$\longrightarrow$ +\vadjust{\moveright 384pt\vbox to 0pt{\vss +\begin{smallcode} +vardef poly expr n of p = save x, y; + z0 = point 0 of p; z1 = point 1 of p; + for i=2 upto n-1: + z[i] = z[i-2] rotatedabout(z[i-1], 180(2/n-1)); + endfor + for i=0 upto n-1: z[i] -- endfor cycle +enddef; +path P[]; P3 = for i=0 upto 2: 6 up rotated 120i -- endfor cycle; +fill P3 withcolor 3/4 red; draw P3; +for n = 4 upto 23: + numeric m; m = floor(n / 2); + P[n] = poly n of subpath (m, m-1) of P[n-1]; + fill P[n] withcolor (n/32)[3/4 if odd n: red else: blue fi, white]; + draw P[n]; label(decimal n, median(P[n])); +endfor +\end{smallcode}\vskip -12pt}} + +\newpage\subsection{Curved polygons} + +\textsc{The regular polygons} above are all defined with straight edges using the +\mpl{--} connector that makes a tense path. If you changed each connector to +\mpl{..} you would get a circle, and contrariwise, if you try +\mpl{tensepath(fullcircle scaled 20)} you will get a regular octagon. But we can +also adjust the directions at the corners to make a variety of closed polygon shapes +with closed edges. + +One of the most pleasing is the Reuleaux polygon, with circular arcs for edges. +$$\includegraphics[width=0.9\textwidth]{closed-reuleaux-set.pdf}$$ +The figure on the right attempts to explain the geometry.\mwpic{-160pt}{closed-reuleaux-geometry} +\begin{code} +vardef reuleaux(expr n, r) = + save a; numeric a; a = 90/n; + for t = 0 step 4a until 359: + (0,r) rotated t {left rotated (a+t)} .. {left rotated (3a+t)} + endfor cycle +enddef; +\end{code} +If you swap the directions at each point you get shapes that are not quite like +hypocycloids; play about a bit more to get flower shapes or windmills. +$$\includegraphics[width=0.9\textwidth]{closed-antireuleaux-set.pdf}$$ + +\newpage +\subsection{A triangle of Schläfli polygons}\label{sec:gcd} + +Apart from the curious polygon patterns in the display, the main \MP\ point of interest +is the recursive "gcd" macro to find the greatest common divisor.\mpic{-108pt}{gons} + +\begin{code} +input colorbrewer-rgb + +vardef gcd(expr a, b) = + if b = 0: a else: gcd(b, a mod b) fi +enddef; + +beginfig(1); +for n=2 upto 24: + for s=1 upto floor n/2: + pair p; p = (12n - 24s, -24n); + path gon; gon = + for t=0 upto n/gcd(s,n) - 1: + 10 up rotated (360/n * s * t) -- + endfor cycle; + if (n mod s = 0): + fill gon shifted p withcolor Blues 9 2; + label("$" & decimal (n/s) & "$", p); + fi + draw gon shifted p withpen pencircle scaled 1/8; + endfor +endfor +endfig; +\end{code} + +\noindent +The macro also leads directly to an efficient way to find the least common multiple: +\begin{code} +vardef lcm(expr a, b) = a / gcd(a, b) * b enddef; +\end{code} +As always in \MP, it is safer to divide as early as possible to reduce the chance of arithmetic +overflow. + + +\newpage\subsection{Building cycles from parts of other paths} + +Plain \MP\ has a built-in function to compute the intersection points of two paths, and +there’s a handy high level function called "buildcycle" that uses this function to +create an arbitrary closed path. +\mpic{0pt}{area-under-graph} +The arguments to the function are just a list of paths, and providing the paths all +intersect sensibly, it +returns a closed path that can be filled or drawn. This is often used for colouring an +area under a function in a graph. +Here is an example. The red line has been defined +as path "f" and the two axes as paths "xx", and "yy". The blue area was defined +with +\begin{code} +buildcycle(yy shifted (1u,0), f, yy shifted (2.71828u,0), xx) +\end{code} +Note the re-use of the $y$-axis path shifted along by different amounts. + +\smallskip\noindent +There are similar examples in the \MP\ manual, but "buildcycle" can also +be useful in more creative graphics. +Here’s a second example that uses closed paths to give an illusion of depth to a simple +graphic of the planet Saturn. +\mpic{0pt}{saturn} +\marginpar{\hbox{}\vskip1.3in\raggedright\noindent\textbf{Notes}\begin{itemize} + \item The first five paths are just circles and ellipses based on "fullcircle". + \item The drawing is done inside an "image" simply so that the final result can + be drawn at an angle + \item "unfill gap" is shorthand for "fill gap withcolor background" + \item The subpaths passed to "buildcycle" are chosen carefully to make sure we + get the intersections at the right points and so that the component paths + all run in the same direction. Note that "subpath (8,4) of globe" runs + clockwise (that is backwards) from point 8 to point 4. +\end{itemize}} +\mpexternal{saturn-code.mp} + +\newpage\subsection{The implementation of \texttt{buildcycle}} +\textsc{The implementation} of "buildcycle" in plain \MP\ is interesting for a number of +reasons. Here it is copied from "plain.mp" (with minor simplifications) $\longrightarrow$ +\vadjust{\moveright5.5in\vbox to 0pt{\kern-1cm% +\begin{code} +vardef buildcycle(text input_path_list) = + save ta, tb, k, j, pp; path pp[]; + k=0; + for p=input_path_list: pp[incr k]=p; endfor + j=k; + for i=1 upto k: + (ta[i], length pp[j]-tb[j]) + = pp[i] intersectiontimes reverse pp[j]; + if ta[i]<0: + errmessage("Paths " & decimal i & + " and " & decimal j & " don't intersect"); + fi + j := i; + endfor + for i=1 upto k: + subpath (ta[i],tb[i]) of pp[i] .. + endfor cycle +enddef; +\end{code} +\vss}} + +\noindent +Notice how freely the indentation can vary; this is both a blessing +(because you can line up things clearly) and a curse (because the syntax may not +be very obvious at first glance). Notice also the different ways we can use a +$\kw{for}$-loop. The first two are used at the ‘outer’ level to repeat complete +statements (that end with semi-colons); the third one is used at the ‘inner’ level +to build up a single statement. + +The use of a "text" parameter allows us to pass a comma-separated list as an +argument; in this case the list is supposed to be a list of path expressions that +(we hope) will make up a cycle. The first "for" loop provides us with a standard +idiom to split a list; in this case the comma-separated value of "input_path_list" +is separated into into a more convenient array of paths called "pp" indexed by "k". +Note that the declaration of the array as "path" forces the argument to be a list of +paths. + +The second "for" loop steps through this array of paths looking for intersections. +The index "j" is set to be "k" when "i=1", and then set to the previous value of "i" +at the end of the loop; in this way +"pp[j]" is the path before "pp[i]" in what is supposed to be a cycle. +The macro uses the primitive operator \mpl{intersectiontimes} to find the intersection +points, if any. Note that we are looking for two path times: the time to start a +subpath of the current path and the time to end a subpath of the previous path; the +macro does this neatly +by reversing the previous path and setting the $b$-point indirectly by subtracting +the time returned from the length of the path. + +If all has gone well, then "ta" will hold all the start points of the desired +subpaths, and "tb" all the corresponding end +points. +The third and final "for" loop assumes that this is indeed the case, and tries to +connect them all together. Note that it uses ".." rather than "&" just in case the +points are not quite co-incident; finally it finishes with a +\mpl{cycle} to close the path even though point "tb" of path "k" should be identical (or +at least very close) to +point "ta" of path "0". + +This implementation of \mpl{buildcycle} works well in most cases, provided that there +are enough components to the cycle of paths. If you only have two paths, then the +two paths need to be running the same direction, and the start of each path must not +be contained within the other. This is explored in the next section. + +\newpage +\subsection{Strange behaviour of \texttt{buildcycle} with two closed paths} + +The implementation of "buildcycle" in plain \MP\ can get confused if you use it with +just two paths. Consider the following example: \mpic{0pt}{overlaps-missing-filler} +\begin{code} +beginfig(1); + path A, B; + A = fullcircle scaled 2.5cm; + B = fullcircle scaled 1.8cm shifted (1cm,0); + fill buildcycle(A,B) withcolor .8[blue,white]; + drawarrow A; drawarrow B; +endfig; +\end{code} +When we compile this example, we get no error message from "buildcycle", but there +is no fill colour visible in the output. The problem is that the points found by +"buildcycle" are the same both times that it steps through the middle loop, so +the closed path it returns consists of two identical (or very close) points and the +so the fill has zero area. + +Now observe what happens when we rotate and reverse each of the paths in +turn.\mpic{-24pt}{overlaps-default-fillers} +Number 1 corresponds to the example shown above; point~0 of~$A$ is inside the closed +path $B$. In~2 we have rotated path $A$ by 180° so that the start of path~$A$ is no +longer inside $B$, and now "buildcycle" works ‘properly’ --- but this is the only +time it does so. In~3, we've rotated $B$ by 180° as well, so that $B$ starts inside +$A$ and as expected "buildcycle" fails. In 4 we've rotated $A$ back to it's +original position, so that both paths start inside each other; and we get the +union of the two shapes. In 5--8, we've repeated the exercise with path $A$ +reversed, and "buildcycle" fails in yet more interesting ways. + +You could use this behaviour as a feature if you need to treat $A$ and $B$ as sets +and you wanted to fill the intersection, union, or set differences, but if you just +wanted the overlap, then you need to ensure that both paths are running in the same +direction and that neither of them starts inside the other. + +\newpage +\subsection{Find the overlap of two closed paths} + +As we have seen, in order to get the overlap of two closed paths from "buildcycle", +we need both paths to be running in the same direction, and neither path should +start inside the other one. It's not hard to create an "overlap" macro that does +this automatically for us. The first element we need is a macro to determine if a +given point is inside a given closed path. Following Robert Sedgwick's +\textit{Algorithms in C} we can write a generic "inside" function that works with any +simple closed path. The approach is to extend a horizontal ray from +the point towards the right margin and to count how many times it crosses the closed +path; if the number is odd, the point must be inside.\vadjust{\moveright5.5in\vbox + to 0pt{\kern-4.05cm +\begin{code} +vardef inside(expr p, ring) = + save t, count, test_line; + count := 0; + path test_line; + test_line = p -- (infinity, ypart p); + for i = 1 upto length ring: + t := xpart(subpath(i-1,i) of ring + intersectiontimes test_line); + if ((0<=t) and (t<1)): count := count + 1; fi + endfor + odd(count) +enddef; +\end{code} +\vss}}\label{function:inside} + +Equipped with this function we can create an "overlap" function that first uses the +handy "counterclockwise" function to ensure the given paths are running in the +same direction, and then uses "inside" to determine where the start points are. +\begin{smallcode} +vardef front_half primary p = subpath(0, 1/2 length p) of p enddef; +vardef back_half primary p = subpath(1/2 length p, length p) of p enddef; +% a and b should be closed paths... +vardef overlap(expr a, b) = + save A, B, p, q; + path A, B; boolean p, q; + A = counterclockwise a; + B = counterclockwise b; + p = not inside(point 0 of A, B); + q = not inside(point 0 of B, A); + if (p and q): + buildcycle(A,B) + elseif p: + buildcycle(front_half B, A, back_half B) + elseif q: + buildcycle(front_half A, B, back_half A) + else: + buildcycle(front_half A, back_half B, front_half B, back_half A) + fi +enddef; +\end{smallcode} +Using this "overlap" macro in place of "buildcycle" produces less surprising +results.\mpic{-2in}{overlaps} + +\newpage +\subsection{Fitting dashed lines to a path} + +\textsc{This one is} perhaps for perfectionists, but also shows how simple it +is to make useful adjustments in \MP. As you will know, plain \MP\ provides two +built-in dash patterns, so that you can draw a path \mpl{dashed withdots} or +\mpl{dashed evenly}. +\vadjust{% +\moveright384pt\vbox to 0pt{\vskip-46pt\hsize 4.2in\small +$$ +\begin{mplibcode} +vardef exactly(expr a) = + save m; numeric m; 2m = (a-6) / round(a/6); + dashpattern(on m off m) +enddef; +vardef gooddots(expr a) = + save m; numeric m; 2m = (a-5) / round(a/5); + dashpattern(off m on 0 off m) +enddef; + beginfig(1); + for i=2 upto 8: + path c[]; + c1 = fullcircle scaled 16i shifted 80 left; + c2 = fullcircle scaled 16i shifted 80 right; + draw c1 dashed evenly withcolor 2/3 blue; + draw c2 dashed exactly(arclength c2) withcolor 1/2 red; + %draw c1 shifted 160 down dashed withdots withcolor 2/3 blue; + %draw c2 shifted 160 down dashed gooddots(arclength c2) withcolor 1/2 red; + endfor + endfig; +\end{mplibcode} +$$ + +\noindent +The blue circles on the left were drawn with \mpl{dashed evenly}, and the uneven +gaps are noticeable at the “three o’clock” positions where the paths begin and end. +As you can see the default dash spacing looks fine at some sizes but bad on others. On the right you can see the +same circular paths coloured red, and drawn with \mpl{dashed exactly(arclength c, +6)}. + +$$ +\begin{mplibcode} +vardef exactly(expr a, u) = + save m; numeric m; 2m = a / round(a/u); + dashpattern(on m off m) +enddef; + beginfig(1); + for i=2 upto 8: + path c[]; + c1 = unitsquare shifted -(1/2, 1/2) scaled 16i shifted 80 left; + c2 = unitsquare shifted -(1/2, 1/2) scaled 16i shifted 80 right; + draw c1 dashed evenly withcolor 2/3 blue; + draw c2 dashed (exactly(arclength c2, 8) shifted 6 right) withcolor 1/2 red; + endfor + endfig; +\end{mplibcode} +$$ +Other paths may require a bit more ingenuity and thought. Because the square paths +have four equal sides, they work better with a target dash length that is a multiple +of 4. Here the blue squares on the left use the default \mpl{dashed evenly}, and the +red on the right, \mpl{exactly(arclength c2, 8)} \mpl{shifted 6 right}. The shift makes +the corners look better. + + +\vss}} + +The keyword \mpl{dashed} gives you access to the PostScript "setdash" command, its +argument is a special \<picture> defined with the \MP\ \mpl{dashpattern} function. +If you look in "plain.mp" you will find these declarations: +\begin{code} +picture evenly,withdots; +evenly = dashpattern(on 3 off 3); % dashed evenly +withdots = dashpattern(off 2.5 on 0 off 2.5); % dashed withdots +\end{code} +The detailed syntax is explained in §9.4 of the \MP\ manual, but essentially +\mpl{withdots} creates a unit 5 points long with a dot in the middle, and +\mpl{evenly} creates a unit 6 points long with the dashes 3pt long (plus the round +bit at the end of each dash, unless you have changed \mpl{linecap}) and gaps 3pt +long (minus any round bits). + +You probably also know that you can adjust these sizes by applying a suitable +scaling, so that \mpl{dashed withdots scaled 1/2} gives a rather denser dotted line, +and \mpl{dashed evenly scaled 4} will give you very long dashes. But you may also +notice that the dash patterns (particularly the longer ones) do not always fit your +paths exactly -- this is especially noticeable with closed paths, where you may end +up with one unsightly long dash or a very short gap a the point where the path +begins and ends. + +Fortunately there is a very simple solution: adjust the length of the dash pattern +so that an integer number of dash units exactly fit your path. +\begin{code} +vardef exactly(expr a, u) = + save m; numeric m; 2m = (a-u) / round(a/u); + dashpattern(on m off m) +enddef; +\end{code} +Here "a" is supposed to be the \mpl{arclength} of your path, and "u" the desired +unit size, so you can use it like this: +\begin{code} +path c; c = fullcircle scaled 200; +draw c dashed exactly(arclength c, 6); +\end{code} +to get a close approximation to \mpl{dashed evenly} that exactly fits the path. + +\newpage +\section{Numbers} + +This section discusses plain \MP's scalar numeric variables +and what you can do with them. +\MP\ inherits its unusual native system of scaled numbers from \MF; like many of +Knuth's creations it is slightly quirky, but works very well once you get the hang +of it. The original objective was to make \MF\ produce identical results on a wide +variety of computers. By default all arithmetic is carried out using 28-bit +integers in units of $1/65536$. This is done automatically for you, so you don’t +need to worry about it, but you should be aware of a couple of practical +implications: +\begin{itemize} + \item All fractions are rounded to the nearest multiple of $1\over65536$, so + negative powers of 2 ($1\over2$, + $1\over4$, $1\over8$, $\dots$) are exact, but other common fractions are not: + for example $1\over3$ is represented as + ${21845\over65536} \simeq 0.333328$, and $1\over10$ as + ${6554\over65536} \simeq 0.100006$. + You should bear this in mind particularly when you + choose fractional step-values in a "for" loop; the errors can accumulate so that + you may miss your expected terminal value.\vadjust{\moveright5.5in\vbox to + 0pt{\kern-2in\hsize4in\noindent + Compare the following two snippets: + $$\vbox{\halign{#\hfil\quad&#\hfil\cr + Code&Output\cr\noalign{\smallskip\hrule\bigskip} + \vtop{\parindent0pt\hsize2.2in + \bgroup\obeylines + $\kw{for}$ $i=0$ \kw{step} $1/10$ \kw{until} $1$: + \quad$\kw{show}$ $i$; + $\kw{endfor}$ + \egroup + +} + & + \vtop{\parindent0pt\parskip-2pt\obeylines\hsize60pt\tt +>> 0 +>> 0.1 +>> 0.20001 +>> 0.30002 +>> 0.40002 +>> 0.50003 +>> 0.60004 +>> 0.70004 +>> 0.80005 +>> 0.90005 +} +\cr\noalign{\bigskip} + \vtop{\parindent0pt\hsize2.2in + \bgroup\obeylines + $\kw{for}$ $i=0$ \kw{step} $1$ \kw{until} $10$: + \quad$\kw{show}$ $i/10$; + $\kw{endfor}$ + \egroup +} + & + \vtop{\parindent0pt\parskip-2pt\obeylines\hsize60pt\tt +>> 0 +>> 0.1 +>> 0.2 +>> 0.3 +>> 0.4 +>> 0.5 +>> 0.6 +>> 0.7 +>> 0.8 +>> 0.9 +>> 1 +}\cr\noalign{\bigskip\hrule}\cr +}}$$ +You get 11 iterations in the second but only 10 with the first. +\vss}} + + \item The system limits you to numbers that are less than 4096 in absolute value. + This can be an irritation if you are trying to plot data with large values, + but the solution is simple: scale your values to a reasonable range first. + + \item Intermediate calculations are allowed to be up to 32768 in absolute value + before an error occurs. You can sometimes avoid problems by using the + special Pythagorean addition and subtraction operators, but the general + approach should be to do your calculations before you scale a path + for filling or drawing. + + \item You can turn a number up to 32768 into a string using the "decimal" + command, and then you could append zeros to it using string concatenation. + +\end{itemize} + +If you are using a recent version of \MP\ you can avoid all these issues by choosing one of +the three new number systems: double, binary, or decimal, with the "numbersystem" +command line switch. But beware that if you write programs that depend on these new +systems, they might not be so portable as others. It's nice to have these new +approaches just in case, but you will not need to use them very often. + +\newpage\subsection{Numeric constants} + +Alongside the quirky number system, +plain \MP\ also inherits three numeric constants from \MF: \id{infinity}, \id{epsilon}, +and \id{eps}: +\begin{itemize} + \item $\id{eps}$ is defined to be a +small amount that is noticeable to \MF’s rounding algorithms, namely +${32\over65536}={1\over2048}\simeq 0.00049$. As a distance on the page or screen it's invisible at +any resolution less than 150,000 dots per square inch. If you were designing fonts + in \MF, $\id{eps}$ could help you avoid bad choices of pixels at low resolutions, but in +\MP\ it's only really useful in comparisons that might suffer from rounding errors. +\id{eps} is tiny, but it's bigger than any rounding error you may encounter, so +you can safely test for equality with: $\kw{abs}(\id{a}-\id{b})<\id{eps}$. + +\item $\id{epsilon}$ is defined to be $1\over65536$, the smallest positive scaled + number. + +\item $\id{infinity}$ is defined to be $4096-\id{epsilon}$, which is the largest + number you will normally deal with. This is useful when you just want a quantity + larger than any other in the immediate vicinity. For an example, look at the + definition of the "inside" function in + section~\ref{function:inside}. +\end{itemize} +These three quantities retain (approximately) the same value even if you choose one of the +alternative, higher precision, number systems. This is probably the most sane +approach, but the constants lose their status as the smallest and largest numbers you can +have. +\vadjust{\moveright5.5in\vbox to 0pt{\kern-221pt\hsize 4.25in +\noindent +Running the toy program: +\par\bigskip +$\kw{show} \id{numbersystem}, \id{eps}, \id{epsilon}, \id{infinity}; \kw{end}\!.$ +\par\bigskip\noindent +gives the following results with the different +number systems: + +\begin{code} +>> "scaled" +>> 0.00049 +>> 0.00002 +>> 4095.99998 + +>> "double" +>> 0.00048999999999999998 +>> 1.52587890625e-05 +>> 4095.9999800000001 + +>> "binary" +>> 0.00048999999999999999999999999999999993 +>> 0.0000152587890625 +>> 4095.9999800000000000000000000000001 + +>> "decimal" +>> 0.00049 +>> 0.0000152587890625 +>> 4095.99998 +\end{code} +\vss}} + +The messy set of results shown on the right arises because "plain.mp" defines these constants +like this (in version 1.005, which is current at the time of writing): +\begin{code} +eps := .00049; % this is a pretty small positive number +epsilon := 1/256/256; % but this is the smallest +infinity := 4095.99998; % and this is the largest +\end{code} +If you want cleaner constants, feel free to redefine the two decimals as: +\begin{code} +eps := 1/2048; +infinity := 64*64-epsilon; +\end{code} +These definitions are equivalent with "scaled" numbers, but more consistent at +higher precision. In particular they ensure that we always have +$4096 = \id{infinity} +\id{epsilon}$ whichever number system is in use. + +\newpage\subsection{Units of measure} +In addition to the very small and very large numeric variables, plain \MP\ inherits +eight more that provide a system of units of measure compatible with \TeX. +The definitions in "plain.mp" are very simple: $\longrightarrow$ +\vadjust{\moveright 384pt\vbox to 0pt{\kern-24pt +\begin{code} +mm=2.83464; pt=0.99626; dd=1.06601; bp:=1; +cm=28.34645; pc=11.95517; cc=12.79213; in:=72; +\end{code} +\vss}} + +When the output of \MP\ is set to be PostScript, then the basic unit of measure is +the PostScript point. This is what \TeX\ calls a "bp" (for `big point'), and it is +defined so that $1\unit{inch}=72\unit{bp}$. The traditional printers' point, which \TeX\ +calls a~"pt", is slightly smaller so that $1\unit{inch}=72.27\unit{pt}$. + +Normal use of these units relies on \MP's implicit multiplication feature. If you write +`$\id{w}=10\,\id{cm};$' in a program, then the variable \id{w} will be set to the value 283.4645. +The advantage is that your lengths should be more intuitively understandable, but if +you are comfortable thinking in PostScript points (72 to the inch, 28.35 to the +centimetre) then there is no real need to use any of the units.\marginpar{Bizarrely, 28.35 +is also the number of grammes to the ounce.} + +It is sometimes useful to define your own units; in particular many \MP\ programs +define something like `$\id{u}=1\,\unit{cm};$' near the start, and then define all +other lengths in terms of \id{u}. If you later wish to make a smaller or larger +version of the drawing then you can adjust the definition of \id{u} accordingly. +Two points to note: +\begin{itemize} + \item If you want different vertical units, you can define something like + `$\id{v}=8\,{mm}$' and specify horizontal lengths in terms of \id{u}, but + verticals in terms of \id{v}. + \item If you want to change the definition of \id{u} or \id{v} from one figure + to the next, you will either have to use `$\kw{numeric} \id{u},\id{v};$' at + the start of the your program in order to reset them, or + use the assignment operator instead of the + equality operator to overwrite the previous values. +\end{itemize} + +The unit definitions in "plain.mp" are designed for use with the default scaled +number system; if you want higher precision definitions, then you can update them by +including something like this at the top of your program: $\longrightarrow$ +\vadjust{\moveright 5.5in \vbox to 0pt{\kern-24pt +\begin{code} +% exact values to re-define the plain.mp units +numeric bp, in, mm, cm, pt, pc, dd, cc; +72 = 72 bp = 1 in; +800 = 803 pt = 803/12 pc; +3600 = 1270 mm = 127 cm; +1238 pt = 1157 dd = 1157/12 cc; +\end{code} +%\bgroup\obeylines\parindent0pt +%$\kw{numeric} \id{bp}, \id{in}, \id{mm}, \id{cm}, \id{pt}, \id{pc}, \id{dd}, \id{cc};$ +%$72 = 72\id{bp} = 1\id{in}$; +%$800 = 803 \id{pt} = 803/12 \id{pc};$ +%$3600 = 1270 \id{mm} = 127 \id{cm};$ +%$1238 \id{pt} = 1157 \id{dd} = 1157/12 \id{cc};$ +%\egroup +\vss}} + +The effect of the $\kw{numeric}$ keyword is to remove the previous definitions; the +four equation lines then re-establish the units with very slightly more accurate +definitions. You can safely use these definitions with "scaled", as they are +equivalent to the decimals currently given in "plain.mp", but the main point of the +example is to show how you can do implicit definitions with equations. + + +\newpage +\subsection{Integer arithmetic, clocks, and rounding} + +Native \MP\ provides nothing but a "floor" function, but "plain.mp" provides several +more useful functions based on this. +\begin{itemize} + \item `$\mathop{\kw{floor}} x$' returns $\lfloor x\rfloor$, $\hbox{the + largest integer} \le x$. You can use "x=floor x" to check that $x$ is an + integer. + \item `$\mathop{\kw{ceiling}} x$' returns $\lceil x\rceil$, $\hbox{the + smallest integer} \ge x$. + + \item `$x \mathbin{\kw{div}} y$' returns $\lfloor x/y \rfloor$, integer + division. + \item `$x \mathbin{\kw{mod}} y$' returns $x-y\times\lfloor x/y \rfloor$, + integer remainder. + +\end{itemize} +Note that $\kw{mod}$ preserves any fractional part, so $355/113 \mathrel{\kw{mod}} 3 = 0.14159$. + +\smallskip +\parshape=1 0pt 3.4in +This behaviour is usually what you want. +\vadjust{\moveright 266pt \vbox to 0pt{\noindent +\begin{mplibcode} +input clocks +beginfig(1); draw clock(hour, minute) scaled 0.8; endfig; +\end{mplibcode}\vss}} +For example we can use it to turn the time of day into an appropriate rotation for +the hands of a clock.% +\vadjust{\moveright 384pt\vbox to 0pt{\kern-196pt +\begin{code} +path hand[]; +hand1 = origin .. (.257,1/50) .. (.377,1/60) + & (.377,1/60) {up} .. (.40,3/50) + .. (.60, 1/40) .. {right} (.75,0); +hand1 := (hand1 .. reverse hand1 reflectedabout(left,right) + .. cycle) scaled 50; +hand2 = origin .. (.60, 1/64) .. {right} (.925,0); +hand2 := (hand2 .. reverse hand2 reflectedabout(left,right) + .. cycle) scaled 50; + +% hour of the day to degrees +vardef htod(expr hours) = 30*((15-hours) mod 12) enddef; +vardef mtod(expr minutes) = 6*((75-minutes) mod 60) enddef; + +vardef clock(expr hours, minutes) = image( + % face and outer ring + fill fullcircle scaled 100 withcolor 1/256(240, 240, 230); + draw fullcircle scaled 99 withcolor .8 white; + draw fullcircle scaled 100 withpen pencircle scaled 7/8; + % numerals + for h=1 upto 12: + label( decimal h infont "bchr8r", (40,0) rotated htod(h)); + endfor + % hour and minute marks + for t=0 step 6 until 359: + draw ((48,0)--(49,0)) rotated t; + endfor + drawoptions(withpen pencircle scaled 7/8); + for t=0 step 30 until 359: + draw ((47,0)--(49,0)) rotated t; + endfor + % hands rotated to the given time + filldraw hand1 rotated htod(hours+minutes/60); + filldraw hand2 rotated mtod(minutes); + % draw the center on top + fill fullcircle scaled 5; + fill fullcircle scaled 3 withcolor .4 white; +) enddef; +\end{code} +\vss}} +In the program given on the right, this idea +is used to define functions that convert from hours and minutes +to degrees of rotation on the clock. +\MP\ provides two internal variables +\id{hour} and \id{minute} that tell you the time of day when the +current job started. The clock face shown here was generated using +$$\kw{beginfig}(1);{}\mathbin{\kw{draw}}\id{clock}(\id{hour},\id{minute}); \kw{endfig};$$ +to give a sort of graphical time stamp. + +\vfill + +There is also a "round" function that rounds a number to the nearest integer. It is +essentially defined as $\mathop{\kw{floor}}(x+0.5)$ except that it is enhanced to +deal with $\kw{pair}$ variables as well. If you round a pair the $x$-part and +the $y$-part are rounded separately, so that $\mathop{\kw{round}}(3.14159, 2.71828) += (3,3)$. + +The "round" function only takes a single argument, but you can use it to round to a +given number of places by multiplying by the precision you want, rounding, and then +dividing the result. So to round to the nearest eighth you might use +`$\kw{round}(x\times8)/8$', and to round to two decimal places +`$\kw{round}(x\times100)/100$'. The only restriction is that the intermediate value +must remain less than 32767 if you are using the default number system. + +\newpage +\subsection{Integer powers} + +\textsc{Even if you use} one of the new number systems, you may occasionally get +caught out by the \mpl{**} operator. As the table on the right shows, you may get +an approximate answer from \mpl{x ** y} even when $x$ and $y$ are both integers. +\vadjust{\moveright 384pt\vbox to 0pt{\kern -2pt +$$\begin{mplibcode} +beginfig(0); +%primarydef x ** y = 1 for n=1 upto y: * x endfor enddef; +for x=1 upto 19: + for y = 1 upto 7: + if x = 1: + label("$x" if y>1: & "^{" & decimal y & "}" fi & "$", (52y, -20x)); + elseif y * mlog(x) < mlog(infinity): + numeric r; r = x ** y; + label(decimal r, (52y, -20x)) withcolor 3/4 if r = round(r): blue + else: red fi; + fi + endfor +endfor +label.lft("Results of \mpl{x**y} for small values, using", lrcorner currentpicture shifted 36 up); +label.lft("the default \mpl{scaled} number system", lrcorner currentpicture shifted 24 up); +currentpicture := currentpicture scaled 0.8; +endfig; +\end{mplibcode}$$\vss}} +Note that the squares are all integers, and the powers of two appear to be ok +(although if the page was wider you would see that \mpl{2**9} is $512.00002$), but +that with a couple of exceptions cubes and higher powers are slightly off. Changing +the number system makes it worse; even $x^1$ is not always an integer. The reason +can be found in the way that the \mpl{**} operator is defined in "plain.mp". +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-36pt] +primarydef x ** y = if y = 2: x * x else: takepower y of x fi enddef; +def takepower expr y of x = + if x > 0: + mexp(y * mlog x) + elseif (x = 0) and (y > 0): + 0 + else: + if y = floor y: + if y >= 0: 1 for n=1 upto y: * x endfor + else: 1 for n=-1 downto y: / x endfor + fi + else: + hide(errmessage "Undefined power: " & decimal x & "**" & decimal y) + fi + fi +enddef; +\end{smallcode} +This is inherited direction from plain \MF, and as it says in the \mfbook, it is +optimized for $x^2$ and takes care to handle correctly negative numbers and zeros. +But for all positive values of $x$ other than 2 it is implemented using logs, and +the results are therefore only approximate. To avoid confusion where this might +matter (such as a particular offset into a recursively defined path) you could +simply use \mpl{round(7**3)} to get a whole number, or if you are sure that your $y$ +values are all non-negative integers, you could temporarily replace the definition: +\begin{smallcode} +primarydef x ** y = 1 for n=1 upto y: * x endfor enddef; +\end{smallcode} + + +\newpage +\section{Pairs, triples, and other tuples} + +\vpic{7pt}{random-selection} + +\noindent +\MP\ inherits a generalized concept of number from \MF\ that includes ordered pairs. +Pairs are primarily used as Cartesian coordinates, but can also be used as complex +numbers, as discussed below. \MP\ extends this gener\-al\-ization with 3-tuples and +4-tuples. Just like pairs, the elements in these tuples can take any numeric value, +so in theory it would be possible to use them for three- and four-dimensional +coordinates, but there are no built-in facilities for this in plain \MP, so some +external library is needed. \textit{All of the various attempts at three dimensions +in \MP\ are rather difficult to use, so none of them is discussed in this document}. + +\smallskip\noindent +Unlike simple numerics, the extended tuple variables are not automatically +declared for you, so if you want to define points $A$ and $B$ you need to explicitly +write `$\kw{pair} \id{A},\id{B};$' before you assign values to them. Once you have +declared them, you can equate them to an appropriate tuple using $=$ as normal. + +\begin{code} + pair A,B; A = B = (1,2); + color R; R = (1,2,3); + cmykcolor C; C = (1,2,3,4); +\end{code} + +The normal use of triples and quads is for colours (RGB colours and CMYK colours); +Triples are type \kw{color}, quads are type \kw{cmykcolor}. +You can't have tuples of any other length, not even as constants, except for +transforms. + +A transform is how \MP\ represents +an affine transformation such as "rotated 45 shifted (10,20)". +They are represented as 6-tuples, but if you try to write: +\begin{code} + transform T; T = (1,2,3,4,5,6); % <-- doesn't work +\end{code} +you will get a parsing error (that complains about a missing parenthesis after the 4). +You can examine and assign the individual parts using `$\kw{xpart} \id{T}$' etc. +More details below, and full details in the \MF\ book. + + +\newpage\subsection{Pairs and coordinates} +Now \textbf{pairs}: if you enclose two numerics in parentheses, you get a \<pair>. A +pair generally represents a particular position in your drawing with normal, orthogonal +Cartesian $x$- and $y$-coordinates, but you can use a pair variable for other +purposes if you wish. As far as \MP\ is concerned it's just a pair of numerics. + +\MP\ provides a simple, but slightly cumbersome, way to refer to each half of a +pair. The syntax `$\kw{xpart} \id{A}$' returns a numeric equal to the first number in +the pair, while `$\kw{ypart} \id{A}$' returns the second. The names refer to the +intended usage of pair variable to represent pairs of $x$ and $y$-coordinates. +Note that they are read-only; you can't +assign a value to an $\kw{xpart}$ or a $\kw{ypart}$. So if you want to update only one +part of a pair, you have to do something like this: $\id{A} \mathrel{:}= (42, +\kw{ypart}\id{A});$ + +In addition there is a neat macro definition in plain \MP\ that allows you do deal +with the $x$- and $y$-parts of pairs rather more succinctly. +\vadjust{\moveright 384pt\vbox to 0pt{\kern-140pt +\noindent Plain \MP\ provides this definition +\begin{code} +vardef z@#=(x@#,y@#) enddef; +\end{code} +which you can use to find orthogonal points. + +\bigskip\noindent +\includegraphics{random-function} +\vss}}% +The deceptively simple definition of $\id{z}$ as a subscripted macro allows you to +write "z1 = (10,20);" and have it automatically expanded into the equivalent of +"x1=10;" and "y1=20;". You can then use "x1" and "y1" as independent numerics or +refer to them as a pair with "z1". A common usage is to find the orthogonal points +on the axes in graphs, like so $\longrightarrow$ + +\smallskip +There is also a simple way to write coordinates using a polar notation +using\label{polar} +\mpl{dir}. This macro is defined so that \mpl{dir 30} expands to \mpl{right rotated +30} and then to \mpl{(1,0) rotated 30}, which becomes \mpl{(cosd(30), sind(30)} +or \mpl{(0.86603, 0.5)}. So to get the polar notation +point $(r,\theta)$, where $r$ is the radius and $\theta$ is the angle in degrees +counter-clockwise from the positive $x$-axis, you can write `\mpl{r * dir +theta}'. As usual, with a constant you can omit the multiplication sign, so `\mpl{2 +dir 30}' provides another way to define the point "(sqrt(3),1)". + +\smallskip +Plain \MP\ defines five useful pair variables: \id{origin}, \id{right}, \id{up}, +\id{left}, and \id{down}. As so often, Knuth-Hobby definitions in "plain.mp" are +quite illuminating +$\longrightarrow$ +\vadjust{\moveright 384pt\vbox to 0pt{\kern-36pt +\begin{code} +% pair constants +pair right,left,up,down,origin; +origin=(0,0); up=-down=(0,1); right=-left=(1,0); +\end{code} +\vss}}% +As you can see, pair variables can be used in implicit equations. + +They can also be scaled using implicit multiplication, so writing +`$144 \id{right}$' is equivalent to writing `$(144,0)$' but possibly a bit more +readable. In particular the idiom `$\kw{shifted} 200 \id{up};$' +works well when applied to a point, a path, +or an image. +Unfortunately, this convenient notation does not work well with units of +measure. This is because implicit multiplication only works between a numeric constant and a +variable. So `$2 \id{in}\, \id{right}$' does not work as you might expect; you can +write `$2\id{in} \mathrel{\ast}\id{right}$' but by that stage it's probably simpler to +write `$(2\id{in},0)$' or even just `$(144,0)$'. + + +\newpage +\subsection{Pairs as complex numbers} + +As you might expect in a language designed by mathematicians, \MP's pair variables +work rather well as complex numbers. To represent the number $3+4i$ you can write +"(3,4)". To get its modulus, you write "abs (3,4)" (which gives $5$ in this case), +and to get its argument, you write "angle (3,4)" (which gives $53.1301$). Note that +"angle" returns the argument in degrees rather than radians, and that the result is +normalized so that $-180 < \kw{angle} (x,y) \le 180$. + +The standard notation for points supports this usage. You can write "z0=(3,4);" and then +extract or set the real part with "x0" and the imaginary part with "y0". If you +want to use other letters for your variable names, you can use "xpart" and "ypart" +to do the same thing. So after `\mpl{pair w; w=(3,4);}' you can get the real part with +"xpart w" and the imaginary part with "ypart w". +You can also use the polar notation shown above to write complex numbers. For +$re^{i\theta}$ you can write `\mpl{r * dir theta}' where "r" is the modulus and +"theta" is the argument in degrees. + +The predefined constants \mpl{up}, +\mpl{down}, +\mpl{left}, and +\mpl{right} also provide points on the unit circle corresponding to $i$, $-i$, +$-1$, and $+1$ respectively. It's tempting to define `\mpl{pair i; i=(0,1);}', so that +you can write constants like "4i" directly, but this is not very helpful, because +"3+4i" will give you an error since \MP\ does not let you add a "numeric" to a "pair". + +However \MP\ does let you add (and subtract) two pairs, so complex addition and +subtraction are just done with the +normal operators. +\vadjust{\moveright 384pt\vbox to 0pt{\vskip -3.74in +$$\includegraphics{complex-operators}$$ +\begin{code} +beginfig(1); + numeric u; u = 1cm; + z1 = 2 dir 15; z2 = 1.2 dir 60; + z3 = z1+z2; z4 = z1 zscaled z2; z5 = (x1,-y1); + drawoptions(withcolor 2/3 white); + draw (1/2 left -- 3 right) scaled u ; + draw (1/2 down -- 3 up ) scaled u ; + draw subpath (0,3) of fullcircle scaled 2u rotated -22.5; + drawoptions(); + dotlabel.lrt (btex $\scriptstyle 1$ etex, (u,0)); + dotlabel.ulft(btex $\scriptstyle i$ etex, (0,u)); + interim ahangle := 30; + forsuffixes @=1,2,3,4,5: + x@ := x@ * u; y@ := y@ * u; + drawarrow origin -- z@ + cutafter fullcircle scaled 5 shifted z@ + withcolor 2/3 if @ < 3: blue else: red fi; + endfor + fill fullcircle scaled dotlabeldiam; + dotlabel.rt (btex $A$ etex, z1); + dotlabel.urt(btex $B$ etex, z2); + dotlabel.top(btex $A+B$ etex, z3); + dotlabel.top(btex $A \times B$ etex, z4); + dotlabel.rt (btex $\bar{A}$ etex, z5); +endfig; +\end{code} +\vss}}% +To get the complex conjugate you +could use "reflectedabout(left,right)", but it's probably easier just to write +"(x0,-y0)" or define a simple function: +\begin{code} + def conj(expr z) = (xpart z, -ypart z) enddef; +\end{code} +Complex multiplication is provided as part of the core language by the "zscaled" +operator. This is defined with the same precedence as "scaled" or normal scalar +multiplication (which is what you usually want). So "(3,4) zscaled (1,2)" gives +"(-5,10)" because $(3+4i)\times(1+2i) = 3+6i+4i-8 = -5+10i$. +"zscaled" is only defined to work on two "pair" variables, so you can't write +\mpl{(3,4) zscaled 4}. To get that effect with "zscaled" you would have to write +\mpl{(3,4) zscaled (4,0)}, but this is the same as +\mpl{(3,4) scaled 4}, which is usually simpler to write. If your pair is +stored as a variable you can write (for example) \mpl{4 z0} to get the same +effect. Or \mpl{1/4 z0} or \mpl{z0/4} for scalar division. + +There are no other complex operators available, but it is not hard to implement the +usual operations when they are required\dots + +\newpage +\subsubsection{Extra operators for complex arithmetic} + +Since multiplication by $z$ can be thought of as a transformation consisting of +rotation by the argument of $z$ and scaling by $|z|$, you can define the complex +inverse and complex square root simply using \mpl{angle} and \mpl{abs}. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip -24pt +\centerline{\includegraphics{complex-inverse-and-sqrt}} +The interesting part of the left hand figure was drawn as follows: +\begin{smallcode} +input colorbrewer-rgb +for i=1 upto 3: + z[i] = (3/2 + 1/4 normaldeviate) * dir (16 i + normaldeviate); + path a; + a = z[i] scaled 42 -- origin -- zinverse(z[i]) scaled 42; + drawarrow a cutafter fullcircle scaled 5 shifted point 2 of a + withcolor SetTwo[7][2+i]; + drawdot point 0 of a withpen pencircle scaled dotlabeldiam; + drawdot point 2 of a withpen pencircle scaled dotlabeldiam; + drawdot point 2 of a withpen pencircle scaled 2 withcolor white; +endfor +\end{smallcode} +The only difference on the right is that the drawing used "zsqrt()". +\vss}} + +\smallskip\noindent +First an inverse function. The idea here is to find a function that is the opposite +of complex multiplication, so we want something that gives +\begin{code} +z zscaled zinverse(z) = (1,0) +\end{code} +In other words you need to find a complex number with an argument that is the +negative of the argument of $z$ and a modulus that will scale $|z|$ to 1. +You can use the polar notation with "dir" to write this directly: +\begin{code} +vardef zinverse(expr z) = 1/abs z * dir - angle z enddef; +\end{code} +The complex division, $z/w$, can now be done as: \mpl{z zscaled zinverse(w)}. +The only difficulty with this function is how it deals with zero, or rather with +the point $(0,0)$. Since `\mpl{abs (0,0)}' gives $0$, the function will give you +a `divide by zero' error if it's called with $(0,0)$. But this is probably what you want +it to do, since there is no easy way to represent the point at infinity in the +extended complex plane on paper. + +\medskip\noindent +For square root, you want a function `\mpl{zsqrt(z)}' that returns +a complex number with half +the argument of $z$ and a modulus that is the square root of the modulus of $z$, so that +`\mpl{zsqrt(z) zscaled zsqrt(z) = z}'. This does the trick: +\begin{code} +def zsqrt(expr z) = sqrt(abs z) * dir 1/2 angle z enddef; +\end{code} +This function also has a difficulty with the point $(0,0)$, because "angle (0,0)" is +not well defined, and so \MP\ throws an error. If you want a function that +correctly returns $(0,0)$ as its own square root, then try something like this: +\begin{code} +def zsqrt(expr z) = + if abs z > 0: sqrt(abs z) * dir 1/2 angle fi z +enddef; +\end{code} + +\newpage +\subsubsection{Using complex numbers to draw fractals} + +As an example of what you can do with complex arithmetic, here is a version of the +diagram from §4.1 of Knuth's \textsl{Seminumerical Algorithms} showing $S$, the set +of all points that can be written as $\sum_{k\ge1}a_k(i-1)^{-k}$. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip -81pt +\begin{smallcode} +vardef fizz(expr X) = + pair m, n; + m = right; + n = origin; + numeric a, x; + x = X; + forever: + exitif x = 0; + m := m zscaled zinverse((-1, 1)); + a := x mod 2; + n := n + a * m; + x := x div 2; + endfor + n +enddef; +input colorbrewer-rgb +color shade[]; +shade0 = Reds 5 4; shade1 = Oranges 5 4; +shade2 = Greens 5 4; shade3 = Blues 5 4; + +beginfig(1); + numeric s, t; s = 256; t = 4; + for n=0 upto (s/t*s/t-1): + numeric h, v; + h = floor 1/8 (n mod 32); + v = n mod 4; + fill fullcircle scaled t shifted (fizz(n) scaled s) + withcolor (1/2 + 1/8 v)[white, shade[h]]; + endfor; + + path xx, yy; + xx = (left--right) scaled (s+8); + yy = xx rotated 90; + for i=-1 upto 1: + draw xx shifted (0, s*i) withpen pencircle scaled 1/8; + draw yy shifted (s*i, 0) withpen pencircle scaled 1/8; + endfor + dotlabel.lrt(btex $-1-i$ etex, (-1, -1) scaled s); + dotlabel.lrt(btex $-1$ etex, (-1, 0) scaled s); + dotlabel.lrt(btex $-1+i$ etex, (-1, 1) scaled s); + dotlabel.lrt(btex $-i$ etex, (0, -1) scaled s); + dotlabel.lrt(btex $+i$ etex, (0, 1) scaled s); + dotlabel.lrt(btex $+1-i$ etex, (1, -1) scaled s); + dotlabel.lrt(btex $+1$ etex, (1, 0) scaled s); + dotlabel.lrt(btex $+1+i$ etex, (1, 1) scaled s); +endfig; +\end{smallcode} +\vss}} +$$\includegraphics[width=\textwidth]{double-dragon.pdf}$$ +\vbox to 0pt{\noindent\small\textbf{Note}: you can adjust the “resolution” with the parameter $t$, but don't +make it smaller than 1 if you are using the default number system; the diagram looks +a bit strange unless $t$ is an integer power of 2.\vss} + +\newpage +\section{Colours} + +\MP\ implements colours as simple numerics, or tuples of three or four numeric values. +Three-tuples (which are type \mpl{color}) represent RGB colours; four-tuples +(which are type \mpl{cmykcolor}) represent CMYK colours. Simple numerics are used to +represent grey scale colours. + +The numeric values of the colours can take any \kw{numeric} value, but \MP\ only considers the +range 0 to 1 --- values less than zero are treated as zero, values greater than 1 are +treated as 1. +So British Racing Green with RGB code "(1,66,37)", +or Pillar Box Red with code "(223,52,57)", can be defined like this: +\begin{code} + color brg, pbr; + brg = (0.00390625, 0.2578125, 0.14453125); + pbr = (0.87109375, 0.203125, 0.22265625); +\end{code} +or, slightly more idiomatically: +\begin{code} + brg = 1/256 (1, 66, 37); + pbr = 1/256 (223, 52, 57); +\end{code} +As you can see, you can apply implicit multiplication to a \mpl{color}, so after +the declaration above "2 brg" would be a valid colour, although you have to think +a bit to know what that means in terms of colour in your drawings. +\vadjust{\moveright 384pt\vbox to 0pt{\kern-72pt +To use RGB hex strings, you'll need to write a function: +\begin{code} +vardef hexrgb(expr Spec) = + save r, g, b; + numeric r, g, b; + r = hex(substring (1,3) of Spec); + g = hex(substring (3,5) of Spec); + b = hex(substring (5,7) of Spec); + 1/256(r,g,b) +enddef; +brg = hexrgb("#014225"); +pbr = hexrgb("#df3439"); +\end{code} +\vss}}% + +Plain \MP\ defines five basic colour constants: \mpl{red}, \mpl{green}, +\mpl{blue}, \mpl{white}, \mpl{black}. These are quite useful with leading +fractions: \mpl{2/3 red} gives a nice dark red, that's good for drawing lines you +want to emphasize; \mpl{1/2 white} gives you a shade of grey; and so on. But since +\mpl{black} is defined as \mpl{(0,0,0)}, \mpl{1/2 black} just gives you \mpl{black}. + +You can also add up \mpl{colors}. So \mpl{red + 1/2 green} gives you a shade of +orange; this is more long-winded than writing \mpl{(1, 0.5, 0)} but maybe slightly +easier to read. Much more usefully, you can use the mediation notation to get a +colour that is part way between two others. So \mpl{1/2[red, white]} gives you a +shade of pink, and \mpl{2/3[blue, white]} a sort of sky blue. You can also use this +idea to vary colour with data, as in \mpl{(r)[red, blue]} where \mpl{r} is some +calculated value. \vadjust{\moveright 384pt\vbox to 0pt{\kern-36pt +\begin{code} +color brg; brg = 1/256 (1, 66, 37); +color pbr; pbr = 1/256 (223, 52, 57); +N = 5; n = 0; +for y=1 upto N: + for x=1 upto N: + fill fullcircle scaled 16 shifted 20(x,y) + withpen pencircle scaled 2 + withcolor (n/N/N)[pbr, brg]; + label(decimal incr n infont "phvr8r", 20(x,y)) + withcolor white; + endfor +endfor +\end{code}\vss}} +Here's a toy example: + +\vbox to 0pt{\centerline{\includegraphics[scale=0.8]{color-blend-toy}}\vss} + +\newpage +\subsection{CMYK colours} + +\MP\ also implements a CMYK colour model, using tuples of four numerics. +This is more or less a direct mapping onto the PostScript "cmykcolor" functions. +In this model the four components represent cyan, magenta, yellow, and black. +White is \mpl{(0,0,0,0)} and black is anything where the last component is 1. +Beware however that the constants, \mpl{white} and \mpl{black} are defined in +"plain.mp" as RGB colours, and you can't mix the two models, so anything like +\mpl{1/2[(1,1,0,0), white]} will not work. If you want to do lots of work with CMYK colours +you might like to redefine the color constants. +$$\includegraphics[width=0.7\textwidth]{blended-color-circles}$$ +\hey The apparent blending of colours here is done by calculating the overlaps +and filling them in order. In plain \MP, there is no support for transparency in any of the +colour models; this is because they are inherited directly from PostScript. + +\moveright 384pt\vbox to 0pt{\vss +\begin{code} +% the illusion of blended colours is helped by buildcycle + +path C[], B[]; + +% arrange each circle so that point 0 is outside the others +C1 = fullcircle scaled 120 rotated 90 shifted 40 up; +C2 = C1 rotated 120; +C3 = C2 rotated 120; + +B0 = buildcycle(C1, C2, C3); +B1 = buildcycle(C1, C2); +B2 = buildcycle(C2, C3); +B3 = buildcycle(C3, C1); + +picture P; +for x=0 upto 1: + for y=0 upto 1: + P := image( + s := 1/4 + x/2; + k := 0 + y/4; + fill C1 withcolor s*(1,0,0,k); + fill C2 withcolor s*(0,1,0,k); + fill C3 withcolor s*(0,0,1,k); + fill B3 withcolor s*(1,0,1,k); + fill B2 withcolor s*(0,1,1,k); + fill B1 withcolor s*(1,1,0,k); + fill B0 withcolor s*(1,1,1,k); + undraw C1; undraw C2; undraw C3; + ) shifted -(200x, 200y); + draw P; + label.bot(("shade: " & decimal s & ", k: " & decimal k) + infont "phvr8r", point 1/2 of bbox P); + endfor +endfor +\end{code}} + +\newpage +\subsection{HSV colours} + +HSV colours are colours defined by a triple of hue, saturation, and value. +Unlike RGB and CMYK colours there is no native support in \MP\ but it is possible to +write a routine that maps HSV triples into RGB colours: +\begin{code} +vardef hsv_color(expr h,s,v) = + save chroma, hh, x, m; + chroma = v*s; + hh = h/60; + x = chroma * (1-abs(hh mod 2 - 1)); + m = v - chroma; + if hh < 1: (chroma,x,0)+(m,m,m) + elseif hh < 2: (x,chroma,0)+(m,m,m) + elseif hh < 3: (0,chroma,x)+(m,m,m) + elseif hh < 4: (0,x,chroma)+(m,m,m) + elseif hh < 5: (x,0,chroma)+(m,m,m) + else: (chroma,0,x)+(m,m,m) + fi +enddef; +\end{code} +This is based on information from the Wikipedia article on +on “HSL and HSV”. + +\medskip\noindent +The hue values in HSV colours map nicely to the familiar spectrum +of the rainbow. In the model used here 0 is red, 120 green, and 240 blue: +$$\includegraphics[width=0.85\textwidth]{color-hsv-gamut}$$ +With less saturation the colours look faded; if you lower the value they get +darker. Once you get the hang of them, they make choosing colours rather easier. +You can produce ranges of colour by changing hue, or make gradations of a single +colour by changing the saturation or value. + +\moveright 384pt\vbox to 0pt{\vss +\begin{code} +defaultfont := "phvr8r"; + +numeric s[], v[]; +s0 = 1/2; v0 = 7/8; +s1 = 7/8; v1 = 7/8; +s2 = 7/8; v2 = 1/2; +for y=0 upto 2: + for h=0 step 15 until 360: + fill fullcircle scaled 24 shifted (h, -32y) + withcolor hsv_color(h, s[y], v[y]); + draw fullcircle scaled 24 shifted (h, -32y) + withcolor white; + if y=1: + label(decimal h infont defaultfont scaled 1/2, (h,-16)); + fi + endfor +endfor + +label.urt("Less saturation", (-20,12)); +label.lrt("Lower value", (-20,-76)); + +drawarrow (-15, -12) -- (-15,12); +drawarrow (-15, -52) -- (-15,-76); +\end{code}} + +\newpage +\subsubsection{An HSV example of a graduated scale} + +\noindent +This example requires the \mpl{hsv_color} routine from the previous page. +\mpic{12pt}{color-hsv-bathymetric} +\begin{code}[xleftmargin=0pt] +defaultfont := "phvr8r"; defaultscale := 3/4; +path h,d,b; numeric n; n = 10; +h = ((-2,0)--(0,0)--(-1,3)--(-2,3)--cycle) scaled 60; +d = h rotated 180; +b = subpath (0,1) of h -- point 1+1/n of d -- + (xpart point 0 of h, ypart point 1+1/n of d) -- cycle; +fill b withcolor hsv_color(123, 1/8, 7/8); +draw subpath (2.13,4) of b; +for i=1 upto n: + fill point 4-(i-1)/n of h -- point 1+(i-1)/n of h + -- point 1+i/n of h -- point 4-i/n of h -- cycle + withcolor hsv_color(42, 1/4 + 3/4 * i/n, 1 - i/3n); + fill point 4-(i-1)/n of d -- point 1+(i-1)/n of d + -- point 1+i/n of d -- point 4-i/n of d -- cycle + withcolor hsv_color(200, i/n - 1/n, 1 - i/3n); +endfor +string s; +for i=1 upto n-1: + draw point 4-i/n of h -- point 1+i/n of h; + draw point 4-i/n of d -- point 1+i/n of d; + s := decimal if i < 4: (i**2+1) else: (10 + (i-3)*10) fi & "00"; + label.rt(s, point 1+i/n of h); + label.lft(s, point 1+i/n of d); +endfor +label.rt("Metres", point 2 of h); +label.lft("Metres", point 2 of d); +label.lft("Hypsometric tints" infont defaultfont + scaled defaultscale rotated 90, point 7/2 of h); +label.rt("Bathymetric tints" infont defaultfont + scaled defaultscale rotated -90, point 7/2 of d); +label.lft("sea level", point 0 of h); +label("areas below sea level", center b); +draw h; draw d; +\end{code} + + + +\newpage +\subsection{Grey scale} + +\moveright5.5in\vbox to 0pt{\vskip6pt +\begin{code}[xleftmargin=0pt] +numeric s; s = 13; +path atom; +atom = origin + -- (2s,0) rotated -30 -- (2s,0) rotated -30 + (0,s) + -- ( s,0) rotated 30 -- ( s,0) rotated 30 + (0,s) + -- (0,2s) -- cycle; + +picture p[]; +for i=0 upto 2: + p[i] = image( + fill atom rotated -120i withcolor (7/8 - 1/8i) ; + draw atom rotated -120i; + ); +endfor + +n = 13; +for i=-n upto n: + for j=-n upto n: + forsuffixes $=0,1,2: + draw p$ shifted ((3i*s,0) rotated -30 + + (0,floor(1/2i)*3s + 3j*s)); + endfor + endfor +endfor + +clip currentpicture to (unitsquare shifted -(1/2,1/2) + xscaled 55.425s yscaled 30s); +\end{code} +\vss} +\noindent +The \mpl{withcolor} command will also take a single \mpl{numeric} instead of a 3-tuple or +a 4-tuple. This produces a colour in grey scale (or gray scale if you prefer the +Webster spellings). Just as for the other colour types, values below 0 count as +zero and values above 1 count as one. And since the smallest possible positive +number in plain \MP\ is: $\id{epsilon} = 1/256/256;$ then you can have at most 65,536 shades in +between. + +Grey scale is appropriate for some printed media, and can make effective textures +and patterns. +The code on the right was used to produce this: +$$\includegraphics[width=\textwidth]{escher}$$ +First a basic path (named $\id{atom}$) is defined, then in the first loop three +picture variables, $p_1$, $p_2$, and $p_3$, are defined, each one rotated +120° from the previous and filled with a slightly darker shade of grey. +The double loop then draws the three versions of the shape on an up-and-down grid. +Finally the picture is clipped to a neat rectangle. + +\newpage +\subsubsection{Drawing algorithmic shadows} +\moveright5.5in\vbox to 0pt{\vskip6pt +\begin{code}[xleftmargin=0pt] +path b, w; +b = ((-3,-4)--(3,-2)--(3,+2)--(-3,4)--cycle) scaled 5; +w = b reflectedabout(up, down); + +numeric n; +n = 128; + +picture B, W; +B = image(for i=0 step 1/n until 1: + draw point 4-i of b -- point 1+i**2 of b + withcolor 1-i**8; + endfor); + + W = image(for i=0 step 1/n until 1: + draw point 4-i of w -- point 1+i**2 of w + withcolor 3/4-i**8; + endfor); + +for i=-9 upto 9: + for j=-4 upto 4: + draw if odd (i+j): W else: B fi shifted (i*30,j*30); + endfor +endfor + +clip currentpicture to bbox currentpicture yscaled 7/8; +\end{code} +\vss} +\noindent +Here is a more complex pattern, showing one way to create an +illusion of shadows with multiple fine lines. +$$\includegraphics[width=\textwidth]{shadows}$$ +The first part defines two wedge-shaped closed paths, $\id{w}$ being +the mirror image of $\id{b}$. Like the standard \id{unitsquare} path, the +path $\id{b}$ is defined so that point 0 is the bottom left corner. + +The two $\kw{picture}$ variables are produced +by drawing lines across the shapes from bottom to top. By setting $n$ high enough, +these multiple lines blend smoothly to give an even colour. And by using higher +powers of the index variable, an effective shadow can be drawn ‘bunched up’ into the +top of each shape. + +By repeating them alternately in a grid, we get an effective texture, which is +clipped at the end to a neat rectangle again. + + +\newpage +\subsection{Colorbrewer palettes}\label{colorbrewer} + +\moveright 384pt\vbox to 0pt{\vskip144pt\raggedright\hsize4in\noindent +This map shows the "RdYlBu[9]" palette in action on a map of the Brexit vote in +London. The outlines are the 33 London boroughs, and the colours show how we voted, +faded by turnout. The data and the outlines are from publicly-available UK +government sources. They were prepared for \MP\ using various Python scripts, and +they are available in the source for this document. + +\vskip 72pt +Here is the code for the palette used as the legend: +\begin{smallcode} +input colorbrewer-rgb +numeric s; s = 10; +for i = 1 upto 9: + fill unitsquare scaled s shifted (i*s, 0) withcolor RdYlBu[9][i]; + if i > 1: draw (i*s, 0) -- (i*s, s); fi +endfor +draw unitsquare xscaled 9s yscaled s shifted (s,0); +label.top("Leave" infont "phvr8r", (s, s)); +label.top("Remain" infont "phvr8r", (10s, s)); +\end{smallcode} +\vss} + +\noindent +The well-known Colorbrewer website ("http://colorbrewer2.org") provides a useful set +of colour palettes that are suitable for a wide range of applications. They were +originally written for maps, but they are useful for many other types of drawing. +If you are using an up-to-date, and complete, \TeX\ distribution, you should find +that my implementation of them for \MP\ is already installed on your system, +otherwise you can get it from "https://ctan.org/pkg/metapost-colorbrewer". The +package provides two files that define all the colour ranges; one for CMYK and +another for RGB; an example of usage is shown below on the right. + +$$\includegraphics[width=\textwidth]{brexit-map.pdf}$$ + + +%-------------------------------------------- +\newpage +\section{Random numbers} + +\MP\ provides us with two built-in functions to generate random numbers. +\vadjust{\moveright 384pt\vbox to 0pt{\kern-24pt +\begin{code} +vardef dice(expr pip_count, pip_color) = + save d,r,p, ul, ur, lr, ll; + r=1/8; path d; picture p; + d = for i=0 upto 3: + quartercircle scaled 3 shifted (15,15) rotated 90i -- + endfor cycle; + p = image(draw fullcircle scaled 6; + fill fullcircle scaled 6 withcolor pip_color); + pair ul, ur, ll, lr; + ul = 1/5[ulcorner d, lrcorner d]; + lr = 4/5[ulcorner d, lrcorner d]; + ur = 1/5[urcorner d, llcorner d]; + ll = 4/5[urcorner d, llcorner d]; + image(fill d withcolor background; draw d; + if odd(pip_count): + draw p shifted center d; + fi; + if pip_count > 1: + draw p shifted ul; draw p shifted lr; + fi; + if pip_count > 3: + draw p shifted ur; draw p shifted ll; + fi; + if pip_count = 6: + draw p shifted 1/2[ul,ur]; + draw p shifted 1/2[ll,lr]; + fi) +enddef; + +beginfig(1); +for i=0 upto 4: + draw dice(1+floor uniformdeviate 6, red) + rotated (2 normaldeviate) + shifted (36i,0); +endfor +endfig; +\end{code} + $$\includegraphics{dice}$$ +\vss}} +\begin{itemize} + \item `$\kw{uniformdeviate}\,n$' generates a random real number between $0$ and + $n$. + + Note that the $n$ is required. It can be negative, in which case you get negative random + numbers; or it can be zero, but then you just get $0$ every time. In other words the + implementation generates a number $r$ such that $0\le r<1$ and then + multiplies $r$ by + $n$. + + If you want a random whole number, use `$\kw{floor}$' on the result. + So to simulate six-sided dice, you can use `$1+\kw{floor}\,\kw{uniformdeviate}6$'. + + If you use the new number systems, and you find that the numbers generated + are all multiples of $n/4096$, so $\kw{uniformdeviate} 8192$ (for example) + generates even integers instead of random real numbers, then you should + update your \TeX\ distribution. This `feature' was an accident of the + original way that the scaled arithmetic routines were adapted. + + \item `\kw{normaldeviate}' generates a random real number that follows the + familiar normal distribution. The algorithm used is discussed in \textsl{The + Art of Computer Programming}, section~3.4.1. + If you generate enough samples, the mean should + be approximately zero, and the variance about 1. + The chance of getting a number between $-1$ and 1 is + about 68.3\%; between $-2$ and 2, about 95.4\%. + \vadjust{\moveright 3.6in\vbox to 0pt{\hsize 1.6in \vskip21pt \noindent + \small 10000 samples suggest\\\kw{normaldeviate} works.\par\vss}} + $$\includegraphics[width=4.6in]{gaussian}$$ + To relocate the mean, just add a constant. To rescale the distribution, + multiply by the desired standard deviation (the square root of the + desired variance). + + +\end{itemize} + + +\newpage\subsection{Random numbers from other distributions} + +The \kw{normaldeviate} function is provided as a primitive \MP\ operation. The +implementation is based on the `Ratio method' presented in \textsl{The Art of +Computer Programming}, section~3.4.1. It turns out to be very straightforward to +implement the algorithm for this method as a user-level program $\longrightarrow$ +\vadjust{\moveright5.5in\vbox to 0pt{\kern -64pt +\begin{smallcode} +vardef normaldeviate = + save u, v, xa; + forever: + forever: + u := uniformdeviate 1; + exitif (u>1/64); + endfor + v := sqrt(8/mexp(256)) * ( -1/2 + uniformdeviate 1 ); + xa := v/u; + exitif ( xa**2 <= -mlog(u)/64 ); + endfor + xa +enddef; + +vardef exponentialdeviate = + save u; + forever: + u := uniformdeviate 1; + exitif (u>0); + endfor + -mlog(u)/256 +enddef; + +vardef gammadeviate(expr a,b) = + save y, x, v, s, accept; boolean accept; + s = sqrt(2a-1); + forever: + forever: + y := tand(uniformdeviate 180); + exitif y<64; + endfor + x := s * y + a - 1; + accept := false; + if x>0: + v := uniformdeviate 1; + if (v <= (1+y**2)*mexp((a-1)*mlog(x/(a-1))-(256*s*y))): + accept := true; + fi + fi + exitif accept; + endfor + x/b + enddef; +\end{smallcode} +\vss}}% + +There are a couple points here. First, the inner loop around the assignment to $u$ is +designed to avoid very small values that would cause $v/u$ to be larger than 64, and +hence make "xa**2" overflow. This is a useful general technique, and justified in +terms of the algorithm since large values of $v/u$ are rejected anyway. Secondly, +the expression "sqrt(8/mexp(256))" is a constant ($ \sqrt{8/e} \simeq 1.71553 $) and could be +replaced by it's value, but this does not make an appreciable improvement to the +speed of the routine. On a modern machine, this routine is only very slightly +slower than using the primitive function. + +It is also fairly straightforward to implement random number generators that follow other statistical +distributions. The mathematical details are in the section of \textsl{TOACP} +referenced above. Two examples, for the exponential distribution and the gamma +distribution, are shown on the right. In both cases, note the care required to avoid +arithmetic overflow (and see section~\ref{trig} for the "tand" function). + +\medskip\label{mexp}\noindent +You can also see the special nature of \MP's \kw{mexp} and \kw{mlog} +functions. They are defined so that $\kw{mexp} x = \exp(x/256)$ and $\kw{mlog} x =256\log(x)$. +This is another artefact of the scaled number system. \MP\ computes $x^y$ using the +formula "mexp(y*mlog(x))", and the adjusted log values give more accurate results. +Note that this means that you have $e=\kw{mexp}(256)$. + +\medskip\noindent +At the start of each job, \MP\ automatically sets a new seed for the random number +generator, so that the sequence of numbers is different each time. But you can set +this yourself if you need the same sequence each time. At the start of your program +you should put "randomseed:=3.14;" (or whatever value you prefer). According to +\textsl{The Metafont Book}, the default value is +$\id{day}+\id{time}\ast\id{epsilon}$, but in \MP\ the exact value used depends on +the resolution of the timers available on your system; essentially the value +should be different every time you run \MP. + + +\newpage\subsection{Random walks} + +You can use the random number generation routines to produce visualizations of +random walks, with various levels of analysis. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4.4in\kern -2\baselineskip +\begin{code} +beginfig(1); +numeric w, h, n; w = 377; h = 80; n = 500; +draw (origin--right) scaled w; +draw (origin--right) scaled w shifted (0,+h/2) withcolor 3/4; +draw (origin--right) scaled w shifted (0,-h/2) withcolor 3/4; +pair zenith, nadir; zenith = nadir = origin; +path walk[]; +for i=1 upto 8: + numeric y; y = 0; + walk[i] = origin for x=w/n step w/n until w: + hide( + y := y if uniformdeviate 1 < 1/2: + else: - fi 1; + if y > ypart zenith: zenith := (x,y) ; fi + if y < ypart nadir: nadir := (x,y) ; fi + ) + -- (x,y) + endfor; + undraw walk[i] withpen pencircle scaled 3/4; + draw walk[i] withcolor (1/2+y/h)[red, blue] +endfor +drawarrow (12 up -- 2 up) shifted zenith withcolor blue; +drawarrow (12 down -- 2 down) shifted nadir withcolor red; +endfig; +\end{code} + +\smallskip\noindent +\hey Note the \mpl{undraw} line using a slightly thicker pen; this makes it +easier to follow the lines as they cross each other. +\vss}} +$$\includegraphics[width=\textwidth]{random-walks-red-blue}$$ +In this example the random walk lines are coloured according to the final $y$-value, +and the global maximum and minimum points are marked. + +Each walk is created with an `inline' for-loop; the loop is effectively expanded +before the assignment, so that each \id{walk} variable becomes a chain of connected $(x,y)$ +pairs. Inside the loop you can conceal yet more instructions in a `\kw{hide}' block. +These instructions contribute nothing to the assignment, but can change the values +of variables outside the block. + +Note the first line of the \kw{hide} block adds $\pm1$ to $y$ with equal probability. +You can (of course) create different kinds of random walks, by changing the way you +set this delta value, for example by using a different type of random variate, or scaling +the value, or changing the odds in favour of one direction or the other. For +example: +\begin{code} +y := y if uniformdeviate 1 < p: + 2 else: - 1 fi; +\end{code} +will set the delta to $+2$ with probability $p$ and and to $-1$ with probability $1-p$. + +\newpage\subsection{Brownian motion} + +A random walk is normally constrained to move one unit at a time, but if you relax +that constraint and use `\kw{normaldeviate}' in place of `\kw{uniformdeviate}' you +can get rather more interesting patterns.\vadjust{\moveright5.5in\vbox to 0pt{ +\hsize4in\kern -20pt +\begin{code} +beginfig(2); +for n=1 upto 4: + x:=y:=0; + draw (x,y) for i=1 upto 2000: + hide(x:=x+4normaldeviate; y:=y+4normaldeviate;) + .. (x,y) + endfor withcolor ((n+2)/9)[blue,white]; + fill fullcircle scaled 3 shifted (x,y) withcolor red; +endfor +% mark the origin +fill fullcircle scaled 3 withcolor green; +endfig; +\end{code} + +\kern 120pt +\noindent +Using these random number generators means that the output is +different each time because \MP\ produces a different sequence of numbers. You may +find yourself running the program a few times until you find one you like. At this +point you will wish that you knew what "randomseed" had been used, so that you can +re-create picture. Unfortunately \MP\ does not log the value used, unless you set it +manually. So here's a trick to use in this situation: set your own random seed +using a random number at the top of your program. +\begin{code} + randomseed := uniformdeviate infinity; +\end{code} +Now \MP\ writes the (random) value used in the log for you to copy. Note that if you are using +"luamplib" you need to add the "\mplibshowlog{enable}" option. +\vss}} +If you also allow the $x$-coordinates to +wander at random as well as the $y$-coordinates you get two-dimensional random +patterns. And if you replace the straight line segments "--" with ".." so that \MP\ +draws a smooth curve through the points, as well as vary the colour each time +you draw a new curve, then the result is almost artistic. + +\medskip\noindent +\hbox to \textwidth{\includegraphics[width=1.2\textwidth]{brown3a}\hss} + +\newpage\subsection{Drawing freehand} + +This idea is shamelessly stolen from the wonderful collection of \MP\ examples +available at "http://melusine.eu.org/syracuse/metapost/". But since the +examples there are all in French (including all the names of the custom macros), +perhaps it would be better to say `translated' rather than `stolen'; moreover my +implementations are easier to use with plain \MP.\vadjust{\moveright5.5in\vbox to 0pt{ +\hsize4in\kern -5.5\baselineskip +\begin{smallcode} +def freehand_segment(expr p) = + point 0 of p {direction 0 of p rotated (4+normaldeviate)} .. + point 1 of p {direction 1 of p rotated (4+normaldeviate)} +enddef; +def freehand_path(expr p) = + freehand_segment(subpath(0,1) of p) + for i=1 upto length(p)-1: + & freehand_segment(subpath(i,i+1) of p) + endfor + if cycle p: & cycle fi +enddef; +defaultfont := "eurm10"; +color sepia; sepia = (0.44, 0.26, 0.08); +picture marker; marker = image(for s=-1/2, 1/2: + draw (left--right) scaled 2 rotated 60 shifted (s,0); +endfor); +def moved_along expr x of p = rotated angle direction x of p + shifted point x of p enddef; + +beginfig(1); +pair A, B, C, D; +A = (0,-30); B = (180,0); C = (120,90); +D = (1/2 + 1/40 normaldeviate)[A, B]; +path triangle, circumcircle, bisector; +triangle = freehand_path(A--D--B--C--cycle); +bisector = freehand_segment(C--D); +circumcircle = freehand_path(A..B..C..cycle); +draw triangle; +draw bisector; +draw circumcircle withcolor .67 red; +draw marker moved_along 1/2 of triangle withcolor .67 red; +draw marker moved_along 3/2 of triangle withcolor .67 red; +label.lft("A", A); +label.rt ("B", B); +label.top("C", C); +label.bot("D", D); +endfig; +\end{smallcode} +\vss}} + +\subsubsection{Making curves and straight lines look hand drawn} + +$$\includegraphics{random-freehand-circumcircle}$$ +A small amount of random wiggle makes the drawing come out charmingly wonky. Notice +that the "freehand_path" macro will transform a path whether it is straight or curved, +and open or closed. Notice also that to find $D$ the mid-point of a $AB$, you need +to find the +point along the freehand path; if you simply put "1/2[A,B]" there's no guarantee +that the point would actually be on the free hand path between $A$ and $B$. In this +case a little extra randomness has been added, and the +two segments $AD$ and $DB$ have been marked with traditional +markers to show that they are equal. The "moved_along" macro combines shifted and +rotating to make the markers fit the wonky lines properly. +The Euler font complements the hand-drawn look; but +you might find that a little of this type of decoration goes a long way. + +\newpage +\subsubsection{Extending straight lines slightly}\label{euler} + +This second freehand figure uses a macro to draw a wonky line through two points +with a bit of overlap at each end. The overlap size is given using the suffix +syntax. The lines are drawn in sepia ink to enhance the hand-drawn look. The angle +labels are positioned on invisible arcs between neighbouring wonky lines. +\vadjust{\moveright5.5in\vbox to 0pt{ +\hsize4in\kern -4.5\baselineskip +\begin{code}[xleftmargin=0pt] +vardef freehand_through@#(expr a, b) = + save t; pair t; + t = @# * unitvector(b - a) rotated (4 + normaldeviate); + a - t .. a {t} .. b {t} .. b + t +enddef; + +vardef mid_arc@#(expr p, a, b) = + save c; path c; + c = fullcircle scaled (2*@#) shifted p cutbefore a cutafter b; + point arctime 1/2 arclength c of c of c +enddef; + +beginfig(1); +defaultfont := "eurm10"; color sepia; sepia = (0.44, 0.26, 0.08); +pair A, B, C; A = (0,-30); B = (180,0); C = (120,90); + +path a, b, c; +a = freehand_through 7 (A, B); +b = freehand_through 8 (B, C); +c = freehand_through 6 (C, A); + +drawoptions(withcolor sepia); +draw a; draw b; draw c; + +drawoptions(withcolor .67 blue); +label.bot ("a", point 3/2 of a); +label.rt ("b", point 3/2 of b); +label.ulft("c", point 3/2 of c); + +drawoptions(withcolor .5 red); +label(char 11, mid_arc 16 (A, a, c)); +label(char 12, mid_arc 14 (B, b, a)); +label(char 13, mid_arc 14 (C, c, b)); + +drawoptions(); +endfig; +\end{code} +\vss}} + +$$\includegraphics{random-freehand-through}$$ + +\vfill +\noindent\llap{\nb\ }The AMS Euler font available to \MP\ as "eurm10" is encoded as a subset of the \TeX\ +math italic layout --- essentially it has all the Greek letters but none of the +arrows, nor the musical notation. +$$\includegraphics{euler-sampler}$$ +If you can't get the upper case $\Gamma$ at \mpl{char 0}, then you might be running +an old out-of-date version of "luamplib". + +\newpage\subsection{Increasingly random shapes of the same size} + +If you want a random-looking shape, the general approach is to find a method to make +a path that allows you to inject some random noise at each point of the path. +$$\hbox to \textwidth{\includegraphics{random-shapes}\hss}$$ +For these shapes the objective was to make them increasingly random, but to keep +them all the same length.\vadjust{\moveright5.5in\vbox to 0pt{ +\hsize4in +\begin{code} +beginfig(1); +numeric desired_length, n, s; +desired_length = 180; n = 30; s = 80; + +for r=0 upto 8: + + path shape; + shape = for i=1 upto n: + (s + r * normaldeviate, 0) rotated (360/n*i) .. + endfor cycle; + + shape := shape scaled (desired_length/arclength shape); + + draw shape shifted (r*s, 0) withcolor (r/8)[black,red]; + label(decimal r, (r*s, 0)); + +endfor +endfig; +\end{code} +\vss}} +Each time round the outer loop the \id{shape} is redeclared to clear it, and +then redefined by an inline-loop with $n$ steps like +this: +\begin{code} +shape = for i=1 upto n: (s,0) rotated (360/n*i) .. endfor cycle; +\end{code} +except that some random noise is added to the $s$ at each step: when the noise is +zero ($\id{r}=0$) you get a circle; as the noise increases the circle is +increasingly distorted. + +The scaling is done using the \mpl{arclength} operator. This works like +\mpl{length} but instead of telling you the number of points in a path, it returns +the actual length as a dimension. Dividing the desired length by this dimension +gives the required scaling factor for the random shape just defined. Notice that +you have to do this in two steps, and update the shape using ":=". This is because +you need to have defined \id{shape} before you can refer to it. + + +\newpage\subsection{Explosions and splashes} + +Random numbers are also useful to make eye catching banners for posters, +presentations, and infographics. Here are two simple example shapes: $\to$ +\mpic{18pt}{explode} + +\begin{smallcode} +string heavy_font; +heavy_font = "PlayfairDisplay-Black-osf-t1--base"; + +randomseed:=2128.5073; + +beginfig(1); +n = 40; r = 10; s = 50; +path explosion, splash; +explosion = for i=1 upto n: + (s if odd(i): - else: + fi r + uniformdeviate r,0) rotated (i*360/n) -- +endfor cycle; + +splash = for i=1 upto n: + (s if odd(i): - else: + fi r + uniformdeviate r,0) rotated (i*360/n) .. +endfor cycle; +splash := splash shifted (3s,0); + +fill explosion withcolor 1/2 green + red; +draw explosion withpen pencircle scaled 2 withcolor 2/3 red; +label("BOOM!" infont heavy_font scaled 2, center explosion) + withcolor red; +fill splash withcolor 1/2 green + blue; +draw splash withpen pencircle scaled 2 withcolor 2/3 blue; +label("SPLAT!" infont heavy_font scaled 2, center splash) + withcolor blue; +endfig; +\end{smallcode} + +\noindent +In this figure "n" is the number of points in the shape, "r" is the amount of +randomness, and :"s" is the radius used. +In order to get a clear zig-zag outline, the loop alternately adds or subtracts "r"; +and then adds a random amount on top to make it look random. +Notice that the only difference between the "explosion" and "splash" is that how +the connecting lines are constrained to be straight or allowed to make smooth +curves.\vadjust{\moveright5.5in\vtop to -2pt{\hsize 4in\vss\noindent +The display font used here is one of the gems hidden away in "psfonts.map". +If you run \MP\ with the "-recorder" option, it will create a list of all the files +used, with the current job name and an extension of ".fls". This file will include +a line which tells you exactly which version of "psfonts.map" is being used. + +The DVIPS documentation explains the format of the file, but for \MP's purposes the +first word of each non-comment line defines a font name you can try. However beware +that just because a name is defined in your map file, does not necessarily mean that +you actually have the required PostScript font files installed as well. But if you have a +full TexLive installation you will find that very many of them are already +installed.\strut +}} + + +\newpage\subsection{Simulating jagged edges or rough surfaces} + +You can use the idea of adding a little bit of noise to simulate a rough surface. +$$\includegraphics[width=0.95\textwidth]{qed}$$ +These diagrams are supposed to represent light rays reflecting from a surface: on +the left the surface is smooth ($r=0$) and on the right it's rough ($r=0.42$). +The parameter $r$ is used in the \MP\ program as a scaling factor for the random +noise added to each point along the rough surface; the only difference in the code +to produce the two figures was the value of $r$.% +\vadjust{\moveright5.5in\vbox to + 0pt{\hsize 4in\vss +\begin{smallcode} +def perpendicular expr t of p = + direction t of p rotated 90 shifted point t of p + enddef; + +beginfig(1); +u = 5mm; r = 0.42; n = 32; s = 8u; theta = -45; + +path base; +base = origin + for i=1 upto n-1: -- (i/n*s,r*normaldeviate) endfor + -- (s,0) -- (s,-u) -- (0,-u) -- cycle; +fill base withcolor .8[blue,white]; +draw base withcolor .67 blue; + +path ray[]; +for i=2 upto 6: + ray[i] = (left--right) scaled 2/3 s rotated theta shifted (i*u,0); + b := ypart (ray[i] intersectiontimes base); + ray[i] := point 0 of ray[i] + -- point b of base + -- point 0 of ray[i] + reflectedabout(point b of base, perpendicular b of base); + drawarrow ray[i]; +endfor + +label("r=" & decimal r, center base); +endfig; +\end{smallcode} +\vss}} +First the base block is created with some noise on the upper side. Then five rays +are created. Applying \mpl{ypart} to the pair of times returned by +\mpl{intersectiontimes} gives us the point of the base where the incident ray hits +it. This point and the perpendicular at that point are then used to get the angle +for the reflected ray. The diagrams are effective because the rays are reflected at +realistic looking angles. + +The simple approach to adding noise along a path works well in most cases provided +there's not too much noise, but it is always possible that you'll get two consecutive +values at opposite extremes that will show up as an obtrusive jag in your line. To +fix this you can simply run your program again to use a different random seed value; +or you could try using ".." instead of "--" to connect each point, but beware that +sometimes this can create unexpected loops. + +\newpage\subsubsection{Walking along a torn edge} + +It's also possible to use a random +walk approach so that each random step takes account of the previous one to avoid +any big jumps. Here's one way to do that. +$$\includegraphics{torn-edge-straight}$$ +\begin{code} +path t; numeric x, y; +x = 0; y=0; +t = (x, -20) -- (x, y) for i=1 upto 288: + -- (incr x, walkr y) + endfor -- (x, -20) -- cycle; +draw t withcolor .67 blue; +\end{code} +The "walkr" routine works like the "incr" and "decr" commands; it updates the value of the +argument. The idea is that the further away from zero you are, the more likely is +that the next value will take you back towards zero. +\begin{code} +vardef walkr suffix $ = + $ := $ if uniformdeviate 1 < (2**-abs($)): + else: - fi + signr $; $ + enddef; +vardef signr suffix $ = + if $<0: - else: + fi uniformdeviate 1 + enddef; +\end{code} +You can use this to produce more realistic torn edges. You can also apply this as a +form of jitter to a curved path, by adding a suitably rotated vector to enough +points along the path. + +\moveright5.5in\vbox to 0pt{\kern-4in +\begin{code} +path c; c = fullcircle scaled 200; +draw c withcolor .8 white; + +y=0; n = 600; +path t; t = for i=0 upto n-1: + point i/n*length(c) of c + + (0, walkr y) rotated angle direction i/n*length(c) of c + -- +endfor cycle; +draw t withcolor .67 red; +\end{code} +$$\includegraphics{torn-edge-circle}$$ +\vss} + + +\newpage +\section{Plane geometry} + +\noindent\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\kern-9pt\noindent +Here is the equilateral triangle point macro in action. +$$\includegraphics{geometry-triangles-on-circle}$$ +\vskip -12pt +\begin{code} +beginfig(1); +path c; c = fullcircle scaled 144; +pair a,b,p,q; +for i=0 upto 7: + a := point i of c; + b := point i+1 of c; + p := equilateral_triangle_point(a,b); + q := equilateral_triangle_point(b,a); + draw a -- p -- b withcolor .67 green; + draw a -- q -- b withcolor .67 red; +endfor +draw c withcolor .53 blue; +endfig; +\end{code} +\vss}}% +This section deals with drawing geometrical figures that involve lines, +angles, polygons, and circles. Plain \MP\ provides very few tools that are +explicitly designed to help draw geometric figures, but it is usually possible to +find an elegant construction using these tools and the relevant primitive commands. +It is tempting to build up your own library of special purpose macros, but +experience suggests that it is often better to adapt a general technique to the task +in hand, and to create a specific solution to your current problem. One of the main +issues is catching exceptions; since it is hard to write completely general macros, +I have tried simply to present each technique so that you can understand it and adapt +it as required. + +The classical constructions from Euclid's \textsl{Elements} are often useful +sources of inspiration for macros, but they do not always point in the right +direction. For example consider the first proposition: \textit{given two points +find a third point, so that the three points make an equilateral triangle}. +Euclid's construction is to draw an arc, with radius equal to the length of the +segment between the two points, at each point and find the intersection. This might +lead us to a function like this: +\begin{code} +vardef equilateral_triangle_point(expr a, b) = + save c; path c; c = fullcircle scaled 2 abs(b-a); + (c shifted a intersectionpoint c shifted b) +enddef; +\end{code} +This works but has a couple of issues. First using \mpl{intersectionpoint} feels a +bit like cheating; secondly, and more seriously, the point returned depends on the +orientation of the points "a" and "b". In some configurations the first +intersection found will be on the left, in others on the right. We could fix this +by rotating the circle "c" by "angle (b-a)", but we can do better with a simple +rotation of the second point about the first: +\begin{code} +vardef equilateral_triangle_point(expr a, b) = + b rotatedabout(a,60) +enddef; +\end{code} +And if you want to get right back to primitives you could even write that as: +\begin{code} +vardef equilateral_triangle_point(expr a, b) = + b shifted -a rotated 60 shifted a +enddef; +\end{code} + + +\newpage +\subsection{Bisecting lines and paths} + +\moveright5.5in\vbox to 0pt{\hsize4in\noindent +$$\includegraphics{mediation-pitfall}$$ +\vskip 50pt +$$\includegraphics[width=4in]{mediation-shapes}$$ +\bigskip +$$\includegraphics[width=4in]{mediation-sallows}$$ +\centerline{\textsl{Lee Sallows' theorem of median triangles}} +\vss} +\noindent +The best way to bisect a line depends on how you have defined it. +If you have two pairs $a$ and $b$, then the simplest way to find +the pair that bisects them is to write "1/2[a,b]". This mediation +mechanism is entirely general, so you can write \mpl{1/3[a,b]}, "1/4[a,b]", and +so on to define other pairs that are part of the way from $a$ to $b$. +The expression "0[a,b]" is equal to $a$, and "1[a,b]" is equal to $b$; +but the number before the left bracket does not have to +be confined to the range $(0,1)$. If you write "3/2[a,b]" you will get a pair on +the extension of the line from $a$ to $b$ beyond $b$. To get a pair going the +other way you can either reverse $a$ and $b$, or use a negative number; but don't +get caught out by the \MP\ precedence rules: "-1/2[a,b]" is interpreted as +"-(1/2[a,b])" and not as "(-1/2)[a,b]", so either put in the parentheses or swap +the order of the pairs: "(3/2)[b,a]". See $\longrightarrow$. + +If you want to work with a \kw{path} variable, rather than separate \kw{pair} +variables, you can +use the \mpl{point t of p} +notation to do mediation along the path. For a simple straight path $p$ of length 1 +then \mpl{point 1/2 of p} will give you the midpoint. More generally, +\mpl{point 1/2 length p of p} will give you the midpoint of a path of any length. +This works fine for simple paths, along which \MP's time moves evenly, +but for more complicated, curved paths you have to use this rather cumbersome notation: +\begin{code} + point arctime 1/2 arclength p of p of p +\end{code} +If your path is closed, and makes a triangle or a regular polygon, +then you can bisect it with the line +\begin{code} + point t of p -- point t + 1/2 length p of p +\end{code} +\textbf{NB}: if the polygon has an odd number of sides, then $2t$ must be a whole +number. + +\smallskip\noindent +In a triangle these bisecting lines are called medians. The three medians intersect +at the centroid of the triangle. The centroid is a good place to put a label on a +triangle. You could find it \mpl{intersectionpoint} or with +a construction using \mpl{whatever} on any two medians, but since we know that the centroid +divides each median in the ratio $2:1$ we can find the centroid of a triangle path +$p$ most simply with: +\begin{code} + z0 = 2/3[point 0 of p, point 3/2 of p]; +\end{code} +The median is the basis for several beautiful theorems about the geometry of the +triangle. The theorem shown here was first published in 2014. + +\newpage +\subsection{Bisecting angles}\label{sec:bisect} +\moveright5.5in\vbox to 0pt{\hsize4in\noindent +$$\includegraphics{bisection-euclidean}$$ +\smallskip +$$\includegraphics{bisection-vector}$$ +\vss} +\noindent +In an equilateral triangle the medians also bisect the angles at each vertex; this +is the basis of Euclid's method of bisecting an angle set out in the Second +Proposition. You can do the same in \MP, but it might not always be the best way. +Whatever approach you take, an angle is defined by three points; one that defines +the corner and two that define the lines extending from that corner. In this +exploration I've used $a$, $b$, and $c$ to represent the points, with $b$ being the +one in the middle, and at the corner. + +Euclid's method is to draw an arc centred at the corner, and then construct an +equilateral triangle on the two points where the arc crosses the lines. This is +shown on the right, with a macro that re-uses the equilateral triangle point macro +given above. But if your aim were to find any point on the line bisecting $\angle +ABC$, then you could simplify this and make it more efficient by using +$e = \frac12[p,q]$ +instead of calling the triangle macro at all. However the macro is still making two +calls to \mpl{intersectionpoint}. If you wanted to eliminate this you could use the +useful plain \MP\ macro "unitvector" to produce a solution based on adding two equal +length vectors from the corner to the two other points. Another approach is to +exploit another geometric theorem that states that the bisector of an angle in a +triangle divides the opposite side in the ratio of the two other sides. +So if sides $AB$ and $BC$ have lengths $p$ and $q$ then the bisector will +be ${p\over p+q}={1\over1+q/p}$ from $A$ to $C$, and you can express this +simply using \MP's mediation syntax: +\vbox to 0pt{ +$$\includegraphics{bisection-interior}$$ +\vss} + +\newpage +\subsection{Trisections and general sections of angles} + +There is no classical method to trisect an arbitrary angle, so you need to resort +to measuring and arithmetic in \MP. If the angle is a given this is trivial: +\mpic{-12pt}{trisection-simple.pdf} +\begin{smallcode} +path ray; +numeric theta; +ray = origin -- 200 right; +theta = 42; +draw ray; +draw ray rotated 1/3 theta withcolor 2/3 red; +draw ray rotated 2/3 theta withcolor 2/3 red; +draw ray rotated theta; +dotlabel.llft("$0$", origin); +label("$\theta/3$", 72 right rotated 1/6 theta); +label("$\theta/3$", 72 right rotated 3/6 theta); +label("$\theta/3$", 72 right rotated 5/6 theta); +\end{smallcode} +But if you have only the coordinates of some points then you need to use the +\mpl{angle} primitive to measure the angle first; \mpl{angle} takes a \kw{pair} +argument and returns a numeric representing the angle in degrees measured clockwise +from the $x$-axis to a line through the origin and the point represented by the pair. +This definition means that if you have three points $A$, $B$, and $C$, then you can +measure $\angle ABC$ with \mpl{angle(C-B)-angle(A-B)}. Following the usual +convention this gives you the angle at $B$; if you list the points in clockwise +order you will get a positive result. If you don't care about the order, you +can make this into a more robust macro: +\begin{smallcode} +vardef measured_angle(expr P, Q, R) = + (angle (P-Q) - angle (R-Q)) * turningnumber (P--Q--R--cycle) mod 360 +enddef; +\end{smallcode} +The primitive \mpl{turningnumber} is explained on p.\thinspace 111 of \textsl{The +METAFONTbook}. It takes a closed path and returns number of times that you would +turn through 360${}^\circ$ if you traversed the path. We use this here to +negate the measured angle if necessary, so that you always get the interior angle. +The \mpl{mod 360} on the end ensures that the result is in the range $0 \le \theta < +360$. Armed with a measured angle, all you then need is arithmetic. +\mpic{-160pt}{trisection-classical.pdf} +It might be possible to use the \id{solve} macro to simulate the Neusis construction +(that allows you to measure a length) illustrated on the right, but measuring the +angles is rather easier. + +\newpage +\subsection{Intersections}\label{sec:intersect} + +\moveright5.5in\vbox to 0pt{\hsize4in\noindent +\centerline{A puzzle square featuring some intersections} +$$\includegraphics[width=3in]{magic-square-14}$$ +The points were defined like this (the order was important). +\begin{code} +z1 = (10,10); +z4 = 144 right rotated 12; +z5 = z4 shifted (2, 78); +z7 = z4 reflectedabout(origin, (1,1)); + +z2 = 1/2 [z5, z7]; +z9 = whatever [z1, z4]; +z2-z9 = whatever * (z7-z1); +z8 = whatever [z1, z5] = whatever [z2, z4]; +z3 = whatever [z2, z9] = whatever [z4, z7]; +z6 = whatever [z1, z7] = whatever [z3, z5]; +\end{code} +\vss} +\noindent +If you have line segments defined by their endpoints, then the +canonical way to find their intersection, is to use +the mediation syntax with \id{whatever} twice: +$$\includegraphics[width=\textwidth]{whatever.pdf}$$ +The mediation syntax works even if the intersection point does not actually lie on +either of the two line segments. The intersection will be the point where the two +(infinite) lines through the pairs of points meet. If the two lines are parallel, +you'll get an `inconsistent equation' error. If you want to capture the calculated +values, then use undefined numeric variables instead of \id{whatever}: +\begin{code} + z0 = alpha [z1, z2] = beta [z3, z4]; +\end{code} +In this example you would find $\alpha=0.286$ and $\beta=0.5$. +If you are trying to find where the line through your points intersects a horizontal or vertical, then you only need one +mediation and a simple equation for the relevant $x$ or $y$ coordinate: +\begin{code} + z0 = alpha [z1, z2]; x0 = 0; % for example +\end{code} +If you have defined your lines as paths, and especially if they are more complicated +than straight lines, you need to use the \mpl{intersectiontimes} primitive or the +\mpl{intersectionpoint} macro, as explained on pp.136–137 of \mfbook. + +\newpage +\subsubsection{The intersection algorithm} + +\MP\ inherits a fast algorithm for finding the intersection between two paths from +\MF. It is explained rather more gnomically than usual at the end of Chapter 14 of +\mfbook, with more detail given in the web source for \MF. The core algorithm works +on paths of length 1. If you have longer paths, \MP\ works its way along the paths +applying the core algorithm to successive pairs of unit subpaths. It does this is +lexicographic order; this means that, if you have two circles $A$ and $B$, and you do this: +\begin{code} + (t, u) = A intersectiontimes B; +\end{code} +then \MP\ will first look for an intersection between subpath $(0,1)$ of $A$ and +subpath $(0,1)$ of $B$, then subpath $(0,1)$ of $A$ and subpath $(1,2)$ of $B$, and +so on, with $B$ varying faster, until you get to subpath $(7,8)$ of $A$ and subpath +$(7,8)$ of $B$. But you may never get that far, as the process stops as soon as the +first intersection is found. The upshot of this is that the intersection point +found will always be as early as possible on $A$. Note that after the call above +point $t$ of $A$ will be very close to point $u$ of $B$, as they both refer to the +same intersection point. If you want the alternative point that is earlier on $B$, +then use `$B \mathbin{\textrm{intersectiontimes}} A$' +instead.\mpic{-222pt}{intersection-AB-or-BA} + +\vfill\noindent +When we get down to paths of length 1, the algorithm works something like this: + +$$ +\includegraphics{intersection-algorithm} +$$ +\vadjust{\moveright 384pt\vbox to 0pt{\hsize 4.2in\vss \noindent +The two paths are represented as rectangles that enclose the end points and the +control points for each path. If these rectangles don't overlap then there is +certainly no intersection. Otherwise \MP\ bisects each path and considers four +smaller rectangles, in the order $(1,2)$, $(1,4)$, $(3,2)$, $(3,4)$ (as shown). In +this case it will pick $(1,2)$, discard 4, and push 3 onto a stack. It carries on +doing this, back tracking as required, until it finds sufficiently small overlapping +rectangles. The two times returned by \mpl{intersectiontimes} are the midpoints of +the subpaths enclosed by these two tiny rectangles, which is why they do not always +refer to exactly the same point.}} + +\subsubsection{Finding all intersection points} + +As noted above, the \mpl{intersectiontimes} algorithm will stop at the first +intersection of the two paths, but it is possible that the two paths will intersect +again further along. If you want to find all the intersection points then the +simplest technique is just to unwrap the algorithm slightly, and loop through all +the unit subpaths applying \mpl{intersectiontimes} to each pair. Using an array to +hold the points and a counter, you can get them with something like this: +\begin{smallcode} +pair P[], times; numeric n; n = 0; +for i = 1 upto length(A): + for j = 1 upto length(B): + times := subpath (i-1,i) of A intersectiontimes subpath (j-1,j) of B; + if xpart times > -1: + P[incr n] = 1/2[point xpart times of subpath (i-1,i) of A, + point ypart times of subpath (j-1,j) of B]; + fi + endfor +endfor +\end{smallcode} +and then use them like this: +\begin{smallcode} +for i=1 upto n: + draw fullcircle scaled 4 shifted P[i]; % or whatever +endfor +\end{smallcode} +There are a couple of \MP\ technical points to note. The \mpl{intersectiontimes} +operation returns a pair, which we assign to a pair variable $\id{times}$ +above; we have to use \mpl{:=} to re-assign it in each loop, and we have to +use an explicit pair variable because you can't assign to a literal pair; +\MP\ will give you an error if you try \mpl{(t, u) := A intersectiontimes B;}. +This may come as a surprise, because you \textit{can} legally do \mpl{(t, u) = A +intersectiontimes B}, but in a loop this causes an inconsistent equation error on +the second iteration. If you need to avoid the repeated use of \mpl{xpart} and +\mpl{ypart}, one alternative is to do this inside the loop: +\begin{smallcode} + ... + numeric t, u; + (t, u) = A intersectiontimes B; + ... +\end{smallcode} +Now the numerics are reset each time and the equation is not inconsistent. +\vadjust{\moveright 384pt\vbox to 0pt{\hsize 4.2in\vss \noindent +T\textsc{he} technique discussed on the left, works well on paths where the points on one or +both of the paths are close together, so that the unit subpaths are short; +But it +is possible to create quite long paths of unit \mpl{length} and these may intersect +each other more than once, like so: +$$\includegraphics{intersection-only-two}$$ +Here the two paths $A$ and $B$ are Bézier splines of with \mpl{length=1}, so the +normal \MP\ algorithm is only ever going to give you one of the intersections. In +the diagram above, the +red circle marks the point given by \mpl{A intersectiontimes B}. We can try +reversing the first path, and in this case you get the point marked in blue, +but what about the one in the middle? + +The most reliable approach is to take a copy of one of the paths, and snip it off at +the intersection and try again until there is nothing left to snip. +$$\includegraphics{intersection-all-three}$$ +The three points marked here were captured like this: +\begin{code} +pair P[]; numeric n; n=0; +path R; R := A; % take a copy of A +forever: + R := R cutbefore B; % snip where we cross B + exitif length cuttings = 0; % stop if nothing was cut + P[incr n] = point 0 of R; % capture the point + R := subpath (epsilon, infinity) of R; % nudge along +endfor +\end{code} +This technique also works on paths with \mpl{length} greater than one, +so you may prefer it as your general “get all the intersections” approach. +Note that the \mpl{cutbefore} macro is defined using \mpl{intersectiontimes}. + +\kern 6.5pt +}} + + +\subsection{Parallel and orthogonal or whatever}\label{sec:parallel} + +Given five known points --- $A$, $B$, $C$, $D$, and $E$ --- \MP\ can find the point $F$ +on the line $A \to B$, so that $E \to F$ is parallel to $C \to D$ like this: +\mpic{0pt}{parallel} +\begin{code} + F = whatever[A, B]; % F is on the line A..B + E-F = whatever * (C-D) % E..F || C..D +\end{code} +In the second line the expressions \mpl{E-F} and \mpl{C-D} return \<pair> +variables and the equation with \mpl{whatever} says that they must be scalar +multiples of each other. With the first equation, this is enough for \MP\ to work +out where $F$ should go. Note that \mpl{whatever} can take any real value, +positive or negative, so it does not matter whether you put \mpl{E-F} or \mpl{F-E}. +Note also that for the same reason, while $F$ will lie on the \textit{line} through +$A$ and $B$, it might not lie on the \textit{segment} from $A$ to $B$. +But also note that you \textit{cannot} write the second equation as +\begin{code} + E-F * whatever = (C-D); % <--- gives an error +\end{code} +because you can only apply \mpl{whatever} to known quantities. + +\bigskip\noindent\llap{\nb}% +To define a line perpendicular to $C\to D$ rather than parallel, then you can write: +\begin{code} + G = whatever[A, B]; + E-G = whatever * (C-D) rotated 90; +\end{code} +and obviously the "90" can be adjusted to whatever angle you please, if you want +something between parallel and orthogonal. + +\smallskip\noindent\llap{\nb}% +To define the line through $E$ that is perpendicular to $A\to B$, you should just +use $(A-B)$ instead of $(C-D)$. The diagram shows $H$, the point on $A\to B$ +that is closest to $E$; you can (I trust) work out how to define that yourself. + +\smallskip\noindent\llap{\nb}% +If you just need to compute the perpendicular distance from the point $E$ to a line $A\to +B$, rather than defining the point $H$, then you can use Knuth's ‘slick’ formula: +\begin{code} + abs ypart ((E-A) rotated -angle (B-A)) +\end{code} +This effectively rotates $E$ about $A$ by the angle of the line, so that the problem +is reduced to measuring the height of a point above the $x$-axis, which is what +\mpl{ypart} does, of course. + +\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +There are some limitations to what you can do with \MP's linear equations; for one +thing you can't generally say things like \mpl{length(C-A) = 72}. If you want to +find the two points on a line that are a given distance from an external point, it's +often simpler to find the intersection points of the line with a suitably scaled and +shifted circle, even if you don't actually then draw the circle. You can usually +find the other point by reversing the circle.\par} + +\newpage +\subsection{Drawing circles}\label{sec:circles} + +The canonical way to draw a circle in plain \MP\ is to use the pre-defined path +\mpl{fullcircle} with a suitable transformation. +\mpic{-12pt}{drawing-circles.pdf} +The path is defined (in "plain.mp") using two \MP\ primitive commands: +\begin{code} +path fullcircle; fullcircle = makepath pencircle; +\end{code} +A \kw{pencircle} is the basic nib that is used to draw lines that digitize neatly; +it represents a true circle of diameter 1, passing through the points $(\pm.5, 0)$ +and $(0, \pm.5)$. When processed with \kw{makepath} it turns into a closed +polygonal path with eight points that closely approximates a circle with diameter +1\unit{bp} centred on the point $(0, 0)$. To use it, you can scale it and shift it. +To draw a circle with radius 2\unit{cm} at the point $(34, 21)$ you would do: +\begin{code} +draw fullcircle scaled 4cm shifted (34, 21); +\end{code} +Remember to scale before you shift, and that \id{fullcircle} has unit +\textit{diameter}, not unit \textit{radius}. To draw a circle centred at point $A$ +that passes through point $B$ [\red{I}] try: +\begin{code} +draw fullcircle scaled 2 abs (B-A) shifted A; +\end{code} +There are of course an infinite number of circles that you can draw through two +points, but if the line between the two points is a diameter [\blue{II}], then you can do: +\begin{code} +draw fullcircle scaled abs (B-A) shifted 1/2[A,B]; +\end{code} +Finally three points define a unique circle [\green{III}]: +\begin{code} +vardef circle_through(expr A, B, C) = + save o; pair o; + o = whatever * (A-B) rotated 90 shifted 1/2 [A,B] + = whatever * (B-C) rotated 90 shifted 1/2 [B,C]; + fullcircle scaled 2 abs (A-o) shifted o +enddef; +\end{code} +Plain \MP\ also defines \id{halfcircle} and \id{quartercircle}, as the appropriate +subpaths of \id{fullcircle}, both starting at point 0 (3 o'clock). Curiously, this +differs from \MF\ where \id{quartercircle} is defined first, and the other two +composed from it. The reference point of these two paths is the center of the +complete circle of which they would be part; so if you did “\kw{draw} +\id{quartercircle} \kw{shifted} $(34, 21)$;”, you would get an quarter-circle arc from +$(34.5,21)$ to $(34,21.5)$. + +\newpage +\subsection{Incircle and excircle of a triangle} + +The incircle of a triangle is the largest circle contained in the triangle. +The centre of the incircle lies at the intersection of the internal angle bisectors. +So we can use ideas from §\ref{sec:bisect} and §\ref{sec:intersect} to define a +macro that returns the required path given points $A$, $B$, and $C$: +\mxpic{-1in}{5in}{incircle} +\begin{code} +vardef incircle(expr A,B,C) = + save a, b, m, t; pair a, b, m, t; + a = A + unitvector (C-A) + unitvector (B-A); + b = B + unitvector (A-B) + unitvector (C-B); + m = whatever[A,a] = whatever [B,b]; t = whatever[A,B]; + t-m = whatever * (B-A) rotated 90; + fullcircle scaled 2 abs (t-m) shifted m +enddef; +\end{code} + +\bigskip\noindent +The excircles of a triangle are the three circles lying outside the triangle and +tangent to one edge and the extensions of the other two. The centres of each +excircle lie at the intersection of one internal angle bisector and the external +angle bisector of one of the other corners. + +To get the external angle bisector, +all you have to do is reverse the direction of one of the \mpl{unitvector} calls: +\mxpic{0pt}{5in}{excircle} +\begin{code} +vardef excircle(expr A,B,C) = + save a, b, m, t; pair a, b, m, t; + a = A + unitvector (C-A) - unitvector (B-A); + b = B + unitvector (A-B) + unitvector (C-B); + m = whatever[A,a] = whatever [B,b]; t = whatever[A,B]; + t-m = whatever * (B-A) rotated 90; + fullcircle scaled 2 abs (t-m) shifted m +enddef; +\end{code} + +\smallskip\noindent +To get the other excircles, call the macro with the points in a different order. + +\newpage +\subsection{Circumcircle of a triangle} + +The circumcircle of a triangle is the circle through the three corners, so if you +already have the corners of your triangle as separate \<pair> variables, you can +use the \mpl{circle_through} macro from §\ref{sec:circles}. Or you can adapt the +macro to take a single triangular path: +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-60pt] +vardef circumcircle(expr T) = + save m; pair m; + m = whatever * (point 0 of T - point 1 of T) rotated 90 shifted point 1/2 of T + = whatever * (point 1 of T - point 2 of T) rotated 90 shifted point 3/2 of T; + fullcircle scaled 2 abs (point 0 of T - m) shifted m +enddef; +\end{smallcode} +Note that as the diagram on the right shows,\mxpic{-2in}{4.6in}{circumcircle} +the centre of the circumcircle is the intersection of all three of the perpendicular bisectors of +sides, but for the purposes of drawing in \MP\ you only need to find the +intersection of two of them. You could write +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-60pt] + m = whatever * (point 0 of T - point 1 of T) rotated 90 shifted point 1/2 of T + = whatever * (point 1 of T - point 2 of T) rotated 90 shifted point 3/2 of T + = whatever * (point 2 of T - point 3 of T) rotated 90 shifted point 5/2 of T; +\end{smallcode} +but this does not add any more information to the equation for $m$, and +\MP\ will sometimes give you an “inconsistent equation” error if your triangle +is long and thin. + +\vfill +\noindent +\hey The marks that show line segments are equal were created by this macro. +\begin{code} +vardef mark_equal(expr a, b, n) = + save m, s; numeric s; 2s = n - 1; + picture m; m = image(for t=-s upto s: + draw (down--up) scaled 2 rotated -13 shifted (t,0) + withpen pencircle scaled 1/4; + endfor); + draw m rotated angle (b-a) shifted 1/4[a,b]; + draw m rotated angle (b-a) shifted 3/4[a,b]; +enddef; +\end{code} +Given the triangular \<path> $T$, the macro was used like this: +$\longrightarrow$\vadjust{\moveright5.5in\vbox to 0pt{\vss +\begin{code} +mark_equal(point 0 of T, point 1 of T, 1); +mark_equal(point 1 of T, point 2 of T, 2); +mark_equal(point 2 of T, point 0 of T, 3); +\end{code}}} + +\newpage +\subsection{The nine-point circle of a triangle} + +The orthocentre of a triangle is the point is the intersection of the three +altitudes, shown as point $D$ below. +The point $N$, half-way from $D$ to the +circumcentre $M$ is the centre of the remarkable nine-point circle which passes +through the bases of the three altitudes and bisects the six line segments $AB$, $AC$, $AD$, +$BC$, $BD$, and $CD$.\vadjust{\moveright5.2in\vbox to 0pt{\hsize 4in\vskip-80pt\noindent +\begin{smallcode} +pair A, B, C, D, N, M, p, q, r; +A = origin; B = 377 dir 10; C = 233 dir 70; +% pedal points (not labelled) +p = whatever[B, C]; A - p = whatever * (B-C) rotated 90; +q = whatever[C, A]; B - q = whatever * (C-A) rotated 90; +r = whatever[A, B]; C - r = whatever * (A-B) rotated 90; + +D = whatever[A, p] = whatever[B, q]; +N = 1/4(A + B + C + D); % remarkably... +M = D rotatedabout(N, 180); % M is also the circumcentre + +path circumcircle, nine_point_circle; +nine_point_circle = fullcircle scaled 2 abs(N - 1/2[A, B]) shifted N; +circumcircle = fullcircle scaled 2 abs(M - A) shifted M; + +draw nine_point_circle withcolor 3/4 red; +draw circumcircle withcolor 1/2[3/4 blue, white]; + +drawoptions(dashed evenly scaled 1/4 withcolor 1/2); +draw 1/2[A,B] -- M -- 1/2[B, C]; +draw 1/2[C,A] -- M -- D; +draw A -- p; +draw B -- q; +draw C -- r; + +% show the nine points with small circle markers +drawoptions(withpen pencircle scaled 1/4); +draw fullcircle scaled 2 shifted 1/2[A, B]; +draw fullcircle scaled 2 shifted 1/2[A, C]; +draw fullcircle scaled 2 shifted 1/2[A, D]; +draw fullcircle scaled 2 shifted 1/2[B, C]; +draw fullcircle scaled 2 shifted 1/2[B, D]; +draw fullcircle scaled 2 shifted 1/2[C, D]; +draw fullcircle scaled 2 shifted p; +draw fullcircle scaled 2 shifted q; +draw fullcircle scaled 2 shifted r; + +drawoptions(); +draw A--B--C--cycle; +dotlabel.llft("$A$", A); +dotlabel.rt("$B$", B); +dotlabel.ulft("$C$", C); +dotlabel.urt("\ $D$", D); +dotlabel.llft("$M$", M); +dotlabel.llft("$N$", N); +\end{smallcode}\vss}} +$$\includegraphics[width=\textwidth]{nine-point-circle}$$ + +\newpage +\subsection{Lines tangent to a point on a path} + +\MP\ represents paths internally as a sequence of nodes. Each node consists of three +pairs: the pre-control point, the point itself, and the post-control point. +\mpic{0pt}{tangents-on-path}% +For a given path $p$ you can extract these points at time $t$ with these operators: +\begin{code} +precontrol t of p +point t of p +postcontrol t of p +\end{code} +Unless you explicitly set them differently, \MP’s curve fitting will make these +three points co-linear, so you can draw a tangent at point $t$ with +\begin{code} +draw precontrol t of p -- postcontrol t of p; +\end{code} +The length of the tangent line drawn +like this depends on the size and shape of the curve, but it is somewhat arbitrary. +So you may prefer to extract a \<pair> representing the tangent at point $t$ with +\begin{code} +pair d; d = postcontrol t of p - precontrol t of p; +\end{code} +In fact, this is so useful that +"plain.mp" provides \mpl{direction} as a shorthand: +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-20pt] +vardef direction expr t of p = postcontrol t of p - precontrol t of p enddef; +\end{smallcode} +which can save you some typing. But the clever bit is that $t$ does not have to be a whole +number. If you set $t=\frac14$ (say), \MP\ works out the corresponding fractional +control points, so that you can use \mpl{direction t of p} to get a tangent at any point. + +The vector pairs returned have the right direction, but still have rather arbitrary magnitudes, so +the usual idiom is something like this: +\begin{smallcode} +path s; s = origin -- 36 unitvector(direction t of p); +drawarrow s shifted point t of p; +\end{smallcode} +or the snippet shown on the right $\longrightarrow$ + +\newpage +\subsection{Lines tangent to a circle}\label{sec:tangent-times} + +The techniques of the preceding section can be used to add a tangent line to a +given point on a circular path, but not to find the tangent lines from a given point +outside a circle. To do this, you need to adapt the standard geometrical +construction: for a given circle $C$ and a point $p$, find the midpoint of $p$ and +the center of $C$; draw a semicircle through $p$, centred on this midpoint; the tangent +point is where the semicircle intersects $C$. % +\mpic{-110pt}{tangents-point-to-circle.pdf} +Given a suitable \mpl{path C} and \mpl{pair p} you can do this: +\begin{code} +pair o, m, t, t'; o = center C; m = 1/2[o, p]; +t = C intersectionpoint halfcircle zscaled (p-o) shifted m; +t' = C intersectionpoint halfcircle zscaled (o-p) shifted m; +\end{code} +No parentheses are needed around the second path, because \mpl{intersectionpoint} is +defined with \mpl{secondarydef}. + +\medskip\noindent +Things are a little more complicated if you want the points as times along the path +$C$ and you care about which tangent point is which. Here is a routine that returns +the tangent points from $p$ as two times $a$ and $b$ on $C$, with $b$ adjusted so +that $b > a$ in all cases regardless of the relative rotation of $C$ and $p$. This +means that \mpl{subpath (a, b) of C} is always the “long way round” C, on the +opposite side from $p$, and \mpl{subpath (a, b-8) of C} is always the shorter +segment. +\begin{code} +vardef tangent_times(expr C, p) = + % return the two times on C that correspond + % to the external tangents from p to C + save o, a, b, G, H; + pair o; numeric a, b; path G, H; + o = center C; + H = halfcircle zscaled (p-o) shifted 1/2[o, p]; + G = halfcircle zscaled (o-p) shifted 1/2[o, p]; + (a, whatever) = C intersectiontimes H; + (b, whatever) = C intersectiontimes G; + (a, b if b < a: + 8 fi) +enddef; +\end{code} +Note the elegant syntax here; +if \mpl{z} is a \<pair> then the operation \mpl{zscaled z} is equivalent +to \mpl{scaled abs z rotated angle z}. + +\vpic{-200pt\noindent Here is the macro in action. +Having obtained the two times $a$ and $b$ from the macro, the dashed line +was drawn along a path that was composed with: +\vrule depth 20pt width 0pt height 2pt +\mpl{p -- subpath (a,b) of C -- cycle} +}{tangent-times-on-circle} + +\newpage +\subsection{Lines tangent to two circles (exterior)}\label{sec:adjust-times} + +The same \mpl{tangent_times} macro can be reused to find the tangents that touch two +circles, using an approach like this: \mwpic{-12pt}{tangents-two-circles-exterior} +\begin{code} +path A, B; +A = fullcircle scaled 144; +B = fullcircle scaled 60 shifted (200, 140); + +numeric R, r; +R = abs (point 0 of A - center A); +r = abs (point 0 of B - center B); + +path C; numeric t, u; +C = fullcircle scaled (2R-2r) shifted center A; +(t, u) = tangent_times(C, center B); + +draw A withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw B withpen pencircle scaled 2 withcolor 3/4[blue, white]; + +draw subpath (t, u) of A -- subpath (u-8, t) of B -- cycle; +\end{code} +Here $A$ and $B$ are the two circles you want to connect, and $A$ is larger than +$B$. $R$ is the radius of the larger, $r$ of the smaller. $C$ is an auxiliary circle +centred at the same point as $A$ and scaled so that its radius is $R-r$. If we +then find the tangent points on $C$ from the center of $B$, the points we want are +the corresponding points on $A$ and $B$. + +\medskip\noindent +This works well, provided that none of three +circles $A$, $B$, or $C$ has been rotated (that is that point 0 is at 3 o'clock in +all of them). But +this may not always be the case. For example, you might have written +\begin{code} +B = fullcircle scaled 60 shifted 240 right rotated 36; +\end{code} +and then point $t$ of $B$ would \textit{not} correspond to point $t$ of the +auxiliary circle. So to make the code above more general you have to adjust the +tangent times to take account of the relative rotation of the circles. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vskip-24pt\noindent +\begin{code} +vardef adjust_time(expr tt, AA, BB) = + tt + 1/45 angle (point 0 of AA - center AA) + - 1/45 angle (point 0 of BB - center BB) +enddef; +\end{code} +\vss}} +The in the figure $t$ was adjusted to $t'$ for $A$ and $t''$ for $B$, using the +routine shown on the right. This routine shows the relationship between \mpl{angle} +and points around a circle: $360^\circ = 8\:\hbox{points}$. + +\newpage +\subsection{Lines tangent to two circles (interior)} + +To find the interior tangents, you just need to add the smaller radius rather than +subtract it, and add 4 to the times on the smaller circles, so that they are on the +other side: +$$\includegraphics[width=\textwidth]{tangents-two-circles-interior}$$ + +\bigskip\noindent +The complete code for this is shown on the right. It uses the same +routines given above; \mpl{tangent_times} from section \ref{sec:tangent-times}, and +\mpl{adjust_time} from section \ref{sec:adjust-times}. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +\begin{smallcode} +path A, B; +A = fullcircle scaled 144 rotated uniformdeviate 360; +B = fullcircle scaled 60 shifted 240 right rotated 36; + +numeric R, r; +R = abs (point 0 of A - center A); +r = abs (point 0 of B - center B); + +path C; +C = fullcircle scaled (2R+2r) shifted center A; % NB +ve + +numeric t, t', t'', u, u', u''; +(t, u) = tangent_times(C, center B); +t' = adjust_time(t, C, A); +u' = adjust_time(u, C, A); +t'' = adjust_time(t + 4, C, B); % Note the plus fours +u'' = adjust_time(u + 4, C, B); + +draw A withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw B withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw C withpen pencircle scaled 1 withcolor 3/4[blue, white]; + +draw subpath (t', u') of A -- subpath (u'', t'') of B -- cycle; +draw center B -- subpath (t, u) of C -- cycle dashed evenly; + +draw center B -- point t'' of B dashed withdots scaled 1/2; +draw center B -- point u'' of B dashed withdots scaled 1/2; +draw point t of C -- point t' of A dashed withdots scaled 1/2; +draw point u of C -- point u' of A dashed withdots scaled 1/2; + +dotlabel.ulft(btex $t$ etex, point t of C); +dotlabel.lrt (btex $t'$ etex, point t' of A); +dotlabel.lrt (btex $t''$ etex, point t'' of B); +dotlabel.lrt (btex $u$ etex, point u of C); +dotlabel.ulft(btex $u'$ etex, point u' of A); +dotlabel.ulft(btex $u''$ etex, point u'' of B); +drawdot center B withpen pencircle scaled dotlabeldiam; + +drawoptions(withcolor 1/2[blue, white]); + label.urt(btex $A$ etex, point 1/2(t'+u'- 7.6) of A); + label.rt (btex $B$ etex, point 1/2(t''+u''- 2) of B); + label.urt(btex $C$ etex, point 1/2(t+u-8) of C); +drawoptions(); +\end{smallcode}\vskip -1in +}} + +\subsection{Axis of similitude}\label{sec:axosim} + +\bigskip +\noindent\hbox to \textwidth{\includegraphics[scale=0.92]{axis-of-similitude}\hss} +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +Given three circles taken in pairs, you can use the techniques of the preceding +sections to find the three points where the common external tangents +intersect (shown here as $E_{12}$, $E_{31}$, and $E_{23}$) and the +three points where the common internal tangents intersect ($I_{12}$, +$I_{31}$, and $I_{23}$). These points have a pleasing collinearity. +The line common to the three $E$ points is known as the \textit{Axis of +Similitude}. + +The drawing is left as an exercise for the reader, except +to note that if $r_1$ and $r_2$ are \mpl{numeric} variables representing +the radius of the circles centred at the \mpl{pair} variables $C_1$ and $C_2$, +then we have: +$$\vbox{\openup3pt\halign{\hfil$#$&${}=#$\hfil\cr +E_{12}&({r_1\over r_1 - r_2})[C_1, C_2];\cr +I_{12}&({r_1\over r_1 + r_2})[C_1, C_2];\cr +}}$$ +which is a bit quicker than working out all the tangent points.}} + +\newpage +\subsection{Inversion, pole, and polar}\label{sec:inversion} + +Inversion in a circle is a generalization of reflection in a line. +\mpic{-68pt}{pole-and-polar} +It is useful for certain constructions in geometry, and easy to +implement as a macro \MP. For given circle, and a +given point $P$ lying outside the circle, the inverted point $P'$ lies inside the +circle at the intersection of the line from $P$ to the centre of the circle, and the +line between the tangent points [§\ref{sec:tangent-times}] from $P$, shown here as +$Q$ and $R$.\rlap{\quad$\longrightarrow$} + +But $OPQ$ and $OQP'$ are similar triangles, so $r/OP=OP'/r$ and so $OP' = +r^2/OP$, and since $P'$ must lie on the line through $O$ and $P$, this is enough to +define a macro directly to find $P'$ given $P$, $O$, and $r$: +\begin{code} +P' = O + unitvector(P-O) scaled r * r / abs (P-O); +\end{code} +But examining \mpl{plain.mp} shows that \mpl{unitvector} is a macro defined like this: +\begin{code} +vardef unitvector primary z = z/abs z enddef; +\end{code} +which suggests this alternative (safer) approach: +\begin{code} +vardef invert(expr P, O, r) = + save s; numeric s; s = r / abs (P-O); + O + (P-O) * s * s +enddef; +\end{code} +This works well provided that $|P| > \frac1{180} r$, which is usually the case, but +you could also consider checking that $|t|>0$ and that $s$ was not too large. + +If it was more convenient to deal with the \<path> of the circle of inversion +instead of the centre and the radius, you get the macro to work out the centre and +the radius for you. +\begin{code} +vardef invert(expr P, C) = + save o; pair o; o = 1/2[point 0 of C, point 4 of C]; + save r; numeric r; r = abs (point 0 of C - o); + save s; numeric s; s = r / abs (P - o); + o + (P - o) * s * s +enddef; +\end{code} + +\vfill + +\moveright5.5in\vbox to 0pt{\vss\hsize 4in\noindent +\noindent\llap{\nb}Inversion is reciprocal, so $P$ is the inverse of $P'$ above. Points +on the circle of inversion invert to themselves. + +\smallskip +\noindent\llap{\nb}For any given line, the \blue{\textit{pole}} of +the line with respect to a circle, is the inverse of the point on the line closest +to the centre of the circle. + +\smallskip +\noindent\llap{\nb}For any given point, the \blue{\textit{polar}} of +the point with respect to a circle, is the line through the inverse of the point +perpendicular to the line through the point and the center of the circle of +inversion. + +\smallskip +\noindent\llap{\nb}The small dotted circle through $O$ and $P'$ above is the inversion +of the whole polar line (infinitely extended).} + +\newpage +\subsection{Radical axis and radical centre}\label{sec:radical} + +The \textit{radical axis} of two circles is the line, orthogonal to the line between +the centres of the two circles which is the locus of points which have equal power +with respect to both circles; that is the points from which the tangents to each circle +are of equal length. A circle centred at any point on the axis, and drawn with radius equal to the +length of the tangent will cut both circles at right angles. + +\medskip\noindent\centerline{\includegraphics{radical-axis}} + +\medskip\noindent +In a system of three circles as shown, the \textit{radical centre} is the +intersection of the three mutual radical axes. The tangents from this point to all three circles +have the same length, so a circle with this radius cuts all three circles at right +angles. + +\moveright5.5in\vbox to 0pt{\vss\hsize 4in\begin{smallcode} +vardef radical_axis(expr ca, cb) = + numeric t, d, ra, rb; + ra = abs(center ca - point 0 of ca); + rb = abs(center cb - point 0 of cb); + d = abs(center cb - center ca); + 2t = 1 + (ra+rb) / d * (ra-rb) / d; + (up -- down) scaled 89 + rotated angle (center cb - center ca) + shifted t[center ca, center cb] +enddef; +beginfig(1); + path c[], a[]; + z1 = origin; z2 = 233 right rotated 4; z3 = 209 right rotated -42; + c1 = fullcircle scaled 202 shifted z1; + c2 = fullcircle scaled 106 shifted z2; + c3 = fullcircle scaled 62 shifted z3; + a1 = radical_axis(c1, c2); + a2 = radical_axis(c2, c3); + a3 = radical_axis(c3, c1); + z0 = whatever [point 0 of a1, point 1 of a1] + = whatever [point 0 of a2, point 1 of a2]; + numeric t; (t, whatever) = tangent_times(c1, z0); + drawoptions(withpen pencircle scaled 1 withcolor 3/4[blue, white]); + draw c1; draw c2; draw c3; + drawoptions(withcolor 3/4[blue, white]); + draw z1 -- point t of c1 dashed evenly; + drawoptions(withpen pencircle scaled 1/4); + draw z1 -- z2 -- z3 -- cycle; + drawoptions(); + draw a1; draw a2; draw a3; + drawoptions(withcolor 2/3 red); + draw fullcircle scaled 2 abs (point t of c1 - z0) shifted z0; + draw z0 -- point t of c1 dashed evenly; + drawdot z0 withpen pencircle scaled dotlabeldiam; + drawoptions(withcolor 1/4[blue, white]); + drawdot z1 withpen pencircle scaled dotlabeldiam; + drawdot z2 withpen pencircle scaled dotlabeldiam; + drawdot z3 withpen pencircle scaled dotlabeldiam; + label.urt(btex $C_1$ etex, point 1 of c1); + label.urt(btex $C_2$ etex, point 1 of c2); + label.rt (btex $C_3$ etex, point 0 of c3); +endfig; +\end{smallcode}\vskip -1in} + +\newpage +\subsection{Circles tangent to other circles} +\bigskip +\noindent\hbox to \textwidth{\includegraphics[height=\textheight]{apollonius}\hss} +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +The classical Problem of Apollonius is to find a circle tangent to three others. +All of the approaches are rather involved, but Gergonne's is probably the simplest +to follow in \MP. + +\smallskip\noindent For three given circles \blue{$C_1$, $C_2$, and +$C_3$}, you first find the external \blue{axis of similitude} +[§\ref{sec:axosim}]; then find the \textcolor{carrot}{poles} [§\ref{sec:inversion}] of this line with +respect to each of the three circles; and thirdly find the +\textcolor{squash}{radical centre} +[§\ref{sec:radical}]. + +\smallskip\noindent +The lines from the radical centre through each of the three +poles cut each circle in two places. These six points show the tangent points for +the two \red{tangent circles}, and you can draw the circles using the three point circle +technique [§\ref{sec:circles}]. + +\smallskip\noindent +{\small +The drawing is also left as an exercise for the reader, although you can find my +version in the source code for this document. You might like to try to make a more +robust version or to find all the other tangent circles.} +}} + + +\newpage +\subsection{Coordinate geometry examples} + +\kern-\baselineskip +\vpic{-24pt}{desargues} +\kern-.5\baselineskip +\begin{code}[xleftmargin=0pt, xrightmargin=-72pt] +beginfig(1); + z.P = 200 up rotated 21; z.A = 100 left rotated -21; + z.B = origin; z.C = 90 right rotated 42; + + z.A' = 3/8[z.P, z.A]; + z.B' = 1/2[z.P, z.B]; + z.C' = 5/8[z.P, z.C]; + + z.R = whatever [z.A, z.B] = whatever [z.A', z.B']; + z.S = whatever [z.B, z.C] = whatever [z.B', z.C']; + z.T = whatever [z.C, z.A] = whatever [z.C', z.A']; + + path t[]; + t1 = z.A--z.B--z.C--cycle; + t2 = z.A'--z.B'--z.C'--cycle; + + fill t1 withcolor 7/8[red, white]; + fill t2 withcolor 7/8[blue, white]; + draw t1 withcolor 1/2 white; + draw t2 withcolor 1/2 white; + + drawoptions(dashed withdots scaled 1/2); + draw z.P--z.A; + draw z.P--z.B; + draw z.P--z.C; + + drawoptions(dashed evenly scaled 1/2); + draw z.B--z.R--z.B'; + draw z.C--z.S--z.C'; + undraw subpath (1/4, 3/4) of (z.C'--z.T) withpen + pencircle scaled 5; + draw z.C--z.T--z.C'; +\end{code} +\moveright 384pt \vbox to 0pt{\vss +\begin{code}[xleftmargin=0pt, xrightmargin=-72pt] + + drawoptions(withcolor 2/3 red); + draw 9/8[z.S,z.R] -- 9/8[z.R,z.S]; + picture pp; pp = thelabel("perspectrix", origin); + draw pp shifted 7 down rotated angle (z.S-z.R) + shifted 1/2[z.R, z.T]; + dotlabel.urt("perspector", z.P); + + drawoptions(); + dotlabel.lft (btex $A$ etex, z.A); + dotlabel.llft(btex $B$ etex, z.B); + dotlabel.lrt (btex $C$ etex, z.C); + dotlabel.lft (btex $A'$ etex, z.A'); + dotlabel.llft(btex $B'$ etex, z.B'); + dotlabel.bot (btex $C'$ etex, z.C'); + label.rt(btex Desargues' Theorem etex, (x.C', 1/2(y.P+y.C'))); +endfig; +\end{code} +\vskip -42pt} + +\newpage +\moveright5.5in\vbox to 0pt{\vskip10pt\includegraphics[width=4.2in]{trisection-triangles}\vss} +\vskip-\baselineskip +\begin{code}[xleftmargin=0pt, xrightmargin=-80pt] +randomseed := 2485.81543; +vardef measured_angle(expr p, o, q) = + (angle (p-o) - angle (q-o)) mod 360 +enddef; +beginfig(1); +picture T; +for i=0 upto 1: + for j=0 upto 1: + clearxy; + T := image( + z1 = (120 + uniformdeviate 21, 0); + z2 = (120 + uniformdeviate 21, 0) rotated 120 rotated 21 normaldeviate; + z3 = (120 + uniformdeviate 21, 0) rotated 240 rotated 21 normaldeviate; + numeric a, b, c; + a = measured_angle(z3, z1, z2); + b = measured_angle(z1, z2, z3); + c = measured_angle(z2, z3, z1); + z4 = whatever [z1, z2 rotatedabout(z1, 1/3 a)] + = whatever [z2, z3 rotatedabout(z2, 2/3 b)]; + z5 = whatever [z2, z3 rotatedabout(z2, 1/3 b)] + = whatever [z3, z1 rotatedabout(z3, 2/3 c)]; + z6 = whatever [z3, z1 rotatedabout(z3, 1/3 c)] + = whatever [z1, z2 rotatedabout(z1, 2/3 a)]; + fill z4--z5--z6--cycle withcolor 3/4[red + 1/2 green, white]; + draw z4--z5--z6--cycle; + draw z1 -- z4 -- z2 -- z5 -- z3 -- z6 -- cycle + dashed withdots scaled 1/4; + draw z1 -- z2 -- z3 -- cycle; + ); + draw T shifted (200i, 240j); + endfor +endfor +label.rt(btex \vbox{\halign{#\hfil\cr The trisectors of each angle\cr +in any given triangle form a\cr central equilateral triangle.\cr}} etex, (24, 128)); +endfig; +\end{code} +\newpage +\kern-\baselineskip +\vpic{1in}{projections} +\mpexternal[xleftmargin=0pt]{projections-code.mp} + +\newpage +\moveright5.5in\vbox to 0pt{\hsize4in\noindent This needs an \mpl{invert} macro, such +as the one from [§\ref{sec:inversion}]. + +\smallskip\noindent +\includegraphics[width=288pt]{arbelos} + +\vskip 1.414in\noindent +\begingroup +\raggedleft\fontsize{8}{10}\selectfont\textsf{% +One must also recognize that any attempt to illustrate geometry\\ +involves a basic fallacy. For example, a straight line is unbounded\\ +and infinitely thin and smooth, while any illustration is unavoidably\\ +of finite length, of positive thickness, and rough edged.\\[2pt] +— Benoit Mandelbrot, \textsl{The Fractal Geometry of Nature}} +\par\endgroup +\vss} +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-72pt] +beginfig(1); +pair A,B,C; A = origin; C = 244 right; B = 7/8[A, C]; +path c[]; +c1 = fullcircle scaled 2 abs(A-C); % large circle for the inversions +c2 = fullcircle scaled abs(A-C) shifted 1/2[A,C]; +c3 = fullcircle scaled abs(A-B) shifted 1/2[A,B]; +c4 = fullcircle scaled abs(B-C) shifted 1/2[B,C]; +c5 = invert(c4,c1); +numeric d; d = abs(point 0 of c5 - point 4 of c5); % diameter of c5 + +drawoptions(withcolor 3/4 white); +draw c4; draw c5; +draw invert(subpath(0, 3/2) of c2, c1); +draw invert(subpath(0, 3/2) of c3, c1); +drawoptions(); +draw subpath(-1/4,1) of c1 withcolor 3/4[1/2 red,white]; +label.bot("\textit{circle of inversion}", point -1/4 of c1) + withcolor 1/4[1/2 red, white]; + +for i=1 upto 72: + path c, c'; + c = c5 shifted (0, i*d); c' = invert(c, c1); + if i < 5: + drawoptions(withcolor 3/4 white); + draw c; draw origin -- center c; + fill fullcircle scaled dotlabeldiam shifted center c; + fill fullcircle scaled dotlabeldiam shifted center c'; + drawoptions(); + fi + draw c' withpen pencircle scaled 1/4 withcolor 2/3 blue; +endfor +forsuffixes $=2,3,4: draw subpath (0,4) of c$ + withpen pencircle scaled 1/4 withcolor 2/3 blue; +endfor +draw A--C; +dotlabel.lft("$A$", A); dotlabel.llft("$B$", B); dotlabel.rt("$C$", C); +endfig; +\end{smallcode} + +\newpage +\section{Trigonometry functions}\label{trig} + +\MP\ provides only two basic trigonometry functions, "sind" and "cosd". This lack +appears to be a deliberate design; in general it's much easier to use the "rotated" +and "angle" functions than to work out all the sine, cosines and arc-tangents +involved in rotating parts of your picture. But if you really want the `missing' +functions they are not hard to implement. + +First you might want versions that accept arguments in radians instead of degrees. +For this you need to know the value of $\pi$, but this is not built into plain \MP. +If you are using the default number system then it's enough to define it to five +decimal digits,% +\vadjust{\moveright 384pt\vbox to 0pt{\kern-144pt +\begin{code} +numeric pi; +% approximate value +pi := 3.14159; +% measure round a circular arc... +pi := 1/4 arclength (quartercircle scaled 16); +% up to 32 digits of precision +pi := 3.1415926535897932384626433832795; +% as many digits as are needed... +vardef getpi = + numeric lasts, t, s, n, na, d, da; + lasts=0; s=t=3; n=1; na=0; d=0; da=24; + forever: + exitif lasts=s; + lasts := s; + n := n+na; na := na+8; + d := d+da; da := da+32; + t := t*n/d; + s := s+t; + endfor + s +enddef; +pi := getpi; + +% conversions +vardef degrees(expr theta) = 180 / pi * theta enddef; +vardef radians(expr theta) = pi / 180 * theta enddef; +% trig functions that expect radians +vardef sin(expr theta) = sind(degrees(theta)) enddef; +vardef cos(expr theta) = cosd(degrees(theta)) enddef; +% inverse trig functions +vardef acosd(expr a) = angle (a,1+-+a) enddef; +vardef asind(expr a) = angle (1+-+a,a) enddef; +vardef acos(expr a) = radians(acosd(a)) enddef; +vardef asin(expr a) = radians(asind(a)) enddef; +% tangents +vardef tand(expr theta) = save x,y; (x,y)=dir theta; y/x enddef; +vardef atand(expr a) = angle (1,a) enddef; +\end{code} +\vss}} +but if you are using one of the new number systems you might want more digits of +precision. In fact there's no harm in always defining these extra digits; even when +you are using the default "scaled" number system, \MP\ will happily read as many +extra digits of $\pi$ as you supply, before it rounds the value to the nearest +multiple of $1\over65536$ (which turns out to be $3.14159$). The same applies to the +"double" number system, but the "binary" and "decimal" number systems will give you +an error if you supply more digits that the default precision. So in general +it's best to use no more than 32 digits. It's also possible, but not really worth +the trouble, to define a routine to calculate $\pi$ to the current +precision.\rlap{\raise1ex\hbox{\ $\smash{\nearrow}$}} However you define it, once you are armed with a value for $\pi$ you can +then define functions to convert between degrees and radians, and some more `normal' +versions of sine and cosine. + +There's no built-in $\arccos$ or $\arcsin$ function but each is very easy to +implement using a combination of the "angle" function and the Pythagorean difference +operator. + +\MP\ does have built-in functions for tangents; but they are called "angle" and +"dir" and they are designed for pairs. So $\kw{angle}\,(x,y)=\arctan(y/x)$ while +$\kw{dir}\,30$ gives you the point $(x,y)$ on the unit circle such that $\tan +30^{\circ} = y/x$. You can use these ideas to define tangent and arctan functions +if you really need them, but often "angle" and "dir" are more directly useful +for drawing. + +You should also be aware that the tangent function shown here does not +check whether $x=0$; if this is an issue, then add something like this +at the appropriate point: +$$\kw{if}\,x=0\!:\id{infinity}\: \kw{else}\!: y/x \kw{fi}$$ + +\newpage +\section{Traditional labels and annotations}\label{sec:trad-labels} + +\moveright384pt\vbox to 0pt{\hsize 4.2in\vss\textcolor{blue}{\itshape This section describes labels and +annotations in what can be called the traditional \MP\ environment, where your +figures are compiled with "mpost". The section after this describes labels \& +annotations in the newfangled (but better) world of "lualatex" and the +"luamplib" package.}\par\kern 16pt} + +\noindent +\MP\ does not draw text directly; but it provides two different mechanisms to +turn some text into a \<picture>, which can then be treated like any other; +saved as a variable, drawn directly, or transformed in some way with a +scaling, a reflection, or a rotation. The first mechanism is described below, +the other in §\ref{btex}. + +\subsection{Simple strings in PostScript fonts with \texttt{infont}}\label{infont} + +The first mechanism is the primitive binary operation "infont". As explained in +section~8.3 of the \MP\ manual, it takes two strings as arguments: the left hand +argument is the string of text to be printed; the right hand argument is the name of +the font to use; and the result is a "picture" primary.\vadjust{ +\moveright384pt\vbox to 0pt{\kern -126.5 bp + \hsize 4.2in\noindent +To find the name of a suitable font, you have to consult your local "psfonts.map" +file, and probably the PSNFSS documentation. +Here are a few of the many fonts available on my local \TeX\ installation; the name +to use with "infont" is in the first column. +$$\includegraphics{trad-font-samples}$$ +The text example in the first line +of this table was produced with +\begin{smallcode} +draw "Hand in glove 42" infont "pagk8r" shifted (124,144); +\end{smallcode} +Note that in PostScript terms each of these font names refers to a combination of +three files: an encoding that maps the characters you type to the glyphs in the +font; a font metrics file that defines the sizes of the virtual boxes surrounding +these glyphs; and a set of PostScript routines that actually draw them. In a \TeX\ +installation +these combinations are defined in a font map file, usually called "psfonts.map". +If you run "mpost" with the "-recorder" switch it will write an extra log file (with +a ".fls" extension) that lists the names of all the files used in a job. +The actual font map file in use will be one of these. You can then browse it to +find a definitive list of the font names you can use with your local \MP. +\vss}} + +To make a suitable string you can enclose your text +in double quotes to make a string token, or to refer to a \<string> variable, or do +one of these: +\begin{itemize} + \item Concatenate two other strings with \mpl{&}. + + \item Use \mpl{substring (a,b) of s} to get a substring of string \mpl{s}. + + \item Use \mpl{min(a,b,...)} or \mpl{max(a,b,..)} to find the lexicographically smallest + (or largest) string in the list \mpl{a,b,...}. The list must have at least two + entries, and they must all be strings. + + \item Use \mpl{char} to convert a numeric expression to the corresponding ASCII + code; + the numeric expression is rounded to the nearest integer modulo + 256. + + \item Use \mpl{decimal} to get a string representing + the value of a numeric expression. + + \item Apply \mpl{str} to any suffix (and hence to any variable). You get back a + string representation of the suffix or variable name. + + \item Use \mpl{readfrom} to read one line from a file as a string. + + \item Use \mpl{fontpart} to extract the name of the font used in a picture created + with \mpl{infont} --- the string will be empty if there's no text element in the + picture. + + \item Use \mpl{textpart} to get the text used in a picture created by \mpl{infont} --- + the string will be empty if there's no text element in the picture. + +\end{itemize} + +\newpage +\subsubsection{Character sets used by \texttt{infont} to set +text}\label{sec:charsets} + +Standard \MP\ is configured to accept as input only space and the usual 94 visible +ASCII characters (that is the characters numbered 32 to 126 in the tables at the +right), but you can use any 8-bit characters as the payload of a string. +However, plain \MP\ is set by default to use "cmr10", the familiar Computer Modern typeface +developed by Knuth for \TeX, and unfortunately, this is encoded using the \TeX\ text +font encoding (also known as `OT1', and as shown in the first table in Appendix~F of the {\sl \TeX book}). +\mpic{-108pt}{trad-font-tables} +From the point of +view of using "infont" to make simple labels, this means that the characters for +space and seven other characters ("< > \ _ { | }") are in the wrong place. +You are likely to notice this first if you try to set a label with two words; the +space will come out as a small diagonal stroke accent that is used in plain \TeX\ +to make the characters Ł and ł, used in Polish and other Slavic languages. + +To fix this you should change the default font at the start of your program: +\begin{code} +defaultfont := "texnansi-lmr10"; % for Computer Modern Roman +\end{code} +If you want "cmss10", use "texnansi-lmss10" and so on. The encoding is shown on the +right. The characters printed in black correspond to the widely used ISO Latin~1 +encoding. If you want to use one of the standard PostScript fonts listed on the +previous page, then the encoding to use is either "8y" to get the same "texnansi" +arrangement or "8r" to get the arrangement shown in the lower table. + +Choosing a font with one of these encodings means that if you use Windows code page +1252 or ISO Latin 1 as the encoding for your text editor, you can create labels with +accented characters using "infont" and without resorting to "btex" \dots\ "etex". +But if you are using UTF-8 characters (as many of us are now), then you have to do +some extra work to get them printed correctly with "infont". A solution is shown on +the next page. + +In the normal course of labelling a drawing, it is always possible to +use "btex" \dots\ "etex" to produce your accented characters as discussed in section +\ref{btex} below; but it may be that you are using \MP\ to represent data and labels +supplied from some other program or a website. In this case it can be useful to be +able to work with at least a subset of UTF-8 input. + +\newpage +\subsubsection{Mapping a subset of UTF-8 for \texttt{infont}} + +UTF-8 is a way of +representing 16-bit Unicode characters with sequences of 8-bit characters. So your +UTF-8 aware editor may show you an é but \MP, knowing nothing about UTF-8, +will see this as é. But you can write a fairly simple routine to decode a +commonly-used subset of +UTF-8.\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip -9.5pt\parindent 0pt +\def\item{\leavevmode\llap{•~}} +\item You can extend this idea to cope with other UTF-8 characters, including + those that use three bytes. The UTF-8 page on Wikipedia shows you how it + works. Essentially you look at the values of the next 2 or 3 characters and + then pick the appropriate character in your encoding with "char". But your + output is still, of course, limited to the 256 characters in your encoded font. + +\item If you get tired of writing "decode", you could define a short cut with a + shorter name. You could even write it as a primary without parentheses like + this: +\begin{code} +def U primary s = if string s: decode(s) fi enddef; +\end{code} +which would let you write: +\begin{code} +label.rt(U"café à la möde", (x,y)); +\end{code} + +\item However, there's no point in making any of this too elaborate. If you + really want proper Unicode support you should use \MP\ with Lua\TeX. (See + below in §\ref{sec:neo-labels}). +\vss}} +\begin{code}[xrightmargin=-10pt] +vardef decode(expr given) = + save a,i,s,out; string s, out; numeric a, i; + out = ""; i=0; + forever: + i := i+1; s := substring (i-1,i) of given; a := ASCII s; + if a < 128: + elseif a = 194: + i := i+1; s := substring (i-1,i) of given; + elseif a = 195: + i := i+1; s := char (64 + ASCII substring (i-1,i) of given); + else: + s := "?"; + fi + out := out & s; + exitif i >= length given; + endfor + out +enddef; +\end{code} +Use it with "infont" like this: \verb|decode("café") infont "ptmr8r"| to produce a +normal "picture" that can be passed to \mpl{draw} or saved as +usual.\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip -9.5pt +\noindent The fragment on the left produces: +$$\includegraphics{utf8}$$ +The \texttt{label} macro automatically calls \texttt{infont} with the current value +of \texttt{defaultfont}; notice how it also adds some extra space. +\vss}} +\begin{code} +draw "café noir £2.50" infont "pncr8r"; +draw decode("café noir £2.50") infont "pncr8r" shifted 12 down; +defaultfont := "pncr8r"; +label.rt("café noir £2.50", 24 down); +label.rt(decode("café noir £2.50"), 36 down); +\end{code} +Note that you can't just use \mpl{draw} with a string variable; you have to use +"infont" to turn the string into a picture. +On the other hand, "label" calls "infont" automatically, but you must explicitly set +the default font, preferably to one with an encoding that +is compatible with ISO Latin~1. + + +\newpage +\subsubsection{Typographical minus signs with \texttt{infont}} + +If you are producing labels for a numeric reference scale, like the axis of a chart, +it is convenient to be able to write a loop like this: +\begin{code} +for x=1 upto 3: label.bot(decimal x, (x*cm, 0)); endfor +\end{code} +to produce your labels, however if $x$ is negative this does not come out so well, +because the first character of the string produced by \mpl{decimal -1} is an +\mpl{ASCII 45}, +which is the hyphen character. What we need is the mathematical minus sign instead; +this is what you get with \mpl{btex $-1$ etex} of course, but that's harder to put in a +loop with traditional \MP. Instead you can do this:\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize4in +$$\includegraphics{minus}$$ +\vss}} +\begin{code} +string minus_sign; +minus_sign := char 143; % if you are using the texnansi encoding +minus_sign := char 12; % if you are using the 8r encoding +for x = -3 upto 3: + label.bot(if x<0: minus_sign & fi decimal abs(x), (x*cm, 0)); +endfor +\end{code} +Note that this does not work with the default encoding used in "cmr10" because +there is no minus sign available in that font. Plain TeX uses "char 0" from +"cmsy10". + +\subsubsection{Bounding boxes and clipping with \texttt{infont}} + +Once the encoding is fixed, the other two parts of a PostScript font are the font +metrics and the programs that draw the actual glyphs. The font metrics define the +width of each character and provide a kerning table to adjust the space between +particular pairs.\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize4in +$$\includegraphics{infont-example}$$ +}} This means that certain characters will overlap each other or stick out +beyond the bounding box of the picture produced by "infont". This is not normally a +problem unless the picture happens to be at the edge of your figure. In the first +example observe how the last letter sticks out to the right; in the second a +wider baseline has been added to prevent this. +If you want this effect, but you +don't want to see the baseline, then draw it +using the colour \mpl{background}. + +\subsubsection{But what about the \texttt{label} command?} + +As a convenience, the plain \MP\ format provides a "label" macro that automatically +turns strings into pictures for you using whatever font name is the current value of +"defaultfont" and scaled to the current value of "defaultscale".\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize4in +\noindent +The "label" macro is defined (essentially) to do this: +\begin{code} + def *label(expr s, z) = + draw s if string s: infont defaultfont + scaled defaultscale fi shifted z + enddef; +\end{code} +plus some clever code to align the label for you. +}} + +\newpage +\subsubsection{Bounding boxes and alignment with \texttt{infont}}\label{textsize} +\label{infontbbox} + +To allow you to align a text label on a specific point, \MP\ provides five unary +operators to measure the bounding box of a picture; they are shown in +\textcolor{red!67!black}{red} in the diagram, and you can use them to measure the +width, depth, and height of a textual picture. You can also work out the location +of the baseline of the text or the x-height, provided you know how much your picture +has been shifted. +The easiest way to do this is to +measure the picture \textit{before} you shift it.\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize4in +$$\includegraphics[width=4in]{infont-annotated}$$ +\vss}} +\begin{code} + picture pp; pp = "proof" infont "pplri8r"; +\end{code} +Here the picture \id{pp} +is created with the origin of the text sitting at coordinates $(0,0)$; +then you can get the dimensions like this +\begin{code} + wd = xpart urcorner pp; + ht = ypart urcorner pp; + dp = ypart lrcorner pp; +\end{code} +In this particular case you will find that you have $wd=20.47292$, $ht=7.19798$, and +$dp=-2.60017$. The depth is negative because the descenders on the +\textdemo{\textit{p}} and the \textdemo{\textit{f}} +in the chosen font stick down below the base line. The height is greater than the +x-height, because the \textdemo{\textit{f}} also sticks up, so you need to make another measurement: +\begin{code} +numeric xheight; xheight = ypart urcorner ("x" infont "pplri8r"); +\end{code} +Armed with these measurements you can align your text labels neatly so that they are +all positioned on the base line or vertically centred on the lower case letters +regardless of any ascenders or descenders. To draw your label left-aligned with its +origin at position $(x,y)$ you just need to use: \kw{draw} \id{pp} \kw{shifted} $(x,y)$. +To draw it right-aligned, you subtract +\id{wd} from the $x$-coordinate: \kw{draw} \id{pp} \kw{shifted} $(x-wd,y)$. Or to +centre it, subtract $1/2wd$. To center it vertically on the lowercase letters, +subtract $1/2\id{xheight}$ from the $y$-coordinate. You might of course like to +wrap these adjustments up in your own convenient macro to help you maintain +consistency in a diagram with many labels. + +Alternatively you can adjust the bounding box of your textual picture and then use +it with "label" as normal. Assuming \id{wd} is set to the width of your picture +and \id{xheight} is set correctly for the current font, then +\begin{code} + setbounds pp to unitsquare xscaled wd yscaled xheight; +\end{code} +will make the "label" alignment routines ignore any ascenders or descenders. +\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in \vss \small +\noindent\llap{\nb}Beware that if the resulting label is right at the edge of your +drawing then any parts of the text that stick out of the adjusted bounding box will +be clipped. See also §\ref{sec:rotated-boxes} for more on what happens if you +rotate the text.}} + +\newpage +\subsubsection{Setting Greek letters with \texttt{infont}} + +\leavevmode\hbox{} +$$\includegraphics[width=0.5\textwidth]{greek-homer}$$ +While it's technically possible to set the whole of Homer's \textsl{Iliad} using the Greek +fonts available to \mpl{infont}, it's probably not a great use of time; on the other hand you +might want to label parts of a diagram with Greek letters, and for single Greek +letters \mpl{infont} is more than adequate. + +The Greek letters for Computer Modern are in the maths-italic font "cmmi10", which +uses the encoding shown on p.\thinspace 430 of \textsl{The \TeX{}book}. For historical +reasons there's no omicron available, so you are supposed to use the $o$~character +instead. Fortunately you are unlikely to need more than the first few, and it's +quite easy to remember that $"char 11"=\alpha$, $"char 12"=\beta$, and so on. +Producing the upper case letters is a bit more of a fiddle with this encoding as you +need to know which ones use a Roman letter form; for details examine the program on +the right, or check the table in §\ref{euler} that shows +Herman Zapf's elegant Euler font, available as "eurm10". This +makes a refreshing change for some diagrams.\vadjust{\moveright5.5in\vbox to +0pt{\hsize4in\kern-164pt +\begin{code} +beginfig(1); +string ab, AB; +ab = ("" for i=11 upto 23: & char i endfor + & "o" for i=24 upto 33: & char i endfor); +AB = ("AB" & char 0 & char 1 & "EZH" & char 2 & "IK" + & char 3 & "MNO" & char 4 & char 5 & "P" + & char 6 & "T" & char 7 & char 8 & "X" + & char 9 & char 10); + +draw ab infont "cmmi10"; +draw AB infont "cmmi10" shifted 12 down; +draw ab infont "eurm10" shifted 32 down; +draw AB infont "eurm10" shifted 44 down; +endfig; +\end{code} +\centerline{\includegraphics{greek-default-encoding}} + +\begin{code} +string ab, AB; +ab = "abgdezhjiklmnoxprstufqyw"; +AB = "ABGDEZHJIKLMNOXPRSTUFQYW"; +\end{code} +\centerline{\includegraphics{greek-gfs-encoding}} +\vss}} + +\medskip\noindent +If you have fonts installed from the Greek Font Society, then you get a wider +choice, and a slightly more modern encoding. All of the plain letters are available +in the normal ASCII positions, so you do not have to muck about with "char xx" +so much. However in recent versions there is no character you +can use as a word space, so if you want to set Greek text rather than individual +letters, see §\ref{sec:neo-otf}. + +\vbox to 0pt{\centerline{\includegraphics{porson}}\vss} + + + +\newpage +\subsection{Setting text with \texttt{btex ... etex}}\label{btex} + +As soon as you need anything complicated in a label, like multiple fonts, multiple +lines, or mathematics, you will find it easier to switch from "infont" to the +"btex ... etex" mechanism that calls \TeX\ to create your textual picture. In fact +you might prefer to use \TeX\ for all your labels, even simple strings, for the sake +of consistency. The only downside is that this mechanism is a little bit slower. + +The "btex" mechanism produces a textual picture just as "infont" does with a height, +width, and depth that you can measure, and adjust, as discussed in +section~\ref{infontbbox}. And again, just like "infont" you can either use \mpl{draw} +to place the resulting picture directly, or pass it to the "label" macro. + +What you need to be aware of is that \MP\ places everything you put between the +"btex" and "etex" into an "\hbox{...}" and processes it with plain \TeX. This has +several implications: on the positive side you have easy access to italics and bold +letters, mathematical formulae, symbols like "$\alpha$", and anything else you can +normally put in an "\hbox{}"; but there are some restrictions especially if you want +to do anything more than produce a simple single-line label in the default Computer +Modern type face. The next few sections deal with some of the things you might want +to do. + +\subsubsection{Producing display maths} + +One of the obvious restrictions that \TeX\ imposes in +restricted horizontal mode +is that you can't use "$$ ... $$" to produce display maths. This means that +the various mode-sensitive constructs like $\sum$ and $\int$ will come out in their +smaller forms. And your fractions will look like they are $3\over4$ size. +If you want them big, then the solution is simple: just add +"\displaystyle" at the beginning of your formula $\longrightarrow$\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +\begin{code} +... +label(btex $\displaystyle \int_0^t 3x^2\, dx$ etex, (x,y)); +... +\end{code} +}} + +\subsubsection{Getting consistent baselines for your labels} + +As already discussed §\ref{infontbbox}, you can fiddle with the +bounding box of a text picture to make +the \mpl{label} macro line things up on a common baseline, but there is a +much easier way with "btex" and "etex". Plain \TeX\ provides a "\strut" +command that inserts an invisible rule that sticks up 8.5pt above the baseline +and 3.5pt below. If you put one of these in each of the your labels, +then they will all have the same vertical size and will all line up +neatly:\quad\mpl{label(btex \\strut a etex, origin);} + + +\subsubsection{Multi-line text labels} + +Another consequence of the "hbox" feature is that there is no automatic text +wrapping done for you, but again you can work round this easily because \TeX\ lets +you nest a "\vbox" inside an "\hbox". This gives you proper paragraph-like wrapping +but you will almost certainly need to adjust the line length, justification, and +indentation in order to get a satisfactory result \rightarrow \vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vskip -42pt\noindent +\begin{code} +... +label(btex \vbox{\hsize 2in\parindent 0pt\raggedright + An extended caption or label that will be set as a + small paragraph with automatic hyphenation and + line-wrapping. +} etex, z0); +... +\end{code}\vss +}} + +\medskip\noindent +You may only need the full power of \TeX's paragraph making system occasionally +though: more usually you will just have one or two lines in each label, and you +might be quite happy to control the line breaks manually. In this case it's helpful +to wrap a little tabular structure around your text. Here's how to define something +suitable in plain \TeX. First you need to define a suitable macro at the start of +your figure +\begin{code} +verbatimtex +\def\s#1{\let\\\cr\vbox{\halign{\hfil\strut ##\hfil\cr#1\crcr}}} +etex +\end{code} +then you can write labels like this: +\begin{code} +... +label(btex \s{Single line} etex, z1); +label(btex \s{Longer text split\\onto a new line} etex, z2); +... +\end{code} +Notice how you can still use the macro with single lines, you just get a one-line +table as it were. +Note also that the definition of "\s" as given will centre each line of the text under +the one above. If you want them left aligned or right aligned, omit one of the +"\hfil" commands. \mpic{-160pt}{split-labels} +The three examples from this page are typeset over here \rightarrow\break +The small red circle show the reference points and the pale blue lines the +bounding boxes of the pictures that \MP\ gets back from \TeX. + +You can of course achieve the same effects using \LaTeX\ tabular structures, but +then you have to use the "-tex=latex" option to run +\MP. + +\smallskip\noindent +\textbf{Note}: In case it's not obvious, if you want text wrapping or tabular +arrangements as discussed here, you need to use \texttt{btex ... etex} to set your +labels. There's no text wrapping with "infont". On the other hand if all of your +labels are in "infont" but you just want one extra that has two lines, you can split +the text into two separate labels and position them independently. + +\newpage +\subsubsection{Dynamic labels}\label{sec:old-and-dynamic} + +If you are a maven of programming language syntax you may have noticed that +"btex ... etex" fits into the type system that \MP\ inherits from \MF\ as a "picture" and +not as a "string". Effectively, "btex" and "etex" act as a special pair of quotation +marks that create a picture; however the contents are used verbatim, so that the +whole construction is a syntactical atom. This means that you \textbf{cannot} write +this sort of thing: +\begin{code} +for i=0 upto 4: % this won't work + label(btex "$p_" & decimal i & "$" etex, (10i,0)); +endfor +\end{code} +Given this input \MP\ would attempt to get \TeX\ +to typeset +\begin{code} +\hbox{"$p_" & decimal i & "$"} +\end{code} +which would probably result in a +`Misplaced alignment tab character' error. +To get round this problem, \MP\ provides a general mechanism to write out a +string to a file, and then read the file back in. This is the mechanism used by the +"TEX()" macro that is provided alongside "plain.mp". This allows you to write: +\begin{code} +input TEX +... +for i=0 upto 4: + label(TEX("$p_" & decimal i & "$"), (10i,0)); +endfor +\end{code} +This works because the TEX macro is expecting a "string" so the normal string +concatenation rules are applied. The macro wraps the result with "btex" and "etex", +writes them out to a file, and then reads the file in again so that \MP\ gets the +correct contents to pass to \TeX. + +The only trouble with this is that it makes \MP\ open a file, +write to it, close it, and then read it in again for each label one at a time; this +means that it's very slow. +The example on the right shows how to speed things up, by using the same file for +all the labels and only writing it once. +The "write" command is a \MP\ primitive, and "EOF" is defined in "plain.mp".% +\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize4in\noindent +\begin{code} +path c; c = fullcircle scaled 100; draw c withcolor .67 red; +for i=0 upto 7: + fill fullcircle scaled 3 shifted point i of c; + z[i] = point i of c scaled 1.15; + write "label(btex $p_" & decimal i & "$ etex,(" + & decimal x[i] & "," & decimal y[i] + & "));" to ".mplabels"; +endfor +write EOF to ".mplabels"; +input ".mplabels"; +\end{code} +$$ +\includegraphics{dynamic-labels} +$$ +Note that you can't use "decimal" on a "pair" variable, but you can save the pair +as a "z"-variable and then use the "x" and "y" syntax. The scaling trick used here +only works because "c" is centred on the origin. If "c" were drawn elsewhere, you +would have to write: +\begin{code} +... point i of c shifted -center c + scaled 1.15 + shifted center c ... +\end{code} +}} + +\newpage +\subsection{Matching fonts}\label{sec:fonts} + +Despite the apparent restriction of using plain \TeX\ it is almost always possible +to match the font and format of an enclosing \LaTeX\ document. +The simplest approach is to use the plain +\TeX\ font mechanism with the names from "psfonts.map". +\begin{code} +verbatimtex +\font\rm=ptmr8r\rm +etex +\end{code} +Adding this at the top of your \MP\ program will set your text in Times New Roman, +although any maths will still be set using Computer Modern. +To fix this, all you +have to do is to redefine all the maths fonts in all sizes you need; this is not really +that hard but it is a fiddle to get all the details right. Fortunately +the wonderful "font-change" package has done it all for you for a large range of +fonts; with this package installed you can use +\begin{code} +verbatimtex +\input font_times +etex +\end{code} +instead, and all of your \TeX\ labels, including bold letters, italics, small caps, +and mathematics will be set in Times New Roman.\vadjust{\moveright5.5in\vbox to +0pt{\hsize 4in\vss\noindent +Here are some samples of the fonts available in the "font-change" package. For full +details, and especially details about using AMS symbols, see the package +documentation. +$$\includegraphics{trad-font-changes}$$ +}} + +If you still can't get your labels to match, you can force \MP\ to use \LaTeX\ +instead of plain \TeX. You need to use the "-tex" command line switch: +\begin{code} + mpost -tex=latex +\end{code} +and also load the packages you need in a "verbatimtex" block at the top of your +file\rlap{\ $\longrightarrow$}\vadjust{\moveright 5.5in\vbox to 0pt{\hsize 4in\raggedright +\vskip -42pt +\noindent +\begin{smallcode} +verbatimtex + \documentclass{article} + \usepackage{mathpazo} + \usepackage{xcolor} + \begin{document} +etex +\end{smallcode} +Note that the "\documentclass" and the "\begin{document}" lines are required, but +\MP\ is smart enough to add an "\end{document}" for you.\vss}} + +Plain "mpost" needs an old-fashioned ".dvi" file to work with, so you can only use +an engine that still produces one, like "latex" or "elatex", and not any of the +more modern engines, like "pdflatex". Generating the labels takes a little bit +longer because you have to load rather more `infrastructure' for \LaTeX, and you +are limited to whatever font packages you have that work with the traditional +\LaTeX\ engine. For a more modern approach, read on into section +\ref{sec:neo-labels}. + +\newpage +\subsection{Setting verbatim listings}\label{sec:verbatim} + +\textsc{There is a good chance} that you will never need to set a verbatim +listing in a \MP\ drawing, but if you do there are a couple of things to think +about. The issue about setting text verbatim with \TeX\ is that turning off the +control characters can be tricky, so if you have text for a label with characters +that are special in \TeX\ like the backslash or the underscore, then the simplest +thing to do is to avoid \TeX\ completely and use \mpl{infont} instead. +\mpic{-36pt}{verbatim-with-infont} +\begin{code} +string s; s = "\TeX\ sets maths like this $e=mc^2$"; +draw ("1. " & s) infont defaultfont; +draw ("2. " & s) infont "texnansi-lmr10" shifted 20 down; +draw ("3. " & s) infont "cmtt10" shifted 40 down; +draw ("4. " & s) infont "texnansi-lmtt10" shifted 60 down; +\end{code} +But as you can see, (1) this is a bit of a disaster with the default font "cmr10" +because it does not have all the glyphs in the usual ASCII positions (as noted +above §\ref{sec:charsets}). The solution is to use the version of the font +with the "texnansi" encoding (2), but you probably want it in the monofont (3) and +as you can see "cmtt10" has the “visible space” character instead of a regular +space. If this is not what you want then use the alternative encoding (4). + +If you want more than this, then you really need to use \LaTeX\ to process the +label, as discussed in §\ref{sec:fonts}, and load the appropriate preamble. \rightarrowfill\break +\vadjust{\moveright5.5in\vbox to 0pt{\vskip -72pt\begin{smallcode} +prologues := 3; outputtemplate := "%j.eps"; +verbatimtex +\documentclass{article} +\usepackage{listings} +\newcommand\mpstyle{\lstset{language=Metapost, basicstyle=\ttfamily, +columns=fullflexible, keepspaces=true, showstringspaces=false}} +\lstnewenvironment{code}[1][]{\mpstyle\lstset{#1}}{} +\begin{document} +etex +beginfig(1); +picture P; +P = thelabel(btex \vbox{\begin{code} + % special operators + vardef incr suffix $ = $:=$+1; $ enddef; + vardef decr suffix $ = $:=$-1; $ enddef; + + def reflectedabout(expr w,z) = % reflects about the line w..z + transformed begingroup transform T_; + w transformed T_ = w; + z transformed T_ = z; + xxpart T_ = -yypart T_; + xypart T_ = yxpart T_; % T_ is a reflection + T_ endgroup enddef; +\end{code}} etex, origin); +fill bbox P withcolor (1,1,31/32); draw P; draw bbox P; +endfig; end. +\end{smallcode}\vss}} + +\bigskip +$$\includegraphics[width=0.9\textwidth]{verbatim-listing}$$ + + + +%% \subsubsection{Getting full access to your system fonts} +%% +%% If you want full access to all of your system fonts you can +%% approach the problem the other way round and use one of the various means to include +%% \MP\ graphics as part of your \LaTeX\ source code. These include "gmp" for +%% pdf\LaTeX, "luamplib" for lua\LaTeX, and the whole Context system. The great +%% advantage of these systems is that all of your \MP\ labels directly inherit the +%% environment of the parent document, and give you access to all your system fonts and +%% full Unicode support -- the only disadvantages are that it's not so fast or simple as plain \MP\ +%% and you have to compile every graphic everytime you compile the document. It is of course always possible to +%% use these systems to produce standalone PDF graphics that you can then include in a +%% more conventional \TeX\ document. The example on the right shows how; in this case +%% the text uses the fonts set in the \LaTeX\ preamble.\vadjust{\moveright5.5in\vbox to +%% 0pt{\hsize 4in\vss\noindent +%% Here is a version of the Lua logo, with a Unicode accent for show. +%% $$\includegraphics[scale=0.7]{lulu.pdf}$$ +%% produced with "luamplib": +%% \begin{smallcode} +%% \documentclass[margin=5mm]{standalone} +%% \usepackage{fontspec} +%% \setmainfont{TeX Gyre Heros} +%% \usepackage{luamplib} +%% \begin{document} +%% \begin{mplibcode} +%% beginfig(1); +%% color lemon, midnight; lemon = (1,1,1/2); midnight = (0,0,1/2); +%% +%% fill unitsquare shifted -(1/2,1/2) scaled 4cm withcolor lemon; +%% fill fullcircle scaled 3cm withcolor midnight; +%% draw fullcircle scaled 3.7cm dashed evenly scaled 2 withcolor .5 white; +%% +%% fill fullcircle scaled 8mm shifted (0.7cm,0.7cm) withcolor white; +%% fill fullcircle scaled 8mm shifted (1.4cm,1.4cm) withcolor midnight; +%% +%% label.bot(btex Luã etex scaled 2.8,origin) withcolor white; +%% endfig; +%% \end{mplibcode} +%% \end{document} +%% \end{smallcode} +%% }} + + +\newpage +\section{Modern labels and annotations}\label{sec:neo-labels} + +This section is a re-working of the previous section, that attempts to show how much +nicer it is to handle labels in the new world of "luamplib". If this is all new +to you, you probably should start by doing "texdoc luamplib" on your system +and reading the documentation provided with the package. In order to use these +newfangled facilities you need to create your \MP\ diagrams inside a \TeX-wrapper +as explained above in §\ref{sec:sa-lua-flow}. + +\medskip\noindent +The first thing to say is that everything in the preceding section +will continue to work more or less the same when you use "luamplib" with Lua\LaTeX. +It is designed to be backwards-compatible, so that existing \MP\ programs using "infont" and +"btex" \dots\ "etex" will continue to work without change. The only differences are: +that the "TEX()" macro is re-implemented with internal library functions +so that it no longer uses temporary files, and is therefore very much faster; and it +is easier to integrate your drawings into \LaTeX\ because you no longer need to muck +about with \mpl{verbatimtex} blocks. +So the example code shown on the right,\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip-160pt +\begin{texcode} +\documentclass[border=5mm]{standalone} +\usepackage{fontspec} +\setmainfont{TeX Gyre Pagella} % <-- note chosen font +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +\end{texcode} +\vskip-\baselineskip +\begin{smallcode} + beginfig(1); + for x = 0 upto 1: + draw (80x,16) -- (80x, -68) withcolor 3/4[red, white]; + endfor + for y = 0 upto 3: + draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white]; + endfor + + string s; s = "Hand gloves"; + draw s infont defaultfont shifted (0, 0); + draw s infont "phvr8r" shifted (0, -20); + draw TEX(s) shifted (0, -40); + draw btex Hand gloves etex shifted (0, -60); + + dotlabel.urt(s, (80, 0)); + dotlabel.urt(s infont "phvr8r", (80, -20)); + dotlabel.urt(TEX(s), (80, -40)); + dotlabel.urt(btex Hand gloves etex, (80, -60)); + endfig; +\end{smallcode} +\vskip-\baselineskip +\begin{texcode} +\end{mplibcode} +\end{document} +\end{texcode}\vss}} +will produce this: +$$\includegraphics{neo-labels.pdf}$$ +Note that "defaultfont" is still "cmr10" with the encoding that has the small stroke +(that plain \TeX\ uses for the \L\ character) instead of a space, and that you can +still use PostScript fonts like "phvr8r". But also notice that the "TEX()" macro +and the "btex" \dots\ "etex" construction have picked up the font set by the \LaTeX\ +wrapper. As you can see they produce exactly the same output; "TEX()" is generally +more useful because you can pass a primary string variable as an argument, which +makes it easier to construct dynamic labels. "TEX()" also has the synonym +"textext()" for compatibility with ConTexT. You can use either name, as you prefer. + +\smallskip\noindent +But this isn't the clever bit\dots + +\clearpage +\subsection{The magic of the \texttt{textextlabel} option}\label{ttlabel} + +The clever bit is that "luamplib" allows us to turn on the "TEX()" behaviour by +default, so that you can just use plain strings with the \mpl{label()} macro, and +have them automatically processed through \LaTeX. All you have to do is add this +to the preamble: +\begin{texcode} +\mplibtextextlabel{enable} +\end{texcode} +If you add this line to the example from the previous +page,\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip-80pt +\begin{texcode} +\documentclass[border=5mm]{standalone} +\usepackage{fontspec} +\setmainfont{TeX Gyre Pagella} +\usepackage{luamplib} +\mplibtextextlabel{enable} % <--- added option +\begin{document} +\begin{mplibcode} +\end{texcode} +\vskip-\baselineskip +\begin{smallcode} + beginfig(1); + for x = 0 upto 1: + draw (80x,16) -- (80x, -68) withcolor 3/4[red, white]; + endfor + for y = 0 upto 3: + draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white]; + endfor + + string s; s = "Hand gloves"; + draw s infont defaultfont shifted (0, 0)0 + draw s infont "phvr8r" shifted (0, -20); + draw TEX(s) shifted (0, -40); + draw btex Hand gloves etex shifted (0, -60); + + dotlabel.urt(s, (80, 0)); + dotlabel.urt(s infont "phvr8r", (80, -20)); + dotlabel.urt(TEX(s), (80, -40)); + dotlabel.urt(btex Hand gloves etex, (80, -60)); + endfig; +\end{smallcode} +\vskip-\baselineskip +\begin{texcode} +\end{mplibcode} +\end{document} +\end{texcode} + +\vskip 58pt +\centerline{\red{$\star$ All the examples in the rest of this section $\star$}} +\centerline{\red{assume that you have set \texttt{\textbackslash +mplibtextextlabel}}} +\vss}} +you get this output: +$$\includegraphics{neo-labels-tte.pdf}$$ +As you can see, they all come out the same. +When the magic option is enabled, "luamplib" redefines +the primitive binary operator \mpl{infont}. +Ordinarily, this command takes two strings (the text you want to show, and the name +of the font to use) and produces a picture object consisting of the text typeset in +the given font. +$$\<string> \mathbin{"infont"} \<string> \longrightarrow \<picture>$$ +With the option enabled, +the right hand \<string> argument (which names the font) is completely ignored, +and the left hand \<string> argument (the text to show) is passed to the "TEX()" +macro. The result is still a \<picture> of course, but instead +of a simple rendering in a single font, the string will have been passed through +\LaTeX, so it can include maths, bold text, or any arbitrary typesetting +constructions. + +Note that even with the option enabled, \MP\ will not let you pass a \<string> +to \mpl{draw}. You have to put \mpl{infont "somefont"} after the string to get the +magic to work; the nice thing is that the \mpl{label()} macros do this for you. + +If you experiment a bit, you will find that even though the font name argument is +completely ignored, you can't leave it out; you have to give at least an empty +string: \mpl{draw "my text" infont ""}. However if you find yourself writing this, +you probably should try \mpl{draw TEX("my text")} instead. + +\subsection{Using Unicode and matching style with OTF fonts}\label{sec:neo-otf} + +If you read "texdoc luamplib" carefully, you will see that you \textit{can} use all +these new facilities with plain Lua\TeX, but this chapter is about using them with +Lua\LaTeX, and in particular it assumes some familiarity with the packages +"fontspec" and "unicode-math" that provide complete support for Unicode and OTF +fonts; you need this familiarity in order to use "luamplib" properly. +\mpic{1cm}{unicode} + +You also need an editor that will handle Unicode. \MP\ still restricts you to using +printable ASCII in your source code, except within a string literal or a "btex" +\dots\ "etex" picture literal. So it becomes very easy to write this sort of label: +\begin{smallcode} +label("café noir £2.50", origin); +\end{smallcode} +or even whole paragraphs that use Unicode: +\begin{smallcode} +label(btex \vbox{\hsize 4in + Nous étions à l'Étude, quand le Proviseur entra, suivi d'un + \textit{nouveau} habillé en bourgeois et d'un garçon de classe + qui portait un grand pupitre. Ceux qui dormaient se réveillèrent, + et chacun se leva comme surpris dans son travail. +\par} etex, 40 down); +\end{smallcode} +But you also need a font that actually supports the Unicode characters you use. +The default Latin Modern font used by Lua\LaTeX\ has a good range for English and +most European languages, but is a bit lacking in (say) polytonic Greek. So you will +need to define a suitable font in your preamble, and turn it on in your labels. +\begin{texcode} +\usepackage{fontspec} \newfontface\polytonic{GFS Porson} +\end{texcode} +then a box like this with proper polytonic Homeric Greek source +\begin{smallcode} +label(btex \vbox{\polytonic\halign{#\hfil\cr + ... + + (polytonic greek source in UTF8 that won't show up in + the Latin Modern Typewriter font being used here) + + ... \cr}} etex, 120 down); +\end{smallcode} +will produce the first few lines of the Iliad (just in case you wanted them). +Essentially if you can produce something in \LaTeX, you can produce exactly the same +in \MP\ using "luamplib" (but see also §\ref{sec:verbatim}). + + +\newpage +\subsection{Multi-line labels} + +It is a rule of syntax in \MP\ that a string token has to be given all on one line. +So if you have very long labels, or paragraphs of text, then you have to split them +up into separate shorter string tokens: +\begin{code} +label("\vbox{\hsize 4in It is a truth universally acknowledged," + & " that a single man in possession of a good fortune," + & " must be in want of a wife.\par}", origin); +\end{code} +taking care to include the necessary spaces, which can get fiddly. +\mpic{-15mm}{multi-line-labels} + +But this is where the "btex" \dots\ "etex" construction comes into play, even with +"luamplib". As we saw in the preceding section the construction fits into the \MP\ +syntax scheme as a special pair of quotation marks that produces a \<picture>. +Unlike regular string token, a "btex" \dots\ "etex" picture token can span several +lines of source code, so you can (more easily) write long \TeX\ labels like this: +\begin{code} +label(btex \vbox{\hsize 4in + It is a truth universally acknowledged, + that a single man in possession of a good fortune, + must be in want of a wife. + \par} etex, 128 down); +\end{code} +Thanks to the backward compatibility of the implementation, this works very well +even when you have "mplibtextextlabel" enabled. + +You also have full access to your \LaTeX\ environment, so you can get tables in the +same way in \MP\ using environments like "tabular": +\begin{code} +label(btex + \begin{tabular}{c} + A way to get simple\\ + two line labels + \end{tabular} etex, 256 down); +\end{code} +But recall that whatever you ask the \mpl{TEX()} macro to typeset like this is going into +a restricted horizontal mode box; so don't try to use floating environments like +"table" or "figure". And if you want automatic paragraph wrapping, you will have +to wrap your text in a suitable "\vbox", as shown above. + +\subsection{Display maths} + +Because the \mpl{TEX()} macro typesets everything in restricted horizontal mode, you +cannot use "$$ .. $$" to create display maths directly. This is not a \TeX\ +\textit{v} \LaTeX\ issue, it is just that for compatibility with plain \MP\ (and +common sense), the designers of "luamplib" chose to typeset labels into +horizontal-mode boxes This is usually what you want. If you prefer +large integral +operators (etc) in your labels, +then you should either add +"\displaystyle" at the beginning of your formula $\longrightarrow$\vadjust{\moveright5.5in\vbox to 0pt{\hsize 4in\vss\noindent +\begin{code} +... +label("$\displaystyle \int_0^t 3x^2\, dx$", z0); +... +label("\vbox{\hsize 2in $$\int_0^t 3x^2\, dx$$}", z1); +... +\end{code} +}} +\\ +or wrap the formula in a "\vbox" with a suitable "\hsize". Using "\displaystyle" is +probably simpler. + + +\subsection{Typographical minus signs and other dynamic labels} + +This is really easy with "mplibtextextlabel" enabled, because we can assemble a string +on the fly using standard \MP\ syntax:\mpic{0pt}{simple-number-line} +\begin{code} +draw (left--right) scaled 2in withcolor 2/3 red; +for i=-4 upto 4: + dotlabel.top("$" & decimal i & "$", (32i, 0)); +endfor +\end{code} +The normal operator precedence rules ensure that the string argument to +\mpl{dotlabel} is assembled before it is passed to the \mpl{TEX()} macro. +The individual parts of the string you assemble do not have to be +valid bits of \TeX\ in themselves; they only have to make sense once they +are actually passed to the macro. With "luamplib" there are no slow +external files being used, so the complexities used above +[§\ref{sec:old-and-dynamic}] to label points around a +circle can be simplified without sacrificing speed:\mpic{-80pt}{simple-circle-labels} +\begin{code} +path C; C = fullcircle scaled 100; draw C withcolor 2/3 red; +for i=0 upto 11: + drawdot point 2/3 i of C withpen pencircle scaled dotlabeldiam; + label("$p_{" & decimal i & "}$", point 2/3 i of C scaled 1.17); +endfor +\end{code} + +\smallskip\noindent\nb But note that you can't do this string concatenation with "btex" \dots\ "etex"; +although they might appear to be special quotation marks, they produce a +\<picture>, and \mpl{&} only works with strings or paths. + +\newpage +\subsection{Drawing on an external image}\label{sec:extimage} + +One of the limitations of the way that plain "mpost" uses \TeX\ is that +any "\special" commands are removed from the intermediate file that \MP\ translates +into a \<picture> variable. Hence, in particular, you cannot use +"\includegraphics" in a \TeX\ label. Fortunately, "luamplib" removes this +limitation, so it is now possible to annotate images using the full array of \MP\ +tools. +$$\includegraphics[width=360pt]{marked-up-photo}$$ +The source is shown on the right. +\vadjust{\moveright5.5in\vbox to 0pt{\vskip-3.75in\hsize 4in\raggedright\noindent +\begin{texcode} +\documentclass[border=1mm]{standalone} +\usepackage{luamplib} +\usepackage{graphicx} +\usepackage{fontspec}\setmainfont[Scale=0.6]{Helvetica} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +\end{texcode} +\begin{smallcode} +beginfig(1); +draw btex \includegraphics[width=5in]{glenshiel.jpg} etex; +if false: +for i=1 upto 36: + draw (origin -- 180 up) shifted (10i, 0) + withcolor if i mod 10 = 0: red else: 1/2 fi; +endfor +for i=1 upto 18: + draw (origin -- 360 right) shifted (0, 10i) + withcolor if i mod 10 = 0: red else: 1/2 fi; +endfor +fi +vardef callout@#(expr t, p, o) = + save T; picture T; T = thelabel.@#(t, p+o); + draw T; drawarrow p+o -- p cutbefore bbox T; +enddef; +ahangle := 20; ahlength := 2; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2 blue); +callout.top("Sgurr na Ciste Dubhe", (80, 96), (-10, 20)); +callout.top("Sgurr nan Spainteach", (100, 91), (6, 12)); +label.top("\tiny Cuillin Ridge, Isle of Skye", (140, 81)); +label.top("Sgurr na Carnach", (190, 90)); +label.top("Sgurr Fhuaran", (282, 94)); +label.bot("\itshape View looking west ...", + point 5/2 of bbox currentpicture shifted 4 down); +endfig; +\end{smallcode} +\begin{texcode} +\end{mplibcode} +\end{document} +\end{texcode} +\vss}} +The two loops commented out with \mpl{if false:} will add a grid +on top of the photo like this: +$$\includegraphics[width=200pt]{marked-up-photo-with-grid}$$ +This makes it easier to find the appropriate coordinates for your annotations. + +\newpage +\section{Working with pictures} + +\MP\ inherits the mechanism of \<picture> variables directly from \MF, except that +the contents of these variables are a bit more complex. The system keeps track +of the active picture in a variable called \mpl{currentpicture}, which can be copied +to your own variables, or manipulated in various useful ways. In \MF\ the contents +of the variable is a pattern of pixels for a font, in \MP\ the contents are vector +graphics commands. This section reviews some of the things you can do with a +\<picture> variable — including putting one in a frame (see §\ref{sec:pictureframe}) +like so\rlap{\ $\longrightarrow$} +\mpic{-96pt}{youth} + +\bigskip\noindent +Plain \MP\ provides two built-in \<picture> variables: \mpl{nullpicture}, which is +empty, and \mpl{currentpicture}, which accumulates the results of drawing +commands. When you compile your program, the \mpl{beginfig} macro will +set \mpl{currentpicture} to blank, and the \mpl{endfig} macro will make \MP\ write +the accumulated contents of the picture to an output file, usually as PostScript. +You can also do these things yourself at any point in a program, using these +macros from "plain.mp": +\begin{code} +def clearit = currentpicture := nullpicture enddef; +def shipit = shipout currentpicture enddef; +\end{code} + +\smallskip\noindent +When you are creating a diagram with several independent elements, it is often +helpful to save the \mpl{currentpicture} in a \<picture> variable and start again. +In fact it is so useful that plain \MP\ includes an \mpl{image} macro that uses the +magic of macro grouping to make the process a bit easier. + +\begin{code} +vardef image(text t) = + save currentpicture; + picture currentpicture; + currentpicture := nullpicture; + t; currentpicture +enddef; +\end{code} +The general idea is that you declare a variable and then save a drawing into it: +\begin{code} +picture P; P = image(...); +\end{code} +and then you have a picture element that can be manipulated or copied as needed. +The rows of decorative beads in the frame on the right were created like this. + + +\newpage +\subsection{Creating and transforming pictures} + +After you have declared a variable with \mpl{picture P;} you can give it some contents +in a number of ways: +\begin{itemize} + \item \mpl{P = nullpicture;} --- this makes $P$ empty. + \item \mpl{P = currentpicture;} --- save a copy of your current picture (if any). + \item \mpl{P = image(... MP tokens ...);} --- capture some drawing commands. + \item \mpl{P = "string" infont "font-name";} --- capture an image of "string" set in the given font. + \item \mpl{P = btex ... TeX tokens ... etex;} --- capture the result of passing some arbitrary + tokens through \TeX. + \item \mpl{P = TEX("string");} --- capture the result of passing some arbitrary + string of tokens through \TeX, using the "TEX" macro. +\end{itemize} +You can read more about the details of type setting in §\ref{sec:trad-labels} and +§\ref{sec:neo-labels}, but the point here is that the results are normal \<picture> +variables that you can manipulate and use like any other. You can apply any of the +normal \MP\ transformations to a picture, so it can be slanted, scaled, rotated, or +shifted like any \<pair> or \<path>. Each picture has a reference point that is the +position of the origin for pictures created with \mpl{image} or by saving +\mpl{currentpicture} directly, and is usually the bottom left-hand corner of a +typeset picture created by \TeX. So to add three copies of $P$ to your current +picture, you could do: +\begin{code} + for i=1 upto 3: draw P shifted (20i, 0); endfor +\end{code} +and \MP\ will add copies of $P$ with the reference points shifted to $(20,0)$, +$(40,0)$, and $(60,0)$. A selection of other transformations is shown on the right $\longrightarrow$ +\vadjust{\moveright5.5in\vbox to 0pt{\hsize4in\vskip-240pt\centerline{\includegraphics[width=4in]{twister}}\par +\centerline{\textsl{\small The reference point for each compass is the small dot in the middle.}} +\vss}} + +\smallskip\noindent +If you need to measure the size of your picture, you can get the coordinates of the +corners with the built-in corner commands, and do some arithmetic like this: +\begin{code} + (wd, ht) = urcorner P - llcorner P; +\end{code} +You also get \mpl{ulcorner}, \mpl{lrcorner}, and \mpl{center}; plus \mpl{bbox} which +returns the rectangular path round the four corners, expanded by the current value +of \mpl{bboxmargin}. (See also §\ref{sec:rotated-boxes}). + +\newpage +\subsection{Clipping and bounding boxes} + +Once you have got your \<picture> variable, and possibly transformed it, the main +thing you can do with it is to use \mpl{draw} to add it to the current picture. But +there are two other commands that are sometimes helpful that allow you to alter the +apparent size of the picture. +\begin{itemize} + \item $\kw{setbounds}\ \<picture> \kw{to}\ \<path expression>$ + \item $\kw{clip}\ \<picture> \kw{to}\ \<path expression>$ +\end{itemize} +Both commands set the boundary of your picture to the arbitrary path expression, and +then the \mpl{clip} command also erases all of the picture that lies outside the +boundary. +(Note that this is not the same as setting the bounding box. The arbitrary path does +not have to be a rectangle; after either of these commands the bounding box will be +the rectangle that fits around the arbitrary path). + +\MP\ inherits the \mpl{clip} command from PostScript; there is no equivalent in \MF. +It can be useful as an alternative to \mpl{buildcycle}, but it is most commonly used +for trimming a repeating pattern to a particular shape. The usual approach is to +define a particular shape, $s$, then draw your pattern over a large area that covers +the shape, and finally call \mpl{clip currentpicture to s} to trim the pattern to +the shape. This is best done after you define all your shapes, but before you draw +any others or add any labels. The example on the right shows this approach in +action. + +You can apply \mpl{clip} to any picture, so you might prefer to capture your +pattern in \<picture> variable with \mpl{image}, apply \mpl{clip} to that, and +then \mpl{draw}. This works nicely if you want to repeat the clipped image. +\vadjust{\moveright 5.5in\vbox to 0pt{\hsize 4.2in \vss +\noindent\includegraphics[width=4in]{shady-circles} + +\medskip +\begin{smallcode} +path c, C; numeric r; r = 60; +c = fullcircle scaled 2r shifted (-r, 0); +C = fullcircle scaled 4r shifted (2r, 0); + +numeric t, u; +(t, whatever) = C intersectiontimes + C shifted (center c - center C); +(u, whatever) = c intersectiontimes (point t of C -- center c); + +path s; +s = subpath (0, u) of c -- subpath (t, 4) of C -- cycle; +for i=0 upto r: + draw (left--right) scaled 2r rotated -42 shifted (3i, 0) + withpen pencircle scaled 1/4 withcolor 2/3 blue; +endfor +clip currentpicture to s; + +draw c; draw C; +draw center c -- center C -- point t of C -- cycle; +\end{smallcode} +\vskip -126pt}} + +You can also use this technique to fill with a gradient: just reduce the gap +between each line and use the index variable to blend between two colours. +Something like \mpl{withcolor (i/r)[blue, white]} in the example shown. + +\vfill\noindent +\hey Why would you ever want to use \mpl{setbounds}? Mainly to help with aligning type set labels, +as discussed in §\ref{infontbbox}, or if you want to make boundaries of different +picture elements consistent in order to line them up more easily. Or perhaps to set +a margin for the whole image by using something like this just before the +\mpl{endfig}. +\begin{code} +setbounds currentpicture to bbox currentpicture; +\end{code} +This has the effect of adding a \mpl{bboxmargin} wide strip all round. + +\newpage +\subsection{Bounding boxes of transformed pictures}\label{sec:rotated-boxes} + +When you rotate a text label, or otherwise transform a picture, the corner-points +also change, but not quite in the way you might think. It turns out that +the \mpl{bbox} is always a rectangle aligned to the edges of your page. +Effectively, the corners are determined \textit{after} any transformation, +and the \mpl{center} is strictly the intersection of the lines between opposite +corners.\mpic{-68pt}{corners} + +You will notice this if you use the technique given on p.\thinspace29 of the \MP\ manual to draw a +label on a coloured (or erased) background; if you have rotated the label, the +\mpl{bbox} may be larger than you want. One solution is to define your label +untransformed and then apply the transformation twice: first when you fill the bounding box +and again when you draw the label, for example: +\begin{code} +picture p; p = thelabel.top("Correctly", origin); +unfill bbox p rotated 30 shifted z0; +draw p rotated 30 shifted z0; +\end{code} + +\vfill +\subsection{Using pictures to assemble a complex diagram} + +If you have a diagram with several independent parts, like the comparison above then +there is a useful general technique: declare a subscripted \<picture> variable, and +then use \mpl{image} to draw each part separately. The advantage of this is that +you do not have to worry about where the \mpl{origin} is, which often makes a +drawing simpler (for example because you can use \mpl{rotated} rather than +\mpl{rotatedaround}). Once you have created all the parts you can then add them to +the final image using \mpl{draw} as shown on the right $\longrightarrow$ +\vadjust{\moveright 396pt\vbox to 0pt{\hsize 4in \vskip -81pt +\noindent The illustration above was drawn using this general sub-picture +technique, approximately like this: +\begin{code} +picture P[]; +P1 = image( + % first drawing... +); +P2 = image( + % second drawing... +); +draw P1 shifted 100 up; draw P2 shifted 100 down; +\end{code} +\vss}} + +Sometimes it is more convenient to use \mpl{label} to place the pictures, taking +advantage of the automatic alignment provided. Note also that, unless you have +explicitly filled them with \mpl{white} colour, the blank parts of each picture are +really transparent so you can overlap them when appropriate. + +\newpage +\subsection{Adding a caption to the current picture} + +When you have finished a complicated picture, you may want +to add a caption or some other label which would look neat if it +were exactly centred at the bottom of the everything else. You could +keep track of exactly how wide and deep you have made the picture to do this, but +there is an easier way, that will adjust itself automatically if you change the +contents of the picture later. +\begin{code} +beginfig(1); +% ... complete drawing that needs a caption ... +label.bot("This picture needs a label at the bottom", + point 1/2 of bbox currentpicture); +endfig; +\end{code} +Through the automatic alignment routines in \mpl{label}, this +will produce a label neatly centred at the bottom. If it is too close +you can either set a larger \id{bboxmargin} or use something like: +\begin{code} +label.bot("This picture needs a label at the bottom", + point 1/2 of bbox currentpicture shifted 42 down); +\end{code} +Note that in both cases the addition of the label will move +the corner points of the picture, so that the bounding box +will have been expanded to include the new label. You can use this feature to +add a series of centered labels. +But if this is not what you want, perhaps because you want to add two labels +side by side at bottom, then you can “freeze” the current bounding box like this: +\begin{code} + picture bb; bb = bbox currentpicture; + label.bot("Left label", point 1/4 of bb); + label.bot("Right label", point 3/4 of bb); +\end{code} + +\noindent +The path returned by \mpl{bbox} has four points starting at the lower left and +proceeding clockwise like a \mpl{unitsquare}. +So \mpl{point 1/2 of bbox currentpicture} is half way between lower left and lower +right, while \mpl{point 5/2 of bbox currentpicture} is half-way from upper right to +upper left. + +Note that the path is defined even if the current picture is empty. If you call +\mpl{bbox currentpicture} at the start of a picture you will get a square path +centered on the origin and scaled to $2 \id{bboxmargin}$. + +\moveright5.5in\vbox to 0pt{\hsize 4in \vss +\noindent +Here is an example. +$$\includegraphics[width=4in]{double-angle}$$ +The labels at the bottom were added like this: +\begin{smallcode} +label.bot("$\triangle ACD \sim \triangle ABC$", + point 1/2 of bbox currentpicture shifted 24 down); + +path bb; bb = bbox currentpicture shifted 12 down; +label.bot(btex \vbox{....} etex, point 1/4 of bb); +label.bot(btex \vbox{....} etex, point 3/4 of bb); +\end{smallcode} +The second call to \mpl{bbox currentpicture} gets the bounding box +that includes the first centered label.} + + +\newpage +\subsection{Drawing pictures with various colours and pens} + +Consider the \<picture> with different colours and pens in the example here +$\longrightarrow$ +\vadjust{\moveright5.5in\vbox to 0pt{\vskip +-1.5\baselineskip +\begin{smallcode} +numeric s; s = 21; +path alpha; +alpha = ((-2s, s) {right} + .. halfcircle rotated -90 scaled 2s shifted (2s, 0) + .. {left} (-2s, -s)) shifted (s*left); + +vardef overdraw(expr a, b, r, P, shade) = + linecap := butt; + undraw subpath (a+r, b-r) of P withpen pencircle scaled 2; + draw subpath (a, b) of P withcolor shade; +enddef; + +picture cb; cb = image( + draw alpha withcolor 2/3 red; + undraw alpha rotated 180 withpen pencircle scaled 2; + draw alpha rotated 180 withcolor 2/3 blue; + overdraw(0.21, 0.36, 0.02, alpha, 2/3 red); + overdraw(0.67, 0.86, 0.02, alpha, 2/3 red); + overdraw(3.4, 4.3, 0.1, alpha, 2/3 red); + overdraw(5.4, 5.6, 0.02, alpha, 2/3 red); + overdraw(5.4, 5.6, 0.02, alpha rotated 180, 2/3 blue); +); +\end{smallcode} + +\vskip 48pt\noindent +\begin{minipage}{4in} +\begin{itemize} + \item Example 1 shows that by default \mpl{draw} uses the colours and pens + defined in the picture + + \item Examples 2, 3, and 4 show what happens if you change the pen, or the + colour, or both. + + \item Example 5 shows you how to make a bagel in \MP. + + \item Example 6 shows you the slightly tricky syntax to extract the paths, pens, + and colours from the \<picture> and adjust them as needed. +\end{itemize} +\end{minipage} +\vss}} +With this captured in a \<picture> variable, you can \mpl{draw} it with +different colours and pens to obtain a variety of effects: +$$\includegraphics[width=\textwidth]{draw-picture.pdf}$$ +The picture is supposed to represent a fancy knot (a “Carrick bend”), and to show +the red and blue strands crossing each other. The \mpl{overdraw} macro tries to do +this by undrawing with a thick pen, then redrawing the upper strand on top. + +\newpage +\subsection{Simulating transparency} + +Filling with transparent colour can sometimes be a very effective graphic technique, but the +underlying technical implementation is often dauntingly complex. Plain \MP\ +provides no colour model that directly supports transparency for any output format, +so if you need it you will have to resort to layering and managing the colour +blending yourself. This page presents an example of the basic technique, that can +be adapted to more general purpose macros as required. The technique is included in +this section, because it involves more manipulation of \<picture> variables. +\vadjust{\moveright5.5in\vbox to 0pt{\vskip -128pt +$$\includegraphics[width=3in]{fake-transparency}$$ +Omitting the simple grid, this drawing was produced like this: +\begin{smallcode} +% Large A +label.urt("A" infont defaultfont scaled 8, origin) withcolor 1/4 green; +% An arbitrary shape +path shape; shape = (superellipse(right, up, left, down, 0.81)) + shifted 1/2 right scaled 30 rotated 30; +% Parameters +alpha = 5/8; % alpha: 0=invisible, 1=opaque +color filler; filler = .95[red,white]; +picture fg, bg; +bg = currentpicture; % capture the current drawing +fg = image( + for e within bg: % redraw everything in blended color + draw e withcolor alpha[colorpart e, filler]; + endfor % and add some decorations + draw shape withpen pencircle scaled 2 withcolor 3/4; + draw subpath (2.718, 3.1415) of shape + shifted - center shape scaled 7/8 shifted + center shape + withpen pencircle scaled 2 withcolor white; +); +clip fg to shape; % now clip the fg drawing to the shape +fill shape withcolor filler; % fill the shape +draw fg; % and put the fg drawing on top +draw shape withcolor 3/4 blue; % make a nice edge +\end{smallcode} +\vss}}% +The two useful tools in the plain \MP\ kit bag are: +\begin{itemize} + \item The ability to loop through all the elements of a picture + \item The ability to blend colours using the mediation syntax +\end{itemize} +The example drawing on the right consists of a regular grid and a text picture, with +a bubble drawn over the top. The bubble can be made to look transparent like this: +\begin{enumerate} + \item Define the shape that you want to be transparent, decide on how opaque + you want it, and the colour to use. + \item Capture the current drawing in a \<picture> variable. + \item Loop over all the elements in that picture, redrawing each one with + a blended color, and capture all this in another \<picture>. + \item Add some decoration; here there is an internal margin, and a hint of a + reflection line to make it look shiny. + \item Clip the new blended-colour picture to the shape. + \item Fill the shape with the filler colour. + \item Draw the blended-colour parts on top. + \item Finally, add a neat edge (if needed). +\end{enumerate} +As you may appreciate, with this approach, you need to do the transparent parts +after you have drawn everything else in your drawing. + +\newpage +\subsection{Adding a background and other post-processing}\label{backgrounds} + +The \<picture> capture technique provides a simple way to add a background or do +other post-processing on your drawing. The advantage is that you do not have to +work out the size of your drawing before you start. + +\moveright5.5in\vbox to 0pt{\vskip -43pt +Here is an example that adds graph paper behind +a drawing. +$$\includegraphics{graph-paper}$$ +\begin{smallcode} +input colorbrewer-rgb +path C; C = fullcircle scaled 120 shifted 12 up rotated 6; +for t=0,1.2,4: draw center C -- point t of C withcolor Blues 8 8; endfor +draw C withcolor Reds 8 8; dotlabel.urt("Start", point 0 of C); + +vardef grid(expr ll, ur, grid_unit) = + save llx, lly, urx, ury, G; numeric llx, lly, urx, ury; + (llx, lly) = ll; (urx, ury) = ur; + picture G; G = image( + for x = floor(llx / grid_unit) + 1 upto floor(urx / grid_unit): + draw (x * grid_unit, lly) -- (x * grid_unit, ury); + endfor + for y = floor(lly / grid_unit) + 1 upto floor(ury / grid_unit): + draw (llx, y * grid_unit) -- (urx, y * grid_unit); + endfor + fill fullcircle; % <-- show the origin + ); G enddef; + +picture P; P = currentpicture; currentpicture := nullpicture; +drawoptions(withpen pencircle scaled 1/4); +draw grid(llcorner P, urcorner P, 1mm) withcolor Blues 8 1; +draw grid(llcorner P, urcorner P, 10mm) withcolor Blues 8 2; +drawoptions(); +draw P; +\end{smallcode} +\vss} + +\smallskip\noindent +You could add a subtle off-white background fill like this: +\begin{smallcode} +picture P; P = currentpicture; fill bbox P withcolor (1,1,31/32); draw P; +\end{smallcode} +Or you can be more ambitious, as shown in the example on the right +\rightarrowfill\break +In general, you draw any background you want, like this: +\begin{smallcode} +picture P; P = currentpicture; currentpicture := nullpicture; +% do complex background drawing... +clip currentpicture to bbox P; draw P; +\end{smallcode} +Or you can do things like make automatic adjustments to the scale. If you wanted +to be sure that your drawing was not more than 5 inches wide, you could try this +just before the \mpl{endfig}: +\begin{smallcode} +numeric wd; wd = xpart (urcorner currentpicture + - llcorner currentpicture); +if wd > 360: currentpicture := currentpicture scaled (360/wd); fi +\end{smallcode} + +\bigskip\noindent +If you wanted to apply one of these changes to all the figures in your "mpost" input file then +you can use the hook provided by plain \MP: +\begin{smallcode} +extra_endfig := "picture P; P = currentpicture;" & + "fill bbox P withcolor (1,1,31/32); draw P;"; +\end{smallcode} +The definition of \mpl{endfig}, includes the line \mpl{scantokens extra_endfig;} so +that any contents of the string variable \mpl{extra_endfig} are automatically +processed before the figure is produced. +If you are using "luamplib" then you can use the alternative hook that it provides +so that you do not even have to type \mpl{endfig}: +\begin{smallcode} +\everyendmplib{picture P; P = currentpicture; +fill bbox P withcolor (1,1,31/32); draw P; endfig;} +\end{smallcode} + +\newpage +\subsection{Adding a ruler} + +\textsc{If you wish} to check the dimensions of your drawing, it can be useful to +add a temporary ruler that shows you the dimensions of the bounding box like this: +$$\includegraphics{icosahedron}$$ +The red rulers were added by putting \mpl{input ruler-cm} at the end of the figure. +\vadjust{\moveright5.5in\vbox to 0pt{\vss\hsize 4in\raggedright\noindent +Here is the implementation of "ruler.mp": +\begin{code} +% add a ruler along the left hand and lower edges +% of the bounding box of the currentpicture +path B; B = bbox currentpicture; +for s=0, 1: + path p; numeric a; pair o; + p = subpath (0, 1) of if s=0: reverse fi B; + a = arclength p; + o = if s=0: left else: down fi; + for i=0 upto 3: + exitif not known u[i]; + for j=0 upto floor(a/u[i]): + pair t; t = point arctime j*u[i] of p of p; + draw (origin -- (6 - 2i) * o) shifted t; + if i=0: label(decimal j, t shifted 12 o); fi + endfor + endfor + draw p; +endfor +\end{code} +The inner loop draws successively shorter lines at each of the +minor units, and numbers at the major units. +\vss}} +They are drawn round the bounding box, set here with the default +margin of 2\unit{bp}. +The "ruler-cm.mp" file looks like this: +\begin{code} +numeric u[]; u0 = 1 cm; u1 = 1 mm; +drawoptions(withcolor 0.54 red); +input ruler +drawoptions(); +\end{code} +and there is a companion "ruler-inch.mp" file that looks like this: +\begin{code} +numeric u[]; u0 = 1 in; u1 = 1/4 in; u2 = 1/12 in; +drawoptions(withcolor 3/4 blue); +input ruler +drawoptions(); +\end{code} +The idea is that you set a subscripted variable \mpl{u[]} to a number of unit sizes +where you want markers and then call \mpl{input ruler}. + + +\newpage +\subsection{Adding a border}\label{pics-border} + +\textsc{In most documents} the drawings look just fine without any decoration, but sometimes +you might want to add emphasis or pick out part of a drawing. The examples here can +be applied to \mpl{currentpicture} or any other \<picture> +variable.\vadjust{\moveright 396pt\vbox to 0pt{\hsize 4in\vskip -42pt +$$\includegraphics{border.pdf}$$ +\begin{smallcode} +% don't take this one too seriously... +vardef rope expr c = +save hemp, s, w, n, A, a, b; +color hemp; hemp = 1/256 (224, 202, 169); +numeric s, w, n, A; +A = arclength c; s = A/floor(A/2); w = -1; n = -1; +path a[]; for t=0 step s until A + 1: a[incr n] = + (0,+w) rotated angle direction arctime t-3/2s of c of c + shifted point arctime t-3/2s of c of c +.. (0,+w) rotated angle direction arctime t-1/2s of c of c + shifted point arctime t-1/2s of c of c +.. (0,-w) rotated angle direction arctime t+1/2s of c of c + shifted point arctime t+1/2s of c of c +.. (0,-w) rotated angle direction arctime t+3/2s of c of c + shifted point arctime t+3/2s of c of c; +endfor +image(for i=1 upto n: + path b; b = buildcycle(a[i-1], reverse a[i]); + fill b withcolor hemp; + draw b withpen pencircle scaled 1/8; +endfor) enddef; +interim bboxmargin := 16; +draw rope rounded_corners bbox currentpicture; +\end{smallcode}\vss}} + +$$\vbox{\halign{$\vcenter{\hbox{\includegraphics[width=150bp]{#}}}$&\quad$\vcenter{\hbox{#}}$\cr +border-shadow& +\begin{smallcode} +picture P; P = currentpicture; +fill bbox P shifted (3,-3) withcolor 3/4; +unfill bbox P; draw bbox P; +draw P; +\end{smallcode}\cr +border-dashed& +\begin{smallcode} +vardef rounded_corners expr p = + for i=1 upto length p: + subpath (i-15/16, i-1/16) of p .. + endfor cycle +enddef; + +interim bboxmargin := 16; +draw rounded_corners bbox currentpicture + dashed evenly scaled 3/4; +\end{smallcode}\cr +}}$$ + +\newpage +\subsection{Adding a frame}\label{sec:pictureframe} + +As promised at the start of this section, here is the code for the picture +frame drawn round Raphael's young man. +\begin{code} +input picture_frame +beginfig(1); + picture F; + F = thelabel(TEX("\includegraphics{youth.jpg}"), origin); + draw F; draw frame bbox F; +endfig; +\end{code} +All the heavy lifting is done by "frame" macro defined in +"picture_frame.mp" $\longrightarrow$ +\vadjust{\moveright5.2in\vbox to 0pt{\hsize 4in\vskip-184pt +\begin{smallcode} +vardef frame expr P = + save base, side, f, t, u, xx; + picture base, side; path f; numeric t, u, xx; + % work out some measurements + t = arclength subpath (0,1) of P; + u = arclength subpath (1,2) of P; + xx = max(t, u) + 2 pf_wd; + f = unitsquare xscaled xx yscaled pf_wd; + % convenience / nonce function + vardef paint_strip(expr y, wd, shade) = + draw subpath (0, 1) of f + shifted (0, if y < 0: pf_wd + fi y) + withpen pencircle scaled wd + withcolor shade + enddef; + base = image( + % background colour + fill f withcolor gold; + % grey strips + paint_strip(2, 3, 5/4 grey); + paint_strip(3.5, 1/4, grey); + paint_strip(5, 1/4, 1/2[gold, dark]); + paint_strip(-6.5, 1/4, 1/2[gold, dark]); + paint_strip(-6, 1/4, 1/2[gold, dark]); + paint_strip(-2, 2, 5/4 grey); + % spatter with random spots + for i=0 upto 4 * arclength(subpath (0,1) of f): + fill fullcircle scaled uniformdeviate 3/4 + shifted (uniformdeviate xx, uniformdeviate pf_wd) + withcolor dark; + endfor + % decorative balls + for x = 2 step 3 until xx: + draw ball shifted (x, 2); + endfor + ); + % make two trapezium shapes + side = base; + clip side to (pf_wd, 0) -- (pf_wd + u, 0) + -- (2 pf_wd + u, pf_wd) -- (0, pf_wd) -- cycle; + clip base to (pf_wd, 0) -- (pf_wd + t, 0) + -- (2 pf_wd + t, pf_wd) -- (0, pf_wd) -- cycle; + % arrange the pieces around path P + image( + draw base rotated 180 shifted point 1 of P shifted (+pf_wd, 0); + draw base rotated 0 shifted point 3 of P shifted (-pf_wd, 0); + draw side rotated 90 shifted point 0 of P shifted (0, -pf_wd); + draw side rotated 270 shifted point 2 of P shifted (0, +pf_wd); + ) +enddef; +\end{smallcode} +\vss}} + +\noindent This macro also needs some colours: +\begin{smallcode} +color gold, dark, grey; +gold = 1/256(243, 197, 127); +dark = 1/256(144, 87, 50); +grey = 1/256(156, 147, 138); +\end{smallcode} +a picture of a small silvery-gold ball: +\begin{smallcode} +picture ball; ball = image(for i=0 upto 16: + fill interpath(i/16, + fullcircle scaled 10, + fullcircle scaled 3 shifted (-2, 2) + ) withcolor (i/16)[gold, 15/16 white]; +endfor) scaled 1/4; +\end{smallcode} +and an internal variable that defines the width of the frame: +\begin{smallcode} +newinternal pf_wd; pf_wd := 21; +\end{smallcode} +The macro takes a rectangular path $P$ as an argument, and +makes a thin rectangle $f$ that is scaled to the desired width and +the longer of the two sides of the path. This thin rectangle is then +decorated with background colour, strips of colour to suggest depth, a random +spatter-pattern, and a row of little balls. The macro then makes two trapezium +shaped copies of the decorated rectangle, pieces them together around $P$, and returns the result as a +\<picture>. + +\newpage +\section{Annotations} + +\textsc{In some awkward corners}, you may find that you just can't get your label in +the right place with \mpl{dotlabel} even if you adjust \mpl{labeloffset}. In these +cases there are two simple techniques you can use. First, you could separate +drawing the dot from placing the label; given a point $P$ you can try:\mpic{0pt}{callout} +\begin{code} +drawdot P withpen pencircle scaled dotlabeldiam; +label("$P$", P shifted 10 dir 68); +\end{code} +Using \mpl{dotlabeldiam} ensures that your dots match any others done with +\mpl{dotlabel}. +Secondly, if that's not enough, use a temporary pair to create a call out line: +\begin{code} +z0 = P + 20 dir -20; +draw z0 -- P + cutafter fullcircle scaled 8 shifted P + withpen pencircle scaled 1/4; +label.rt("\textit{pole}", z0); +\end{code} +If you want to do this sort of thing often, then it might be worth making a macro. +It is hard to write anything completely general, but see §\ref{sec:extimage} for an +example. + +\medskip\noindent +\textsc{You might also want} to mark a straight line between two points. +\vadjust{\moveright5.3in\vbox to 0pt{\hsize 4.2in +\begin{smallcode} +vardef do_brace(expr a,b,m,r) = + save d, e, n, bb; numeric d, n; pair e; path bb; + n = 1/2 m; d = angle (b-a); + e = up scaled m rotated d shifted r[a,b]; + bb = ((origin {0,n} .. {right} (abs n,n)) + rotated d shifted a -- + ((-abs n,-n){right} .. {0,n} origin {0,-n} .. {right}(abs n,-n)) + rotated d shifted e -- + ((-abs n,n){right} .. {0,-n} origin) + rotated d shifted b + ) shifted (up scaled n rotated d); + draw bb withpen pencircle yscaled .6 xscaled .1666 rotated d; + point 3 of bb +enddef; + +label.lrt("Here",do_brace(z1, z2, -12, 3/4)); +\end{smallcode} +Note that, as well as drawing the braces, the macro uses the grouping provided by \mpl{vardef} to return the +mid point so that you can put a label next to it. +\vss}} +The simplest way to do this is just to use \mpl{drawdblarrow} on a copy of your straight +path shifted to one side, like so: +\begin{code} +drawdblarrow (z1--z2) shifted (12 up rotated angle (z2-z1)); +\end{code} +If you combine this with temporarily setting \mpl{ahangle:=180}, you get the simple +dimension line shown in blue. +$$\includegraphics{braces}$$ +The red braces are a more complex variation on this theme $\longrightarrow$ + +\newpage +\section{Line caps and line joins} + +The PostScript language defines parameters that affect how the ends of each line are +drawn and how lines are joined together. Plain \MP\ provides access to these +parameters through internal variables called "linecap" and "linejoin"; it sets both +of them to the value "rounded" at the start of each job. +\mpic{0pt}{line-caps-and-joins} + +The figure on the right shows the affect of the different settings, using an +exaggerated line width of 2 points (instead of the usual 0.5 points). Some +observations +to note: +\begin{itemize} + \item When $\id{linecap}=\id{squared}$ then \kw{drawdot} produces diamond-shaped + dots, even when you are drawing with the default circular pen. + + \item When $\id{linecap}=\id{butt}$ then \kw{drawdot} produces invisible dots. + They still count towards the bounding box of the picture but there's no mark + on the page. + + \item When $\id{linecap}=\id{squared}$ then \kw{drawarrow} produces some + unpleasant results; even when $\id{linejoin}=\id{mitered}$, you can still + see small jaggies on the slopes of the arrows. + + \item The arrows are nice and sharp when + $\id{linejoin}=\id{mitered}$, but they over shoot the mark slightly. + + \item If you zoom in, you can see the effect of $\id{linejoin}$ on the corners of the grey box + as well as on the arrow heads, but you might not notice the difference when + the picture is printed unless you have a very high resolution printer. + + \item + This drawing was done with \mpl{pencircle scaled 2}, so that the dots + would be easy to see. This does make the arrows drawn with the + default line modes (rounded caps and rounded joins) looks a bit fat; + they look better with the usual \mpl{pencircle scaled .5}. + +\end{itemize} + +There is one more PostScript parameter affecting line joins. \MP\ makes it available as "miterlimit" +and it affects how much a mitered join is allowed to stick out at each corner. Plain \MP\ sets +"miterlimit=10;" which is correct for nearly all drawings. If you set +"miterlimit:=0;" then the mitered line join mode becomes more or less the same as the +beveled mode. + +\newpage +\section{Plotting functions}\label{func} + +\textsc{A selection} of graphs of mathematical functions is presented in this +section, taken from real examples collected over several years. For data +visualizations, see §\ref{dviz}. As ever in this document, the focus is on plain +\MP; the plain format provides no built-in facilities for graphs so you have to do +everything from scratch; but on the other hand there are no new macros or commands +to learn, you get full control of what goes on the page, and you will not spend +hours scratching your head wondering how to adjust the axis labels. + +\subsection{Making axes} + +You can start by drawing a simple set of axes.\mpic{-124pt}{plain-axes} +\begin{smallcode} +path xx, yy; +xx = (left -- right) scaled 130; +yy = (down -- up) scaled 80; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +\end{smallcode} +Here the axes are scaled arbitrarily to 130\,pt and 80\,pt, but you will probably +find it useful to set consistent units, and express sizes in terms of them. Purely +from habit, I use $u$ for the horizontal unit and $v$ for the vertical unit. This +makes it more convenient when you want to add a grid and/or a number +scale.\mpic{-16pt}{numbered-axes} + +\vskip -12pt +\vbox to 0pt{ +\begin{smallcode} +numeric u, v; u = 40; v = 29; +path xx, yy; +xx = (3/2 left -- 5 right) scaled u; +yy = (3/2 down -- 4 up) scaled v; +for x=-1, 1, 2, 3, 4: + draw yy shifted (x * u, 0) withcolor 7/8; % grid + draw (down--up) shifted (x * u, 0); % ticks + label("$" & decimal x & "$", (x * u, -8)); +endfor +for y=-1, 1, 2, 3: + draw xx shifted (0, y * v) withcolor 7/8; % grid + draw (left--right) shifted (0, y * v); % ticks + label("$" & decimal y & "$", (-10, y * v)); +endfor +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +\end{smallcode}\vss} + +\newpage +\subsection{Drawing linear functions} + +\textsc{For simple} linear graphs, you just need to define two points and draw a +line between them; it is tempting to try to make some generalized macro to do this, +but it is hard to make something completely general, so for most graphs it is easier +just to specify two points and use \mpl{draw}; often it is handy to making your line +longer than you need, then trim it using \mpl{cutbefore} and/or \mpl{cutafter} so +that it fits neatly. +\vadjust{\moveright 384pt\vbox to 0pt{\hsize 4in\vskip -100pt\begin{smallcode} +numeric u, m, m', b, b'; +u = 1.44cm; +b = 3.6u; b' = b + 1/2 u; +m = -1; m' = 3/4 m; + +path xx, yy; +xx = (left -- 5 right) scaled u; +yy = xx rotated 90; + +numeric minx, maxx; path ff, gg; +minx = xpart point 1/16 of xx; +maxx = xpart point 15/16 of xx; +ff = (minx, minx * m + b) -- (maxx, maxx * m + b); +gg = (minx, minx * m' + b') -- (maxx, maxx * m' + b'); + +z0 = point 0.4 of ff; +z1 = point 0.54 of ff; +z1 0 = whatever [point 0 of gg, point 1 of gg]; x1 0 = x0; +z1 1 = whatever [point 0 of gg, point 1 of gg]; x1 1 = x1; + +forsuffixes @=0, 1: + draw (x@, 0) -- z@ -- (0, y@) dashed evenly scaled 3/4; + draw z@ -- z1 @ -- (0, y1 @) dashed withdots scaled 1/2; + label.bot("$x_{" & decimal @ & "}$", (x@, 0)); + label.lft("$y_{" & decimal @ & "}$", (0, y@)); + label.lft("$y'_{" & decimal @ & "}$", (0, y1 @)); +endfor +draw ff withcolor 2/3 red; +draw gg withcolor 3/4 blue; +drawarrow xx; drawarrow yy; + +label.rt("$x$", point 1 of xx); +label.top("$y$", point 1 of yy); + +dotlabel.urt("$b$", (0, b)); +dotlabel.urt("$b'$", (0, b')); + +draw thelabel("slope: $m=" & decimal m & "$", 7 up) + rotated angle (1, m) shifted point 2/3 of ff; +draw thelabel("slope: $m'=" & decimal m' & "$", 7 up) + rotated angle (1, m') shifted point 2/3 of gg; +\end{smallcode}\vss}} +$$\includegraphics[width=0.84\textwidth]{linear-graph.pdf}$$ +But in this example it was easier to calculate them using $y=mx+b$. +Note also that spaces are allowed in suffixes, which makes the loop a bit simpler. + +\newpage +In this second example of a linear function, the emphasis of the diagram was on +the angles at the $x$-axis made by the two lines, so the lines were defined using +\mpl{rotated}, \mpl{shifted}, and \mpl{cutbefore} instead. +\vadjust{\moveright 384pt\vbox to 0pt{\hsize 4in\vskip -24pt\begin{smallcode} +path ell, tee, arc; +ell = (left--right) scaled 10u rotated theta shifted P cutbefore xx; +tee = (left--right) scaled 10u rotated psi shifted P cutbefore xx; +arc = subpath (1.6, 3.2) of halfcircle rotated -180 shifted 1/2 up + scaled 10u shifted P rotatedabout(P, psi); +% the rest of the points then follow... +Q = ell intersectionpoint subpath (1.5, 3) of arc; +H = P + whatever * dir psi; +xpart H = xpart Q = xpart M; ypart M = ypart N = 0; +xpart N = xpart P; +L = point 0 of ell; +T = point 0 of tee; +% now get on with the drawing +draw arc dashed withdots scaled 1/4 withcolor 1/2 red; +draw P--N dashed withdots scaled 1/2; +draw Q--M dashed withdots scaled 1/2; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +drawoptions(withcolor 2/3 blue); +draw fullcircle scaled 32 shifted T cutafter tee; +draw fullcircle scaled 28 shifted L cutafter ell; +label("$\psi$", 24 right rotated 1/2 psi shifted T); +label("$\theta$", 20 right rotated 1/2 theta shifted L); +drawoptions(); +% trim the function lines neatly +path boundary; +z1 = point .95 of xx; +z2 = point .95 of yy; +boundary = z1--(x1,y2)--z2; +draw ell cutafter boundary; +draw tee cutafter boundary; +% and finally label the points. +label.bot("$T$", T); +label.bot("$L$", L); +label.bot("$N$", N); +label.bot("$M$", M); +dotlabel.ulft("$P$", P); +dotlabel.lrt("$Q$", Q); +dotlabel.lrt("$H$", H); +\end{smallcode}\vss}} +$$\includegraphics[width=\textwidth]{angles-lines.pdf}$$ +The lines are both trimmed to a convenient path (\id{boundary}) when they are +drawn.\vadjust{\moveright296pt\vbox to 0pt{\vskip 80pt\begin{mplibcode}beginfig(0);drawarrow +origin {right} .. {dir 70} 42 dir 60; + label.lft("\small \dots continues", origin); +endfig;\end{mplibcode}\vss}} + +\begin{smallcode} +numeric u; u = 1cm; + +path xx, yy; +xx = (2 left -- 10 right) scaled u; +yy = (down -- 7 up) scaled u; + +numeric theta, psi; psi = 28; theta = 50; + +pair P, Q, H, N, M, T, L; +P = (4u, 3u); +\end{smallcode} + + +\newpage +\subsection{Making curves for functions with a loop} + +\textsc{To plot a function} you can construct a suitable path using an in-line +\kw{for} +loop like this: +\begin{code} +vardef f(expr x) = x ** 2 enddef; +path ff; +ff = (for x = minx step s until maxx - s: + (x, f(x)) .. + endfor (maxx, f(maxx))) xscaled u yscaled v; +\end{code} +provided you have first defined variables \id{minx} and \id{maxx} to represent the +domain of $x$, and worked out appropriate values for horizontal and vertical +units, $u$, and $v$ so that the range of $f(x)$ fits neatly on your graph. + +The loop +above also uses a variable $s$ to control the number of points used to define the +path.\mwpic{-180pt}{func-powers} +The figures on the right show that over the domain $-3$ to $3$ a step of $\frac12$ +gives enough points for \MP's Bezier curve fitting routines to draw the functions +$x^2$ and $x^3$ accurately, but that you need a step size of $\frac18$, and hence +four times as many points, +for $x^6$ and $x^7$. On modern machines it does not really hurt to calculate +dozens of points, but a step size that generates 1000s of points will be slow to +compile. + +\bigskip\noindent +There are two other techniques to improve the shape of the curve produced by these loops: you can increase +the tension between each point by using \mpl{...} or \mpl{--} instead of \mpl{..} in +the loop; and +if you know how to differentiate your function, you can add a direction at each +step using the $\{\<pair>\}$ syntax: +\begin{code} +vardef f(expr x) = x ** 2 enddef; +vardef fp(expr x) = 2x enddef; % NB "fp" because "f'" is illegal +path ff; +ff = (for x = minx step s until maxx - s: + (x, f(x)){1, fp(x)} .. + endfor (maxx, f(maxx))) xscaled u yscaled v; +\end{code} + +\vfill +\noindent +\hey However in general it is simpler just to increase the number of samples by making a +smaller step size. + +\newpage +\subsection{Making curves for functions from path pieces}\label{sec:pathpieces} + +\textsc{In some situations}, you might find it easier to stich together various +\<path> pieces to make your curve. This can be especially elegant if there is a +symmetry in the path. For example:\mwpic{-48pt}{func-reflection} +\begin{code} +path ff, negative_ff; + +ff = (1,1) for x = 3/2 step 1/2 until 6: ... (x, 1/x) endfor; +ff := reverse ff reflectedabout(origin, dir 45) & ff; +ff := ff scaled 24; +negative_ff = ff reflectedabout(origin, dir -45); + +draw ff withcolor 2/3 red; +draw negative_ff withcolor 2/3 red; +\end{code} + +\smallskip\centerline{\small (Omitting code for the axes, the grid, and the dots at +each \mpl{point} of the paths).} + +\smallskip +\noindent +\begin{itemize} + \item Notice that you can update the path using the assignment operator + “\mpl{:=}”. + \item You need to \mpl{reverse} the reflected portion so that the two ends coincide. + \item The two path segments are spliced together with \mpl{&}. You could use + a path join like \mpl{..} instead, but then the joined path would have an extra + \mpl{point} at \mpl{(1,1)}. + \item Notice also how the vertical part has the same equal spacing of points as + the more horizontal part. +\end{itemize} + +Reflection of a function in the line at 45° gives the inverse of the function, which +is especially useful for $y=1/x$, but it applies to functions generally. So if you want to +plot $y=\sqrt x$ it may be easier to define a path for $y=x^2$ and then reflect it. +This is particularly useful if you want to plot, say, $y=\sqrt[3]x$, over a domain +that includes negative numbers, because \MP\ will not calculate reciprocal powers of +negative numbers.\mwpic{-60pt}{func-cuberoot} +The curve in this chart was created by reflecting the line $y=x^3$. + +\newpage +\subsubsection{Exponential and logarithm functions by reflection} + +\textsc{A further example} of creating paths by +transformation.\mpic{-36pt}{func-exponential} +\begin{smallcode} +numeric u; u = 42; +path xx, yy; +xx = (-3u, 0) -- (5u, 0); +yy = xx rotated 90; +path ee, ll, nn; +numeric minx, maxx, s; +minx = -3; maxx = 1/256 mlog(4.5); s = 1/4; +ee = (for x = minx step s until maxx - s: + (x, mexp(256x)){1, mexp(256x)} ... +endfor (maxx, mexp(256 maxx)){1, mexp(256 maxx)}) scaled u; +ll = ee reflectedabout(origin, dir 45); +nn = (for x=1 step s until 4-s: (x, 1/x) ... endfor (4, 1/4)) scaled u; +nn := reverse nn reflectedabout(origin, dir 45) & nn; + +draw unitsquare xscaled mexp(256) scaled u withcolor 7/8; +draw unitsquare yscaled mexp(256) scaled u withcolor 7/8; +path T[]; +numeric p; p = directiontime dir 45 of ee; +T1 = (precontrol p of ee -- postcontrol p of ee) + shifted - point p of ee scaled 1/2 u shifted point p of ee; +T2 = (precontrol p of ll -- postcontrol p of ll) + shifted - point p of ll scaled 1/2 u shifted point p of ll; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw T1; draw T2; draw interpath(1/2, T1, T2) dashed evenly; +drawoptions(); + +draw nn; label.urt("$1/x$", point 0 of nn); +draw ee withcolor 2/3 blue; label.top("$e^x$", point infinity of ee); +draw ll withcolor 3/4 red; label.top("$\ln(x)$", point infinity of ll); +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +dotlabel.lft("$e$", (0, mexp(256) * u)); +dotlabel.bot("$e$", (mexp(256) * u, 0)); +dotlabel.ulft("$1$", (0, u)); +dotlabel.lrt("$1$", (u, 0)); +\end{smallcode} +\moveright6in\vbox to 0pt{\vss\noindent +If you prefer more ‘normal’ functions, you can define: +\begin{smallcode} +vardef exp(expr x) = mexp(256x) enddef; +vardef log(expr x) = 1/256 mlog(x) enddef; +\end{smallcode}} + +\newpage +\subsection{Functions using trigonometric functions} + +\textsc{As noted} in §\ref{trig}, \MP’s built-in trigonometric functions work in +degrees, this example shows how you might use them in a graph.% +\vadjust{\moveright5in\vbox to 0pt{\vskip-24pt\begin{code} + numeric u, pi; u = 50; pi = 3.141592653589793; + + path xx, yy; + xx = (3.5 left -- 3.6 right) scaled u; + yy = (1.1 down -- 1.2 up) scaled u; + + path ss; + ss = origin for t=1 upto 360: -- (t, sind(t)) endfor; + ss := ss shifted 360 left & ss; + ss := ss xscaled (pi/180) scaled u; + + draw ss cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx + withcolor 3/4 blue; + draw ss shifted (-1/2 pi * u ,0) + cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx + withcolor 2/3 red; + + drawoptions(dashed withdots scaled 1/4); + draw ((1/4 pi, 0) .. (1/4 pi, sind(45))) scaled u; + draw ((1/2 pi, 0) .. (1/2 pi, sind(90))) scaled u; + draw ((3/4 pi, 0) .. (3/4 pi, sind(135))) scaled u; + drawoptions(); + + drawarrow xx; label.rt("$t$", point 1 of xx); + drawarrow yy; label.top("$u(t)$", point 1 of yy); + + for i=-4, -3, -2, -1, 1, 2, 3, 4: + draw (down--up) scaled 2 shifted (pi * i/4 * u, 0); + label.bot(pi_quarters(i), (pi * i/4 * u, -2)); + endfor +\end{code}\vss}} +$$\includegraphics[width=\textwidth]{func-sines}$$ + +For this diagram, the sine wave path ("ss", shown in \blue{blue}) +needs to have two complete cycles, so it is constructed in stages. First the +section from the origin to $2\pi$ is created in a loop; with 360 steps, you can use +\mpl{--} and still get a smooth path. Secondly the cycle is duplicated by splicing +itself to a shifted copy. Thirdly it is $x$-scaled to radians, and then scaled in both +directions to the chosen unit size, and drawn chopped off to the width of +the $x$-axis. The cosine path is the same path, shifted $\frac12\pi$ left, +drawn in \red{red}, and chopped off to fit the same width. + +The fancy fraction labels were produced with this subroutine: +\begin{smallcode} +vardef pi_quarters(expr n) = + save s, f, q; string s, f; numeric q; + s = if n < 0: "-" else: "" fi; q = abs(n); + if q mod 4 = 0: + f = if q > 4: decimal 1/4 q else: "" fi; + elseif q mod 2 = 0: + f = "\frac{" & decimal 1/2 q & "}{2}"; + else: + f = "\frac{" & decimal q & "}{4}"; + fi + "$\scriptstyle" & s & f & "\pi$" +enddef; +\end{smallcode} + +\newpage +\subsection{Manipulating functions} + +\textsc{This second example} with trigonometric functions shows one way to add +two functions, by combining the \MP\ paths themselves.% +\vadjust{\moveright5in\vbox to 0pt{\vskip-24pt\begin{code} + numeric u, pi; u = 50; pi = 3.141592653589793; + + path xx, yy; + xx = (3.5 left -- 4 right) scaled u; + yy = (1.2 down -- 1.3 up) scaled u; + + path ss, tt, uu; + ss = origin for x=1 upto 360: -- (x, sind(x)) endfor; + tt = origin for x=1 upto 360: -- (x, 1/2 sind(3x)) endfor; + uu = origin for x=1 upto 360: -- + (x, ypart point x of ss + ypart point x of tt) endfor; + + forsuffixes $=ss, tt, uu: + $ := $ shifted 360 left & $; + $ := $ xscaled (pi/180) scaled u; + $ := $ cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx; + endfor + + draw ss withcolor 1/2[blue, white]; + draw tt withcolor 1/2[red, white]; + draw uu withcolor 1/4 green; + + label.top("$f(x)=sin(x)$", point 290 of ss); + label.bot("$g(x)=\frac12 sin(3x)$", point 295 of tt); + label.urt("$f(x) + g(x)$", point 350 of uu); + + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); + + for i=-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7: + draw (down--up) scaled 2 shifted (pi * i/6 * u, 0); + label.bot(pi_sixths(i), (pi * i/6 * u, -2)); + endfor +\end{code}\vss}} +$$\includegraphics[width=\textwidth]{func-addition-of-sines}$$ +Notice how the same extension, scaling, and trimming operations +can be applied to all three paths using a \mpl{forsuffixes} loop. +Note that you can use any regular variable name for the loop index; +you don't have to use \mpl{$}, but like \mpl{@} it is a +valid variable name in \MP, and it looks a bit like a placeholder marker in other +languages. + +Note that you need to start with the first point of the path outside the loop +so that you don't end up with a dangling \mpl{--} path connector. Using +\mpl{origin} is just a short cut for writing \mpl{(0, sind(0))}. If you were +plotting a different function this would not work. For example, \mpl{(0, cosd(0))} +is \mpl{(0,1)}. + +\bigskip\noindent +\hey The missing \mpl{pi_sixths} macro is left as an exercise for the reader. +Hint: you can adapt the \mpl{pi_quarters} on the previous page, allowing for halves, +thirds, and sixths instead of halves and quarters. +\newpage +\subsection{Focus on a specific region of a function} + +\textsc{This visual proof} required a large $y$-axis scale.\mwpic{-24pt}{func-epi-v-pie} +The axes are separated to show the +discontinuity in scales, and that the origin is not on the chart.\enlargethispage\baselineskip + +\begin{smallcode}[xleftmargin=0pt] +numeric minx, maxx, s, u, v; +minx = 13/8; s = 1/16; maxx = 19/4; u = 89; v = 3072; + +def f(expr x) = 1/256 mlog(x) / x enddef; +path ff, xx, yy; +ff = for x=minx step s until maxx-s: (x, f(x)) .. endfor (maxx, f(maxx)); +ff := ff xscaled u yscaled v; +xx = origin -- right scaled (maxx-minx) scaled u; +yy = origin -- up scaled 0.09v; +xx := xx shifted point 0 of ff shifted 20 down; +yy := yy shifted point 0 of ff shifted 20 left; + +numeric pi, e, fpi, fe; +pi = 3.141592653589793 u; fpi = f(3.141592653589793) * v; +e = 2.718281828459045 u; fe = f(2.718281828459045) * v; +path ee, pp; +ee = (e, ypart point 0 of xx) -- (e, fe) -- (xpart point 0 of yy, fe); +pp = (pi, ypart point 0 of xx) -- (pi, fpi) -- (xpart point 0 of yy, fpi); + +draw ee dashed withdots scaled 1/4 withcolor 2/3 red; +draw pp dashed withdots scaled 1/2 withcolor 2/3 red; +draw ff withcolor 3/4 blue; + +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +for x=2 upto 4: + draw (down--up) scaled 2 shifted (x * u, ypart point 0 of xx); + label.bot("$" & decimal x & "$", (x * u, ypart point 0 of xx - 2)); +endfor +for y=31 upto 38: + draw (left--right) scaled 2 shifted (xpart point 0 of yy, y/100*v); +endfor +for y=32, 35, 38: + label.lft("$" & decimal (y/100) & "$", (xpart point 0 of yy-2, y/100*v)); +endfor +\end{smallcode} + +\moveright384pt\vbox to 0pt{\vss\hsize 4in\begin{smallcode} +drawoptions(withcolor 1/2 red); +label.bot("$e$", point 0 of ee shifted 4 down); +label.lft("$1/e$", point 2 of ee shifted 2 left); + +label.bot("$\pi$", point 0 of pp shifted 4 down); +label.lft("$\ln\pi/\pi$", point 2 of pp shifted 2 left); + +drawoptions(withcolor 2/3 blue); +label.urt("$\displaystyle y={\ln x\over x}$", point 42 of ff); + +drawoptions(); +label("\dots\ hence\enspace $e^\pi > \pi^e$.", (4u, 0.38v)); +\end{smallcode}} + +\newpage +\subsection{Approximate function diagrams} + +\textsc{Sometimes} you may need to plot a function that does not have a simple +mathematical definition. You can use \MP’s normal path definitions to make a likely +looking approximation.\mwpic{-48pt}{func-stress} +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-140pt] +z1 = 377 right; z2 = 233 up; +path ff; ff = origin .. (72, 144){1,2} .. (84, 144) .. (96, 144){1,1} + .. (220, 220){right} .. (370, 160){2,-1.3}; + +for t=2, 4, 4.9: + draw point t of ff -- (xpart point t of ff, y2 + 6) + dashed evenly scaled 1/2; +endfor +label.top("Strain hardening", + (1/2 (xpart point 2 of ff + xpart point 4 of ff), y2)); +label.top("Necking", + (1/2 (xpart point 4 of ff + xpart point 4.9 of ff), y2)); + +path rr; +rr = point 0.4 of ff -- (xpart point 0.8 of ff, ypart point 0.4 of ff) -- point 0.8 of ff; +draw rr; label.bot("Run", point 1/2 of rr); label.rt("Rise", point 3/2 of rr); + +vardef pin_label@#(expr p, a, b)= + draw a -- b cutbefore fullcircle scaled 8 shifted a withpen pencircle scaled 1/4 withcolor 1/2 white; + label@#(p, b); +enddef; +pin_label.lrt("Yield strength", point 1.2 of ff, point 2 of ff + (8, -18)); +pin_label.bot("Ultimate strength", point 4 of ff, point 4 of ff + (4, -24)); +pin_label.bot("Fracture", point 5 of ff, point 5 of ff + (-8, -18)); + +draw ff withpen pencircle scaled 1 withcolor 2/3 blue; +clip currentpicture to unitsquare scaled 400; % clip thick pen at origin + +drawdblarrow z1 -- origin -- z2; +label.ulft("Strain, $\epsilon$", z1); +label.urt("Stress, $\sigma$", z2); + +label("$\displaystyle\hbox{Young's modulus} = \hbox{Slope} = {\hbox{Rise}\over\hbox{Run}}$", + 1/2 z1 shifted 36 up) withcolor 2/3 blue; +\end{smallcode} + +\newpage +\subsubsection{Taming Bezier paths with controls} + +\textsc{It takes some} practice to translate a sketch of a curve into a smooth +path. Plain \MP\ inherits from \MF\ a useful \id{flex} macro, that takes a list of \<pair>s +(any number of them) and produces a pleasing path through them. As Knuth says in the +\mfbook: +“The idea is to specify two endpoints, $z_1$ and $z_n$, together with +one or more intermediate points where the path is traveling in the +same direction as the straight line from $z_1$ to~$z_n$; these +intermediate points are easy to see on a typical curve, so they +are natural candidates for key points.” For example: +\begin{code} +draw flex(z1,z2,z3) & flex(z3,z4,z5) +flex(z5,z6,z7) & flex(z7,z8,z9,z1) & cycle; +\end{code} +(with appropriate definitions of the points), produces this: +\lower 12pt\hbox{\smash{\begin{mplibcode} +beginfig(0); +z1=(0,509); +z2=(-14,492); +z3=(-32,481); +z4=(-42,455); +z5=(-62,430); +z6=(-20,450); +z7=(42,448); +z8=(38,465); +z9=(4,493); + draw flex(z1,z2,z3) & flex(z3,z4,z5) & +flex(z5,z6,z7) & flex(z7,z8,z9,z1) & cycle; + for i=1 upto 9: draw z[i] withpen pencircle scaled 2 withcolor red; endfor + currentpicture := currentpicture scaled 0.7071 rotatedabout(z3, -20); +endfig; +\end{mplibcode}}} + +\bigskip\noindent +\textsc{Another approach} is just to define the end-points and some control points, +and then define a path that is shaped by the control points but does not actually go +through them. Consider this program:\mwpic{-20pt}{func-pulse} +\begin{code} +vardef pulse(expr w, h, d) = +for i=0 upto 4: x[i] = w/4 * i; endfor + y0 = y1 = 0; + y3 = y4 = d; + y2 = h; + z0 .. 1/2[z0, z1] .. controls z1 + .. 1/2[z1, z2] .. controls z2 + .. 1/2[z2, z3] .. controls z3 + .. 1/2[z3, z4] .. z4 +enddef; +draw pulse(300, 100, -40); +\end{code} +This produces the smooth blue line shown on the right. A second copy of the line is +shown below, decorated with the three control points $z_1$, $z_2$, and $z_3$ in red, +and showing the six points of the path as small black circles. You can tweak this +curve by adjusting the controls left or right, or changing the mediation parameters +so that the points on the path are closer to one control point than the other. + +\newpage +\subsection{Parametric plots} + +\textsc{If you want to plot} one function against another, then you can make each +coordinate a function of an independent variable. All functions can be converted, +trivially, to this form: +\begin{code} +vardef f(expr x) = x enddef; +vardef g(expr x) = sind(x) enddef; % or whatever function ... +path ff; ff = for t = mint step s until maxt - s: + (f(t), g(t)) .. +endfor (f(maxt), g(maxt)); +\end{code} +But you can make more complicated curves, for example curves +that can have more than one value for $y$ for a given $x$, if you change $f(x)$ and +$g(x)$ appropriately. +The first example\mwpic{-24pt}{func-lemniscate} shows the lemniscate of Bernoulli +and was drawn like this: +\begin{smallcode} +numeric a, c; c = 128; a = sqrt(2) * c; +vardef f(expr x) = a * cosd(x) / (1 + sind(x) ** 2) enddef; +vardef g(expr x) = f(x) * sind(x) enddef; +numeric mint, maxt, s; mint = 0; s = 30; maxt = 360; +path p; +p = for t = mint step s until maxt - s: + (f(t), g(t)) ... +endfor cycle; +draw p withcolor 3/4 blue; +path xx, yy; +xx = (left -- right) scaled 200; +yy = (down -- up) scaled 64; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +dotlabel.bot("$F_1$", c * left); +dotlabel.bot("$F_2$", c * right); +\end{smallcode} +Although sometimes, especially when you know the domain is 0° to 360° and that the +path is cyclic, it is simpler to write the two expressions directly in the +loop:\mwpic{-108pt}{func-parametric} +\begin{smallcode} +path p; +p = for t = 0 upto 360: (144 cosd(3t), 89 sind(2t)) ... endfor cycle; +draw p withcolor 2/3 red; +\end{smallcode} +which produces this Lissajous curve $\longrightarrow$ +\newpage +\subsubsection{Parametric plots with polar coordinates: Maurer roses} + +\textsc{Instead of} defining separate functions for the $x$ and $y$ coordinates in a +parametric plot, it is sometimes convenient to use \MP’s polar coordinate notation (discussed in +§\ref{polar}). The family of “rose” plots, based on $r=\cos(n\theta)$, is easy to +do in this way. Here is a Maurer rose, based on $r=\cos(2\theta)$ and connecting +every 29th point on the curve.\mpic{-24pt}{func-maurer-rose} + +\begin{code} + numeric n; n = 2; + path r; r = (for t=0 upto 360: + cosd(n * t) * dir t ... + endfor cycle) scaled 150; + + numeric d; d = 29; + path k; k = for t = 0 upto 360: + point d * t mod 360 of r -- + endfor cycle; + + draw k dashed withdots scaled 1/8 + withpen pencircle scaled 1/4 + withcolor 1/2[blue, white]; + + draw r withcolor 2/3 red; + + path xx, yy; % you might not need the axes... + xx = (left -- right) scaled 160; + yy = (down -- up) scaled 160; + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); +\end{code} +Different values of $n$ and $d$ give an endless variety of patterns. But note that if +your choice of $d$ exceeds $2^{15}/360 \simeq 91$ you will need to use +"-numbersystem=double" to avoid arithmetic overflow. + +\newpage +\section{Drawing plane curves} + +{\textsc{“Plane curves offer} a rich \dots\ field of study which may be approached +from a quite elementary level. Anyone who can draw a circle with a given centre and +a given radius can draw a cardioid or a limaçon. Anyone who can use a set square +can draw a parabola or a strophoid” \hfill — \textsl{A Book of Curves}, E.\@ H.\@ +Lockwood\parfillskip0pt\par} + +\subsection{Parabola} + +\textsc{The simplest way} to get a parabola curve is to plot $y=x^2$ over $-1 \le x +\le 1$ and then transform as required (see next page), but it can be illuminating to follow more +traditional constructions, such as that shown on the +right.\mwpic{-180pt}{curves-parabola} +\vadjust{\moveright7.2in\vbox to 0pt{\hsize 200pt\noindent +The idea here is that you put the right angle of your set square on the vertical +axis with the short side touching $S$, and then draw the long side. If you do this +in enough places, the edges form a parabola. In the \MP\ code here, the intersection +of each ray with the one before is captured as variable $t$ and then added one at a +time to the \<path> \id{parabola}, (using a neat trick at the beginning). +\vss}} +\begin{smallcode}[xleftmargin=0pt] +pair A, S; A = origin; S = 66 right; +path parabola, last; +for q = -144 step 8 until 144: + pair Q; Q = (0, q); + path ray; + ray = (origin -- unitvector(S - Q)) scaled 300 + rotated if q < 0: - fi 90 shifted Q; + draw S -- ray withcolor 7/8; + if known last: + pair t; + t = whatever[point 0 of ray, point 1 of ray] + = whatever[point 0 of last, point 1 of last]; + parabola := if known parabola: parabola .. fi t; + fi + last := ray; +endfor + +draw parabola withcolor 3/4[red, white]; +for t=0 upto length parabola: + draw point t of parabola withpen pencircle scaled 3/2 withcolor red; +endfor +draw (up--down) scaled 300; + +dotlabel.lft("$A$", A); +dotlabel.rt("$S$", S); +\end{smallcode} + +\newpage +\subsubsection{Parabola from directrix and focus} + +\textsc{The classical definition} of the parabola is the locus of points that are +equidistant from a given line (the \textit{directrix}, shown as $A\to B$ on the +right) to a given focus point (shown as $S$).\mpic{-24pt}{curves-parabola-directrix} +Each point on the parabola path is related to each point, and you can construct an +equilateral parallelogram at each point as shown. This leads to a macro that +generates a parabola given two \<pair> variables to define the directrix and another +to define the focus: +\begin{code} +vardef parabola(expr A, B, S) = + save m, q, n, parabola; + pair n; % n = nearest point to S on A--B + n = whatever[A, B]; n - S = whatever * (A-B) rotated 90; + path parabola; + for t=0 step 1/64 until 1: + pair m, q; + m = 1/2[S, t[A, B]]; + q = whatever[S, n]; + q - m = whatever * (S - m) rotated 90; + parabola := if known parabola: parabola -- fi + q reflectedabout(S, m); + endfor + parabola +enddef; + +\end{code} + +\subsubsection{Parabola from $y=x^2$ and $dy/dx=2x$} + +Alternatively you could define a “unit parabola” like this: +\begin{code} +path ff; ff = (-1, 1){1, -2} .. (-1/2, 1/4){1, -1} .. + (0, 0){right} .. (1/2, 1/4){1, 1} .. (1, 1){1, 2}; +\end{code} +and then — using the points defined above, where $o$ is the mid-point of $n\to S$ — scale it and place it like this: +\begin{code} +draw ff scaled 4 abs(S-o) rotated angle (B-A) shifted o; +\end{code} + +\newpage +\subsection{Hyperbola} + +\textsc{The traditional construction} for the hyperbola is identical to the +construction for the parabola given above, except that the base line is a circle +rather than a straight line.\mwpic{-48pt}{curves-hyperbola-construction} +As a result, the shape of the curve changes depending on the radius of the base +circle, unlike the parabola. The curve is bounded by the two asymptotes, which are +the lines from the centre of the circle $O$ through the tangent points from the focus +$S$. When the ratio of $OS/OA = \sqrt2$, the asymptotes are at right angles. + +You can also draw the hyperbola as the function $y=1/x$ (as shown in +§\ref{sec:pathpieces}), which can be transformed to any desired shape. +The untransformed function is shown on the bottom left, with the focus $S$ +at the point $(\sqrt2, \sqrt2)$. If the desired angle between the asymptotes is +$2\alpha$, the transformation can be created like this: +\begin{code} +numeric alpha; alpha = 34; transform t; +origin transformed t = origin; +right transformed t = dir -alpha; +up transformed t = dir alpha; +\end{code} +This can be applied to the hyperbola curve itself and to the axes. But the focus +will remain at the same distance from the origin, as shown below right. +$$\includegraphics[width=0.9\textwidth]{curves-hyperbola-function}$$ + +\newpage +\subsection{Ellipse} + +\textsc{You can draw an ellipse} in \MP\ by scaling the standard \mpl{fullcircle} +path by a different amount in each direction. By convention, the $y$-axis is the +minor axis of an ellipse.\mwpic{-24pt}{curves-ellipse} +The ellipse shown on the right, was defined like this: +\begin{code} +path ellipse; +ellipse = fullcircle scaled 320 yscaled 5/8 rotated 13; +\end{code} +Then the lengths of the semi-major axes, $a$ and $b$, were extracted like this: +\begin{code} +numeric a, b; +2a = abs (point 4 of ellipse - point 0 of ellipse); +2b = abs (point 6 of ellipse - point 2 of ellipse); +\end{code} +If you already had $a$ and $b$, then you could use them directly to scale your +ellipse; the following snippet would produce the same elliptical path: +\begin{code} +numeric a, b; a = 160; b = 100; path ellipse; +ellipse = fullcircle xscaled 2a yscaled 2b rotated 13; +\end{code} + +\bigskip\noindent +The “eccentricity”, $e$, of the ellipse is the ratio between the distance from the centre +to each focus and the semi-major axis, $a$. By definition, the distance from $F_1$ +to $T$ to $F_2$ is constant as $T$ moves round the ellipse and is equal to $2a$. +Hence when $T$ lies on the minor axis, you have $TF_1=a$, and so $a^2 = b^2 + +a^2e^2$, and $e^2=1-b^2/a^2$: +\begin{code} +numeric e; e = 1 +-+ b/a; % the Pythagorean difference operator +\end{code} +The focus points can then be found like this: +\begin{code} +z0 = 1/2[point 0 of ellipse, point 4 of ellipse]; +z1 = e[z0, point 0 of ellipse]; +z2 = e[z0, point 4 of ellipse]; +\end{code} +\vfill +\moveright 384pt\vbox to 0pt{\vss +The tangent and the normal at $T$ were added like this: +\begin{code} +numeric t; t = 1.732; +draw (left--right) scaled 21 + rotated angle direction t of ellipse + shifted point t of ellipse; +draw (1/2 down--up) scaled 21 + rotated angle direction t of ellipse + shifted point t of ellipse; +\end{code}} +\newpage +\subsubsection{Tangent from external point to ellipse} + +$$\includegraphics[width=\textwidth]{curves-ellipse-tangents}$$ +To find the tangent points from an external point $A$ to an ellipse, the classical +construction is to draw an arc centred at $A$ through one focus point, then draw a +second arc centred at the other focus with radius $2a$. The intersection points, +$P$ and $Q$, of these two arcs are the images of the first focus point in the +required tangents (because $F_2TF_1=2a$ by definition, and $F_2P=2a$ by +construction), and so the tangent points $T$ and $T'$ are the intersections of +$F_2P$ and $F_2Q$ with the ellipse. + +\vfill\noindent +There is no such direct construction for the nearest point on an ellipse to a given +point, but you can use the macro \id{solve} to find it numerically. The blue arrow +shows the shortest distance from $A$ to the ellipse. +\vadjust{\moveright 384pt\vbox to 0pt{\vss +\begin{smallcode} +secondarydef a through b = + begingroup; save d; numeric d; d = abs(a-b); + (1+12/d)[b,a]--(1+12/d)[a,b] endgroup +enddef; +path ellipse; ellipse = fullcircle scaled 300 yscaled 5/8 rotated 13; +z0 = 1/2[point 4 of ellipse, point 0 of ellipse]; +numeric a, b, e; +2a = abs (point 4 of ellipse - point 0 of ellipse); +2b = abs (point 6 of ellipse - point 2 of ellipse); +e = 1 +-+ b/a; +z1 = e[z0, point 0 of ellipse]; +z2 = e[z0, point 4 of ellipse]; +z3 = 240 dir 25; +path pp, qq; +pp = fullcircle scaled 2 abs (z1 - z3) shifted z3; +qq = fullcircle scaled 4a shifted z2; +z4 = pp intersectionpoint qq; +z5 = reverse pp intersectionpoint qq; +numeric t, u; +(t, whatever) = ellipse intersectiontimes (z2 -- z4); +(u, whatever) = ellipse intersectiontimes (z2 -- z5); +vardef f(expr x) = + angle (z3 - point x of ellipse) + 90 > angle direction x of ellipse +enddef; +drawarrow z3 -- point solve f(0, t) of ellipse withcolor 2/3 blue; +drawoptions(dashed evenly withcolor 7/8); +draw point 0 of ellipse through point 4 of ellipse; +draw point 2 of ellipse through point 6 of ellipse; +drawoptions(withcolor 3/4); +draw z4 -- z1 -- z5; +draw z2 -- z4 -- z3 -- z5 -- cycle; +draw point t of ellipse -- z1 -- point u of ellipse; +drawoptions(); +draw point t of ellipse -- z3 -- point u of ellipse withcolor 2/3 red; +dotlabel.llft("$F_1$", z1); dotlabel.llft("$F_2$", z2); +dotlabel.urt("$A$", z3); +dotlabel.ulft("$P$", z4); dotlabel.lrt ("$Q$", z5); +dotlabel.ulft("$T$", point t of ellipse); +dotlabel.lrt("$T'$", point u of ellipse); +draw ellipse; +picture P; P = currentpicture; currentpicture := nullpicture; +draw pp dashed withdots scaled 1/2; +draw qq dashed withdots scaled 1/2; +bboxmargin := 24; clip currentpicture to bbox P; draw P; +\end{smallcode} +\vskip -48pt}} + +\newpage +\subsection{Cardioid} + +\textsc{To draw a cardioid by hand}, you can draw a base circle, mark a fixed point $A$ on it, and +then draw a circle centred at any point $Q$ on the circle that passes through point +$A$. If you then repeat this for many different positions of Q, the cardioid is the +curve that encloses all the circles.\mpic{-24pt}{curves-cardioid-simple} +But for \MP, you want only a single point $P$ from the circumference of each circle; +this turns out to be the image of $A$ reflected in the tangent at each point $Q$, like so: +$$\includegraphics[width=0.7\textwidth]{curves-cardioid-construction}$$ +\vskip -84pt\noindent +With a small step size $s$ and a base circle \id{base}, this suggests: \begin{smallcode} +pair A; A = point 0 of base; +path cardioid; cardioid = for t = 0 step s until length base: + A reflectedabout(precontrol t of base, postcontrol t of base) .. +endfor cycle; +\end{smallcode} +You can also show that $AP=2a(1+\cos\theta)$, where $a$ is the radius of the +base circle and $\theta$ is the angle that $AP$ makes with the diameter through +$A$, so you might use: +\begin{smallcode} +cardioid = for t=0 upto 360: 2a * (1+cosd(t)) * dir t .. endfor cycle; +\end{smallcode} + +\newpage +\subsection{Limaçon} + +\textsc{The limaçon can be seen} as a generalization of the cardioid, obtained by +moving point $A$ off the base circle. +\vadjust{\moveright356pt\vbox to 0pt{\vskip -20pt\noindent +\rlap{\includegraphics[scale=0.833]{curves-limacon-simple}}\vss}} +Here $A$ has been moved to the left, but each $P$ on the curve is still $A$ +reflected in the tangent at each $Q$. The “hole” gets larger as $A$ moves away from +the \id{base} circle; when $A$ touches the \id{base} the hole disappears and the +curve becomes the cardioid, as before. + +Following this ruler-and-compasses approach, the red limaçon path in the figure here +was generated from the \id{base} circle shown in blue. +\begin{smallcode} +pair A; A = 2[center base, point 0 of base]; +path limacon; limacon = for t = 0 step s until length base: + A reflectedabout(precontrol t of base, postcontrol t of base) .. +endfor cycle; +\end{smallcode} +Or if you prefer a more trigonometrical approach: +\begin{smallcode} +limacon = for t=0 upto 359: 2a*(1+2cosd(t))*dir t .. endfor cycle; +\end{smallcode} +Here $2a$ is the diameter of the blue \id{base} circle. Note that if you use +\mpl{sind}\\ instead of \mpl{cosd} you get the same curve rotated $90^\circ$. + +\vfill +\noindent +An alternative approach (due to Albrecht Dürer) is shown below. In this dia- +\par\kern 2pt +\vbox{\halign{#&\quad\vbox{\hsize=2.4in\noindent #}\cr +$$\includegraphics{curves-limacon-durer}$$ +&gram the base circle is divided into 12 parts like a +clock face. At 1 o’clock, you draw a line segment of a given +length parallel to the radius to 2 o’clock; at 2 you draw the same length +segment parallel to 4 o’clock, and so on. The limaçon is the curve through +the far ends of each segment (plus any intermediate points required). +This approach of doubling the angles makes it more obvious that the limaçon goes round twice, as it +were. The path was generated like this: \cr}} +\smallskip +\begin{smallcode} +limacon = for t=0 upto length base-1: + 42 dir angle point 2t of base shifted point t of base .. +endfor cycle; +\end{smallcode} + +\newpage +\subsection{Astroid} + +\textsc{Readers of a certain age} may recall threading strings between +pegs on a board to make the astroid. It is the envelope of a line of a given +length drawn from $x$-axis to $y$-axis at all possible points.\mpic{-24pt}{curves-astroid} +In \MP\ the simplest way to draw the astroid curve (and the “strings”) is to use a +base circle and the points $A$ and $B$ at the ends of each line that have the $x$ +part and $y$ part of each point $T$ round the base circle. +$$\includegraphics[scale=0.8]{curves-astroid-construction}$$ +Then the point $P$ on $A \to B$ that is closest to $T$ will lie on the astroid, so you +can make the path with: +\begin{smallcode} +path astroid; astroid = for t=0 step 1/16 until 8: + hide(pair a, b, p; + a = (xpart point t of base, 0); b = (0, ypart point t of base); + p = whatever[a, b]; p-point t of base = whatever * (a-b) rotated 90; + ) p -- endfor cycle; +\end{smallcode} +Note that you need to use “\mpl{--}” so that the cusps stay neatly +pointed.\marginpar{\vskip-38pt\small\noindent +\llap{\hey\,}The geometry of the subtended angles shows that the length of the arc +$T\to S$ equals the length of the arc from $T\to P$ on the quarter-sized circle +through $T$ and $M$. So the astroid is also the path of a point on the smaller +circle rolling around the inside of the base circle.} + +\newpage +\subsubsection{Astroid and cousins} + +The geometry of the astroid also allows us to define a simple parametric equation +for the point $P$. +$$\includegraphics[scale=0.8]{curves-astroid-construction}$$ +If the distance $OT = a$, then $OA = BT = a\cos\theta$. +But then $BP = BT\,\cos\theta = a\cos^2\theta$, and the +$x$-coordinate of $P = BP\,\cos\theta=a\cos^3\theta$. By a similar +argument the $y$-coordinate is $a\sin^3\theta$, so the parametric +equations for $P = (x, y)$: +$$\centerline{$x=a\cos^3\theta$ \quad and \quad $y=a\sin^3\theta$}$$ +This is used to make this rather psychedelic family of astroid cousins $\longrightarrow$ + +\moveright384pt\vbox to 36pt{\vss +$$\includegraphics[scale=0.9]{curves-astroid-family}$$ +\begin{smallcode} +numeric a; a = 144; input colorbrewer-rgb +for n=1 upto 7: + path p; p = a * right for t=6 step 6 until 90: + .. a * (cosd(t) ** n, sind(t) ** n) + endfor; + p := for i=0 upto 3: p rotated 90i & endfor cycle; + fill p withcolor Oranges[9][n]; draw p; +endfor +\end{smallcode}} + + +\newpage +\subsection{Cycloid} + +\textsc{Cycloids} are the curves made by points on the circumference of a +rolling wheel. In the first diagram the cycloid is drawn in red and the +corresponding rolling wheel in blue. The main idea in this diagram is to make the +whole drawing depend on just a few parameters; here there are two: the radius $r$ +and the amount of rotation $θ$. If we make $r$ bigger, the drawing will be +scaled up; if we change $θ$, the wheel will appear to have rolled along. +\mpic{-66pt}{cycloids} + + +\marginpar{\par\kern1in +\begin{itemize} + \item Near the beginning we define $\pi=3.14159265$, as there’s no such constant + built in, but it makes the source more understandable to write "pi/180" + instead of "0.017453". It would be nice to use the Greek letters themselves + in the source, but \MP\ only lets you use plain ASCII characters, to you + have to write "pi" instead. Later on "t" is used instead of $\theta$. + + \item The path of the cycloid $c$ is defined using an inline "for" loop. There’s a + slight awkwardness to doing this as you have to repeat yourself either at + the beginning or the end, because you can’t have a dangling "--" or ".." at + the end of the path. With a closed path it’s easier because you can just + put "--cycle" after the "endfor". The strange numbers here are because + we are going from a rotation of $-100°$ to $+460°$; $360°$ corresponds to + one hop of the cycloid. + + \item The axes are done in the usual way, except that we use "xpart" and the + "point .. of .." notation to make the $x$-axis neatly line up with the ends + of the cycloid path. + + \item To label points with dots but no text it’s convenient just to fill a + circle scaled to "dotlabeldiam"; this internal parameter is the current size + to be used for the dots in "dotlabel". + +\end{itemize}} + +\mpexternal[xleftmargin=0pt]{cycloids-code.mp} + +\noindent +You can generalize the picture to make cycloids where the point tracing the +cycloid is not on the circumference doing the rolling; the classic example is the +wheel of the train with a flange. Here I have added $R$ to define the radius of an +outer rim, while the wheel still rolls along a circle of radius $r$. +\mpic{-40pt}{cycloids-extra} +You might like to experiment with making $R<r$. Note also that variable names are +case sensitive in \MP. + +\mpexternal[xleftmargin=0pt]{cycloids-extra-code.mp} + +\noindent The output\mpic{-122pt}{cycloids-extra} is repeated at the right to save you flicking pages. + +\newpage +\subsubsection{The cycloid compared to other curves} + +\noindent\textsc{You can't easily} draw a cycloid through two arbitrary points, but +if you get the size of the generating circle right, you can make it pass through +points at each end of a quarter circle, and then it's easy to draw other curves +between the two points. \vadjust{\moveright5.25in\vbox to 0pt{\vskip-48pt\begin{smallcode} +numeric r; r = 164; +path Y, L, C, P, S; + +Y = origin for t=5 step 5 until 140: + -- (0, r) rotated t shifted (t/57.29577951308232*r, -r) +endfor cutafter (origin -- (4r, 0) rotated -45); + +z0 = point 0 of Y; +z1 = point infinity of Y; + +L = z0 -- z1; +C = quartercircle rotated 180 scaled 2x1 shifted (x1, y0); +% The idea here is to use the derivative as the direction at each point. +% If you treat A as x=-1, and B as x=0 and used x=-1/2 in the middle, +% then three points are enough to make the curves look realistic. +% parabola f = x^2, f' = 2x +P = z0{1,-2} + ... (xpart 1/2[z1, z0], ypart 1/4[z1, z0]){1,-1} ... z1 {1, 0}; +% sixth degree f = x^6, f' = 6x^5 +S = z0{1,-6} + ... (xpart 1/2[z1, z0], ypart 1/64[z1, z0]){1, -6/32} ... z1 {1, 0}; + +draw z0 -- (x0,y1) -- z1 withcolor 3/4; + +drawoptions(withcolor 2/3 red); + draw L; dotlabel.urt("Line", point 1/4 of L); +drawoptions(withcolor 1/2 green); + draw C; dotlabel.urt("Circle", point 1 of C); +drawoptions(withcolor 1/4[red, green]); + draw P; dotlabel.urt("Parabola", point 1/2 of P); +drawoptions(withcolor 3/4[red, green]); + draw S; dotlabel.llft("Sixth degree", point 3/4 of S); +drawoptions(withcolor 1/2 blue); + draw Y; dotlabel.urt("Cycloid", point 22 of Y); +drawoptions(); +dotlabel.ulft(btex $A$ etex, z0); +dotlabel.urt(btex $B$ etex, z1); +\end{smallcode}\vss}} +Here is an example with an inverted cycloid, the +so-called \textit{brachistochrone} (the curve joining two points such that a body +travelling along it under gravity takes a shorter time than is possible along any +other curve between the points). +$$\includegraphics{brachisto}$$ + +\newpage +\subsection{Spirals} + +\textsc{D'Arcy Thompson} tells us, in \textsl{On Growth and Form}, that the spiral +of Archimedes “may be roughly illustrated by the way a sailor coils a rope upon the +deck; as the rope is of uniform thickness, so in the whole spiral coil is each whorl +of the same breadth as that which precedes and as that which follows it”. In +mathematical terms the radius of the spiral is proportional to the angle turned, so that +$r=a\theta$.\mpic{-36pt}{curves-spiral-archimedes} +This is very simple to program in \MP. +\begin{code} +numeric a; a = 1/8; path S; +S = origin for t=1 upto 360: .. a * t * dir t endfor; +\end{code} +except that you are unlikely to need one point for every degree of turn in your spiral, so you are +more likely to code: +\begin{code} +S = origin for t=1 upto 360: .. a * t * dir 8t endfor; +\end{code} +which spreads the points out and gives you eight full turns, or perhaps +\begin{code} +S = origin for t=1 upto 90: .. 1/12 t * dir 16t endfor; +\end{code} +which would give you four complete turns with a tighter spacing.\marginpar{\small +The rope was drawn (very slowly) with the \mpl{rope} macro from §\ref{pics-border}.} + +\bigskip\noindent +The next simplest is the logarithmic spiral where you have +$r=a^\theta$.\mwpic{10pt}{curves-spiral-equiangular} This is also very simple to +program in \MP, provided you are careful about the scaling. The complete program +for the spiral shown on the right was: +\begin{code} +numeric a; a = 2.6; path S; +S = right for t=1 upto 360: .. a ** (t/64) * dir 4t endfor; +drawarrow S; +\end{code} +Note that $a$ was carefully chosen to get a curve that would fit the page, and that +$t$ has been divided by 64 to bring it into a suitable range to work with the +default number system. + +\newpage +\subsubsection{Logarithmic spiral and the golden rectangle} + +\textsc{The logarithmic spiral} is connected to growth in nature. If you start with +a small square and keep adding squares scaled to the longer side of the resulting +rectangle, you get the golden rectangle and the logarithmic spiral emerges from +it.\mpic{-48pt}{curves-spiral-gnomon-sq} +\begin{code}[xleftmargin=0pt, xrightmargin=-20pt] +drawoptions(withpen pencircle scaled 1/4 withcolor 1/4); +path s[]; s0 = unitsquare; +fill s0 withcolor 1/2[2/3 blue, white]; draw s0; +numeric a, b, t, n; a = 1; b = 1; n = 11; +for i = 1 upto n: + t := b; b := b + a; a := t; % Fibonacci sequence + s[i] = unitsquare scaled a; + s[i] := s[i] shifted (point i of s[i-1] - point i-1 of s[i]); + fill s[i] withcolor (1/2 + i/32)[2/3 blue, white]; + draw s[i]; +endfor +% cross hairs +for i = n-1 upto n: + draw point i-2 of s[i-2] -- point i of s[i]; +endfor +drawoptions(); +% Draw the spiral as a red arrow +drawarrow origin for i=0 upto n: .. point i of s[i] endfor + withcolor 2/3 red; +% Show the Fibonacci sizes for the bigger boxes +for i = 5 upto n: + label(TEX(decimal arclength subpath (0, 1) of s[i]) + scaled 0.8 rotated angle point n of s[n], center s[i]); +endfor +% Rotate whole picture to show off the spiral +currentpicture := currentpicture rotated - angle point n of s[n]; +\end{code} +\moveright 396pt \vbox to 0pt{\vss\hsize 4in\small +\noindent\llap{• }You can't assign to a pair literal in \MP, so you cannot write + \mpl{(a,b) := (b,a+b)}; use a temporary numeric instead. + +\noindent\llap{• }The uses of \mpl{point} with the square paths \mpl{s[]} +exploit the fact the the \mpl{unitsquare} path is cyclic, so point 4 is the same +as point 0, and so on. + +\noindent\llap{• }Note also the rotation of the labels, so that they are horizontal +when the whole picture is rotated at the end to show the spiral better. +\par} + + +\newpage +\subsubsection{Logarithmic spiral and similar triangles} + +\textsc{This drawing} starts with a large triangle and transforms it to make +smaller similar copies. The spiral is drawn through the apex of successive +transformed triangles.\mpic{0pt}{curves-spiral-gnomon-trig} +\begin{code}[xleftmargin=0pt, xrightmargin=-80pt] +path t[], base; pair apex; +base = (left--right) scaled 100; +apex = whatever * dir +72 shifted point 0 of base + = whatever * dir -72 shifted point 1 of base; +t0 = (base -- apex -- cycle); + +transform S; +r = arclength subpath (0, 1) of t0 / arclength subpath (2, 3) of t0; +point 0 of t0 transformed S = (r*r)[point 0 of t0, point 2 of t0]; +point 1 of t0 transformed S = point 0 of t0; +point 2 of t0 transformed S = point 1 of t0; + +n = 16; +for i=1 upto n: + t[i] = t[i-1] transformed S; + draw subpath (2,3) of t[i] withpen pencircle scaled 1/4; +endfor + +drawoptions(withpen pencircle scaled 1/8 withcolor blue); +draw point 0 of t0 -- point 3/2 of t0; +draw point 0 of t1 -- point 3/2 of t1; +drawoptions(); +draw t0; +drawarrow point 2 of t[n] for i=n-1 downto 0: + .. point 2 of t[i] endfor withcolor 2/3 red; + +z0 = whatever[point 0 of t0, point 3/2 of t0] + = whatever[point 0 of t1, point 3/2 of t1]; +currentpicture := currentpicture rotated - angle (point 2 of t0 - z0); +\end{code} +\moveright 396pt \vbox to 0pt{\vss\hsize 4in\small +\noindent The \<transform> $S$ is defined implicitly. It is sufficient +to give equations for three non-collinear points, and \MP\ will work out +the rest. In order to do this, you need to know the ratio of $x/a$, but by +definition $a/b=b/x$, so $x=b^2/a$, hence $x/a=(b/a)^2$. The code shown +sets $r=b/a$, and then uses $r^2$ as the required fraction along $a$. + +\smallskip\noindent\hey +This construction also works for other triangles, but it looks more elegant with +an isosceles with base angles of $72^\circ$ as shown. +\par} + + + +\newpage +\section{Eggs}\label{eggs} + +\textsc{Drawing bird's eggs} excites a curious fascination in some people. This +section shows some possible ways to make eggs with \MP. The first few +compass-and-ruler constructions are taken from Robert Dixon's +\textsl{Mathographics}. They all follow the same basic idea of constructing the +egg-shaped path from a series of circular arcs.\mnote{-16pt}{In these \MP\ implementations +each egg path has 8 points starting with point 0 at “3 o’clock” like \mpl{fullcircle}.} + +\subsection{Euclidean egg} + +The first is made of four circular arcs, defined here as parts of +circles $a$, $b$, $c$, \& $d$.\mwpic{0pt}{eggs-moss}\marginpar{\par\kern 3in +\begin{itemize} + \item "eggs-common.mp" defines the colours, and the \mpl{numbered_points} + routine that is used to show the points of the "egg" path. + \item Note that it is not necessary that the parts of the arcs touch; + in fact it is better to join them with the \mpl{..} connector in case the + ends are not close enough for you to use \mpl{&}. + \item The rigmarole with saving the current picture, is to show a copy + of the egg path with and without the construction lines. +\end{itemize} +} +\begin{code}[xleftmargin=0pt] +input eggs-common +path a, b, c, d, egg; numeric r; r = 100; +a = fullcircle scaled 2r; +b = fullcircle scaled 4r shifted point 4 of a; +c = fullcircle scaled 4r shifted point 0 of a; +d = fullcircle scaled 2 abs (point 2 of a - point 1 of b) + shifted point 2 of a; +egg = subpath (0, 1) of b .. point 2 of d .. + subpath (3, 4) of c .. subpath (5, 7) of a .. cycle; +beginfig(1); +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); +draw a; draw d; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw point 1 of egg -- point 4 of egg -- + point 0 of egg -- point 3 of egg; +draw egg; +drawoptions(withpen pencircle scaled 2 withcolor 7/16); +draw center a; +draw center d; +draw numbered_points(egg); +drawoptions(); +draw P shifted 240 right; +endfig; +\end{code} +\newpage +\subsection{Pythagorean egg} + +The centres of the arcs are determined by the 3-4-5 triangle at the +origin.\mwpic{0pt}{eggs-thom} +\begin{code} +numeric r, a, b, t; a = 60; 4b = 3a; r = a ++ b; +path base, cap, egg; +base = subpath (4, 8) of fullcircle scaled 2(2r-b); +cap = subpath (0, 4) of fullcircle scaled 2r shifted (0, a) + cutbefore ((b, 0) -- (b, 2r)) + cutafter ((-b, 0) -- (-b, 2r)); +egg = point 4 of base {up} .. cap .. {down} base & cycle; +% more naturally "base {up} .. cap .. {down} cycle" +% but then point 0 would not be at 3 o'clock +\end{code} +Note that you can use $\to$ to create reasonably large circular arcs. +The parts of the drawing for filling the egg, +and showing the construction are similar to the first example. + +\subsection{A taller Pythagorean egg} + +A slightly different approach using a $\sqrt3$-$\sqrt4$-$\sqrt7$ +triangle.\mwpic{20pt}{eggs-357} +\begin{code} +path base, cup, cap, egg; +base = fullcircle scaled 200; +z1 = point -2/3 of base; +z2 = point 2/3 of base; +z3 = point 10/3 of base; +z4 = point 14/3 of base; +z5 = 1/2[z2, z3]; +z6 = 1/2[z4, z1]; +numeric a, b; +a = abs(z3 - z1) - abs(z4 - z6); +b = abs(z3 - z1) - abs(z4 - z5); +cup = subpath (4, 8) of fullcircle scaled 2a shifted z6; +cap = fullcircle scaled 2b shifted z5 + cutbefore (z5 -- 2[z4, z5]) + cutafter (z5 -- 2[z1, z5]); +egg = point 4 of cup {up} .. cap .. {down} cup & cycle; +\end{code} + +\newpage +\subsection{Golden section egg} + +An alternative construction.\mwpic{-10pt}{eggs-gold} +\begin{code}[xleftmargin=0pt] +path base, aa, bb; pair m, n, n'; +base = fullcircle scaled 200; m = 1/2 point 0 of base; +aa = halfcircle scaled 2 abs (point 2 of base - m) + shifted m cutbefore (origin -- 1000 up); +n = point infinity of aa; n' = n reflectedabout(up, down); +bb = subpath (0, 2) of base shifted n cutafter (origin -- 1000 up); + +path dome, cap, cup, egg; +dome = fullcircle + scaled 2 (abs(n - point 0 of base) - abs(n - point 0 of bb)) + shifted point infinity of bb; +cap = dome cutbefore (point 4 of bb -- 2[n, point 4 of bb]) + cutafter (point 4 of bb -- 2[n', point 4 of bb]); +cup = subpath (4, 8) of base; +egg = point 4 of cup {up} .. cap .. {down} cup & cycle; +\end{code} + +\subsection{Four point egg} +% eggs-four-point.mp +So far all the eggs have been drawn with semi-circular big end, but this +can be improved. +To get a smoother curve, you can use four different sized arcs with four different +centres of rotation to make up +each side of the egg.\mwpic{-36pt}{eggs-four-point} +\begin{code}[xleftmargin=0pt] +path egg, a, b, c, d; +a = fullcircle scaled 80; +b = a scaled 2 shifted point 6 of a; +c = halfcircle + scaled 2 (abs(point 0 of a - point 5 of b) - abs(point 0 of a)); +d = fullcircle + scaled 2 abs(point 2 of a - point 2 of c) shifted point 2 of c; + +egg = point 0 of c {up} .. subpath (1,3) of d .. {down} point 4 of c + .. subpath (5, 7) of b .. cycle; +\end{code} + +\newpage +\subsection{Five point egg} + +The next level of sophistication is to use five different arcs, +but this is more complex and you lose the +points at exactly E, N, W, and S.\mwpic{0pt}{eggs-five-better}\marginpar{\par\vskip 3in +\noindent\hey Instead of defining and joining circular arcs, this construction defines +the points for the egg and the desired directions at each point; +all the work of making the circular arcs is left to the $\to$ +connector. The six symmetrically-arranged rings $r_1$ to $r_6$ are used to define eight centres of +rotation $o_1$ to $o_8$ which are either points on the rings or intersections of +lines between them. Then eight directions $u_1$ to $u_8$ are defined at right +angles to lines between pairs of centre points. Finally the handy +\mpl{directionpoint} macro is used to find the points where the relevant circle is +moving in that direction. To make the egg, these points are joined up with $\to$ +constrained by the matching direction to make circular arcs.\\ +\llap{$\longleftarrow$\ }{\small Like so.} +} +\begin{smallcode}[xleftmargin=0pt] +numeric a; a = 56; +path r[]; % the rings +r1 = fullcircle scaled 2a shifted (0, -3/2 a); +r2 = fullcircle scaled 2a shifted (0, -1/2 a); +r3 = fullcircle scaled 2a shifted (0, +1/2 a); +r4 = fullcircle scaled 2a shifted (0, +3/2 a); +r5 = r2 rotatedabout(point 2 of r2, -60); +r6 = r2 rotatedabout(point 2 of r2, +60); +pair o[]; % the centres of rotation for each arc +o1 = point 6 of r5; +o2 = point 2 of r3; +o3 = point 6 of r6; +o4 = whatever[o3, point 2+4/3 of r2] = whatever[o2, point 2-4/3 of r1]; +o8 = whatever[o1, point 2-4/3 of r2] = whatever[o2, point 2+4/3 of r1]; +o6 = 1/2[point 2-4/3 of r1, point 2+4/3 of r1]; +o5 = whatever[o6, point 2-4/3 of r3] = whatever[o4, point 2+4/3 of r1]; +o7 = whatever[o6, point 2+4/3 of r3] = whatever[o8, point 2-4/3 of r1]; +pair u[], t[]; % directions and points for the egg path +u0 = (o8 - o1) rotated 90; t0 = directionpoint u0 of r6; +u1 = (o2 - o1) rotated 90; t1 = directionpoint u1 of r4; +u2 = (o2 - o3) rotated 90; t2 = directionpoint u2 of r4; +u3 = (o4 - o3) rotated 90; t3 = directionpoint u3 of r5; +u4 = (o5 - o4) rotated 90; +u5 = (o6 - o5) rotated 90; +u6 = (o6 - o7) rotated 90; +u7 = (o7 - o8) rotated 90; +t4 = directionpoint u4 of fullcircle scaled 2 abs (t3 - o4) shifted o4; +t5 = directionpoint u5 of fullcircle scaled 2 abs (t4 - o5) shifted o5; +t6 = directionpoint u6 of fullcircle scaled 2 abs (t5 - o6) shifted o6; +t7 = directionpoint u7 of fullcircle scaled 2 abs (t6 - o7) shifted o7; + +path egg; egg = for i=0 upto 7: t[i] {u[i]} .. endfor cycle; +\end{smallcode} + +\newpage +\subsection{A superellipse egg} + +All this construction is a good exercise in ingenuity, but if you just want +a simple quick egg path, then the \mpl{superellipse} macro gives you a \MP-specific +option. All you need is this:\mwpic{-36pt}{eggs-super} +\begin{code}[xleftmargin=0pt] +path egg; +egg = superellipse(right, 1.6 up, left, 1.2 down, 0.69); +egg := egg scaled 100; +\end{code} + + +\vfill \centerline{\tiny [This space intentionally left blank]} +\vfill + +\subsection{The perfect egg} + +The last word in egg curve perfection is the algebraic solution provided by the TDCC +Laboratory in Japan [{\small \mpl{https://nyjp07.com/index_E.html}}].\mwpic{0pt}{eggs-perfect} +\begin{code} +path egg; +egg = for t=-180 step 15 until 180 - eps: + (0.78 cosd(1/4 t) * sind(t), -cosd(t)) .. + endfor cycle; +egg := egg scaled 128; +\end{code} +Note that, unlike all the others, this path has 24 points and the path starts at the +top. You can draw it starting at 3 o’clock, and with only 8 points but the egg is slightly less perfect. +Just replace the loop above with: +\begin{code} +egg = for t=90, 135, 180, -135, -90, -45, 0, 45: + (0.78 cosd(1/4 t) * sind(t), -cosd(t)) .. + endfor cycle; +\end{code} + +\newpage +\subsection{Egg kitsch} + +If you want eggs that look solid, then you can use \mpl{interpath}:\mpic{-24pt}{eggs-shaded} +\begin{smallcode}[xleftmargin=0pt] +path egg, spot; +egg = (for t=-180 step 15 until 180 - eps: + (0.78 cosd(1/4 t) * sind(t), -cosd(t)) .. +endfor cycle) scaled 100; +spot = fullcircle scaled 4 shifted 3/4 point 3 of egg; +vardef fade_filled(expr egg, spot, dark, light, n) = image( + for i = 0 upto n: + fill interpath(i/n, egg, spot) withcolor ((i/n)**1/3)[dark,light]; + endfor) +enddef; +beginfig(1); + color a, b; + a = 1/256(150, 100, 60); + b = 1/256(256, 220, 180); + draw fade_filled(egg, spot, a, b, 256) rotated -30; +endfig; +\end{smallcode} +This works nicely with any of the "egg" paths defined in this section. +And finally, if all that has made you feel peckish, then how about +these?\mwpic{12pt}{eggs-fried} +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-24pt] +path yolk, base; +color cooked_egg_yolk, cooked_egg_white; +cooked_egg_yolk = 1/256(216, 136, 49); +cooked_egg_white = 1/256(235, 237, 233); +vardef fried_egg(expr r) = + save base, yolk; path base, yolk; + yolk = for i=0 upto 17: (r + 1/8 normaldeviate) * dir 20i .. endfor cycle; + base = for i=0 upto 17: (2r + 1/8r * normaldeviate) * dir 20i .. endfor cycle; + base := base shifted (uniformdeviate r/2, uniformdeviate r/2); + image( + fill base withcolor cooked_egg_white; + fill yolk withcolor cooked_egg_yolk; + fill subpath (6.7, 9.6) of yolk scaled 0.8 -- + subpath (9.6, 6.7) of yolk scaled 0.66 -- cycle + withcolor 1/2[cooked_egg_yolk, white]; + ) enddef; +for i=0 upto 1: draw fried_egg(40) shifted 120 dir 120i; endfor +\end{smallcode} + +%=============================================================== +\newpage +\section{Data visualizations}\label{dviz} + +\textsc{Graphs and other displays} that show data, rather than a mathematical +function, are presented in this section, with a focus on illustrations for books and +technical papers. Most of the examples here follow those developed in Edward +Tufte's \textsl{The Visual Display of Quantitative Information}. + +\bigskip\noindent +Most of them have a pale manilla background, which was added using the technique +from §\ref{backgrounds}, like this: +\begin{code} +picture p; p = currentpicture; currentpicture := nullpicture; +bboxmargin := 12; +fill bbox p withcolor 1/32(32, 32, 31); +draw p; +\end{code} + +\newpage +\subsection{Simple time lines} + +\noindent\mpic{144pt}{tufte-mpg}\marginpar{ +\begin{itemize} + \item The complete Lua\TeX\ document shows the +use of "fontspec" to get the Palatino-like font, used in E.\@ Tufte's books. + \item The data is stored as \<pair> values in a \<path> variable. This only + works if both data values are numeric. If the values are larger than 4096 + you either need to scale them or use the "double" number system. + \item Notice how the horizontal unit $u$ is set by measuring the width of a label using +the technique discussed in §\ref{textsize}. And that you have to shift the data + path left before applying the $x$-scaling to avoid overflow. +\end{itemize} +} +\begin{texcode}[xleftmargin=0pt] +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{fontspec} +\setmainfont[Numbers=OldStyle]{TeX Gyre Pagella} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +\end{texcode}\vskip -8pt +\begin{smallcode}[xleftmargin=2pt] +beginfig(1); +path data, p; +data = (1978, 18) -- (1979, 19) -- (1980, 20) -- (1981, 22) + -- (1982, 24) -- (1983, 26) -- (1984, 27) -- (1985, 27.5); +numeric u, v; +u = xpart urcorner textext("1980\kern 0.75em"); v = 8; +p = data shifted -(xpart point 0 of data, 0) xscaled u yscaled v; +draw (xpart point 0 of p, 20) -- p -- (xpart point infinity of p, 20); +draw (xpart point 0 of p, 0) -- (xpart point infinity of p, 0); +for t=0 upto length p: + numeric x, y; (x, y) = point t of p; + undraw (x, y) withpen pencircle scaled 2 dotlabeldiam; + draw (x, y) withpen pencircle scaled dotlabeldiam; + label("\strut" & decimal ypart point t of data, (x, y + 8)); + draw (x, 0) -- (x, 4); + label("\strut" & decimal xpart point t of data, (x, 12)); +endfor +dotlabel.rt(btex \vbox to 6pt{\halign{\small #\hss\cr +13.7 mpg, average\cr for all cars on\cr road, 1978\cr}\vss} etex, +(xpart point 0 of p, 13.7v)); +dotlabel.lft(btex \vbox to 6pt{\halign{\small #\hss\cr +19.5 mpg, expected\cr average for all cars\cr on road, 1985\cr}\vss} etex, +(xpart point infinity of p, 19.5v)); +label.top(btex \vbox{\halign{\hss\textsc{#}\hss\cr +required fuel economy standards:\cr +new cars built from 1978 to 1985\cr}} etex, +point 5/2 of bbox currentpicture shifted 21 up); +endfig; +\end{smallcode}\vskip -10pt +\vbox to 0pt{\begin{texcode}[xleftmargin=0pt] +\end{mplibcode} +\end{document} +\end{texcode}\vss} + +\newpage +\subsection{Time line with minimal annotation} +\noindent\mpic{120pt}{tufte-budget}\marginpar{ +\begin{itemize} + \item This one has an even sparser frame, and + uses the \mpl{ahangle} trick to make the neat + I-beam annotation mark. + \item It is suggested that you resist the temptation to make very many + special macros to do charts like this; the ideas here are mainly + to show that \MP\ makes a good environment for following Tufte’s advice + about charts: to maximize data ink, and minimize chart junk. +\end{itemize}} +\begin{smallcode}[xleftmargin=0pt] +beginfig(1); +path data, p; +data = (1967, 311) -- (1968, 332) -- (1969, 372) -- (1970, 385) + -- (1971, 385) -- (1972, 393) -- (1973, 387) -- (1974, 381) + -- (1975, 387) -- (1976, 400) -- (1977, 380); +numeric u, v; +u = xpart urcorner textext("1980\kern 0.75em"); v = 1.414; +p = data shifted -(xpart point 0 of data, 300) xscaled u yscaled v; +draw p; +for d = 300 step 20 until 400: + numeric y; y = (d - 300) * v; + label.lft("\strut\scriptsize\$\,\small" & decimal d, (-12, y)); + draw (-8, y) -- (-12, y); + if d > 370: + draw (xpart point 3 of p, y) -- (xpart point infinity of p + 8, y) + dashed evenly scaled 1/4 withpen pencircle scaled 1/4; + fi +endfor +path a; a = (xpart point infinity of p + 21, (380 - 300) * v) + -- (xpart point infinity of p + 21, (400 - 300) * v); +interim ahangle := 180; +interim ahlength := 2; +drawdblarrow a withpen pencircle scaled 1/4; +label("\small 5\%", point 1/2 of a shifted 12 right); +for t=0 upto length p: + numeric x, y; (x, y) = point t of p; + undraw (x, y) withpen pencircle scaled 2 dotlabeldiam; + draw (x, y) withpen pencircle scaled dotlabeldiam; + draw (x, -8) -- (x, -12); + label("\strut\small" & decimal xpart point t of data, (x, -20)); +endfor +label.urt(btex \vbox{\halign{\small #\hfill\cr +Per capita\cr budget expenditure\cr in constant dollars\cr}} etex, +(0, (410 - 300) * v)); +endfig; +\end{smallcode} + +\newpage +\subsection{Time line with more complex dates} + +If the dates in your time line are more granular than years, then you need a +better way to deal with them. This chart shows the £/€ exchange rate by month. +$$\includegraphics[width=\textwidth]{tufte-currency}$$ +The dates on the horizontal axis where transformed from calendar dates to a +serial number using this routine: +\begin{code} +vardef base(expr Y, M, d) = + save m, y; numeric m, y; + if M < 3: m = M + 9; y = Y - 1; + else: m = M - 3; y = Y; fi + 365/1024 y + (floor(y/4) - floor(y/100) + floor(y/400) + + floor((2+3m)/5) + 30m + d - 307) / 1024 +enddef; +\end{code} +which allows you to add events like this: +\begin{code} +dotlabel.bot("Brexit vote", (base(2016, 6, 24) * u, 78 v)); +\end{code} +for suitable values of $u$ and $v$. + +\newpage +\section{Commutative diagrams} + +\textsc{If you want lots} of complex bells and whistles on your commutative diagrams, then +you probably want to use specialist tools like "tikz-cd" or "xypic", but if your +needs are simpler, plain \MP\ is more than capable, and if you are already +using it for other illustrations, there is one less thing to learn. + +Here are two examples to illustrate some general techniques. They may be familiar to +readers of the manuals for the tools referred to above. +$$ +\includegraphics{tikzcd-example} +\qquad +\includegraphics{xypic-example} +$$ +The complete code used to generate the right-hand picture is shown on the +right.\rlap{\rightarrow}% +\vadjust{\moveright5.5in\vbox to 0pt{\kern-218pt +\begin{smallcode} +picture U, XY, X, Y, Z; +z1 = -z2 = (-61, 42); + +U = thelabel("$U$", z1); +XY = thelabel("$X\times_ZY$", origin); +X = thelabel("$X$", (x2, 0)); +Y = thelabel("$Y$", (0, y2)); +Z = thelabel("$Z$", z2); + +forsuffixes @=U, XY, X, Y, Z: draw @; endfor + +ahangle := 20; +vardef curved_connect@#(expr s, a, b, d) = + save line, mark; + + path line; + line = center a {d} .. center b; + interim bboxmargin := 4; + drawarrow line cutbefore bbox a cutafter bbox b; + + picture mark; + mark = thelabel@#("$\scriptstyle " & s & "$", point 1/2 of line); + interim bboxmargin := 1; + unfill bbox mark; draw mark; +enddef; + +vardef connect@#(expr s, a, b) = + curved_connect@#(s, a, b, center b - center a) +enddef; + +connect.bot("p", XY, X); +connect.rt ("q", XY, Y); +connect.top("g", Y, Z); +connect.lft("f", X, Z); + +curved_connect.urt("x", U, X, right); +curved_connect.llft("y", U, Y, dir -80); + +drawoptions(dashed withdots scaled 1/2); +connect("(x,y)", U, XY); +drawoptions(); +\end{smallcode} +\noindent\textit{\small This example assumes you are using "mplibtextextlabel" – §\ref{ttlabel}} +\vss}} +The approach taken for both examples is first to define the node labels as pictures +placed as needed, and then write a special-purpose "connect" macro to make +consistent arrows between the nodes, using \mpl{center}, \mpl{bbox}, +\mpl{cutbefore}, and \mpl{cutafter} as appropriate. + +The $X\times_ZY$ example needs two variations. The "curved_connect" macro +takes a string for the label, the two nodes to be connected, and the initial +direction for the curved path to connect them. You can't have optional macro +arguments in \MP\ but you can call macros from inside another macro, so a second +simpler macro "connect" is defined to do straight connections. To avoid repetition, +this macro simply calls "curved_connect" with the required direction from $a$ to +$b$. + +For the $f^*E$ example, "connect" is simpler, because all the arrows are +straight and there are no labels, but needs to allow for arrows crossing: +\begin{smallcode} +vardef connect(expr a, b) = + save line; path line; interim bboxmargin := 4; + line = center a .. center b cutbefore bbox a cutafter bbox b; + cutdraw line withpen pencircle scaled 4 withcolor background; + drawarrow line +enddef; +\end{smallcode} + +\newpage +\section{Tilings and tessellations} + +\textsc{In mathematical terms}, a “tiling” is a countable set of tiles +that cover the plane without gaps or overlaps.\footnote{Adapted from \textsl{Tilings +and Patterns}, Branko Grünbaum \& G.\@ C.\@ Shephard, Freeman, 1987} +This section loosely follows that idea, and presents some ideas and general +techniques for creating tilings and other patterns or textures. + +You can make an effective grid by drawing repeated lines and then clipping to the +size you want:\mpic{-42pt}{tiling-simple} +\begin{code} +for i = -10 upto 10: + draw (left--right) scaled 200 shifted (0, 20i); + draw (down--up) scaled 200 shifted (20i, 0); +endfor +clip currentpicture to fullcircle scaled 200; +\end{code} +but this is a bit limited. If you want to produce more interesting tilings, you +need to define a unit shape or picture, and a pair of vectors to repeat it. +\begin{code} +path unit; pair u, v; color a, b; +unit = unitsquare scaled 24; +u = point 1 of unit - point 0 of unit; +v = point 3 of unit - point 0 of unit; +a = 3/4[red, white]; b = 3/4[blue, white]; +for i=-5 upto 5: + for j=-5 upto 5: + fill unit shifted (i*u + j*v) + withcolor if odd (i+j): a else: b fi; + draw unit shifted (i*u + j*v); + endfor +endfor +clip currentpicture to fullcircle scaled 200; +\end{code} +In tilings with more complex shapes you may find that using \mpl{fill} and +\mpl{draw} in the same loop causes uneven lines because the fill overlaps part of +the line. In these cases it is a good idea to duplicate the loops; use the first +set for filling, the second for drawing. + +\newpage +\subsection{Tiling with regular polygons}\label{sec:regtiling} + +\textsc{After tiling with squares}, the two simplest tilings are with triangles and +hexagons\mwpic{-24pt}{tiling-hex-trig} +(using the regular polygons from §\ref{polygons}). The basic loop is the same as the +previous page except +that the vectors $u$ and $v$ are now at 60° to each other (as shown in blue and +red in the examples to the right). All of these examples where drawn with the same +basic loop as before: +\begin{code} +for i = -n upto n: + for j = -n upto n: + draw P shifted (i * u + j * v); + endfor +endfor; +\end{code} +In the first row, $P$ was set to a simple polygon path: +\begin{code} +triangle = for i=0 upto 2: (0, 16) rotated 120i -- endfor cycle; +hexagon = for i=0 upto 5: (0, 16) rotated 60i -- endfor cycle; +\end{code} +The vectors $u$ (in red) and $v$ (in blue) were defined as (for both tilings): +\begin{code} +u = point 0 of triangle - point 1 of triangle; +v = u rotated -60; +\end{code} +To make the coloured versions, $P$ was defined as an appropriate \<picture>. +For the triangular tiling, it looked like this: $\vcenter{ +\begin{mplibcode} +input colorbrewer-rgb +path t, tt; +t = for i=0 upto 2: (0,8) rotated 120i --endfor cycle; +tt = t reflectedabout(point 2 of t, point 0 of t); + beginfig(0); +fill t withcolor Reds 8 2; fill tt withcolor Blues 8 2; draw t; draw tt; endfig; +\end{mplibcode}}$ so that the tiling actually filled the plane. In the hexagonal +tiling there are no gaps to fill, but in order to get a non-adjacent colouring, the +unit picture was defined as three shifted copies of the hexagon each filled with a +different color. The unit vectors were therefore scaled by $\sqrt3$ and rotated by +30° (as shown). + +The bottom row the unit pictures were replaced with drawings that connect the centre +of each shape to the midpoint of each side (in red), like this: +$$ +\begin{mplibcode} +path p[]; input colorbrewer-rgb +p3 = for i=0 upto 2: (0, 14) rotated 120i -- endfor cycle; +p6 = for i=0 upto 5: (0, 14) rotated 60i -- endfor cycle; +picture P[]; +for i=3,6: + P[i] = image( + for j=1 upto length p[i]: + draw origin -- point j+1/2 of p[i] withcolor Reds 7 6; + endfor + draw p[i]); +endfor + beginfig(0); draw P3; draw P3 reflectedabout(point 0 of p3, point 2 of p3); + draw P6 shifted (60, 3); endfig; +\end{mplibcode} +$$ +This has the effect of +connecting the centres of adjacent shapes in the tiling, which reveals that each +tiling is the dual of the other. + +\newpage +\subsection{Separating filling and drawing} + +\textsc{Repeating a unit image} can sometimes cause unwanted overlaps, so as noted +above, the solution is to make a filler unit and a drawing unit and do the filling +first and the drawing second. In this example\mwpic{-32pt}{arch-4-8-8} the drawing +unit (the octagon) is simple so you can just draw that path instead of making another +\<picture> for it. +\begin{smallcode} +input colorbrewer-rgb +path o, r[]; % o is the octagon, r[] are the "corners" +o = (for i=0 upto 7: 21 dir 45i -- endfor cycle) rotated -90/4; +pair t; t = whatever[point 0 of o, point 1 of o] + = whatever[point 2 of o, point 3 of o]; +r1 = subpath (1,2) of o -- t -- cycle; +r2 = r1 rotated 90; +r3 = r2 rotated 90; +r4 = r3 rotated 90; +picture filler; filler = image( + filldraw r1 withcolor Reds 8 3; + filldraw r3 withcolor Reds 8 3; + filldraw r2 withcolor Blues 8 3; + filldraw r4 withcolor Blues 8 3; + filldraw o withcolor Purples 8 2; +); +pair u, v; +u = point 0 of o - point 5 of o; v = u rotated 90; +beginfig(1); +numeric n; n = 5; +for i=-n upto n: + for j=-n upto n: + draw filler rotated ((i+j) mod 2 * 90) shifted (i*u + j * v); + endfor +endfor +for i=-n upto n: + for j=-n upto n: + draw o shifted (i*u + j * v); + endfor +endfor +\end{smallcode} +Rotating every other \mpl{filler} allows you to get the alternate colours in the squares. +\mpic{-60pt}{arch-4-8-8-parts}% +Using \mpl{filldraw} ensures that there are no gaps between adjacent segments. + +\newpage +\subsection{Tilings with more complex patterns} + +\textsc{The next example} also uses the square lattice,\mwpic{0pt}{arch-3-4-3-4} +but the unit is more complicated, so the drawing needs two \<picture> +variables, one for the colour fill and a second for the grid. +\begin{smallcode} +input colorbrewer-rgb +path s[], t[]; +s1 = unitsquare scaled 21 rotated 15; +s2 = s1 rotated 150; +t1 = subpath (4, 3) of s1 -- point 1 of s2 -- cycle; +t2 = t1 reflectedabout(point 1 of t1, point 2 of t1); +t3 = t1 rotated 150; +t4 = t1 rotated 210; +picture color_unit, grid_unit; +color_unit = image( + fill s1 withcolor Oranges 8 1; + fill s2 withcolor Oranges 8 2; + fill t1 withcolor Blues 8 1; + fill t2 withcolor Blues 8 2; + fill t3 withcolor Blues 8 3; + fill t4 withcolor Blues 8 4; +); +grid_unit = image( + draw s1; draw s2; + draw t2; draw t3; draw t4; +); +pair u, v; +u = point 1 of s1 - point 1 of s2; +v = u rotated 90; +numeric n; n = 4; +forsuffixes $=color_unit, grid_unit: + for i=-n upto n: + for j=-n upto n: + draw $ shifted (i * u + j * v); + endfor + endfor +endfor +\end{smallcode} + + + +\newpage +\subsection{Showing the dual tiling} + +\textsc{These tilings can be classified} by the configuration of the polygons that meet +at each vertex. This one is $(3^4, 6)$ because each vertex has four triangles and one +hexagon. It exists in two enantiomorph forms.\mxpic{-80pt}{3.6in}{arch-snub-hexagon} +The unit pictures look like this: +\par\bigskip +\vbox{\halign{#&\qquad\qquad\vbox to 48pt{\hsize=2.7in\noindent #\par\vss}\cr +\includegraphics[scale=0.75]{arch-snub-hexagon-unit} +&\hey\itshape To reveal the dual of the tiling, you can draw a line from +the median (or centroid if you prefer) of each polygon to the centre of each +edge.\cr}} + +\bigskip +\noindent They are drawn like this, where $h$ is the hexagon, $t_1 \dots\ t_6$ are the blue +triangles surrounding it, and $t_7$ \& $t_8$ are the two “connecting” triangles, +which swap sides to make the enantiomorphs. +\begin{code} +unit[k] = image( + for i=1 upto 6: + fill t[i] withcolor Blues 8 if odd i: 2 else: 3 fi; + endfor + for i=7 upto 8: + fill t[i] withcolor Oranges 8 if odd i: 3 else: 2 fi; + endfor + fill h withcolor Oranges 8 2; + forsuffixes S=h, t1, t2, t3, t4, t5, t6, t7, t8: + draw S withpen pencircle scaled 1/4 withcolor 3/4; + pair m; m = median(S); + for i=1 upto length S: + draw m -- point i - 1/2 of S withcolor 3/4; + endfor + endfor); +\end{code} +The $\id{median}()$ routine is from §\ref{polygons-given-side} and the colours are from +§\ref{colorbrewer}. This tiling is generated using the loop-with-triangular-grid-vectors +from §\ref{sec:regtiling}. + +\newpage +\subsection{Tiling with a dynamic unit} + +\textsc{In order to reveal} patterns in a tiling, you might want to vary the colours +or line styles used in each repeated drawing unit. In this case, you can write a +macro that takes a parameter and returns a picture to draw.\mwpic{-36pt}{arch-3-4-6-4} + +\begin{smallcode} +\mplibsetformat{metafun} % <-- for the "transparent" macro +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); +numeric r; r = 5; +path d; d = for i=1 upto 12: + (0, r) shifted (r * (sqrt(3)+2), 0) rotated 30i -- +endfor cycle; +color shade[]; +shade0 = Oranges 8 3; shade2 = Greens 8 3; +shade1 = Blues 8 3; shade3 = Reds 8 3; +vardef unit(expr n) = image( + fill d withcolor transparent (2, .9, shade[n mod 4]); + draw d; +) enddef; +pair u, v; +u = point 0 of d - point 3 of d; +v = u rotated 60; +numeric n; n = 6; +for i=-n upto n: + for j=-n upto n: + draw unit(i*j) shifted ((i - floor(j / 2)) * u + j * v); + endfor +endfor +clip currentpicture to unitsquare shifted -(1/2, 1/2) scaled (n * 9 r); +endfig; +\end{mplibcode} +\end{smallcode} +Instead of defining six triangles, six squares, and a hexagon, you can just define +the dodecagon and overlap each one. Using a macro to create the unit, allows you to +choose a different colour for each filler. Using the \mpl{transparent} macro from +Metafun automatically mixes the colours for the overlaps. But the edges don't look +so good, so you need to clip the whole picture to a neat square. + + +\newpage +\section{Recursion and iteration} + +\textsc{This chapter is not a tutorial} on recursion or iteration \textit{per se}, but rather +more of an exploration of the \MP\ techniques you can use to create some particular types +of drawing such as trees, plane-filling curves, non-periodic tilings, and fractals.\mwpic{-48pt}{rec-bush} + +\medskip\noindent +Even so, +it is perhaps useful to review some of the basic programming ideas +involved. +Consider for example the greatest common divisor algorithm presented in +§\ref{sec:gcd}. +\begin{smallcode} +vardef gcd(expr a, b) = if b = 0: a else: gcd(b, a mod b) fi enddef; +\end{smallcode} +The reason this works is that we know (mathematically) that $0 \le a \bmod b < b$, +and therefore that the arguments to the recursive call must get smaller each time +and eventually we must get to $b=0$ when the answer will be $a$. This is the basic +recursive approach: ensure at least one argument gets smaller each time and stop +when you get to a given limit. +The examples in this chapter use one of two simple approaches: +\begin{itemize} + \item Explicitly pass a \mpl{level} argument that is decremented on each + recursive call, and stop the recursion when the level gets to zero + \item Pass a \<path> or two \<pair> arguments, and stop the recursion when the + path is too short or the pairs are too close together. +\end{itemize} +If you find recursion confusing, you can nearly always use an iterative approach +instead. For example, you can implement the \mpl{gcd} function like this: +\begin{smallcode} +vardef gcd(expr A, B) = save r, a, b; numeric a, b, r; a := A; b := B; + forever: + r := a mod b; exitif r = 0; + a := b; b := r; + endfor b +enddef; +\end{smallcode} +Notice that you have to use assignment in the loop to update the variables, and +that you cannot assign to the arguments of a macro. Notice also that this version +requires both arguments to be positive integers. You need to use your judgement to +decide which is the better approach for a given problem. + +\newpage +\subsection{The Koch curve} + +\textsc{The Swedish mathematician} Helge von Koch\mpic{-30pt}{rec-koch-steps} originally devised the +Koch curve as an example of a non-differentiable curve that could be constructed with +elementary geometry. It makes a good introduction to recursive paths with \MP. The +construction is recursive: each straight line segment in the path is replaced with +four copies of itself, scaled down $\frac13$ and arranged as shown +at Level 1 \rightarrowfill\break +At each level of the construction, the number of points in the path increases +four-fold and the \mpl{arclength} of the path gets $\frac43$ longer. +\begin{code} +vardef koch(expr level, a, b) = + if level = 0: + a -- b + else: + save p, q, r; pair p, q, r; + p = 1/3[a,b]; r = 2/3[a,b]; q = r rotatedabout(p, 60); + koch(level-1, a, p) & + koch(level-1, p, q) & + koch(level-1, q, r) & + koch(level-1, r, b) + fi +enddef; +\end{code} +The five levels were drawing using this function in a loop like this: +\begin{code} +for n=0 upto 4: + draw koch(n, origin, 300 right) shifted (0, -100n) +endfor +\end{code} +The annotations in the middle show the \mpl{length} of the path and the +\mpl{arclength}. The curve will always fit in the same bounding box but in theory it +can become infinitely long. In practice it looks much the same past level 6, and +you will start running into \MP\ limitations. The length of a path is not limited by +the default scaled number system, but the numbers actually returned by \mpl{length} +and \mpl{arclength} may not be reliable for very long paths. Also the call stack may +get very large and the single-threaded processing time can get very slow, and when +the length of each segment shrinks to the size of your pen, you will start losing +detail. + +\newpage +\subsection{Sierpinski's gaskets} + +\textsc{The second example} of recursive construction also dates from the early 20th +century, but unlike von Koch's infinite curve, the area of Sierpinski's gasket tends +to zero.\mwpic{-12pt}{rec-sierpinski-triangle} In the original specification, you +are supposed to remove the central quarter of each triangle, but this program does +it the other way round and delays drawing the triangles until they are small enough. +\begin{code}[xleftmargin=0pt, xrightmargin=-2in] +vardef gasket(expr t, s, limit) = + if length (point 1 of t - point 0 of t) < limit: + fill t; + else: + save little_t; path little_t; little_t = t scaled s; + for i=1 upto length t: + gasket(little_t shifted (point i of t - point i of little_t), s, limit); + endfor + fi +enddef; +\end{code} +Note the useful idiom \mpl{shifted (point i of t - point i of little_t)} – this +neatly tucks a copy of the small triangle into the appropriate corner of the big +triangle. You can make this even simpler by coding the scaling parameter $s$ and +\id{limit} as constants in the recursive routine, so that you do not have to pass +them down each time. The triangular gasket was generated using the macro like this: +\begin{code}[xleftmargin=0pt, xrightmargin=-2in] +beginfig(1); + path T; T = for i = 1 upto 3: 220 up rotated 120i -- endfor cycle; + gasket(T, 1/2, 20); +endfig; +\end{code} +You can generalize it, for example by making +the path \id{T} into a pentagon with scaling factor $s=(3-\sqrt5)/2$, +or a hexagon with $s=1/3$, and so on: + +\vbox to 0pt{\vskip-2pt\hsize10in\noindent\includegraphics[width=10in]{rec-sierpinski-pentagon.pdf}\par\vss} + +\newpage +\subsection{The Heighway dragon} + +\textsc{The Heighway dragon curve} dates from the 1960s, and is created in a similar +way to the Koch curve: each straight line segment is recursively replaced with two +copies of itself scaled down and arranged as shown.\mwpic{-36pt}{rec-dragon} + +\medskip +\centerline{\includegraphics{rec-heighway-stages}} + +\noindent +Note that every other segment is flipped left and right. At each stage, the number of points +increases two-fold and the path gets $\sqrt2$ times longer. Here is a recursive +routine to generate the curve as a single path. +\begin{smallcode} +numeric r, theta; r = sqrt 1/2; theta = 45; +vardef dragon(expr level, a, b) = + if level > 0: + save p; pair p; + p = r[a, b] rotatedabout(a, theta); + dragon(level - 1, a, p) & reverse dragon(level - 1, b, p) + else: + a .. b + fi +enddef; +\end{smallcode} +The blue dragon was created with: {\small\mpl{draw dragon(15, origin, 240 right)}}\rlap{\raise1ex\hbox{\ $\smash{\nearrow}$}} + +After the fourth level the corners of the curve start to touch each +other, but they never cross. You can see this if you draw the curve with rounded +corners. +\begin{smallcode} +vardef rounded_corners expr p = + save r, n; numeric r, n; r = 1/3; n = length p; + subpath (0, 1-r) of p + for t=1 upto n-1: + .. subpath (t+r, t+1-r) of p + endfor .. subpath (n-r, n) of p +enddef; +\end{smallcode} +The red dragon was: {\small\mpl{draw rounded_corners dragon(10, origin, 240 +right)}}\rlap{\hbox{\ $\smash{\longrightarrow}$}} + +\vfill +\noindent{\small\llap{\hey\ }The length of the dragon path at level $n$ is +$2^n$, so if you want to do arithmetic with the path length you need to use a big +number system when $n > 11$.} + +\newpage +\subsection{Iterative dragons} + +\textsc{The dragon curve} can also be created with iteration instead of recursion. +Another way of viewing the stages of developing the curve is that at each stage the +whole curve is replaced by two copies of itself arranged as shown: + +\medskip +\centerline{\includegraphics{ifs-heighway-stages}} + +\smallskip\noindent +We can do this in two steps in a loop, like this:\mpic{-160pt}{ifs-heigh} +\begin{smallcode} +path p; p = origin -- dir 30; +numeric n; +for i=1 upto 12: + n := length p; + p := p rotated 45; + p := p & reverse p rotatedabout(point n of p, 90); +endfor +draw p scaled (384 / xpart (urcorner p - llcorner p)); +\end{smallcode} +In this approach, instead of scaling down each time, the curve is just allowed to +grow $\sqrt2$-times bigger in each loop, then scaled to the desired width +(384\unit{pt}) when it is complete. The 12 stages in the loop produce the rotated blue +dragon as shown.\rlap{\raise1ex\hbox{\ $\smash{\nearrow}$}} + +\vfill\noindent +With a small adaptation, you can also use this to explore variations. +\begin{smallcode} +path p; p = origin -- dir 30; +numeric n, r; r = 3; +for i=1 upto 12: + n := length p; + p := p rotated (45 - r); + p := p & reverse p rotatedabout(point n of p, 90 + 2r); +endfor +\end{smallcode} +The extra parameter $r$ is used to open up the folds, making it more +“organic”.\mpic{-200pt}{ifs-heigh-open} + +\newpage +\subsection{The golden dragon} + +\textsc{You can also explore variations} with the recursive approach by altering +the scaling and rotation. Here $r\simeq 0.74274$ and +$\theta\simeq 32.893°$ in the initial triangle.\vadjust{\moveright136pt\vbox to +0pt{\vskip 3.16in \hsize 3.6in \noindent +Because the initial triangle shape is shorter on one side, it is better to adapt +the \mpl{dragon} routine to measure the gap between points instead of using a fixed +level parameter: +\begin{smallcode} +vardef dragon(expr a, b) = + if abs(a-b) > 1: + save p; pair p; + p = r[a, b] rotatedaround(a, theta); + dragon(a, p) & reverse dragon(b, p) + else: + a .. b + fi +enddef; +\end{smallcode} +\vss}} +$$\hbox to \textwidth{\includegraphics{rec-dragon-golden.pdf}\hss}$$ + +\newpage +\subsection{The Peano-Gosper curve, or flow-snake} + +\textsc{The Peano-Gosper curve} is a space-filling curve. It is +constructed in the same way as the dragons, but generating shape has seven sections +instead of two, and they are cunningly arranged to fill the space.\mpic{-48pt}{rec-flowsnake-construction} +The arrows indicate the reversals so that the scaled-down copies fill the larger +part of the hexagons that contain them.\rlap{\hbox{\ $\smash{\rightarrow}$}} +$$\includegraphics[width=\textwidth]{rec-flowsnake}$$ +This fourth-level curve is the boundary between the filled and unfilled branches. +\vadjust{\moveright 384pt \vbox to 0pt{\vss\hsize 4in +\noindent Given the \id{snake} path scaled to unit length as shown above in +\red{red}, the +flow-snake path can be created with: +\begin{smallcode} +vardef rattle(expr level, a, b) = + if level > 0: + save s; path s; s = snake zscaled (b-a) shifted a; + reverse rattle(level - 1, point 1 of s, a) & + rattle(level - 1, point 1 of s, point 2 of s) & + rattle(level - 1, point 2 of s, point 3 of s) & + rattle(level - 1, point 3 of s, point 4 of s) & + reverse rattle(level - 1, point 5 of s, point 4 of s) & + reverse rattle(level - 1, point 6 of s, point 5 of s) & + rattle(level - 1, point 6 of s, b) + else: + a -- b + fi +enddef; +path S; S = rattle(4, origin, 360 right); +\end{smallcode} +}} + +\newpage +\subsection{Fractal trees} + +\textsc{You can make a tree} with a vertical line segment, a scaling factor $0< r < +1$, and an angle $0° < \theta < 180°$. Start with the vertical line as the trunk, +then make the first branch by scaling the trunk by $r$, rotating it $+\theta$, and +moving it to the top of the trunk; make the second in the same way but rotate it by +$-\theta$. Then repeat using each branch as a new trunk.\mpic{-114pt}{rec-simple-tree} +And stop after enough levels. + +This can be implemented easily in \MP, but requires a +slightly different technique. There is no simple way to represent the tree as a single +\<path> because a path cannot have branches, so +you need to draw each segment separately instead of trying to join them up. Compare +this to the \mpl{rattle} routine on the page before. +\begin{code} +vardef make_tree(expr level, bar) = + draw bar; + if level > 0: + for t=-theta, theta: + make_tree(level - 1, bar shifted - point 0 of bar + scaled r rotated t shifted point 1 of bar); + endfor + fi +enddef; +\end{code} +To combine several such trees in a drawing either move the initial \id{bar} path, or +capture the tree as a \<picture> using \mpl{image(make_tree(...))}, like so: +\begin{code} +picture T[]; numeric r, theta; +r = 0.58; theta = 60; T1 = image( + make_tree(3, origin -- 100 up); +); +% update r and theta... +r := 0.75; theta := 14; T2 = image( + make_tree(10, origin -- 100 up); +); +draw T1 shifted 32 up; +draw T2 shifted 128 right; +\end{code} +Notice that $r$ and $\theta$ are treated as global constants. You could pass them +to the \mpl{make_tree} routine instead. Notice also that the smaller tree only has +three levels, but the larger one has 10. And that the labels were omitted. + +\newpage +\subsubsection{More fractal vegetation} + +\textsc{If you are more interested} in the visual aspect of your tree than the +mathematical, you can tweak the \mpl{make_tree} routine a +bit.\mpic{-12pt}{rec-general-tree} +\begin{smallcode}[xleftmargin=0pt] +vardef make_tree(expr bar) = + save a; numeric a; a = abs(point 1 of bar - point 0 of bar); + cutdraw bar withpen pencircle scaled 1.2(1/8 a) withcolor background; + cutdraw bar withpen pencircle scaled (1/8 a) withcolor 1/256(57, 35, 32); + if a > leaf: + save s; pair s; + s = 1/32 a * r * unitvector(direction 1 of bar) rotated 90; + make_tree(bar shifted - point 0 of bar + shifted s scaled r rotated theta + shifted point 1 of bar); + make_tree(bar shifted - point 0 of bar + shifted -s scaled r rotated -theta + shifted point 1 of bar); + else: + draw point 1 of bar withpen pencircle scaled 1 withcolor 2/3 green; + fi +enddef; +beginfig(1); + numeric leaf, r, theta; + r = 0.75; theta = 14; leaf = 3; + make_tree(origin -- 100 up); +endfig; +\end{smallcode} +\begin{itemize} + \item The recursion is controlled by measuring the length of the branches instead + of using a \id{level} parameter. + \item Each branch is drawn with a pen scaled to $\frac18$ of its length using + \mpl{cutdraw}, and outlined so you can see the crossings. + \item Each branch is moved slightly left or right with $s$ to make the joins + neater. + \item Tiny green leaves are added on the ends of each branch. +\end{itemize} + +\newpage +\subsubsection{Randomized recursive plants} + +\vskip-\baselineskip +\noindent\hbox to \linewidth{\includegraphics{rec-general-tree-deviate}\hss} + +\noindent +\textsc{To get plants that look more natural} you can introduce some random factors. +Strictly these are not fractal because they are not +self-similar. The only change from the previous \mpl{make_tree} is to replace +\mpl{scaled r rotated theta} with +\begin{smallcode}[xleftmargin=0pt] +scaled (r + 1/16 normaldeviate) rotated (theta + 8 normaldeviate) +\end{smallcode} +The bush is similar, except that it splits into four branches at each step instead of +two and only the lengths randomized.\mwpic{-96pt}{rec-bush} +The colouring was a happy accident. +\begin{smallcode}[xleftmargin=0pt, xrightmargin=-100pt] +input colorbrewer-rgb +vardef bush(expr start, aim, level, limit) = + save s, target; numeric s; pair target; s = level / limit; + for a = -32, -8, 8, 16: + target = aim scaled ((32 + 16 normaldeviate) * s) rotated a shifted start; + draw start -- target withpen pencircle scaled s withcolor BrBG[limit][limit-level]; + if level > 1: bush(target, aim rotated a, level - 1, limit); fi + endfor +enddef; +beginfig(1); bush(origin, dir 80, 6, 8); endfig; +\end{smallcode} + +\newpage +\subsection{Penrose tilings} + +\textsc{Recursion is useful} for generating non-periodic tilings,% +\vadjust{\moveright5.5in\vbox to 0pt{\kern-8pt +\begin{smallcode} +% golden ratio constant +numeric psi; psi = (sqrt 5 - 1) / 2; + +% inflating tall shape makes two others +vardef inflate_tall(expr level, a, b, c) = + if level = 0: + draw a--b--c withpen pencircle scaled 1/8; + else: + save d; pair d; d = psi[b,a]; + inflate_tall(level - 1, d, c, a); + inflate_wide(level - 1, c, d, b); + fi +enddef; + +% inflating wide makes three +vardef inflate_wide(expr level, a, b, c) = + if level = 0: + draw a--b--c withpen pencircle scaled 1/8; + else: + save d, e; pair d, e; d = psi[a,b]; e = psi[a,c]; + inflate_tall(level - 1, d, e, b); + inflate_wide(level - 1, e, d, a); + inflate_wide(level - 1, c, e, b); + fi +enddef; + +% start with a tall triangle with apex at origin +pair a, b, c; +b = origin; +c = (sind(18), sind(72)) scaled 800; +a = (-xpart c, ypart c); + +% make an inflated "wedge" +picture P; P = image(inflate_tall(7, a, b, c)); + +% then exploit the five-fold symmetry to make the picture +for t = 0 upto 9: + draw P if odd t: reflectedabout(b, c) fi rotated 72t; +endfor; +\end{smallcode} + +\qquad\hey \textit{\small Colouring the tiling is left as an exercise for the +reader.}\par\vss}} +like those discovered in the 1970s by the British polymath Sir Roger Penrose. +$$\includegraphics[width=\textwidth]{penrose-P3.pdf}$$ +By definition, there is no periodic unit to repeat; but there are well-known +expansion rules to split each shape in the tiling into smaller congruent copies. So +you can start with a single large shape and apply the rules recursively to make the +tiling. The tiling above is made from two rhombus shapes, but each of these shapes can be +split in half into two triangles, and the expansion process actually works on these: +$$\includegraphics{penrose-stages.pdf}$$ + +\vbox to 0pt{\noindent +Each expansion of half the thick rhombus, produces two more thick halves and one +thin half; each expansion of half the thin rhombus produces a thick half and a thin +half. No other shapes are produced, so the recursive process can be repeated +indefinitely. At the desired lowest level the triangles are patched back into +rhombus shapes simply by \textit{not} drawing the edges shown with dots.\par\vss} + +\newpage +\subsection{Pinwheel tiling} + +\textsc{Another non-periodic tiling} is the so-called pinwheel tiling, devised in 1994 +by Charles Radin, based on +this dissection by John Conway.\mpic{-22pt}{pinwheel} +$$\includegraphics{conway.pdf}$$ +Starting with a triangle of this shape, the tiling recursively divides into +five smaller copies of itself. The colouring is passed down each level but only used +on the lowest. +\begin{smallcode} +input colorbrewer-rgb +vardef pinwheel(expr level, a, b, c, s) = + if level = 0: + fill a--b--c--cycle withcolor s; + draw a--b--c--cycle withpen pencircle scaled 1/8 withcolor white; + else: + save d, e, f, g; pair d, e, f, g; + d = 2/5[b, c]; e = 4/5[b,c]; f = 1/2[e, a]; g = 1/2[a, b]; + pinwheel(level - 1, e, a, c, Blues 9 4); + pinwheel(level - 1, f, g, a, Blues 9 3); + pinwheel(level - 1, f, g, e, Blues 9 2); + pinwheel(level - 1, d, e, g, Blues 9 5); + pinwheel(level - 1, d, b, g, Blues 9 6); + fi +enddef; +beginfig(1); + pinwheel(5, origin, 200 right, 100 up, ""); + pinwheel(5, (200,100), 100 up, 200 right, ""); +endfig; +\end{smallcode} +Notice that to make the dissection work, it is important to pass the three +\<pair> arguments in the right order. + + + +\newpage +\tableofcontents + +\newpage +\section*{To do...} + +- angle marks, including curved angle marks + +- drawing knots, double lines, ropes + +- decorating lines + +- the eye, hand + +- physics diagrams, pendulum, indicating movement and vibration + +- examining a glyph + +- all sorts of arrow, arrows between arrows, arrows next to a path (handles) + +- faking 3d + +- functions, def, vardef, recursion, primarydef etc, of syntax, expr suffix text + +- four box model charts - Tufte charts - Venn diagrams + +- tour of the plain format + +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.mp new file mode 100644 index 00000000000..5b2f3be14c4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.mp @@ -0,0 +1,78 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + % define a unit + numeric u; + u = 1cm; + + % define the axes + path xx, yy; + xx = (2 left -- 10 right) scaled u; + yy = (down -- 7 up) scaled u; + + % and the angles + numeric theta, psi; + psi = 28; + theta = 50; + + % and some points + pair P, Q, H, N, M, T, L; + P = (4, 3) scaled 1cm; + + % now some lines + path ell, tee, arc; + ell = (left--right) scaled 10u rotated theta shifted P cutbefore xx; + tee = (left--right) scaled 10u rotated psi shifted P cutbefore xx; + + % this is a bit if a fiddle, but gets us a circular arc tangent to + % the line tee at point P, which appears to be what is wanted.... + arc = subpath (1.6, 3.2) of halfcircle rotated -180 shifted 1/2 up + scaled 10u shifted P rotatedabout(P, psi); + + % the rest of the points then follow... + Q = ell intersectionpoint subpath (1.5, 3) of arc; + H = P + whatever * dir psi; + xpart H = xpart Q = xpart M; ypart M = ypart N = 0; + xpart N = xpart P; + L = point 0 of ell; + T = point 0 of tee; + + % now we can get with the drawing + draw arc dashed withdots scaled 1/4 withcolor 1/2 red; + draw P--N dashed withdots scaled 1/2; + draw Q--M dashed withdots scaled 1/2; + + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); + + drawoptions(withcolor 2/3 blue); + draw fullcircle scaled 32 shifted T cutafter tee; + draw fullcircle scaled 28 shifted L cutafter ell; + label("$\psi$", 24 right rotated 1/2 psi shifted T); + label("$\theta$", 20 right rotated 1/2 theta shifted L); + drawoptions(); + + path boundary; + z1 = point .95 of xx; + z2 = point .95 of yy; + boundary = z1--(x1,y2)--z2; + + draw ell cutafter boundary; + draw tee cutafter boundary; + + % and finally label the points. + label.bot("$T$", T); + label.bot("$L$", L); + label.bot("$N$", N); + label.bot("$M$", M); + dotlabel.ulft("$P$", P); + dotlabel.lrt("$Q$", Q); + dotlabel.lrt("$H$", H); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.pdf Binary files differnew file mode 100644 index 00000000000..e894f32f21a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/angles-lines.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.mp new file mode 100644 index 00000000000..91ed22b6002 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.mp @@ -0,0 +1,158 @@ +\documentclass[border=1mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef radical_axis(expr ca, cb) = + numeric t, d, ra, rb; + ra = abs(center ca - point 0 of ca); + rb = abs(center cb - point 0 of cb); + d = abs(center cb - center ca); + 2t = 1 + (ra+rb) / d * (ra-rb) / d; + (up -- down) scaled 89 + rotated angle (center cb - center ca) + shifted t[center ca, center cb] +enddef; + +input tangent-times + +vardef invert_point(expr P, o, r) = + save p, d; pair p; numeric d; + p = P - o; d = abs p; + if d > 0: + o + unitvector p scaled (r/d*r) + else: + errmessage("Inversion undefined at center.") + fi +enddef; + +vardef pole(expr Line, Circle) = + save p, o, r; pair o, p; numeric r; + o = center Circle; + r = 1/2 abs (point 4 of Circle - point 0 of Circle); + p = whatever [point 1 of Line, point 0 of Line]; + p - o = whatever * direction 0 of Line rotated 90; + invert_point(p, o, r) +enddef; + +vardef polex(expr a, b, o, r) = + save p; pair p; + p = whatever [a, b]; + p - o = whatever * (a-b) rotated 90; + invert_point(p, o, r) +enddef; + +vardef three_point_circle(expr a,b,c) = + save m; pair m; + m = whatever [a,b] rotatedaround(.5[a,b],90) + = whatever [b,c] rotatedaround(.5[b,c],90); + fullcircle scaled 2 length(m-a) shifted m + enddef; + +vardef through(expr a, b, o) = + save d; numeric d; d = abs(a-b); + (1+o/d)[b, a] -- (1+o/d)[a, b] +enddef; + +beginfig(1); + path c[]; numeric r[]; + z1 = origin; r1 = 101; + z2 = 233 right rotated 4; r2 = 53; + z3 = 209 right rotated -42; r3 = 31; + + forsuffixes $=1, 2, 3: + c$ = fullcircle scaled 2 r$ shifted z$; + endfor + + pair ecs[], ics[]; + + for i=1 upto 3: + numeric j, k; + j = i mod 3 + 1; + k = 10i + j; + ics[k] = (r[i]/(r[i]+r[j]))[z[i], z[j]]; + ecs[k] = (r[i]/(r[i]-r[j]))[z[i], z[j]]; + endfor + path a[]; + a1 = radical_axis(c1, c2); + a2 = radical_axis(c2, c3); + a3 = radical_axis(c3, c1); + + z0 = whatever [point 0 of a1, point 1 of a1] + = whatever [point 0 of a2, point 1 of a2]; + + z11 = polex(ecs31, ecs12, z1, r1); + z21 = polex(ecs31, ecs12, z2, r2); + z31 = polex(ecs31, ecs12, z3, r3); + + z12 = c1 intersectionpoint (z0 -- z11); + z22 = c2 intersectionpoint (z0 -- z21); + z32 = c3 intersectionpoint (z0 -- z31); + + z13 = c1 intersectionpoint (z11 -- 8[z0,z11]); + z23 = c2 intersectionpoint (z21 -- 8[z0,z21]); + z33 = c3 intersectionpoint (z31 -- 8[z0,z31]); + + z14 = whatever[ecs12, ecs31] = whatever[z1, z11]; + z24 = whatever[ecs12, ecs31] = whatever[z2, z21]; + z34 = whatever[ecs12, ecs31] = whatever[z3, z31]; + + drawoptions(withcolor 3/4[blue, white]); + draw c1; draw c2; draw c3; + drawoptions(withcolor 1/4[blue, white]); + label.urt(btex $C_1$ etex, point 1 of c1); + label.top(btex $C_2$ etex, point 2 of c2); + label.rt (btex $C_3$ etex, point 1/2 of c3); + draw ecs12 -- ecs31 -- ecs23; + + drawoptions(withpen pencircle scaled 1/4 withcolor 3/4[2/3 blue, white]); + draw a1; draw a2; draw a3; + draw through(z1, z14, 6); + draw through(z2, z24, 6); + draw through(z3, z34, 6); + + drawoptions(withpen pencircle scaled 1/4 withcolor 1/2 white); + draw through(z0, z13, 6); + draw through(z0, z23, 6); + draw through(z0, z33, 6); + + drawoptions(withcolor 1/256(203, 92, 13)); + drawdot z0 withpen pencircle scaled 3/2 dotlabeldiam; + z99 = z0 shifted 24 dir -6; + label.rt("\vbox{\openup-4pt\halign{\hss #\hss\cr Radical\cr centre\cr}}", z99); + interim ahangle := 20; drawarrow z99 -- z0 + cutafter fullcircle scaled 16 shifted z0 + withpen pencircle scaled 1/3; + + drawoptions(withcolor 1/256(239, 114, 21)); + dotlabel.urt("\small Pole", z11); + dotlabel.ulft("\small Pole", z21); + dotlabel.urt("\small Pole", z31); + + drawoptions(withcolor 2/3 red); + draw three_point_circle(z12, z22, z32); + draw three_point_circle(z13, z23, z33); + drawdot z12 withpen pencircle scaled 3/4 dotlabeldiam; + drawdot z22 withpen pencircle scaled 3/4 dotlabeldiam; + drawdot z32 withpen pencircle scaled 3/4 dotlabeldiam; + drawdot z13 withpen pencircle scaled 3/4 dotlabeldiam; + drawdot z23 withpen pencircle scaled 3/4 dotlabeldiam; + drawdot z33 withpen pencircle scaled 3/4 dotlabeldiam; + + drawoptions(withcolor 1/2[blue, white]); + drawdot z1 withpen pencircle scaled dotlabeldiam; + drawdot z2 withpen pencircle scaled dotlabeldiam; + drawdot z3 withpen pencircle scaled dotlabeldiam; + drawdot z14 withpen pencircle scaled dotlabeldiam; + drawdot z24 withpen pencircle scaled dotlabeldiam; + drawdot z34 withpen pencircle scaled dotlabeldiam; + draw thelabel.top(btex Axis of similitude, as polar etex, origin) + rotated angle (ecs12 - ecs31) + shifted 3/4[ecs31, ecs12]; + + drawoptions(); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.pdf Binary files differnew file mode 100644 index 00000000000..7de0b11b20e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/apollonius.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.mp new file mode 100644 index 00000000000..7fe9bfc7962 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.mp @@ -0,0 +1,63 @@ +\RequirePackage{luatex85} +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +% invert path or pair P in circle C +vardef invert(expr P, C) = + save I, r; pair I; numeric r; + I = center C; + r = abs(point 0 of C shifted -I); + if pair P: if abs(P-I) > 0: unitvector(P-I) scaled (r/abs(P-I)*r) shifted fi I + elseif path P: + save T; numeric T; + T = length P; + for t=0 upto T-1: invert(point t of P, C) .. endfor if cycle P: cycle else: invert(point T of P, C) fi + fi +enddef; +beginfig(1); + pair A,B,C; + A = origin; C = 244 right; B = 7/8[A, C]; + + path c[]; + c1 = fullcircle scaled 2 abs(A-C); % large circle for the inversions + c2 = fullcircle scaled abs(A-C) shifted 1/2[A,C]; + c3 = fullcircle scaled abs(A-B) shifted 1/2[A,B]; + c4 = fullcircle scaled abs(B-C) shifted 1/2[B,C]; + c5 = invert(c4,c1); + + numeric d; d = abs(point 0 of c5 - point 4 of c5); % diameter of c5 + + drawoptions(withcolor 3/4 white); + draw c4; draw c5; + draw invert(subpath(0, 3/2) of c2, c1); + draw invert(subpath(0, 3/2) of c3, c1); + drawoptions(); + + draw subpath(-1/4,1) of c1 withcolor 3/4[1/2 red,white]; + label.bot("\textit{circle of inversion}", point -1/4 of c1) withcolor 1/4[1/2 red, white]; + + for i=1 upto 72: + path c, c'; + c = c5 shifted (0, i*d); + c' = invert(c, c1); + if i<5: + drawoptions(withcolor 3/4 white); + draw c; draw origin -- center c; + fill fullcircle scaled dotlabeldiam shifted center c; + fill fullcircle scaled dotlabeldiam shifted center c'; + drawoptions(); + fi + draw c' withpen pencircle scaled 1/4 withcolor 2/3 blue; + endfor + + forsuffixes $=2,3,4: draw subpath (0,4) of c$ + withpen pencircle scaled 1/4 withcolor 2/3 blue; + endfor + + draw A--C; + dotlabel.lft("$A$", A); dotlabel.llft("$B$", B); dotlabel.rt("$C$", C); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.pdf Binary files differnew file mode 100644 index 00000000000..df5f9a957f9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arbelos.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.mp new file mode 100644 index 00000000000..42b01cb7eb4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.mp @@ -0,0 +1,62 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef median(expr p) = origin for i=1 upto length p: + point i of p / length p endfor enddef; +beginfig(1); + path s[], t[]; + s1 = unitsquare scaled 21 rotated 15; + s2 = s1 rotated 150; + t1 = subpath (4, 3) of s1 -- point 1 of s2 -- cycle; + t2 = t1 reflectedabout(point 1 of t1, point 2 of t1); + t3 = t1 rotated 150; + t4 = t1 rotated 210; + + picture color_unit, grid_unit; + color_unit = image( + fill s1 withcolor Oranges 8 1; + fill s2 withcolor Oranges 8 2; + fill t1 withcolor Blues 8 1; + fill t2 withcolor Blues 8 2; + fill t3 withcolor Blues 8 3; + fill t4 withcolor Blues 8 4; + ); + grid_unit = image( + forsuffixes $=s1, s2, t1, t2, t3, t4: + draw $; + % pair m; m = median($); + % for i=1 upto length $: + % draw m -- point i - 1/2 of $ + % withpen pencircle scaled 1/4; + % endfor + endfor + ); + + pair u, v; + u = point 1 of s1 - point 1 of s2; + v = u rotated 90; + + numeric n; n = 3; + forsuffixes $=color_unit, grid_unit: + for i=-n upto n: + for j=-n upto n: + draw $ shifted (i * u + j * v); + endfor + endfor + endfor + label.bot("The arrangement of polygons in the units was carefully", point 1/2 of bbox currentpicture + shifted 21 down); + label.bot("chosen to give the tiling neat edges." , point 1/2 of bbox currentpicture); + + path b; b = bbox currentpicture shifted 34 down; + draw color_unit shifted point 1/4 of b; + draw grid_unit shifted point 3/4 of b; + path b; b = bbox currentpicture shifted 13 down; + label("\texttt{color\_unit}", point 1/4 of b); + label("\texttt{grid\_unit}", point 3/4 of b); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.pdf Binary files differnew file mode 100644 index 00000000000..1ceea33b78e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-3-4.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.mp new file mode 100644 index 00000000000..0a7094be3b2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.mp @@ -0,0 +1,54 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\mplibsetformat{metafun} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + numeric r; r = 5; + path d; d = for i=1 upto 12: + up scaled r + shifted (r * (sqrt(3)+2), 0) + rotated 30i -- + endfor cycle; + + color shade[]; + shade0 = Oranges 8 3; + shade1 = Blues 8 3; + shade2 = Greens 8 3; + shade3 = Reds 8 3; + + vardef unit(expr n) = image( + fill d withcolor transparent (2, .9, shade[n mod 4]); + draw d; + ) enddef; + pair u, v; + u = point 0 of d - point 3 of d; + v = u rotated 60; + numeric n; n = 6; + for i=-n upto n: + for j=-n upto n: + draw unit(i*j) shifted ((i - floor(j / 2)) * u + j * v); + endfor + endfor + clip currentpicture to unitsquare shifted -(1/2, 1/2) scaled (n * 9 r); + picture p; p = image( + draw d; draw point 0 of d withpen pencircle scaled 2; + drawoptions(withcolor 3/4[red, white]); + draw d shifted u; draw point 0 of d shifted u withpen pencircle scaled 2; + drawoptions(withcolor 3/4[blue, white]); + draw d shifted v; draw point 0 of d shifted v withpen pencircle scaled 2; + drawoptions(); + drawarrow origin -- u withcolor red; + drawarrow origin -- v withcolor blue; + ); + label.bot(p, point 1/2 of bbox currentpicture shifted 13 down); + label.bot(btex \vbox{\hsize 3.4in\noindent + The vectors are chosen so that the dodecagons overlap to make + the required triangles, squares, and hexagons.} etex, + point 1/2 of bbox currentpicture shifted 13 down); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.pdf Binary files differnew file mode 100644 index 00000000000..e145578609a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-3-4-6-4.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.mp new file mode 100644 index 00000000000..8d8ddf26840 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.mp @@ -0,0 +1,65 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input archimedean-tools +input colorbrewer-rgb +beginfig(1); + path dodo, h[], s[]; + dodo = poly 12 of (origin -- 21 up); + for i=1 upto 3: + s[i] = poly 4 of subpath(2i, 2i-1) of dodo; + endfor + h1 = poly 6 of subpath (4, 3) of s1; + h2 = poly 6 of subpath (2, 1) of s3; + + picture cols, lines; + cols = image( + fill dodo withcolor Greens 9 2; + for i=1 upto 2: + fill h[i] withcolor Greens 9 3; + endfor + for i=1 upto 3: + fill s[i] withcolor Greens 9 4; + endfor + ); + lines = image( + forsuffixes $=dodo, s1, s2, s3, h1, h2: + if known $: + draw $ withpen pencircle scaled 1/4; + pair m; m = median($); + for i=1 upto length $: + cutdraw m -- point i - 1/2 of $ + if odd i: cutbefore fullcircle scaled (length $ / 4) shifted m fi + withpen pencircle scaled 1/4 + withcolor Reds 4 3; + ; + endfor + fi + endfor + ); + + pair u, v; + u = point 2 of s1 - point 8 of dodo; + v = u rotated 60; + + numeric n; + n = 2; + + forsuffixes @ = cols, lines: + for i=-n upto n+1: + for j=-n upto n: + draw @ shifted (i*u + j*v - floor(i/2) * v); + endfor + endfor + endfor + + clip currentpicture to unitsquare xscaled ((2n+1) * xpart u) yscaled (2n * ypart v) + shifted median(s2 shifted (-n*u - n*v + floor(n/2) * v)); + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.pdf Binary files differnew file mode 100644 index 00000000000..4868f44da31 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-6-12.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.mp new file mode 100644 index 00000000000..53aec91d144 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.mp @@ -0,0 +1,34 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +input colorbrewer-rgb +path o, r[]; +o = (for i=0 upto 7: 21 dir 45i -- endfor cycle) rotated -90/4; +pair t; t = whatever[point 0 of o, point 1 of o] + = whatever[point 2 of o, point 3 of o]; +r1 = subpath (1,2) of o -- t -- cycle; +r2 = r1 rotated 90; +r3 = r2 rotated 90; +r4 = r3 rotated 90; + +picture filler; +filler = image( + filldraw r1 withcolor Reds 8 3; + filldraw r2 withcolor Blues 8 3; + filldraw r3 withcolor Reds 8 3; + filldraw r4 withcolor Blues 8 3; + filldraw o withcolor Purples 8 2; +); +beginfig(1); + draw filler; + label.bot("\begin{tabular}{c}The \texttt{filler} picture\\(unrotated)\end{tabular}", point 1/2 of bbox filler); + + draw o shifted 120 right; + label.bot("The octagon path \texttt{o}", point 1/2 of bbox o shifted 120 right); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.pdf Binary files differnew file mode 100644 index 00000000000..6466e01641b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8-parts.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.mp new file mode 100644 index 00000000000..117588ff027 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.mp @@ -0,0 +1,40 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +input colorbrewer-rgb +path o, r[]; +o = (for i=0 upto 7: 21 dir 45i -- endfor cycle) rotated -90/4; +pair t; t = whatever[point 0 of o, point 1 of o] + = whatever[point 2 of o, point 3 of o]; +r1 = subpath (1,2) of o -- t -- cycle; +r2 = r1 rotated 90; +r3 = r2 rotated 90; +r4 = r3 rotated 90; + +picture filler; +filler = image( + filldraw r1 withcolor Reds 8 3; + filldraw r2 withcolor Blues 8 3; + filldraw r3 withcolor Reds 8 3; + filldraw r4 withcolor Blues 8 3; + filldraw o withcolor Purples 8 2; +); +pair u, v; +u = point 0 of o - point 5 of o; v = u rotated 90; +beginfig(1); +numeric n; n = 5; +for i=-n upto n: + for j=-n upto n: + draw filler rotated ((i+j) mod 2 * 90) shifted (i*u + j * v); + endfor +endfor +for i=-n upto n: + for j=-n upto n: + draw o shifted (i*u + j * v); + endfor +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.pdf Binary files differnew file mode 100644 index 00000000000..e5fa45dde03 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-4-8-8.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hexagon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hexagon.mp new file mode 100644 index 00000000000..0cb259d1244 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hexagon.mp @@ -0,0 +1,59 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +input archimedean-tools +beginfig(1); + + path h[]; + % 42/sqrt(3) \simeq 24.2487; + for i=0 upto 2: + h[i] = poly 6 of (origin -- 42 / sqrt(3) * dir (30 + 120i)); + endfor + + picture unit; + unit = image( + % fill h0 withcolor Purples 8 3; + % fill h1 withcolor Oranges 8 3; + % fill h2 withcolor Blues 8 2; + numeric i; i = -1; + forsuffixes $ = Purples, Oranges, Blues: + pair m; m = median(h[incr i]); + for j=1 upto 3: + fill subpath (-2i+2j, 2-2i+2j) of h[i] -- m -- cycle withcolor $[8][1+j]; + endfor + for j=1 upto 3: + draw m -- point 2j of h[i] withcolor $[8][1]; + endfor + endfor + + % for i=0 upto 2: + % pair m; m = median(h[i]); + % for j=0 upto 2: + % draw point 2j+1/2 of h[i] -- m -- point 2j+3/2 of h[i]; + % endfor + % endfor + ); + + pair u, v; + u = point 3 of h1 - point 1 of h0; + v = u rotated 60; + + numeric n; + n = 4; + + for i=-n upto n: + for j=-n upto n: + draw unit shifted (i*u + j*v); + endfor + endfor + + clip currentpicture to superellipse(168 right, 168 up, 168 left, 168 down, 0.78); + + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.mp new file mode 100644 index 00000000000..ebcf5668d24 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.mp @@ -0,0 +1,62 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +input archimedean-tools +beginfig(1); + path t[], s[], h; + h = poly 6 of (origin -- 42 dir 30); + for i=1 upto 3: + s[i] = poly 4 of subpath (2i, 2i-1) of h; + endfor + t1 = poly 3 of subpath (4, 3) of s1; + t2 = poly 3 of subpath (2, 1) of s2; + + picture unit; + unit = image( + for i=1 upto 2: + fill t[i] withcolor Blues 8 4; + endfor + for i=1 upto 3: + fill s[i] withcolor Greens 8 1; + endfor + fill h withcolor Oranges 9 4; + forsuffixes $=t1, t2: + pair m; m = median($); + for i=1 upto length $: + draw m -- point i - 1/2 of $ withcolor Blues 8 8; + endfor + endfor + forsuffixes $=s1, s2, s3: + draw point 1/2 of $ -- point 5/2 of $ withcolor Oranges 8 8; + draw point 3/2 of $ -- point 7/2 of $ withcolor Blues 8 8; + endfor + for i=1 upto 3: + draw point i-1/2 of h -- point i+5/2 of h withcolor Oranges 8 8; + endfor + ); + + pair u, v; + u = point 2 of s1 - point -1 of h; + v = u rotated 60; + + numeric n; n=4; + for i=-n upto n: + for j=-n upto n: + draw unit rotated 0 shifted (i*u + j*v - floor (j/2) * u); + endfor + endfor + %draw bbox unit withcolor red; + + clip currentpicture to fullcircle scaled (3/2n * abs(v)); + + % picture p; p = currentpicture; + % (wd, ht) = (urcorner p - llcorner p); + % currentpicture := nullpicture; + % p := p scaled (148.5mm / wd); + % draw p; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.pdf Binary files differnew file mode 100644 index 00000000000..6d973adde97 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-hst.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hex-parts.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hex-parts.mp new file mode 100644 index 00000000000..bf3ff143559 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hex-parts.mp @@ -0,0 +1,49 @@ +input colorbrewer-rgb +input archimedean-tools +path t[], h; +h = poly 6 of (origin -- 21 dir 30); +for i=1 upto 6: + t[i] = poly 3 of subpath (i, i-1) of h; +endfor +picture P[], unit[]; +for k=1 upto 2: + pair u, v; + if k=1: + u = point 2 of h - point 2 of t6; + t7 := poly3 of subpath (0, -1) of t6; + t8 := poly3 of subpath (0, -1) of t3; + else: + u = point 3 of h - point 2 of t6; + t7 := poly3 of subpath (2, 1) of t6; + t8 := poly3 of subpath (2, 1) of t3; + fi + + v = u rotated -60; + + unit[k] = image( + for i=1 upto 6: + fill t[i] withcolor Blues 8 if odd i: 2 else: 3 fi; + endfor + for i=7 upto 8: + fill t[i] withcolor Oranges 8 if odd i: 3 else: 2 fi; + endfor + fill h withcolor Oranges 8 2; + forsuffixes $=h, t1, t2, t3, t4, t5, t6, t7, t8: + draw $ withpen pencircle scaled 1/4 withcolor 3/4; + pair m; m = median($); + for i=1 upto length $: + draw m -- point i - 1/2 of $ withcolor 3/4; + endfor + endfor + ); + + numeric n; n=4; + P[k] = image( + for i=-n upto n: + for j=-n upto n: + draw unit[k] shifted (i*u + j*v - floor (j/2) * u); + endfor + endfor + clip currentpicture to superellipse(168 right, 168 up, 168 left, 168 down, 0.78); + ); +endfor diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.mp new file mode 100644 index 00000000000..b5200f6a6f1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.mp @@ -0,0 +1,12 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input arch-snub-hex-parts +beginfig(1); + draw unit1 rotated 210; + draw unit2 rotated 210 shifted 100 left; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.pdf Binary files differnew file mode 100644 index 00000000000..1dd83c0b0d4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon-unit.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.mp new file mode 100644 index 00000000000..09310036f2c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.mp @@ -0,0 +1,13 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input arch-snub-hex-parts +beginfig(1); +draw P1 shifted 180 left; +draw P2 shifted 180 right; +currentpicture := currentpicture rotated 90; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.pdf Binary files differnew file mode 100644 index 00000000000..aed6e4d102b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-hexagon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.mp new file mode 100644 index 00000000000..c607b4e5c45 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.mp @@ -0,0 +1,72 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-cmyk +% a polygon of n sides on a given path +vardef poly expr n of p = + save x, y; + z0 = point 0 of p; + z1 = point 1 of p; + for i=2 upto n-1: + z[i] = z[i-2] rotatedabout(z[i-1], 180(2/n-1)); + endfor + for i=0 upto n-1: z[i] -- endfor cycle +enddef; +vardef median(expr P) = + (origin for i=1 upto length P: + point i of P endfor) / length P +enddef; +beginfig(1); + path t[], s[]; + s1 = poly 4 of (origin -- 42 dir 15); + t1 = poly 3 of subpath (2, 1) of s1; + t2 = poly 3 of subpath (3, 2) of s1; + t3 = poly 3 of subpath (2, 1) of t1; + t4 = poly 3 of subpath (2, 1) of t2; + s2 = poly 4 of subpath (2, 1) of t4; + + picture unit; + unit = image( + fill s1 withcolor Oranges 8 5; + fill t1 withcolor Blues 8 4; + fill t4 withcolor Blues 8 3; + fill t3 withcolor Greens 8 4; + fill t2 withcolor Greens 8 3; + fill s2 withcolor Reds 8 5; + forsuffixes $=s1, t1, s2, t2, t3, t4: + pair m; m = median($); + for i=1 upto length $: + draw point i - 1/2 of $ -- m + withpen pencircle scaled 3/2 withcolor Spectral 3 2; + endfor + endfor + ); + + pair u, v; + u = point 2 of t2 - point 0 of s1; + v = point 2 of t3 - point 0 of s1; + + for i=0 upto 6: + for j=0 upto 9: + draw unit shifted (i*u + j*v); + endfor + endfor + + % picture p; p = currentpicture; + % (wd, ht) = (urcorner p - llcorner p); + % currentpicture := nullpicture; + % p := p scaled (145mm / wd); + % undraw unitsquare xscaled 148mm yscaled 210mm shifted llcorner p shifted -(1.5mm, 1.5mm) + % withpen pencircle scaled 1/8; + % z0 = 1/2[llcorner currentpicture, ulcorner currentpicture]; + % draw z0 -- z0 shifted 3 right withpen pencircle scaled 1/8; + % z1 = 1/2[lrcorner currentpicture, urcorner currentpicture]; + % draw z1 -- z1 shifted 3 left withpen pencircle scaled 1/8; + % draw p; + % picture r; r = currentpicture rotated 90; + % currentpicture := nullpicture; + % draw r; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.pdf Binary files differnew file mode 100644 index 00000000000..4cc73ce6e53 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-snub-square.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-square.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-square.mp new file mode 100644 index 00000000000..3511abf4e98 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-square.mp @@ -0,0 +1,39 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +input archimedean-tools +beginfig(1); + + path s; + s = poly 4 of (origin -- 42 right); + pair m; + m = median(s); + + picture unit[]; + unit0 = image( + fill s withcolor Oranges 8 5; + for i=1 upto length s: + draw m -- point i-1/2 of s; + endfor<D-`> + + ); + unit1 = image(fill s withcolor Blues 8 4); + + + pair u, v; + u = point 1 of s - point 0 of s; + v = point 3 of s - point 0 of s; + + + numeric n; + n = 4 + + + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-triangle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-triangle.mp new file mode 100644 index 00000000000..cc806746642 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/arch-triangle.mp @@ -0,0 +1,45 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +input archimedean-tools +beginfig(1); + + path s, t; + s = poly 3 of (origin -- 42 right); + t = poly 3 of subpath(2,1) of s; + pair ms, mt; + ms = median(s); + mt = median(t); + + picture unit; + unit = image( + fill s withcolor Oranges 8 3; + fill t withcolor Blues 8 2; + draw point 5/2 of s -- ms; + draw point 3/2 of t -- mt; + draw point 1/2 of s -- ms -- mt -- point 5/2 of t; + ); + + pair u, v; + u = point 1 of s - point 0 of s; + v = point 2 of s - point 0 of s; + + numeric n; + n = 0; + + for i=-n upto n: + for j=-n upto n: + draw unit shifted (i*u + j*v); + endfor + endfor + + clip currentpicture to superellipse(168 right, 168 up, 168 left, 168 down, 0.78); + + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedean-tools.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedean-tools.mp new file mode 100644 index 00000000000..e10c8f447f5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedean-tools.mp @@ -0,0 +1,33 @@ +% a polygon of n sides on a given path +vardef poly expr n of p = + save x, y; + z0 = point 0 of p; + z1 = point 1 of p; + for i=2 upto n-1: + z[i] = z[i-2] rotatedabout(z[i-1], 180(2/n-1)); + endfor + for i=0 upto n-1: z[i] -- endfor cycle +enddef; +vardef polyc expr n of p = + save x, y; + z0 = point 0 of p; + z1 = point 1 of p; + for i=2 upto n-1: + z[i] = z[i-2] rotatedabout(z[i-1], 180(2/n-1)); + endfor + for i=0 upto n-1: z[i] ... endfor cycle +enddef; + +% a polygon of n sides of a given length +vardef polya(expr n, s) = + save r, x, y; numeric r, x, y; + (x, y) = dir (180/n); + 2r = s * x / y; + for i=0 upto n-1: + (left * s/2) shifted (r * down) rotated (360 / n * i) -- + endfor cycle +enddef; +vardef median(expr P) = + (origin for i=1 upto length P: + point i of P endfor) / length P +enddef; + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.mp new file mode 100644 index 00000000000..81608868a89 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.mp @@ -0,0 +1,189 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +numeric u; u = 10; +path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +picture P[]; +% (4,6,12) +numeric dx; dx = u*(1+ cosd(15)/sind(15)); +picture unit; unit = image( + path s; s = unitsquare shifted -(1/2,1/2) scaled u shifted (dx/2,0); + for t=0 upto 2: + draw s rotated 120t; + for tt=1 upto 3: + draw subpath(3,4) of s rotated (120t+30tt); + endfor + endfor +); +P1 = image( + draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + for x=-5dx step dx until 5dx: + for y=-5dx step dx until 5dx: + draw unit shifted (x,0) shifted ((y,0) rotated 60); + endfor + endfor + clip currentpicture to box; draw box dashed withdots scaled 1/4; + label.bot("$(4, 6, 12)$", point 1/2 of bbox currentpicture); +); +numeric dx; dx = u*(cosd(180/8)/sind(180/8)); +path octagon; octagon = for t = 0 upto 7: 1/2(dx,u) rotated 45t -- endfor cycle; +P2 = image( + draw octagon withpen pencircle scaled 4 withcolor .8[red,white]; + for x=-5dx step dx until 5dx: + for y=-5dx step dx until 5dx: + draw octagon shifted (x,y); + endfor + endfor + clip currentpicture to box; draw box dashed withdots scaled 1/4; + label.bot("$(4, 8^2)$", point 1/2 of bbox currentpicture); +); + +numeric dx; dx = u*(cosd(180/12)/sind(180/12)); +path unit; unit = for t=0 upto 11: 1/2(dx,u) rotated 30t -- endfor cycle; +P3 = image( + draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + for x=-5dx step dx until 5dx: + for y=-5dx step dx until 5dx: + draw unit shifted (x,0) shifted ((y,0) rotated 60); + endfor + endfor + clip currentpicture to box; draw box dashed withdots scaled 1/4; + label.bot("$(3, 12^2)$", point 1/2 of bbox currentpicture); +); + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; + +% beginfig(4); +% % (6^3) +% save dx; dx = 3u; +% picture unit; unit = image( +% for t=0 upto 2: +% draw origin -- (u,0) rotated 120t; +% endfor +% ); + +% draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + +% for x=-5dx step dx until 5dx: +% for y=-5dx step dx/3 until 5dx: +% draw unit shifted (x,0) shifted (y,0) shifted ((y,0) rotated 60); +% endfor +% endfor + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; + +% (3,4,6,4) +numeric dx; dx = u*(1+cosd(30)/sind(30)); +picture unit; unit = image( + path s; s = unitsquare shifted -(1/2,1/2) scaled u shifted (dx/2,0); + for t=0 upto 2: + draw s rotated 120t; + endfor +); +P4 = image( + draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + for x=-5dx step dx until 5dx: + for y=-5dx step dx until 5dx: + draw unit shifted (x,0) shifted ((y,0) rotated 60); + endfor + endfor + clip currentpicture to box; draw box dashed withdots scaled 1/4; + label.bot("$(3, 4, 6, 4)$", point 1/2 of bbox currentpicture); +); + +% beginfig(6); +% % (3,6,3,6) +% save dx; dx = 2u; +% path unit; unit = for t=0 upto 5: (u,0) rotated 60t -- endfor cycle; + +% draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + +% for x=-5dx step dx until 5dx: +% for y=-5dx step dx until 5dx: +% draw unit shifted (x,0) shifted ((y,0) rotated 60); +% endfor +% endfor + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; + +% beginfig(7); +% % (4^4) +% save dx; dx = 4u; +% path unit; unit = unitsquare shifted -(1/2,1/2) scaled 2u; + +% draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + +% for x=-5dx step dx until 5dx: +% for y=-5dx step dx until 5dx: +% draw unit shifted (x,0) shifted (y/2,y/2); +% endfor +% endfor + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; + +% beginfig(8); +% % (3^4,6) +% save dx; dx = 2u; +% picture unit; unit = image( +% for t=0 upto 5: draw ((2u,0) -- (u,0) +% -- (u,0) rotated 60 +% -- (u,0) rotated 60 shifted (u,0) +% ) rotated 60t; endfor +% ); + +% draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + +% for x=-5dx step dx until 5dx: +% for y=-5dx step dx until 5dx: +% draw unit shifted (x,0) shifted ((x/2,0) rotated -60) +% shifted ((y,0) rotated 60) shifted (y/2,0); +% endfor +% endfor + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; +% beginfig(9); +% % (3^2,4,3,4) +% save dx; dx = u; +% picture unit; unit = image( +% for t=0 upto 3: draw ( (u/2,-u/2) -- (u/2+u*sqrt(3)/2,0) -- (u/2,u/2) -- cycle) rotated 90t; endfor +% ); + +% draw unit withpen pencircle scaled 4 withcolor .8[red,white]; + +% for x=-5dx step dx until 5dx: +% for y=-5dx step dx until 5dx: +% draw unit shifted (x,0) shifted ((x,0) rotated 30) +% shifted (0,y) shifted ((0,y) rotated 30); +% endfor +% endfor + +% path box; box = unitsquare shifted -(1/2,1/2) scaled 12u; +% clip currentpicture to box; draw box dashed evenly; + +% endfig; +beginfig(1); +draw P1; +draw P2 shifted (12.5u, 0); +draw P3 shifted (0, -14.4u); +draw P4 shifted (12.5u, -14.4u); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.pdf Binary files differnew file mode 100644 index 00000000000..ead562d6f9f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/archimedes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.mp new file mode 100644 index 00000000000..e9dc5f58867 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.mp @@ -0,0 +1,37 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +ahangle := 30; +beginfig(1); + numeric u; + u = 1cm; + path xx, yy, f; + xx = (1/4 left -- 17/4 right) scaled u; + yy = (1/4 down -- 9/4 up) scaled u; + + f = ((15/32,32/15) for x = 1/2 step 1/8 until 33/8: .. (x,1/x) endfor) scaled u; + + path A; + A = buildcycle(yy shifted (u,0), f, yy shifted (2.71828u,0), xx); + fill A withcolor Blues 8 2; + + drawoptions(withcolor 3/4); + for x=1 upto 4: + draw yy shifted (x*u,0) cutafter (xx shifted (0, ypart point 0 of f)); + endfor + for y=1 upto 2: + draw xx shifted (0,y*u) cutafter (yy shifted (xpart point infinity of f,0)); + endfor + + drawoptions(); + draw f withcolor Reds 8 7; + drawarrow xx; + drawarrow yy; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.pdf Binary files differnew file mode 100644 index 00000000000..8230d85b40a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/area-under-graph.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.mp new file mode 100644 index 00000000000..94ad49f6950 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.mp @@ -0,0 +1,113 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef straight_through(expr Prefix, Path, Suffix) = + reverse (left scaled Prefix rotated angle direction 0 of Path shifted point 0 of Path) + .. Path .. (right scaled Suffix rotated angle direction infinity of Path shifted point infinity of Path) +enddef; + +vardef tangent_times(expr C, p) = + save m, a, b, G, H; + pair m; numeric a, b; path G, H; + m = 1/2[p, center C]; + H = halfcircle scaled abs (p - center C) + rotated angle (p - center C) shifted m; + G = H rotatedabout(m, 180); + (a, whatever) = C intersectiontimes H; + (b, whatever) = C intersectiontimes G; + (a, b if b < a: + 8 fi) +enddef; +vardef arc_of_tangents(expr C, p) = + subpath tangent_times(C, p) of C +enddef; + +beginfig(1); + + path c[]; numeric r[]; + z1 = origin; r1 = 101; + z2 = 233 right rotated 4; r2 = 53; + z3 = 209 right rotated -42; r3 = 31; + + forsuffixes $=1, 2, 3: + c$ = fullcircle scaled 2 r$ shifted z$; + endfor + + pair ecs[], ics[]; + + for i=1 upto 3: + numeric j, k; + j = i mod 3 + 1; + k = 10i + j; + ics[k] = (r[i]/(r[i]+r[j]))[z[i], z[j]]; + ecs[k] = (r[i]/(r[i]-r[j]))[z[i], z[j]]; + endfor + + show unitvector(ecs31 - ics12) dotprod unitvector(ecs12 - ics31); + + fill ecs12 -- arc_of_tangents(c1, ecs12) -- cycle withcolor 15/16[blue, white]; + fill ics12 -- arc_of_tangents(c1, ics12) -- cycle withcolor 7/8 [blue, white]; + fill ics12 -- arc_of_tangents(c2, ics12) -- cycle withcolor 7/8 [blue, white]; + + unfill c1; unfill c2; unfill c3; + + drawoptions(withcolor 3/4[blue, white]); + draw c1 withpen pencircle scaled 1; + draw c2 withpen pencircle scaled 1; + draw c3 withpen pencircle scaled 1; + + numeric t, u, v; + (t, whatever) = tangent_times(c1, ecs12); + (u, whatever) = tangent_times(c1, ics12); + (whatever, v) = tangent_times(c2, ics12); + draw point t of c1 -- z1 -- point u of c1 dashed evenly; + draw point t of c2 -- z2 -- point v of c2 dashed evenly; + + drawoptions(withcolor 1/4[blue, white]); + drawdot z1 withpen pencircle scaled dotlabeldiam; + drawdot z2 withpen pencircle scaled dotlabeldiam; + drawdot z3 withpen pencircle scaled dotlabeldiam; + label(btex $C_1$ etex, z1 shifted 10 dir 254); + label(btex $C_2$ etex, z2 shifted 10 dir 299); + label(btex $C_3$ etex, z3 shifted 10 dir 6); + label.lft(btex $r_1$ etex, 1/2[z1, point t of c1]); + label.lft(btex $r_2$ etex, 1/2[z2, point t of c2]); + + drawoptions(); + draw ecs31 -- ics12 -- ecs23 -- ecs12 -- ics31 dashed withdots scaled 1/2; + + drawoptions(withcolor 1/2 white); + draw straight_through(r1+24, z1 -- ecs12, 24); + draw straight_through(r1+24, z1 -- ecs31, 24); + draw straight_through(r2+24, z2 -- ecs23, 24); + + drawoptions(withcolor 2/3 red); + drawdot ics12 withpen pencircle scaled dotlabeldiam; + drawdot ics23 withpen pencircle scaled dotlabeldiam; + drawdot ics31 withpen pencircle scaled dotlabeldiam; + label(btex $I_{12}$ etex, ics12 shifted 12 dir 100); + label(btex $I_{23}$ etex, ics23 shifted 12 dir 340); + label(btex $I_{31}$ etex, ics31 shifted 10 dir 200); + + drawoptions(withcolor 5/8 blue); + drawdot ecs12 withpen pencircle scaled dotlabeldiam; + drawdot ecs23 withpen pencircle scaled dotlabeldiam; + drawdot ecs31 withpen pencircle scaled dotlabeldiam; + label(btex $E_{12}$ etex, ecs12 shifted 8 dir 100); + label(btex $E_{23}$ etex, ecs23 shifted 11 dir 345); + label(btex $E_{31}$ etex, ecs31 shifted 10 dir 277); + + draw thelabel.top(btex Axis of Similitude etex, origin) + rotated angle (ecs12 - ecs31) + shifted 1/4[ecs31, ecs12]; + + label(btex $\displaystyle {C_1E_{12} \over C_2E_{12}} = {r_1 \over r_2} + = {C_1I_{12} \over C_2I_{12}}$ etex, (x1, y3)); + + label(btex \it \& cetera \dots etex, (x1, y3-28)); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.pdf Binary files differnew file mode 100644 index 00000000000..422e03717ca --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/axis-of-similitude.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/basedate.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/basedate.mp new file mode 100644 index 00000000000..f91c360894e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/basedate.mp @@ -0,0 +1,11 @@ +vardef base(expr Y, M, d) = + save m, y; numeric m, y; + if M < 3: + m = M + 9; + y = Y - 1; + else: + m = M - 3; + y = Y; + fi + 365/1024 y + (floor(y/4) - floor(y/100) + floor(y/400) + floor((2+3m)/5) + 30m + d - 307) / 1024 +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.mp new file mode 100644 index 00000000000..742d7620111 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.mp @@ -0,0 +1,33 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\mplibtextextlabel{enable} +\begin{document} +\vbox{\openup 1pt \halign to 4in{#\cr +\begin{code} +vardef euclidean_bisector(expr a,b,c,r) = + save arc,p,q,e; + path arc; pair p,q,e; + arc = fullcircle scaled r shifted b; + p = (a--b) intersectionpoint arc; + q = (b--c) intersectionpoint arc ; + e = equilateral_triangle_point(p,q); + e +enddef; +\end{code} +\cr\kern 64pt +\begin{mplibcode} +input bisection +beginfig(1); +z0 = euclidean_bisector(A,B,C,100); +draw B -- 1.2[B,z0] withcolor .67 red; +draw A--B--C; +dotlabel.top(btex $A$ etex, A); +dotlabel.lft(btex $B$ etex, B); +dotlabel.lrt(btex $C$ etex, C); +dotlabel.lrt(btex $E$ etex, z0); +undraw bbox currentpicture; +endfig; +\end{mplibcode} +\cr}} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.pdf Binary files differnew file mode 100644 index 00000000000..c5d2971ec74 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-euclidean.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.mp new file mode 100644 index 00000000000..c39c6fd5a96 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.mp @@ -0,0 +1,28 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\mplibtextextlabel{enable} +\begin{document} +\vbox{\openup 1pt \halign to 4in{#\cr +\begin{code} +vardef interior_bisector(expr a,b,c) = + (1/(1+abs(c-b)/abs(a-b)))[a,c] +enddef; +\end{code} +\cr\kern 64pt +\begin{mplibcode} +input bisection +beginfig(1); +z0 = interior_bisector(A,B,C); +draw A--B--C--cycle; +draw B -- 1.2[B,z0] withcolor .67 red; +dotlabel.top(btex $A$ etex, A); +dotlabel.lft(btex $B$ etex, B); +dotlabel.lrt(btex $C$ etex, C); +draw z0 withpen pencircle scaled dotlabeldiam; +label(btex $E$ etex, z0 + (3,9)); +undraw bbox currentpicture; +endfig; +\end{mplibcode} +\cr}} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.pdf Binary files differnew file mode 100644 index 00000000000..f58a457e9f9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-interior.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.mp new file mode 100644 index 00000000000..55a8166df92 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.mp @@ -0,0 +1,30 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\mplibtextextlabel{enable} +\begin{document} +\vbox{\openup 1pt \halign to 4in{#\cr +\begin{code} +vardef vector_bisector(expr a,b,c,r) = + b + unitvector (a-b) scaled r + + unitvector (c-b) scaled r +enddef; +\end{code} +\cr\kern 64pt +\begin{mplibcode} +input bisection +beginfig(1); +z0 = vector_bisector(A,B,C,50); +drawarrow B--A cutafter fullcircle scaled 5 shifted A; +drawarrow B--C cutafter fullcircle scaled 5 shifted C; +drawarrow B--z0 cutafter fullcircle scaled 5 shifted z0 +withcolor .67 red; +dotlabel.top(btex $A$ etex, A); +dotlabel.lft(btex $B$ etex, B); +dotlabel.lrt(btex $C$ etex, C); +dotlabel.lrt(btex $E$ etex, z0); +undraw bbox currentpicture; +endfig; +\end{mplibcode} +\cr}} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.pdf Binary files differnew file mode 100644 index 00000000000..a3afc5aee04 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection-vector.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection.mp new file mode 100644 index 00000000000..895fdefb20b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/bisection.mp @@ -0,0 +1,33 @@ +vardef equilateral_triangle_point(expr a, b) = + b shifted -a rotated 60 shifted a +enddef; + +vardef euclidean_bisector(expr a,b,c,r) = + save arc,p,q,e; + path arc; numeric p,q; pair e; + arc = fullcircle scaled r shifted b; + p = ypart ( (a--b) intersectiontimes arc ); + q = ypart ( (b--c) intersectiontimes arc ); + e = equilateral_triangle_point(point p of arc, point q of arc); + hide( + draw subpath(p-1/4,p+1/4) of arc withcolor .7[red,white]; + draw subpath(q-1/4,q+1/4) of arc withcolor .7[red,white]; + draw point p of arc -- point q of arc -- e -- cycle + withcolor .7[blue,white]; + ) + e +enddef; + +vardef vector_bisector(expr a,b,c,r) = + b + unitvector (a-b) scaled r + + unitvector (c-b) scaled r +enddef; + +vardef interior_bisector(expr a,b,c) = + (1/(1+abs(c-b)/abs(a-b)))[a,c] +enddef; + +pair A,B,C; +A = 120 right rotated 52; +B = origin; +C = 144 right rotated -4; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.mp new file mode 100644 index 00000000000..4da586d64b5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.mp @@ -0,0 +1,44 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{fontspec} +\setmainfont{Helvetica} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + +path C[], B[]; + +% arrange each circle so that point 0 is outside the others +C1 = fullcircle scaled 120 rotated 90 shifted 40 up; +C2 = C1 rotated 120; +C3 = C2 rotated 120; + +B0 = buildcycle(C1, C2, C3); +B1 = buildcycle(C1, C2); +B2 = buildcycle(C2, C3); +B3 = buildcycle(C3, C1); + +picture P; +for x=0 upto 1: + for y=0 upto 1: + P := image( + s := 1/4 + x/2; + k := 0 + y/4; + fill C1 withcolor s*(1,0,0,k); + fill C2 withcolor s*(0,1,0,k); + fill C3 withcolor s*(0,0,1,k); + fill B3 withcolor s*(1,0,1,k); + fill B2 withcolor s*(0,1,1,k); + fill B1 withcolor s*(1,1,0,k); + fill B0 withcolor s*(1,1,1,k); + undraw C1; undraw C2; undraw C3; + ) shifted -(200x, 200y); + draw P; + label.bot(("shade: " & decimal s & ", k: " & decimal k) + infont "phvr8r", point 1/2 of bbox P); + endfor +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.pdf Binary files differnew file mode 100644 index 00000000000..d5b4b4c6319 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/blended-color-circles.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-dashed.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-dashed.pdf Binary files differnew file mode 100644 index 00000000000..0f46ba0340f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-dashed.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-shadow.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-shadow.pdf Binary files differnew file mode 100644 index 00000000000..5ba2540848b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border-shadow.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.mp new file mode 100644 index 00000000000..71dd27309b1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.mp @@ -0,0 +1,50 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +input rope +beginfig(1); + + interim ahangle := 30; + + z0 = 42 left rotated normaldeviate; + z1 = 30 up rotated normaldeviate; + z2 = 31 right rotated normaldeviate; + z3 = 34 down rotated normaldeviate; + + path s[]; + for i=0 upto 3: + s[i] = unitsquare zscaled (z[(i+1) mod 4] - z[i]) shifted z[i]; + fill s[i] withcolor if odd i: Blues else: Oranges fi 8 1; + draw point 3 of s[i] -- subpath (1,4) of s[i] -- point 2 of s[i] withcolor 3/4; + drawarrow subpath (0, 1) of s[i]; + z[i+4] = 1/2[point 0 of s[i], point 2 of s[i]]; + endfor + + z8 = whatever[z4, z6] = whatever[z5, z7]; + + draw unitsquare scaled 5 rotated angle (z4-z6) shifted z8 withcolor 3/4; + + drawarrow z4--z6; + drawarrow z5--z7; + + vardef with_rounded_corners expr p = + for i=1 upto length p: + subpath (i-15/16, i-1/16) of p .. + endfor cycle + enddef; + + interim bboxmargin := 16; + draw rope with_rounded_corners bbox currentpicture; + % dashed evenly scaled 3/4; + %picture P; P = currentpicture; + %fill bbox P shifted (3,-3) withcolor 3/4; + %unfill bbox P; draw bbox P; + %draw P; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.pdf Binary files differnew file mode 100644 index 00000000000..3b1e9fcd6f6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/border.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.mp new file mode 100644 index 00000000000..454adfb42a0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.mp @@ -0,0 +1,44 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef do_brace(expr a,b,m,r) = + save d, e, n, bb; + numeric d, n; pair e; path bb; + d = angle (b-a); + e = up scaled m rotated d shifted r[a,b]; + n = 1/2 m; + bb = ( + (origin {0,n} .. {right} (abs n,n)) + rotated d shifted a + -- + ((-abs n,-n) {right} .. {0,n} origin {0,-n} .. {right}(abs n,-n)) + rotated d shifted e + -- + ((-abs n,n){right}..{0,-n}origin) + rotated d shifted b + ) shifted (up scaled n rotated d); + draw bb withpen pencircle yscaled .6 xscaled .1666 rotated d; + point 3 of bb +enddef; +beginfig(1); + +z1 = origin; +z2 = 180 right rotated 13; +draw z1--z2 withcolor .7 white; +dotlabel.llft("$z_1$",z1); +dotlabel.urt("$z_2$",z2); + +begingroup; interim ahangle := 180; interim ahlength := 3; +drawdblarrow (z1--z2) shifted (12 up rotated angle (z2-z1)) withcolor 2/3 blue; +endgroup; + +drawoptions(withcolor 2/3 red); +label.lrt("Here",do_brace(z1,z2,-12,3/4)); +drawoptions(); + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.pdf Binary files differnew file mode 100644 index 00000000000..28064cabad9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/braces.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.mp new file mode 100644 index 00000000000..aab584db002 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.mp @@ -0,0 +1,56 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + path Y, L, C, P, S; + + % cycloid + numeric r, s; r = 160; + def sin(expr x) = sind( 57.29577951308232 x) enddef; + def cos(expr x) = cosd( 57.29577951308232 x) enddef; + vardef u(expr x) = x - sin(x) enddef; + vardef v(expr x) = 1 - cos(x) enddef; + vardef f(expr t) = u(t) < v(t) enddef; + tolerance := epsilon; + numeric a; a = solve f(2,3); + + Y = (origin for t = 1 upto 128: -- (u(t / 128 * a), -v(t / 128 * a)) endfor) scaled r; + + % Y = origin for t=5 step 5 until 140: + % -- (0, r) rotated t shifted (t / 57.29577951308232 * r, -r) + % endfor cutafter (origin -- 4r * dir -45); + + z0 = point 0 of Y; + z1 = point infinity of Y; + + % line + L = z0 -- z1; + + % circle + C = quartercircle rotated 180 scaled 2x1 shifted (x1, y0); + + % parabola f = x^2, f' = 2x + P = z0{1,-2} ... (xpart 1/2[z1, z0], ypart 1/4[z1, z0]){1,-1} ... z1 {1, 0}; + + % sixth degree f = x^6, f' = 6x^5 + S = z0{1,-6} ... (xpart 1/2[z1, z0], ypart 1/64[z1, z0]){1, -6/32} ... z1 {1, 0}; + + % axes + draw z0 -- (x0,y1) -- z1 withcolor 3/4; + + drawoptions(withcolor 2/3 red); draw L; dotlabel.urt("Line", point 1/4 of L); + drawoptions(withcolor 1/2 green); draw C; dotlabel.urt("Circle", point 1 of C); + drawoptions(withcolor 1/4[red, green]); draw P; dotlabel.urt("Parabola", point 1/2 of P); + drawoptions(withcolor 3/4[red, green]); draw S; dotlabel.llft("Sixth degree", point 3/4 of S); + drawoptions(withcolor 1/2 blue); draw Y; dotlabel.urt("Cycloid", point 100 of Y); + drawoptions(); + + dotlabel.ulft("$A$", z0); + dotlabel.urt("$B$", z1); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.pdf Binary files differnew file mode 100644 index 00000000000..9535832c974 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brachisto.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.mp new file mode 100644 index 00000000000..5f3f68d6b40 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.mp @@ -0,0 +1,99 @@ +\documentclass{standalone} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +input london-boroughs +input colorbrewer-rgb +vardef median(expr p) = + save n; numeric n; n = length p; + 1/n * point 0 of p for i=1 upto n: + 1/n * point i of p endfor +enddef; + +beginfig(1); + +fill Barking_and_Dagenham withcolor 0.638 [white, RdYlBu 9 3]; draw Barking_and_Dagenham; +fill Barnet withcolor 0.721 [white, RdYlBu 9 6]; draw Barnet; +fill Bexley withcolor 0.752 [white, RdYlBu 9 3]; draw Bexley; +fill Brent withcolor 0.650 [white, RdYlBu 9 5]; draw Brent; +fill Bromley withcolor 0.788 [white, RdYlBu 9 5]; draw Bromley; +fill Camden withcolor 0.654 [white, RdYlBu 9 7]; draw Camden; +fill City_of_London withcolor 0.735 [white, RdYlBu 9 7]; draw City_of_London; +fill Croydon withcolor 0.698 [white, RdYlBu 9 5]; draw Croydon; +fill Ealing withcolor 0.700 [white, RdYlBu 9 5]; draw Ealing; +fill Enfield withcolor 0.690 [white, RdYlBu 9 5]; draw Enfield; +fill Greenwich withcolor 0.695 [white, RdYlBu 9 5]; draw Greenwich; +fill Hackney withcolor 0.651 [white, RdYlBu 9 7]; draw Hackney; +fill Hammersmith_and_Fulham withcolor 0.699 [white, RdYlBu 9 6]; draw Hammersmith_and_Fulham; +fill Haringey withcolor 0.705 [white, RdYlBu 9 7]; draw Haringey; +fill Harrow withcolor 0.722 [white, RdYlBu 9 5]; draw Harrow; +fill Havering withcolor 0.760 [white, RdYlBu 9 3]; draw Havering; +fill Hillingdon withcolor 0.689 [white, RdYlBu 9 4]; draw Hillingdon; +fill Hounslow withcolor 0.697 [white, RdYlBu 9 5]; draw Hounslow; +fill Islington withcolor 0.703 [white, RdYlBu 9 7]; draw Islington; +fill Kensington_and_Chelsea withcolor 0.659 [white, RdYlBu 9 6]; draw Kensington_and_Chelsea; +fill Kingston_upon_Thames withcolor 0.783 [white, RdYlBu 9 6]; draw Kingston_upon_Thames; +fill Lambeth withcolor 0.673 [white, RdYlBu 9 7]; draw Lambeth; +fill Lewisham withcolor 0.630 [white, RdYlBu 9 6]; draw Lewisham; +fill Merton withcolor 0.734 [white, RdYlBu 9 6]; draw Merton; +fill Newham withcolor 0.592 [white, RdYlBu 9 5]; draw Newham; +fill Redbridge withcolor 0.675 [white, RdYlBu 9 5]; draw Redbridge; +fill Richmond_upon_Thames withcolor 0.820 [white, RdYlBu 9 6]; draw Richmond_upon_Thames; +fill Southwark withcolor 0.661 [white, RdYlBu 9 7]; draw Southwark; +fill Sutton withcolor 0.760 [white, RdYlBu 9 4]; draw Sutton; +fill Tower_Hamlets withcolor 0.645 [white, RdYlBu 9 6]; draw Tower_Hamlets; +fill Waltham_Forest withcolor 0.666 [white, RdYlBu 9 5]; draw Waltham_Forest; +fill Wandsworth withcolor 0.719 [white, RdYlBu 9 7]; draw Wandsworth; +fill Westminster withcolor 0.649 [white, RdYlBu 9 6]; draw Westminster; + +label("\tiny Barking \& Dagenham", median(Barking_and_Dagenham)); +label("\tiny Barnet", median(Barnet)); +label("\tiny Bexley", median(Bexley)); +label("\tiny Brent", median(Brent)); +label("\tiny Bromley", median(Bromley)); +label("\tiny Camden", median(Camden)); +label("\tiny City of London", median(City_of_London)); +label("\tiny Croydon", median(Croydon)); +label("\tiny Ealing", median(Ealing)); +label("\tiny Enfield", median(Enfield)); +label("\tiny Greenwich", median(Greenwich)); +label("\tiny Hackney", median(Hackney)); +label(TEX("\tiny Hammersmith \& Fulham") rotated -62, median(Hammersmith_and_Fulham)); +label("\tiny Haringey", median(Haringey)); +label("\tiny Harrow", median(Harrow)); +label("\tiny Havering", median(Havering)); +label("\tiny Hillingdon", median(Hillingdon)); +label("\tiny Hounslow", median(Hounslow) shifted 12 left); +label("\tiny Islington", median(Islington)); +label(TEX("\tiny Kensington \& Chelsea") rotated -54, median(Kensington_and_Chelsea)); +label(TEX("\tiny Kingston upon Thames") rotated 66, median(Kingston_upon_Thames)); +label("\tiny Lambeth", median(Lambeth)); +label("\tiny Lewisham", median(Lewisham)); +label("\tiny Merton", median(Merton)); +label("\tiny Newham", median(Newham)); +label("\tiny Redbridge", median(Redbridge)); +label("\tiny Richmond upon Thames", median(Richmond_upon_Thames)); +label("\tiny Southwark", median(Southwark)); +label("\tiny Sutton", median(Sutton)); +label("\tiny Tower Hamlets", median(Tower_Hamlets)); +label("\tiny Waltham Forest", median(Waltham_Forest)); +label("\tiny Wandsworth", median(Wandsworth)); +label("\tiny Westminster", median(Westminster)); + +label("\tiny Barking \& Dagenham", median(Barking_and_Dagenham)); +picture legend; legend = image( +numeric s; s = 10; +for i = 1 upto 9: + fill unitsquare scaled s shifted (i*s, 0) withcolor RdYlBu [9][i]; + if i > 1: draw (i*s, 0) -- (i*s, s); fi +endfor +draw unitsquare xscaled 9s yscaled s shifted (s,0); +label.top("Remain" infont "phvr8r", (10s, s)); +label.top("Leave" infont "phvr8r", (s, s));); +label.ulft(legend, point 1 of bbox currentpicture); +label.lrt("Brexit vote in London 2016" infont "phvr8r", point 3 of bbox currentpicture); + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.pdf Binary files differnew file mode 100644 index 00000000000..28b46ecadb1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brexit-map.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brown3a.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brown3a.pdf new file mode 100644 index 00000000000..6759b504a0f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/brown3a.pdf @@ -0,0 +1,8196 @@ +%PDF-1.3 +% +2 0 obj +<< +/Length 395073 +>> +stream +0.333 0.333 1 RG +1 J 1 j 0.48 w 10 M []0 d +/GS1 gs +1 i +397 312 m +397.509 311.707 398.102 311.594 398.683 311.68 c +402.325 312.217 403.189 317.651 399.197 320.387 c +397.182 321.769 394.498 321.883 392.769 320.244 c +390.668 318.251 390.753 313.916 387.558 313.678 c +383.95 313.409 383.851 318.247 383.328 322.265 c +383.227 323.038 382.977 323.838 382.287 324.174 c +380.51 325.038 379.532 322.494 377.957 321.676 c +375.633 320.47 372.875 322.591 373.14 325.506 c +373.275 326.996 374.356 328.262 375.744 328.109 c +376.526 328.023 377.132 327.452 377.586 326.804 c +378.808 325.061 379.756 322.653 381.806 323.014 c +383.037 323.231 383.733 324.459 383.889 325.746 c +384.71 332.523 376.677 333.129 376.049 329.004 c +375.884 327.919 376.6 326.938 377.581 326.392 c +379.581 325.281 382.276 324.39 381.309 322.565 c +379.651 319.435 377.549 324.298 375.248 327.599 c +374.515 328.65 373.152 329.056 372.364 328.24 c +371.944 327.805 371.928 327.159 371.826 326.566 c +371.626 325.412 370.91 324.348 369.808 324.346 c +368.692 324.344 367.976 325.555 366.878 325.662 c +361.27 326.208 367.183 319.425 367.119 315.433 c +367.108 314.735 366.846 314.057 366.892 313.36 c +367.058 310.862 370.045 309.869 371.457 311.655 c +373.131 313.773 372.301 320.838 375.313 317.657 c +377.124 315.744 373.122 314.567 373.015 312.833 c +372.889 310.775 375.908 309.8 378.212 311.777 c +378.968 312.427 379.907 313.013 380.498 312.377 c +383.532 309.112 376.267 310.365 376.033 308.92 c +375.981 308.599 376.106 308.269 376.391 308.125 c +380.503 306.045 376.105 312.193 376.876 313.134 c +378.426 315.025 380.272 311.885 378.38 311.426 c +377.48 311.207 377.433 312.608 376.742 312.873 c +372.691 314.428 376.879 309.245 381.322 308.443 c +384.522 307.865 384.068 303.222 381.103 299.529 c +380.007 298.163 379.008 296.554 379.517 294.906 c +379.598 294.645 379.718 294.398 379.87 294.171 c +380.985 292.505 383.224 292.229 385.216 292.806 c +389.992 294.189 390.864 299.464 387.764 300.859 c +386.105 301.604 384.759 300.075 385.474 299.055 c +386.046 298.24 388.759 298.304 387.643 297.041 c +387.142 296.474 386.484 297.279 385.816 297.676 c +384.501 298.457 381.646 296.376 381.25 298.593 c +381.197 298.887 381.298 299.179 381.365 299.469 c +382.358 303.749 380.69 310.532 384.997 308.878 c +387.401 307.955 386.388 304.524 384.017 301.918 c +383.016 300.816 381.895 299.603 380.462 299.87 c +378.909 300.158 378.389 301.919 377.455 303.163 c +375.624 305.604 372.644 304.405 372.985 302.618 c +373.185 301.566 374.998 301.092 374.556 299.902 c +373.889 298.102 370.733 299.84 371.388 303.864 c +372.017 307.736 370.321 313.036 374.309 313.584 c +379.38 314.281 384.106 319.851 379.588 318.386 c +379.038 318.207 378.777 317.436 378.163 317.482 c +375.978 317.645 377.578 322.126 380.635 319.942 c +382.397 318.682 382.094 316.31 380.523 316.042 c +379.34 315.84 377.671 317.634 377.01 316.166 c +376.348 314.696 378.841 314.273 381.352 315.795 c +385.292 318.182 388.605 313.198 392.274 310.26 c +393.132 309.573 393.975 308.681 393.454 307.847 c +392.932 307.011 391.718 307.326 390.787 308.018 c +388.483 309.727 385.786 311.551 383.797 309.82 c +382.427 308.627 382.786 306.517 384.317 306.149 c +387.903 305.286 386.207 310.764 387.772 312.846 c +388.934 314.392 392.076 314.989 391.138 317.01 c +390.233 318.962 386.51 318.006 386.431 314.277 c +386.403 312.95 386.742 311.652 387.244 310.424 c +388.216 308.048 389.805 305.81 389.635 303.231 c +389.456 300.529 387.374 298.411 386.695 295.81 c +386.25 294.106 386.436 292.328 386.668 290.585 c +386.907 288.797 387.191 287.016 387.525 285.244 c +387.674 284.453 387.833 283.664 388.028 282.883 c +389.062 278.751 387.096 275.286 384.772 276.449 c +382.951 277.36 383.444 280.231 385.81 281.618 c +386.482 282.011 387.212 282.289 387.907 282.638 c +389.926 283.655 391.439 285.611 390.549 287.436 c +388.515 291.609 383.787 287.419 386.3 285.372 c +387.498 284.396 388.648 286.167 389.969 286.78 c +390.65 287.096 391.43 287.038 392.161 287.192 c +395.982 287.994 396.566 292.641 397.506 296.563 c +397.769 297.656 397.888 298.904 396.953 299.34 c +396.192 299.694 395.413 299.075 394.604 298.985 c +390.582 298.535 391.716 303.963 394.231 302.812 c +394.511 302.684 394.689 302.396 394.976 302.283 c +398.361 300.948 395.662 306.315 396.843 307.063 c +398.223 307.936 399.343 305.591 400.708 305.956 c +402.123 306.334 401.71 308.199 401.506 309.8 c +401.174 312.405 402.92 314.777 405.444 315.649 c +406.348 315.961 407.386 316.125 407.891 316.942 c +408.697 318.245 407.412 320.606 409.129 321.263 c +416.002 323.894 408.92 313.072 411.881 312.51 c +413.706 312.164 414.204 314.852 415.806 315.197 c +418.581 315.794 419.666 311.342 416.618 307.295 c +415.629 305.981 414.479 304.539 412.927 304.865 c +410.756 305.32 409.686 310.487 407.106 308.349 c +405.53 307.044 407.026 304.035 409.918 304.615 c +413.077 305.248 416.652 306.034 415.99 303.611 c +415.776 302.828 414.807 302.027 415.516 301.494 c +416.408 300.823 416.922 302.397 416.733 304.177 c +416.49 306.467 419.683 307.813 419.28 310.126 c +418.519 314.502 412.493 312.525 413.927 309.094 c +414.812 306.976 417.61 308.569 419.542 308.016 c +424.855 306.494 419.726 300.021 420.391 295.617 c +420.623 294.076 421.347 292.318 420.07 291.487 c +418.912 290.732 417.402 291.937 416.206 291.297 c +414.194 290.22 415.584 287.13 418.742 285.537 c +420.707 284.546 422.515 282.94 422.027 280.947 c +421.349 278.174 417.303 278.444 416.037 276.082 c +414.119 272.502 418.743 270.554 419.849 272.947 c +420.581 274.531 418.256 275.39 417.86 276.837 c +417.136 279.476 420.653 280.867 421.868 278.664 c +424.763 273.414 410.69 276.394 413.654 271.105 c +417.813 263.684 419.083 277.641 422.046 278.472 c +426.693 279.777 428.55 272.376 423.433 271.39 c +422.125 271.138 420.863 271.982 420.914 273.209 c +420.991 275.061 423.598 275.768 425.493 274.152 c +427.796 272.187 430.403 269.977 431.481 272.155 c +432.769 274.76 428.182 275.439 428.022 277.61 c +427.815 280.419 432.261 280.331 432.801 282.734 c +433.275 284.843 430.878 286.083 428.586 286.868 c +426.997 287.412 425.435 288.153 424.41 289.484 c +422.354 292.153 424.553 294.968 426.36 294.054 c +426.991 293.735 427.179 292.962 427.659 292.456 c +429.289 290.735 435.69 292.06 433.654 288.548 c +432.819 287.107 430.843 288.185 429.267 289.585 c +428.009 290.702 426.418 291.393 424.737 291.414 c +423.781 291.426 422.837 290.993 422.876 290.162 c +423.021 287.057 433.387 296.066 430.077 289.23 c +429.573 288.188 423.645 291.333 425.607 287.759 c +426.443 286.236 428.152 288.956 429.057 288.03 c +429.681 287.391 426.95 282.882 429.752 284.451 c +430.053 284.619 430.049 285.035 430.267 285.29 c +436.194 292.238 429.853 278.894 431.94 278.769 c +433.284 278.688 433.725 280.813 432.118 281.319 c +431.595 281.483 430.943 281.298 430.576 281.729 c +427.484 285.35 434.752 282.357 435.902 283.391 c +437.193 284.553 435.331 286.086 433.513 287.329 c +432.608 287.948 431.811 288.922 430.714 288.772 c +429.847 288.653 429.124 287.773 428.256 288.061 c +425.012 289.14 428.458 295.191 432.02 291.39 c +433.014 290.329 432.992 288.61 434.099 287.651 c +437.294 284.884 446.228 282.99 440.721 281.386 c +438.824 280.834 438.428 283.76 436.867 284.221 c +436.018 284.472 435.089 283.958 434.266 284.306 c +432.958 284.861 433.084 286.601 433.508 288.12 c +433.98 289.81 434.366 291.524 434.86 293.208 c +435.884 296.697 437.373 300.181 436.845 303.794 c +435.505 312.963 422.416 306.459 429.157 303.18 c +430.045 302.749 431.212 303.632 431.999 302.939 c +433.957 301.214 430.219 299.954 425.984 300.946 c +424.328 301.335 422.32 300.468 421.108 301.768 c +419.154 303.864 421.544 307.575 425 306.481 c +433.19 303.888 449.256 304.385 438.96 307.109 c +438.201 307.31 437.354 306.832 436.655 307.228 c +433.826 308.835 438.516 311.518 437.67 313.321 c +437.502 313.679 437.187 313.935 436.844 314.132 c +435.371 314.98 433.504 314.619 433.044 313.172 c +430.884 306.368 441.07 312.079 443.652 310.022 c +445.821 308.293 444.129 304.509 446.293 302.777 c +451.408 298.68 454.505 310.51 459.283 308.058 c +459.849 307.767 460.211 307.175 459.895 306.724 c +458.303 304.447 457.511 310.932 455.949 308.909 c +453.906 306.264 463.671 308.961 460.199 305.85 c +459.863 305.549 459.375 305.745 458.943 305.927 c +458.265 306.212 457.522 306.36 456.811 306.174 c +454.07 305.458 453.984 301.806 455.282 298.66 c +455.382 298.419 455.488 298.172 455.691 298.007 c +457.483 296.55 457.535 299.99 457.972 302.674 c +458.341 304.931 461.151 305.584 462.304 303.83 c +464.293 300.802 459.703 298.742 458.728 301.416 c +458.611 301.736 458.646 302.117 458.413 302.372 c +458.197 302.608 457.846 302.644 457.551 302.507 c +456.65 302.09 456.802 300.838 457.377 299.822 c +458.181 298.401 459.554 297.264 460.83 297.947 c +461.878 298.507 462.017 299.947 461.229 300.937 c +460.689 301.617 459.806 301.949 458.994 301.669 c +457.865 301.28 456.573 300.493 456.311 301.529 c +455.196 305.947 462.589 298.035 461.879 301.985 c +461.563 303.748 459.628 301.664 458.499 301.853 c +457.207 302.071 457.008 303.916 458.32 304.455 c +460.477 305.341 462.326 301.848 459.641 300.347 c +457.494 299.147 452.442 300.381 453.909 297.42 c +454.592 296.041 458.024 297.285 457.874 295.074 c +457.66 291.929 452.668 296.08 452.125 293.565 c +451.839 292.238 453.75 291.928 454.214 290.853 c +454.682 289.765 453.655 288.731 453.563 287.599 c +453.317 284.548 457.434 284.534 460.244 283.332 c +461.329 282.867 462.537 282.208 463.326 283.015 c +466.148 285.899 455.107 287.129 459.234 290.255 c +460.225 291.006 461.649 290.078 461.953 288.54 c +462.747 284.532 458.568 281.293 453.993 282.123 c +452.57 282.382 451.316 283.33 451.636 284.544 c +452.348 287.236 456.051 285.619 454.887 283.53 c +454.5 282.835 453.525 282.795 452.844 283.332 c +451.268 284.573 452.217 287.823 450.008 288.415 c +448.027 288.946 443.59 283.289 443.222 287.67 c +443.144 288.599 444.121 289.265 445.09 288.972 c +449.722 287.575 443.43 283.903 439.448 280.283 c +435.891 277.05 438.476 271.235 443.111 271.726 c +446.718 272.109 447.872 276.332 448.275 280.252 c +448.541 282.848 449.431 285.59 451.825 285.824 c +453.403 285.978 453.73 287.341 452.992 287.424 c +452.727 287.453 452.544 287.163 452.284 287.152 c +450.915 287.095 451.649 289.98 453.724 288.83 c +460.118 285.288 450.744 278.699 450.383 284.491 c +450.279 286.155 454.36 290.618 451.057 288.995 c +450.768 288.853 450.683 288.511 450.59 288.201 c +449.325 283.978 444.223 284.081 443.537 287.172 c +443.327 288.12 443.796 289.07 444.604 289.625 c +446.284 290.778 448.411 289.901 450.417 289.665 c +451.438 289.545 452.487 289.616 453.413 290.064 c +456.253 291.438 456.814 295.211 454.459 297.149 c +452.07 299.115 449.233 301.262 451.415 302.377 c +455.302 304.363 453.615 297.373 455.57 296.595 c +457.633 295.773 461.888 305.351 463.554 299.234 c +463.888 298.005 462.479 297.242 461.127 296.748 c +452.826 293.716 456.724 284.916 460.906 286.605 c +462.654 287.311 462.495 289.578 462.869 291.432 c +464.151 297.792 461.716 302.882 459.17 300.256 c +458.059 299.109 459.159 297.396 458.965 295.904 c +458.526 292.522 454.08 292.988 450.93 291.877 c +449.966 291.537 448.915 291.033 448.129 291.657 c +437.962 299.729 458.002 293.752 458.628 296.195 c +459.615 300.043 453.836 299.904 454.543 296.805 c +454.861 295.412 456.71 295.97 458.024 295.632 c +458.53 295.502 458.982 295.173 459.101 294.672 c +459.368 293.553 458.103 292.755 456.709 292.735 c +456.263 292.729 455.797 292.773 455.467 293.071 c +453.467 294.874 457.361 298.929 460.142 295.148 c +461.864 292.807 460.434 289.742 460.494 286.901 c +460.555 284.005 462.17 280.944 460.501 278.493 c +458.082 274.941 452.605 276.365 452.262 280.544 c +452.019 283.506 455.164 284.811 456.452 283.102 c +457.984 281.071 459.54 277.161 459.974 279.86 c +460.112 280.721 458.894 280.902 458.58 281.598 c +456.969 285.159 462.877 282.694 464.054 283.984 c +465.343 285.398 462.882 287.858 464.478 289.176 c +465.87 290.325 467.719 288.515 468.214 285.945 c +468.242 285.801 468.27 285.657 468.312 285.517 c +468.677 284.29 469.969 283.643 470.853 284.32 c +474.763 287.313 466.738 288.109 466.236 290.234 c +464.461 297.753 473.739 289.185 478.08 289.528 c +478.206 289.538 478.331 289.557 478.456 289.581 c +480.441 289.958 481.912 291.498 483.619 292.555 c +485.906 293.97 488.67 294.529 490.746 296.252 c +491.689 297.035 492.463 298.04 493.569 298.576 c +495.633 299.577 498.627 298.9 499.713 301.068 c +499.966 301.574 500.063 302.208 500.572 302.47 c +501.523 302.96 502.335 301.843 502.898 300.727 c +505.532 295.513 499.085 291.774 499.34 295.71 c +499.408 296.763 501.659 297.019 501.075 298.296 c +500.481 299.592 498.485 298.242 498.44 295.408 c +498.413 293.71 497.746 291.66 499.301 291.079 c +502.423 289.911 502.087 295.76 504.594 295.681 c +508.217 295.567 505.64 290.365 507.507 288.771 c +509.066 287.44 511.167 289.013 513.086 288.863 c +514.898 288.721 517.093 287.683 517.664 289.378 c +518.21 291 515.372 292.111 516.136 293.757 c +517.249 296.157 519.484 292.989 521.604 290.542 c +523.771 288.04 528.323 289.761 530.299 287.01 c +531.745 284.997 530.676 282.162 528.264 281.619 c +523.446 280.534 523.061 287.3 521.294 292.204 c +520.435 294.591 519.475 297.337 521.525 298.238 c +523.85 299.26 526.359 296.154 524.581 293.079 c +521.551 287.842 525.757 282.837 526.886 286.375 c +527.269 287.576 524.641 290.848 527.12 290.22 c +527.978 290.003 527.508 288.791 527.995 288.234 c +530.088 285.837 531.156 295.745 533.414 291.497 c +533.685 290.987 533.289 290.419 533.31 289.86 c +533.366 288.392 536.45 287.815 535.507 286.089 c +534.802 284.798 532.561 285.472 532.75 287.364 c +533.008 289.96 537.168 290.517 538.502 287.204 c +539.657 284.335 537.311 281.378 534.522 282.03 c +530.653 282.934 530.779 288.528 534.745 289.264 c +536.626 289.613 538.093 287.985 537.379 286.599 c +537.025 285.911 536.201 285.717 535.486 285.426 c +532.881 284.363 531.197 281.388 528.312 281.297 c +527.051 281.257 525.829 281.86 525.325 282.999 c +524.263 285.4 527.507 289.14 524.622 290.725 c +522.585 291.843 520.09 289.564 520.83 286.7 c +522.299 281.012 530.695 281.069 532.201 287.208 c +532.764 289.506 531.592 291.96 532.414 294.195 c +533.202 296.338 535.594 296.362 535.916 294.972 c +536.482 292.527 532.576 293.636 531.823 292.251 c +531.15 291.014 532.949 289.347 531.822 288.232 c +531.754 288.165 531.677 288.108 531.602 288.05 c +529.822 286.664 527.757 285.207 526.847 286.816 c +526.23 287.905 527.523 289.29 526.785 290.344 c +525.068 292.796 523.124 288.763 523.199 283.894 c +523.222 282.426 522.416 281.099 522.192 279.654 c +521.102 272.595 516.513 268.213 515.371 272.176 c +514.817 274.098 521.561 278.79 516.576 279.177 c +515.595 279.253 515.156 278.107 514.365 277.603 c +511.911 276.044 509.786 280.054 507.326 279.409 c +506.603 279.22 506.05 278.601 506.215 277.92 c +506.726 275.81 511.304 276.979 510.071 281.413 c +509.647 282.938 508.695 284.39 507.278 284.159 c +507.054 284.123 506.842 284.035 506.655 283.907 c +503.593 281.819 508.17 279.023 511.678 276.272 c +512.989 275.245 513.733 273.603 513.259 272.031 c +513.187 271.789 513.084 271.557 513.011 271.316 c +511.785 267.26 519.524 257.615 511.998 258.746 c +507.215 259.465 518.475 276.218 507.89 272.174 c +505.628 271.31 506.9 268.349 507.581 265.777 c +508.06 263.971 507.657 262.003 506.228 260.834 c +504.495 259.417 501.518 259.571 500.711 257.352 c +500.128 255.749 498.957 254.74 498.494 255.662 c +498.266 256.118 498.734 257.044 498.054 257.067 c +497.051 257.1 498.756 254.522 497.283 254.953 c +496.332 255.231 497.649 256.153 497.492 256.652 c +497.221 257.512 496.195 256.603 495.53 256.747 c +494.753 256.915 494.843 257.945 494.435 258.566 c +493.844 259.465 492.579 259.249 491.594 259.597 c +489.007 260.511 488.995 265.111 485.915 265.106 c +483.562 265.102 482.903 262.245 482.429 259.71 c +481.934 257.055 480.71 254.559 478.654 252.808 c +474.744 249.477 468.901 249.674 466.092 253.701 c +465.552 254.474 465.101 255.413 464.179 255.624 c +461.793 256.168 460.05 252.38 462.91 249.548 c +464.19 248.28 466.089 247.775 467.07 248.999 c +468.892 251.274 464.835 253.433 465.451 255.741 c +466.219 258.623 470.07 257.081 472.58 257.975 c +474.172 258.542 475.35 260.237 477.08 260.053 c +478.674 259.884 480.565 258.393 481.305 259.938 c +482.054 261.501 479.526 263.286 477.03 261.44 c +475.219 260.101 474.018 257.97 474.699 255.893 c +474.949 255.132 475.465 254.469 475.595 253.675 c +475.776 252.569 476.677 252.206 476.86 252.738 c +476.975 253.072 476.569 253.328 476.108 253.325 c +472.018 253.291 470.647 248.827 473.139 247.311 c +473.493 247.096 473.912 247.006 474.319 247.085 c +475.893 247.39 476.937 250.384 478.602 249.105 c +480.2 247.877 478.17 244.437 474.684 246.064 c +473.438 246.646 471.992 246.92 471.7 245.858 c +470.589 241.827 475.83 246.292 477.67 245.745 c +478.771 245.417 479.117 244.06 478.639 242.896 c +477.96 241.242 476.488 239.447 477.932 238.531 c +482.14 235.858 480.499 243.993 482.633 244.495 c +484.118 244.844 485.784 242.543 487.088 243.9 c +488.556 245.427 485.712 246.757 485.274 248.405 c +484.439 251.546 489.07 252.093 493.676 251.021 c +494.287 250.879 494.935 250.804 495.497 251.08 c +525.446 265.808 460.251 271.269 487.166 251.534 c +488.042 250.892 489.213 251.199 490.273 251.051 c +493.022 250.668 494.259 247.771 495.733 245.407 c +497.047 243.298 497.446 240.771 495.635 240.325 c +493.768 239.865 492.979 242.407 493.262 245.003 c +493.515 247.326 492.202 249.353 490.571 248.778 c +486.555 247.363 490.749 242.183 492.828 245.334 c +493.775 246.77 481.28 253.49 490.031 252.446 c +491.811 252.234 490.528 249.554 491.702 248.86 c +494.457 247.233 496.742 253.676 491.385 253.989 c +488.277 254.17 486.769 250.873 488.572 249.302 c +489.853 248.187 491.902 249.021 492.35 250.853 c +492.499 251.464 492.428 252.114 492.097 252.649 c +490.423 255.359 486.993 252.781 483.879 251.761 c +481.367 250.939 478.57 251.854 477.499 254.195 c +477.415 254.38 477.345 254.571 477.267 254.758 c +476.458 256.71 474.747 258.241 472.699 258.069 c +469.582 257.808 468.384 253.939 465.524 252.972 c +463.148 252.168 460.297 253.641 458.224 252.084 c +455.799 250.262 456.842 245.439 453.539 244.622 c +450.469 243.862 449.046 248.071 446.243 248.622 c +444.201 249.024 442.391 247.563 441.191 245.784 c +439.479 243.247 439.467 239.95 441.845 239.07 c +442.625 238.781 443.478 238.952 444.303 238.892 c +445.443 238.809 446.648 238.317 447.617 238.95 c +450.808 241.033 447.294 246.363 443.635 243.56 c +441.53 241.947 442.973 238.078 440.548 236.729 c +438.629 235.662 436.26 237.232 436.153 239.645 c +436.072 241.49 437.468 243.369 436.519 245.037 c +435.257 247.254 432 246.603 431.741 244.227 c +431.486 241.886 434.324 241.379 434.841 242.967 c +435.711 245.639 427.329 243.413 429.73 247.062 c +432.32 250.998 433.221 243.142 434.927 243.538 c +436.46 243.893 436.376 246.388 434.223 247.673 c +433.824 247.912 433.387 248.124 432.926 248.058 c +425.888 247.059 435.775 238.705 441.944 245.179 c +442.976 246.262 444.337 247.114 445.763 246.767 c +456.451 244.164 439.796 229.948 442.12 241.882 c +442.213 242.355 442.67 242.785 442.445 243.238 c +441.776 244.588 440.908 242.495 439.945 241.12 c +436.779 236.601 430.248 245.312 437.517 247.321 c +439.232 247.795 440.598 246.39 439.968 245.244 c +439.311 244.049 437.758 244.982 436.379 245.439 c +434.094 246.195 431.759 244.475 431.919 242.135 c +432.069 239.951 433.832 237.181 431.612 236.656 c +430.306 236.347 429.227 237.824 429.857 239.223 c +430.619 240.912 432.83 240.708 434.675 240.987 c +436.636 241.284 438.43 242.459 440.422 242.322 c +441.886 242.221 443.006 241.103 442.507 240.032 c +441.606 238.101 437.506 239.553 438.721 243.529 c +439.804 247.072 443.602 248.567 445.553 246.375 c +447.212 244.512 445.603 239.971 448.801 239.756 c +450.997 239.609 451.763 243.432 454.095 242.825 c +456.992 242.071 455.168 237.757 450.354 235.425 c +446.196 233.411 447.538 228.849 450.005 229.195 c +452.088 229.486 451.519 232.337 450.364 234.858 c +449.14 237.529 447.511 240.329 445.523 239.014 c +444.892 238.596 444.397 237.725 443.681 238.034 c +442.697 238.459 443.178 240.147 444.949 240.684 c +445.595 240.88 446.284 241.048 446.91 240.795 c +448.711 240.068 448.65 235.322 451.3 236.72 c +452.493 237.35 452.245 239.2 450.804 239.588 c +449.162 240.031 448.222 238.128 447.257 236.606 c +445.55 233.912 442.112 232.869 439.909 234.807 c +436.375 237.914 430.639 234.39 434.502 233.61 c +435.231 233.463 436.493 234.683 436.674 233.584 c +436.772 232.993 435.89 232.714 435.08 233.224 c +433.842 234.003 432.672 234.982 431.218 235.188 c +429.447 235.438 427.713 234.453 425.944 234.727 c +424.052 235.019 421.939 236.41 420.77 234.851 c +420.733 234.802 420.699 234.75 420.674 234.694 c +420.133 233.482 422.197 233.329 422.461 232.398 c +423.337 229.314 419.416 232.327 416.516 233.339 c +413.774 234.297 411.531 236.135 413.456 236.516 c +414.541 236.73 414.602 234.945 415.536 234.838 c +417.478 234.617 416.26 237.258 413.917 239.299 c +409.92 242.78 415.58 249.609 420.404 245.235 c +422.485 243.35 424.895 241.597 425.458 243.588 c +426.127 245.954 422.519 244.992 420.61 245.807 c +419.073 246.463 418.951 248.397 418.387 249.959 c +418.282 250.25 418.152 250.537 417.927 250.751 c +416.508 252.103 409.168 250.878 412.759 253.601 c +413.924 254.485 414.707 252.418 415.825 252.28 c +417.914 252.024 418.903 255.77 415.715 256.804 c +413.755 257.44 411.232 257.795 411.949 259.46 c +412.251 260.162 413.378 260.521 413.115 261.34 c +411.978 264.875 410.328 258.981 409.031 258.865 c +404.14 258.424 413.791 268.225 407.844 266.983 c +406.758 266.756 406.537 265.208 407.559 264.243 c +408.776 263.096 410.981 263.329 411.788 261.783 c +412.223 260.949 412.488 259.785 413.339 260.049 c +414.093 260.283 413.869 261.493 414.585 261.773 c +415.888 262.283 417.109 259.646 414.667 258.656 c +411.674 257.442 412.506 253.707 413.969 255.17 c +414.045 255.245 414.089 255.346 414.158 255.429 c +418.102 260.187 413.881 246.233 417.625 250.061 c +418.572 251.029 416.669 251.695 416.05 252.68 c +415.13 254.147 416.908 255.871 419.34 255.973 c +421.176 256.05 422.94 255.195 422.691 253.716 c +422.361 251.752 419.465 252.409 418.493 250.991 c +418.111 250.433 418.108 249.665 417.617 249.191 c +417.074 248.667 416.235 248.715 415.533 249.042 c +413.24 250.112 412.654 253.088 414.426 254.786 c +415.73 256.037 417.826 255.847 418.595 254.333 c +419.881 251.803 416.594 249.343 412.503 249.636 c +410.702 249.764 409.04 248.965 409.437 247.691 c +409.882 246.261 414.929 247.668 413.578 244.833 c +412.365 242.289 411.027 246.614 409.362 247.491 c +406.87 248.803 404.684 241.014 401.85 244.541 c +396.51 251.19 413.836 245.65 411.024 250.979 c +409.996 252.928 407.431 251.176 405.477 248.839 c +403.608 246.603 400.636 244.497 402.143 242.123 c +403.052 240.69 405.02 240.828 406.576 240.243 c +409.404 239.179 409.64 235.892 407.652 235.194 c +406.971 234.955 406.258 235.259 405.549 235.35 c +401.879 235.824 399.345 231.786 401.367 228.707 c +407.606 219.206 416.433 235.705 406.812 234.504 c +406.161 234.423 405.676 233.91 405.395 233.31 c +403.437 229.137 408.422 225.715 411.223 228.523 c +413.592 230.899 408.698 237.826 413.856 238.527 c +414.139 238.566 414.435 238.534 414.664 238.363 c +415.514 237.728 414.684 236.559 414.831 235.608 c +415.382 232.052 420.825 233.792 419.178 237.039 c +418.653 238.073 417.257 238.054 416.359 238.725 c +415.098 239.668 415.025 241.521 416.098 242.736 c +417.111 243.885 418.781 244.107 420.226 243.539 c +422.515 242.638 425.116 241.245 425.805 243.277 c +426.384 244.983 424.085 245.719 423.053 247.052 c +421.284 249.336 423.551 254.856 419.644 254.906 c +418.09 254.926 417.356 253.239 416.279 252.151 c +413.978 249.827 410.132 250.215 408.051 252.838 c +406.989 254.176 406.081 256.023 404.459 255.639 c +403.04 255.303 402.748 253.574 402.809 251.99 c +402.896 249.71 403.028 247.404 402.473 245.188 c +401.735 242.241 400.803 238.853 403.34 237.789 c +404.493 237.306 405.875 237.869 406.978 237.258 c +408.652 236.331 408.544 233.902 406.811 233.16 c +404.201 232.043 401.427 235.624 403.506 239.202 c +404.127 240.27 405.054 241.115 406.109 241.757 c +408.916 243.466 412.605 244.918 411.84 247.946 c +410.805 252.043 411.034 256.473 413.09 254.277 c +413.47 253.871 413.368 253.219 413.69 252.772 c +414.756 251.293 414.323 249.173 413.624 250.368 c +413.533 250.524 413.61 250.715 413.573 250.888 c +413.037 253.383 409.532 249.715 412.549 248.177 c +414.068 247.404 415.854 247.595 417.427 248.268 c +418.439 248.701 419.361 249.322 420.388 249.715 c +421.764 250.241 423.347 250.298 424.412 249.321 c +425.639 248.197 425.464 246.31 426.164 244.834 c +427.537 241.941 431.326 241.213 433.875 243.275 c +440.494 248.63 449.428 247.169 444.965 243.543 c +443.5 242.353 440.178 245.4 439.317 242.78 c +436.38 233.846 447.277 244.59 448.817 243.109 c +449.67 242.29 449.245 240.983 449.121 239.804 c +448.94 238.091 450.219 236.855 451.235 237.485 c +452.581 238.321 451.008 239.948 449.125 241.141 c +447.099 242.424 446.473 245.497 444.014 245.953 c +441.22 246.471 439.64 243.202 437.125 242.279 c +436.197 241.939 435.075 241.855 434.585 240.985 c +433.136 238.415 437.849 236.024 442.707 239.653 c +444.485 240.982 446.811 241.011 447.272 239.366 c +448.288 235.742 442.648 237.456 440.628 235.856 c +438.07 233.83 439.944 229.209 444.301 229.199 c +447.142 229.192 450.564 230.863 451.936 228.295 c +452.109 227.971 452.201 227.6 452.453 227.331 c +454.124 225.545 455.372 228.894 456.946 231.075 c +457.655 232.058 458.893 232.53 460.038 232.159 c +463.681 230.978 463.284 224.862 458.073 223.58 c +454.971 222.817 451.767 224.514 451.306 227.523 c +450.648 231.814 455.529 233.588 457.213 230.886 c +457.607 230.253 457.585 229.476 457.67 228.74 c +457.788 227.718 458.131 226.719 458.058 225.691 c +457.839 222.606 454.689 220.794 451.387 220.719 c +448.053 220.644 444.299 221.814 441.99 219.355 c +435.818 212.783 446.476 203.718 452.062 211.159 c +452.277 211.445 452.476 211.772 452.818 211.877 c +453.775 212.171 454.307 210.754 455.231 210.825 c +456.599 210.929 456.884 213.157 455.103 213.734 c +452.873 214.457 450.46 209.809 448.298 212.207 c +447.492 213.101 448.091 214.398 448.096 215.576 c +448.108 218.196 447.314 221.497 449.637 221.12 c +451.662 220.79 451.683 217.288 448.786 216.931 c +444.698 216.426 444.909 222.068 444.152 226.521 c +443.434 230.74 439.025 231 438.474 228.652 c +438.048 226.836 440.432 226.257 442.356 225.543 c +443.662 225.059 444.532 223.824 443.893 222.841 c +443.125 221.66 438.887 222.201 440.4 220.042 c +440.977 219.218 442.3 219.823 442.882 221.151 c +443.88 223.426 442.1 225.008 441.128 224.156 c +440.392 223.511 441.279 222.435 440.955 221.629 c +440.444 220.358 438.755 221.156 437.54 220.862 c +435.9 220.465 435.176 217.846 433.328 218.316 c +432.414 218.548 431.942 219.558 432.329 220.425 c +433.285 222.565 436.432 220.851 437.875 222.27 c +440.756 225.105 435.985 229.593 433.157 226.058 c +431.819 224.387 433.275 222.235 433.728 220.174 c +433.832 219.7 433.896 219.183 434.27 218.871 c +436.803 216.767 436.475 222.04 438.019 223.437 c +438.902 224.236 440.436 223.916 441.167 224.895 c +445.89 231.219 430.261 233.693 433.057 223.589 c +433.152 223.245 433.29 222.916 433.405 222.579 c +433.915 221.075 434.026 219.323 435.294 218.344 c +438.068 216.202 441.657 219.124 440.266 221.989 c +439.705 223.142 438.35 223.59 437.044 223.431 c +432.606 222.893 430.682 217.724 431.735 212.818 c +433.615 204.058 422.436 201.839 424.422 207.344 c +424.47 207.479 424.544 207.604 424.632 207.717 c +425.974 209.454 428.547 208.3 428.197 206.437 c +428.004 205.412 426.855 205.016 425.755 204.91 c +419.822 204.337 418.728 210.277 421.58 211.082 c +421.96 211.189 422.369 211.131 422.744 211.255 c +425.464 212.157 423.948 217.976 418.453 216.506 c +414.089 215.339 411.201 211.152 412.846 207.324 c +413.62 205.523 415.437 204.335 416.04 202.461 c +416.193 201.986 416.258 201.485 416.208 200.988 c +415.882 197.726 412.067 197.018 411.024 199.265 c +410.408 200.593 411.72 202.178 410.951 203.462 c +408.909 206.867 401.841 201.799 406.991 195.107 c +409.693 191.597 413.736 192.488 413.483 194.837 c +413.306 196.481 411.748 198.807 413.54 198.536 c +414.932 198.324 413.627 196.65 413.592 195.43 c +413.551 193.99 415.361 193.191 416.659 194.208 c +419.641 196.544 415.163 199.935 415.381 202.945 c +415.473 204.22 416.449 205.26 417.568 204.988 c +417.98 204.887 418.304 204.592 418.576 204.266 c +420.514 201.934 419.801 198.542 417.253 197.961 c +413.225 197.043 411.152 202.762 415.015 204.684 c +418.054 206.195 420.716 202.745 418.862 200.571 c +418.107 199.686 416.753 199.653 415.911 200.472 c +413.183 203.125 417.068 208.227 421.252 205.38 c +424.655 203.065 428.488 199.964 428.714 203.293 c +428.784 204.318 427.606 205.144 427.926 206.168 c +428.491 207.976 430.922 206.62 432.28 207.348 c +434.733 208.664 432.388 211.772 429.757 214.319 c +429.386 214.678 429.03 215.089 428.526 215.208 c +420.464 217.12 425.934 201.915 432.777 209.291 c +433.901 210.502 433.353 212.159 432.233 212.086 c +431.49 212.038 431.27 211.161 430.819 210.589 c +429.281 208.642 426.599 210.437 424.289 212.071 c +422.438 213.38 420.609 215.095 421.783 216.608 c +423.296 218.559 427.169 216.578 426.471 212.38 c +426.229 210.927 425.377 209.558 424.043 209.676 c +421.984 209.857 420.898 217.857 418.029 213.867 c +416.943 212.357 419.28 210.97 422.137 210.84 c +423.962 210.757 425.647 209.675 425.49 208.049 c +425.351 206.615 423.765 205.923 422.835 206.798 c +422.067 207.521 422.397 208.819 423.44 209.147 c +425.991 209.948 426.199 205.726 428.248 205.332 c +429.008 205.186 429.775 205.577 430.04 206.296 c +430.588 207.784 429.004 209.238 427.103 208.962 c +425.772 208.769 424.44 207.845 423.236 208.516 c +417.956 211.457 427.213 214.5 428.08 217.908 c +428.199 218.377 428.195 218.889 428.468 219.293 c +429.548 220.898 431.887 219.408 433.212 216.906 c +434.118 215.193 435.412 213.691 436.091 211.873 c +436.416 211.002 436.839 210.041 437.701 210.118 c +438.448 210.186 439.327 211.12 439.729 210.341 c +440.085 209.653 439.018 209.392 438.565 208.854 c +436.506 206.413 441.617 206.613 442.924 205.067 c +446.74 200.554 437.164 200.558 436.005 197.643 c +435.351 195.999 436.445 194.29 437.939 193.185 c +439.043 192.368 440.319 191.8 441.367 190.911 c +443.977 188.693 444.796 184.989 443.188 181.989 c +442.135 180.024 440.2 178.784 438.303 177.622 c +436.163 176.31 433.929 175.001 431.415 174.914 c +429.404 174.845 427.437 175.589 426.07 177.063 c +424.268 179.006 422.376 181.534 420.517 180.055 c +418.813 178.7 420.366 176.313 422.035 174.361 c +425.653 170.129 430.517 169.929 430.396 172.958 c +430.341 174.348 429.596 176.157 430.926 176.056 c +434.984 175.749 428.951 172.12 430.152 171.141 c +430.94 170.498 431.828 171.64 432.709 171.547 c +440.004 170.781 429.127 165.684 429.757 163.833 c +430.345 162.104 433.996 162.753 433.832 160.47 c +433.728 159.029 431.79 158.723 430.063 159.476 c +429.279 159.818 428.481 160.288 428.335 161.117 c +428.202 161.878 428.743 162.583 429.446 162.494 c +430.852 162.316 430.082 160.475 429.941 158.976 c +429.8 157.477 431.051 156.215 432.552 156.341 c +433.759 156.442 434.766 157.531 435.982 157.3 c +436.583 157.185 437.063 156.762 437.386 156.24 c +438.064 155.146 438.016 153.761 438.6 152.617 c +438.704 152.423 l +439.296 151.363 440.018 150.267 439.752 149.082 c +439.133 146.331 435.528 146.963 432.701 146.531 c +429.021 145.968 429.421 142.082 431.346 142.084 c +432.48 142.085 432.978 144.091 434.22 143.629 c +436.013 142.963 434.447 139.112 430.657 140.678 c +427.65 141.92 425.335 144.534 426.742 146.847 c +427.693 148.411 429.893 148.354 431.254 149.504 c +432.371 150.449 431.871 151.859 431.006 151.734 c +429.811 151.563 431.507 148.273 429.55 148.74 c +428.935 148.887 428.898 149.8 429.536 150.393 c +430.624 151.401 432.301 151.277 433.55 152.047 c +435.659 153.347 437.726 152.86 437.171 151.652 c +436.798 150.84 435.716 151.415 434.935 151.22 c +428.728 149.668 438.884 146.855 440.129 144.045 c +440.357 143.531 440.409 142.875 440.932 142.647 c +441.985 142.189 442.859 143.722 442.314 145.49 c +442.015 146.461 441.806 147.554 442.5 148.258 c +444.19 149.976 446.648 147.337 447.17 143.491 c +447.526 140.867 448.815 138.486 449.516 135.936 c +449.946 134.369 451.08 133.168 452.029 133.885 c +452.784 134.457 452.466 135.707 451.424 135.986 c +449.552 136.486 448.021 133.907 449.555 131.649 c +450.695 129.97 452.764 129.38 454.731 128.875 c +455.257 128.74 455.812 128.609 456.314 128.819 c +458.041 129.541 456.924 131.857 457.434 133.453 c +458.16 135.725 461.169 135.99 463.66 134.761 c +464.606 134.294 465.481 133.701 466.344 133.095 c +471.077 129.768 476.946 127.267 480.1 131.26 c +480.879 132.246 481.208 133.509 481.053 134.757 c +480.814 136.679 479.255 138.15 477.677 137.554 c +475.486 136.726 476.412 133.762 477.654 131.22 c +477.889 130.74 478.094 130.236 478.461 129.848 c +480.992 127.175 495.359 128.509 487.805 124.114 c +486.187 123.172 481.135 129.253 480.972 124.454 c +480.936 123.394 482.222 123.092 483.147 122.557 c +494.762 115.834 471.55 105.144 477.077 117.99 c +477.236 118.359 477.561 118.616 477.907 118.82 c +480.008 120.059 482.901 119.613 484.603 121.428 c +487.277 124.278 490.344 127.332 491.001 124.456 c +491.164 123.743 490.624 122.989 490.946 122.313 c +491.306 121.558 492.7 121.332 492.436 120.383 c +492.085 119.119 489.956 120.354 489.538 119.194 c +487.341 113.103 494.624 120.652 495.492 119.592 c +496.687 118.131 493.946 117.66 492.084 116.767 c +490.6 116.055 490.449 114.103 489.366 112.922 c +488.074 111.513 485.457 111.024 485.616 108.988 c +485.866 105.81 490.388 107.012 494.192 110.192 c +495.047 110.907 496.061 111.471 496.644 112.427 c +497.326 113.545 497.292 114.943 496.683 116.109 c +494.706 119.899 489.264 119.688 487.697 115.825 c +487.245 114.713 487.408 113.403 488.4 112.856 c +489.867 112.048 491.306 113.698 492.867 113.724 c +495.83 113.774 500.366 106.022 501.783 111.369 c +503.341 117.252 493.592 112.44 492.94 115.753 c +492.672 117.114 494.061 118.116 494.291 119.433 c +495.606 126.976 482.876 121.562 481.922 126.587 c +481.475 128.945 484.155 130.625 484.171 132.951 c +484.187 135.28 483.339 138.255 485.479 138.043 c +486.333 137.958 486.703 137.015 487.36 136.501 c +489.249 135.024 491.51 137.23 493.722 137.219 c +496.168 137.206 497.786 134.907 498.388 132.404 c +498.853 130.47 498.541 128.313 496.824 127.722 c +495.995 127.436 495.049 127.724 494.253 127.343 c +491.502 126.023 492.897 120.764 497.889 121.082 c +501.849 121.335 503.855 125.235 501.748 127.352 c +499.172 129.94 494.73 126.803 496.519 123.208 c +496.989 122.263 497.939 121.68 498.978 121.47 c +501.63 120.934 503.984 122.913 503.35 125.129 c +502.993 126.374 501.488 127.289 501.898 128.604 c +502.329 129.987 505.476 130.669 504.171 132.283 c +503.711 132.852 502.782 132.621 502.267 133.121 c +500.24 135.089 505.131 138.925 507.387 134.21 c +508.118 132.682 508.079 130.931 507.645 129.294 c +506.167 123.729 510.058 120.57 511.634 122.826 c +511.729 122.962 511.792 123.13 511.713 123.272 c +511.123 124.34 509.552 122.323 511.307 121.735 c +512.137 121.457 513.042 122.053 513.86 121.728 c +526.734 116.609 503.183 107.145 506.747 120.204 c +507.544 123.126 511.359 122.527 514.521 122.676 c +516.232 122.757 518.005 123.323 519.561 122.573 c +521.894 121.449 524.517 120.139 524.714 122.172 c +524.787 122.935 524.092 123.544 523.291 123.483 c +519.951 123.23 522.755 116.851 519.354 116.648 c +517.292 116.524 517.294 119.376 515.998 120.678 c +513.995 122.692 510.961 120.853 511.668 118.639 c +512.109 117.261 514.02 117.161 514.703 115.939 c +516.185 113.287 515.666 106.226 518.086 109.909 c +519.073 111.41 516.023 112.553 516.776 114.027 c +517.518 115.479 519.632 114.252 520.738 111.857 c +521.88 109.384 522.109 106.666 520.182 106.647 c +518.383 106.63 518.235 110.718 516.016 109.75 c +514.794 109.217 515.308 107.513 516.269 106.135 c +518.005 103.646 519.124 100.346 522.114 99.684 c +522.952 99.499 523.896 99.556 524.52 98.956 c +525.665 97.856 524.662 95.775 525.832 94.692 c +528.491 92.233 529.592 97.516 531.665 100.525 c +537.4 108.851 545.559 96.479 538.207 94.61 c +536.44 94.16 533.844 96.713 532.834 94.53 c +531.899 92.507 535.492 90.209 537.801 93.322 c +538.744 94.593 538.945 96.213 539.141 97.779 c +539.308 99.108 540.193 100.138 541.02 99.63 c +541.935 99.067 541.048 97.915 540.469 96.87 c +538.708 93.687 542.674 90.988 544.693 93.244 c +545.987 94.69 544.823 97.073 542.515 97.519 c +537.436 98.501 535.642 92.377 539.072 90.778 c +541.076 89.844 543.159 91.797 542.354 93.763 c +540.79 97.582 535.197 92.932 533.192 95.731 c +531.609 97.941 534.286 100.431 537.523 101.724 c +540.458 102.897 542.823 101.22 541.929 99.731 c +541.81 99.532 541.619 99.381 541.391 99.341 c +539.608 99.03 540.683 101.601 540.183 102.931 c +530.186 129.582 524.037 81.125 540.967 93.78 c +543.314 95.534 542.594 98.958 543.579 101.62 c +544.431 103.919 546.616 105.691 546.646 108.182 c +546.691 111.803 542.685 112.652 541.739 110.467 c +540.705 108.081 544.718 107.205 544.738 105.082 c +544.746 104.225 544.124 103.542 543.774 102.768 c +542.958 100.967 543.641 98.963 544.085 97.042 c +546.081 88.398 528.22 89.458 536.705 94.905 c +537.108 95.164 537.708 95.122 537.941 95.561 c +539.373 98.264 534.719 96.345 534.103 97.292 c +533.354 98.444 535.16 99.098 536.175 100.04 c +537.614 101.374 536.724 104.283 538.683 105.139 c +541.036 106.167 542.075 102.825 543.853 101.106 c +544.483 100.497 545.319 100.106 545.809 99.375 c +546.888 97.767 545.971 95.725 544.66 94.157 c +543.759 93.078 542.702 92.042 542.461 90.651 c +542.193 89.107 543.042 87.503 542.488 86.018 c +541.778 84.114 538.949 83.23 539.268 81.044 c +539.505 79.422 541.911 77.89 540.494 76.527 c +539.499 75.568 538.161 76.791 536.873 76.968 c +534.386 77.311 531.592 72.79 529.481 75.508 c +527.42 78.161 531.897 82.063 534.795 78.452 c +535.355 77.754 535.549 76.854 535.865 76.02 c +536.445 74.487 537.454 73.146 537.963 71.587 c +538.907 68.695 538.475 64.924 541.331 63.688 c +542.251 63.29 543.344 63.469 543.668 64.322 c +544.192 65.703 542.366 66.419 540.737 66.995 c +538.643 67.735 537.045 69.815 534.779 69.685 c +534 69.64 533.269 69.314 532.662 68.823 c +525.222 62.806 512.421 63.034 519.45 67.573 c +520.925 68.526 524.905 67.142 524.007 69.638 c +523.3 71.603 521.354 69.123 519.567 68.42 c +517.876 67.754 514.871 68.475 515.4 66.485 c +515.595 65.751 516.472 65.529 517.289 65.652 c +520.947 66.203 520.713 70.238 518.591 70.424 c +518.039 70.472 517.535 70.121 517.343 69.596 c +516.876 68.32 518.616 66.346 517.04 65.591 c +515.963 65.075 512.733 67.674 513.149 65.175 c +513.214 64.784 513.661 64.387 513.345 64.088 c +512.865 63.632 511.897 64.643 512.857 65.702 c +513.688 66.619 514.624 67.518 515.848 67.69 c +518.838 68.111 520.822 64.796 519.068 62.514 c +517.602 60.606 513.238 59.94 514.864 57.487 c +516.317 55.293 520.101 52.209 517.048 52.968 c +515.986 53.232 514.467 53.914 515.075 53.004 c +515.188 52.836 515.419 52.859 515.625 52.866 c +518.998 52.982 520.088 46.738 514.616 45.417 c +513.247 45.087 511.61 44.875 511.456 43.541 c +511.231 41.592 520.501 40.602 515.78 37.545 c +515.257 37.206 514.597 37.439 513.984 37.4 c +512.294 37.29 510.602 35.055 509.209 36.455 c +508.778 36.889 508.669 37.656 508.052 37.813 c +498.464 40.263 512.137 32.138 510.611 30.738 c +510.019 30.194 509.16 30.604 508.387 30.909 c +504.618 32.393 500.602 29.768 499.029 25.757 c +497.349 21.47 498.591 16.655 497.489 12.204 c +497.054 10.446 496.144 8.725 494.434 8.237 c +492.578 7.707 490.031 8.791 489.108 6.919 c +488.363 5.407 489.737 3.682 491.689 3.546 c +493.763 3.402 495.453 4.87 497.048 6.209 c +498.229 7.2 499.497 8.229 499.807 9.74 c +500.226 11.784 498.677 13.649 496.829 13.266 c +495.482 12.987 494.522 11.276 493.116 11.756 c +491.496 12.309 491.505 14.806 493.445 15.735 c +496.189 17.049 498.481 14.048 500.889 12.077 c +502.865 10.458 505.43 9.694 507.931 10.196 c +514.08 11.43 512.306 18.121 509.074 17.436 c +507.6 17.124 507.144 15.198 508.337 14.12 c +508.697 13.794 509.218 13.676 509.515 14.004 c +510.966 15.613 507.474 15.077 506.597 15.908 c +506.11 16.37 506.27 17.261 505.687 17.633 c +502.071 19.947 504.64 13.366 503.441 12.41 c +499.45 9.228 500.273 17.83 497.97 17.845 c +494.574 17.867 494.629 10.478 501.218 11.316 c +502.802 11.518 504.602 11.912 505.428 10.609 c +507.117 7.944 495.569 3.833 502.079 1.01 c +505.238 -0.359 505.366 8.705 509.106 5.95 c +509.783 5.452 509.865 4.486 509.397 3.757 c +508.013 1.599 504.389 2.526 503.868 5.652 c +503.695 6.687 503.981 7.749 503.786 8.78 c +503.103 12.403 496.404 15.832 500.361 18.762 c +501.523 19.622 503.578 19.969 502.992 21.331 c +502.517 22.436 496.383 21.892 499.362 24.153 c +499.831 24.509 500.49 24.05 500.995 24.313 c +505.949 26.899 497.367 24.382 494.575 25.144 c +491.5 25.983 495.199 29.183 495.718 31.786 c +495.796 32.174 495.775 32.576 495.853 32.964 c +496.207 34.725 498.078 35.561 499.945 35.77 c +509.312 36.819 513.119 43.869 508.623 45.352 c +508.022 45.551 507.367 45.461 506.816 45.148 c +501.704 42.239 507.465 36.281 510.152 39.867 c +510.939 40.918 510.134 42.246 509.743 43.504 c +509.208 45.225 509.561 47.299 508.22 48.558 c +506.385 50.28 503.374 49.231 502.034 46.722 c +500.016 42.945 496.173 44.013 497.097 45.825 c +497.27 46.165 497.667 46.308 497.906 46.6 c +499.025 47.961 493.836 51.489 497.427 52.352 c +499.002 52.731 498.917 50.321 499.971 49.593 c +503.47 47.176 503.905 55.74 507.072 54.171 c +508.115 53.654 508.184 52.021 509.345 51.693 c +511.206 51.168 512.761 54.018 510.689 56.191 c +507.059 59.998 499.764 63.288 504.467 65.662 c +505.449 66.158 506.561 65.595 506.488 64.688 c +506.385 63.417 504.653 63.829 503.624 63.326 c +502.293 62.676 502.248 60.82 503.252 59.48 c +504.377 57.98 506.4 57.324 507.267 55.643 c +507.836 54.54 507.778 53.209 507.047 52.21 c +506.052 50.851 504.216 50.614 502.783 49.767 c +495.1 45.224 484.353 53.433 492.484 53.57 c +492.667 53.573 492.849 53.533 493.032 53.537 c +495.441 53.59 494.586 57.051 492.119 59.992 c +489.91 62.625 488.089 66.676 485.405 64.873 c +483.639 63.687 484.605 61.097 483.706 59.32 c +482.82 57.569 480.651 57.049 478.676 57.552 c +474.282 58.672 473.718 63.586 476.579 64.663 c +480.244 66.043 485.291 68.028 481.711 68.637 c +480.974 68.762 480.509 67.934 479.816 67.765 c +478.309 67.399 477.186 69.435 478.178 71.413 c +478.879 72.812 480.313 73.767 481.632 73.172 c +482.538 72.763 483.061 71.591 484.097 71.631 c +486.612 71.728 485.217 75.8 487.153 76.463 c +488.638 76.972 491.83 75.144 491.384 77.415 c +491.173 78.49 489.707 78.157 488.426 77.531 c +485.921 76.305 482.906 77.48 481.831 80.067 c +481.296 81.354 481.385 82.828 480.784 84.087 c +479.826 86.094 477.583 86.995 475.331 87.159 c +474.686 87.206 474.03 87.201 473.415 87.407 c +470.608 88.348 470.095 92.048 471.795 94.968 c +472.183 95.634 472.841 96.151 473.406 95.795 c +473.856 95.513 473.864 94.705 474.445 94.646 c +475.437 94.544 475.775 96.594 473.753 97.073 c +467.602 98.531 466.153 91.735 469.411 90.763 c +471.683 90.085 477.177 92.68 475.288 89.446 c +474.025 87.284 471.567 91.431 470.243 89.933 c +467.825 87.197 473.729 87.912 475.025 86.415 c +475.663 85.677 475.501 84.568 474.823 83.819 c +473.572 82.436 471.377 82.704 470.763 84.307 c +469.51 87.577 474.538 89.771 476.138 86.227 c +476.954 84.418 475.368 82.672 473.779 81.279 c +472.891 80.5 472.014 79.564 472.163 78.412 c +472.458 76.128 475.354 72.854 472.564 72.957 c +471.927 72.981 471.496 73.614 471.731 74.193 c +473.271 77.984 475.118 71.512 476.671 71.47 c +485.14 71.24 471.222 80.18 475.689 81.572 c +476.588 81.853 477.39 81.13 478.051 80.414 c +478.546 79.878 479.061 79.324 479.213 78.609 c +480.126 74.319 473.26 72.846 472.413 77.698 c +472.194 78.953 473.043 80.11 474.134 79.912 c +474.977 79.76 475.416 78.818 475.056 78.006 c +474.219 76.114 470.291 73.85 473.103 73.499 c +474.568 73.316 474.194 76.208 475.664 76.018 c +480.073 75.447 473.52 72.21 473.835 70.857 c +475.272 64.689 483.082 73.03 476.648 74.174 c +475.53 74.373 474.27 72.775 473.334 73.789 c +473.004 74.146 473.071 74.692 472.867 75.125 c +472.768 75.335 472.61 75.509 472.438 75.665 c +470.562 77.356 467.76 76.854 465.425 75.67 c +460.605 73.225 461.678 68.008 464.544 68.175 c +466.472 68.286 467.278 70.885 465.72 72.696 c +464.542 74.063 462.634 74.316 460.919 74.844 c +458.531 75.578 456.345 77.204 456.362 79.593 c +456.407 85.853 465.068 85.3 464.764 80.078 c +464.632 77.808 461.964 77.098 460.28 75.655 c +459.215 74.741 458.561 73.47 457.994 72.189 c +456.82 69.532 454.239 68.596 453.484 70.211 c +453.034 71.174 454.054 72.237 453.643 73.208 c +452.209 76.593 447.075 72.82 450.36 70.263 c +453.057 68.163 454.158 73.27 456.476 74.313 c +457.344 74.703 458.48 74.612 459.018 75.425 c +460.081 77.031 448.008 85.254 456.906 83.868 c +457.593 83.761 457.97 83.049 457.961 82.317 c +457.923 78.789 455.577 73.437 458.996 75.034 c +459.962 75.485 460.107 77.431 461.376 77.076 c +462.249 76.831 462.791 74.432 463.755 75.626 c +464.214 76.193 463.408 76.818 462.451 77.123 c +459 78.223 454.955 80.221 455.308 77.186 c +455.478 75.731 457.035 73.685 455.377 73.796 c +453.675 73.911 455.368 76.048 454.889 76.952 c +453.14 80.253 451.255 74.375 449.668 74.702 c +448.018 75.043 448.727 77.213 448.691 78.944 c +448.639 81.464 445.824 84.492 448.344 85.905 c +449.532 86.572 451.744 86.257 451.449 87.764 c +451.193 89.078 449.185 88.711 447.81 86.99 c +446.84 85.776 445.565 84.843 444.576 83.645 c +443.319 82.123 442.579 80.261 442.164 78.333 c +440.229 69.36 449.045 66.054 451.358 70.33 c +452.811 73.016 449.999 75.93 447.369 74.605 c +445.316 73.571 443.852 69.508 441.933 71.613 c +441.576 72.005 441.516 72.601 441.117 72.954 c +437.987 75.729 438.133 68.902 436.221 68.258 c +431.28 66.594 434.97 74.036 433.91 77.577 c +433.583 78.671 432.624 79.477 431.497 79.451 c +428.665 79.384 424.638 71.176 422.955 76.526 c +422.628 77.565 423.601 78.623 423.229 79.655 c +422.95 80.431 421.968 80.842 421.934 81.694 c +421.813 84.772 425.817 81.967 427.688 82.659 c +430.002 83.514 430.246 97.308 433.941 89.791 c +434.197 89.269 433.992 88.64 433.472 88.515 c +430.226 87.739 433.838 92.87 431.997 93.116 c +430.321 93.339 430.169 90.516 432.115 90.669 c +433.53 90.781 436.584 98.251 436.533 93.35 c +436.533 93.288 436.521 93.226 436.527 93.164 c +436.799 90.035 437.311 95.021 438.288 96.361 c +438.755 97.002 439.973 96.527 440.322 97.308 c +441.152 99.16 437.954 98.455 437.347 99.418 c +436.652 100.522 437.627 104.111 435.873 102.658 c +435.221 102.118 436.163 101.308 436.037 100.624 c +435.753 99.079 432.56 99.41 432.94 102.293 c +433.348 105.404 437.867 107.141 436.985 110.467 c +436.387 112.723 432.827 114.595 434.679 116.664 c +436.956 119.21 442.839 108.741 444.563 115.218 c +444.909 116.518 443.544 117.401 442.391 118.22 c +437.128 121.963 431.975 120.071 433.632 117.289 c +434.314 116.145 436.121 116.42 436.845 115.315 c +437.527 114.273 436.703 112.902 437.197 111.789 c +438.288 109.329 441.579 111.102 444.25 113.487 c +446.135 115.169 448.807 116.246 449.389 118.74 c +449.617 119.714 449.4 120.779 448.573 121.294 c +447.209 122.144 444.686 120.691 444.01 122.539 c +443.382 124.256 445.849 124.719 447.492 125.656 c +448.852 126.431 450.107 128.066 451.383 127.141 c +451.878 126.783 452.005 126.142 452.193 125.564 c +452.564 124.428 453.261 123.442 453.963 122.477 c +454.264 122.064 454.564 121.596 454.406 121.118 c +453.427 118.158 449.239 121.538 452.099 123.17 c +453.419 123.923 455.12 120.452 456.43 122.264 c +457.221 123.359 455.435 124.147 455.131 125.233 c +453.169 132.233 466.358 129.203 460.908 122.961 c +459.757 121.642 457.709 122.076 456.174 123.213 c +454.634 124.355 453.472 125.991 453.329 127.897 c +453.201 129.614 453.675 131.663 452.157 132.472 c +450.775 133.209 448.041 132.465 448.327 134.34 c +448.557 135.849 450.597 135.17 452.392 134.171 c +454.288 133.117 456.863 133.716 458.46 132.18 c +461.026 129.712 459.056 125.469 455.652 125.856 c +454.469 125.991 453.538 126.948 453.812 128.003 c +454.234 129.626 459.534 129.855 457.34 132.267 c +456.56 133.125 455.015 132.429 454.812 130.905 c +454.593 129.248 455.541 127.055 453.871 126.499 c +450.911 125.514 452.262 130.071 451.562 132.807 c +450.392 137.38 443.608 134.431 441.229 137.556 c +440.877 138.018 440.669 138.604 440.906 139.123 c +442.427 142.449 444.089 136.951 446.342 134.845 c +447.559 133.708 449.497 134.258 450.926 133.479 c +451.651 133.084 452.206 132.363 453.03 132.235 c +456.101 131.755 457.182 136.497 453.802 137.392 c +452.215 137.812 450.274 136.223 449.021 137.548 c +447.121 139.557 452.92 143.213 449.635 145.064 c +447.553 146.237 445.608 143.193 447.662 141.759 c +454.017 137.319 448.093 157.752 455.119 151.784 c +456.157 150.903 455.502 148.902 456.81 148.259 c +459.881 146.753 459.603 152.432 461.757 152.704 c +464.566 153.058 470.663 150.742 467.725 153.593 c +467.609 153.706 467.457 153.774 467.346 153.892 c +465.908 155.404 469.248 157.603 470.11 154.853 c +470.668 153.073 468.24 151.496 466.192 152.994 c +464.547 154.197 463.633 157.018 461.572 156.259 c +461.269 156.147 461.011 155.94 460.712 155.819 c +458.205 154.804 456.214 159.757 453.64 158.011 c +452.985 157.566 452.403 156.696 451.749 157.144 c +450.608 157.924 452.363 158.958 454.446 159.405 c +456.24 159.789 456.854 162.179 458.655 162.547 c +467.099 164.274 465.066 148.409 455.863 153.475 c +454.911 153.999 454.302 154.938 453.637 155.793 c +451.848 158.093 449.41 160.147 449.259 163.077 c +449.166 164.875 450.032 166.552 450.276 168.328 c +450.728 171.615 450.781 175.597 453.772 175.457 c +455.838 175.36 456.873 172.938 456.193 170.659 c +455.45 168.172 453.271 166.422 450.707 165.946 c +449.417 165.706 448.02 165.851 447.188 166.837 c +444.973 169.464 448.848 172.665 448.044 175.573 c +447.637 177.047 446.208 177.929 445.45 179.239 c +444.696 180.546 444.273 182.348 442.772 182.349 c +439.634 182.349 441.702 178.173 441.383 175.336 c +441.252 174.174 440.476 172.997 441.083 171.963 c +443.345 168.113 448.064 173.242 444.477 175.111 c +443.963 175.379 443.36 175.245 442.821 175.024 c +439.536 173.683 437.891 169.978 439.248 166.735 c +439.876 165.234 441.161 164.028 441.413 162.409 c +443.123 151.39 426.803 156.133 432.504 162.712 c +433.818 164.227 437.568 162.669 437.889 165.263 c +438.03 166.402 436.902 167.261 435.64 167.197 c +433.573 167.092 431.545 164.758 429.754 166.183 c +426.301 168.929 431.483 174.743 435.117 170.409 c +435.384 170.09 435.572 169.715 435.802 169.369 c +436.695 168.028 438.237 166.944 438.075 165.315 c +437.932 163.88 436.373 162.875 436.502 161.405 c +436.555 160.789 436.812 160.076 436.288 159.771 c +434.84 158.927 434.869 161.521 436.753 163.672 c +439.379 166.67 443.341 169.553 442.256 166.419 c +442.092 165.946 441.521 165.769 441.293 165.331 c +440.702 164.19 444.163 159.31 440.899 160.879 c +440.294 161.17 440.495 162.018 440.937 162.701 c +442.478 165.081 441.172 167.441 439.684 166.866 c +438.316 166.337 439.227 164.371 438.396 163.426 c +437.263 162.139 432.418 164.976 432.961 161.595 c +433.215 160.007 435.513 160.802 436.374 159.818 c +437.613 158.4 434.979 150.164 438.588 153.95 c +439.041 154.425 438.736 155.288 439.255 155.715 c +439.965 156.298 440.84 155.346 441.644 155.516 c +442.269 155.649 442.601 156.375 443.233 156.484 c +445.425 156.863 445.038 153.203 441.37 150.917 c +434.994 146.944 424.882 153.274 432.176 153.632 c +432.992 153.672 433.708 152.751 434.501 153.113 c +436.515 154.031 433.613 155.573 431.419 157.085 c +430.102 157.992 430.156 159.898 429.143 161.092 c +427.86 162.605 425.525 162.596 424.201 161.098 c +423.395 160.186 423.216 158.932 423.084 157.724 c +422.831 155.414 422.676 153.026 423.621 150.899 c +424.567 148.773 424.64 146.451 422.998 146.462 c +419.711 146.486 422.896 150.683 422.005 152.39 c +421.014 154.289 417.887 153.643 416.748 150.859 c +413.64 143.259 425.937 142.685 422.898 148.009 c +422.674 148.402 422.226 148.582 421.877 148.864 c +420.07 150.321 420.82 153.289 423.236 154.514 c +425.993 155.911 429.453 154.528 432.156 156.05 c +434.852 157.567 437.759 160.202 439.068 157.724 c +439.894 156.162 438.358 154.395 436.223 154.095 c +433.849 153.761 430.897 154.136 430.33 151.866 c +430.061 150.787 430.762 149.69 430.511 148.609 c +430.162 147.106 428.018 146.045 428.772 144.482 c +433.166 135.37 434.429 155.115 438.333 151.169 c +439.313 150.178 438.422 148.672 438.55 147.352 c +438.99 142.819 446.127 142.699 446.622 147.968 c +446.836 150.257 444.742 151.873 443.104 150.899 c +440.19 149.166 443.014 145.02 445.577 146.917 c +447.779 148.546 444.593 151.066 444.778 153.239 c +444.957 155.347 447.363 156.191 449.68 156.315 c +450.14 156.339 450.623 156.346 451.003 156.084 c +455.558 152.935 446.403 147.426 445.679 154.345 c +445.506 156.005 447.14 157.028 448.157 156.19 c +449.663 154.95 447.262 153.33 447.237 151.782 c +447.212 150.282 449.334 149.093 448.522 147.599 c +447.525 145.764 444.954 147.411 443.42 150.23 c +442.89 151.204 442.149 152.074 441.134 152.52 c +440.408 152.84 439.602 152.907 438.855 153.171 c +437.95 153.492 437.063 154.092 436.136 153.807 c +434.516 153.309 434.48 151.166 435.898 150.717 c +441.957 148.795 435.675 157.162 436.983 158.968 c +442.933 167.184 450.445 148.498 437.531 149.13 c +430.358 149.481 422.325 149.569 425.531 145.162 c +426.623 143.661 429.135 144.274 430.221 142.767 c +432.89 139.063 426.223 138.316 421.345 136.615 c +419.503 135.973 417.393 135.106 416.726 136.701 c +415.711 139.129 419.542 139.013 422.131 139.893 c +427.774 141.811 421.294 148.893 420.357 144.076 c +420.182 143.175 422.832 141.619 421.024 141.087 c +419.872 140.748 420.402 142.492 420.13 143.544 c +419.719 145.132 417.083 144.958 415.856 142.587 c +414.697 140.347 412.858 138.445 411.409 139.742 c +410.847 140.245 410.783 141.087 411.151 141.761 c +411.948 143.222 414.69 143.8 413.968 145.622 c +413.254 147.424 405.025 143.379 407.35 148.362 c +408.12 150.012 410.92 147.99 411.696 149.628 c +412.889 152.148 408.631 151.791 405.098 148.632 c +403.194 146.93 400.28 147.72 399.894 149.958 c +399.478 152.373 402.319 154.08 405.228 153.265 c +407.377 152.664 407.609 150.463 406.384 150.111 c +405.275 149.793 404.451 151.405 405.319 153.006 c +405.455 153.256 405.605 153.5 405.684 153.774 c +405.953 154.7 405.397 155.592 405.024 156.478 c +404.645 157.377 404.783 158.406 405.563 158.53 c +409.925 159.223 404.575 154.323 405.278 153.195 c +406.776 150.792 409.033 155.01 410.622 154.176 c +411.193 153.876 411.378 153.202 411.602 152.597 c +412.166 151.077 413.61 150.135 414.607 150.952 c +415.452 151.643 414.959 153.349 416.116 153.729 c +416.926 153.995 417.575 153.196 418.042 152.397 c +419.006 150.747 420.181 149.073 419.942 147.172 c +419.347 142.442 409.468 136.042 416.606 134.282 c +417.127 134.154 417.685 134.235 418.106 134.565 c +419.149 135.381 418.74 136.912 419.073 138.151 c +419.723 140.565 419.603 142.972 418.085 142.34 c +415.075 141.087 420.213 138.55 419.128 137.193 c +416.787 134.263 416.138 140.358 414.44 140.772 c +407.619 142.437 414.368 132.954 412.28 131.398 c +410.393 129.993 401.96 134.773 404.38 129.407 c +405.613 126.673 408.992 130.658 410.537 129.14 c +412.534 127.178 408.618 125.839 406.776 123.885 c +405.737 122.783 405.751 121.06 406.945 120.335 c +409.831 118.581 412.564 123.065 409.448 124.876 c +408.698 125.311 407.734 125.154 406.99 125.6 c +406.235 126.051 406.199 126.996 406.802 127.201 c +407.4 127.404 407.746 126.642 407.891 125.878 c +408.141 124.555 408.608 123.026 407.459 122.535 c +406.724 122.22 405.947 122.748 405.506 123.482 c +404.514 125.135 404.946 127.165 404.82 129.071 c +404.656 131.552 404.585 134.377 406.748 134.632 c +409.205 134.922 411.45 124.904 414.58 130.274 c +415.339 131.577 414.024 133.21 412.155 133.117 c +407.778 132.898 402.488 132.268 404.508 135.226 c +404.678 135.475 404.949 135.67 404.987 135.972 c +405.098 136.87 403.837 136.77 403.077 137.156 c +399.599 138.922 405.306 142.416 403.917 144.422 c +403.138 145.546 401.532 145.096 400.262 145.45 c +396.99 146.363 397.054 152.154 393.281 152.158 c +391.346 152.16 389.612 149.881 387.773 150.93 c +383.352 153.452 390.061 158.946 399.262 155.651 c +400.491 155.211 401.904 154.993 402.628 153.898 c +403.689 152.297 402.791 149.189 405.038 148.939 c +407.3 148.687 411.868 150.892 410.097 148.264 c +409.686 147.655 408.832 147.978 408.09 148.272 c +402.31 150.561 396.365 153.775 400.622 155.478 c +401.393 155.787 402.218 155.437 402.96 155.051 c +405.057 153.958 407.094 152.397 407.143 150.089 c +407.213 146.754 403.087 147.819 404.139 149.487 c +404.293 149.731 404.601 149.788 404.891 149.816 c +406.471 149.971 408.165 149.713 409.013 148.413 c +409.448 147.746 409.528 146.92 409.873 146.205 c +410.812 144.259 413.286 143.671 414.451 141.876 c +417.94 136.497 409.947 134.195 409.641 138.125 c +409.596 138.707 409.976 139.22 410.504 139.486 c +411.685 140.078 413.104 139.424 413.303 138.166 c +413.526 136.749 412.11 135.614 410.599 135.957 c +407.264 136.714 408.244 140.903 410.66 140.552 c +411.393 140.446 411.814 139.725 412.438 139.349 c +412.967 139.03 413.601 138.982 414.2 138.841 c +417.095 138.159 419.079 135.485 418.844 132.526 c +418.633 129.866 419.042 127.137 420.921 127.696 c +422.458 128.154 422.117 130.228 420.77 130.221 c +419.535 130.215 419.067 128.253 420.615 127.328 c +422.229 126.364 425.075 127.413 425.684 125.34 c +426.665 122 420.308 120.085 419.412 125.29 c +419.216 126.432 419.623 127.604 420.541 128.305 c +423.544 130.598 426.826 127.142 425.048 124.834 c +423.755 123.156 418.29 125.259 419.07 121.715 c +419.285 120.74 420.426 120.384 421.5 120.562 c +423.419 120.881 424.937 122.433 424.713 124.282 c +424.515 125.915 422.855 127.038 422.778 128.692 c +422.65 131.434 426.329 135.652 422.748 135.993 c +419.017 136.348 422.286 131.595 422.609 128.212 c +422.684 127.429 422.424 126.628 422.651 125.87 c +422.925 124.956 423.905 124.641 424.309 125.218 c +424.974 126.169 423.345 127.427 422.435 126.114 c +421.867 125.294 422.609 124.345 423.062 123.436 c +424.176 121.201 423.104 118.595 421.187 116.862 c +420.047 115.832 418.469 115.247 417.41 116.18 c +415.219 118.111 418.704 120.813 418.104 123.09 c +416.467 129.309 411.336 143.943 415.534 134.717 c +415.876 133.965 415.46 132.713 416.386 132.561 c +417.743 132.338 418.28 135.225 415.646 135.467 c +414.537 135.569 413.809 134.686 414.259 134.09 c +414.896 133.246 416.231 134.848 416.861 133.977 c +418.126 132.229 414.742 133.151 413.682 132.445 c +413.197 132.122 413.118 131.445 413.545 131.097 c +414.908 129.984 415.028 132.645 415.795 134.201 c +418.446 139.578 422.863 130.409 425.653 131.934 c +426.854 132.59 426.972 134.128 427.272 135.468 c +427.468 136.346 427.789 137.253 427.448 138.089 c +426.602 140.158 423.212 139.449 422.356 141.508 c +420.926 144.95 419.129 150.334 418.522 146.619 c +418.44 146.118 418.874 145.643 418.727 145.149 c +418.362 143.915 416.65 144.885 415.866 144.24 c +409.517 139.016 421.518 144.984 424.711 143.97 c +425.307 143.78 425.86 143.236 426.443 143.51 c +427.259 143.893 426.819 144.975 426.728 145.895 c +426.268 150.545 434.443 151.878 435.267 145.429 c +435.65 142.436 433.115 140.194 430.909 138.083 c +426.832 134.182 421.787 130.394 418.079 133.714 c +414.926 136.537 417.461 140.779 420.25 139.808 c +421.766 139.281 422.068 137.293 420.791 136.406 c +419.312 135.379 417.344 137.187 415.833 136.267 c +412.578 134.286 416.11 129.27 419.254 131.984 c +422.039 134.389 417.43 137.03 415.718 140.044 c +414.842 141.587 414.755 143.794 413.012 144.338 c +409.988 145.282 407.375 140.784 410.618 137.672 c +411.984 136.361 414.07 136.051 415.321 137.326 c +419.048 141.127 411.678 143.503 405.717 146.094 c +403.718 146.962 402.646 149.057 403.847 150.363 c +404.89 151.496 406.574 150.716 408.098 150.348 c +410.609 149.74 413.022 148.542 411.986 146.915 c +411.302 145.84 409.822 146.394 408.532 146.533 c +406.798 146.721 405.145 145.673 405.081 144.039 c +404.889 139.074 413.322 139.07 412.676 145.058 c +412.447 147.18 410.163 148.364 409.551 150.372 c +408.847 152.68 409.142 155.991 406.793 155.641 c +405.002 155.375 404.408 150.228 402.003 152.334 c +400.464 153.682 403.761 156.008 402.184 157.351 c +400.979 158.376 399.601 156.619 398.963 154.486 c +398.707 153.632 398.282 152.839 398.007 151.991 c +396.238 146.526 401.977 144.196 403.549 146.963 c +404.188 148.09 403.448 149.4 402.472 150.367 c +399.062 153.747 393.785 154.287 391.605 150.731 c +389.605 147.469 388.02 142.779 385.68 145.224 c +384.502 146.455 385.808 148.016 386.827 147.416 c +387.954 146.751 385.759 144.383 387.463 143.945 c +389.074 143.53 388.054 145.872 388.245 147.344 c +388.873 152.179 392.678 145.819 396.163 142.084 c +398.065 140.046 401.076 141.3 400.836 143.43 c +400.594 145.593 397.729 145.095 395.504 145.404 c +390.634 146.081 388.999 152.408 391.98 157.544 c +393.014 159.325 392.238 161.034 391.174 160.625 c +390.367 160.316 390.555 157.524 389.183 158.558 c +388.659 158.952 389.024 159.877 389.845 159.822 c +391.709 159.697 389.24 153.839 392.513 155.149 c +393.761 155.648 393.249 158.038 391.051 157.873 c +388.485 157.681 386.238 158.464 387.319 159.645 c +387.841 160.216 388.779 159.82 388.731 159.068 c +388.607 157.135 377.271 154.673 384.45 155.938 c +384.695 155.981 384.846 156.209 385.053 156.341 c +386.12 157.02 387.112 155.351 388.197 155.65 c +392.186 156.748 387.723 162.498 385.571 158.598 c +384.972 157.514 386.013 156.351 387.312 155.731 c +387.675 155.558 388.053 155.392 388.31 155.082 c +394.172 148.03 377.62 147.532 383.265 154.607 c +383.457 154.847 383.75 154.993 383.911 155.256 c +387.758 161.522 374.137 158.801 379.013 152.57 c +380.063 151.228 381.999 150.817 382.864 149.332 c +383.969 147.433 383.012 144.187 385.389 143.538 c +387.591 142.937 390.485 148.027 392.374 144.922 c +392.644 144.479 392.696 143.836 393.211 143.7 c +395.564 143.075 393.677 146.908 394.931 147.224 c +396.213 147.548 395.984 145.661 396.243 144.271 c +396.706 141.787 400.5 141.375 402.4 144.253 c +403.908 146.536 403.576 149.866 405.846 151.523 c +408.453 153.425 413.223 154.251 411.35 156.971 c +410.369 158.395 408.018 157.512 406.943 158.817 c +406.357 159.529 406.493 160.533 406.277 161.418 c +403.763 171.725 389.789 162.938 396.833 156.705 c +398.571 155.167 401.493 156.397 403.188 154.791 c +404.408 153.636 404.952 151.231 406.658 151.808 c +410.053 152.957 405.272 155.892 404.385 158.54 c +403.521 161.119 406.334 163.557 409.502 162.773 c +409.72 162.719 409.934 162.651 410.156 162.613 c +414.886 161.813 418.867 158.067 415.243 158.268 c +414.428 158.313 414.196 159.352 413.509 159.699 c +410.306 161.316 409.105 155.431 412.851 155.732 c +414.614 155.874 414.37 158.457 415.727 159.21 c +421.223 162.258 423.602 150.246 415.314 151.713 c +414.256 151.9 413.121 151.852 413.192 151.029 c +413.248 150.382 414.161 150.328 414.4 149.777 c +416.316 145.371 411.777 151.03 409.583 154.142 c +408.181 156.131 404.819 154.586 405.559 151.871 c +406.746 147.512 411.898 151.024 409.579 153.077 c +408.46 154.068 406.677 151.504 405.609 152.868 c +405.427 153.1 405.399 153.415 405.24 153.662 c +403.635 156.151 399.065 152.053 403.069 149.508 c +404.225 148.773 405.871 148.231 405.374 147.038 c +404.772 145.597 401.974 146.234 402.009 148.994 c +402.037 151.284 403.659 153.276 405.877 153.342 c +411.606 153.512 420.384 151.492 416.381 155.79 c +415.581 156.65 414.051 156.269 413.301 157.19 c +411.408 159.515 415.727 161.796 421.089 159.758 c +427.646 157.266 430.435 164.623 426.866 166.408 c +425.108 167.287 423.511 165.494 421.855 164.401 c +419.685 162.97 416.971 163.014 414.379 163.203 c +408.88 163.604 407.649 168.636 410.269 169.554 c +412.277 170.258 413.494 167.577 413.432 164.687 c +413.359 161.316 412.356 157.831 409.645 158.265 c +408.101 158.511 406.717 160.513 405.316 159.443 c +403.477 158.04 406.169 156.164 408.147 154.327 c +409.078 153.463 409.52 152.202 409.397 150.937 c +409.144 148.332 410.9 146.939 411.599 148.045 c +412.218 149.027 410.573 149.563 410.378 150.462 c +409.942 152.47 413.23 153.151 413.57 150.801 c +413.592 150.651 413.584 150.499 413.542 150.353 c +411.771 144.203 406.78 154.024 412.421 159.05 c +415.319 161.632 413.657 165.492 411.174 165.045 c +406.321 164.172 413.567 155.825 408.716 154.95 c +407.593 154.747 406.201 155.759 405.433 154.751 c +405.021 154.21 405.252 153.43 405.881 153.261 c +415.105 150.788 401.689 159.604 404.176 160.833 c +405.543 161.508 406.93 159.513 405.517 158.284 c +404.427 157.336 402.814 158.454 401.572 157.886 c +400.18 157.249 400.264 155.427 400.408 153.815 c +400.614 151.515 400.332 149.173 399.271 147.121 c +398.703 146.023 397.92 145.041 396.903 144.336 c +390.104 139.63 394.306 128.506 397.026 134.814 c +397.115 135.02 397.137 135.253 397.048 135.459 c +396.669 136.333 395.211 136.123 394.748 134.829 c +394.034 132.833 394.971 129.541 392.621 129.695 c +390.846 129.811 391.111 132.342 389.875 133.261 c +388.916 133.975 387.652 133.526 386.479 133.274 c +385.884 133.146 385.274 133.084 384.69 132.913 c +382.736 132.342 380.834 130.681 379.041 131.741 c +378.237 132.215 377.827 133.169 378.19 134.004 c +380.409 139.11 387.793 132.609 382.296 129.584 c +380.318 128.495 375.432 131.064 375.933 127.615 c +376.191 125.844 378.769 126.062 380.85 127.706 c +382.498 129.008 384.384 130.003 385.881 131.478 c +387.482 133.056 387.982 135.412 386.402 136.348 c +384.324 137.58 382.048 135 383.569 133.05 c +385.517 130.553 387.847 134.126 385.898 134.766 c +385.496 134.898 385.023 134.525 384.665 134.797 c +382.986 136.074 386.439 135.837 387.197 136.634 c +388.376 137.874 385.828 138.971 386.125 140.182 c +386.52 141.792 389.326 141.306 390.375 138.361 c +391.745 134.516 391.474 130.332 388.423 130.276 c +386.158 130.235 385.307 132.903 384.914 135.386 c +384.763 136.337 384.563 137.297 384.038 138.107 c +379.887 144.508 372.573 137.51 376.545 133.9 c +378.611 132.022 381.53 135.005 383.813 133.905 c +387.655 132.055 385.409 124.424 377.815 125.203 c +376.63 125.324 375.47 125.61 374.329 125.947 c +372.528 126.48 370.737 127.16 369.364 128.445 c +367.353 130.327 366.601 133.272 368.09 135.483 c +371.276 140.212 376.129 135.182 373.564 133.058 c +372.804 132.429 371.541 132.924 370.857 132.179 c +364.757 125.536 381.235 124.88 375.883 132.27 c +374.095 134.738 359.775 135.801 368.596 136.457 c +369.229 136.504 369.623 135.875 370.157 135.563 c +370.851 135.159 371.692 135.313 372.466 135.539 c +373.665 135.889 375.044 136.06 375.492 135.031 c +376.525 132.658 372.3 131.021 371.51 134.225 c +371.415 134.613 371.465 135.017 371.589 135.396 c +371.886 136.299 372.563 136.999 373.164 137.732 c +374.379 139.213 375.399 140.963 377.171 141.716 c +379.314 142.626 382.234 141.907 383.553 143.953 c +384.773 145.845 383.965 149.691 386.631 149.396 c +390.81 148.933 385.54 141.688 389.415 141.052 c +395.491 140.053 392.636 150.186 387.985 146.174 c +387.045 145.363 387.477 143.607 386.32 143.002 c +383.923 141.75 383.414 145.979 381.505 146.332 c +379.207 146.758 378.863 143.64 377.774 141.545 c +376.315 138.737 371.865 137.732 372.063 134.307 c +372.125 133.246 371.808 132.231 371.108 132.501 c +370.381 132.782 370.876 133.787 371.75 134.529 c +374.952 137.251 372.236 143.08 366.883 142.417 c +364.238 142.09 362.505 143.639 363.537 144.633 c +364.299 145.366 365.39 144.403 365.984 143.112 c +366.926 141.06 368.565 139.44 369.803 137.557 c +370.46 136.558 371.006 135.476 371.198 134.295 c +371.333 133.467 371.287 132.61 371.543 131.809 c +372.032 130.274 373.548 129.164 373.624 127.53 c +373.748 124.892 370.698 121.052 373.886 120.565 c +376.273 120.199 377.674 124.457 373.936 126.437 c +372.669 127.108 371.232 127.324 369.808 127.481 c +368.178 127.661 366.523 127.777 364.98 128.342 c +362.04 129.418 359.96 131.905 357.604 133.945 c +354.544 136.593 350.762 138.804 349.677 142.728 c +349.235 144.326 349.161 146.225 347.684 146.991 c +347.196 147.244 346.614 147.294 346.141 147.02 c +344.13 145.857 345.519 142.295 348.45 143.1 c +353.111 144.382 350.574 150.804 346.804 149.087 c +345.489 148.488 344.778 146.165 343.27 146.945 c +341.695 147.76 342.95 150.274 345.928 151.13 c +347.636 151.62 349.361 152.481 351.057 151.916 c +352.569 151.412 353.447 149.936 354.691 148.963 c +356.591 147.476 359.209 147.756 359.724 149.654 c +359.825 150.028 359.794 150.423 359.68 150.794 c +358.931 153.24 355.025 153.946 355.234 156.742 c +355.479 160.03 360.649 160.938 363.48 156.903 c +364.25 155.807 364.788 154.509 365.887 153.733 c +368.329 152.01 371.436 153.707 371.058 156.169 c +370.672 158.685 367.399 158.428 364.684 158.63 c +361.338 158.879 358.67 161.182 356.228 163.482 c +354.392 165.211 352.197 166.926 349.916 166.063 c +347.234 165.048 346.633 160.624 343.473 160.766 c +333.692 161.204 340.56 176.404 347.458 169.177 c +348.883 167.685 348.083 165.277 349.02 163.503 c +349.494 162.605 350.362 161.975 351.368 161.835 c +355.135 161.309 357.048 165.904 354.294 167.982 c +353.569 168.53 352.484 168.748 352.292 169.659 c +351.891 171.56 354.625 171.372 356.571 171.918 c +363.189 173.775 357.307 181.573 354.562 177.579 c +354.307 177.208 354.284 176.694 353.928 176.409 c +351.734 174.661 351.51 181.27 349.296 179.457 c +347.278 177.806 351.398 176.673 351.258 175.246 c +351.115 173.785 349.026 173.691 347.279 174.835 c +342.738 177.81 344.461 182.597 346.961 181.872 c +348.593 181.397 350.416 177.437 351.282 179.999 c +352.189 182.687 346.97 180.806 347.139 182.819 c +347.253 184.174 349.103 183.574 350.173 184.069 c +350.978 184.442 351.252 185.372 351.427 186.253 c +352.405 191.197 356.81 192.404 357.644 189.949 c +358.288 188.051 355.63 187.23 354.953 185.599 c +354.75 185.109 354.722 184.536 354.359 184.144 c +352.892 182.562 349.727 185.024 351.131 189.098 c +351.322 189.653 351.515 190.22 351.473 190.806 c +351.325 192.881 348.941 193.801 347.685 192.43 c +347.2 191.899 347.125 191.116 347.452 190.471 c +348.46 188.477 351.555 188.769 352.751 191.185 c +355.152 196.035 356.706 203.604 359.47 199.328 c +360.941 197.053 357.384 195.769 355.281 193.956 c +353.921 192.785 352.539 191.077 351.263 192.143 c +350.008 193.19 351.269 194.971 352.822 196.293 c +355.761 198.795 353.359 201.904 351.795 200.856 c +351.205 200.461 351.238 199.599 351.843 199.319 c +352.777 198.886 353.315 200.269 354.189 200.403 c +355.22 200.561 355.774 199.229 356.762 199.145 c +361.119 198.777 359.015 208.019 352.178 204.645 c +351.974 204.544 351.768 204.436 351.541 204.424 c +350.644 204.373 350.123 205.444 350.474 206.464 c +351.556 209.604 356.284 209.468 357.391 205.9 c +357.667 205.011 357.559 204.04 357.882 203.165 c +358.536 201.393 360.51 200.555 362.416 200.919 c +366.57 201.713 370.622 201.236 369.329 198.772 c +368.657 197.49 366.915 198 365.399 198.454 c +361.493 199.623 356.93 200.807 358.326 203.923 c +358.616 204.571 359.231 205.023 359.937 205.031 c +362.581 205.061 362.732 201.493 360.53 201.219 c +359.393 201.077 358.586 202.59 357.438 202.27 c +355.485 201.725 356.537 198.504 360.233 197.309 c +361.176 197.004 362.227 196.623 362.937 197.279 c +363.148 197.474 363.274 197.739 363.444 197.97 c +368.095 204.313 376.443 193.841 368.561 190.671 c +368.211 190.53 367.816 190.471 367.494 190.662 c +366.276 191.386 367.254 193.823 369.848 193.47 c +371.389 193.261 372.843 192.388 373.029 190.91 c +373.3 188.751 370.949 187.222 368.487 187.7 c +363.493 188.67 364.117 194.362 367.2 194.481 c +371.145 194.634 379.04 193.849 374.206 195.731 c +373.906 195.848 373.554 195.753 373.267 195.903 c +366.103 199.643 380.273 197.209 378.668 199.878 c +378.419 200.292 377.825 200.349 377.576 200.764 c +376.499 202.558 380.61 204.465 381.409 200.787 c +381.777 199.095 380.637 197.498 379.144 197.743 c +376.681 198.146 376.572 202.453 380.523 204.083 c +386.798 206.672 392.772 202.075 391.048 197.252 c +389.752 193.627 385.03 193.909 381.647 192.343 c +379.997 191.579 378.618 190.249 378.237 188.481 c +377.585 185.455 380.421 183.539 382.051 184.959 c +383.591 186.3 382.194 189.013 379.277 189.555 c +376.522 190.066 373.597 189.257 372.183 186.902 c +370.858 184.696 371.761 181.954 373.913 181.758 c +376.696 181.504 377.869 187.258 381.023 185.581 c +381.794 185.171 382.086 184.262 382.659 183.616 c +389.253 176.177 395.181 190.478 387.135 190.023 c +385.69 189.941 385.205 188.267 384.31 187.164 c +381.593 183.815 377.281 186.542 378.418 189.265 c +379.414 191.65 382.609 189.851 384.672 190.665 c +387.895 191.938 388.057 202.928 392.987 198.297 c +395.018 196.388 392.422 193.936 390.99 195.323 c +389.271 196.989 394.14 198.917 392.317 200.59 c +391.629 201.221 390.638 200.571 389.764 200.682 c +387.425 200.978 387.99 204.928 385.723 205.324 c +382.321 205.918 383.131 200.245 380.536 199.653 c +379.499 199.417 378.228 200.082 377.48 199.238 c +374.715 196.117 380.821 196.849 385.914 199.124 c +387.962 200.039 391.183 198.903 391.93 201.286 c +392.098 201.821 391.995 202.425 392.268 202.919 c +393.007 204.254 396.715 203.687 395.914 205.91 c +395.322 207.555 393.347 205.918 391.857 205.971 c +385.618 206.191 392.576 213.517 391.364 216.663 c +390.308 219.407 384.305 221.551 387.606 223.954 c +390.302 225.917 393.2 221.481 390.058 219.759 c +389.135 219.253 387.846 219.691 387.098 218.898 c +383.736 215.332 391.884 214.708 391.804 212.236 c +391.747 210.485 389.624 209.914 387.614 209.954 c +385.263 210.001 383.393 211.428 384.195 212.868 c +386.28 216.612 388.332 209.989 390.656 209.431 c +393.367 208.78 395.417 212.688 392.981 216.081 c +391.095 218.708 390.777 221.748 392.857 221.804 c +394.143 221.838 394.848 220.297 394.345 218.844 c +393.001 214.96 390.915 210.452 394.236 210.989 c +395.52 211.196 396.461 213.503 397.762 212.464 c +400.945 209.922 394.54 210.956 391.701 209.903 c +389.86 209.221 390.132 206.208 388.191 205.667 c +386.756 205.268 385.501 206.57 385.083 208.165 c +383.49 214.244 389.911 218.096 393.342 214.721 c +395.064 213.026 393.809 210.663 392.253 211.075 c +390.711 211.484 394.381 223.28 389.292 217.597 c +388.684 216.918 389.434 216.037 389.708 215.179 c +393.236 204.14 371.119 208.026 379.671 219.544 c +381.45 221.939 384.878 221.849 387.406 223.316 c +394.111 227.206 400.428 225.148 397.928 221.885 c +396.709 220.294 393.989 221.785 392.718 220.278 c +390.634 217.807 395.06 216.179 396.589 213.764 c +397.283 212.669 397.318 211.18 398.349 210.361 c +399.246 209.65 400.484 209.74 401.565 210.163 c +404.287 211.226 404.209 214.211 402.503 214.504 c +402.333 214.533 402.159 214.517 401.987 214.535 c +399.733 214.771 399.3 218.468 402.309 219.553 c +406.404 221.029 407.281 215.848 404.777 215.523 c +402.363 215.209 403.511 219.337 401.681 219.675 c +400.517 219.891 399.625 218.564 400.103 217.253 c +400.989 214.825 406.796 213.131 403.778 210.762 c +402.076 209.425 400.663 212.049 399.238 214.085 c +397.68 216.31 394.497 218.23 396.178 220.383 c +397.781 222.438 401.518 220.819 401.831 216.983 c +401.955 215.466 401.658 213.818 402.587 212.595 c +403.275 211.69 404.429 211.351 405.374 210.733 c +410.291 207.514 415.092 209.015 413.296 211.509 c +411.943 213.387 401.94 214.305 407.951 215.457 c +409.184 215.693 409.4 213.096 410.753 213.626 c +411.193 213.799 411.301 214.343 411.642 214.654 c +417.228 219.737 410.687 210.275 407.828 205.499 c +406.679 203.58 408.442 201.441 410.562 200.052 c +413.983 197.812 413.744 194.057 411.539 194.007 c +410.419 193.981 409.749 195.357 408.628 195.323 c +407.6 195.292 406.872 193.998 405.822 194.297 c +404.705 194.614 404.732 196.587 403.445 196.598 c +401.772 196.612 401.674 193.619 404.655 192.077 c +405.671 191.551 406.624 190.892 407.709 190.526 c +410.844 189.467 414.823 190.851 417.097 188.262 c +418.48 186.687 418.428 184.322 417.03 182.746 c +415.738 181.29 413.543 180.905 412.421 179.299 c +410.492 176.54 412.83 173.244 413.619 170.024 c +415.108 163.948 407.987 163.481 408.157 166.686 c +408.261 168.645 411.685 168.012 411.911 169.876 c +412.139 171.754 409.063 172.566 406.756 170.15 c +403.986 167.249 400.226 167.149 400 169.585 c +399.906 170.6 400.876 171.536 400.499 172.523 c +398.728 177.167 391.344 169.982 397.882 164.595 c +399.532 163.236 401.148 161.789 403.118 160.948 c +403.944 160.596 404.846 160.361 405.708 160.609 c +406.83 160.932 407.605 162.02 408.763 162.214 c +410.187 162.453 411.342 161.342 412.47 160.432 c +414.567 158.741 417.339 157.797 419.525 159.192 c +421.033 160.153 421.64 162.019 422.99 163.175 c +424.304 164.302 426.214 164.516 427.247 163.281 c +429.267 160.864 426.153 156.716 421.437 158.005 c +419.666 158.488 417.711 158.516 417.601 157.064 c +417.465 155.263 419.991 151.299 417.492 152.773 c +417.047 153.035 417.164 153.641 417.224 154.174 c +417.526 156.863 414.826 158.731 411.852 159.053 c +409.998 159.253 408.464 160.311 409.142 161.444 c +409.837 162.608 411.406 161.485 412.504 161.869 c +415.493 162.917 408.061 171.503 414.303 170.762 c +415.384 170.633 416.663 169.198 417.211 170.37 c +419.233 174.687 412.26 169.984 412.056 171.825 c +411.904 173.202 414.119 173.164 415.875 171.309 c +416.989 170.132 418.732 169.712 419.948 170.667 c +422.925 173.005 418.798 176.646 419.162 179.756 c +419.644 183.88 424.452 182.909 424.082 180.461 c +423.856 178.969 417.803 178.521 420.706 176.238 c +421.481 175.628 422.365 176.545 423.125 177.358 c +424.227 178.536 425.999 179.051 426.676 180.542 c +427.709 182.818 425.579 184.87 423.891 183.896 c +423.268 183.536 423.054 182.769 422.551 182.266 c +420.93 180.644 418.032 181.832 417.695 184.443 c +417.075 189.256 423.16 190.099 423.973 186.651 c +424.618 183.916 417.991 182.386 420.457 179.242 c +422.136 177.101 425.281 180.445 427.115 178.849 c +429.728 176.575 425.986 171.632 422.165 174.729 c +421.591 175.194 421.403 175.956 421.903 176.26 c +424.032 177.552 422.671 173.691 423.455 173.097 c +426.222 171.001 427.381 178 421.997 177.956 c +419.416 177.935 417.611 176.145 418.613 174.758 c +421.981 170.092 423.534 182.768 426.731 179.228 c +428.192 177.611 425.408 176.291 423.648 174.737 c +421.408 172.761 419.58 168.787 417.684 171.086 c +417.146 171.738 417.315 172.753 416.727 173.368 c +415.847 174.291 413.949 173.564 413.348 174.826 c +412.2 177.237 416.016 177.915 415.979 175.78 c +415.96 174.646 413.233 174.865 413.79 173.39 c +414.121 172.515 415.489 172.908 416.243 174.206 c +418.06 177.335 421.659 177.895 422.514 175.641 c +422.877 174.684 422.291 173.665 422.409 172.663 c +422.886 168.587 428.918 169 428.838 173.09 c +428.833 173.364 428.784 173.659 428.951 173.877 c +429.465 174.55 430.6 173.777 430.689 172.277 c +430.906 168.634 432.843 164.53 430.024 162.131 c +428.415 160.762 426.13 161.031 424.043 161.488 c +423.388 161.631 422.728 161.788 422.156 162.139 c +412.499 168.082 430.06 177.28 427.641 167.06 c +427.362 165.88 425.143 165.196 425.986 163.895 c +426.698 162.797 430.979 165.921 430.421 162.811 c +430.248 161.849 428.581 162.146 428.422 161.174 c +428.211 159.887 430.22 159.532 430.445 160.931 c +430.792 163.088 427.821 161.406 426.158 161.739 c +424.698 162.031 424.569 163.851 423.92 165.166 c +422.939 167.153 420.343 168.062 419.901 170.288 c +419.708 171.261 420.185 172.24 421.04 172.219 c +423.132 172.168 421.707 168.852 423.184 168.275 c +425.449 167.39 426.146 171.01 423.92 171.101 c +422.403 171.162 422.943 169.048 422.424 167.787 c +421.655 165.917 419.017 166.225 416.977 167.665 c +415.78 168.509 414.666 169.462 413.543 170.402 c +411.437 172.162 408.64 173.083 407.421 171.163 c +406.685 170.005 407.317 168.247 406.193 167.349 c +404.496 165.993 402.159 168.147 401.829 171.342 c +401.675 172.837 401.596 174.422 402.471 175.642 c +407.698 182.935 414.572 171.605 407.949 170.438 c +407.815 170.414 407.678 170.41 407.546 170.443 c +403.249 171.532 409.849 176.671 413.31 171.89 c +414.235 170.612 415.445 169.528 416.957 169.079 c +417.76 168.84 418.692 168.715 419.055 167.961 c +420.647 164.653 412.18 165.433 413.966 162.022 c +414.248 161.485 414.954 161.17 414.934 160.539 c +414.849 157.757 412.277 160.956 410.812 164.298 c +409.973 166.212 407.232 166.322 405.94 164.436 c +405.184 163.332 405.31 161.831 406.396 161.188 c +406.817 160.938 407.351 160.885 407.685 160.521 c +408.348 159.801 407.754 158.765 407.704 157.815 c +407.69 157.545 407.726 157.273 407.839 157.027 c +408.917 154.683 411.668 157.064 414.189 158.622 c +414.75 158.969 415.424 159.237 415.637 159.864 c +416.414 162.155 411.762 162.35 412.374 164.566 c +412.847 166.276 415.07 165.287 416.835 165.289 c +419.478 165.291 421.054 168.163 420.601 171.075 c +419.736 176.634 424.793 178.469 425.072 175.746 c +425.187 174.624 423.563 174.143 423.59 173.042 c +423.612 172.167 424.581 171.801 425.258 171.257 c +426.763 170.047 428.148 167.856 429.414 169.203 c +433.365 173.404 423.967 172.073 423.347 174.025 c +422.998 175.122 423.921 176.07 424.62 176.999 c +425.807 178.578 426.276 180.543 426.454 182.508 c +426.599 184.11 426.178 185.816 424.763 186.004 c +419.758 186.666 423.914 179.57 422.025 177.692 c +420.387 176.062 417.946 177.675 415.962 179.388 c +415.673 179.638 415.375 179.878 415.061 180.097 c +413.37 181.278 411.122 181.531 410.079 179.993 c +408.566 177.763 406.21 177.329 406.647 178.779 c +406.856 179.475 407.835 179.166 408.327 179.569 c +410.344 181.219 406.429 182.255 402.711 180.251 c +400.307 178.956 397.414 181.016 397.127 184.116 c +396.887 186.708 399.145 188.268 400.485 187.114 c +402.402 185.461 397.701 182.109 400.353 180.577 c +401.155 180.114 402.165 180.609 402.502 181.536 c +403.038 183.012 401.767 184.421 400.456 183.956 c +399.999 183.794 399.678 183.365 399.208 183.241 c +389.385 180.638 398.062 197.29 402.678 187.985 c +403.673 185.98 404.491 183.22 405.617 184.788 c +405.96 185.265 405.651 185.876 405.312 186.39 c +404.897 187.021 404.5 187.665 404.031 188.257 c +403.387 189.068 402.618 189.767 401.935 190.544 c +401.706 190.803 401.483 191.093 401.499 191.437 c +401.635 194.375 404.74 190.727 406.243 191.004 c +407.844 191.299 407.966 193.708 406.239 195.315 c +405.014 196.455 403.493 197.21 401.887 197.678 c +397.644 198.917 392.345 198.852 390.773 203 c +390.068 204.858 391.068 206.766 392.604 206.539 c +393.979 206.337 394.209 204.376 395.511 204.02 c +397.645 203.435 399.042 208.596 401.444 206.571 c +403.891 204.508 399.238 199.549 395.878 204.152 c +391.477 210.183 403.579 213.074 400.683 207.289 c +400.199 206.323 397.579 206.866 398.027 205.26 c +398.261 204.421 399.571 204.438 400.266 205.479 c +403.878 210.895 394.984 212.88 395.517 208.487 c +395.619 207.645 396.654 207.261 396.814 206.437 c +396.826 206.376 396.832 206.313 396.822 206.251 c +396.182 202.375 396.885 208.553 396.067 210.285 c +395.69 211.082 392.436 210.874 393.836 212.288 c +394.276 212.733 394.862 212.1 395.419 212.086 c +397.522 212.032 395.597 214.552 394.818 216.65 c +393.877 219.186 399.565 222.091 396.563 224.553 c +394.443 226.291 390.729 220.568 388.815 223.938 c +387.789 225.745 390.49 227.015 390.701 228.779 c +390.99 231.18 387.96 232.501 384.958 231.624 c +379.594 230.056 375.905 233.222 377.854 235.301 c +379.054 236.582 383.244 236.393 381.593 238.442 c +381.095 239.06 379.597 239.232 380.155 240.055 c +380.52 240.593 381.311 240.004 381.776 240.334 c +386.585 243.751 377.474 241.131 377.121 242.168 c +376.55 243.846 380.13 244.949 380.554 241.802 c +380.774 240.165 379.449 238.822 378.125 239.315 c +375.814 240.177 377.972 243.836 376.057 244.947 c +374.55 245.822 373.237 244.02 371.945 242.676 c +370.843 241.53 369.75 240.137 370.766 239.267 c +371.882 238.31 373.674 240.311 374.737 239.144 c +375.619 238.175 374.258 237.058 373.819 235.885 c +372.437 232.186 377.589 231.202 377.968 233.997 c +378.208 235.771 370.589 236.246 374.157 239.076 c +374.687 239.497 375.415 239.223 376.03 238.877 c +376.724 238.488 377.402 238.066 378.133 237.752 c +379.291 237.253 380.526 236.562 380.189 235.493 c +378.454 229.994 375.904 239.154 373.837 239.422 c +353.847 242.01 380.166 214.116 378.406 234.473 c +378.197 236.88 374.933 241.241 378.041 239.858 c +378.294 239.746 378.447 239.5 378.587 239.262 c +379.307 238.038 379.953 236.64 379.349 235.38 c +375.882 228.15 365.022 237.73 373.311 242.475 c +375.916 243.966 379.932 241.372 381.897 244.085 c +383.585 246.416 380.793 249.491 382.048 251.951 c +384.441 256.639 392.7 253.533 390.569 246.979 c +390.32 246.214 389.867 245.501 389.855 244.692 c +389.817 242.191 392.964 241.556 394.477 239.758 c +395.146 238.963 395.463 237.954 395.842 236.991 c +396.675 234.872 397.974 232.826 400.145 232.219 c +400.658 232.076 401.244 231.969 401.44 231.479 c +402.163 229.67 399.322 230.153 396.702 231.633 c +393.708 233.325 392.548 236.23 394.552 235.893 c +395.579 235.721 395.214 233.609 396.458 233.727 c +399.858 234.05 395.133 237.189 395.827 238.164 c +396.272 238.79 397.156 238.463 397.911 238.493 c +401.056 238.621 400.556 242.95 399.222 246.868 c +398.749 248.259 398.205 249.84 396.816 249.845 c +396.69 249.845 396.565 249.828 396.439 249.814 c +390.896 249.183 387.001 246.033 389.571 243.942 c +391.362 242.484 393.239 244.899 395.081 246.606 c +397.266 248.631 395.665 250.963 394.652 250.011 c +394.433 249.804 394.42 249.459 394.626 249.24 c +395.911 247.872 396.575 251.365 397.696 250.702 c +398.646 250.14 397.834 248.26 396.191 248.902 c +393.588 249.918 395.488 253.384 398.219 256.154 c +401.481 259.463 405.599 261.124 406.238 258.147 c +406.561 256.641 405.074 255.357 403.518 255.812 c +401.606 256.371 401.125 258.874 402.699 260.159 c +407.803 264.324 407.92 254.02 411.325 250.292 c +412.641 248.851 414.787 248.473 416.068 246.999 c +416.881 246.063 417.21 244.834 417.712 243.705 c +418.361 242.245 419.56 240.969 420.993 241.338 c +423.003 241.854 422.918 244.529 422.109 246.868 c +421.581 248.393 421.175 250.085 422.07 251.405 c +422.553 252.116 423.396 252.621 423.499 253.489 c +424.277 260.089 415.839 253.044 413.956 254.954 c +413.096 255.826 413.24 257.228 414.02 258.237 c +417.423 262.64 422.091 257.48 419.419 255.244 c +418.022 254.074 414.763 256.908 413.985 254.374 c +413.926 254.184 413.924 253.976 413.822 253.805 c +412.365 251.36 412.53 255.891 411.57 257.759 c +410.445 259.949 407.818 257.855 409.081 256.543 c +409.54 256.067 410.271 256.405 410.882 256.787 c +416.888 260.549 419.047 266.395 415.063 267.051 c +412.437 267.484 411.626 263.77 409.322 263.158 c +406.954 262.528 405.047 264.906 406.168 266.82 c +407.841 269.677 413.825 273.345 409.414 273.107 c +407.436 273 408.597 269.969 407.263 269.258 c +405.47 268.302 404.81 271.215 403.313 271.907 c +401.955 272.536 400.447 271.546 399.825 270.043 c +399.028 268.115 398.669 265.512 396.702 265.817 c +393.089 266.377 394.354 273.753 400.223 271.759 c +400.907 271.527 401.68 271.23 402.131 271.754 c +402.333 271.988 402.364 272.325 402.214 272.597 c +399.46 277.602 401.402 268.523 400.145 265.991 c +397.449 260.566 393.282 271.166 390.607 268.559 c +388.461 266.468 392.275 264.519 395.785 262.876 c +399.041 261.351 399.417 257.285 396.831 256.088 c +395.699 255.564 394.281 256.06 393.236 255.347 c +392.452 254.811 392.219 253.807 391.678 253.037 c +391.089 252.201 390.105 251.525 390.193 250.49 c +390.257 249.728 390.931 249.193 391.172 248.476 c +392.026 245.929 388.31 244.626 388.157 242.244 c +387.991 239.663 391.414 238.578 391.8 236.145 c +392.02 234.757 391.14 233.453 391.166 232.057 c +391.258 227.266 397.038 228.522 396.273 231.296 c +396.1 231.921 395.456 232.251 394.79 232.295 c +391.906 232.483 388.872 227.459 386.4 230.412 c +385.45 231.548 386.14 233.364 385.181 234.494 c +383.711 236.225 380.694 235.102 380.46 232.418 c +380.228 229.768 381.035 226.24 378.595 226.735 c +376.812 227.096 377.603 229.44 377.575 231.309 c +377.562 232.172 377.354 233.175 378.099 233.572 c +379.446 234.291 381.174 232.049 379.361 230.1 c +378.442 229.113 377.387 227.979 378.234 227.17 c +380.552 224.96 379.821 229.935 380.711 232.515 c +382.213 236.865 389.676 230.36 391.094 234.906 c +392.735 240.167 384.59 237.094 381.281 238.949 c +379.628 239.876 378.842 242.25 376.849 242.261 c +374.902 242.272 372.508 239.568 371.373 241.712 c +370.425 243.504 373.157 244.224 375.061 245.307 c +378.026 246.994 377.651 251.211 375.504 254.441 c +372.924 258.322 369.026 254.942 370.82 253.457 c +371.161 253.174 371.65 253.249 372.064 253.11 c +373.883 252.501 372.696 247.395 375.709 248.368 c +380.063 249.776 373.367 253.185 373.867 255.12 c +374.355 257.011 381.227 257.121 378.284 260.118 c +377.855 260.556 377.162 260.502 376.631 260.792 c +373.631 262.428 376.475 267.338 379.773 265.038 c +380.53 264.509 380.843 263.536 380.493 262.687 c +378.632 258.172 370.666 262.204 374.635 267.428 c +377.4 271.068 381.33 275.29 377.471 275.211 c +376.435 275.189 375.541 273.801 374.551 274.436 c +370.677 276.916 378.023 276.009 380.73 277.332 c +382.918 278.401 382.18 282.153 378.743 283.04 c +377.344 283.402 375.877 283.238 374.446 283.414 c +371.05 283.832 368.158 286.023 366.619 289.086 c +366.065 290.188 365.776 291.501 366.57 292.383 c +369.471 295.606 372.273 289.977 369.107 289.525 c +368.523 289.441 368.088 290.003 367.523 290.103 c +364.51 290.631 366.856 286.667 367.79 283.459 c +368.111 282.358 367.752 280.997 368.66 280.239 c +371.985 277.466 376.235 284.461 370.563 286.176 c +370.232 286.276 369.879 286.308 369.553 286.194 c +366.713 285.202 370.217 281.047 368.132 279.732 c +367.173 279.127 365.961 278.527 366.686 277.937 c +367.034 277.653 367.478 277.979 367.903 278.134 c +369.799 278.824 370.581 276.195 372.072 275.081 c +374.624 273.174 381.54 275.077 380.06 270.746 c +379.404 268.828 374.815 269.074 375.773 266.343 c +376.421 264.497 379.106 265.119 378.906 266.974 c +378.638 269.466 375.406 267.485 373.511 268.032 c +370.669 268.852 370.819 273.493 374.778 275.442 c +381.408 278.707 387.224 272.732 384.51 268.324 c +381.581 263.565 381.221 257.958 384.176 260.296 c +384.687 260.701 384.721 261.423 384.575 262.076 c +384.173 263.875 383.683 265.94 385.237 266.244 c +386.734 266.536 387.798 264.488 386.484 263.024 c +386.363 262.889 386.225 262.77 386.074 262.67 c +383.382 260.894 381.197 264.737 378.452 265.714 c +376.829 266.291 374.996 265.797 374.089 264.361 c +372.697 262.16 374.096 259.271 376.659 259.049 c +379.67 258.788 380.934 262.267 382.859 264.565 c +384.149 266.105 385.955 267.636 385.206 269.451 c +383.832 272.783 379.806 269.719 376.17 267.722 c +371.59 265.205 369.201 270.47 371.647 271.689 c +372.14 271.935 372.764 271.804 373.213 272.132 c +375.934 274.125 370.293 276.06 371.299 277.882 c +372.772 280.547 378.391 276.774 374.31 272.275 c +371.01 268.637 366.66 271.108 367.601 273.63 c +368.164 275.14 370.147 274.845 371.7 275.207 c +374.357 275.827 375.875 279.003 378.67 279.08 c +381.106 279.146 382.839 276.945 383.43 274.453 c +383.758 273.068 383.465 271.549 382.244 271.31 c +379.71 270.815 380.022 275.189 377.899 275.382 c +377 275.464 376.235 274.733 376.259 273.826 c +376.355 270.119 384.392 270.529 383.044 277.503 c +382.822 278.648 382.349 279.735 381.6 280.63 c +380.029 282.505 377.588 283.239 375.21 283.801 c +372.703 284.395 370.141 284.879 367.861 286.087 c +365.188 287.504 362.423 286.926 362.773 285.091 c +362.834 284.769 363.038 284.495 363.121 284.179 c +363.741 281.802 360.162 281.913 358.679 280.48 c +356.385 278.264 359.151 275.144 361.389 272.36 c +364.011 269.098 366.97 265.286 369.732 267.601 c +370.394 268.156 371.201 268.587 371.483 267.985 c +371.809 267.289 370.752 267.051 369.752 266.938 c +368.16 266.756 367.559 264.733 366.047 264.327 c +364.212 263.833 362.924 265.709 361.631 267.178 c +360.683 268.254 359.452 269.199 359.24 270.626 c +358.857 273.204 361.658 274.655 363.198 276.679 c +364.534 278.437 365.217 281.009 367.442 281.329 c +374.974 282.414 375.578 266.734 363.419 269.161 c +361.402 269.564 359.631 270.766 358.542 272.51 c +355.111 278.001 349.612 278.276 350.19 275.065 c +350.502 273.332 353.16 273.485 353.69 271.893 c +354.041 270.838 353.276 269.774 352.167 269.374 c +350.005 268.593 347.903 270.284 345.667 270.436 c +341.359 270.73 338.246 266.369 339.197 261.824 c +339.707 259.39 340.512 256.58 338.394 255.778 c +336.009 254.876 331.169 263.723 329.536 257.828 c +329.054 256.087 331.906 254.992 331.282 253.233 c +330.626 251.385 328.187 252.465 326.065 253.559 c +324.278 254.48 323.207 256.081 324.342 256.76 c +324.995 257.15 325.832 256.64 325.871 255.819 c +325.964 253.84 322.679 254.142 322.398 252.403 c +322.235 251.391 323.33 250.575 323.16 249.563 c +322.794 247.383 318.945 247.755 317.388 251.704 c +314.107 260.022 322.644 263.382 323.522 259.194 c +323.894 257.421 320.908 254.001 323.75 253.988 c +326.952 253.974 323.373 257.721 323.839 259.452 c +324.325 261.261 326.863 261.015 328.922 259.661 c +331.258 258.126 333.656 256.667 336.266 255.661 c +337.494 255.187 338.759 254.819 340.008 254.404 c +341.467 253.92 342.944 253.37 344.482 253.485 c +345.033 253.527 345.597 253.672 345.936 254.105 c +346.549 254.892 346.099 256.364 347.142 256.753 c +350.513 258.01 347.19 253.402 346.766 250.505 c +346.634 249.605 347.105 248.497 346.311 247.975 c +344.277 246.636 342.36 250.566 345.36 251.303 c +346.793 251.654 349.21 249.515 349.65 251.549 c +349.693 251.748 349.657 251.956 349.701 252.155 c +350.096 253.935 352.309 252.41 353.962 250.107 c +355.94 247.35 359.675 249.032 359.141 251.512 c +358.593 254.055 355.041 252.993 352.108 250.66 c +351.497 250.175 350.797 249.685 350.736 248.91 c +350.606 247.241 352.815 246.436 353.856 247.871 c +355.859 250.635 351.197 253.516 349.591 250.198 c +348.927 248.826 350.316 246.594 348.666 245.835 c +347.527 245.311 346.38 246.743 345.23 246.301 c +342.084 245.089 346.392 242.592 350.279 240.517 c +352 239.599 352.945 237.171 354.996 237.379 c +358.354 237.72 357.349 241.939 355.108 241.382 c +354.101 241.132 354.134 239.742 353.353 239.169 c +352.526 238.562 351.358 239 350.841 239.973 c +349.847 241.847 350.802 245.506 348.288 245.132 c +346.855 244.918 346.887 243.073 346.811 241.499 c +346.69 238.985 344.874 236.698 345.395 234.198 c +345.654 232.955 346.458 231.691 345.804 230.58 c +344.845 228.949 342.617 229.902 340.802 229.723 c +336.838 229.332 335.462 224.367 338.555 222.151 c +339.147 221.727 339.902 221.53 340.539 221.86 c +342.478 222.864 340.73 225.475 341.44 227.181 c +342.274 229.185 346.65 229.65 345.402 232.259 c +344.837 233.442 343.116 233.274 342.325 234.258 c +341.865 234.832 341.852 235.657 341.372 236.215 c +340.22 237.554 336.826 236.344 336.711 238.676 c +336.498 243.018 341.325 237.968 344.265 237.796 c +346.201 237.684 347.542 239.699 347.118 241.78 c +346.961 242.553 346.571 243.263 346.449 244.042 c +346.12 246.146 347.662 247.917 348.487 249.854 c +349.234 251.61 350.125 253.605 351.797 253.178 c +354.004 252.615 352.98 248.933 355.067 248.243 c +356.166 247.879 357.16 248.79 358.254 249.074 c +360.228 249.588 363.07 249.043 362.988 251.108 c +362.967 251.629 362.6 252.104 362.699 252.622 c +362.889 253.618 364.175 253.727 365.331 253.444 c +366.896 253.062 368.562 252.52 369.128 251.039 c +370.293 247.994 366.537 245.252 362.146 246.025 c +361.09 246.212 359.902 246.383 359.298 245.541 c +356.584 241.76 364.61 238.927 364.615 244.573 c +364.618 247.509 360.732 247.737 360.333 245.353 c +359.836 242.382 366.48 243.498 365.571 240.234 c +365.481 239.911 365.263 239.642 364.982 239.459 c +361.096 236.924 360.078 245.35 356.69 244.251 c +354.615 243.579 354.013 238.097 351.281 240.242 c +349.815 241.394 351.081 244.148 353.954 244.091 c +354.997 244.071 356.17 244.141 356.261 245.057 c +356.45 246.954 353.931 245.636 351.932 245.299 c +349.586 244.904 347.473 249.347 345.14 247.258 c +344.771 246.928 344.592 246.44 344.602 245.943 c +344.659 243.066 349.251 242.858 349.524 240.087 c +349.743 237.871 347.169 236.94 345.477 235.52 c +340.452 231.302 345.352 225.511 348.621 227.744 c +349.341 228.237 349.644 229.143 349.42 229.99 c +349.027 231.479 347.344 232.049 346.372 233.2 c +345.885 233.777 345.586 234.5 345.63 235.254 c +345.788 237.968 349.136 239.105 350.855 237.074 c +351.114 236.768 351.311 236.381 351.691 236.244 c +359.767 233.329 347.652 240.305 347.272 243.084 c +347.145 244.013 347.995 244.706 348.255 245.582 c +348.471 246.315 348.22 247.124 347.538 247.365 c +345.68 248.022 345.587 245.188 345.968 242.468 c +346.116 241.41 345.72 240.305 344.749 240.039 c +342.85 239.517 342.215 242.242 340.608 242.819 c +338.029 243.746 335.066 237.977 332.573 241.047 c +331.197 242.741 337.163 250.455 331.397 249.071 c +325.931 247.759 334.503 242.794 332.549 240.943 c +331.992 240.416 331.154 240.485 330.392 240.646 c +330.188 240.689 329.976 240.735 329.778 240.667 c +328.417 240.201 332.967 229.437 328.987 235.673 c +328.868 235.86 328.906 236.095 328.877 236.312 c +328.566 238.585 325.75 236.82 323.247 235.151 c +321.967 234.297 320.343 234.734 320.236 235.95 c +320.054 238.023 323.95 238.825 324.716 235.425 c +325.455 232.146 321.888 230.548 320.515 232.44 c +320.084 233.033 319.565 233.648 319.2 233.202 c +318.916 232.857 319.296 232.346 319.905 232.248 c +322.689 231.802 324.825 234.808 323.669 237.661 c +320.803 244.732 312.901 238.403 316.654 235.149 c +318.069 233.923 321.658 236.304 322.143 233.641 c +322.3 232.782 321.533 232.052 320.733 232.295 c +318.789 232.884 319.921 237.026 324.16 236.127 c +327.706 235.375 330.401 237.382 329.243 239.171 c +328.309 240.613 325.84 239.927 325.353 237.683 c +324.088 231.843 331.798 231.125 332.169 235.305 c +332.268 236.411 331.35 237.257 330.951 238.273 c +330.193 240.204 331.238 242.363 333.202 243.113 c +348.151 248.824 341.241 219.585 333.108 233.772 c +331.681 236.26 332.789 244.604 330.292 240.064 c +329.815 239.197 330.9 238.46 331.107 237.573 c +331.482 235.969 329.597 234.672 327.732 235.42 c +326.166 236.048 324.407 237.183 323.776 235.788 c +323.394 234.944 324.13 234.032 325.166 233.827 c +327.564 233.352 329.173 235.929 331.417 236.581 c +331.695 236.662 332.003 236.764 332.042 237.04 c +332.121 237.608 331.247 237.715 330.451 237.173 c +329.464 236.501 328.217 236.465 327.066 236.172 c +324.801 235.596 322.959 233.795 323.421 231.685 c +323.678 230.509 324.729 229.657 325.859 229.902 c +327.256 230.205 327.619 231.951 328.786 232.684 c +334.074 236.008 335.472 226.838 330.885 227.918 c +329.414 228.264 331.179 239.979 327.268 233.802 c +326.887 233.2 326.926 232.004 326.208 232.356 c +325.768 232.571 326.04 233.162 326.342 233.666 c +326.999 234.764 326.501 236.292 327.362 237.271 c +329.808 240.054 332.736 235.872 330.319 234.626 c +329.25 234.075 328.072 235.75 327.023 235.027 c +325.455 233.947 327.57 230.508 330.803 232.568 c +331.931 233.287 332.937 234.35 334.286 234.361 c +336.631 234.379 337.89 231.766 337.747 229.116 c +337.682 227.931 337.432 226.767 337.178 225.609 c +336.571 222.842 335.987 219.895 337.368 217.425 c +340.831 211.232 336.853 205.793 334.983 209.156 c +334.361 210.276 335.711 211.57 335.157 212.704 c +332.903 217.317 327.183 209.292 333.593 203.759 c +334.663 202.835 335.538 201.682 335.901 200.315 c +336.572 197.794 336.371 194.442 338.92 194.291 c +341.024 194.167 342.763 197.972 344.869 196.244 c +345.213 195.962 345.399 195.525 345.321 195.089 c +345.204 194.435 344.502 193.846 344.862 193.234 c +345.561 192.043 346.68 193.756 347.835 194.338 c +348.799 194.825 350.401 194.265 350.721 195.445 c +350.818 195.799 350.672 196.174 350.366 196.378 c +349.119 197.213 348.39 195.239 347.336 194.186 c +344.8 191.652 341.85 195.759 338.764 196.333 c +337.846 196.504 336.912 196.339 335.988 196.216 c +332.511 195.754 329.699 197.843 330.753 199.984 c +332.315 203.158 335.714 199.647 333.602 198.5 c +332.998 198.172 332.445 198.825 331.911 199.314 c +329.939 201.12 327.311 199.397 327.977 197.56 c +328.599 195.847 330.84 196.814 332.793 197.415 c +334.571 197.962 336.56 197.393 338.26 198.177 c +339.814 198.893 340.73 200.529 340.529 202.228 c +S +0 1 0 rg +398.5 312 m +398.5 312.398 398.342 312.779 398.061 313.061 c +397.779 313.342 397.398 313.5 397 313.5 c +396.602 313.5 396.221 313.342 395.939 313.061 c +395.658 312.779 395.5 312.398 395.5 312 c +395.5 311.602 395.658 311.221 395.939 310.939 c +396.221 310.658 396.602 310.5 397 310.5 c +397.398 310.5 397.779 310.658 398.061 310.939 c +398.342 311.221 398.5 311.602 398.5 312 c +f +1 0 0 rg +342.029 202.228 m +342.029 202.626 341.871 203.008 341.59 203.289 c +341.308 203.57 340.927 203.728 340.529 203.728 c +340.131 203.728 339.75 203.57 339.468 203.289 c +339.187 203.008 339.029 202.626 339.029 202.228 c +339.029 201.831 339.187 201.449 339.468 201.168 c +339.75 200.887 340.131 200.728 340.529 200.728 c +340.927 200.728 341.308 200.887 341.59 201.168 c +341.871 201.449 342.029 201.831 342.029 202.228 c +f +0.444 0.444 1 RG +397 312 m +396.043 311.835 395.234 312.713 395.478 313.653 c +396.286 316.769 399.562 313.009 402.038 312.774 c +403.048 312.678 404.221 313.209 404.922 312.426 c +412.51 303.949 396.03 312.04 394.972 310.086 c +393.903 308.109 396.652 305.639 399.643 307.264 c +401.028 308.016 402.31 309.4 403.793 308.827 c +405.719 308.082 405.321 304.666 407.541 304.338 c +421.511 302.275 405.821 324.179 404.379 309.515 c +404.304 308.756 404.929 308.182 405.312 307.533 c +407.281 304.192 403.85 300.212 398.985 299.563 c +397.641 299.383 396.185 299.443 395.301 300.446 c +391.91 304.292 398.969 306.764 406.45 307.529 c +408.167 307.705 409.771 308.405 411.433 308.862 c +412.217 309.078 413.067 309.29 413.471 309.994 c +414.797 312.303 411.09 315.344 408.041 312.414 c +406.55 310.981 405.563 308.474 403.524 309.011 c +401.125 309.642 401.048 313.301 403.84 314.249 c +405.581 314.84 407.66 313.605 409.197 314.737 c +409.878 315.239 410.245 316.149 411.074 316.382 c +414.621 317.376 415.688 309.586 407.95 308.304 c +406.202 308.014 404.371 307.414 403.782 305.787 c +403.05 303.766 404.942 301.594 404.072 299.603 c +403.871 299.142 403.513 298.748 403.023 298.656 c +400.116 298.11 401.511 302.603 399.96 303.731 c +398.676 304.666 397.138 303.494 395.76 302.536 c +394.745 301.83 393.562 301.067 393.771 299.894 c +393.878 299.297 394.363 298.854 394.954 298.696 c +396.787 298.205 398.785 300.587 400.446 299.235 c +405.247 295.328 388.071 292.521 394.967 288.43 c +395.804 287.934 396.879 288.334 397.074 289.24 c +397.468 291.064 392.668 291.793 394.393 294.016 c +398.617 299.463 396.799 283.85 400.707 287.855 c +401.687 288.858 400.211 290.267 400.597 291.434 c +401.224 293.329 403.729 292.086 405.427 292.577 c +409.19 293.665 406.892 299.475 409.832 301.278 c +412.945 303.185 416.487 299.408 416.799 294.332 c +416.855 293.422 416.764 292.422 415.974 292.056 c +407.667 288.214 417.985 299.206 417.066 301.712 c +416.422 303.468 412.321 304.506 414.257 306.4 c +415.632 307.744 418.398 305.629 416.75 303.132 c +415.616 301.413 412.519 300.915 412.853 298.641 c +413.13 296.759 416.306 296.28 415.987 294.185 c +415.763 292.712 413.462 292.234 413.616 290.638 c +414.648 279.914 417.481 297.303 421.038 299.822 c +427.379 304.312 428.642 291.513 422.753 294.755 c +422.018 295.159 422.118 296.189 421.64 296.838 c +415.44 305.245 420.838 289.146 419.05 284.136 c +418.455 282.468 416.362 281.798 415.829 280.101 c +415.238 278.219 416.705 276.471 418.471 275.358 c +419.786 274.529 421.413 274.538 421.691 275.708 c +422.273 278.152 418.761 276.72 416.268 276.772 c +415.794 276.782 415.34 276.943 414.913 277.148 c +407.323 280.807 413.465 288.854 417.008 285.708 c +417.932 284.889 417.796 283.465 417.094 282.367 c +415.875 280.46 413.575 279.757 411.559 278.755 c +410.945 278.45 410.337 278.106 409.656 278.015 c +406.904 277.65 405.406 280.667 404.296 283.449 c +404.186 283.724 404.072 283.999 403.934 284.262 c +400.912 290.022 393.786 286.721 395.115 282.488 c +395.881 280.048 399.18 279.955 399.974 282.188 c +400.407 283.406 399.513 284.624 399.528 285.89 c +399.555 288.242 402.723 290.139 401.492 292.466 c +399.518 296.197 393.589 292.104 393.757 283.681 c +393.79 282.031 393.51 280.396 393.375 278.753 c +393.188 276.48 392.709 273.969 390.625 273.659 c +389.006 273.418 387.743 275.011 386.137 275.053 c +385.626 275.067 385.119 274.915 384.743 274.57 c +382.913 272.894 385.022 270.161 388.092 268.682 c +391.041 267.262 392.26 264.192 390.342 262.952 c +389.483 262.396 388.097 262.152 388.456 261.2 c +388.862 260.122 390.151 261.121 391.309 261.631 c +436.781 281.657 379.715 218.085 381.35 254.208 c +381.404 255.41 382.007 256.542 381.927 257.746 c +381.746 260.468 378.735 261.286 377.742 259.573 c +376.805 257.957 378.941 256.692 380.891 255.67 c +381.661 255.266 382.264 254.535 381.906 253.856 c +379.3 248.906 379.664 258.142 378.044 259.13 c +368.494 264.956 378.07 249.231 375.377 248.355 c +374.49 248.067 373.628 248.629 372.754 248.934 c +371.308 249.438 369.651 249.129 368.969 247.835 c +368.882 247.67 368.817 247.492 368.691 247.354 c +367.569 246.127 364.86 248.35 367.017 250.767 c +369.015 253.004 373.064 253.165 373.859 256.236 c +374.633 259.226 371.183 259.847 370.797 258.188 c +370.656 257.58 371.299 256.77 370.682 256.384 c +369.788 255.824 368.716 257.68 370.482 259.159 c +373.113 261.363 374.341 265.093 377.553 266.438 c +378.284 266.744 379.079 266.894 379.775 267.276 c +380.618 267.738 381.242 268.49 381.854 269.229 c +387.254 275.745 376.208 282.267 377.185 275.625 c +377.224 275.36 377.367 275.123 377.428 274.863 c +377.818 273.193 373.75 270.962 376.261 269.559 c +379.796 267.585 378.097 274 379.709 274.882 c +380.732 275.442 381.835 274.634 382.795 273.887 c +383.419 273.402 384.19 273.005 384.843 273.389 c +385.345 273.684 385.47 274.33 385.867 274.745 c +386.457 275.362 387.439 275.317 388.115 275.823 c +389.731 277.032 388.509 279.294 388.536 281.236 c +388.557 282.789 389.467 284.147 390.667 285.142 c +392.399 286.582 394.83 286.766 395.638 285.071 c +396.29 283.703 395.21 282.159 393.747 282.346 c +390.483 282.762 390.806 288.72 395.582 288.304 c +398.634 288.038 402.571 284.907 403.317 288.214 c +403.752 290.145 401.307 291.632 398.979 290.501 c +397.441 289.754 396.383 288.135 394.68 287.823 c +392.963 287.508 391.313 288.588 390.76 290.266 c +390.29 291.69 390.729 293.193 391.13 294.635 c +391.305 295.265 391.473 295.897 391.645 296.528 c +391.984 297.765 392.346 299 392.902 300.157 c +393.549 301.506 394.921 302.211 395.632 301.36 c +396.617 300.18 394.601 299.277 393.983 298.065 c +393.094 296.323 395.024 294.8 396.758 293.519 c +397.719 292.809 398.726 291.938 399.868 292.253 c +401.165 292.61 402.13 294.582 403.435 293.735 c +405.777 292.214 401.794 290.168 402.11 288.455 c +402.419 286.776 405.255 286.771 405.339 284.969 c +405.507 281.384 397.625 281.672 399.115 288.315 c +399.428 289.711 400.178 291.02 401.468 291.621 c +409.704 295.452 411.933 282.08 404.277 282.438 c +403.554 282.472 402.879 282.896 402.836 283.577 c +402.696 285.76 406.699 284.607 406.8 286.566 c +406.929 289.051 403.467 287.589 400.972 284.22 c +400.414 283.467 399.576 282.741 399.911 281.876 c +400.41 280.588 404.835 281.453 403.54 279.031 c +403.039 278.092 401.83 278.853 400.779 279.033 c +399.221 279.299 398.128 277.82 396.816 276.983 c +395.465 276.122 393.588 275.702 393.32 274.102 c +393.103 272.807 394.182 271.796 395.169 270.892 c +398.167 268.145 400.067 264.118 397.802 261.189 c +396.827 259.929 395.242 259.355 393.642 259.378 c +388.193 259.455 384.566 265.734 379.056 265.317 c +376.829 265.148 374.931 263.834 373.078 262.597 c +369.875 260.459 368.981 256.843 371.322 255.976 c +374.681 254.732 375.216 263.628 379.122 261.012 c +379.821 260.544 380.028 259.619 379.669 258.846 c +379.1 257.621 377.593 257.412 376.262 257.116 c +373.557 256.514 373.713 253.806 375.075 253.754 c +375.534 253.736 375.863 254.129 376.108 254.53 c +376.349 254.924 376.561 255.363 376.456 255.811 c +374.553 263.962 365.509 250.898 374.565 249.383 c +376.71 249.025 379.188 250.151 380.848 248.626 c +381.638 247.901 381.875 246.801 381.988 245.733 c +382.313 242.666 379.371 242.002 378.956 243.413 c +378.841 243.803 379.084 244.215 378.973 244.606 c +378.584 245.973 376.553 245.065 375.499 242.754 c +374.78 241.177 373.154 240.176 372.535 238.553 c +372.064 237.317 372.254 235.882 371.557 234.748 c +369.819 231.919 365.367 232.672 363.345 236.181 c +362.124 238.3 361.023 241.005 358.804 240.412 c +356.364 239.759 356.801 234.27 353.497 235.127 c +351.055 235.761 354.337 245.575 348.91 242.654 c +346.062 241.122 340.292 235.832 343.403 239.817 c +343.785 240.307 344.756 240.022 344.98 240.674 c +345.25 241.461 344.022 242.198 343.091 241.276 c +342.193 240.387 342.392 238.894 343.496 238.374 c +347.449 236.511 350.375 245.079 343.245 245.713 c +341.504 245.868 339.893 244.997 338.214 244.545 c +337.059 244.233 335.821 244.105 334.847 243.401 c +332.464 241.681 330.342 237.942 328.56 240.295 c +326.669 242.79 330.633 245.255 332.01 242.666 c +332.35 242.025 332.073 241.241 332.314 240.564 c +333.195 238.088 337.86 238.873 338.37 243.496 c +338.907 248.36 335.888 253.135 337.156 257.908 c +338.336 262.35 343.111 262.492 343.715 259.839 c +343.817 259.391 343.715 258.924 343.791 258.472 c +345.172 250.288 356.444 258.647 349.329 262.215 c +348.142 262.81 346.867 261.943 345.862 260.97 c +344.105 259.269 342.89 256.894 344.366 255.342 c +345.538 254.109 348.391 253.939 347.755 252.065 c +347.41 251.051 346.054 250.91 345.546 251.811 c +344.781 253.17 346.602 254.691 347.971 253.513 c +349.028 252.603 348.518 250.849 347.075 250.076 c +344.645 248.773 341.931 250.569 339.252 250.595 c +337.82 250.61 336.153 250.52 335.814 251.814 c +335.117 254.481 339.884 254.109 339.966 256.307 c +340.029 257.987 336.976 258.744 337.729 260.583 c +338.08 261.442 339.186 261.649 340.062 261.164 c +341.372 260.436 341.59 258.698 342.655 257.681 c +347.774 252.795 355.066 261.538 348.697 265.865 c +346.581 267.302 344.713 269.148 346.332 269.982 c +347.279 270.47 348.167 269.425 348.653 268.253 c +349.036 267.331 349.458 266.425 349.973 265.571 c +355.11 257.045 363.706 265.083 359.379 268.175 c +358.374 268.893 356.994 268.267 355.882 268.738 c +352.914 269.996 355.233 274.273 353.419 276.323 c +351.761 278.196 348.589 276.873 346.758 278.486 c +345.713 279.407 344.947 281.097 343.654 280.53 c +339.429 278.676 346.583 276.279 346.848 274.1 c +346.869 273.927 346.861 273.753 346.851 273.58 c +346.719 271.412 345.743 269.246 343.783 269.225 c +341.703 269.202 340.984 271.587 342.357 272.423 c +343.202 272.937 344.297 272.324 344.479 271.265 c +344.605 270.528 344.222 269.818 344.19 269.077 c +343.894 262.032 353.747 265.784 350.109 269.817 c +349.512 270.479 348.458 270.381 347.807 269.708 c +345.542 267.371 352.314 248.536 344.767 258.122 c +344.4 258.588 344.402 259.267 343.975 259.685 c +341.212 262.386 339.966 254.407 337.38 256.384 c +335.756 257.625 337.709 260.702 341.619 260.126 c +345.024 259.624 348.731 259.005 350.372 256.024 c +350.529 255.739 350.659 255.438 350.717 255.117 c +351.074 253.175 349.185 251.844 347.566 250.606 c +347.032 250.198 346.511 249.691 346.548 249.03 c +346.631 247.552 348.576 247.628 350.227 247.57 c +353.197 247.465 356.056 244.462 358.745 246.178 c +360.043 247.005 360.435 248.716 361.654 249.644 c +363.329 250.919 366.407 250.727 366.605 253.019 c +366.813 255.418 357.675 260.174 363.867 261.057 c +364.585 261.159 365.186 260.622 365.61 260.01 c +366.57 258.628 366.928 256.924 367.803 255.488 c +368.862 253.749 370.56 252.551 372.314 251.524 c +372.982 251.133 373.668 250.76 374.419 250.568 c +376.486 250.041 377.913 251.72 377.099 252.809 c +376.74 253.29 376.054 253.266 375.526 253.526 c +373.795 254.379 374.504 257.609 372.409 258.035 c +371.644 258.191 370.898 257.695 370.893 256.959 c +370.877 254.588 374.933 256.303 375.31 254.39 c +375.795 251.933 371.954 252.946 371.039 251.547 c +366.716 244.932 380.671 245.448 375.765 251.244 c +374.988 252.162 372.86 251.085 372.497 252.551 c +372.097 254.173 374.781 254.914 375.246 252.925 c +375.608 251.378 372.674 250.312 373.677 248.688 c +376.94 243.406 375.593 253.495 377.447 256.031 c +380.638 260.394 383.898 252.289 387.096 252.695 c +389.138 252.954 389.877 255.271 391.284 256.701 c +392.28 257.715 393.629 258.253 394.878 258.923 c +397.419 260.286 400.228 262.021 402.467 260.367 c +404.379 258.954 404.012 256.16 402.035 255.652 c +399.59 255.024 397.836 260.033 395.238 258.16 c +393.091 256.613 391.051 249.633 390.345 254.053 c +390.267 254.541 390.655 254.97 390.661 255.459 c +390.762 263.981 389.02 250.976 387.337 245.866 c +384.374 236.873 371.398 248.931 381.822 253.049 c +383.938 253.884 386.548 252.237 388.426 253.685 c +390.258 255.098 389.615 258.727 392.133 259.307 c +393.643 259.656 394.796 258.267 396.125 257.516 c +398.124 256.387 400.024 257.812 399.431 259.122 c +398.767 260.587 394.839 258.298 394.983 260.916 c +395.025 261.677 395.916 262.064 396.743 261.788 c +398.457 261.215 398.677 259.1 398.772 257.207 c +398.87 255.272 399.133 253.208 397.98 251.648 c +384.56 233.478 373.671 275.223 393.419 262.124 c +395.508 260.737 395.39 253.723 398.602 256.65 c +400.202 258.108 396.892 260.914 398.831 262.293 c +399.339 262.654 400.012 262.528 400.612 262.666 c +404.973 263.671 400.089 273.078 405.724 273.133 c +408.318 273.158 409.827 266.97 412.849 269.521 c +414.888 271.243 412.481 275.423 408.336 273.894 c +405.313 272.779 403.916 269.589 402.566 266.654 c +398.948 258.793 390.842 260.238 391.176 264.528 c +391.329 266.498 394.198 268.19 392.803 270.051 c +391.146 272.264 387.07 269.97 388.688 266.606 c +389.759 264.38 392.863 264.533 394.544 262.855 c +398.268 259.138 393.573 254.559 390.798 256.961 c +390.334 257.362 389.983 258.026 389.368 257.928 c +385.838 257.365 391.108 255.971 394.026 254.686 c +395.482 254.044 397.071 252.034 397.571 253.649 c +397.717 254.121 397.365 254.583 396.872 254.761 c +395.308 255.325 392.941 252.798 391.893 254.785 c +391.052 256.379 393.532 257.109 394.196 258.488 c +395.154 260.478 392.795 261.999 391.067 263.566 c +387.547 266.758 387.789 272.348 391.674 274.815 c +393.571 276.019 396.059 277.111 395.266 279.03 c +394.972 279.74 394.159 280.167 394.051 280.941 c +393.792 282.786 396.705 283.746 398.981 281.619 c +401.264 279.485 402.681 276.472 401.995 273.455 c +401.764 272.438 401.289 271.5 400.891 270.538 c +400.599 269.834 400.347 269.086 400.513 268.341 c +400.907 266.563 403.034 265.824 404.808 266.682 c +407.184 267.832 407.555 270.87 409.187 272.866 c +410.635 274.636 413.089 275.595 413.756 277.825 c +414.861 281.522 409.925 285.159 412.054 288.734 c +412.958 290.253 414.87 290.798 416.552 290.177 c +419.372 289.135 420.023 285.676 417.877 284.286 c +414.852 282.327 412.44 287.107 409.414 286.964 c +406.24 286.814 405.974 283.083 408.065 282.572 c +410.064 282.084 410.476 285.411 412.295 285.405 c +413.597 285.401 415.418 284.081 415.589 285.564 c +415.626 285.893 415.414 286.181 415.164 286.403 c +412.18 289.049 407.922 285.793 409.524 282.499 c +410.565 280.358 414.688 280.348 414.438 277.552 c +414.304 276.046 412.225 274.504 413.582 273.33 c +414.2 272.796 415.173 273.156 415.839 272.704 c +417.986 271.243 408.069 264.528 414.974 264.545 c +415.123 264.546 415.269 264.582 415.418 264.589 c +443.083 265.854 399.7 238.446 409.177 261.592 c +409.962 263.51 413.886 263.111 413.683 265.647 c +413.555 267.253 411.543 267.463 409.82 267.721 c +402.174 268.867 411.911 283.805 411.345 273.494 c +411.316 272.953 410.814 272.298 411.343 272.044 c +412.302 271.586 411.902 273.1 411.362 274.437 c +411.022 275.277 411.746 276.121 412.538 275.875 c +413.099 275.701 413.299 275.036 413.142 274.426 c +412.523 272.009 406.456 271.798 408.28 268.462 c +408.67 267.747 409.546 267.073 408.992 266.469 c +408.187 265.59 407.479 267.212 406.569 267.679 c +403.854 269.072 404.583 264.442 403.462 262.057 c +402.133 259.228 397.935 255.95 401.345 255.521 c +402.889 255.327 403.038 257.469 404.084 258.378 c +417.316 269.878 416.641 237.46 402.287 248.283 c +401.549 248.839 401.132 249.767 401.602 250.485 c +402.545 251.923 404.779 250.26 405.869 251.388 c +408.338 253.942 401.858 258.293 398.437 251.98 c +396.948 249.233 395.834 245.983 397.739 243.671 c +399.94 240.997 404.201 241.769 405.253 245.014 c +406.503 248.872 402.366 252.38 397.482 251.863 c +394.263 251.521 391.381 249.733 388.176 249.295 c +387.002 249.135 385.723 249.111 384.898 248.256 c +384.003 247.328 384.116 245.885 383.556 244.745 c +383.204 244.026 382.575 243.451 381.785 243.393 c +378.286 243.137 378.591 248.901 384.009 252.892 c +384.698 253.4 385.478 253.959 386.219 253.585 c +387.703 252.837 385.254 248.418 388.207 248.776 c +389.42 248.923 389.598 250.793 388.194 252.009 c +386.958 253.079 385.895 254.482 386.904 255.323 c +387.958 256.202 393.905 249.965 392.74 255.101 c +392.585 255.785 391.706 255.993 391.02 255.572 c +389.592 254.693 389.798 252.538 391.393 251.894 c +393.461 251.06 395.399 253.392 395.357 256.242 c +395.32 258.754 394.35 261.189 394.533 263.699 c +394.713 266.172 395.975 268.382 396.878 270.683 c +398.045 273.655 399.112 277.097 402.188 277.713 c +404.827 278.241 407.2 276.13 406.669 273.686 c +406.442 272.639 405.595 271.637 406.083 270.648 c +407.727 267.32 410.286 272.529 412.916 273.514 c +415.184 274.364 417.04 272.111 418.676 270.143 c +418.971 269.788 419.421 269.642 419.582 269.943 c +420.645 271.926 411.342 269.311 416.867 270.892 c +416.964 270.919 417.062 270.88 417.15 270.83 c +419.329 269.589 414.598 263.744 418.884 263.566 c +420.477 263.499 421.228 265.77 419.81 267.507 c +417.553 270.272 413.986 268.64 414.477 266.393 c +415.242 262.897 425.238 254.544 418.441 258.979 c +418.298 259.072 418.191 259.209 418.088 259.345 c +417.111 260.635 416.144 262.053 414.588 262.507 c +412.184 263.207 409.952 261.442 408.41 259.337 c +407.614 258.251 406.887 257.053 405.686 256.432 c +402.059 254.554 399.682 258.674 401.734 260.247 c +403.488 261.593 405.167 258.724 406.992 259.001 c +409.454 259.376 413.188 267.545 414.059 262.163 c +414.123 261.767 413.942 261.364 413.574 261.235 c +412.949 261.017 412.499 261.694 411.977 262.099 c +410.14 263.526 407.236 261.032 405.524 262.793 c +404.579 263.765 405.231 265.149 406.19 264.98 c +407.15 264.81 406.817 263.504 407.245 262.748 c +411.591 255.074 409.069 269.337 411.327 272.432 c +412.131 273.535 413.66 273.532 414.935 273.966 c +416.976 274.662 418.394 276.523 418.534 278.676 c +419.546 294.285 397.202 285.153 406.596 277.243 c +407.442 276.531 408.649 276.587 409.655 276.156 c +410.388 275.842 410.979 275.198 410.805 274.467 c +410.28 272.263 406.668 273.241 407.569 275.714 c +408.329 277.798 411.064 276.175 412.845 276.772 c +415.102 277.528 415.427 280.675 413.296 282.146 c +411.82 283.166 409.343 283.489 409.741 285.292 c +410.419 288.368 414.395 285.314 416.11 286.559 c +417.949 287.894 416.198 290.638 417.257 292.386 c +417.81 293.299 419.055 293.814 419.061 294.922 c +419.073 297.362 414.326 297.971 413.02 293.397 c +411.895 289.457 409.341 286.304 407.217 288.207 c +405.818 289.46 405.844 293.395 403.688 292.055 c +402.122 291.081 404.154 289.42 405.402 287.794 c +406.18 286.78 406.176 285.427 405.966 284.16 c +405.458 281.096 403.311 278.487 400.733 279.24 c +398.311 279.948 398.134 282.979 400.049 283.673 c +402.738 284.646 402.713 280.529 403.872 277.918 c +406.731 271.478 414.452 276.848 411.293 280.739 c +410.846 281.289 410.145 281.515 409.476 281.744 c +400.783 284.718 405.125 293.775 408.905 291.289 c +409.739 290.741 409.847 289.643 409.847 288.627 c +409.847 287.5 409.822 286.323 410.428 285.369 c +413.113 281.142 420.329 284.299 418.584 290.074 c +417.952 292.163 415.826 293.433 415.112 295.491 c +414.608 296.944 414.837 298.702 413.707 299.786 c +413.521 299.965 413.305 300.111 413.126 300.298 c +411.638 301.855 412.907 306.693 409.845 305.789 c +406.616 304.835 409.165 299.952 411.875 302.195 c +414.132 304.062 406.965 308.431 411.176 310.028 c +413.487 310.904 413.245 307.313 413.931 304.798 c +414.834 301.485 419.628 301.665 421.162 298.784 c +422.278 296.686 421.276 294.131 419.193 292.821 c +416.777 291.301 414.362 293.03 415.062 294.672 c +415.819 296.449 418.15 295.039 420.028 293.177 c +420.497 292.712 421.066 292.305 421.258 291.67 c +421.896 289.554 407.011 282.84 417.048 282.688 c +418.094 282.673 418.751 283.831 418.365 284.92 c +417.711 286.769 415.248 286.927 414.497 285.283 c +413.372 282.82 417.443 280.343 421.615 283.211 c +423.328 284.389 425.012 283.467 424.574 282.454 c +424.165 281.507 422.932 282.313 422.084 282.08 c +420.364 281.607 421.494 279.354 421.132 277.808 c +420.518 275.188 416.644 274.789 414.812 277.618 c +413.886 279.047 413.452 281.129 411.731 281.177 c +407.639 281.29 410.859 276.079 411.635 271.951 c +412.034 269.824 410.672 267.53 411.759 265.592 c +412.789 263.756 415.221 263.638 416.955 262.531 c +421.264 259.782 420.564 253.324 415.82 251.653 c +412.457 250.469 409.603 253.315 410.851 255.697 c +412.081 258.043 415.447 256.824 417.954 254.477 c +418.711 253.768 419.587 253.078 420.605 253.221 c +426.89 254.103 421.751 267.089 412.108 260.572 c +409.951 259.114 407.806 257.154 405.266 257.716 c +403.651 258.072 402.44 259.428 402.343 261.073 c +402.258 262.506 402.954 264.18 401.793 265.087 c +400.252 266.291 394.087 263.014 395.574 267.01 c +396.565 269.676 399.069 265.931 400.915 265.943 c +403.102 265.957 403.014 268.875 404.014 270.708 c +404.653 271.877 405.867 272.551 406.883 273.404 c +414.22 279.557 406.2 286.961 402.732 283.198 c +401.708 282.088 402.141 280.439 402.474 278.943 c +402.801 277.471 402.932 275.958 403.363 274.513 c +405.202 268.344 411.989 267.522 413.479 271.477 c +414.48 274.134 410.912 278.505 414.406 279.814 c +416.991 280.783 418.056 277.016 420.279 276.177 c +426.289 273.91 427.076 282.847 422.361 282.434 c +421.74 282.379 421.071 281.963 420.596 282.394 c +419.121 283.732 422.316 285.371 425.2 282.824 c +431.744 277.044 437.753 288.178 431.021 290.548 c +429.644 291.033 428.221 290.274 427.168 289.213 c +426.494 288.534 425.899 287.723 424.988 287.416 c +423.275 286.837 421.729 288.208 420.141 289.059 c +419.544 289.379 418.874 289.665 418.612 290.29 c +417.076 293.958 424.733 295.963 424.711 289.992 c +424.701 287.437 421.904 286.062 421.003 283.761 c +419.775 280.626 422.113 277.598 424.021 274.766 c +425.218 272.99 426.22 271.092 427.061 269.123 c +428.105 266.683 428.993 264.034 431.169 262.497 c +432.453 261.591 434.012 261.226 435.557 260.949 c +439.045 260.325 442.851 259.201 443.039 255.929 c +443.11 254.688 442.509 253.316 443.33 252.341 c +444.774 250.623 447.09 252.54 448.967 254.519 c +450.096 255.709 451.79 256.248 452.673 255.159 c +453.763 253.814 451.081 249.247 454.305 249.78 c +455.187 249.926 455.774 251.481 456.704 250.861 c +457.882 250.075 456.446 247.774 454.703 249.118 c +452.929 250.486 454.948 252.806 454.902 254.819 c +454.802 259.143 448.254 260.587 445.776 255.68 c +445.029 254.202 444.993 252.321 443.675 251.276 c +437.41 246.308 432.859 257.664 439.793 258.616 c +441.283 258.82 442.397 257.548 443.466 256.467 c +447.724 252.158 451.989 256.905 449.793 258.818 c +448.804 259.68 447.325 258.626 446.216 259.191 c +444.1 260.271 441.882 268.235 441.051 263.281 c +441.01 263.032 441.09 262.785 441.171 262.547 c +441.547 261.436 441.933 260.276 441.641 259.137 c +441.03 256.75 438.188 256.006 436.896 257.716 c +435.964 258.95 434.88 260.247 434.345 259.207 c +433.625 257.807 436.093 258.092 436.729 257.284 c +439.28 254.043 432.908 256.129 430.602 255.071 c +428.72 254.208 429.573 251.307 428.008 250.144 c +425.449 248.242 420.696 255.472 418.523 250.928 c +418.376 250.621 418.336 250.278 418.313 249.939 c +418.208 248.418 417.917 246.73 416.546 246.625 c +415.379 246.535 414.783 247.87 413.763 248.322 c +412.319 248.963 410.84 247.876 409.741 246.62 c +407.115 243.62 405.225 240.075 403.727 236.383 c +402.74 233.952 401.915 231.428 401.853 228.801 c +401.822 227.448 402.015 226.054 402.873 225.008 c +403.839 223.83 405.325 222.666 404.456 221.514 c +403.344 220.041 400.552 221.594 400.792 224.931 c +400.995 227.746 400.332 230.692 398.05 230.514 c +395.516 230.315 392.045 229.119 393.195 231.241 c +393.92 232.577 395.531 230.865 396.58 231.285 c +398.026 231.865 397.016 234.073 398.117 234.919 c +398.553 235.254 399.174 235.225 399.483 234.796 c +406.62 224.886 391.864 238.421 391.146 235.216 c +391.021 234.657 391.449 234.167 391.58 233.619 c +392.014 231.808 389.936 230.489 388.526 231.631 c +387.122 232.769 388.374 234.708 388.819 236.474 c +391.109 245.558 378.355 244.744 380.096 238.609 c +380.308 237.862 380.971 237.129 380.526 236.467 c +380.297 236.126 379.847 236.036 379.559 235.749 c +378.221 234.414 380.465 232.429 383.841 232.65 c +384.335 232.682 384.862 232.646 385.192 232.285 c +389.262 227.83 377.936 225.877 380.299 232.459 c +381.251 235.112 387.971 238.608 383.336 239.03 c +382.613 239.096 381.848 238.332 381.233 238.842 c +380.867 239.146 380.915 239.796 380.457 239.99 c +378.444 240.842 379.214 237.129 382.599 236.539 c +385.803 235.981 385.369 231.807 385.661 228.38 c +385.722 227.67 385.867 226.972 385.965 226.266 c +386.187 224.664 385.373 223.223 384.25 223.585 c +379.389 225.148 387.642 228.419 386.298 230.091 c +385.816 230.691 384.944 230.557 384.197 230.693 c +382.74 230.958 381.396 232.391 380.033 231.63 c +377.231 230.065 379.838 226.012 382.357 227.815 c +384.769 229.54 380.897 232.649 382.286 234.595 c +385.644 239.298 390.247 231.389 385.306 230.758 c +384.592 230.667 384.011 231.274 383.31 231.363 c +381.179 231.636 379.729 225.148 377.099 228.178 c +375.724 229.762 378.385 232.584 382.149 230.874 c +384.542 229.786 386.94 228.165 386.784 225.658 c +386.763 225.33 386.684 224.997 386.453 224.763 c +383.3 221.554 380.589 230.329 387.411 231.079 c +387.961 231.139 388.551 231.166 388.966 230.804 c +390.461 229.499 388.55 226.609 386.088 228.038 c +384.685 228.852 384.603 230.711 383.818 232.091 c +383.109 233.34 381.861 234.131 380.642 234.885 c +377.328 236.937 377.913 240.505 379.915 240.367 c +381.289 240.272 381.601 238.442 380.935 236.798 c +380.626 236.034 380.241 235.267 379.534 234.84 c +369.227 228.607 369.16 249.72 379.445 243.577 c +381.285 242.478 380.676 239.641 382.241 238.281 c +385.157 235.749 388.222 240.043 390.762 244.018 c +392.111 246.128 394.089 248.294 392.953 250.475 c +391.842 252.606 392.429 254.573 393.513 253.872 c +393.851 253.654 393.841 253.172 394.099 252.876 c +395.133 251.687 396.944 254.409 397.962 253.087 c +398.789 252.013 397.003 250.854 394.637 251.285 c +390.623 252.015 387.383 248.374 388.853 245.028 c +390.141 242.093 393.51 243.382 393.067 245.229 c +392.82 246.262 391.487 246.2 390.536 246.609 c +389.566 247.026 389.016 248.079 389.467 248.968 c +391.14 252.271 393.468 247.329 395.368 242.852 c +395.98 241.409 397.53 240.598 398.704 241.372 c +401.232 243.04 397.717 245.606 396.043 248.232 c +395.535 249.029 395.23 250.063 394.315 250.33 c +392.674 250.808 389.476 249.662 390.397 251.611 c +390.94 252.759 392.268 251.461 393.353 251.412 c +395.892 251.297 396.674 256.061 392.53 256.835 c +391.531 257.022 390.382 257.237 390.435 258.148 c +390.507 259.405 392.639 259.716 393.278 257.929 c +393.797 256.479 392.691 254.479 394.099 253.534 c +396.694 251.792 400.017 256.512 396.079 258.759 c +394.438 259.695 392.485 258.909 390.857 257.856 c +389.51 256.985 388.216 255.888 387.928 254.318 c +387.513 252.051 389.23 250.058 391.444 249.119 c +393.338 248.316 395.691 247.96 396.374 246.01 c +397.551 242.648 393.424 240.31 391.357 242.732 c +390.15 244.147 391.265 246.391 390.179 247.871 c +388.64 249.968 382.102 249.954 384.74 253.086 c +385.826 254.374 387.675 253.103 389.031 251.499 c +391.722 248.313 396.13 248.152 397.127 251.095 c +397.724 252.858 396.158 255.047 397.529 256.508 c +400.35 259.513 408.568 263.916 402.736 262.643 c +402.579 262.609 402.435 262.53 402.329 262.409 c +401.588 261.568 402.8 260.598 404.16 259.993 c +406.658 258.881 407.696 255.623 410.405 254.973 c +411.926 254.608 413.439 255.24 414.895 255.8 c +418.109 257.037 421.328 255.841 420.888 253.519 c +420.712 252.596 419.811 251.647 420.505 250.935 c +420.964 250.463 421.705 250.741 422.325 250.602 c +441.748 246.257 410.099 245.673 410.143 242.067 c +410.169 239.942 412.815 239.261 415.334 239.557 c +421.453 240.277 423.566 234.962 420.885 233.712 c +420.387 233.48 419.818 233.553 419.276 233.483 c +418.606 233.396 417.991 233.091 417.352 232.878 c +415.921 232.4 414.959 231.286 415.713 230.593 c +416.12 230.22 416.774 230.398 417.085 230.907 c +421.255 237.712 409.913 230.98 407.503 232.431 c +407.157 232.639 406.895 232.955 406.589 233.218 c +405.483 234.169 403.917 234.359 402.766 235.25 c +401.653 236.111 401.087 237.465 400.908 238.864 c +400.504 242.038 402.313 245.104 405.189 245.034 c +407.686 244.973 409.032 242.342 407.625 240.753 c +405.79 238.68 401.979 240.717 402.862 244.148 c +403.196 245.449 404.256 246.778 403.406 247.854 c +402.776 248.652 401.566 248.57 400.732 247.873 c +398.519 246.026 399.641 240.362 395.866 240.849 c +393.563 241.146 393.757 244.197 392.573 246.011 c +391.685 247.373 389.935 247.992 389.231 249.471 c +388.343 251.337 389.433 254.06 387.541 255.241 c +386.977 255.594 386.288 255.627 385.626 255.555 c +382.561 255.224 379.467 252.924 376.779 254.637 c +374.835 255.875 373.264 258.805 371.361 257.334 c +370.085 256.348 370.731 254.402 372.053 253.041 c +374.462 250.563 377.156 247.672 375.221 245.25 c +374.475 244.316 373.164 244.025 372.224 244.709 c +370.269 246.131 371.409 249.455 374.251 249.477 c +374.693 249.481 375.162 249.385 375.535 249.626 c +378.338 251.434 372.181 253.482 373.767 255.202 c +375.495 257.076 377.019 252.962 378.637 253.646 c +379.148 253.861 379.384 254.423 379.802 254.778 c +380.227 255.138 380.79 255.253 381.34 255.34 c +384.708 255.874 388.134 255.691 391.518 255.288 c +395.872 254.771 400.108 256.334 399.419 259.563 c +399.084 261.131 397.477 261.958 395.826 262.154 c +395.297 262.217 394.728 262.248 394.361 262.635 c +393.72 263.309 394.205 264.384 393.832 265.196 c +390.299 272.883 387.54 259.592 394.231 252.958 c +396.286 250.92 398.8 250.974 398.586 252.53 c +398.462 253.425 397.328 253.513 396.314 253.479 c +393.56 253.387 391.051 254.855 389.268 256.97 c +386.529 260.219 385.568 264.797 382.175 267.41 c +381.731 267.753 381.241 268.067 380.989 268.57 c +379.96 270.619 382.621 272.818 385.935 272.094 c +387.933 271.656 389.786 270.724 391.369 269.429 c +393.488 267.696 395.037 265.385 397.004 263.485 c +398.713 261.834 400.89 260.51 403.161 261.072 c +404.461 261.393 405.528 262.347 406.845 262.6 c +408.238 262.867 409.686 262.297 410.273 261.035 c +410.86 259.775 410.293 258.28 409.018 257.993 c +406.884 257.513 405.453 260.371 406.611 263.25 c +407.294 264.945 408.625 266.439 410.312 266.138 c +412.006 265.837 412.658 263.967 413.115 262.242 c +414.647 256.467 409.478 254.206 408.349 256.723 c +408.075 257.334 408.319 258.121 407.859 258.631 c +406.677 259.94 404.183 258.19 405.498 256.116 c +407.281 253.302 410.625 256.606 413.349 260.058 c +414.087 260.993 415.021 261.982 414.582 263.059 c +413.704 265.217 399.066 256.486 404.927 265.175 c +405.586 266.152 406.942 265.609 408.139 265.32 c +411.338 264.548 414.047 267.263 412.964 269.826 c +412.374 271.223 410.674 271.695 409.736 270.698 c +408.275 269.145 410.203 266.409 413.545 266.499 c +417.869 266.616 422.89 266.94 423.256 263.124 c +423.469 260.898 420.944 258.643 422.424 256.661 c +423.849 254.752 430.131 255.964 428.427 252.346 c +427.936 251.302 426.531 251.253 425.376 251.811 c +424.33 252.317 423.272 253.134 422.215 252.655 c +419.911 251.613 429.576 231.586 419.965 241.624 c +419.278 242.342 419.71 243.431 420.176 244.37 c +420.652 245.331 421.052 246.346 421.078 247.419 c +421.142 250.037 419.297 253.125 421.557 254.706 c +422.089 255.078 422.752 255.181 423.351 255.427 c +428.257 257.44 424.181 262.685 422.174 260.366 c +421.605 259.707 422.16 258.799 422.192 257.958 c +422.263 256.066 420.148 254.977 417.991 255.227 c +416.585 255.389 415.194 255.963 413.81 255.625 c +413.603 255.575 413.401 255.504 413.197 255.442 c +410.598 254.648 408.17 256.165 408.716 258.083 c +409.397 260.475 413.27 259.092 414.219 261.192 c +415.827 264.752 409.871 264.417 407.807 266.562 c +406.291 268.138 406.853 270.573 407.809 272.645 c +408.7 274.576 410.474 275.965 411.828 274.921 c +413.601 273.554 411.372 271.332 411.385 269.375 c +411.41 265.581 412.266 260.507 409.606 262.645 c +408.677 263.391 409.407 266.384 407.587 265.727 c +403.291 264.176 410.616 262.354 410.172 261.085 c +409.175 258.234 406.579 262.433 405.122 261.933 c +401.674 260.748 406.453 257.323 405.853 255.336 c +405.157 253.032 401.41 253.286 399.669 256.524 c +397.812 259.98 398.347 264.303 401.623 265.774 c +405.105 267.337 407.722 263.847 406.019 261.883 c +404.96 260.661 403.125 261.423 401.624 262.403 c +397.268 265.247 398.289 269.877 400.822 269.466 c +402.143 269.253 402.669 267.59 401.772 266.416 c +399.899 263.966 396.022 266.837 393.895 264.929 c +391.566 262.84 393.48 258.769 397.007 259.208 c +400.83 259.684 402.073 264.857 399.152 268.691 c +397.565 270.775 395.062 272.109 392.617 271.357 c +390.707 270.769 389.433 268.941 387.522 268.355 c +386.594 268.07 385.606 268.11 384.666 268.353 c +382.527 268.907 381.07 270.818 382.011 272.403 c +383.821 275.451 389.183 272.707 387.033 268.657 c +386.577 267.798 385.676 267.203 385.44 266.25 c +385.179 265.196 385.854 264.149 386.85 264.187 c +389.301 264.283 389.29 269.447 384.091 269.766 c +382.947 269.836 381.762 269.849 380.764 270.419 c +379.432 271.18 378.772 272.754 377.437 273.511 c +368.218 278.737 366.463 262.768 374.601 264.929 c +376.228 265.361 376.468 267.371 377.427 268.691 c +379.046 270.917 382.165 270.929 384.924 270.165 c +387.24 269.523 389.104 267.758 388.214 266.001 c +386.204 262.032 378.927 266.186 382.983 271.109 c +385.183 273.779 387.063 276.849 384.606 277.03 c +383.719 277.095 383.087 276.213 383.13 275.244 c +383.242 272.729 385.426 269.215 382.705 269.349 c +381.853 269.391 381.945 270.328 382.398 270.311 c +382.567 270.305 382.646 270.121 382.78 270.027 c +385.545 268.082 381.731 271.921 381.366 273.58 c +381.178 274.437 382.237 275.102 383.129 274.54 c +384.713 273.543 383.184 271.495 383.172 269.769 c +383.121 262.516 395.441 264.166 392.703 272.16 c +392.196 273.64 390.814 274.568 389.321 275.068 c +386.898 275.879 384.679 277.382 385.761 279.017 c +386.076 279.494 386.715 279.791 386.714 280.381 c +386.691 287.351 383.696 276.325 381.75 275.761 c +378.245 274.745 378.487 280.597 381.715 279.433 c +383.201 278.897 385.328 275.644 385.214 278.046 c +385.156 279.255 383.347 278.411 382.903 279.153 c +382.209 280.314 384.626 281.732 386.423 279.399 c +386.774 278.943 387.147 278.486 387.293 277.927 c +390.772 264.548 365.94 272.895 377.807 283.333 c +379.231 284.585 381.339 284.675 382.825 283.509 c +385.275 281.586 388.081 279.949 388.383 282.169 c +388.523 283.194 387.382 283.713 386.534 284.338 c +383.764 286.379 384.149 290.645 387.092 292.918 c +390.337 295.426 394.405 293.461 393.917 290.541 c +393.614 288.73 392.388 286.495 394.129 286.409 c +394.804 286.376 395.23 287.052 395.377 287.767 c +395.886 290.257 394.301 292.841 395.209 295.248 c +395.856 296.964 397.679 297.936 399.121 297.077 c +401.156 295.865 400.455 292.731 398.054 292.486 c +396.837 292.362 395.627 293.366 394.483 292.82 c +374.379 283.225 419.75 281.377 399.881 291.451 c +399.813 291.485 399.741 291.51 399.669 291.532 c +398.51 291.879 397.234 291.478 396.701 290.424 c +396.132 289.298 397.018 288.249 397.799 288.62 c +398.893 289.141 397.589 290.303 396.579 291.38 c +395.51 292.519 396.227 294.234 396.049 295.74 c +395.743 298.31 392.879 299.898 392.733 302.501 c +392.493 306.819 398.002 307.591 401.758 309.704 c +403.698 310.796 405.779 312.378 407.514 311.104 c +409.444 309.686 409.118 304.155 412.226 305.842 c +413.547 306.56 414.517 309.582 415.628 307.894 c +416.193 307.036 414.854 306.207 415.112 305.329 c +415.896 302.663 418.004 306.576 419.821 307.113 c +422.624 307.942 424.023 303.669 421.074 302.676 c +418.5 301.809 409.928 307.251 413.147 302.006 c +413.382 301.624 413.83 301.464 414.262 301.341 c +416.728 300.637 419.563 300.257 420.746 297.985 c +421.475 296.586 422.038 294.733 423.437 295.177 c +425.127 295.713 424.826 298.721 422.165 299.029 c +420.726 299.195 419.399 298.326 417.962 298.258 c +416.1 298.17 413.827 299.054 412.989 297.355 c +412.571 296.508 412.948 295.496 413.766 294.981 c +415.053 294.169 417.343 294.526 417.484 292.845 c +417.847 288.554 412.651 293.167 410.023 292.764 c +406.621 292.243 407.088 286.812 411.867 283.372 c +412.68 282.787 413.473 282.175 414.271 281.568 c +415.056 280.971 415.861 280.358 416.312 279.478 c +419.059 274.118 410.858 273.113 411.694 276.974 c +411.892 277.889 413.367 278.135 413.277 279.155 c +412.896 283.442 406.41 279.013 410.609 276.899 c +410.979 276.713 411.435 276.767 411.785 276.541 c +412.85 275.855 412.108 274.226 410.584 273.305 c +408.489 272.039 405.976 271.004 404.319 272.58 c +398.493 278.123 410.301 286.315 413.524 277.125 c +414.656 273.895 411.252 272.001 409.81 273.72 c +408.738 274.997 410.587 277.094 409.315 278.298 c +407.926 279.612 405.434 277.789 405.707 274.666 c +405.906 272.385 405.809 269.832 403.827 269.567 c +403.017 269.458 402.256 269.968 401.443 269.922 c +396.048 269.619 401.476 263.078 400.8 259.363 c +400.745 259.059 400.646 258.751 400.734 258.454 c +401.174 256.958 402.982 258.259 404.596 259.349 c +406.516 260.644 408.982 259.381 410.558 257.404 c +411.408 256.336 412.491 255.255 413.567 255.863 c +415.16 256.764 414.297 259.437 412.124 259.164 c +411.156 259.043 410.526 258.161 409.668 257.724 c +408.299 257.028 406.725 257.522 405.248 257.952 c +403.048 258.592 400.8 259.761 401.203 261.754 c +401.502 263.236 403.168 263.847 404.788 263.783 c +410.044 263.576 410.667 269.071 407.987 268.498 c +407.35 268.361 407.147 267.596 406.62 267.249 c +404.918 266.129 402.662 268.579 404.391 270.595 c +405.631 272.04 409.118 271.96 408.451 274.224 c +407.904 276.08 403.571 274.738 403.857 277.375 c +403.991 278.617 405.584 278.711 407.006 278.645 c +407.993 278.599 409.068 278.7 409.794 278.025 c +410.985 276.918 410.189 274.519 411.787 273.769 c +413.217 273.098 414.533 274.837 416.001 274.624 c +417.666 274.383 418.261 271.94 420.018 271.986 c +421.331 272.021 422.003 273.412 422.337 274.773 c +423.749 280.529 428.155 284.052 430.651 281.186 c +433.379 278.054 428.849 275.018 427.225 277.521 c +426.439 278.733 427.678 281.996 425.573 281.355 c +424.45 281.013 424.644 279.181 426.092 279.092 c +429.142 278.905 426.743 282.732 424.965 286.08 c +422.011 291.641 430.059 293.887 430.824 289.611 c +431.413 286.32 424.177 287.062 425.231 283.477 c +425.79 281.578 428.693 281.508 429.668 283.741 c +430.894 286.551 427.973 289.222 425.508 287.815 c +423.69 286.777 424.004 284.235 425.768 283.857 c +427.499 283.486 428.434 285.962 430.126 285.832 c +431.823 285.702 432.563 283.537 431.273 282.19 c +429.757 280.608 427.36 281.804 425.323 283.031 c +424.428 283.57 423.42 284.038 422.431 283.724 c +421.67 283.482 420.897 282.836 420.259 283.334 c +418.091 285.025 421.948 287.27 422.364 284.746 c +422.624 283.164 421.216 278.728 422.549 281.346 c +422.596 281.438 422.596 281.545 422.599 281.649 c +422.647 283.452 422.863 285.567 421.282 285.624 c +420.072 285.667 419.123 283.384 417.885 284.397 c +415.366 286.457 422.568 287.643 420.448 289.637 c +418.263 291.691 418.34 286.834 416.929 285.978 c +407.857 280.473 410.538 300.217 419.275 292.793 c +421.314 291.059 420.051 286.553 423.166 285.989 c +434.982 283.849 424.797 303.432 420.991 292.041 c +420.757 291.34 421.2 290.651 421.384 289.944 c +422.267 286.541 418.165 284.805 415.797 282.289 c +413.992 280.37 413.339 277.73 412.429 275.269 c +411.969 274.026 411.433 272.813 410.951 271.579 c +409.178 267.042 412.488 263.833 414.512 265.46 c +415.203 266.016 415.447 267.226 416.396 267.174 c +420.729 266.937 416.666 260.05 414.073 264.202 c +413.225 265.561 415.353 267.294 414.279 268.608 c +413.041 270.122 411.107 267.923 409.579 268.392 c +404.37 269.992 411.95 273.236 416.874 276.511 c +419.062 277.966 419.344 280.974 418.19 283.465 c +418.138 283.577 418.084 283.687 418.03 283.798 c +416.033 287.847 412.084 290.255 409.862 287.753 c +408.411 286.117 409.164 282.41 406.546 282.349 c +403.934 282.289 402.948 286.602 406.456 288.149 c +407.955 288.811 409.741 288.419 410.388 287.005 c +414.676 277.621 396.691 278.475 401.953 287.567 c +402.587 288.663 403.969 289.059 405.124 288.518 c +405.78 288.212 406.25 287.638 406.666 287.047 c +407.618 285.696 408.95 284.463 410.113 285.282 c +412.045 286.643 409.69 290.452 404.98 289.25 c +404.556 289.142 404.127 289.038 403.689 289.05 c +403.033 289.068 402.401 289.347 401.745 289.287 c +401.141 289.232 400.614 288.901 400.073 288.631 c +397.226 287.209 393.698 287.37 391.227 285.319 c +390.186 284.454 389.47 283.284 388.626 282.229 c +387.9 281.322 386.909 280.521 385.865 280.889 c +384.083 281.517 383.709 288.062 381.113 285.004 c +380.558 284.349 380.984 283.375 381.772 283.388 c +385.476 283.449 380.258 286.6 380.037 288.406 c +379.642 291.632 384.982 289.89 385.595 292.144 c +386.404 295.118 380.625 297.132 379.156 292.046 c +378.657 290.317 379.155 288.336 378.139 286.822 c +378.041 286.676 377.929 286.537 377.871 286.371 c +376.13 281.386 384.713 287.545 384.528 284.329 c +384.471 283.327 382.832 283.004 383.009 281.929 c +383.244 280.499 385.758 280.57 385.83 282.628 c +385.888 284.316 383.746 285.019 383.326 286.567 c +382.756 288.669 385.154 289.937 386.379 291.662 c +387.684 293.498 387.112 295.915 385.305 296.168 c +383.231 296.459 379.451 294.367 380.29 296.961 c +380.506 297.627 381.339 297.758 382.089 297.582 c +382.846 297.405 383.273 296.744 382.887 296.363 c +382.657 296.136 382.29 296.236 382.012 296.445 c +368.728 306.424 399.08 314.072 393.521 296.868 c +393.318 296.237 392.97 295.668 392.608 295.113 c +390.438 291.789 386.582 290.591 385.214 293.083 c +384.288 294.771 384.56 297.949 382.576 297.146 c +381.279 296.62 381.909 294.786 383.185 293.376 c +392.753 282.793 366.336 274.02 374.605 286.972 c +375.664 288.632 382.79 287.809 379.755 290.954 c +378.221 292.544 376.475 288.97 374.948 289.972 c +372.621 291.498 376.518 295.459 381.351 292.142 c +383.099 290.943 385.256 290.388 387.272 291.018 c +388.422 291.377 389.439 292.121 390.636 292.288 c +390.907 292.325 391.184 292.332 391.445 292.251 c +392.52 291.92 393.167 290.154 394.343 290.751 c +395.875 291.529 394.251 293.696 391.182 294.28 c +387.692 294.944 383.534 297.873 382.505 294.466 c +381.426 290.898 386.523 289.931 386.991 292.939 c +387.159 294.02 386.049 294.738 385.669 295.722 c +385.196 296.945 385.837 298.315 387.078 298.74 c +389.857 299.693 391.378 296.138 392.319 292.769 c +393.025 290.242 395.31 288.822 396.643 290.159 c +396.713 290.229 396.775 290.307 396.83 290.388 c +399.157 293.843 393.508 297.992 390.554 293.688 c +389.014 291.443 389.165 286.883 386.306 288.039 c +381.006 290.184 389.591 294.961 387.825 297.44 c +387.562 297.81 387.166 298.052 386.753 298.239 c +384.5 299.26 381.799 298.706 380.697 296.603 c +380.005 295.283 380.27 293.725 380.107 292.253 c +380.068 291.9 380.002 291.548 379.855 291.225 c +379.196 289.771 377.434 289.463 375.917 288.961 c +373.926 288.303 371.683 287.374 370.406 288.916 c +368.854 290.79 371.252 293.595 369.866 295.528 c +368.363 297.622 365.403 296.096 362.969 294.325 c +362.657 294.098 362.333 293.879 361.961 293.772 c +360.161 293.25 358.762 295.039 357.892 296.904 c +356.928 298.97 355.106 300.531 353.694 299.412 c +352.993 298.857 352.934 297.85 353.31 297.007 c +353.92 295.638 355.52 294.507 354.913 293.069 c +352.38 287.067 349.104 297.217 346.043 297.737 c +342.346 298.364 341.183 293.358 344.305 292.313 c +347.603 291.208 348.675 299.23 352.398 296.863 c +353.553 296.129 353.41 294.544 353.176 293.136 c +351.909 285.519 339.782 289.123 345.796 292.431 c +346.933 293.056 350.057 292.16 348.923 293.822 c +348.158 294.942 347.262 293.015 346.354 292.922 c +345.186 292.803 345.056 294.371 345.015 295.768 c +344.944 298.194 342.758 300.816 344.591 302.666 c +347.798 305.905 353.911 300.551 349.512 295.907 c +348.349 294.679 346.413 293.776 346.834 292.12 c +347.607 289.086 353.086 289.931 352.425 294.341 c +352.08 296.645 349.552 296.976 349.036 295.559 c +348.328 293.62 351.519 293.678 352.151 292.323 c +353.294 289.878 349.105 289.141 348.938 287.058 c +348.737 284.554 353.646 283.906 352.66 281.125 c +351.699 278.41 348.057 280.552 345.491 284.218 c +344.623 285.458 343.374 286.417 341.885 286.672 c +337.876 287.358 337.479 282.825 339.629 282.555 c +340.421 282.455 341.042 283.221 340.958 284.08 c +340.845 285.245 339.693 285.971 338.463 285.962 c +337.258 285.953 336.156 285.294 334.954 285.237 c +328.437 284.925 328.291 293.795 333.621 294.066 c +335.021 294.138 336.233 293.087 336.276 291.701 c +336.337 289.771 334.007 288.516 334.194 286.571 c +334.465 283.759 338.839 283.754 339.403 281.105 c +339.847 279.019 337.729 277.582 335.651 276.591 c +333.365 275.501 331.031 274.063 330.641 271.599 c +330.425 270.238 330.934 268.846 332.067 268.075 c +332.834 267.552 333.854 267.465 334.398 268.142 c +334.975 268.859 334.5 269.885 334.797 270.724 c +335.265 272.049 337.659 272.69 336.923 274.225 c +336.415 275.285 334.966 274.896 333.727 274.362 c +332.326 273.759 330.684 273.589 329.612 274.611 c +327.952 276.192 329.241 278.853 328.362 280.843 c +325.498 287.327 318.029 281.015 321.932 277.822 c +323.348 276.663 325.813 278.535 327.036 276.951 c +328.459 275.107 325.388 273.357 325.708 271.451 c +325.858 270.556 326.626 269.959 327.406 269.483 c +328.852 268.599 330.652 268.125 331.697 269.293 c +334.681 272.63 328.911 275.759 327.704 272.225 c +326.77 269.49 331.872 269.477 331.679 267.113 c +331.522 265.203 328.811 264.699 327.872 266.607 c +327.46 267.444 327.557 268.7 326.597 268.875 c +324.682 269.225 325.675 266.451 325.18 264.856 c +323.184 258.428 318.841 268.43 314.937 269.681 c +312.076 270.598 309.546 267.278 306.67 267.972 c +305.07 268.359 303.502 269.914 302.136 268.865 c +300.685 267.749 301.631 265.54 303.276 265.8 c +307.218 266.422 300.433 273.565 304.878 273.94 c +306.849 274.107 307.743 270.92 305.224 269.758 c +303.155 268.804 299.412 270.395 299.15 267.639 c +299.102 267.127 299.38 266.629 299.854 266.605 c +300.974 266.547 300.495 268.084 300.553 269.249 c +300.698 272.149 305.812 272.607 306.468 268.368 c +306.925 265.412 304.165 263.292 301.361 261.842 c +298.429 260.326 295.16 258.988 292.126 260.226 c +285.503 262.929 286.914 271.868 292.872 272.315 c +294.689 272.451 296.364 271.262 296.394 269.534 c +296.428 267.531 295.389 264.852 297.346 265.002 c +299.821 265.192 296.199 271.196 299.712 270.594 c +301.285 270.324 300.286 268.299 299.505 266.508 c +299.014 265.38 299.279 264.118 299.638 262.94 c +301.368 257.264 307.099 256.779 307.86 259.952 c +308.129 261.078 307.315 262.28 307.829 263.345 c +311.086 270.093 312.189 258.001 315.515 254.562 c +316.279 253.772 317.529 253.315 317.613 252.193 c +317.773 250.063 314.33 249.046 312.199 251.78 c +311.516 252.657 310.875 253.744 309.775 253.714 c +308.194 253.672 307.904 251.708 307.116 250.357 c +306.61 249.49 305.788 248.88 304.944 248.341 c +302.901 247.034 300.684 247.819 300.963 249.298 c +301.171 250.4 302.944 251.81 301.53 252.123 c +300.866 252.27 299.231 249.601 299.11 251.499 c +299.08 251.961 299.703 252.057 300.296 251.927 c +305.116 250.87 305.487 256.719 302.67 256.863 c +301.837 256.906 301.312 256.113 300.691 255.566 c +297.658 252.896 294.436 256.372 296.093 258.325 c +296.883 259.256 298.563 258.727 299.266 259.761 c +300.476 261.54 297.977 263.283 296.793 261.733 c +295.341 259.831 299.656 258.521 298.634 256.694 c +298.391 256.259 297.895 256.066 297.398 255.991 c +292.679 255.28 291.113 260.908 294.281 262.397 c +297.781 264.042 298.764 258.284 301.628 257.397 c +304.084 256.636 308.132 257.897 307.766 255.055 c +307.726 254.746 307.577 254.464 307.358 254.243 c +304.855 251.709 303.801 246.773 306.019 249.274 c +306.116 249.384 306.164 249.527 306.185 249.672 c +306.338 250.734 305.202 251.562 305.317 252.623 c +305.354 252.965 305.53 253.282 305.827 253.451 c +307.143 254.198 308.801 252.215 307.63 249.891 c +307.025 248.691 306.105 247.558 306.23 246.21 c +306.407 244.284 308.696 243.012 308.425 241.028 c +307.615 235.098 299.926 239.414 303.307 242.498 c +304.481 243.568 310.795 238.383 309.531 243.188 c +309.258 244.226 307.892 243.899 306.838 244.068 c +300.028 245.16 304.678 255.424 309.999 251.01 c +311.48 249.78 310.949 247.569 310.076 245.703 c +308.955 243.31 310.509 241.434 311.646 242.217 c +312.33 242.689 312.089 244.42 313.196 244.158 c +314.873 243.761 312.706 242.028 312.954 241.083 c +314.118 236.635 315.334 243.374 314.956 247.949 c +314.8 249.843 317.499 251.715 316.013 253.415 c +313.755 255.998 309.294 251.009 313.382 244.845 c +313.754 244.285 314.2 243.682 314.841 243.775 c +315.904 243.929 316.134 245.463 315.033 246.022 c +312.171 247.477 312.103 228.171 308.057 238.985 c +307.787 239.705 308.363 240.376 308.654 241.079 c +310.164 244.724 305.442 247.952 299.873 247.016 c +298.432 246.774 297.008 246.441 295.561 246.234 c +294.033 246.016 292.377 246.004 291.307 247.091 c +289.193 249.238 291.494 253.098 289.387 255.248 c +287.264 257.414 282.772 255.067 281.17 258.008 c +280.468 259.296 281.131 260.866 280.725 262.254 c +280.415 263.313 279.523 264.12 278.433 264.153 c +276.574 264.21 275.419 262.016 273.568 262.017 c +272.156 262.018 271.203 263.261 270.097 264.12 c +267.349 266.254 263.36 265.963 260.678 268.19 c +257.914 270.485 256.763 275.169 252.968 275.042 c +251.328 274.988 250.013 273.844 248.931 272.599 c +246.229 269.486 242.588 270.184 242.899 272.318 c +243.145 274.002 245.569 273.615 246.452 274.812 c +247.972 276.873 241.169 281.566 245.84 283.008 c +248.765 283.912 247.954 279.293 249.485 277.606 c +251.012 275.923 253.741 276.908 253.777 279.048 c +253.778 279.12 253.775 279.193 253.787 279.264 c +254.196 281.632 255.634 278.075 257.066 277.026 c +257.998 276.343 260.353 277.049 260.007 275.495 c +259.974 275.344 259.887 275.188 259.965 275.052 c +260.288 274.488 260.642 275.449 261.072 275.658 c +263.921 277.041 260.13 274.072 258.344 272.604 c +252.874 268.111 264.173 270.855 265.188 269.255 c +265.985 267.999 264.786 266.424 263.35 266.857 c +260.533 267.707 263.277 271.413 262.043 273.163 c +261.076 274.535 258.963 274.266 258.355 272.689 c +257.237 269.791 261.188 268.07 262.481 270.511 c +263.429 272.301 260.692 274.011 261.474 275.81 c +262.535 278.247 272.671 272.072 270.413 278.749 c +270.339 278.969 270.201 279.178 270.238 279.408 c +270.253 279.502 270.297 279.587 270.346 279.669 c +273.642 285.147 281.15 278.67 276.46 274.692 c +269.945 269.166 269.055 283.693 264.391 283.13 c +261.322 282.759 260.146 278.774 262.589 276.43 c +263.864 275.207 266.009 274.388 265.52 272.672 c +265.173 271.455 263.664 271.051 262.43 271.678 c +260.775 272.519 260.039 274.897 258.082 274.923 c +256.494 274.944 255.415 273.386 255.43 271.683 c +255.443 270.229 256.163 268.916 256.896 267.663 c +257.929 265.897 257.699 263.878 256.285 263.852 c +255.906 263.845 255.564 264.065 255.187 264.098 c +251.39 264.427 254.382 258.84 252.514 257.657 c +251.412 256.958 249.952 257.691 249.649 259.052 c +249.206 261.044 251.217 262.45 253.231 263.369 c +254.122 263.776 255.036 264.357 254.971 265.288 c +254.784 267.961 248.999 267.653 249.66 262.32 c +249.871 260.621 250.581 259.043 251.198 257.449 c +252.207 254.843 252.976 252.153 253.862 249.504 c +256.136 242.705 251.582 237.967 248.65 240.362 c +247.257 241.5 247.559 243.713 249.211 244.47 c +251.48 245.509 255.506 245.363 253.967 247.509 c +253.452 248.226 252.42 248.007 251.541 247.641 c +246.258 245.439 240.081 243.928 236.896 248.19 c +235.133 250.547 232.93 252.798 231.625 250.969 c +229.915 248.574 234.422 247.355 234.421 245.233 c +234.418 241.117 229.198 244.121 224.564 246.926 c +222.489 248.182 219.827 247.902 218.096 246.21 c +215.511 243.683 216.153 239.44 219.306 238.283 c +234.708 232.633 223.22 266.49 218.468 246.61 c +218.113 245.127 217.906 243.228 217.007 244.142 c +216.728 244.426 216.856 244.9 217.217 245.146 c +219.568 246.742 219.323 242.309 220.712 240.667 c +221.475 239.765 222.821 239.708 223.852 240.352 c +231.658 245.228 220.087 253.003 218.683 245.937 c +218.554 245.291 218.859 244.628 219.46 244.378 c +220.948 243.757 221.809 245.753 223.143 246.367 c +242.34 255.204 225.965 215.096 220.993 238.84 c +220.678 240.344 222.854 243.008 220.666 243.171 c +219.969 243.223 219.532 242.479 219.915 241.969 c +221.449 239.928 222.275 244.482 223.522 243.797 c +224.525 243.245 223.763 241.32 221.589 241.371 c +219.304 241.426 216.758 241.806 215.301 240.063 c +213.686 238.13 214.689 235.213 217.064 234.843 c +219.913 234.399 224.873 238.072 224.78 234.141 c +224.755 233.06 223.636 232.508 222.688 231.947 c +221.089 231 219.463 229.57 217.81 230.374 c +213.888 232.282 216.782 239.754 222.838 237.234 c +226.075 235.886 227.539 231.115 231.296 231.483 c +232.406 231.592 233.545 232.24 234.526 231.666 c +237.024 230.204 233.787 226.543 235.604 224.814 c +236.496 223.964 238.058 224.312 238.875 223.368 c +240.11 221.94 238.431 220.194 237.672 218.46 c +237.339 217.701 237.305 216.795 237.938 216.333 c +238.845 215.673 240.72 216.794 241.138 215.421 c +241.372 214.653 240.411 214.039 240.56 213.271 c +241.29 209.491 248.076 220.147 247.672 214.006 c +247.573 212.507 245.437 213.274 244.592 212.481 c +242.97 210.959 245.897 209.2 245.628 207.519 c +244.61 201.147 232.772 207.329 239.958 213.769 c +241.207 214.889 243.002 215.881 242.431 217.402 c +241.611 219.585 236.655 217.398 236.622 220.516 c +236.607 221.904 238.353 222.651 239.746 221.761 c +240.755 221.116 241.159 219.854 242.102 219.124 c +243.508 218.037 245.715 217.243 244.84 215.791 c +243.279 213.203 240.628 217.774 238.957 216.565 c +238.329 216.112 238.277 215.241 238.512 214.474 c +238.899 213.213 239.792 211.874 238.919 210.892 c +236.713 208.413 231.995 212.933 236.164 215.998 c +239.515 218.462 241.726 221.793 239.024 221.822 c +238.328 221.83 237.88 221.139 237.234 220.926 c +232.376 219.325 232.176 228.465 237.805 226.617 c +238.807 226.288 239.298 225.254 239.945 224.432 c +241.574 222.365 244.246 221.652 246.69 220.706 c +250.092 219.39 252.799 221.335 251.749 223.033 c +250.983 224.273 249.083 223.723 249.1 222.285 c +249.119 220.536 252.75 220.611 252.212 218.566 c +251.849 217.186 249.771 217.711 249.082 216.632 c +247.473 214.113 251.925 214.242 255.09 213.45 c +257.07 212.954 258.543 210.457 260.595 211.267 c +264.811 212.93 259.58 217.052 255.999 220.99 c +253.95 223.243 254.971 226.398 257.178 226.349 c +258.199 226.326 258.893 225.439 259.472 224.579 c +260.983 222.338 262.459 220.071 263.86 217.759 c +265.482 215.082 267.026 212.217 266.823 209.09 c +265.696 191.779 237.81 208.163 254.946 211.837 c +255.44 211.943 256.011 211.847 256.368 212.216 c +259.349 215.301 253.4 212.941 249.729 210.882 c +248.181 210.013 246.584 211.456 244.922 211.933 c +243.692 212.285 242.384 212.052 241.122 212.237 c +240.446 212.336 239.787 212.557 239.25 212.98 c +234.59 216.643 228.047 218.977 230.622 215.044 c +231.028 214.424 231.854 214.393 232.6 214.334 c +236.414 214.03 240.915 213.057 241.615 216.472 c +242.461 220.601 235.998 221.131 235.263 224.614 c +234.736 227.109 237.477 229.846 235.72 232.035 c +234.163 233.976 230.879 232.489 229.203 234.255 c +227.363 236.193 226.851 241.239 224.47 238.995 c +221.585 236.275 234.374 233.854 228.471 230.913 c +227.858 230.608 227.036 230.935 226.52 230.45 c +225.912 229.877 226.396 228.944 226.233 228.169 c +226.005 227.084 224.598 226.561 224.562 225.421 c +224.451 221.965 228.76 225.079 231.805 225.29 c +232.341 225.327 232.878 225.197 233.328 224.902 c +235.523 223.462 234.816 220.115 232.442 218.034 c +232.198 217.82 231.892 217.636 231.628 217.792 c +229.585 219.001 233.506 218.86 233.976 219.613 c +234.18 219.94 234.027 220.409 234.303 220.691 c +239.148 225.636 237.829 213.206 233.702 218.028 c +233.028 218.815 234.082 219.869 233.754 220.751 c +233.463 221.533 232.492 221.635 231.613 221.628 c +226.804 221.59 221.565 222.294 218.017 219.032 c +217.474 218.532 217.007 217.954 216.455 217.463 c +213.802 215.104 209.185 214.058 209.584 210.395 c +209.623 210.034 209.73 209.683 209.771 209.321 c +213.972 172.269 160.565 232.284 201.138 216.022 c +202.422 215.508 202.922 213.439 204.439 213.709 c +206.518 214.078 205.308 216.899 206.126 218.444 c +206.693 219.517 208.274 220.142 207.965 221.409 c +207.429 223.609 204.243 221.87 203.115 223.239 c +202.755 223.675 202.704 224.274 202.85 224.824 c +203.761 228.249 208.844 227.2 210.621 229.876 c +211.66 231.44 211.087 233.532 211.861 235.222 c +213.126 237.985 216.714 238.553 219.65 237.119 c +226.603 233.724 222.558 226.108 218.67 227.804 c +218.28 227.974 217.924 228.279 217.498 228.229 c +207.368 227.04 223.844 224.031 222.346 221.95 c +220.895 219.936 219.759 223.591 218.091 224.882 c +214.868 227.377 210.465 221.122 215.387 214.001 c +218.122 210.043 216.247 205.66 213.331 206.299 c +212.326 206.519 211.709 207.481 210.8 207.94 c +210.313 208.186 209.767 208.274 209.242 208.42 c +200.699 210.797 204.501 220.514 209.378 218.797 c +210.389 218.441 210.86 217.341 210.243 216.683 c +209.338 215.718 208.091 217.052 207.201 218.536 c +206.967 218.926 206.676 219.276 206.397 219.634 c +205.545 220.724 205.086 222.155 206.05 222.864 c +208.305 224.521 209.939 218.021 212.322 220.37 c +213.903 221.928 211.355 225.021 208.868 222.923 c +207.122 221.45 207.747 218.591 210.005 217.855 c +211.56 217.348 213.1 218.248 214.613 218.857 c +218.796 220.54 221.821 223.749 219.465 225.724 c +217.878 227.056 215.88 225.414 213.974 224.47 c +209.015 222.013 206.899 217.694 209.958 217.134 c +212.583 216.653 212.164 220.564 213.702 222.08 c +215.322 223.676 218.111 222.785 218.724 220.444 c +219.214 218.576 218.798 215.94 220.729 215.986 c +224.546 216.078 220.595 220.712 221.221 223.035 c +221.915 225.608 228.095 225.173 226.844 228.798 c +225.82 231.764 221.145 230.299 222.171 227.028 c +222.803 225.012 225.665 225.335 226.895 223.803 c +229.702 220.307 233.64 216.211 233.06 219.998 c +232.973 220.562 232.432 220.922 231.844 220.917 c +230.173 220.903 229.455 218.829 230.029 216.869 c +231.496 211.86 237.043 211.72 237.815 214.885 c +238.39 217.239 235.376 221.889 238.827 221.368 c +239.689 221.238 240.098 220.29 240.044 219.352 c +239.666 212.77 231.018 213.894 231.558 218.846 c +231.64 219.595 232.113 220.316 231.868 221.042 c +231.338 222.616 225.816 223.772 228.88 225.34 c +229.632 225.725 231.351 224.793 231.25 226.035 c +231.196 226.693 230.317 226.543 229.691 226.719 c +228.26 227.121 228.552 230.143 226.689 229.84 c +225.946 229.719 225.565 228.877 225.941 228.204 c +226.516 227.173 228.244 227.611 228.792 226.552 c +229.845 224.517 225.796 222.061 223.712 225.823 c +222.834 227.408 221.573 228.856 220.56 227.893 c +219.755 227.126 220.385 225.718 221.605 225.773 c +222.921 225.833 223.212 227.567 224.307 228.12 c +231.249 231.625 231.687 217.57 223.802 221.066 c +223.062 221.393 222.566 222.125 222.674 222.914 c +223.031 225.513 227.719 225.751 228.808 221.538 c +229.304 219.619 228.995 217.282 230.677 216.168 c +231.727 215.473 233.412 215.35 233.446 214.041 c +233.463 213.361 232.856 212.849 232.76 212.184 c +232.666 211.539 233.043 210.938 233.588 210.565 c +250.592 198.96 239.217 245.5 233.161 218.123 c +232.954 217.186 233.87 215.834 232.81 215.435 c +232.338 215.257 231.895 215.63 231.502 215.967 c +228.181 218.81 223.344 217.957 219.257 219.295 c +216.505 220.197 213.492 221.784 211.456 219.818 c +210.475 218.871 210.327 217.414 209.729 216.203 c +209.131 214.991 208.076 214.027 207.691 212.726 c +206.321 208.094 212.051 207.313 212.4 210.101 c +212.518 211.041 211.556 211.623 211.076 212.41 c +210.369 213.566 210.782 214.989 210.763 216.329 c +210.753 217.002 210.626 217.675 210.295 218.262 c +208.473 221.491 202.806 219.907 201.312 223.464 c +200.286 225.908 202.313 228.361 204.891 229.7 c +207.143 230.87 209.816 231.713 210.751 234.082 c +211.031 234.792 211.261 235.643 212 235.719 c +215.232 236.054 211.729 230.805 213.942 230.451 c +216.44 230.053 214.455 233.265 213.242 235.985 c +206.913 250.178 236.433 241.08 220.385 234.939 c +220.047 234.809 219.673 234.841 219.332 234.967 c +214.391 236.804 221.295 244.355 217.091 246.477 c +204.208 252.98 208.871 227.511 218.075 238.289 c +218.693 239.012 218.925 240.291 219.912 240.166 c +223.514 239.71 217.313 234.872 220.152 234.133 c +221.294 233.836 221.703 235.381 221.793 236.867 c +221.861 237.971 222.17 239.22 221.298 239.881 c +219.498 241.245 218.292 238.31 217.059 235.923 c +214.72 231.394 215.641 227.025 217.946 228.75 c +219.857 230.179 214.624 233.891 217.837 235.066 c +219.293 235.599 219.89 233.535 220.003 231.49 c +220.113 229.508 221.197 227.343 219.833 225.846 c +217.118 222.865 213.379 227.777 210.269 226.764 c +205.808 225.311 199.503 219.693 200.798 224.934 c +201.006 225.776 201.938 226.183 202.562 225.692 c +204.434 224.221 200.872 223.01 200.593 221.502 c +200.312 219.978 202.253 219.328 202.872 218.04 c +204.005 215.687 199.448 211.225 203.262 209.983 c +204.842 209.469 206.026 211.194 206.612 213.02 c +207.512 215.825 207.91 219.064 205.547 220.4 c +202.63 222.05 199.887 218.819 197.674 215.787 c +197.29 215.262 196.881 214.753 196.546 214.194 c +195.771 212.901 194.831 211.465 193.591 212.005 c +191.698 212.828 192.621 216.54 196.255 216.321 c +213.49 215.28 198.865 191.074 193.082 204.466 c +191.967 207.048 200.553 213.547 194.038 214.316 c +191.793 214.581 191.846 211.502 191.135 209.276 c +190.555 207.459 188.861 206.358 187.445 205.096 c +186.681 204.413 185.888 203.637 184.866 203.687 c +179.329 203.962 184.271 211.906 185.95 207.318 c +186.126 206.837 185.693 206.37 185.739 205.874 c +186.301 199.822 194.622 208.072 188.072 210.674 c +184.126 212.241 180.561 208.277 179.018 203.612 c +178.5 202.048 177.65 200.426 176.155 200.624 c +172.397 201.123 175.953 205.707 175.605 208.666 c +175.313 211.144 172.563 210.876 172.544 209.473 c +172.537 208.943 173.049 208.609 173.581 208.439 c +176.3 207.571 178.459 209.749 177.47 211.455 c +176.403 213.295 174.105 211.5 172.076 211.129 c +167.041 210.208 165.219 216.902 169.364 218.573 c +173.078 220.071 175.825 212.792 179.639 215.155 c +181.164 216.101 181.299 218.246 180.149 219.759 c +178.684 221.687 176.015 221.909 173.582 221.42 c +172.698 221.242 171.822 220.984 171.068 220.487 c +169.514 219.461 168.631 217.524 166.823 216.981 c +164.321 216.228 162.031 218.286 160.859 220.838 c +160.209 222.25 159.305 223.738 157.959 223.344 c +156.491 222.914 156.702 220.658 155.33 220.094 c +147.146 216.725 150.01 233.115 157.679 226.669 c +158.6 225.895 158.759 224.597 159.352 223.565 c +161.276 220.215 166.139 220.173 168.521 223.465 c +170.378 226.031 172.169 229.437 174.32 227.682 c +175.324 226.863 175.234 224.894 176.661 224.721 c +177.236 224.651 177.753 225.011 178.092 225.491 c +179.041 226.831 178.603 228.601 178.899 230.192 c +179.192 231.763 179.279 233.513 177.976 233.586 c +176.875 233.648 176.603 232.269 176.358 231.073 c +175.406 226.419 170.104 227.214 170.149 230.054 c +170.186 232.433 174.56 237.308 170.758 236 c +169.407 235.535 170.861 232.727 169.127 232.54 c +168.115 232.431 167.847 233.811 168.174 235.147 c +168.626 236.991 168.523 238.943 169.129 240.745 c +169.271 241.168 169.436 241.628 169.198 242 c +168.615 242.91 167.004 242.324 167.191 240.927 c +167.438 239.083 170.14 239.447 170.986 238.04 c +172.23 235.97 169.279 234.536 168.031 232.614 c +167.412 231.661 167.031 230.343 165.894 230.31 c +161.748 230.19 165.724 236.205 163.519 237.299 c +162.197 237.955 161.04 236.552 159.876 235.568 c +158.383 234.306 156.35 233.984 154.657 233.021 c +151.886 231.445 148.857 229.059 147.007 231.345 c +145.119 233.677 147.957 236.17 149.597 234.688 c +151.567 232.906 147.804 231.531 146.7 229.604 c +146.541 229.327 146.446 229.018 146.29 228.739 c +145.733 227.739 144.443 227.098 144.525 225.912 c +144.735 222.869 149.192 223.721 148.429 226.414 c +147.137 230.975 142.554 224.179 140.725 225.855 c +139.046 227.392 141.564 229.274 143.386 231.107 c +144.082 231.808 144.543 232.74 145.374 233.282 c +146.068 233.735 146.974 233.815 147.504 233.231 c +148.44 232.2 149.087 229.982 149.848 231.272 c +150.113 231.721 149.669 232.19 149.205 232.541 c +147.644 233.722 145.829 235.027 144.659 233.743 c +144.213 233.253 144.169 232.535 144.421 231.914 c +145.113 230.207 147.242 230.011 148.884 229.234 c +149.304 229.035 149.716 228.75 149.784 228.297 c +149.908 227.473 148.976 227.046 148.125 226.73 c +146.458 226.111 145.091 224.899 143.472 224.169 c +141.374 223.224 138.84 223.049 137.336 221.274 c +135.463 219.064 136.285 215.772 138.816 215.223 c +139.701 215.031 140.592 215.336 141.484 215.466 c +144.094 215.846 145.703 213.691 144.609 212.424 c +142.805 210.335 141.445 214.354 139.525 215.221 c +137.771 216.013 135.809 214.516 135.82 212.416 c +135.827 211.306 136.429 210.32 136.785 209.274 c +137.669 206.674 135.959 204.393 134.225 205.116 c +132.515 205.829 133.269 208.239 134.803 210.129 c +137.185 213.061 140.557 212.743 140.43 210.729 c +140.348 209.415 138.621 208.955 137.128 209.704 c +134.774 210.884 134.147 213.698 135.895 214.801 c +136.364 215.097 136.934 215.138 137.487 215.092 c +142.447 214.674 141.475 209.193 138.874 209.581 c +137.582 209.773 137.409 211.451 137.828 212.965 c +138.864 216.717 137.628 220.415 134.926 219.89 c +133.239 219.562 132.819 217.58 132.333 215.876 c +132.14 215.201 131.884 214.546 131.702 213.869 c +130.822 210.606 131.677 207.067 134.273 204.945 c +137.616 202.212 142.564 202.903 144.322 206.584 c +145.867 209.818 147.773 213.217 149.594 211.195 c +151.074 209.553 148.646 207.624 145.783 206.566 c +144.034 205.92 142.413 204.677 140.546 204.925 c +138.926 205.139 137.131 206.293 136.066 205.006 c +135.552 204.385 135.669 203.518 135.717 202.713 c +135.92 199.261 134.574 195.303 137.23 192.993 c +140.146 190.456 144.585 192.465 144.47 196.101 c +144.412 197.907 142.884 199.299 142.634 201.077 c +142.497 202.051 143.002 202.983 143.803 202.87 c +144.83 202.724 144.966 201.173 143.856 200.129 c +143.299 199.605 142.604 199.112 142.602 198.349 c +142.599 197.444 143.511 196.942 144.327 196.495 c +145.374 195.921 146.618 195.747 146.87 196.649 c +147.315 198.237 144.896 197.677 143.591 198.25 c +142.188 198.866 142.499 200.827 141.598 201.95 c +140.126 203.784 137.416 202.419 135.305 203.039 c +134.499 203.275 133.819 203.794 133.221 204.382 c +129.907 207.633 131.938 211.893 134.55 211.206 c +136.598 210.667 136.18 206.953 138.499 206.812 c +140.658 206.681 141.733 209.878 139.418 211.635 c +138.335 212.457 136.846 212.291 136.521 211.201 c +135.942 209.262 138.938 209.237 139.878 207.919 c +141.98 204.972 136.839 203.929 133.23 202.177 c +131.904 201.533 130.958 200.298 129.635 199.649 c +128.658 199.17 127.466 199.127 126.863 199.956 c +125.573 201.731 129.269 211.371 124.941 206.862 c +123.776 205.647 126.105 204.387 125.808 203.125 c +125.684 202.597 125.172 202.25 125.036 201.725 c +123.899 197.338 133.881 202.473 132.524 197.872 c +132.362 197.323 131.785 196.987 131.658 196.426 c +131.374 195.164 133.007 194.727 133.953 193.894 c +134.856 193.1 135.013 191.816 135.524 190.739 c +138.241 185.018 135.951 179.991 133.645 182.498 c +132.968 183.234 133.409 184.351 133.165 185.286 c +132.306 188.572 130.921 192.826 133.391 191.146 c +134.187 190.604 133.579 189.347 134.196 188.686 c +137.502 185.144 138.198 193.526 132.215 195.854 c +130.761 196.42 129.533 197.707 127.955 197.551 c +125.637 197.322 124.457 194.621 125.516 192.284 c +125.933 191.364 126.678 190.551 126.662 189.532 c +126.624 187.175 121.78 185.585 123.806 183.034 c +125.947 180.337 130.706 188.143 132.631 183.768 c +133.926 180.825 129.148 180.816 124.406 182.861 c +122.473 183.695 119.806 183.783 119.512 185.887 c +119.308 187.338 120.643 188.504 121.948 188.027 c +122.914 187.675 123.265 186.562 123.203 185.492 c +123.118 184.003 122.057 182.803 120.937 183.254 c +120.139 183.575 119.888 184.824 118.956 184.787 c +117.602 184.734 118.064 182.911 118.241 181.366 c +118.363 180.312 117.838 179.313 117.759 178.26 c +117.65 176.821 118.712 175.7 119.705 176.175 c +120.777 176.688 120.111 178.179 120.589 179.126 c +120.967 179.877 121.927 180.105 122.383 180.804 c +124.708 184.368 116.579 188.047 112.279 180.071 c +111.612 178.835 110.837 177.659 110.224 176.396 c +108.999 173.873 108.592 170.851 110.482 168.921 c +111.376 168.009 112.743 167.659 113.64 168.449 c +116.575 171.031 108.358 175.029 112.058 177.596 c +112.805 178.114 113.778 177.838 114.669 177.937 c +118.663 178.38 119.975 184.003 116.242 187.4 c +115.359 188.204 114.164 188.721 113.185 188.136 c +111.274 186.992 113.521 181.638 110.001 182.015 c +107.03 182.334 109.367 186.881 107.339 187.899 c +106.343 188.398 104.593 188.036 104.658 189.284 c +104.695 189.982 105.598 190.224 105.789 190.866 c +106.235 192.369 98.514 192.892 102.413 195.313 c +103.13 195.759 104.062 195.02 104.029 193.944 c +103.978 192.275 102.248 191.435 100.864 190.477 c +98.93 189.136 97.571 187.098 97.226 184.771 c +97.006 183.284 97.225 181.767 97.822 180.388 c +98.847 178.019 100.917 176.211 101.704 173.746 c +102.036 172.709 102.452 171.543 103.454 171.621 c +105.248 171.761 104.289 174.214 104.939 175.557 c +106.883 179.573 110.047 173.748 113.283 169.697 c +115.337 167.126 118.525 168.706 117.995 170.641 c +117.948 170.811 117.868 170.992 117.964 171.139 c +118.824 172.458 118.33 169.939 118.731 169.195 c +120.835 165.29 120.588 172.595 117.325 173.196 c +116.322 173.38 115.449 174.185 114.427 174.004 c +111.508 173.486 113.216 169.39 111.687 167.589 c +110.409 166.083 107.992 166.735 106.448 165.596 c +105.63 164.991 105.211 164.005 105.181 162.985 c +105.152 161.973 105.498 160.996 106.045 160.145 c +107.91 157.243 111.479 154.491 109.304 151.89 c +106.607 148.665 101.795 153.803 98.878 151.362 c +96.799 149.622 94.52 147.289 93.997 149.443 c +93.7 150.667 95.368 151.497 97.061 150.802 c +98.355 150.271 99.483 149.389 100.803 148.921 c +103.743 147.878 107.293 146.917 106.321 144.385 c +105.939 143.39 104.633 142.679 105.023 141.604 c +105.118 141.344 105.317 141.141 105.54 140.978 c +106.935 139.957 109.03 140.461 110.291 139.243 c +111.844 137.744 112.189 133.997 114.429 135.192 c +118.104 137.153 108.035 142.138 112.997 143.921 c +113.673 144.164 114.35 143.761 115.006 143.471 c +117.01 142.586 119.259 142.857 121.437 143.03 c +123.181 143.167 125.094 143.077 126.008 141.64 c +126.874 140.28 125.941 138.742 124.787 139.038 c +123.911 139.262 123.899 140.457 123.208 140.955 c +122.93 141.155 122.582 141.211 122.258 141.321 c +119.683 142.194 116.95 145.612 115.594 142.97 c +115.038 141.888 115.831 140.592 117.106 140.457 c +117.428 140.422 117.78 140.465 118.028 140.252 c +118.64 139.727 118.096 138.648 116.942 138.435 c +115.874 138.239 114.651 138.487 113.855 137.723 c +112.182 136.115 114.243 133.727 116.813 132.153 c +119.208 130.685 118.972 127.973 117.369 127.858 c +115.218 127.704 116.097 131.105 114.604 131.732 c +112.751 132.512 111.47 129.958 113.089 128.97 c +114.478 128.123 122.759 138.937 120.284 130.866 c +120.071 130.169 119.198 130.069 118.408 130.186 c +115.648 130.596 112.97 131.74 110.184 131.438 c +108.702 131.277 107.267 130.692 106.332 129.534 c +104.625 127.418 104.568 123.544 101.641 123.422 c +99.066 123.314 98.297 126.375 100.077 127.257 c +102.025 128.223 103.215 124.786 105.1 125.319 c +105.936 125.556 106.309 126.498 107.06 126.91 c +114.854 131.183 115.666 114.653 106.196 118.788 c +104.562 119.502 103.983 121.633 102.29 122.233 c +100.327 122.929 97.39 121.203 96.397 123.402 c +94.309 128.023 101.883 125.4 105.446 126.774 c +105.778 126.902 106.089 127.095 106.278 127.397 c +109.024 131.789 99.7 130.143 100.174 133.094 c +100.5 135.119 105.116 134.468 104.476 137.146 c +104.182 138.373 102.541 138.559 101.197 137.819 c +99.345 136.799 97.522 134.962 95.73 136.058 c +94.251 136.962 94.261 139.131 95.724 140.223 c +97.466 141.524 99.168 143.088 97.719 143.758 c +97.469 143.874 97.179 143.836 96.917 143.918 c +94.258 144.75 96.52 148.628 98.554 146.724 c +99.707 145.644 97.917 144.211 98.057 142.9 c +98.324 140.415 101.731 141.552 103.595 140.537 c +104.987 139.779 105.4 137.976 104.382 136.838 c +103.223 135.542 101.132 135.986 99.87 137.436 c +99.149 138.266 98.732 139.314 98.036 140.164 c +96.868 141.59 94.898 141.987 94.043 140.706 c +92.892 138.981 95.634 137 94.628 135.255 c +93.528 133.346 91.037 134.705 91.696 136.25 c +92.287 137.635 94.079 136.37 95.256 136.762 c +96.186 137.072 96.867 138.394 97.829 137.88 c +98.601 137.467 98.693 135.463 99.779 136.148 c +100.251 136.446 100.001 137.099 99.79 137.669 c +99.281 139.042 99.496 140.986 98.013 141.243 c +94.574 141.837 94.062 134.545 99.856 135.485 c +104.076 136.169 104.836 141.426 101.55 142.898 c +100.091 143.551 98.468 142.817 97.285 141.675 c +95.21 139.67 93.303 136.702 90.745 137.841 c +89.132 138.56 89.245 140.526 90.462 140.775 c +93.518 141.4 90.962 137.028 91.939 135.741 c +98.383 127.255 102.448 147.062 91.296 143.679 c +88.955 142.969 87.278 140.201 84.771 140.791 c +82.574 141.309 81.671 143.943 82.771 146.104 c +84.811 150.109 92.541 149.637 92.527 154.873 c +92.521 157.156 90.494 158.791 88.171 159.309 c +82.791 160.509 80.064 164.439 82.8 165.747 c +85.244 166.914 87.739 158.839 90.518 162.829 c +93.115 166.556 84.372 166.455 85.524 169.526 c +86.069 170.982 89.702 171.686 88.078 173.385 c +86.675 174.853 76.69 161.553 81.166 171.053 c +81.557 171.882 82.753 171.354 83.399 171.847 c +85.137 173.172 82.057 174.363 80.898 175.943 c +80.136 176.982 80.392 178.807 79.045 179.175 c +77.96 179.471 76.953 178.178 75.884 178.625 c +72.957 179.847 77.017 182.155 81.306 183.546 c +81.81 183.71 82.262 183.995 82.697 184.296 c +83.182 184.631 83.714 184.989 84.276 184.829 c +85.894 184.369 84.692 182.335 84.382 180.627 c +84.262 179.967 84.416 179.295 84.405 178.626 c +84.373 176.562 82.579 175.186 81.224 176.063 c +79.528 177.161 80.691 180.14 83.825 180.743 c +90.545 182.036 95.718 176.463 93.214 171.846 c +91.461 168.613 86.945 168.59 83.55 170.867 c +81.266 172.4 78.506 173.43 77.619 171.42 c +77.36 170.832 77.514 170.133 78.069 169.885 c +78.936 169.497 79.734 170.605 80.614 170.378 c +83.308 169.68 79.825 166.982 79.824 165.117 c +79.823 163.887 81.149 163.649 81.414 164.351 c +81.62 164.899 80.874 165.17 80.618 165.637 c +79.177 168.268 85.392 169.19 85.742 163.795 c +85.902 161.33 85.945 158.551 83.801 157.604 c +81.523 156.597 79.463 158.768 77.66 160.684 c +76.281 162.149 74.258 162.894 73.25 161.566 c +72.904 161.109 72.866 160.477 73.25 160.072 c +75.13 158.089 78.775 162.905 74.034 165.712 c +73.136 166.244 72.083 166.682 71.223 166.144 c +69.983 165.369 70.174 163.465 71.6 162.749 c +74.973 161.054 76.998 166.326 75.719 172.32 c +75.313 174.223 75.735 176.304 77.421 176.657 c +79.795 177.155 80.889 174.168 79.1 173.141 c +76.635 171.726 74.798 183.961 71.535 177.679 c +71.155 176.946 71.291 175.674 70.409 175.829 c +70.167 175.871 69.903 176.065 69.742 175.871 c +69.458 175.529 70.145 175.025 70.914 175.592 c +72.517 176.774 74.355 175.36 73.773 174.028 c +73.62 173.678 73.3 173.317 73.554 173.038 c +74.154 172.383 75.463 173.82 74.043 174.678 c +71.724 176.078 69.118 171.68 66.826 173.559 c +65.827 174.378 66.026 175.875 66.681 177.088 c +70.758 184.642 65.577 190.725 63.407 186.873 c +63.212 186.528 63.191 186.095 63.474 185.842 c +64.223 185.171 64.859 186.432 65.552 187.328 c +76.021 200.875 80.808 169.446 64.95 176.911 c +61.573 178.501 62.291 182.794 65.009 183.003 c +68.082 183.239 66.834 167.472 72.944 174.707 c +73.289 175.115 73.661 175.623 74.043 175.34 c +74.639 174.896 73.638 174.17 73.942 173.677 c +74.74 172.383 76.836 174.889 74.485 176.26 c +72.45 177.447 70.003 177.958 67.911 176.923 c +66.944 176.445 66.174 175.665 65.505 174.82 c +65.065 174.263 64.688 173.582 65.002 172.972 c +66.997 169.106 74.523 188.208 73.283 176.607 c +73.236 176.17 72.873 175.868 72.601 175.528 c +71.984 174.755 71.593 173.607 70.597 173.648 c +68.977 173.714 69.257 176.263 67.879 176.689 c +58.766 179.506 69.638 167.947 67.272 166.673 c +64.699 165.288 61.489 170.448 66.406 174.031 c +69.079 175.979 72.541 177.041 74.834 174.964 c +75.672 174.205 75.884 172.998 75.083 172.512 c +74.228 171.992 73.215 173.075 72.34 172.641 c +68.734 170.854 75.095 169.139 75.428 167.292 c +75.789 165.29 72.328 164.479 72.875 162.428 c +73.067 161.708 73.795 161.265 74.498 161.476 c +76.821 162.173 75.808 167.054 71.216 166.157 c +69.927 165.905 68.644 165.295 67.377 165.679 c +65.458 166.259 64.659 168.517 65.482 170.452 c +68.057 176.506 75.635 172.692 73.663 168.37 c +72.46 165.735 68.938 167.169 65.875 168.457 c +59.765 171.026 52.75 167.866 50.912 161.571 c +50.495 160.143 50.472 158.546 51.494 157.501 c +52.619 156.351 54.443 156.406 55.825 157.323 c +56.922 158.05 57.638 159.215 57.905 160.504 c +58.386 162.826 59.703 164.736 60.94 163.697 c +62.075 162.743 56.886 156.933 61.493 157.928 c +64.898 158.663 59.643 162.139 61.134 163.273 c +69.922 169.956 59.153 154.931 62.299 154.653 c +62.694 154.618 63.085 154.838 63.472 154.735 c +64.59 154.439 64.067 152.839 64.766 152.133 c +66.005 150.881 67.398 152.896 68.612 154.691 c +71.235 158.569 76.066 155.8 74.912 152.869 c +74.055 150.693 70.563 150.996 69.804 153.833 c +69.36 155.493 70.258 157.124 71.413 158.428 c +73.398 160.671 76.456 161.84 78.372 160.001 c +80.247 158.202 80.002 153.403 83.091 154.354 c +84.539 154.8 85.576 157.483 87.019 156.21 c +87.646 155.657 87.295 154.698 87.513 153.925 c +88.077 151.913 90.834 152.493 92.38 151.399 c +94.535 149.874 94.034 146.475 91.431 145.215 c +90.011 144.527 88.503 143.641 89.232 142.585 c +89.9 141.617 91.604 142.201 91.883 143.85 c +92.249 146.018 90.599 148.971 92.866 149.856 c +93.253 150.007 93.715 150.005 94.002 150.312 c +95.284 151.683 92.448 152.61 92.473 153.876 c +92.745 167.614 94.111 145.535 97.744 143.732 c +99.249 142.984 102.381 143.731 101.61 141.794 c +101.468 141.436 101.099 141.254 100.762 141.068 c +97.334 139.169 94.656 141.3 95.926 142.653 c +96.685 143.461 97.802 142.478 98.814 142.494 c +137.364 143.088 61.709 171.034 89.313 144.117 c +90.313 143.142 90.97 141.927 90.05 141.658 c +87.485 140.909 90.425 145.612 88.528 145.453 c +87.743 145.387 87.707 143.096 86.57 143.886 c +86.115 144.202 86.545 145.044 86.024 145.314 c +83.81 146.462 85.896 142.923 85.369 142.291 c +82.136 138.413 80.59 147.813 85.657 145.806 c +86.374 145.522 86.748 144.789 87.018 144.063 c +89.238 138.09 83.93 134.356 81.412 136.883 c +80.65 137.648 80.635 138.88 79.927 139.689 c +78.183 141.68 75.008 140.156 73.212 137.351 c +68.798 130.452 77.542 126.726 78.237 131.002 c +78.54 132.87 74.716 133.674 75.779 135.743 c +76.356 136.865 78.907 136.566 78.625 138.205 c +78.013 141.762 73.288 138.038 76.328 136.74 c +77.036 136.437 78.815 137.494 78.512 136.247 c +78.431 135.915 78.022 135.861 77.65 135.876 c +76.602 135.916 75.515 135.822 74.672 135.197 c +71.097 132.552 74.406 127.675 77.584 129.411 c +80.35 130.921 77.533 134.382 77.722 137.134 c +77.851 139.02 79.372 140.366 80.721 141.691 c +85.028 145.922 89.717 142.933 88.23 140.551 c +87.215 138.925 78.173 143.277 81.091 137.918 c +81.954 136.334 89.834 143.092 87.912 137.148 c +87.612 136.219 86.292 136.252 85.313 137.027 c +84.068 138.012 83.254 139.465 83.239 141.049 c +83.204 144.711 86.806 149.333 83.049 150.991 c +81.876 151.509 80.431 150.97 79.34 151.674 c +70.611 157.306 86.958 164.737 85.298 155.061 c +85.117 154.007 84.009 153.531 83.009 153.101 c +80.934 152.21 78.737 150.972 76.735 151.988 c +75.997 152.363 75.455 153.01 74.895 153.617 c +72.162 156.583 68.151 156.433 67.752 153.808 c +67.433 151.706 70.06 150.96 71.452 149.478 c +73.309 147.502 72.655 144.529 72.737 141.838 c +72.776 140.527 73.378 139.239 74.503 139.344 c +77.799 139.653 76.225 146.445 71.322 143.881 c +69.333 142.841 68.52 140.061 66.215 139.735 c +63.419 139.34 61.829 142.465 61.253 145.615 c +61.082 146.544 60.931 147.519 61.338 148.373 c +62.28 150.346 64.915 150.09 66.852 150.943 c +71.201 152.857 75.885 153.876 75.13 150.685 c +75.065 150.408 74.916 150.128 75.031 149.866 c +76.669 146.104 75.31 152.612 76.159 154.219 c +76.838 155.503 78.833 154.052 79.633 155.096 c +81.344 157.333 76.937 156.851 75.035 157.991 c +69.885 161.079 77.299 167.488 79.592 162.114 c +80.199 160.693 78.819 159.394 78.547 157.939 c +78.063 155.355 80.535 153.233 83.436 153.247 c +85.203 153.256 86.957 152.72 86.569 151.447 c +85.367 147.496 82.298 153.567 80.673 153.041 c +73.545 150.736 85.011 141.156 87.732 150.449 c +89.354 155.987 82.833 157.922 81.433 154.563 c +80.914 153.316 81.82 152.073 82.665 150.976 c +85.309 147.54 88.939 149.249 88.105 151.085 c +87.761 151.843 86.737 151.82 86.123 152.333 c +83.948 154.151 87.472 156.186 89.278 158.465 c +90.016 159.396 90.245 160.596 90.572 161.734 c +91.91 166.381 95.747 170.045 99.829 168.624 c +100.11 168.526 100.385 168.396 100.572 168.165 c +101.304 167.255 100.468 165.928 99.077 165.476 c +97.357 164.918 95.44 165.326 94.322 166.723 c +92.695 168.757 94.328 171.087 95.887 170.445 c +96.167 170.33 96.376 170.096 96.635 169.942 c +114.969 158.991 99.66 193.692 90.114 178.224 c +89.827 177.76 89.599 177.231 89.126 176.954 c +87.766 176.156 86.05 177.537 86.456 179.319 c +86.928 181.39 90.802 182.677 89.242 184.911 c +88.518 185.948 87.02 185.697 85.794 185.051 c +84.909 184.585 84.776 183.636 85.353 183.471 c +86.33 183.191 86.006 184.805 86.611 185.061 c +87.911 185.612 88.653 182.636 85.777 182.026 c +82.118 181.249 79.606 178.331 81.259 176.115 c +82.671 174.221 88.11 174.91 86.774 171.672 c +86.261 170.429 84.595 170.637 83.462 170.037 c +82.826 169.7 82.341 169.078 81.627 168.942 c +79.567 168.549 75.31 171.105 76.346 168.198 c +76.555 167.613 77.26 167.467 77.915 167.518 c +80.111 167.691 82.042 169.172 82.209 171.299 c +82.294 172.394 81.83 173.545 82.332 174.54 c +83.27 176.398 85.884 175.709 87.553 176.702 c +88.682 177.373 89.876 178.48 90.688 177.556 c +91.174 177.003 90.895 176.171 90.338 175.598 c +89.518 174.753 88.313 174.369 87.558 173.461 c +84.764 170.104 90.572 164.061 86.325 161.208 c +83.572 159.357 80.445 162.313 78.62 165.88 c +77.402 168.263 75.219 170.113 73.436 168.826 c +71.688 167.564 72.978 163.345 70.138 163.315 c +66.775 163.28 67.087 168.856 70.894 168.187 c +71.832 168.022 72.566 167.106 73.534 167.249 c +75.442 167.531 74.601 182.621 78.813 174.301 c +79.114 173.706 78.737 173.034 78.767 172.382 c +78.893 169.6 83.164 170.393 84.15 168.267 c +87.704 160.608 68.117 167.071 71.854 159.286 c +74.182 154.436 79.386 160.555 75.5 161.769 c +75.432 161.79 75.361 161.803 75.301 161.84 c +74.897 162.088 75.151 162.837 75.855 162.791 c +77.702 162.671 77.672 158.816 73.805 158.553 c +69.912 158.287 66.732 156.194 68.161 153.963 c +69.045 152.582 71.646 152.977 72.023 151.2 c +72.714 147.936 66.871 146.942 66.725 151.301 c +66.629 154.163 70.328 154.961 73.852 154.424 c +75.463 154.178 77.221 153.801 77.779 152.315 c +78.608 150.106 76.166 148.493 74.127 147.004 c +73.966 146.887 73.808 146.765 73.661 146.63 c +72.532 145.596 71.658 143.861 70.197 144.342 c +68.088 145.037 65.189 146.936 66.024 144.836 c +66.301 144.139 67.476 144.456 67.746 143.753 c +67.977 143.152 67.26 142.743 66.99 142.196 c +64.219 136.582 76.988 137.256 73.695 145.472 c +72.625 148.142 69.784 149.482 68.062 147.867 c +66.537 146.435 67.37 143.945 69.241 142.439 c +70.912 141.093 73.012 140.434 74.812 139.272 c +76.647 138.087 78.146 136.367 78.517 134.221 c +78.575 133.887 78.615 133.528 78.866 133.3 c +78.982 133.195 79.13 133.134 79.285 133.107 c +84.811 132.142 81.652 143.403 74.522 138.783 c +70.615 136.252 68.251 130.439 63.445 131.47 c +60.756 132.046 59.385 134.744 57.972 137.115 c +56.649 139.334 55.041 141.422 54.321 143.909 c +53.697 146.062 53.795 148.36 53.19 150.519 c +52.835 151.788 52.24 153.043 52.462 154.35 c +52.883 156.823 53.178 159.538 51.337 159.071 c +50.088 158.754 50.549 157.112 50.495 155.791 c +50.36 152.51 46.189 152.192 43.197 150.831 c +40.029 149.391 36.612 149.184 36.755 151.568 c +37.046 156.447 42.493 150.763 45.341 151.267 c +49.945 152.083 49.11 159.833 43.272 159.204 c +42.257 159.095 41.239 158.55 40.285 158.954 c +38.002 159.921 39.497 163.457 37.676 164.795 c +36.634 165.561 35.154 165.17 34.7 163.987 c +33.543 160.975 38.464 158.395 40.681 162.247 c +41.779 164.155 40.893 166.532 39.059 167.909 c +30.139 174.605 25.925 156.127 34.663 160.82 c +35.807 161.434 35.51 163.564 36.941 163.793 c +39.81 164.252 37.995 160.029 39.175 158.597 c +40.81 156.612 43.218 159.334 45.451 159.459 c +48.168 159.611 50.627 160.527 49.372 161.797 c +48.669 162.508 47.705 161.637 46.792 161.112 c +44.833 159.986 42.674 161.489 40.605 162.443 c +38.559 163.387 36.341 162.683 36.448 161.042 c +36.536 159.701 39.112 158.621 37.868 157.289 c +37.479 156.873 36.85 156.958 36.281 156.947 c +35.422 156.93 34.589 156.616 33.729 156.656 c +31.663 156.752 29.399 158.701 27.907 157.033 c +26.489 155.446 27.958 152.831 30.342 153.161 c +32.344 153.439 33.794 156.312 35.844 155.276 c +36.745 154.822 36.984 153.734 37.457 152.854 c +38.432 151.041 40.574 149.485 39.682 147.571 c +39.036 146.185 36.68 145.575 37.195 143.908 c +38.072 141.076 41.325 144.305 43.387 143.866 c +65.091 139.242 29.338 118.003 35.888 139.333 c +36.132 140.129 36.847 140.635 37.469 141.182 c +39.224 142.721 40.047 145.129 38.555 146.515 c +33.461 151.245 30.231 140.901 35.873 141.644 c +37.221 141.821 37.268 143.729 38.401 144.281 c +39.817 144.971 41.342 143.543 40.745 142.071 c +40.187 140.696 38.129 140.883 37.413 139.633 c +36.996 138.903 37.241 138.019 37.151 137.193 c +36.849 134.417 33.418 133.388 32.467 130.864 c +31.512 128.332 33.41 125.147 31.511 123.019 c +29.044 120.256 24.936 123.375 21.812 122.198 c +21.327 122.015 20.79 121.774 20.405 122.102 c +18.013 124.142 23.179 123.888 23.622 125.007 c +23.995 125.947 22.983 126.899 21.76 126.7 c +20.532 126.5 19.2 125.425 18.364 126.418 c +14.416 131.107 24.184 128.621 24.863 130.417 c +25.452 131.978 22.209 135.547 25.196 135.624 c +25.698 135.637 26.072 135.223 26.527 135.03 c +29.035 133.966 30.352 137.716 29.666 141.827 c +29.156 144.876 27.705 147.732 25.63 146.684 c +24.509 146.117 23.922 144.116 22.613 144.77 c +22.322 144.916 22.136 145.216 22.173 145.536 c +23.11 153.623 24.769 140.548 26.503 140.186 c +33.3 138.767 25.123 146.686 26.339 148.16 c +27.495 149.56 29.502 148.163 30.921 146.328 c +33.855 142.53 38.519 140.775 42.735 138.526 c +46.005 136.782 48.389 133.609 46.541 131.163 c +45.81 130.195 44.395 129.714 44.236 128.472 c +44.124 127.6 44.789 126.839 45.566 127.009 c +48.16 127.577 44.753 131.251 46.547 132.142 c +48.938 133.328 50.714 128.471 46.857 128.006 c +46.14 127.919 45.452 128.236 44.739 128.328 c +42.623 128.602 40.772 127.103 39.827 125.126 c +39.042 123.483 38.424 121.439 36.652 121.403 c +35.933 121.388 35.267 121.83 35.187 122.519 c +34.685 126.864 40.497 122.602 41.894 124.017 c +42.988 125.124 42.046 126.883 40.579 128.015 c +35.296 132.091 28.359 131.158 27.654 126.253 c +27.482 125.059 27.902 123.838 28.879 123.144 c +31 121.636 33.206 123.666 32.295 125.204 c +31.414 126.692 28.876 128.504 30.869 128.469 c +31.07 128.466 31.241 128.337 31.43 128.271 c +33.236 127.644 33.801 135.659 36.52 131.877 c +37.357 130.713 35.472 129.998 34.352 129.027 c +32.998 127.852 31.57 126.178 30.902 127.547 c +30.426 128.523 31.76 129.221 33.229 129.376 c +35.686 129.634 38.573 130.416 39.265 128.223 c +39.719 126.783 38.172 124.912 39.503 123.821 c +40.521 122.987 41.878 124.043 43.087 123.82 c +50.266 122.493 43.544 109.815 37.007 117.326 c +36.107 118.36 35.854 119.757 35.449 121.061 c +35.087 122.228 34.984 123.565 35.991 123.882 c +41.569 125.642 34.495 119.084 34.625 116.482 c +34.676 115.464 35.591 114.797 36.523 114.328 c +38.567 113.3 40.992 112.809 42.753 114.175 c +43.286 114.588 43.826 115.148 44.447 114.916 c +45.834 114.4 44.518 112.749 43.302 111.293 c +40.589 108.045 45.184 104.249 50.895 102.58 c +51.9 102.287 52.911 101.916 53.957 102.016 c +60.451 102.633 59.062 111.363 53.919 110.619 c +52.544 110.42 51.696 109.16 51.056 107.906 c +50.926 107.651 50.798 107.381 50.842 107.098 c +51.135 105.169 53.343 107.228 54.869 107.238 c +55.719 107.245 56.382 106.492 57.227 106.446 c +58.18 106.393 59.232 107.238 59.975 106.525 c +60.547 105.978 60.233 104.722 61.114 104.513 c +61.985 104.306 62.565 105.504 62.047 106.711 c +60.645 109.973 57.432 113.448 60.316 115.327 c +61.048 115.804 61.993 115.768 62.764 116.172 c +64.147 116.896 64.478 118.618 65.401 119.845 c +68.597 124.093 74.007 120.8 72.626 117.428 c +71.581 114.877 67.197 116.267 66.214 113.651 c +65.741 112.393 66.474 110.521 65.087 109.997 c +64.746 109.868 64.363 109.929 64.016 109.816 c +59.876 108.471 65.879 104.695 65.261 102.561 c +64.694 100.601 62.07 100.871 59.785 101.662 c +57.247 102.541 55.086 101.074 55.788 99.567 c +56.336 98.391 59.765 98.099 58.297 96.526 c +57.257 95.413 54.866 100.183 53.997 97.356 c +53.724 96.469 55.055 95.81 56.385 96.565 c +58.097 97.538 59.487 98.981 61.158 100.02 c +63.567 101.519 66.178 103.379 64.984 105.559 c +63.712 107.881 59.525 110.384 62.569 111.038 c +63.67 111.274 65.286 108.808 66.049 110.488 c +66.568 111.632 64.097 112.167 64.716 113.337 c +65.612 115.028 69 112.47 66.276 110.062 c +65.855 109.69 65.363 109.382 65.081 108.895 c +64.273 107.501 65.539 105.763 64.86 104.328 c +63.729 101.939 59.749 103.471 58.534 101.181 c +57.153 98.576 60.462 95.84 62.934 97.853 c +64.313 98.975 63.973 101.105 64.974 102.521 c +65.909 103.843 66.402 105.374 65.29 105.521 c +61.646 106.001 66.4 101.082 64.564 100.579 c +63.51 100.29 62.656 101.915 63.822 103.227 c +64.563 104.061 65.765 104.223 66.206 103.42 c +68.152 99.88 61.826 101.992 61.159 100.535 c +60.308 98.679 63.194 98.323 64.968 97.283 c +67.282 95.926 69.223 91.848 70.999 94.282 c +72.353 96.14 69.444 97.797 65.948 98.025 c +64.44 98.123 62.991 98.67 61.481 98.712 c +58.142 98.806 55.195 96.452 55.328 93.286 c +55.383 91.962 56.471 91.111 57.231 91.68 c +57.924 92.2 57.321 93.404 58.013 93.925 c +60.343 95.678 62.347 89.798 57.667 89.76 c +56.07 89.747 54.754 90.823 53.684 92.021 c +52.341 93.527 51.582 95.591 52.902 96.786 c +53.803 97.6 55.322 97.318 56.126 98.252 c +56.82 99.058 56.616 100.295 55.692 100.795 c +53.288 102.095 50.848 98.496 53.417 96.536 c +55.123 95.235 59.369 95.89 58.313 93.304 c +57.742 91.904 55.852 92.569 54.232 93.39 c +53.436 93.793 52.535 94.057 51.965 94.749 c +51.485 95.33 51.339 96.112 50.909 96.729 c +50.055 97.955 48.451 98.266 46.942 98.074 c +42.929 97.562 38.971 98.304 39.918 100.955 c +41.016 104.029 41.887 108.346 39.914 106.129 c +39.573 105.746 39.314 105.076 38.968 105.428 c +38.445 105.962 39.642 106.194 39.64 106.622 c +39.633 107.796 38.372 106.389 37.607 106.362 c +34.121 106.238 37.678 112.266 40.683 108.696 c +42.059 107.061 41.846 104.731 42.488 102.719 c +42.885 101.476 43.623 100.296 43.488 98.989 c +43.19 96.109 39.627 95.348 38.029 93.11 c +37.14 91.864 37.514 90.304 38.626 90.262 c +41.63 90.148 38.243 93.533 38.041 95.722 c +37.605 100.463 43.536 96.724 48.609 92.646 c +50.15 91.406 52.316 91.576 52.824 93.138 c +54.054 96.925 48.062 95.43 45.702 97.132 c +26.517 110.961 68.771 120.354 57.546 99.53 c +57.23 98.945 56.706 98.485 56.056 98.352 c +52.394 97.597 52.859 103.172 50.505 104.904 c +47.245 107.303 43.061 103.657 44.934 100.197 c +46.425 97.444 49.951 98.767 49.547 100.97 c +49.276 102.452 47.222 102.859 46.012 101.524 c +44.345 99.683 45.396 94.991 42.217 95.388 c +40.119 95.65 40.497 98.416 39.988 100.472 c +39.589 102.086 38.256 103.295 37.78 104.885 c +37.147 106.996 38.054 109.194 39.589 110.809 c +41.761 113.093 45.173 113.677 46.722 111.434 c +48.786 108.445 44.994 105.607 42.102 102.883 c +37.349 98.408 29.631 107.326 36.201 106.101 c +36.569 106.032 36.852 105.708 37.23 105.695 c +38.033 105.668 38.86 107.496 39.593 106.466 c +40.068 105.798 38.992 105.011 37.557 105.4 c +34.705 106.174 31.679 104.595 28.848 105.465 c +23.5 107.11 19.951 103.754 22.411 102.371 c +22.829 102.136 23.336 102.226 23.801 102.128 c +24.749 101.928 25.39 101.043 25.3 100.077 c +25.205 99.057 24.314 98.341 23.967 97.389 c +22.9 94.462 26.116 91.998 28.449 93.684 c +29.372 94.351 30.323 95.415 31.011 94.622 c +32.037 93.437 29.807 92.518 27.118 93.172 c +25.488 93.569 23.862 92.62 23.11 91.086 c +21.785 88.384 19.798 86.18 18.72 87.92 c +18.038 89.019 19.194 90.432 20.591 89.985 c +24.668 88.679 19.415 84.372 20.027 81.753 c +20.585 79.364 23.388 79.903 23.292 81.443 c +23.235 82.354 22.047 82.706 21.04 82.165 c +20.221 81.724 19.65 80.918 19.584 79.992 c +19.149 73.853 28.925 74.275 27.837 80.569 c +27.553 82.213 27.121 84.102 28.497 84.056 c +30.126 84.002 29.229 81.632 30.137 80.844 c +41.581 70.923 26.597 89.852 28.62 92.005 c +30.78 94.304 33.165 90.134 32.835 84.702 c +32.668 81.951 34.695 79.684 36.858 80.434 c +38.111 80.869 39.168 82.474 40.368 81.688 c +41.747 80.784 40.767 78.299 38.133 77.97 c +37.108 77.842 36.068 77.92 35.04 77.812 c +32.144 77.508 28.764 76.804 27.998 79.372 c +27.528 80.948 28.848 82.412 30.27 81.977 c +33.103 81.112 38.573 68.675 36.934 76.83 c +36.903 76.982 36.83 77.122 36.796 77.274 c +35.907 81.299 41.374 77.336 42.982 78.293 c +47.979 81.267 38.534 86.86 32.399 79.352 c +29.965 76.375 27.548 72.857 30.227 71.191 c +32.263 69.925 35.372 72.691 37.091 70.576 c +38.706 68.588 36.144 66.654 34.976 67.998 c +33.521 69.674 36.977 70.536 36.994 71.981 c +37.004 72.876 36.122 73.441 35.181 73.615 c +31.144 74.362 27.395 76.017 29.357 78.039 c +30.385 79.099 32.555 77.983 33.346 79.392 c +35.17 82.645 29.193 81.974 28.286 83.883 c +28.09 84.296 28.063 84.803 27.714 85.106 c +26.926 85.789 25.629 85.075 25.612 83.79 c +25.591 82.283 27.521 80.853 26.482 79.487 c +25.595 78.32 23.04 79.391 22.634 77.665 c +22.479 77.008 22.972 76.439 23.431 75.929 c +27.703 71.177 23.962 66.011 20.993 67.582 c +19.501 68.373 19.797 70.394 19.261 71.944 c +18.563 73.967 16.431 75.019 15.277 76.794 c +14.965 77.274 14.728 77.803 14.356 78.237 c +12.189 80.764 8.544 78.886 5.254 77.957 c +2.561 77.197 0.287 75.474 1.494 73.814 c +3.41 71.18 5.36 75.667 7.792 77.434 c +8.949 78.275 10.792 78.592 10.742 80.06 c +10.641 83.01 6.092 81.153 5.114 83.125 c +4.555 84.252 5.364 85.581 6.649 85.66 c +9.277 85.822 9.886 78.832 13.31 81.214 c +14.611 82.118 13.786 83.922 13.318 85.519 c +12.488 88.355 14.323 91.08 16.679 90.569 c +20.479 89.743 26.64 85.59 24.391 89.768 c +24.123 90.266 23.504 90.41 23.103 90.798 c +21.296 92.547 24.254 94.492 25.188 96.636 c +25.537 97.436 25.485 98.391 24.796 98.853 c +23.066 100.01 20.428 97.251 22.533 94.354 c +25.719 89.969 29.966 95.315 27.08 96.549 c +26.11 96.964 25.249 95.575 24.277 95.939 c +18.838 97.977 28.251 99.65 28.506 101.418 c +28.748 103.093 26.546 103.424 25.102 104.294 c +23.575 105.214 22.025 106.916 20.891 105.644 c +20.096 104.754 20.852 103.476 21.804 102.518 c +24.602 99.702 27.799 101.556 26.944 103.263 c +26.391 104.366 24.828 103.887 23.606 102.947 c +22.925 102.424 22.382 101.666 22.859 101.117 c +25.174 98.453 23.867 104.1 24.865 105.612 c +28.524 111.164 29.57 99.918 31.968 100.665 c +40.94 103.459 26.106 112.941 28.36 103.583 c +28.423 103.323 28.606 103.106 28.86 103.021 c +30.919 102.337 29.557 105.399 29.688 107.373 c +29.8 109.068 32.912 110.332 31.541 112.069 c +30.778 113.034 29.26 112.527 28.342 111.357 c +21.63 102.796 34.211 97.146 36.227 103.494 c +37.087 106.2 32.806 108.395 34.15 111.111 c +35.212 113.257 38.415 112.917 39.049 110.529 c +39.63 108.345 39.323 105.113 41.27 106.089 c +42.944 106.927 40.83 108.678 40.208 110.332 c +40.149 110.49 40.098 110.667 39.947 110.742 c +37.028 112.195 41.113 107.764 39.664 107.774 c +39.015 107.778 39.374 108.651 39.324 109.281 c +38.913 114.439 36.694 107.01 36.839 102.3 c +37.298 87.427 13.902 103.843 29.284 111.341 c +32.415 112.867 35.871 111.128 39.25 110.415 c +41.692 109.899 44.237 109.964 46.582 110.822 c +48.465 111.512 50.139 112.693 51.325 114.311 c +52.743 116.245 51.35 118.124 50.228 117.516 c +48.106 116.367 51.887 114.347 50.933 113.132 c +50.724 112.866 50.371 112.765 50.135 112.524 c +45.346 107.633 56.197 110.602 57.217 108.897 c +58.283 107.111 55.904 105.262 52.848 105.256 c +50.514 105.252 47.973 104.899 47.029 102.853 c +43.751 95.74 55.429 92.931 55.923 100.187 c +55.996 101.268 55.392 102.234 55.011 103.242 c +53.478 107.292 55.77 111.667 59.597 111.621 c +60.797 111.606 61.888 111.032 62.895 110.381 c +64.84 109.124 66.602 107.546 68.771 106.722 c +70.688 105.994 72.775 105.916 74.75 105.378 c +75.728 105.112 76.699 104.714 77.318 103.912 c +79.542 101.031 75.989 97.821 75.409 94.485 c +74.958 91.889 76.478 89.328 78.959 89.119 c +80.708 88.971 82.276 90.187 82.599 91.917 c +82.914 93.609 81.758 95.173 80.284 94.901 c +79.112 94.685 78.672 93.383 78.37 92.182 c +77.906 90.334 77.312 88.508 77.148 86.608 c +76.775 82.289 78.537 77.609 76.076 73.944 c +75.116 72.515 73.814 70.959 74.842 69.703 c +77.768 66.129 84.298 73.514 77.272 76.983 c +74.008 78.595 70.367 76.829 67.23 74.834 c +66.105 74.118 64.991 73.384 63.823 72.74 c +62.669 72.104 61.46 71.265 61.706 70.051 c +61.955 68.821 63.436 68.594 64.574 68.066 c +65.738 67.525 67.03 66.71 67.814 67.628 c +69.373 69.454 65.922 70.124 63.125 70.981 c +54.836 73.523 61.355 88.677 71.254 81.465 c +72.838 80.311 74.616 80.473 74.481 81.625 c +74.364 82.619 73.024 82.386 71.834 82.05 c +67.989 80.963 65.605 85.425 68.113 87.589 c +70.195 89.385 72.919 87.145 71.836 85.145 c +71.611 84.731 71.181 84.457 70.718 84.511 c +64.27 85.261 74.508 88.378 75.638 90.965 c +76.091 92.001 75.458 93.095 74.791 94.038 c +73.169 96.333 71.285 98.662 68.517 99.074 c +65.307 99.552 62.431 97.136 62.911 94.171 c +63.465 90.749 67.818 89.429 70.735 91.889 c +74.209 94.818 73.222 100.437 68.916 102.19 c +67.664 102.7 66.12 102.866 65.545 104.102 c +64.326 106.725 68.107 109.639 72.121 107.407 c +74.912 105.855 77.884 103.377 80.113 105.456 c +81.251 106.518 80.999 108.269 79.752 108.572 c +78.18 108.953 77.817 106.777 76.739 105.752 c +74.899 104.002 71.799 105.457 70.779 108.412 c +70.233 109.994 70.306 111.801 71.529 112.884 c +73.504 114.635 77.112 113.003 78.731 115.278 c +79.047 115.723 79.197 116.264 79.156 116.808 c +78.791 121.773 70.743 121.549 70.939 115.707 c +71.066 111.887 75.588 111.789 75.981 114.272 c +76.197 115.639 74.635 117.885 76.409 117.952 c +78.115 118.017 76.419 113.578 78.77 114.317 c +79.772 114.632 79.111 116.032 79.639 116.725 c +81.578 119.272 83.268 113.763 85.01 114.777 c +86.724 115.775 85.053 119.351 81.14 118.274 c +79.492 117.82 78.173 116.579 78.828 115.37 c +79.815 113.552 83.431 114.781 82.908 118.361 c +82.784 119.208 82.462 120.023 81.888 120.659 c +79.016 123.843 76.969 127.605 79.877 127.459 c +81.551 127.375 81.327 118.257 84.623 122.711 c +86.799 125.651 77.781 124.633 80.159 127.657 c +80.908 128.609 82.64 127.901 82.645 126.244 c +82.654 123.395 78.978 123.049 75.756 122.813 c +73.836 122.673 71.943 122.039 70.62 120.645 c +67.992 117.877 65.368 113.974 63.181 116.507 c +61.988 117.89 62.92 120.039 64.745 120.113 c +S +0 1 0 rg +398.5 312 m +398.5 312.398 398.342 312.779 398.061 313.061 c +397.779 313.342 397.398 313.5 397 313.5 c +396.602 313.5 396.221 313.342 395.939 313.061 c +395.658 312.779 395.5 312.398 395.5 312 c +395.5 311.602 395.658 311.221 395.939 310.939 c +396.221 310.658 396.602 310.5 397 310.5 c +397.398 310.5 397.779 310.658 398.061 310.939 c +398.342 311.221 398.5 311.602 398.5 312 c +f +1 0 0 rg +66.245 120.113 m +66.245 120.51 66.087 120.892 65.806 121.173 c +65.525 121.455 65.143 121.613 64.745 121.613 c +64.347 121.613 63.966 121.455 63.685 121.173 c +63.403 120.892 63.245 120.51 63.245 120.113 c +63.245 119.715 63.403 119.333 63.685 119.052 c +63.966 118.771 64.347 118.613 64.745 118.613 c +65.143 118.613 65.525 118.771 65.806 119.052 c +66.087 119.333 66.245 119.715 66.245 120.113 c +f +0.556 0.556 1 RG +397 312 m +399.53 312.434 401.574 314.305 402.229 316.788 c +403.587 321.939 398.647 325.604 395.418 323.171 c +394.765 322.68 394.369 321.88 394.666 321.148 c +395.357 319.442 397.835 320.507 399.018 319.416 c +399.24 319.212 399.395 318.949 399.557 318.695 c +402.495 314.091 408.258 314.03 409.303 317.705 c +409.918 319.868 407.934 321.638 407.228 323.707 c +406.613 325.508 405.661 327.334 404.354 326.577 c +403.188 325.901 403.672 323.961 405.435 323.306 c +406.461 322.925 407.597 322.973 408.63 322.61 c +411.34 321.654 413.517 318.075 416.21 319.662 c +416.988 320.121 417.602 321.048 418.505 320.842 c +419.126 320.701 419.629 319.968 420.251 320.251 c +420.577 320.399 420.689 320.781 420.924 321.044 c +422.176 322.445 423.827 320.321 425.421 320.226 c +426.402 320.168 427.299 320.884 428.275 320.722 c +439.722 318.821 422.987 303.908 416.727 316.656 c +415.003 320.167 409.571 316.468 413.098 315.847 c +413.563 315.766 414.01 316.424 414.45 316.107 c +415.129 315.619 414.08 314.306 412.456 315.139 c +411.279 315.742 409.803 315.983 409.193 317.174 c +408.814 317.913 408.926 318.841 408.427 319.513 c +407.985 320.11 407.181 320.322 406.734 320.915 c +405.592 322.428 407.734 325.803 405.231 326.399 c +403.598 326.788 400.433 319.807 399.274 324.319 c +398.962 325.536 407.093 329.639 401.514 329.345 c +400.575 329.296 400.619 326.915 399.348 327.542 c +398.917 327.755 398.996 328.344 398.766 328.741 c +397.764 330.47 396.169 327.938 394.543 327.267 c +393.279 326.746 391.936 327.712 390.614 327.491 c +388.619 327.158 387.637 324.35 385.5 324.626 c +385.181 324.668 384.868 324.794 384.548 324.744 c +383.031 324.507 382.976 322.108 384.811 321.784 c +388.844 321.075 388.563 327.693 384.564 326.615 c +384.036 326.473 383.582 326.021 383.032 326.121 c +381.729 326.359 382.292 329.142 380.654 328.952 c +377.795 328.62 381.322 325.515 380.73 324.246 c +376.939 316.116 380.074 330.284 378.288 334.087 c +378.053 334.585 377.588 334.994 377.589 335.552 c +377.593 338.554 380.887 335.595 383.545 332.576 c +385.465 330.396 387.874 332.698 386.812 334 c +385.958 335.046 384.447 333.456 383.492 334.154 c +383.354 334.255 383.251 334.395 383.15 334.533 c +381.07 337.357 378.714 340.015 375.715 341.841 c +370.338 345.114 365.642 340.972 367.485 338.036 c +368.544 336.348 370.954 336.822 372.91 337.926 c +374.241 338.678 375.52 339.517 376.786 340.375 c +378.4 341.468 380.045 342.813 379.994 344.726 c +379.967 345.759 379.391 346.662 378.888 347.561 c +377.742 349.61 375.601 349.604 375.515 348.363 c +375.444 347.346 382.31 345.08 377.899 344.681 c +376.951 344.595 377.564 348.64 375.787 347.047 c +375.553 346.837 375.631 346.485 375.604 346.175 c +375.518 345.185 374.415 344.771 373.795 344.029 c +372.282 342.219 373.943 339.479 372.774 337.512 c +371.45 335.285 368.15 335.534 367.176 337.933 c +365.548 341.945 371.644 346.047 377.461 341.937 c +382.821 338.149 387.357 341.964 385.25 344.137 c +384.946 344.451 384.512 344.587 384.075 344.596 c +382.53 344.626 381.481 343.191 382.148 342.061 c +383.331 340.058 387.144 342.129 386.434 346.874 c +385.897 350.462 389.936 350.581 389.608 348.769 c +389.576 348.593 389.464 348.447 389.358 348.303 c +387.335 345.543 386.761 341.401 383.385 340.409 c +379.879 339.378 377.011 342.878 373.532 343.334 c +371.118 343.651 368.752 342.507 367.444 340.449 c +366.365 338.752 366.336 336.531 367.9 335.544 c +370.348 333.998 378.254 338.375 376.646 333.059 c +376.56 332.776 376.373 332.523 376.09 332.447 c +375.8 332.369 375.51 332.503 375.27 332.685 c +373.003 334.408 374.983 339.166 371.801 340.114 c +369.261 340.871 366.49 341.896 368.217 342.908 c +369.036 343.388 369.653 342.297 370.309 341.512 c +371.87 339.644 374.061 341.351 373.309 342.611 c +372.806 343.455 371.622 342.809 370.814 343.152 c +369.817 343.577 368.757 344.939 368.318 343.872 c +368.122 343.395 368.601 342.957 369.171 342.771 c +371.895 341.885 374.8 343.302 376.135 345.887 c +376.506 346.604 376.733 347.383 376.927 348.166 c +377.472 350.363 377.764 352.613 378.142 354.844 c +378.935 359.518 381.472 364.005 385.504 363.224 c +388.499 362.643 389.038 359.221 387.026 358.323 c +385.184 357.501 381.165 362.746 380.291 358.799 c +378.558 350.966 388.335 360.822 389.446 358.13 c +389.836 357.187 388.961 355.951 389.747 355.175 c +390.987 353.95 393.039 356.013 392.474 359.245 c +391.664 363.87 392.957 369.729 388.529 371.451 c +387.589 371.816 386.554 371.807 385.581 372.066 c +382.9 372.781 381.069 375.289 381.463 377.998 c +381.89 380.937 385.021 381.317 385.591 379.605 c +385.95 378.526 384.846 377.502 383.691 377.902 c +381.931 378.513 382.683 380.827 382.842 382.777 c +383.402 389.666 388.826 393.374 388.963 389.289 c +389.031 387.24 385.184 387.516 385.365 385.399 c +386.355 373.823 391.879 391.809 394.197 391.427 c +395.503 391.211 396.346 389.312 397.727 389.861 c +398.07 389.997 398.323 390.304 398.676 390.413 c +401.493 391.285 399.978 386.846 401.183 385.453 c +404.633 381.466 410.215 389.236 404.093 391.289 c +403.407 391.519 402.64 391.41 402.128 390.906 c +400.085 388.891 397.798 384.571 397.627 387.726 c +397.591 388.378 398.285 388.744 398.984 388.888 c +400.158 389.129 401.45 388.911 401.716 387.871 c +402.384 385.248 398.221 385.991 397.189 384.424 c +396.467 383.328 397.069 381.288 395.585 380.994 c +393.669 380.615 394.132 383.38 393.848 385.452 c +392.49 395.386 378.5 387.219 385.698 381.519 c +387.078 380.427 388.907 381.351 388.7 382.733 c +388.395 384.777 385.192 384.456 385.378 382.188 c +385.559 379.975 388.759 380.804 389.943 379.435 c +391.567 377.556 388.511 374.364 390.562 372.628 c +395.508 368.44 399.834 379.279 392.322 379.413 c +389.989 379.454 389.108 376.767 388.15 374.527 c +386.891 371.578 384.19 369.32 381.298 370.15 c +380.488 370.382 379.616 370.828 378.963 370.306 c +377.477 369.119 380.048 366.977 378.88 365.719 c +376.338 362.982 375.064 369.338 372.997 368.652 c +370.939 367.969 372.631 365.414 372.889 363.308 c +373.585 357.619 365.059 356.314 364.042 362.096 c +363.882 363.003 364.163 363.958 364.936 364.43 c +368.093 366.358 368.713 361.036 369.564 356.538 c +370.738 350.328 379.102 349.096 382.028 354.715 c +382.145 354.941 382.246 355.175 382.351 355.407 c +382.521 355.783 382.713 356.163 383.052 356.399 c +384.018 357.071 385.314 356.397 385.912 355.217 c +386.221 354.609 386.477 353.87 387.145 353.794 c +389.448 353.531 385.001 363.731 389.916 359.713 c +390.014 359.633 390.087 359.526 390.169 359.429 c +392.084 357.159 396.307 359.115 396.005 363.216 c +395.851 365.299 394.422 367.115 392.398 367.277 c +388.375 367.598 387.167 362.687 390.053 361.364 c +392.187 360.387 394.032 363.239 396.19 362.815 c +396.872 362.681 397.443 362.231 397.798 361.631 c +399.264 359.158 396.727 356.132 397.879 353.568 c +398.845 351.42 401.627 350.88 403.163 352.557 c +403.41 352.827 403.598 353.157 403.595 353.522 c +403.586 354.488 402.405 354.934 402.183 355.839 c +401.038 360.505 406.643 355.929 411.078 353.092 c +413.534 351.521 417.294 353.858 419.346 351.496 c +421.43 349.097 417.717 341.749 422.858 342.239 c +424.048 342.352 424.817 343.491 424.874 344.735 c +425.041 348.417 423.56 353.431 426.92 352.433 c +428.31 352.021 428.369 350.24 428.122 348.652 c +427.87 347.036 427.718 345.402 427.31 343.818 c +426.835 341.973 426.357 339.867 427.871 338.906 c +428.301 338.633 428.818 338.562 429.311 338.438 c +432.78 337.566 436.72 335.11 438.321 338.178 c +441.071 343.445 432.656 345.208 432.609 340.505 c +432.588 338.285 449.017 334.125 438.659 332.946 c +437.669 332.834 437.14 333.977 436.256 334.316 c +434.481 334.995 433.239 332.896 432.428 330.846 c +429.738 324.044 434.34 319.599 436.566 322.256 c +437.611 323.504 436.734 325.437 434.946 326.002 c +432.649 326.727 429.996 327.479 431.058 329.105 c +434.511 334.393 435.21 320.743 438.387 324.2 c +439.678 325.603 430.243 331.349 436.899 331.371 c +437.883 331.375 438.09 330.122 438.778 329.51 c +444.451 324.465 443.49 337.084 446.613 337.318 c +448.616 337.468 451.62 335.526 451.701 337.882 c +451.765 339.724 448.495 339.225 448.387 340.942 c +448.331 341.842 449.285 342.449 450.066 342.014 c +453.801 339.932 446.823 337.611 447.771 335.747 c +448.812 333.702 451.161 336.14 453.048 336.117 c +454.261 336.103 455.133 335.101 456.137 334.44 c +457.241 333.714 458.677 333.507 459.472 334.446 c +459.93 334.987 460.155 335.884 460.879 335.809 c +461.799 335.713 462.035 334.289 460.935 333.677 c +458.597 332.377 456.576 336.025 457.783 340.447 c +458.693 343.78 458.09 347.518 455.116 348.687 c +453.984 349.133 452.684 348.997 451.807 348.17 c +451.523 347.903 451.299 347.568 450.961 347.37 c +446.555 344.793 445.846 354.344 454.475 356.806 c +456.696 357.44 459.248 358.081 459.939 356.167 c +460.361 354.996 459.411 353.925 458.874 352.812 c +457.476 349.914 454.734 349.673 454.794 351.256 c +454.861 353.014 457.516 351.824 458.142 352.925 c +458.491 353.539 458.014 354.348 458.407 354.943 c +459.176 356.109 461.409 355.154 461.315 352.723 c +460.743 338.094 441.899 346.259 448.692 353.596 c +449.882 354.881 451.829 354.466 453.588 354.21 c +455.453 353.939 457.497 354.204 458.29 355.817 c +459.507 358.289 456.323 360.87 457.397 363.363 c +458.324 365.514 461.257 365.72 463.437 364.212 c +464.494 363.481 465.677 362.588 466.64 363.324 c +467.502 363.984 467.296 365.353 466.256 365.846 c +465.499 366.205 464.596 365.915 464.16 365.194 c +463.112 363.463 465.426 361.497 464.606 359.724 c +464.073 358.573 462.631 358.397 461.561 357.76 c +458.976 356.223 458.706 352.648 460.462 349.971 c +460.812 349.438 461.239 348.932 461.349 348.301 c +461.608 346.807 460.077 345.643 460.086 344.158 c +460.103 341.185 470.701 339.092 465.329 335.295 c +464.173 334.478 462.566 335.258 462.48 336.682 c +462.251 340.454 469.944 341.146 469.831 334.531 c +469.78 331.557 471.64 329.75 472.649 331.01 c +473.185 331.679 472.586 332.541 472.022 333.276 c +470.141 335.729 470.054 339.1 471.703 341.725 c +473.012 343.808 475.56 344.262 476.359 342.635 c +477.356 340.604 474.36 339.741 472.565 338.325 c +471.517 337.498 471.005 336.146 469.919 335.366 c +465.313 332.059 460.712 327.563 465.069 327.692 c +466.615 327.738 466.774 329.92 468.067 330.481 c +469.518 331.111 470.762 329.638 471.87 328.375 c +474.035 325.907 477.546 325.034 479.458 327.228 c +480.136 328.005 481.04 328.544 481.395 327.88 c +481.529 327.63 481.426 327.33 481.237 327.108 c +480.42 326.144 478.969 326.611 477.778 327.311 c +476.351 328.15 475.063 329.436 475.679 330.789 c +476.401 332.375 480.634 332.422 479.269 334.731 c +478.007 336.864 476.291 333.661 474.958 330.55 c +473.974 328.252 470.542 327.743 470.077 325.186 c +469.453 321.765 474.589 314.818 469.318 315.826 c +468.27 316.026 467.838 317.213 466.963 317.775 c +466.076 318.346 464.901 318.207 464.244 317.397 c +462.658 315.441 465.162 313.245 467.56 311.476 c +468.54 310.753 469.632 309.908 470.67 310.46 c +473.212 311.814 471.061 316.601 467.29 314.716 c +465.72 313.93 464.492 311.771 462.862 312.683 c +460.027 314.267 463.237 320.43 468.679 317.095 c +471.34 315.465 473.01 312.532 475.834 311.181 c +480.786 308.814 482.888 304.506 479.888 303.755 c +478.13 303.314 476.393 306.497 474.692 304.94 c +472.793 303.202 476.247 300.074 481.205 302.156 c +485.259 303.858 488.807 306.603 486.538 308.822 c +485.864 309.482 484.85 309.501 483.942 309.728 c +482.648 310.052 481.794 311.18 482.402 312.03 c +485.996 317.051 485.497 306.927 487.207 306.821 c +501.183 305.959 480.424 314.528 481.843 316.829 c +483.472 319.471 488.332 316.801 486.049 313.114 c +485.918 312.903 485.746 312.705 485.502 312.662 c +473.866 310.602 492.433 314.791 490.057 317.383 c +489.414 318.085 485.253 317.192 487.233 318.838 c +487.523 319.08 487.915 318.849 488.257 318.64 c +488.971 318.204 489.846 318.065 490.486 317.523 c +491.045 317.049 491.345 316.339 491.301 315.608 c +491.195 313.894 490.452 311.766 492.036 311.746 c +492.836 311.736 493.249 312.763 494.041 312.787 c +495.09 312.819 495.303 311.413 496.143 310.955 c +497.881 310.008 500.007 312.518 498.636 315.457 c +498.113 316.577 497.45 317.824 498.215 318.738 c +501.644 322.834 505.887 314.726 500.432 314.261 c +497.662 314.025 498.388 318.437 496.308 319.172 c +493.682 320.1 491.91 316.085 493.916 311.82 c +494.684 310.188 495.721 308.465 497.418 308.646 c +500.427 308.967 500.646 313.31 497.624 313.933 c +495.775 314.315 494.327 312.165 492.479 312.474 c +476.265 315.18 500.366 334.509 498.062 317.782 c +497.936 316.867 497.013 316.29 496.8 315.398 c +496.105 312.494 501.139 310.647 504.928 314.882 c +506.015 316.097 507.057 317.36 507.841 318.79 c +508.779 320.501 510.009 322.317 511.64 321.682 c +514.684 320.497 512.036 316.928 510.435 318.563 c +509.497 319.521 511.204 320.561 511.159 321.629 c +511.113 322.735 509.495 323.233 509.634 324.384 c +509.7 324.932 510.212 325.308 510.69 325.119 c +515.237 323.318 507.293 322.145 507.626 320.927 c +507.912 319.883 509.473 320.033 510.55 321.173 c +512.72 323.473 515.36 325.874 517.715 324.257 c +518.293 323.86 518.7 323.218 519.367 322.987 c +520.505 322.594 521.566 323.467 522.445 324.347 c +524.167 326.072 526.38 327.615 528.372 326.497 c +530.603 325.244 530.112 322.181 529.264 319.527 c +528.478 317.069 527.117 314.554 524.828 314.966 c +517.995 316.193 522.501 327.128 528.678 322.518 c +529.102 322.201 529.427 321.757 529.51 321.234 c +532.582 301.847 505.004 324.644 523.035 329.44 c +524.008 329.698 525.1 329.601 525.911 330.213 c +527.335 331.288 526.958 333.358 526.227 335.12 c +525.802 336.143 525.903 337.285 526.743 337.35 c +527.56 337.413 527.693 336.328 528.25 335.823 c +532.785 331.711 529.252 340.91 530.134 344.866 c +530.327 345.733 531.079 346.376 531.85 346.121 c +533.091 345.71 532.676 344.01 531.884 342.573 c +530.417 339.908 530.904 336.586 533.441 335.759 c +535.402 335.12 538.3 336.547 539.135 334.375 c +540.048 332.003 536.558 331.371 534.81 329.756 c +533.431 328.483 532.936 325.997 530.95 326.019 c +529.233 326.039 528.437 328.226 526.771 328.442 c +525.045 328.665 523.705 326.946 524.041 325.089 c +524.517 322.465 528.067 319.756 525.598 317.896 c +524.299 316.917 522.689 318.057 521.13 318.404 c +515.968 319.552 513.123 323.223 516.049 323.852 c +518.254 324.326 517.508 314.867 521.289 318.83 c +521.45 318.998 521.537 319.221 521.684 319.401 c +522.165 319.993 523.078 319.965 523.611 320.501 c +524.309 321.205 524.106 322.369 523.32 323.071 c +519.419 326.553 516.898 319.131 513.073 317.461 c +511.06 316.582 508.233 317.09 507.27 315.003 c +506.783 313.945 506.97 312.39 505.788 312.085 c +501.982 311.104 505.569 316.276 505.291 319.038 c +505.097 320.961 502.841 321.486 502.094 320.145 c +501.437 318.967 502.705 317.518 504.388 317.801 c +506.607 318.174 509.302 320.303 509.944 318.036 c +510.244 316.98 509.005 315.319 510.33 314.899 c +511.456 314.541 512.148 316.329 511.057 318.114 c +509.157 321.224 506.185 323.424 504.573 321.318 c +504.042 320.625 504.24 319.671 504.95 319.534 c +506.368 319.262 506.861 321.666 505.07 321.914 c +503.027 322.197 502.707 319.126 504.715 318.968 c +504.824 318.959 504.934 318.971 505.043 318.958 c +506.63 318.776 505.599 316.66 506.036 315.407 c +506.671 313.585 510.527 314.14 510.279 311.718 c +510.128 310.246 506.463 309.061 508.346 307.547 c +510.453 305.851 510.328 310.177 511.679 311.179 c +512.805 312.014 514.209 310.921 515.529 311.019 c +519.418 311.306 526.517 316.21 524.08 311.389 c +523.398 310.04 521.473 310.966 520.353 310.237 c +518.574 309.08 516.75 305.629 516.188 308.053 c +516.082 308.508 516.442 308.921 516.452 309.38 c +516.494 311.235 513.332 311.596 513.024 309.126 c +512.95 308.527 513.197 307.863 512.828 307.368 c +509.621 303.071 511.746 310.816 513.52 315.403 c +514.985 319.192 509.433 321.31 508.011 317.709 c +507.732 317.005 508.138 316.311 508.676 316.443 c +509.237 316.581 509.049 317.346 509.322 317.786 c +510.419 319.552 511.473 316.506 512.887 315.476 c +513.745 314.852 514.866 315.268 515.914 315.363 c +522.075 315.92 524.973 308.011 519.978 304.51 c +518.03 303.145 514.893 302.581 515.315 300.199 c +516.395 294.096 524.922 299.152 520.583 302.802 c +519.701 303.545 518.12 303.087 517.506 304.149 c +516.657 305.615 518.501 307.439 520.358 306.391 c +520.465 306.331 520.566 306.261 520.68 306.216 c +523.24 305.215 522.078 309.177 518.919 312.094 c +517.927 313.009 517.74 314.544 516.685 315.395 c +512.518 318.754 509.633 312.08 513.247 311.167 c +513.758 311.038 514.295 311.26 514.555 311.718 c +516.758 315.6 509.892 313.308 507.711 314.751 c +504.772 316.696 505.997 336.971 501.811 325.316 c +501.547 324.58 501.999 323.837 502.124 323.077 c +502.453 321.065 500.708 319.551 499.211 318.12 c +498.738 317.668 498.274 317.143 498.297 316.492 c +498.353 314.928 500.851 312.459 498.645 312.429 c +497.453 312.412 497.788 314.232 496.93 314.67 c +494.626 315.846 495.853 304.228 492.28 309.707 c +492.157 309.895 492.133 310.125 492.067 310.339 c +491.55 312.011 489.311 312.341 487.674 311.151 c +486.247 310.113 486.346 308.274 487.529 308.036 c +488.211 307.898 488.707 308.531 489.225 309.002 c +491.018 310.628 494.396 310.422 495.07 312.931 c +495.51 314.567 494.094 316.391 495.066 317.876 c +495.329 318.277 495.743 318.551 496.036 318.931 c +500.092 324.189 490.519 327.939 489.77 322.021 c +489.544 320.23 491.491 319.165 493.489 318.81 c +495.458 318.46 497.62 318.792 498.002 320.524 c +499.395 326.834 489.992 322.094 487.773 324.568 c +487.336 325.056 486.939 325.725 486.318 325.566 c +484.797 325.176 485.654 321.889 488.495 322.989 c +491.54 324.167 491.603 327.973 489.191 328.752 c +487.767 329.212 486.484 327.906 485.036 327.852 c +482.196 327.746 479.578 333.097 476.886 330.324 c +474.833 328.208 478.285 325.876 478.869 323.356 c +479.196 321.944 478.593 320.511 477.54 319.499 c +474.37 316.453 473.515 312.659 476.066 312.776 c +476.968 312.817 477.519 313.753 477.072 314.465 c +476.362 315.598 474.849 314.548 473.672 313.254 c +468.883 307.986 463.415 314.737 466.796 317.413 c +468.295 318.599 471.618 316.69 472.226 319.111 c +473.719 325.062 464.61 319.479 463.718 322.222 c +463.139 324.005 465.289 325.619 467.222 324.509 c +468.33 323.873 469.074 322.353 470.378 322.667 c +474.686 323.702 470.435 332.335 464.739 327.212 c +464.307 326.823 463.896 326.359 463.317 326.279 c +456.589 325.352 461.199 338.152 467.642 331.855 c +469.765 329.781 469.137 326.238 466.59 324.389 c +463.239 321.956 461.279 326.545 463.514 326.927 c +463.87 326.988 464.199 326.763 464.389 326.448 c +465.273 324.975 463.629 323.28 461.39 322.972 c +456.014 322.232 454.451 327.507 457.031 328.653 c +458.964 329.511 463.49 322.323 464.51 327.375 c +465.031 329.957 461.269 328.665 459.038 329.291 c +456.754 329.932 456.583 333.267 454.37 334.031 c +452.642 334.627 450.963 333.21 449.181 333.281 c +447.017 333.368 445.461 335.536 443.288 335.557 c +442.229 335.567 441.565 334.695 442.02 334.123 c +442.502 333.518 443.342 334.163 443.933 334.988 c +444.072 335.182 444.233 335.381 444.221 335.62 c +444.076 338.536 442.198 334.119 440.855 333.619 c +439.457 333.098 438.208 335.226 439.791 336.467 c +440.52 337.038 441.555 336.946 442.264 336.33 c +443.097 335.606 443.433 334.215 444.585 334.143 c +447.407 333.966 447.779 339.293 443.565 339.086 c +437.417 338.784 439.505 330.176 444.275 331.954 c +444.785 332.145 445.196 332.565 445.737 332.656 c +448.565 333.136 449.97 327.304 444.475 326.038 c +441.839 325.431 439.086 326.031 436.84 327.541 c +436.07 328.058 435.438 328.855 435.823 329.605 c +436.968 331.835 442.393 323.868 442.563 329.129 c +442.587 329.875 441.785 330.263 441.006 330.467 c +436.836 331.561 433.66 328.948 435.016 326.763 c +436.465 324.427 439.376 326.593 438.173 328.254 c +437.335 329.41 435.948 328.035 434.62 327.362 c +432.499 326.286 430.28 328.134 430.992 330.035 c +431.744 332.04 435.435 334.439 432.696 334.9 c +429.59 335.422 433.192 329.287 430.317 329.615 c +427.998 329.879 430.429 332.652 430.011 334.119 c +429.389 336.297 426.618 334.749 424.397 334.63 c +421.102 334.454 419.078 338.196 420.028 341.902 c +420.57 344.016 421.918 345.986 421.58 348.164 c +421.463 348.919 421.128 349.641 420.5 350.072 c +418.322 351.565 416.196 348.892 413.89 347.687 c +410.932 346.141 407.475 347.429 404.711 349.439 c +403.706 350.17 402.781 351.176 403.123 352.308 c +403.558 353.749 406.412 354.473 405.371 356.128 c +404.642 357.286 402.964 356.437 401.815 355.007 c +400.359 353.197 398.012 352.475 397.009 354.009 c +395.991 355.565 397.963 357.301 397.514 358.961 c +396.701 361.97 389.529 366.855 394.823 366.273 c +395.093 366.243 395.379 366.108 395.605 366.266 c +398.856 368.534 393.008 365.808 391.865 366.403 c +390.839 366.936 392.071 368.11 392.078 369.068 c +392.089 370.542 388.469 371.172 389.813 372.981 c +390.631 374.082 392.756 373.078 392.571 370.784 c +391.903 362.487 397.383 356.471 398.403 361.538 c +398.64 362.715 397.66 364.493 399.031 364.718 c +400.004 364.878 400.331 363.384 401.256 363.384 c +408.596 363.378 397.797 368.652 398.892 370.027 c +399.741 371.092 401.628 370.285 401.45 368.613 c +401.209 366.349 398.262 366.334 397.975 368.162 c +397.696 369.942 402.541 375.31 398.574 373.446 c +397.987 373.17 398.097 372.193 397.458 371.985 c +396.34 371.62 396.053 373.451 397.234 375.228 c +398.345 376.898 398.524 379.712 400.609 379.472 c +401.9 379.323 402.559 377.85 402.088 376.506 c +401.168 373.877 397.647 373.43 396.118 375.74 c +394.658 377.945 396.549 380.481 397.421 382.965 c +398.292 385.447 397.946 388.128 397.979 390.748 c +397.998 392.3 397.995 394.022 396.705 394.822 c +392.813 397.236 387.476 389.634 394.421 385.451 c +395.183 384.993 396.049 384.479 395.939 383.633 c +395.466 380.013 391.633 384.549 389.891 383.945 c +389.726 383.887 389.568 383.788 389.527 383.621 c +389.36 382.943 390.371 383.165 390.976 382.951 c +392.384 382.455 391.582 380.274 390.117 380.87 c +389.192 381.245 389.584 382.581 388.97 383.246 c +388.259 384.014 387.019 383.585 386.229 382.677 c +382.214 378.063 388.855 374.671 389.912 377.921 c +390.403 379.432 388.253 379.984 387.648 381.235 c +387.033 382.508 388.031 383.863 389.201 383.551 c +391.374 382.97 389.383 379.925 390.623 378.776 c +391.187 378.254 392.025 378.365 392.785 378.298 c +393.444 378.239 394.187 378.104 394.56 378.633 c +395.976 380.641 391.412 382.832 390.764 379.01 c +390.548 377.735 391.437 376.198 390.388 375.302 c +389.727 374.739 388.789 374.999 387.928 375.143 c +386.704 375.348 385.309 375.6 385.237 376.743 c +385.045 379.81 388.727 377.153 391.896 374.718 c +393.175 373.736 395.065 373.921 396.24 372.799 c +396.49 372.56 396.691 372.27 396.788 371.938 c +399.358 363.115 387.971 371.711 386.587 382.546 c +386.456 383.572 386.151 384.726 386.95 385.353 c +391.036 388.557 388.39 381.281 386.283 375.989 c +385.975 375.214 386.001 374.291 385.419 373.68 c +382.305 370.411 380.29 377.38 377.501 377.382 c +375.268 377.385 374.276 374.368 372.067 374.275 c +367.03 374.064 367.308 383.708 377.728 386.695 c +378.812 387.005 379.928 387.481 380.308 388.528 c +380.601 389.335 380.333 390.229 379.697 390.813 c +378.763 391.67 377.101 392.114 377.414 393.384 c +377.579 394.053 378.297 394.338 378.974 394.534 c +384.835 396.234 388.08 391.484 385.717 389.48 c +384.137 388.141 381.715 389.684 381.08 392.315 c +380.206 395.937 378.351 399.271 376.13 397.712 c +375.211 397.067 375.112 395.746 375.877 394.894 c +376.312 394.41 376.956 394.195 377.48 393.815 c +383.637 389.36 375.533 381.981 371.984 387.119 c +370.848 388.764 372.038 390.93 373.87 390.749 c +375.001 390.637 375.715 389.43 376.843 389.305 c +379.649 388.994 379.535 392.927 378.887 396.55 c +378.806 397.005 378.766 397.466 378.78 397.927 c +378.846 400.144 380.21 402.181 382.314 402.318 c +385.001 402.493 388.785 399.695 389.48 402.783 c +390.165 405.824 385.423 406.816 384.861 403.574 c +384.628 402.235 385.885 401.279 387.068 400.499 c +389.967 398.586 392.565 395.895 392.358 392.496 c +392.073 387.791 394.41 384.436 396.105 386.454 c +396.805 387.287 396.465 389.242 397.796 389.054 c +400.455 388.678 396.871 385.264 398.356 384.457 c +399.544 383.812 400.153 385.733 401.231 385.91 c +411.302 387.566 400.975 371.763 397.216 381.509 c +396.756 382.703 397.533 383.949 397.499 385.205 c +397.41 388.574 393.026 389.305 391.394 391.972 c +386.741 399.581 373.717 402.205 379.948 396.386 c +380.592 395.784 381.635 395.967 382.331 395.438 c +389.721 389.821 372.415 383.316 373.114 395.242 c +373.149 395.853 373.285 396.452 373.466 397.036 c +373.94 398.562 374.727 400.045 374.572 401.645 c +374.27 404.779 371.257 408.56 374.377 409.902 c +376.467 410.802 378.533 408.521 377.42 406.474 c +375.342 402.65 369.108 405.983 371.665 410.31 c +372.523 411.762 374.289 411.368 374.29 410.296 c +374.291 409.449 372.779 409.163 373.054 408.235 c +374.188 404.399 374.616 410.922 376.02 412.316 c +376.75 413.04 377.899 412.537 378.782 411.811 c +385.996 405.884 394.082 407.638 392.946 412.559 c +392.472 414.614 390.175 415.388 387.986 415.676 c +386.178 415.914 384.36 416.706 384.632 418.232 c +385.578 423.539 390.297 416.144 393.214 416.129 c +393.683 416.127 394.134 416.278 394.548 416.497 c +398.072 418.369 401.832 418.971 401.26 416.447 c +401.016 415.374 399.659 415.029 398.931 415.856 c +398.011 416.9 398.967 418.55 400.676 419.047 c +402.33 419.527 404.066 419.172 405.769 418.961 c +408.581 418.613 411.602 418.589 413.751 416.725 c +416.11 414.679 418.913 414.396 418.852 416.251 c +418.808 417.582 413.79 419.322 416.828 420.427 c +417.743 420.76 418.283 419.501 418.189 418.137 c +418.039 415.955 418.8 413.856 419.445 411.772 c +420.291 409.038 420.947 406.245 421.89 403.543 c +422.783 400.986 423.515 398.041 421.46 396.548 c +418.894 394.684 416.069 397.636 413.133 398.256 c +411.149 398.675 409.162 397.935 407.155 397.734 c +405.374 397.555 403.412 397.724 402.126 396.466 c +401.967 396.31 401.816 396.131 401.599 396.081 c +399.14 395.515 400.482 400.471 404.039 398.864 c +405.657 398.134 407.298 397.257 408.08 395.665 c +409.62 392.529 411.609 389.42 413.076 391.506 c +414.086 392.942 412.07 394.156 410.658 395.432 c +410.252 395.8 409.929 396.247 409.555 396.646 c +400.518 406.28 392.518 389.552 401.464 388.773 c +403.302 388.613 404.274 390.668 405.852 391.461 c +407.974 392.525 410.529 391.352 411.331 389.056 c +411.521 388.513 411.592 387.928 411.873 387.424 c +413.994 383.618 422.306 378.332 416.178 379.149 c +414.034 379.435 417.094 387.898 412.503 385.342 c +411.199 384.615 412.366 382.949 413.38 381.487 c +414.331 380.114 414.339 378.298 413.404 376.913 c +412.26 375.219 409.986 374.861 408.991 376.319 c +407.38 378.677 410.514 381.196 412.376 379.286 c +413.62 378.011 411.899 374.885 414.115 374.314 c +419.095 373.029 409.637 389.932 417.821 384.056 c +418.54 383.54 418.445 382.263 419.344 381.983 c +420.986 381.47 422.376 384.626 419.455 386.181 c +417.757 387.084 415.698 386.695 415.379 385.121 c +414.675 381.648 419.731 383.323 422.827 382.532 c +424.116 382.203 425.082 381.129 425.247 379.81 c +425.803 375.376 419.654 372.767 416.079 376.903 c +414.223 379.05 414.592 382.246 416.931 383.088 c +420.055 384.215 423.016 380.368 420.949 376.904 c +420.372 375.936 419.416 375.219 419.007 374.164 c +418.243 372.19 419.653 369.807 418.421 368.008 c +416.847 365.711 411.757 364.202 414.473 362.1 c +414.735 361.897 415.063 361.814 415.362 361.674 c +415.962 361.392 416.425 360.896 416.754 360.321 c +417.632 358.788 417.533 356.896 416.597 355.392 c +415.103 352.989 412.068 352.144 409.314 352.971 c +407.861 353.408 406.189 353.831 405.635 352.589 c +404.742 350.589 408.13 349.148 411.67 351.385 c +412.838 352.124 414.166 352.648 415.538 352.492 c +416.313 352.404 417.149 352.131 417.763 352.615 c +418.297 353.036 418.313 353.79 418.561 354.413 c +418.695 354.751 418.902 355.052 419.149 355.317 c +420.539 356.802 422.74 356.864 424.676 357.425 c +424.902 357.491 425.053 357.676 424.94 357.803 c +424.788 357.975 424.501 357.718 424.555 357.286 c +425.97 345.928 415.972 361.825 413.102 361.103 c +412.676 360.995 412.289 360.734 412.152 360.32 c +411.093 357.121 417.426 357.661 418.258 363.811 c +418.274 363.928 418.293 364.046 418.284 364.164 c +417.381 376.569 408.587 357.1 417.544 358.055 c +418.732 358.182 419.927 358.74 421.05 358.295 c +423.231 357.431 424.52 352.515 426.855 354.818 c +427.996 355.943 426.72 357.563 425.596 358.966 c +424.109 360.821 423.314 363.57 420.913 363.887 c +419.281 364.102 417.784 362.853 416.154 363.087 c +415.455 363.188 414.798 363.565 414.092 363.484 c +411.252 363.16 412.345 357.045 408.843 357.608 c +406.563 357.975 407.153 362.606 404.409 362.288 c +403.331 362.162 402.868 361.005 402.402 360 c +400.93 356.824 397.758 354.574 397.008 351.123 c +396.149 347.169 394.328 343.502 392.088 345.285 c +390.555 346.506 392.229 349.831 389.985 350.525 c +386.846 351.494 387.94 346.542 386.42 344.682 c +384.636 342.497 381.148 344.083 379.305 347.24 c +378.503 348.615 378.118 350.316 379.287 351.138 c +385.098 355.224 387.439 342.41 379.625 344.539 c +376.943 345.269 373.843 346.1 374.748 344.128 c +375.097 343.369 376.809 343.457 376.531 342.38 c +376.003 340.332 372.484 345.359 372.269 342.478 c +372.237 342.054 372.652 341.78 373.079 341.632 c +375.662 340.733 378.865 340.027 378.101 337.729 c +377.827 336.905 376.98 336.5 376.256 336.026 c +375.276 335.384 374.25 334.535 373.188 334.989 c +369.267 336.665 373.515 343.914 378.032 339.47 c +381.29 336.264 377.581 331.715 374.483 333.582 c +372.575 334.732 372.983 339.554 370.016 338.563 c +368.611 338.093 366.975 336.141 366.585 337.758 c +366.501 338.106 366.739 338.461 366.646 338.808 c +365.764 342.123 364.014 336.741 362.692 336.536 c +360.989 336.273 360.949 339.727 359.133 339.237 c +357.901 338.905 358.05 337.059 359.4 335.799 c +361.332 333.995 362.565 331.526 360.838 330.445 c +359.955 329.892 358.442 330.263 358.124 329.156 c +355.037 318.379 365.446 333.682 366.893 331.172 c +367.596 329.951 364.437 325.51 367.614 326.458 c +368.699 326.782 367.926 328.182 368.063 329.201 c +368.779 334.546 378.515 329.113 373.368 320.995 c +372.721 319.973 372.083 318.876 370.977 318.379 c +368.985 317.485 366.764 318.766 365.703 320.824 c +364.37 323.412 363.787 327.085 360.945 326.752 c +359.837 326.622 358.878 325.636 357.769 325.937 c +355.595 326.527 356.681 329.501 355.704 331.197 c +353.795 334.509 349.066 331.304 346.362 333.154 c +343.804 334.904 344.691 340.125 341.11 340.525 c +340.877 340.551 340.641 340.54 340.409 340.506 c +337.327 340.065 335.826 336.701 336.019 333.354 c +336.101 331.942 336.418 330.505 335.99 329.15 c +335.305 326.983 334.443 324.513 336.306 324.247 c +337.532 324.072 338.021 325.581 338.969 326.264 c +339.642 326.748 340.53 326.793 341.278 326.428 c +343.743 325.225 342.872 321.51 344.861 319.84 c +352.809 313.169 355.928 330.033 347.746 326.397 c +346.874 326.01 346.736 324.936 346.486 324.01 c +345.72 321.183 343.037 319.192 342.571 316.282 c +341.84 311.719 346.415 308.816 349.233 311.166 c +350.359 312.105 350.225 313.719 349.123 314.003 c +346.604 314.653 348.293 311.074 348.435 308.489 c +348.6 305.501 343.613 299.946 348.195 300.579 c +348.808 300.664 349.494 301.144 349.871 300.63 c +350.334 299.998 349.444 299.018 348.219 299.457 c +344.462 300.804 344.563 306.376 348.704 307.828 c +350.928 308.608 353.373 307.445 353.968 305.212 c +354.655 302.635 352.541 300.426 350.348 298.723 c +348.01 296.908 344.989 296.604 344.381 298.719 c +344.218 299.288 344.379 299.88 344.581 300.436 c +345.637 303.341 347.788 305.931 347.659 309.049 c +347.636 309.597 347.538 310.143 347.583 310.691 c +347.678 311.848 348.366 312.852 349.305 313.538 c +355.51 318.076 361.387 310.303 357.231 306.473 c +356.474 305.775 355.406 305.549 354.399 305.778 c +348.321 307.162 349.121 316.725 356.265 316.931 c +359.513 317.025 361.974 314.081 361.012 311.148 c +359.894 307.739 354.999 307.69 353.434 304.577 c +352.228 302.177 353.569 298.702 351.22 297.058 c +347.386 294.377 344.086 299.681 347.123 301.693 c +348.796 302.8 350.498 300.78 352.335 300.545 c +354.811 300.229 356.305 302.772 358.226 304.307 c +359.205 305.089 360.401 305.89 360.155 307.081 c +359.751 309.036 355.418 312.047 358.664 312.037 c +360.19 312.033 359.316 309.924 359.838 308.82 c +359.942 308.599 360.108 308.417 360.258 308.224 c +362.225 305.679 361.156 301.702 363.5 299.419 c +364.91 298.046 366.826 296.634 365.643 295.332 c +364.581 294.162 362.628 295.311 361.946 297.435 c +361.755 298.031 361.595 298.645 361.253 299.169 c +359.033 302.575 354.753 299.923 355.989 297.337 c +356.494 296.281 358.162 296.089 358.321 294.857 c +358.394 294.296 358.065 293.777 357.591 293.456 c +354.738 291.52 352.08 296.008 349.157 295.385 c +347.883 295.113 346.971 293.99 346.965 292.686 c +346.963 292.221 346.942 291.691 346.524 291.613 c +345.996 291.513 345.884 292.217 345.672 292.747 c +343.387 298.447 335.788 288.905 343.631 283.537 c +345.568 282.212 344.72 280.146 343.638 280.494 c +343.09 280.669 343.049 281.376 343.215 282.001 c +343.924 284.665 345.688 287.324 344.47 289.835 c +343.088 292.683 339.185 293.116 336.962 290.7 c +335.548 289.163 335.375 286.798 333.837 285.37 c +333.448 285.009 332.989 284.731 332.496 284.534 c +331.596 284.174 330.593 284.086 329.76 283.584 c +326.981 281.907 327.886 277.594 325.462 275.576 c +325.033 275.219 324.498 274.967 323.959 275.096 c +323 275.325 322.649 276.444 322.818 277.498 c +322.957 278.366 323.457 279.187 324.283 279.217 c +326.014 279.28 326.036 275.923 327.927 276.303 c +337.367 278.198 321.247 282.268 323.461 284.63 c +324.61 285.856 326.134 284.181 327.662 283.57 c +329.281 282.924 331.664 283.587 332.269 281.814 c +332.74 280.432 331.387 279.158 330.101 279.722 c +327.423 280.897 329.426 285.404 332.577 283.71 c +334.268 282.801 333.739 280.488 334.266 278.711 c +334.409 278.228 334.689 277.758 335.174 277.683 c +337.223 277.367 335.761 280.076 334.846 282.393 c +333.705 285.283 336.342 292.531 332.393 289.859 c +331.111 288.993 332.162 287.193 333.582 285.83 c +336.947 282.599 340.424 285.443 338.784 286.891 c +338.185 287.42 337.352 286.933 336.609 286.542 c +334.111 285.227 332.331 287.565 333.409 288.687 c +334.546 289.87 335.767 287.744 337.053 287.694 c +339.348 287.605 338.867 290.798 338.018 293.702 c +337.88 294.173 337.8 294.675 337.494 295.061 c +334.887 298.36 332.519 292.103 329.885 292.057 c +327.703 292.019 325.845 295.544 323.728 293.9 c +323.176 293.472 322.98 292.74 323.137 292.053 c +323.282 291.416 323.706 290.894 324.173 290.437 c +324.848 289.778 325.653 289.114 325.601 288.177 c +325.39 284.403 320.154 287.49 318.435 285.752 c +317.484 284.79 317.818 283.3 317.819 281.953 c +317.824 276.044 311.318 274.444 309.538 278.034 c +308.969 279.183 309.357 280.513 310.001 281.64 c +310.303 282.169 310.663 282.697 310.656 283.308 c +310.644 284.507 309.419 285.143 308.494 285.906 c +298.465 294.181 312.811 305.805 318.352 297 c +321.028 292.749 325.496 292.033 324.584 294.707 c +324.367 295.342 323.626 295.56 322.923 295.485 c +321.676 295.352 320.592 294.502 320.44 293.285 c +319.836 288.457 328.067 287.486 328.276 293.527 c +328.313 294.585 327.825 295.563 327.232 296.439 c +324.361 300.678 318.939 303.298 318.227 308.481 c +318.04 309.844 319.001 310.81 319.731 310.314 c +321.071 309.404 318.715 308.63 317.719 307.538 c +316.319 306.004 320.634 301.997 317.249 301.128 c +315.004 300.552 313.737 304.511 316.901 305.371 c +319.787 306.157 322.201 300.435 325.177 302.809 c +328.034 305.087 324.608 309.645 321.42 307.249 c +317.377 304.21 324.419 299.709 322.723 296.385 c +322.304 295.562 321.432 294.972 321.331 294.039 c +321.212 292.938 322.15 291.53 321.066 290.956 c +319.541 290.148 319.316 292.632 319.219 294.91 c +319.112 297.403 315.687 299.014 316.464 301.599 c +316.603 302.061 316.899 302.474 316.945 302.956 c +317.064 304.196 315.57 305.141 315.902 306.386 c +316.037 306.892 316.485 307.265 316.581 307.782 c +317.014 310.09 313.567 309.734 310.327 307.949 c +307.974 306.653 304.72 305.723 305.752 303.473 c +306.229 302.432 307.789 302.109 307.886 300.904 c +308.095 298.307 304.535 299.573 301.329 300.973 c +300.259 301.44 298.896 301.522 298.387 302.592 c +297.484 304.488 300.353 306.144 299.652 308.044 c +299.035 309.718 295.64 309.75 296.103 311.927 c +296.538 313.969 299.308 313.349 299.013 311.644 c +298.817 310.512 297.127 310.351 296.031 311.544 c +294.854 312.825 294.58 314.62 294.391 316.349 c +293.604 323.532 285.958 322.196 287.261 318.866 c +287.422 318.456 287.797 318.177 288.227 318.07 c +291.334 317.293 292.474 321.752 289.618 322.574 c +288.705 322.836 287.83 322.249 287.165 321.537 c +284.507 318.687 283.318 313.864 279.288 313.71 c +276.694 313.611 275.256 316.115 276.57 317.526 c +278.135 319.207 280.094 316.739 281.926 314.809 c +283.459 313.194 286.114 312.189 285.808 309.925 c +285.53 307.866 282.686 307.16 282.452 305.086 c +282.36 304.269 282.481 303.26 281.706 303.112 c +280.353 302.855 279.668 305.503 281.979 305.952 c +284.07 306.359 285.724 304.158 285.373 301.73 c +285.245 300.848 284.808 299.985 283.967 299.808 c +280.51 299.079 281.716 304.489 286.915 308.135 c +289.202 309.738 289.554 312.872 287.505 314.118 c +285.461 315.36 283.666 313.203 284.715 311.942 c +285.313 311.224 286.487 311.503 287.022 312.429 c +287.89 313.931 287.314 316.77 289.31 316.603 c +291.525 316.417 290.281 313.147 291.654 312.147 c +293.859 310.541 304.475 312.33 298.572 309.444 c +297.744 309.04 296.753 310.177 295.969 309.571 c +294.637 308.542 296.658 305.737 298.896 307.718 c +300.161 308.838 300.231 310.777 299.153 312.114 c +295.648 316.461 293.792 321.947 297.343 320.286 c +298.251 319.861 298.356 318.277 299.476 318.29 c +300.79 318.304 300.566 320.16 301.371 320.946 c +306.26 325.722 305.489 312.001 309.432 314.308 c +311.014 315.234 309.874 317.383 310.161 319.06 c +310.397 320.44 311.666 321.403 312.905 320.974 c +317.816 319.275 312.768 312.875 310.139 316.706 c +309.904 317.049 309.854 317.483 309.978 317.88 c +310.318 318.971 311.626 319.398 312.484 318.69 c +313.593 317.777 313.079 315.929 311.551 315.591 c +309.536 315.145 308.262 317.454 309.561 318.729 c +311.813 320.94 312.935 316.335 314.952 314.196 c +318.157 310.797 321.972 306.649 318.19 306.955 c +316.775 307.069 316.813 308.906 316.596 310.407 c +316.022 314.375 312.955 319.428 316.932 319.521 c +319.872 319.589 319.451 314.401 322.301 314.327 c +324.476 314.271 324.758 317.057 325.574 319.14 c +326.8 322.27 330.049 325.539 327.338 327.53 c +326.56 328.102 325.477 328.06 324.927 327.316 c +322.954 324.646 332.313 322.47 328.281 319.467 c +327.396 318.808 326.253 319.448 325.323 320.176 c +323.428 321.66 322.784 323.962 324.318 324.613 c +325.793 325.238 327.413 322.367 328.846 323.775 c +330.877 325.771 325.616 327.424 326.964 329.324 c +328.04 330.842 330.091 328.774 331.412 329.553 c +332.777 330.358 332.212 332.391 330.718 332.371 c +328.339 332.341 331.75 322.861 326.864 325.947 c +325.64 326.72 326.892 328.312 326.705 329.564 c +326.58 330.396 325.829 331.223 326.349 331.938 c +329.097 335.723 333.053 327.437 327.142 327.513 c +325.874 327.53 325.015 328.631 324.178 329.592 c +321.756 332.372 318.45 334.237 316.04 337.027 c +314.902 338.344 313.991 339.838 313.299 341.436 c +312.133 344.131 312.828 347.111 315.059 347.151 c +317.643 347.198 318.436 343.607 315.999 342.536 c +314.364 341.817 312.889 343.363 311.519 344.616 c +310.397 345.643 308.992 346.423 307.498 346.194 c +306.359 346.02 305.104 345.361 304.319 346.212 c +303.012 347.63 305.368 349.13 305.463 350.731 c +306.109 361.567 287.191 352.058 298.011 344.132 c +299.065 343.36 300.389 343.137 301.628 342.737 c +306.963 341.012 308.833 347.612 305.466 346.933 c +305.06 346.851 304.723 346.439 304.312 346.57 c +303.448 346.846 304.154 347.924 304.897 348.86 c +305.713 349.888 305.374 351.748 306.718 352.22 c +309.156 353.076 309.045 349.198 310.607 347.929 c +312.887 346.078 315.521 349.031 317.249 352.319 c +320.662 358.813 327.379 355.108 325.764 351.911 c +324.92 350.238 322.115 350.978 321.303 349.272 c +320.488 347.558 322.416 346.148 323.549 347.174 c +324.695 348.211 323.227 350.056 320.746 350.409 c +319.08 350.646 317.38 351.369 317.199 352.941 c +316.976 354.874 319.258 355.816 320.037 357.482 c +320.779 359.07 320.04 361.036 320.953 362.55 c +322.103 364.457 325.194 364.458 325.943 366.645 c +326.358 367.854 325.713 369.179 326.081 370.4 c +326.602 372.13 328.669 372.676 329.73 374.084 c +331.214 376.054 330.398 378.683 329.641 381.068 c +329.064 382.884 328.589 384.732 328.261 386.61 c +328.035 387.905 327.879 389.226 328.125 390.519 c +328.521 392.599 329.955 394.394 332.011 394.712 c +333.996 395.019 334.91 393.146 333.96 392.424 c +332.982 391.681 332.254 393.272 331.27 393.716 c +329.743 394.404 326.684 393.906 327.759 395.579 c +328.193 396.253 329.129 395.761 329.85 395.929 c +331.667 396.352 330.714 398.797 331.36 400.296 c +332.432 402.781 335.822 401.79 338.705 400.361 c +342.315 398.571 343.274 395.037 341.069 394.38 c +340.064 394.081 338.493 394.736 338.339 393.56 c +338.176 392.315 340.255 391.777 340.769 393.417 c +341.548 395.906 337.195 396.139 337.178 398.279 c +337.172 399.069 337.814 399.877 337.357 400.568 c +336.82 401.378 335.534 400.886 334.885 401.549 c +333.324 403.143 336.435 404.091 339.155 404.977 c +343.451 406.375 341.861 412.472 337.858 417.248 c +335.79 419.716 336.103 422.878 338.229 423.019 c +340.373 423.16 341.283 419.947 339.157 417.402 c +338.112 416.151 336.589 416.49 336.659 417.407 c +336.775 418.922 338.973 417.591 339.515 418.461 c +340.094 419.388 338.669 419.913 337.863 420.664 c +336.8 421.654 337.341 423.273 337.305 424.706 c +337.252 426.777 335.883 428.475 334.494 430.013 c +333.16 431.491 331.618 432.964 329.641 432.93 c +319.535 432.756 326.835 418.67 331.078 425.526 c +331.69 426.517 332.293 427.776 332.884 427.02 c +333.252 426.549 332.66 426.005 331.974 425.676 c +329.116 424.304 328.088 419.779 324.644 420.047 c +321.619 420.282 320.221 425.027 316.964 424.223 c +314.635 423.647 314.036 420.641 315.947 419.275 c +318.169 417.687 320.67 420.389 323.159 420.202 c +324.952 420.068 326.64 418.462 328.323 419.304 c +329.045 419.664 329.455 420.4 329.826 421.116 c +331.822 424.967 332.092 429.599 328.7 430.724 c +327.374 431.165 325.905 430.65 325.277 429.422 c +324.074 427.067 326.551 424.949 328.409 422.902 c +331.415 419.589 330.193 415.088 327.145 415.133 c +324.394 415.174 323.491 420.388 320.381 419.243 c +318.317 418.483 318.957 415.748 319.368 413.38 c +319.617 411.948 319.225 410.408 317.946 410.156 c +316.25 409.823 314.977 411.93 316.022 413.799 c +318.02 417.374 323.071 414.788 326.32 416.447 c +329.968 418.309 328.304 422.602 325.851 422.073 c +323.438 421.552 325.178 416.821 322.431 416.609 c +320.944 416.495 320.545 418.347 319.678 419.528 c +317.582 422.382 313.349 420.977 310.123 418.439 c +308.075 416.827 306.438 414.492 307.781 412.623 c +308.492 411.633 309.83 411.442 310.802 410.731 c +312.624 409.398 313.804 406.346 315.954 407.415 c +317.758 408.313 317.319 411.022 315.292 411.315 c +312.039 411.784 311.023 406.728 314.618 405.931 c +317.599 405.27 318.238 409.297 319.48 412.298 c +319.53 412.42 319.585 412.542 319.666 412.647 c +325.523 420.267 324.684 403.37 316.92 405.96 c +315.755 406.348 314.57 406.862 313.971 407.932 c +311.828 411.758 316.806 415.023 319.218 412.08 c +320.889 410.043 317.257 404.79 321.213 404.214 c +324.092 403.794 323.54 408.051 325.225 409.678 c +326.475 410.885 328.519 410.636 329.462 409.169 c +330.487 407.575 329.55 405.155 331.072 403.881 c +331.576 403.46 332.295 403.367 332.672 403.837 c +332.984 404.225 332.822 404.837 333.174 405.197 c +334.334 406.388 335.418 404.029 334.602 401.138 c +334.319 400.134 334.613 399.063 335.325 398.298 c +336.542 396.989 338.905 396.314 338.479 394.487 c +337.003 388.147 326.91 395.067 333.651 399.315 c +336.51 401.116 338.935 397.394 341.237 394.415 c +343.318 391.722 346.647 390.225 349.965 390.886 c +351.265 391.145 352.663 391.006 352.653 389.96 c +352.64 388.475 350.641 389.166 348.885 389.675 c +348.199 389.874 347.421 389.781 346.834 390.201 c +344.509 391.864 341.416 397.055 341.893 393.253 c +342.027 392.177 348.503 390.298 344.414 389.932 c +343.752 389.872 343.726 390.773 343.355 391.264 c +341.896 393.197 339.369 388.924 337.9 390.736 c +337.161 391.647 338.282 392.882 337.857 393.888 c +336.842 396.29 332.244 392.352 331.504 395.38 c +330.95 397.647 334.946 398.922 335.853 395.708 c +336.238 394.344 335.397 392.966 334.07 392.366 c +332.855 391.817 331.425 391.981 330.449 392.878 c +329.384 393.858 328.397 395.402 327.283 394.598 c +325.727 393.474 328.048 391.987 329.64 390.473 c +330.462 389.691 330.899 388.37 332.061 388.269 c +334.905 388.023 334.017 392.837 336.353 393.257 c +338.946 393.723 339.249 389.068 341.772 389.376 c +344.294 389.684 344.022 393.563 340.965 396.379 c +339.147 398.053 337.581 399.993 335.658 401.548 c +334.039 402.857 331.925 403.717 330.378 402.525 c +327.549 400.344 328.381 386.974 323.751 393.642 c +322.328 395.691 327.661 398.761 324.718 400.701 c +322.782 401.976 321.818 398.851 320.66 396.433 c +319.161 393.305 313.482 391.456 315.723 388.001 c +316.472 386.845 318.077 386.642 318.937 385.58 c +322.508 381.167 315.315 377.905 314.192 381.956 c +313.454 384.619 318.148 384.783 318.112 387.12 c +318.097 388.093 317.144 388.889 317.351 389.865 c +317.781 391.896 320.563 390.992 322.938 389.384 c +323.825 388.783 324.91 388.314 325.217 387.282 c +325.93 384.883 321.854 383.324 322.863 380.889 c +323.464 379.439 326.245 378.835 325.405 377.09 c +324.7 375.622 322.173 376.139 321.999 378.333 c +321.753 381.434 325.77 382.081 329.396 382.333 c +333.212 382.597 336.745 384.368 339.408 387.115 c +339.98 387.705 340.509 388.339 340.927 389.047 c +341.935 390.756 342.282 392.86 343.727 394.239 c +346.108 396.512 349.715 395.701 353.003 395.491 c +355.675 395.32 358.588 395.565 360.549 393.728 c +361.928 392.436 363.458 390.845 364.584 392.046 c +365.351 392.864 364.615 394.295 365.401 395.102 c +366.632 396.368 374.525 394.773 370.574 397.624 c +370.462 397.705 370.328 397.747 370.207 397.813 c +368.069 398.969 369.918 403.168 373.37 401.505 c +375.398 400.528 375.641 397.943 376.808 396.075 c +377.419 395.096 378.322 394.281 378.624 393.161 c +378.823 392.426 378.759 391.582 379.293 391.026 c +380.401 389.871 382.435 390.741 382.46 392.529 c +382.481 394.015 380.954 394.851 380.164 396.066 c +377.963 399.453 381.815 404.05 379.452 407.382 c +378.676 408.476 377.285 409.008 376.233 408.31 c +373.809 406.702 376.825 403.848 377.041 401.312 c +377.161 399.904 376.315 398.55 376.575 397.154 c +376.9 395.41 378.613 394.386 380.437 394.198 c +385.791 393.643 389.532 390.662 386.998 388.787 c +386.192 388.191 385.124 388.552 384.133 388.566 c +381.519 388.601 379.481 386.308 379.878 383.741 c +380.159 381.92 381.638 380.612 383.298 379.771 c +385.145 378.833 387.408 378.662 388.417 380.265 c +391.269 384.796 383.035 385.317 380.873 388.575 c +378.866 391.6 381.456 395.243 384.432 394.318 c +387.937 393.23 385.983 388.357 387.78 385.781 c +388.872 384.216 390.916 383.867 392.591 382.993 c +395.774 381.33 395.128 377.747 393.08 377.745 c +390.933 377.744 391.479 382.307 388.98 381.777 c +387.02 381.361 388.203 378.506 386.96 377.457 c +384.496 375.378 383.272 379.921 382.893 384.524 c +382.635 387.665 379.78 389.685 376.792 390.918 c +371.055 393.286 367.968 388.054 370.426 386.31 c +371.688 385.415 373.285 386.705 374.69 386.297 c +377.541 385.469 376.233 381.933 374.266 382.573 c +373.74 382.745 373.487 383.299 373.394 383.857 c +373.048 385.931 374.315 387.796 375.398 389.596 c +376.054 390.687 376.65 391.895 376.356 393.13 c +375.679 395.978 373.974 399.444 376.539 399.046 c +377.494 398.898 377.682 397.749 378.094 396.872 c +378.856 395.251 380.679 394.563 382.49 394.386 c +388.224 393.824 393.151 391.185 390.886 388.049 c +388.758 385.103 380.752 391.53 380.138 385.558 c +379.855 382.806 384.044 381.399 387.225 384.324 c +388.356 385.363 389.226 386.79 388.674 388.161 c +388.132 389.506 386.505 390.024 385.2 389.327 c +383.826 388.592 383.5 386.897 382.758 385.547 c +379.76 380.089 374.034 384.321 376.034 386.987 c +377.149 388.473 379.195 386.916 380.794 387.298 c +404.109 392.859 365.973 414.364 369.467 391.466 c +369.577 390.748 369.9 390.061 370.51 389.672 c +370.867 389.444 371.295 389.347 371.64 389.1 c +378.653 384.095 364.553 385.142 361.273 381.997 c +360.377 381.138 359.94 379.662 358.665 379.537 c +356.63 379.336 355.988 382.911 353.854 382.399 c +352.195 382 352.486 379.599 351.182 378.736 c +349.367 377.535 347.564 379.716 346.167 381.832 c +345.99 382.1 345.799 382.363 345.547 382.562 c +343.746 383.98 340.463 381.25 339.042 383.549 c +338.131 385.02 339.747 386.468 340.532 387.996 c +341.209 389.316 341.148 390.939 342.023 392.147 c +346.796 398.732 352.957 388.73 347.222 387.626 c +345.545 387.303 342.607 392.227 341.66 388.841 c +341.112 386.883 344.81 387.091 344.656 385.36 c +344.583 384.549 343.683 384.234 342.92 383.895 c +340.583 382.858 339.355 380.437 337.747 378.471 c +336.348 376.76 336.409 374.664 337.803 374.617 c +338.33 374.599 338.717 375.029 339.115 375.375 c +340.131 376.259 341.339 377.248 340.655 378.244 c +339.663 379.687 335.512 375.65 335.296 378.975 c +335.191 380.592 348.862 379.32 340.86 382.487 c +339.558 383.002 339.289 379.962 337.907 380.685 c +336.522 381.41 338.235 384.405 340.835 382.553 c +341.444 382.119 341.974 381.572 342.285 380.892 c +342.756 379.863 342.656 378.638 341.85 377.869 c +340.325 376.415 337.972 377.5 336.254 379.13 c +333.06 382.161 336.003 385.437 337.532 384.068 c +338.138 383.524 337.776 382.565 338.116 381.864 c +338.926 380.192 341.488 378.13 339.383 378.149 c +338.637 378.155 338.632 379.136 338.323 379.802 c +337.522 381.528 335.086 380.54 333.643 381.441 c +332.745 382.001 332.439 383.115 331.761 383.914 c +328.397 387.876 326.773 392.726 330.021 391.55 c +331.067 391.171 331.047 389.527 332.143 389.227 c +336.099 388.141 333.262 394.383 335.088 395.268 c +337.477 396.426 339.264 392.767 336.763 391.58 c +334.795 390.646 333.857 393.45 332.569 395.361 c +330.705 398.127 326.683 398.07 325.241 395.286 c +324.319 393.506 325.212 391.341 324.529 389.475 c +322.668 384.396 316.885 387.662 318.567 390.495 c +318.951 391.142 319.776 391.295 320.368 391.741 c +323.267 393.929 319.913 397.072 318.374 395.306 c +317.716 394.552 318.302 393.332 319.467 393.115 c +320.895 392.847 322.381 394.251 323.693 393.438 c +327.396 391.142 322.314 386.836 320.726 390.237 c +320.278 391.196 321.369 392.357 320.726 393.262 c +319.971 394.325 317.785 393.156 317.293 394.597 c +316.376 397.286 320.705 395.779 321.744 396.968 c +322.614 397.962 321.755 399.357 320.736 400.433 c +318.787 402.49 316.589 404.777 313.937 404.042 c +309.408 402.786 310.715 397.012 314.177 397.372 c +316.566 397.619 316.583 400.659 314.742 400.957 c +312.482 401.322 313.456 398.104 313.193 395.812 c +312.845 392.779 308.5 392.429 307.593 389.676 c +305.546 383.469 315.361 380.646 316.884 387.344 c +317.15 388.515 316.74 389.793 317.27 390.883 c +318.389 393.189 322.364 392.56 323.139 395.143 c +324.864 400.895 316.553 397.881 309.184 394.238 c +306.771 393.045 303.36 392.981 302.746 390.291 c +302.625 389.761 302.684 389.189 303.048 388.791 c +303.899 387.858 305.368 388.436 306.397 389.462 c +307.399 390.461 307.876 391.904 306.922 392.598 c +305.716 393.475 299.491 387.563 300.807 392.627 c +301.349 394.71 303.967 392.287 304.994 393.213 c +306.481 394.553 302.843 396.935 304.693 398.232 c +305.658 398.908 308.951 397.288 308.196 399.414 c +308.079 399.743 307.717 399.896 307.357 399.873 c +305.037 399.728 304.598 395.418 308.547 394.34 c +309.608 394.051 310.791 394.093 311.505 394.897 c +312.705 396.248 311.646 399.414 313.884 399.652 c +315.549 399.83 316.212 396.955 317.96 397.445 c +320.776 398.234 315.998 404.092 319.813 404.366 c +321.451 404.483 321.643 402.202 320.985 400.044 c +320.49 398.42 320.478 396.654 321.277 395.158 c +325.894 386.515 335.328 395.461 330.201 399.45 c +329.419 400.059 328.359 400 327.398 400.207 c +326.84 400.327 326.294 400.543 325.723 400.502 c +324.574 400.418 323.812 399.42 323 398.607 c +322.38 397.985 321.658 397.432 321.299 396.627 c +320.685 395.248 321.31 393.63 322.702 393.282 c +325.21 392.656 326.944 397.436 329.573 395.81 c +330.23 395.403 330.257 394.573 329.724 394.392 c +329.245 394.23 328.792 394.776 329.013 395.341 c +329.293 396.058 330.297 396.029 330.746 396.614 c +331.484 397.576 330.488 398.814 329.154 399.487 c +326.469 400.84 323.404 401.874 320.795 400.465 c +317.536 398.707 319.712 395.286 321.35 396.254 c +321.863 396.557 321.918 397.236 321.769 397.843 c +320.545 402.795 314.771 400.752 315.701 397.784 c +316.779 394.342 320.703 398.476 322.902 397.662 c +324 397.256 324.739 395.861 325.947 396.147 c +331.463 397.453 308.648 420.52 324.271 408.155 c +325.205 407.416 324.42 405.018 326.041 405.049 c +327.139 405.069 327.206 407.125 328.414 406.916 c +331.027 406.463 327.323 404.459 326.339 402.642 c +325.36 400.833 335.781 393.678 328.075 394.126 c +326.74 394.204 324.745 397.034 324.361 394.916 c +324.274 394.44 324.746 394.076 324.799 393.609 c +325.952 383.323 319.127 398.672 317.449 397.03 c +314.237 393.888 324.342 393.919 321.823 390.981 c +321.018 390.042 319.54 391.056 318.586 390.432 c +317.557 389.759 318.104 388.331 318.056 387.124 c +317.893 383.087 312.102 381.777 307.667 385.341 c +307.108 385.791 306.568 386.297 306.341 386.979 c +305.77 388.692 307.138 390.433 309.04 390.561 c +313.682 390.874 315.296 384.561 311.124 382.624 c +307.635 381.004 305.208 385.358 302.104 387.431 c +300.43 388.549 299.304 390.23 300.507 391.022 c +304.24 393.479 302.121 384.107 305.301 385.599 c +306.125 385.985 306.013 387.155 306.64 387.758 c +307.91 388.979 309.991 387.043 311.301 388.144 c +312.874 389.466 310.435 392.194 312.079 393.49 c +312.311 393.673 312.602 393.765 312.83 393.954 c +313.527 394.532 313.362 395.666 314.018 396.281 c +314.751 396.969 315.946 396.572 316.772 397.108 c +318.801 398.426 317.394 402.084 314.191 401.528 c +311.97 401.142 310.203 398.184 308.008 399.419 c +306.698 400.157 306.554 401.992 307.721 402.978 c +308.785 403.877 310.401 403.544 310.881 402.298 c +311.416 400.91 310.107 399.718 309.001 398.632 c +306.472 396.149 304.17 392.497 300.964 393.785 c +300.529 393.96 300.145 394.235 299.77 394.516 c +296.214 397.18 296.932 401.355 299.417 401.275 c +301.443 401.211 301.444 398.53 301.291 396.152 c +300.829 388.958 308.811 387.897 309.955 392.006 c +310.596 394.308 307.578 396.164 308.256 398.465 c +308.833 400.422 311.275 400.556 313.134 401.341 c +315.584 402.376 316.613 405.112 315.005 406.568 c +313.642 407.802 311.704 406.753 309.954 405.997 c +309.107 405.631 308.15 405.3 307.843 404.433 c +306.398 400.358 314.28 400.211 317.431 408.158 c +317.934 409.428 318.619 410.837 317.731 411.817 c +313.253 416.754 308.863 406.003 315.713 406.431 c +315.822 406.438 315.931 406.457 316.036 406.488 c +325.644 409.348 309.927 421.211 306.215 409.229 c +304.821 404.73 301.12 402.852 300.105 405.253 c +299.341 407.061 301.732 408.425 304.464 408.366 c +306.255 408.327 308.241 408.158 308.933 406.577 c +310.094 403.923 306.03 401.706 307.028 399.052 c +307.954 396.592 311.673 397.319 313.023 395.238 c +314.258 393.336 312.607 391.009 313.03 388.879 c +313.46 386.713 315.803 385.472 316.308 383.33 c +316.479 382.601 316.27 381.811 315.62 381.702 c +314.231 381.468 314.168 383.763 316.134 385.576 c +319.385 388.575 323.11 387.845 322.007 385.85 c +321.494 384.922 319.951 385.432 319.418 384.527 c +316.731 379.964 323.253 385.143 326.955 386.229 c +328.123 386.572 329.321 385.805 329.581 384.598 c +330.102 382.178 326.485 380.371 327.508 377.93 c +329.312 373.627 335.315 379.317 337.612 376.373 c +338.835 374.806 337.492 372.416 338.689 370.836 c +339.341 369.975 340.499 369.714 341.541 370.041 c +344.364 370.926 344.478 374.473 342.23 375.207 c +339.952 375.952 339.124 372.855 337.642 370.989 c +336.641 369.729 334.927 369.025 334.48 367.449 c +333.609 364.374 337.677 362.648 338.125 359.763 c +338.222 359.133 338.136 358.482 337.812 357.933 c +336.927 356.429 334.547 356.135 334.21 354.329 c +333.77 351.971 336.789 350.28 339.085 352.033 c +341.226 353.669 342.565 357.77 344.907 355.945 c +346.198 354.939 345.668 352.823 343.928 351.983 c +341.562 350.842 338.764 352.287 338.107 354.9 c +337.78 356.202 337.573 357.787 336.326 357.753 c +333.89 357.686 335.218 354.098 339.137 351.989 c +345.609 348.507 338.821 341.787 336.358 345.589 c +335.761 346.51 336.339 347.7 337.357 348.33 c +339.352 349.563 341.882 348.665 344.107 349.276 c +347.895 350.318 352.031 354.453 354.06 350.866 c +355.06 349.1 353.541 346.026 355.785 345.202 c +359.614 343.795 361.92 351.439 355.739 352.071 c +353.223 352.328 350.001 350.264 348.743 352.743 c +345.67 358.797 357.16 360.445 355.738 353.428 c +355.253 351.034 351.96 350.58 349.462 352.393 c +348.622 353.002 347.904 353.757 347.224 354.54 c +346.414 355.473 345.311 356.265 344.452 355.599 c +343.647 354.974 343.995 353.11 342.725 353.14 c +339.879 353.205 341.703 358.094 344.221 355.827 c +345.145 354.995 344.259 353.693 343.865 352.49 c +343.384 351.019 343.979 349.481 344.095 347.95 c +344.332 344.835 342.663 342.018 340.773 339.525 c +339.896 338.368 339.417 336.883 340.454 336.272 c +342.6 335.007 344.367 338.715 341.708 339.578 c +339.692 340.232 339.057 336.984 337.253 336.897 c +336.506 336.861 335.867 337.391 335.131 337.48 c +332.078 337.85 331.852 333.026 329.178 332.58 c +327.154 332.243 325.752 334.582 323.755 334.575 c +321.93 334.569 320.654 332.845 320.608 330.919 c +320.561 328.943 320.147 326.877 318.686 327.31 c +316.711 327.895 318.498 330.341 321.141 332.122 c +322.464 333.013 323.076 334.585 323.212 336.183 c +323.352 337.812 323.028 339.475 323.43 341.065 c +323.794 342.508 324.718 343.728 325.266 345.108 c +326.199 347.458 325.986 350.085 326.688 352.508 c +327.318 354.685 324.437 355.22 324.906 353.833 c +324.928 353.767 324.974 353.711 325.012 353.653 c +334.082 339.929 308.6 352.641 319.286 358.969 c +319.857 359.307 320.489 359.522 321.096 359.789 c +321.882 360.134 322.669 360.571 323.525 360.476 c +326.842 360.111 325.645 349.209 331.152 352.721 c +332.15 353.358 332.177 354.688 332.414 355.846 c +332.674 357.122 333.335 358.328 334.505 358.88 c +337.632 360.354 339.872 356.833 338.042 355.168 c +336.594 353.85 330.551 358.359 331.253 353.828 c +331.411 352.806 333.169 351.711 332.001 351.021 c +331.107 350.492 330.472 351.909 330.71 353.576 c +330.812 354.297 330.69 355.058 330.989 355.726 c +332.828 359.825 338.776 354.202 340.964 357.331 c +342.23 359.141 340.721 361.66 338.342 361.526 c +338.276 361.522 338.21 361.516 338.145 361.502 c +329.565 359.692 342.872 360.841 348.441 362.304 c +349.009 362.453 349.646 362.352 350.138 362.682 c +352.051 363.964 349.404 366.326 350.07 367.986 c +350.882 370.007 353.625 368.871 355.437 369.61 c +356.441 370.02 357.078 370.96 357.516 371.954 c +358.899 375.093 358.525 378.642 359.048 382.017 c +359.445 384.571 358.15 386.659 356.705 385.888 c +354.391 384.653 357.871 382.606 358.354 380.648 c +358.722 379.154 357.423 377.803 356 378.184 c +354.873 378.485 354.418 379.883 353.302 380.21 c +350.946 380.902 349.379 377.765 351.396 376.27 c +351.928 375.876 352.662 375.85 353.075 376.329 c +356.182 379.939 347.206 378.825 348.193 381.397 c +348.387 381.904 348.942 382.14 349.273 382.562 c +351.151 384.95 347.565 387.135 346.383 385.014 c +345.452 383.345 348.325 382.483 348.267 380.956 c +348.222 379.782 346.893 379.137 345.62 379.488 c +345.193 379.606 344.799 379.82 344.452 380.096 c +342.401 381.729 340.018 383.066 339.574 381.209 c +339.339 380.226 340.625 379.372 340.201 378.398 c +338.213 373.824 332.012 381.832 338.598 383.669 c +341.397 384.451 344.535 381.905 347.071 383.622 c +351.907 386.898 368.826 380.833 357.629 382.688 c +357.19 382.761 356.692 382.834 356.683 382.467 c +356.676 382.224 356.978 382.144 357.1 381.951 c +359.811 377.646 353.733 383.034 353.232 382.199 c +351.647 379.557 356.195 381.776 356.751 381.042 c +357.39 380.199 356.194 378.876 354.488 379.413 c +354.154 379.518 353.829 379.656 353.482 379.709 c +350.16 380.219 348.638 375.331 351.322 370.811 c +351.87 369.89 352.629 368.982 353.621 369.193 c +358.298 370.19 351.402 398.085 355.956 380.412 c +356.012 380.197 355.985 379.972 355.917 379.76 c +354.878 376.531 349.728 379.29 348.314 376.605 c +345.365 371.006 355.924 368.453 355.614 375.442 c +355.572 376.405 355.061 377.513 355.857 378.077 c +357.759 379.427 360.049 375.097 355.806 372.426 c +351.496 369.712 346.944 370.494 347.539 373.419 c +348.061 375.978 352.441 375.011 353.003 377.535 c +353.474 379.648 349.086 381.8 351.352 383.853 c +353.325 385.641 355.144 382.133 355.253 377.855 c +355.616 363.724 378.054 376.216 364.783 379.906 c +362.608 380.511 357.646 378.536 359.55 381.248 c +360.156 382.11 361.263 381.247 362.282 380.802 c +363.275 380.369 364.396 380.655 365.325 381.229 c +369.572 383.852 368.046 389.333 364.547 389.216 c +360.933 389.094 360.18 383.697 364.084 382.519 c +365.814 381.997 368.03 383.125 369.264 381.642 c +370.104 380.632 369.837 378.664 371.278 378.423 c +372.401 378.235 373.098 379.48 372.417 380.209 c +370.866 381.869 370.39 378.345 369.075 377.191 c +367.956 376.208 365.141 376.942 365.313 375.016 c +365.442 373.559 367.746 373.41 369.284 375.232 c +370.518 376.695 371.455 378.572 370.504 380.126 c +369.568 381.657 367.158 381.736 366.499 383.459 c +365.656 385.662 369.523 389.478 366.253 390.631 c +364.574 391.223 362.233 387.721 360.854 389.962 c +360.138 391.126 362.853 394.304 360.278 394.387 c +359.134 394.424 359.237 392.769 358.43 392.23 c +352.538 388.3 359.547 397.277 359.972 401.39 c +360.507 406.559 353.223 404.745 355.155 401.366 c +355.625 400.544 356.763 400.64 357.715 401.066 c +360.21 402.184 363.075 402.836 363.578 400.721 c +364.594 396.446 358.099 398.942 355.904 397.188 c +354.688 396.217 354.712 394.497 354.686 392.93 c +354.662 391.486 354.57 389.925 355.572 388.889 c +357.06 387.35 359.524 388.238 361.449 387.499 c +362.367 387.146 363.261 386.436 364.183 386.81 c +364.885 387.094 365.182 387.866 365.34 388.619 c +365.476 389.271 365.709 389.979 366.327 390.005 c +367.201 390.042 367.314 388.889 367.263 387.835 c +367.1 384.474 369.189 379.921 365.728 379.654 c +364.882 379.589 364.329 380.312 364.691 380.805 c +365.062 381.312 365.775 380.793 366.296 380.982 c +367.099 381.274 366.972 382.462 366.138 383.261 c +363.891 385.414 360.435 385.728 357.954 383.883 c +352.085 379.519 358.985 373.801 361.202 377.318 c +361.838 378.327 361.01 380.087 362.267 380.633 c +363.831 381.312 365.454 378.616 363.284 376.192 c +362.115 374.885 360.678 373.713 360.253 372.003 c +358.18 363.641 370.778 365.71 367.035 370.775 c +366.93 370.918 366.791 371.034 366.629 371.106 c +364.572 372.021 362.765 367.746 366.981 365.222 c +369.2 363.893 371.574 362.29 373.963 363.214 c +375.331 363.743 376.245 365.091 375.863 366.45 c +375.613 367.336 374.817 368.205 375.352 368.986 c +381.049 377.296 377.218 361.557 379.086 361.158 c +380.092 360.943 380.929 361.884 381.067 363.013 c +381.245 364.475 380.953 366.318 382.356 366.554 c +386.886 367.317 382.075 361.554 382.824 359.344 c +383.491 357.379 386.711 357.771 387.301 355.75 c +387.612 354.684 386.827 353.624 386.978 352.536 c +387.599 348.069 395.02 349.233 393.776 354.445 c +393.209 356.823 391.704 359.667 393.906 359.706 c +396.067 359.743 394.74 356.886 394.318 354.532 c +393.743 351.325 397.601 349.368 401.652 349.807 c +402.842 349.936 404.18 349.945 404.637 348.914 c +405.229 347.579 403.712 346.503 402.198 345.775 c +401.462 345.421 400.741 344.976 400.363 344.252 c +399.598 342.786 400.579 341.067 400.203 339.492 c +399.517 336.615 395.936 336.212 392.694 336.435 c +391.753 336.499 390.753 336.586 390.102 337.267 c +389.579 337.815 389.434 338.604 389.561 339.354 c +390.946 347.524 401.1 341.403 396.589 337.55 c +394.843 336.059 390.937 340.853 389.677 337.446 c +389.382 336.65 389.954 335.883 390.396 335.151 c +390.679 334.68 390.914 334.164 391.349 333.825 c +395.877 330.302 396.007 339.51 399.048 340.857 c +399.574 341.09 400.225 341.225 400.378 341.779 c +400.84 343.465 398.321 342.707 396.702 343.035 c +391.56 344.076 398.296 348.557 400.954 352.75 c +402.543 355.256 400.814 358.33 401.127 361.193 c +401.336 363.109 402.667 364.77 404.399 364.502 c +407.583 364.009 405.697 352.751 411.461 356.364 c +412.377 356.939 412.534 358.206 411.753 358.909 c +410.773 359.791 409.305 359.07 409.447 357.919 c +409.611 356.603 411.609 356.397 412.949 357.844 c +415.589 360.695 417.08 365.794 420.86 364.537 c +423.39 363.696 423.451 360.399 425.066 358.429 c +425.783 357.553 426.826 356.736 426.54 355.646 c +426.125 354.062 422.377 354.074 423.276 351.904 c +424.387 349.224 427.141 353.008 428.776 352.386 c +432.086 351.129 429.338 344.728 424.752 347.755 c +421.602 349.834 423.428 354.003 426.131 353.405 c +427.974 352.997 428.73 348.863 430.969 350.361 c +433.733 352.21 428.793 353.786 427.374 355.997 c +426.213 357.805 427.739 361.423 425.106 361.834 c +423.196 362.132 419.306 358.975 419.821 362.031 c +420.219 364.393 423.821 361.509 424.499 363.297 c +424.95 364.487 423.264 364.941 422.536 365.858 c +421.226 367.509 420.51 370.919 419.159 369.102 c +417.421 366.765 422.271 366.946 422.396 365.477 c +422.457 364.763 421.791 364.286 421.399 363.7 c +419.572 360.971 422.786 358.324 424.677 360.027 c +425.746 360.991 425.213 363.778 427.076 363.522 c +428.565 363.317 428.708 360.751 426.403 359.679 c +425.167 359.105 423.922 359.682 424.126 360.575 c +424.251 361.12 425.073 361.366 424.964 361.97 c +423.873 367.994 422.363 358.095 421.103 358.841 c +418.87 360.164 423.151 361.45 422.6 362.593 c +421.794 364.261 418.46 362.46 420.398 360.07 c +422.102 357.968 426.371 360.239 427.598 357.44 c +428.913 354.442 424.11 351.889 418.899 354.718 c +416.102 356.237 412.736 356.332 412.061 353.875 c +410.806 349.302 407.422 343.071 407.732 347.822 c +407.738 347.926 407.765 348.026 407.808 348.12 c +408.369 349.374 410.024 348.672 411.408 348.602 c +413.421 348.5 415.626 350.466 417.211 348.927 c +419.203 346.995 414.844 342.556 418.176 341.093 c +418.644 340.887 419.201 340.951 419.487 341.354 c +421.052 343.563 415.638 345.373 414.212 340.397 c +413.442 337.712 412.171 334.865 413.613 332.478 c +415.587 329.209 420.259 325.967 416.819 324.279 c +413.971 322.882 411.693 327.107 414.553 328.748 c +415.454 329.265 416.904 329.16 417.031 330.256 c +417.148 331.267 415.226 332.122 416.104 333.142 c +416.766 333.913 417.695 332.86 418.608 332.637 c +421.144 332.02 422.742 336.176 419.488 337.652 c +413.394 340.415 410.863 330.572 417.009 329.907 c +419.263 329.663 420.36 332.239 422.161 333.458 c +424.058 334.743 426.75 334.427 428.394 336.066 c +429.515 337.183 429.872 339.025 431.358 339.662 c +431.4 339.68 431.443 339.697 431.488 339.701 c +433.035 339.858 430.992 338.303 431.089 337.711 c +431.208 336.983 432.186 337.347 433.044 337.855 c +435.951 339.578 439.758 335.045 436.271 331.403 c +434.213 329.253 430.779 329.588 428.32 327.992 c +426.89 327.064 425.941 325.592 425.345 323.996 c +424.206 320.951 423.595 317.143 420.436 316.693 c +419.646 316.58 418.706 316.565 418.542 315.821 c +418.247 314.492 421.997 314.362 420.781 312.644 c +420.275 311.929 419.053 312.679 418.535 311.985 c +417.854 311.072 419.462 310.239 419.197 309.321 c +417.891 304.819 411.767 311.901 417.54 313.919 c +418.136 314.127 418.773 314.183 419.376 314.366 c +421.269 314.941 422.53 316.602 424.07 317.824 c +426.605 319.836 430.106 319.912 431.119 317.434 c +433.27 312.171 425.297 310.979 425.314 315.4 c +425.32 316.908 427.118 317.375 428.261 318.307 c +429.54 319.349 430.09 321.27 431.735 321.681 c +435.075 322.515 441.048 321.437 438.412 324.293 c +437.872 324.879 437.014 324.562 437.054 323.962 c +437.233 321.216 439.995 325.593 440.615 324.311 c +441.025 323.462 439.65 323.14 438.161 323.585 c +436.531 324.073 434.093 323.624 434.264 325.363 c +434.481 327.574 438.445 325.812 438.776 327.885 c +438.897 328.643 438.129 329.291 438.287 330.048 c +438.619 331.639 441.193 331.252 442.645 328.817 c +444.158 326.28 443.713 323.517 441.858 323.716 c +439.934 323.922 440.733 326.475 440.911 328.589 c +441.257 332.69 433.345 337.097 437.962 340.653 c +438.511 341.075 439.262 341.289 439.541 341.933 c +440.014 343.024 438.958 344.108 437.606 344.441 c +431.06 346.057 425.912 349.738 429.725 351.655 c +431.204 352.399 432.608 350.905 434.151 350.536 c +435.37 350.245 436.668 350.701 437.867 350.327 c +438.857 350.017 439.592 349.135 439.355 348.184 c +439.129 347.28 438.07 346.895 437.705 346.053 c +437.368 345.274 437.683 344.377 438.389 343.888 c +439.291 343.262 440.495 342.674 439.918 341.892 c +437.34 338.4 437.811 345.703 436.448 345.409 c +434.309 344.948 437.104 343.078 438.26 341.313 c +439.259 339.787 437.511 338.006 437.954 336.354 c +438.2 335.439 439.027 334.859 439.627 334.135 c +440.182 333.464 440.53 332.59 440.15 331.833 c +437.99 327.527 432.336 333.204 436.676 335.351 c +437.877 335.945 439.385 334.639 440.509 335.475 c +442.363 336.854 440.041 339.908 435.701 339.837 c +429.57 339.738 428.689 334.079 431.517 333.981 c +431.886 333.968 432.243 334.165 432.291 334.512 c +432.395 335.262 426.093 336.578 430.047 337.165 c +430.549 337.239 430.652 336.532 431.056 336.342 c +431.717 336.033 433.394 338.337 433.633 336.62 c +433.712 336.053 432.854 335.724 432.188 336.314 c +427.867 340.15 435.44 347.015 439.195 340.845 c +439.53 340.295 439.728 339.614 440.311 339.328 c +441.884 338.558 443.706 340.754 442.456 343.126 c +441.18 345.549 438.041 346.421 436.875 348.91 c +436.525 349.658 436.396 350.489 436.479 351.311 c +436.583 352.339 437.009 353.374 436.656 354.354 c +435.968 356.267 433.757 355.619 433.938 354.4 c +434.031 353.773 434.861 353.639 435.115 353.089 c +435.8 351.607 433.251 350.822 430.621 352.478 c +429.717 353.047 428.595 353.35 428.027 354.266 c +427.127 355.718 428.112 357.519 429.627 357.381 c +432.706 357.101 430.642 352.497 432.599 351.266 c +435.839 349.229 437.441 354.339 434.608 354.746 c +434.139 354.814 433.705 354.51 433.234 354.509 c +431.556 354.504 431.102 356.997 432.684 359.011 c +436.015 363.252 432.606 366.96 430.87 365.208 c +430.448 364.783 430.474 364.111 430.178 363.599 c +429.147 361.812 426.248 362.516 426.084 364.869 c +425.886 367.724 431.918 373.064 426.957 373.07 c +424.747 373.073 425.367 369.804 423.9 368.789 c +423.206 368.309 422.295 368.434 421.495 368.193 c +419.563 367.612 417.415 365.697 416.524 367.525 c +415.698 369.219 417.981 370.165 418.563 368.881 c +418.699 368.582 418.581 368.229 418.695 367.923 c +421.098 361.459 420.006 372.71 421.639 374.031 c +424.151 376.063 425.142 370.691 427.219 371.053 c +429.646 371.476 428.207 374.645 426.787 377.45 c +426.72 377.582 426.66 377.717 426.597 377.851 c +425.844 379.48 424.882 381.151 425.309 382.898 c +426.081 386.053 430.186 386.495 432.017 388.995 c +432.227 389.281 432.405 389.594 432.67 389.832 c +433.314 390.408 434.287 390.432 434.912 389.847 c +435.905 388.919 435.376 386.792 436.861 386.394 c +437.469 386.232 438.074 386.578 438.446 387.103 c +440.286 389.703 436.739 392.495 437.194 395.306 c +437.602 397.823 441.16 399.735 439.749 402.266 c +439.52 402.676 439.157 402.986 438.779 403.265 c +438.177 403.708 437.502 404.123 437.247 404.828 c +436.283 407.492 440 409.224 441.412 406.802 c +442.575 404.807 439.888 403.335 437.845 401.825 c +436.092 400.53 435.14 398.336 433.203 397.311 c +429.428 395.313 426.803 399.287 428.705 401.012 c +430.493 402.635 434.285 397.415 435.736 400.813 c +437.327 404.539 428.212 402.677 429.79 406.395 c +430.656 408.436 434.723 407.242 434.514 402.869 c +434.417 400.837 434.018 398.826 434.023 396.792 c +434.026 395.594 434.116 394.298 433.294 393.428 c +431.732 391.777 428.855 392.796 428.088 395.342 c +427.191 398.315 429.592 401.035 429.99 404.037 c +430.222 405.786 429.756 407.524 429.496 409.264 c +429.334 410.355 428.897 411.488 427.931 411.399 c +427.071 411.32 426.158 409.931 425.527 410.84 c +424.749 411.962 426.786 411.918 428.282 412.235 c +429.274 412.445 429.682 413.518 429.977 414.517 c +430.067 414.824 430.153 415.157 429.991 415.431 c +429.854 415.665 429.582 415.772 429.308 415.767 c +422.59 415.642 429.328 405.556 432.204 411.938 c +432.571 412.752 432.036 413.642 432.115 414.512 c +432.615 420.034 441.28 414.479 442.697 418.505 c +442.921 419.143 442.809 419.844 442.967 420.499 c +443.705 423.547 448.039 424.085 449.944 421.048 c +450.383 420.348 450.587 419.509 450.358 418.717 c +449.997 417.462 448.709 416.789 448.005 415.708 c +446.844 413.928 447.404 411.303 445.72 409.906 c +442.664 407.37 438.351 410.894 440.223 414.387 c +443.006 419.582 449.449 414.392 446.184 411.081 c +443.149 408.005 440.567 414.561 437.665 413.912 c +436.674 413.69 436.002 412.842 435.544 411.928 c +434.551 409.949 435.457 407.883 436.946 408.163 c +439.116 408.572 437.344 411.28 437.346 413.297 c +437.352 418.213 444.365 417.481 443.712 413.272 c +443.611 412.617 443.163 412.088 442.62 411.705 c +439.808 409.72 437.538 407.148 439.745 406.322 c +442.894 405.143 441.918 410.856 444.086 411.085 c +444.397 411.118 444.708 411.033 444.975 410.87 c +453.664 405.575 437.342 398.251 439.352 407.858 c +439.74 409.715 442.668 409.324 443.259 411.031 c +446.903 421.56 427.641 415.131 436.923 408.485 c +438.661 407.241 442.973 409.904 443.215 406.696 c +443.327 405.227 441.503 404.409 440.415 405.5 c +438.975 406.946 446.707 416.43 439.644 414.008 c +438.211 413.516 438.987 411.574 438.433 410.348 c +437.878 409.121 437.069 407.735 438.174 407.545 c +438.494 407.489 438.779 407.702 439 407.947 c +441.319 410.516 443.221 415.044 445.111 412.342 c +445.838 411.303 444.986 410.051 444.262 408.939 c +443.062 407.098 442.6 404.762 443.87 403.045 c +445.591 400.718 448.338 398.27 446.018 397.234 c +443.439 396.083 443.037 401.155 440.733 400.677 c +439.665 400.456 439.215 399.189 439.912 398.381 c +441.13 396.971 444.495 399.838 445.233 397.34 c +445.397 396.788 445.063 396.241 445.031 395.674 c +445.019 395.452 445.053 395.228 445.016 395.008 c +444.547 392.237 438.499 393.504 440.338 398.747 c +441.177 401.14 441.652 403.845 439.649 404.17 c +438.994 404.276 438.337 403.885 437.691 404.058 c +435.816 404.561 436.688 407.127 438.19 409.29 c +438.27 409.405 438.347 409.523 438.423 409.641 c +439.762 411.72 441.17 414.006 443.595 414.419 c +446.054 414.838 448.163 413.036 450.508 412.297 c +452.018 411.821 453.723 412.097 454.086 413.446 c +454.679 415.649 451.309 417.36 448.39 415.06 c +446.212 413.345 443.75 413.741 444.005 415.288 c +444.509 418.34 447.794 414.569 449.383 415.103 c +450.499 415.479 450.699 417.122 451.875 417.383 c +453.855 417.821 453.921 414.982 455.004 413.446 c +457.11 410.458 461.04 413.353 464.497 413.644 c +465.819 413.755 467.372 413.683 467.796 414.892 c +468.199 416.045 467.049 416.952 466.194 417.867 c +465.786 418.304 465.454 418.806 465.081 419.273 c +463.427 421.34 461.062 422.636 458.751 423.916 c +455.762 425.57 453.805 428.543 455.694 430.383 c +458.527 433.143 460.988 427.936 464.107 426.425 c +466.011 425.503 467.221 427.318 466.379 428.062 c +466.175 428.242 465.884 428.261 465.623 428.174 c +464.355 427.75 464.569 425.471 463.1 425.349 c +450.768 424.324 469.087 431.798 468.203 433.856 c +467.333 435.882 463.912 434.002 462.984 435.941 c +462.12 437.745 471.4 447.25 463.997 443.94 c +462.257 443.162 464.321 440.762 463.264 439.695 c +454.174 430.509 466.32 447.553 464.78 450.581 c +462.751 454.57 458.873 448.524 456.215 449.283 c +453.142 450.161 453.641 454.552 456.683 454.731 c +458.172 454.819 459.761 453.165 460.983 454.305 c +463.336 456.499 458.56 457.501 456.213 459.427 c +454.146 461.123 454.902 465.696 451.721 465.85 c +451.194 465.875 450.684 465.684 450.264 465.363 c +447.568 463.301 448.956 458.734 453.011 457.531 c +455.084 456.915 457.297 457.322 459.199 458.357 c +459.658 458.606 460.114 458.922 460.238 459.427 c +460.433 460.22 459.64 461.14 460.23 461.81 c +461.881 463.688 462.573 459.728 463.949 459.318 c +466.664 458.508 466.263 463.6 468.568 463.472 c +472.676 463.243 468.42 458.186 469.464 456.055 c +469.854 455.26 470.709 454.874 471.444 454.389 c +471.717 454.209 471.981 454.006 472.153 453.727 c +474.37 450.135 467.266 447.152 466.428 452.515 c +466.302 453.321 466.611 454.205 466.166 454.906 c +465.643 455.731 464.532 455.707 463.605 455.979 c +462.147 456.407 461.114 457.638 460.535 459.051 c +459.437 461.735 458.824 465.243 456.061 464.999 c +454.559 464.867 453.717 463.403 452.671 462.333 c +451.415 461.048 449.604 460.325 448.029 461.078 c +445.177 462.442 446.178 466.461 444.545 468.907 c +443.32 470.742 443.334 472.745 444.648 472.563 c +446.419 472.319 443.708 458.293 446.773 466.805 c +446.783 466.833 446.791 466.862 446.8 466.89 c +449.129 474.188 457.102 461.947 448.567 461.376 c +446.511 461.239 443.738 462.531 443.425 460.407 c +443.19 458.807 446.191 457.998 445.383 456.277 c +443.926 453.175 441.164 458.039 439.363 457.457 c +437.596 456.885 438.222 454.065 436.59 453.342 c +430.939 450.835 435.899 459.471 435.212 463.64 c +434.519 467.847 427.984 468.04 423.796 462.981 c +422.073 460.9 420.292 458.513 417.611 458.525 c +414.343 458.538 412.648 462.007 410.028 463.805 c +408.124 465.112 405.744 465.472 403.743 466.617 c +398.538 469.596 393.91 467.396 395.54 464.846 c +396.116 463.944 397.369 463.884 398.373 464.418 c +401.087 465.862 401.901 471.02 405.378 469.94 c +407.11 469.402 407.553 467.341 407.584 465.427 c +407.648 461.569 407.418 457.325 410.341 454.836 c +415.929 450.08 419.992 458.076 416.077 459.497 c +414.075 460.224 413.214 457.227 411.421 456.909 c +409.198 456.516 408.412 459.293 407.148 461.2 c +406.829 461.682 406.433 462.109 406.121 462.596 c +404.327 465.393 405.447 469.128 408.496 470.172 c +411.733 471.28 414.79 468.519 413.806 465.638 c +413.211 463.894 412.354 461.905 413.874 461.741 c +414.527 461.67 415.011 462.283 415.123 462.984 c +415.311 464.171 414.64 465.509 415.414 466.483 c +418.103 469.866 421.862 461.153 424.551 464.515 c +424.933 464.992 424.978 465.636 424.863 466.239 c +423.387 473.98 413.987 468.988 417.333 464.885 c +418.802 463.083 421.067 465.309 423.195 465.68 c +425.497 466.081 427.76 463.958 429.97 464.933 c +431.252 465.498 431.832 466.883 432.454 468.137 c +434.987 473.242 440.178 470.042 438.521 467.847 c +437.696 466.755 433.198 468.572 434.294 465.819 c +434.814 464.514 436.321 465.838 437.687 466.869 c +439.679 468.373 442.06 466.356 444.423 465.892 c +445.515 465.677 446.688 466.009 446.882 466.991 c +447.586 470.562 440.888 470.445 442.281 466.044 c +442.629 464.942 443.963 464.405 444.195 463.259 c +444.45 461.997 443.255 461.023 442.975 459.806 c +442.378 457.207 445.867 455.099 444.894 452.503 c +443.736 449.415 425.2 452.811 433.65 445.035 c +435.222 443.589 437.583 445.152 436.919 447.008 c +436.257 448.858 432.896 447.932 432.452 449.987 c +432.237 450.979 433.078 451.804 434.041 452.283 c +434.638 452.58 435.273 452.796 435.926 452.93 c +436.536 453.056 437.167 453.113 437.733 453.375 c +441.764 455.24 446.748 457.979 445.453 454.404 c +445.207 453.725 444.397 453.514 444.009 454.001 c +442.767 455.56 446.554 455.829 445.98 457.143 c +445.439 458.383 443.862 457.062 443.173 454.843 c +442.651 453.162 440.748 452.437 439.598 453.495 c +436.262 456.565 443.243 458.545 443.399 461.312 c +443.525 463.532 441.006 464.493 438.828 465.382 c +433.314 467.633 429.225 464.432 431.135 462.15 c +432.185 460.896 433.982 461.886 435.573 461.964 c +437.106 462.039 438.528 461.136 439.025 459.693 c +440.024 456.791 437.215 454.375 434.32 452.702 c +432.476 451.636 430.215 451.101 429.314 452.704 c +428.089 454.884 426.633 457.53 426.097 455.57 c +425.972 455.115 426.226 454.416 425.708 454.378 c +425.154 454.338 425.367 455.103 425.384 455.717 c +425.656 465.462 414.061 452.124 422.933 450.616 c +428.809 449.617 435.606 446.84 430.755 445.761 c +430.434 445.689 430.091 445.768 429.78 445.654 c +428.814 445.3 428.937 443.962 429.584 442.88 c +430.68 441.047 432.406 439.461 434.295 440.095 c +436.26 440.755 436.854 443.835 439.104 443.726 c +442.075 443.583 442.836 438.974 439.32 437.638 c +437.568 436.972 435.666 437.99 435.657 439.682 c +435.646 441.712 438.174 442.713 439.638 441.193 c +440.769 440.018 440.113 438.182 440.531 436.658 c +441.037 434.812 442.904 433.7 444.804 434.033 c +447.06 434.429 448.526 436.603 448.259 438.913 c +447.994 441.213 446.047 442.926 445.553 445.176 c +445.072 447.366 446.015 449.841 444.709 451.723 c +444.409 452.155 443.995 452.512 443.479 452.609 c +440.733 453.122 439.051 448.314 443.114 446.482 c +447.182 444.647 448.503 449.648 446.163 450.162 c +445.1 450.396 444.456 448.882 443.401 449.046 c +441.634 449.321 442.772 452.672 440.889 452.837 c +438.246 453.068 440.045 449.099 438.645 448.217 c +435.76 446.4 436.293 451.704 434.737 453.784 c +433.663 455.22 431.523 454.898 430.057 455.834 c +428.182 457.032 427.854 459.626 429.229 461.445 c +431.717 464.738 436.545 463.175 436.478 459.712 c +436.472 459.43 436.417 459.152 436.381 458.873 c +436.009 456.003 434.279 453.964 433.029 455.245 c +431.652 456.655 438.246 460.511 433.946 461.458 c +430.641 462.186 433.288 457.252 431.941 456.342 c +431.261 455.883 430.392 456.232 429.708 456.75 c +428.063 457.995 426.912 459.963 424.895 460.498 c +423.339 460.91 421.309 460.788 421.05 462.359 c +420.441 466.056 425.499 463.771 429.56 459.649 c +431.889 457.285 435.155 458.982 434.612 461.145 c +433.777 464.473 427.825 460.323 427.045 463.75 c +426.933 464.239 427.102 464.76 426.943 465.238 c +424.663 472.093 417.255 461.345 424.289 462.226 c +425.145 462.334 425.223 463.462 425.848 463.965 c +427.195 465.049 432.003 460.296 431.964 464.39 c +431.944 466.453 427.697 464.976 427.858 467.221 c +428.053 469.941 433.154 468.737 431.33 465.383 c +429.205 461.477 426.066 467.395 422.593 469.943 c +421.929 470.43 421.122 470.702 420.303 470.624 c +413.933 470.019 415.092 460.031 421.866 461.134 c +424.338 461.536 426.247 464.732 428.737 463.549 c +430.42 462.75 430.447 460.583 430.535 458.668 c +430.631 456.554 431.156 454.441 432.498 452.804 c +434.887 449.889 439.673 448.233 438.893 444.362 c +438.311 441.477 434.944 441.197 434.279 443.181 c +433.465 445.61 437.418 447.507 439.1 444.424 c +440.217 442.376 438.367 440.03 438.922 437.845 c +439.564 435.324 442.505 434.664 444.753 433.398 c +446.621 432.345 448.069 430.703 449.056 428.799 c +450.139 426.71 448.214 425.435 447.54 426.331 c +447.12 426.889 447.853 427.505 447.837 428.132 c +447.78 430.297 443.565 429.966 444.423 426.783 c +445.165 424.031 449.805 425.111 450.587 422.396 c +450.974 421.052 449.953 419.857 449.17 418.689 c +447.554 416.279 447.095 413.152 448.901 411.002 c +450.847 408.687 454.33 408.725 456.986 410.426 c +460.718 412.818 464.748 412.718 464.351 410.076 c +464.198 409.061 463.114 408.489 462.265 408.988 c +457.046 412.05 466.299 417.621 466.581 411.258 c +466.661 409.442 463.841 409.037 463.774 407.277 c +463.656 404.187 468.056 405.78 469.986 404.435 c +478.123 398.765 463.212 388.543 460.84 399.841 c +460.718 400.42 460.763 401.039 461.122 401.507 c +462.104 402.787 463.934 401.903 465.472 402.057 c +465.849 402.095 466.231 402.217 466.44 402.53 c +466.756 403.002 466.508 403.596 466.497 404.154 c +466.486 404.676 466.696 405.175 466.724 405.696 c +466.873 408.477 463.335 409.932 460.091 408.512 c +459.272 408.154 458.419 407.679 457.578 407.981 c +453.896 409.302 456.701 415.857 461.148 413.011 c +462.362 412.235 462.806 410.562 464.171 410.036 c +465.476 409.534 466.832 410.294 467.891 411.262 c +471.759 414.796 474.523 420.805 479.727 419.676 c +480.366 419.537 481.034 419.278 481.619 419.577 c +487.937 422.804 475.676 429.883 474.411 420.755 c +474.31 420.026 474.35 419.252 473.963 418.621 c +471.228 414.15 467.676 421.581 464.194 422.048 c +461.778 422.372 460.203 420.001 461.398 418.436 c +462.081 417.542 463.368 417.747 463.538 418.643 c +464.105 421.631 460.063 418.748 458.772 419.48 c +451.26 423.741 476.446 424.347 465.918 428.369 c +462.736 429.584 463.738 423.857 461.611 423.56 c +459.536 423.269 458.331 426.439 460.711 428.045 c +462.993 429.585 465.63 427.603 468.139 426.355 c +469.649 425.603 471.483 425.373 472.439 426.623 c +473.448 427.943 472.534 429.658 471.841 431.217 c +469.131 437.312 474.148 442.255 477.703 439.978 c +480.771 438.013 477.955 432.474 481.325 430.72 c +482.884 429.909 484.787 430.724 485.474 432.392 c +485.638 432.791 485.717 433.226 485.616 433.646 c +482.985 444.5 470.463 428.722 481.529 428.844 c +482.747 428.857 483.355 430.262 484.473 430.626 c +485.85 431.076 488.004 430.109 488.344 431.731 c +488.759 433.706 485.272 434.736 484.505 431.913 c +484.027 430.154 485.336 427.329 483.224 427.19 c +480.443 427.007 480.998 431.33 483.558 430.518 c +484.709 430.152 484.468 428.147 485.738 427.95 c +487.562 427.666 487.256 431.508 489.205 431.018 c +490.354 430.729 491.446 426.763 492.439 429.066 c +492.801 429.905 491.506 430.219 491.255 430.932 c +490.843 432.105 492.484 433.204 493.826 432.135 c +495.321 430.943 494.671 427.867 496.801 427.421 c +499.349 426.887 500.194 430.405 497.995 431.089 c +496.504 431.553 495.78 429.564 494.476 429.03 c +491.554 427.836 488.882 434.927 485.783 431.78 c +484.276 430.249 486.012 428.03 488.03 426.396 c +490.073 424.742 491.032 422.103 489.333 420.793 c +488.22 419.936 486.652 420.419 485.614 421.489 c +485.182 421.935 484.834 422.47 484.754 423.085 c +484.471 425.256 486.895 426.824 489.052 425.779 c +491.608 424.54 491.61 420.99 489.166 419.936 c +488.701 419.736 488.179 419.691 487.7 419.857 c +486.272 420.35 486.059 422.098 485.401 423.437 c +484.772 424.718 483.586 425.724 483.344 427.143 c +483.111 428.503 483.786 429.811 484.773 430.791 c +485.682 431.696 486.85 432.337 488.131 432.352 c +490.524 432.38 492.301 430.427 493.482 428.283 c +494.504 426.426 496.133 424.842 497.517 425.878 c +498.938 426.943 497.584 429.005 498.204 430.471 c +498.719 431.688 500.366 432.102 500.699 433.405 c +502.966 442.268 486.083 438.352 493.098 430.049 c +495.314 427.425 499.027 429.624 502.371 431.019 c +505.561 432.349 509.086 431.25 509.139 428.513 c +509.173 426.741 507.373 425.682 506.183 426.605 c +505.921 426.809 505.756 427.104 505.587 427.387 c +504.33 429.487 502.447 431.279 500.029 431.433 c +497.475 431.596 495.268 432.691 496.254 434.071 c +497.296 435.528 499.115 433.437 500.412 433.984 c +504.393 435.662 499.012 443.172 494.643 437.474 c +492.792 435.06 493.55 431.806 493.842 428.782 c +494.387 423.136 499.615 422.624 499.828 425.224 c +499.941 426.594 497.388 427.701 498.519 429.094 c +499.621 430.45 501.243 428.272 502.53 428.717 c +505.649 429.797 502.633 436.425 497.472 432.808 c +494.214 430.525 493.207 426.243 494.391 422.382 c +495.345 419.268 498.017 416.883 500.776 417.878 c +501.855 418.268 502.652 419.24 502.534 420.354 c +502.423 421.409 501.73 422.661 502.699 423.096 c +505.993 424.572 503.582 419.128 504.786 418.41 c +513.457 413.239 508.618 431.436 503.734 422.537 c +503.377 421.887 503.874 421.14 503.781 420.427 c +503.451 417.89 498.604 417.8 498.077 422.224 c +497.952 423.271 498.028 424.47 497.15 425.05 c +495.769 425.964 494.129 424.216 492.676 424.804 c +491.688 425.204 491.339 426.416 492.012 427.184 c +492.411 427.639 493.172 427.867 493.126 428.497 c +493.056 429.443 491.672 429.557 491.445 428.581 c +491.156 427.336 493.401 426.461 494.349 428.417 c +495.213 430.201 494.036 432.303 492.02 432.715 c +491.873 432.745 491.724 432.765 491.574 432.759 c +489.765 432.687 489.699 430.224 488.412 429.219 c +486.789 427.951 484.372 429.009 483.787 431.197 c +483.527 432.169 483.274 433.312 482.369 433.209 c +480.875 433.04 478.699 422.205 478.826 429.076 c +478.832 429.418 479.142 429.643 479.448 429.815 c +481.508 430.974 483.291 432.756 482.089 434.213 c +480.579 436.043 477.278 434.175 478.372 431.383 c +479.224 429.209 482.461 429.343 483.484 427.294 c +483.925 426.409 483.793 425.333 483.064 424.684 c +481.894 423.642 479.938 424.374 478.781 423.311 c +473.271 418.241 487.111 410.279 489.553 422.106 c +490.08 424.657 489.61 427.709 491.788 429.208 c +492.119 429.436 492.513 429.661 492.513 430.058 c +492.513 432.365 489.796 429.692 489.028 430.322 c +484.744 433.835 492.782 429.928 495.517 430.375 c +497.72 430.735 496.659 433.735 494.861 436.324 c +491.27 441.493 497.797 444.756 499.303 441.661 c +500.728 438.734 478.389 425.803 493.549 431.764 c +493.872 431.891 494.098 432.174 494.383 432.37 c +495.004 432.796 495.829 432.769 496.473 433.157 c +506.304 439.084 487.814 448.994 488.218 436.564 c +488.227 436.277 488.286 435.994 488.306 435.707 c +488.504 432.882 485.25 429.352 488.143 427.692 c +491.044 426.028 493.157 430.504 492.596 435.763 c +492.361 437.968 492.688 440.289 491.688 442.283 c +491.415 442.826 490.948 443.301 490.411 443.137 c +489.36 442.814 490.079 441.367 489.575 440.616 c +489.28 440.177 488.64 440.04 488.467 439.527 c +483.296 424.169 492.078 448.394 495.428 445.218 c +496.537 444.167 494.703 442.869 494.779 441.626 c +494.872 440.072 496.807 439.777 497.267 440.96 c +498.068 443.024 494.026 442.735 494.229 444.45 c +494.328 445.287 495.485 445.616 495.519 446.473 c +495.603 448.628 485.922 444.376 489.581 449.256 c +490.214 450.099 491.406 449.179 492.259 449.527 c +493.292 449.949 493.379 452.244 494.777 451.711 c +495.611 451.393 495.304 450.289 495.134 449.334 c +494.97 448.41 495.605 447.676 496.191 447.971 c +496.618 448.185 496.547 448.908 497.03 449.045 c +498.003 449.323 497.953 447.724 496.645 446.393 c +495.627 445.357 495.964 443.728 496.661 442.373 c +499.591 436.675 505.398 440.508 503.536 443.041 c +502.491 444.462 500.539 442.91 499.075 443.363 c +495.302 444.53 497.276 450.631 501.473 448.992 c +503.438 448.224 504.888 444.674 506.774 446.439 c +507.908 447.5 506.822 449.21 505.375 450.42 c +503.521 451.971 501.122 452.434 500.61 450.76 c +500.267 449.638 501.42 448.821 502.148 447.899 c +509.99 437.965 489.721 434.429 493.974 444.181 c +494.316 444.966 495.293 445.424 495.304 446.31 c +495.338 448.893 491.24 447.824 489.122 443.314 c +486.236 437.168 478.675 440.441 479.998 444.867 c +480.32 445.947 481.389 446.645 481.691 447.732 c +482.417 450.343 479.342 451.987 476.19 452.634 c +474.736 452.932 473.333 453.734 473.604 454.992 c +473.805 455.921 474.907 456.224 475.445 456.971 c +476.599 458.572 475.106 460.56 473.224 461.856 c +472.237 462.535 471.373 463.526 471.925 464.427 c +474.121 468.008 475.326 461.257 477.339 460.501 c +478.621 460.019 479.975 461.042 480.026 462.483 c +480.141 465.702 475.645 466.862 474.096 463.78 c +472.686 460.976 476.389 458.344 475.683 455.479 c +474.955 452.53 473.486 449.033 476.023 449.454 c +480.298 450.165 473.763 455.651 476.549 456.855 c +478.051 457.505 479.086 455.477 479.16 453.23 c +479.458 444.143 469.445 443.163 470.972 448.001 c +471.174 448.641 471.804 449.038 472.481 449.005 c +473.512 448.954 474.258 448.031 474.291 446.969 c +474.541 438.934 462.562 445.252 468.99 448.223 c +469.832 448.612 470.905 447.607 471.662 448.276 c +478.607 454.416 464.791 448.889 464.355 450.618 c +464.107 451.598 465.257 452.255 465.397 453.198 c +465.574 454.388 464.262 456.102 465.655 456.539 c +466.922 456.937 467.003 455.066 467.091 453.42 c +467.261 450.24 471.376 450.033 473.854 448.292 c +475.565 447.09 476.458 444.977 475.725 443.061 c +475.103 441.435 473.363 440.44 472.938 438.739 c +472.023 435.082 476.838 433.066 477.301 429.622 c +478.221 422.785 469.217 424.506 471.101 428.433 c +471.468 429.199 472.428 429.349 473.308 429.214 c +476.626 428.704 480.553 427.272 481.126 430.266 c +481.439 431.901 479.452 433.739 480.773 435.115 c +482.257 436.66 484.374 434.473 485.452 431.598 c +486.195 429.615 487.61 427.878 487.848 425.762 c +488.278 421.945 489.242 418.001 491.691 419.437 c +494.246 420.935 490.91 423.888 491.301 426.137 c +491.779 428.895 492.688 432.199 490.568 431.29 c +487.854 430.126 492.816 427.126 491.017 425.838 c +489.708 424.901 488.202 427.814 486.894 426.595 c +486.714 426.427 486.622 426.189 486.601 425.944 c +485.862 417.349 491.331 429.071 493.806 436.355 c +494.911 439.606 499.413 440.006 501.217 436.932 c +502.671 434.455 504.923 433.209 505.312 434.871 c +505.486 435.612 504.739 436.157 503.947 436.442 c +499.353 438.096 497.142 433.745 499.187 432.429 c +501.055 431.228 509.103 448.099 507.85 436.512 c +507.677 434.912 505.452 435.537 504.358 434.738 c +503.733 434.282 503.422 433.347 502.617 433.316 c +501.538 433.273 501.342 434.638 500.937 435.684 c +500.436 436.976 499.01 437.501 498.283 436.662 c +497.696 435.985 498.238 435.049 498.353 434.176 c +498.57 432.522 497.133 431.215 496.806 429.614 c +496.42 427.72 497.571 425.984 498.414 424.253 c +499.75 421.508 500.6 418.199 503.452 417.073 c +503.835 416.922 504.256 416.812 504.513 416.488 c +505.407 415.362 503.868 414.132 502.142 413.392 c +499.736 412.361 498.187 410.102 497.22 407.663 c +494.86 401.708 489.103 402.39 489.543 405.321 c +489.74 406.632 491.313 406.946 492.734 407.092 c +494.998 407.324 496.337 409.137 495.305 410.226 c +492.095 413.616 491.673 405.537 489.472 406.086 c +487.901 406.478 487.757 408.888 489.607 410.002 c +492.23 411.581 496.772 412.101 495.002 414.629 c +493.548 416.705 491.279 413.816 489.123 413.418 c +487.373 413.095 485.948 414.479 484.465 415.452 c +483.623 416.004 482.573 416.345 481.865 415.715 c +479.978 414.036 483.232 411.106 488.123 412.592 c +490.234 413.234 492.491 412.985 494.661 413.359 c +496.187 413.621 497.905 413.997 498.804 412.794 c +499.572 411.764 499.127 410.319 498.062 409.474 c +495.539 407.471 491.784 408.977 491.293 412.195 c +491.104 413.437 491.311 414.961 490.147 415.409 c +481.243 418.837 491.427 406.103 488.384 405.198 c +486.44 404.621 485.892 407.305 484.681 408.88 c +482.402 411.846 477.829 410.368 477.799 406.911 c +477.782 404.936 479.636 403.709 481.142 402.417 c +487.517 396.944 493.939 400.653 491.611 403.821 c +490.374 405.506 487.946 404.081 486.152 404.713 c +484.542 405.281 484.739 407.094 485.764 407.182 c +486.626 407.256 486.761 406.09 486.602 404.991 c +486.37 403.387 486.948 401.533 485.757 400.379 c +484.691 399.346 482.824 399.717 481.83 398.595 c +480.644 397.256 481.694 395.331 481.498 393.626 c +481.371 392.521 480.724 391.577 480.074 390.676 c +479.539 389.935 478.91 389.174 478.006 389.143 c +477.871 389.138 477.735 389.153 477.603 389.187 c +474.064 390.106 476.13 397.751 482.684 395.091 c +483.129 394.91 483.611 394.702 484.034 394.922 c +490.473 398.262 478.651 397.939 478.883 399.587 c +479.272 402.348 482.018 399.144 484.503 397.538 c +485.501 396.893 486.781 397.112 487.907 396.771 c +489.653 396.243 490.674 394.555 492.107 393.454 c +493.537 392.354 495.315 391.884 497.005 391.265 c +499.752 390.259 502.243 388.242 501.593 385.669 c +501.212 384.162 499.603 383.083 499.754 381.489 c +499.772 381.299 499.818 381.11 499.789 380.922 c +499.241 377.378 496.449 382.558 494.696 382.709 c +488.843 383.211 496.164 378.171 500.579 374.301 c +501.864 373.174 501.915 371.307 502.468 369.709 c +504.332 364.32 510.029 367.478 508.376 369.913 c +507.556 371.121 505.605 369.946 504.671 370.959 c +503.678 372.038 505.039 373.385 505.554 374.734 c +506.344 376.802 504.616 379.09 505.493 381.136 c +507.323 385.408 516.153 381.136 516.994 386.701 c +517.681 391.243 511.068 392.633 509.868 388.2 c +508.893 384.601 514.467 383.034 514.293 379.615 c +514.245 378.664 513.715 377.83 513.392 376.938 c +512.59 374.728 514.26 373.044 515.453 373.828 c +516.685 374.637 515.285 376.107 514.461 377.488 c +513.357 379.34 514.635 381.787 513.549 383.646 c +513.089 384.434 512.29 384.927 511.504 385.386 c +509.504 386.554 508.383 388.623 509.738 389.635 c +510.052 389.87 510.464 389.932 510.781 390.163 c +511.742 390.866 511.287 392.292 511.768 393.316 c +513.435 396.873 520.78 394.382 518.678 387.654 c +518.09 385.769 516.766 384.121 514.851 383.772 c +510.572 382.994 510.445 388.106 512.873 388.122 c +514.488 388.132 514.266 384.801 516.113 385.2 c +516.919 385.375 517.208 386.386 516.62 387.002 c +515.754 387.909 512.284 387.025 513.31 388.992 c +513.488 389.335 513.91 389.446 514.299 389.355 c +518.856 388.292 514.822 380.247 510.345 384.72 c +509.281 385.783 509.379 387.421 509.211 388.908 c +509.129 389.63 509.039 390.433 509.605 390.862 c +510.359 391.433 511.276 390.717 512.174 390.483 c +514.913 389.77 516.145 392.98 514.392 394.007 c +512.732 394.98 509.443 387.887 507.978 392.287 c +507.541 393.598 509.386 394.014 510.261 394.956 c +519.467 404.876 494.835 408.328 500.918 395.29 c +502.117 392.719 506.314 393.181 507.313 390.455 c +508.126 388.236 506.062 386.226 504.214 387.116 c +503.525 387.447 503.17 388.205 502.541 388.631 c +501.126 389.59 498.511 388.744 498.003 390.637 c +497.953 390.824 497.946 391.019 497.956 391.212 c +498.138 394.5 501.942 396.035 505.646 395.444 c +509.021 394.907 511.763 392.429 510.731 389.754 c +510.129 388.196 509.416 386.433 510.755 386.268 c +512.466 386.056 511.657 388.583 512.474 389.52 c +512.952 390.067 513.823 390.048 514.31 390.585 c +515.598 392.003 511.445 395.659 514.601 396.506 c +515.847 396.84 518.697 393.618 518.76 396.251 c +518.782 397.164 517.537 397.1 516.838 397.567 c +513.32 399.918 520.938 403.199 518.618 405.53 c +518.296 405.854 517.812 405.982 517.436 405.746 c +514.572 403.943 519.618 404.084 523.258 404.322 c +523.986 404.37 524.682 403.964 524.871 403.274 c +525.084 402.494 524.517 401.757 524.482 400.964 c +524.367 398.395 532.085 393.221 526.441 393.06 c +526.048 393.049 525.686 393.252 525.296 393.292 c +523.447 393.487 522.93 391.226 524.237 390.689 c +524.974 390.387 525.999 391.302 526.564 390.556 c +527.13 389.809 526.102 388.739 524.587 388.952 c +521.369 389.404 520.88 392.537 522.529 393.041 c +524.008 393.492 524.856 390.458 526.429 391.375 c +527.858 392.208 525.943 394.47 527.209 395.37 c +529.891 397.279 528.569 392.453 528.393 388.99 c +528.148 384.164 534.57 385.801 533.113 388.825 c +532.581 389.928 530.282 389.419 530.236 390.914 c +530.176 392.866 532.719 391.429 534.632 391.279 c +536.418 391.14 537.266 393.087 536.187 393.972 c +535.756 394.326 535.142 394.265 534.647 393.983 c +530.386 391.553 537.375 384.948 533.345 382.45 c +529.292 379.937 525.014 386.524 529.9 389.439 c +531.069 390.136 532.806 390.362 532.83 391.745 c +532.926 397.378 526.659 390.582 524.51 391.586 c +522.971 392.305 521.222 393.362 521.185 391.967 c +521.16 391.003 523.243 391.02 522.869 389.877 c +521.746 386.442 519.807 393.448 518.578 391.614 c +518.424 391.385 518.455 391.087 518.596 390.846 c +520.362 387.802 522.436 393.08 524.408 393.158 c +526.478 393.241 527.094 389.773 529.254 390.13 c +530.211 390.289 531.137 391.367 531.946 390.686 c +532.191 390.479 532.28 390.142 532.508 389.917 c +533.922 388.526 535.115 391.329 536.559 391.435 c +539.022 391.616 538.267 388.15 539.169 386.114 c +539.739 384.827 541.107 384.191 542.485 383.847 c +544.29 383.396 546.271 383.384 547.656 384.596 c +550.455 387.046 548.517 391.11 545.649 390.55 c +542.729 389.979 542.507 385.376 546.115 384.256 c +549.139 383.318 551.598 386.129 553.67 388.727 c +555.869 391.483 559.218 391.16 559.305 389.096 c +559.397 386.922 556.367 387.28 553.596 388.09 c +552.414 388.435 551.142 388.384 550.034 387.847 c +547.836 386.782 546.419 383.904 543.886 384.326 c +541.812 384.671 540.575 387.497 538.367 386.98 c +535.275 386.257 537.175 378.59 532.654 379.608 c +530.412 380.112 531.103 383.059 531.057 385.469 c +531.044 386.116 531.041 386.851 531.615 387.068 c +539.673 390.102 527.651 381.041 530.664 380.312 c +531.325 380.152 531.837 380.807 532.044 381.538 c +532.249 382.261 532.299 383.029 532.075 383.746 c +531.903 384.298 531.475 384.762 530.98 384.613 c +529.878 384.279 530.951 383.005 531.464 381.86 c +536.714 370.167 513.275 376.767 523.35 386.68 c +523.753 387.077 524.23 387.387 524.718 387.67 c +529.838 390.642 532.231 384.025 529.001 383.822 c +528.383 383.784 527.926 384.32 527.691 384.922 c +526.754 387.32 528.457 390.255 526.877 392.398 c +525.881 393.75 523.966 394.005 522.867 395.261 c +521.684 396.612 520.151 397.469 519.756 396.317 c +519.425 395.348 520.786 394.837 522.243 395.016 c +527.675 395.682 530.594 399.346 527.954 400.636 c +526.918 401.143 525.429 400.177 524.636 401.171 c +523.336 402.799 526.31 403.882 526.533 405.44 c +526.892 407.941 523.397 407.719 520.738 408.26 c +518.82 408.65 517.38 410.303 517.719 412.147 c +518.105 414.239 520.785 415.221 520.949 417.38 c +521.062 418.873 519.892 420.153 518.394 420.174 c +S +0 1 0 rg +398.5 312 m +398.5 312.398 398.342 312.779 398.061 313.061 c +397.779 313.342 397.398 313.5 397 313.5 c +396.602 313.5 396.221 313.342 395.939 313.061 c +395.658 312.779 395.5 312.398 395.5 312 c +395.5 311.602 395.658 311.221 395.939 310.939 c +396.221 310.658 396.602 310.5 397 310.5 c +397.398 310.5 397.779 310.658 398.061 310.939 c +398.342 311.221 398.5 311.602 398.5 312 c +f +1 0 0 rg +519.894 420.174 m +519.894 420.572 519.736 420.953 519.454 421.235 c +519.173 421.516 518.791 421.674 518.394 421.674 c +517.996 421.674 517.614 421.516 517.333 421.235 c +517.052 420.953 516.894 420.572 516.894 420.174 c +516.894 419.776 517.052 419.395 517.333 419.113 c +517.614 418.832 517.996 418.674 518.394 418.674 c +518.791 418.674 519.173 418.832 519.454 419.113 c +519.736 419.395 519.894 419.776 519.894 420.174 c +f +0.667 0.667 1 RG +397 312 m +397.509 312.085 397.974 312.342 398.318 312.727 c +399.796 314.382 398.816 317.034 396.576 317.392 c +396.363 317.426 396.147 317.431 395.932 317.421 c +392.282 317.245 387.934 313.192 385.937 316.833 c +385.384 317.84 385.624 319.097 386.504 319.837 c +387.122 320.357 388.003 320.493 388.57 319.969 c +389.879 318.757 384.236 313.145 388.999 313.483 c +389.427 313.514 389.923 313.793 390.163 313.425 c +390.443 312.994 389.853 312.63 389.289 312.356 c +386.145 310.826 389.54 306.599 388.001 304.297 c +387.254 303.181 385.521 302.534 385.854 301.146 c +386.654 297.818 393.831 300.38 390.607 306.396 c +388.439 310.441 390.289 314.026 392.401 312.892 c +393.256 312.432 393.371 311.262 392.614 310.714 c +392.07 310.32 391.313 310.541 390.713 310.257 c +389.184 309.534 387.805 305.758 386.83 308.067 c +386.773 308.202 386.763 308.35 386.745 308.495 c +386.641 309.347 386.247 310.132 385.663 310.76 c +383.72 312.854 380.406 312.867 378.605 310.709 c +377.792 309.734 377.484 308.428 377.817 307.204 c +378.344 305.267 380.4 304.364 381.584 305.514 c +382.652 306.553 382.015 309.495 383.974 309.187 c +385.321 308.975 385.028 305.18 387.06 306.239 c +388.539 307.011 387.207 309.568 385.405 308.427 c +383.824 307.427 384.825 304.591 387.339 304.867 c +389.774 305.135 390.659 308.076 388.882 309.427 c +387.762 310.279 386.17 309.798 385.268 308.612 c +384.458 307.546 384.344 306.067 385.292 305.218 c +386.511 304.126 388.237 305.022 389.833 305.427 c +391.824 305.931 394.262 305.641 395.329 307.432 c +396.206 308.903 395.35 310.665 395.367 312.344 c +395.389 314.509 396.878 316.374 397.045 318.527 c +397.35 322.453 395.292 327.749 399.275 328.046 c +402.501 328.286 402.484 323.799 404.506 321.77 c +405.918 320.354 408.173 320.302 409.726 319.061 c +411.788 317.412 412.073 314.378 410.298 312.453 c +408.926 310.966 406.617 310.701 405.342 309.12 c +404.205 307.711 404.229 305.778 404.633 303.999 c +405.146 301.74 407.343 301.465 407.651 302.649 c +407.803 303.236 407.214 303.675 407.02 304.227 c +403.705 313.691 421.075 307.562 412.551 301.665 c +410.526 300.264 406.894 304.459 405.3 301.491 c +404.566 300.122 406.204 298.57 405.554 297.184 c +404.773 295.52 402.322 295.975 400.644 297.662 c +398.555 299.764 397.161 302.677 398.48 305.191 c +401.74 311.407 397.681 319.083 396.281 313.866 c +396.167 313.442 396.339 313.002 396.303 312.567 c +396.157 310.794 393.83 310.495 391.704 311.109 c +390.703 311.398 389.602 311.264 389.518 310.423 c +389.373 308.977 391.41 309.509 393.276 310.378 c +395.533 311.429 399.153 308.894 400.481 311.6 c +401.214 313.094 399.835 314.534 398.643 313.926 c +397.714 313.452 397.782 312.06 398.81 311.523 c +399.572 311.126 400.557 311.471 401.272 310.98 c +401.458 310.852 401.604 310.677 401.772 310.529 c +406.593 306.278 412.976 315.682 405.626 318.725 c +401.403 320.474 392.899 319.023 396.182 323.43 c +397.286 324.911 400.94 323.886 400.87 326.341 c +400.809 328.488 397.003 327.843 396.834 329.909 c +396.757 330.855 397.79 331.619 397.557 332.565 c +397.108 334.392 393.692 334.15 393.075 330.845 c +392.658 328.611 393.332 326.267 392.652 324.091 c +391.782 321.309 389.051 318.571 390.942 316.231 c +392.112 314.783 395.003 314.44 394.576 312.386 c +394.298 311.053 391.913 309.946 393.163 308.719 c +395.796 306.135 395.174 312.137 396.644 313.307 c +398.567 314.838 401.489 311.763 400.04 307.388 c +397.615 300.067 388.847 304.209 392.532 307.18 c +393.096 307.634 393.912 307.394 394.565 307.673 c +395.429 308.041 395.672 309.056 396.081 309.895 c +396.859 311.487 398.553 312.483 400.032 311.756 c +400.625 311.464 401.091 310.874 401.762 310.863 c +404.13 310.826 404.01 315.322 399.176 316.81 c +393.661 318.509 395.003 324.283 397.889 323.902 c +399.675 323.666 399.672 321.33 399.37 319.243 c +399.238 318.333 399.152 317.327 398.384 316.832 c +396.771 315.793 395.305 317.992 393.605 318.153 c +391.344 318.367 389.801 315.804 390.944 313.592 c +391.619 312.286 393.131 311.107 392.351 309.825 c +390.906 307.451 385.763 310.154 388.415 314.813 c +390.091 317.756 393.396 319.142 396.704 319.933 c +399.646 320.637 402.942 320.329 403.742 317.743 c +404.873 314.088 400.11 312.145 395.259 311.731 c +393.182 311.554 391.016 311.165 389.151 312.112 c +387.524 312.938 387.328 314.817 388.485 315.235 c +390.656 316.02 390.269 312.029 391.928 311.977 c +397.392 311.804 390.507 317.595 391.482 319.239 c +393.424 322.513 395.62 317.033 398.297 315.472 c +399.591 314.718 401.19 315.163 402.631 314.827 c +404.302 314.438 405.537 313.071 407.133 312.461 c +408.609 311.897 410.326 312.083 411.201 313.333 c +412.478 315.158 411.234 317.707 408.864 318.24 c +408.053 318.423 407.213 318.321 406.383 318.361 c +401.831 318.582 401.323 323.337 403.767 323.991 c +405.495 324.454 408.323 319.901 409.498 322.99 c +410.251 324.969 405.686 325.318 406.723 327.412 c +408.033 330.058 412.862 326.647 409.416 323.836 c +407.35 322.15 405.437 324.628 406.637 325.736 c +407.124 326.185 408.262 326.161 408.044 326.911 c +407.834 327.632 406.44 327.42 406.286 325.984 c +406.118 324.423 406.985 322.962 408.266 323.182 c +417.079 324.692 403.461 330.119 404.388 332.297 c +405.956 335.982 410.072 331.111 412.501 332.127 c +414.587 332.999 414.823 337.5 417.611 336.497 c +418.777 336.077 418.983 334.453 420.13 333.999 c +422.286 333.146 423.338 336.381 425.31 336.634 c +426.035 336.727 426.751 336.403 427.478 336.481 c +429.784 336.727 431.392 335.531 430.305 334.869 c +429.692 334.495 429.081 335.465 428.46 335.196 c +427.328 334.705 428.424 332.288 430.875 333.323 c +432.729 334.107 434.897 334.687 435.945 333.166 c +437.636 330.712 434.451 327.493 431.618 329.471 c +429.371 331.04 430.338 336.2 426.87 336.049 c +426.372 336.027 425.912 335.802 425.525 335.487 c +423.323 333.692 422.737 328.96 419.66 330.175 c +417.794 330.912 417.938 334.376 415.636 334.361 c +408.397 334.314 414.046 322.327 419.232 328.706 c +420.726 330.544 422.693 331.445 422.656 329.999 c +422.639 329.338 421.812 329.15 421.031 329.233 c +416.619 329.702 412.767 327.394 413.893 324.424 c +414.543 322.71 416.632 322.404 418.521 322.226 c +420.446 322.045 422.493 321.523 423.167 319.772 c +428.005 307.203 402.41 314.858 416.163 320.419 c +416.615 320.602 417.225 320.523 417.447 320.976 c +417.768 321.631 416.862 322.099 416.784 322.74 c +415.979 329.35 420.287 319.302 422.658 318.571 c +423.562 318.292 424.467 318.974 424.388 319.884 c +423.924 325.216 417.748 317.583 416.364 320.131 c +415.717 321.323 416.878 322.761 418.504 322.691 c +422.692 322.512 423.112 316.794 419.399 316.002 c +418.749 315.863 418.033 316.024 417.457 315.678 c +412.181 312.513 416.126 289.311 415.727 304.087 c +415.706 304.858 416.608 305.822 415.798 306.236 c +414.966 306.663 414.322 304.583 413.43 305.381 c +412.502 306.211 414.441 306.953 414.199 307.737 c +411.912 315.138 412.241 302.659 410.631 303.178 c +410.36 303.265 410.187 303.511 410.002 303.727 c +407.011 307.231 401.559 304.763 402.198 300.627 c +402.556 298.314 405.019 297.204 407.474 296.929 c +408.516 296.812 409.286 297.482 408.924 298.047 c +408.395 298.873 407.668 297.643 406.931 296.755 c +403.754 292.925 401.763 301.842 399.033 300.288 c +396.419 298.801 398.769 294.801 401.427 296.466 c +403.134 297.536 402.017 299.927 400.567 301.867 c +398.736 304.315 400.187 306.901 401.795 306.306 c +403.51 305.671 402.015 302.907 403.491 302.111 c +405.255 301.159 406.465 304.615 408.215 303.762 c +410.534 302.633 408.429 299.217 406.367 300.797 c +405.155 301.726 406.435 303.586 405.634 304.719 c +402.004 309.852 402.145 300.539 404.954 293.493 c +405.459 292.227 405.217 290.835 404.994 289.493 c +404.399 285.908 402.899 282.191 399.687 282.469 c +396 282.788 395.917 287.513 394.988 291.243 c +394.685 292.462 394.151 293.645 394.2 294.905 c +394.261 296.478 394.731 298.352 393.307 298.819 c +392.771 298.995 392.214 298.761 391.659 298.689 c +388.882 298.329 387.355 301.306 385.64 303.589 c +384.361 305.292 382.23 306.042 381.231 304.67 c +378.668 301.152 385.69 297.667 386.845 302.979 c +387.018 303.774 386.728 304.611 386.95 305.397 c +387.2 306.282 388.052 306.917 388.138 307.843 c +388.806 315.056 380.152 306.935 377.145 308.244 c +374.134 309.555 371.304 317.329 369.437 312.554 c +368.755 310.807 371.081 309.929 373.025 309.069 c +374.641 308.354 376.505 307.659 377.055 309.053 c +377.438 310.023 376.379 310.958 376.617 311.944 c +376.93 313.243 379.08 314.786 377.455 315.289 c +376.683 315.528 376.224 314.382 375.469 314.484 c +374.023 314.678 375.225 316.497 375.114 317.744 c +374.912 320.017 370.967 320.464 369.772 317.049 c +367.671 311.038 375.023 305.81 380.503 310.059 c +382.469 311.584 383.237 314.249 381.918 316.258 c +378.881 320.885 374.147 315.771 376.843 313.804 c +377.701 313.178 379.471 313.922 379.737 312.645 c +379.792 312.378 379.696 312.112 379.582 311.864 c +377.579 307.498 373.043 310.52 374.536 312.498 c +374.946 313.04 375.777 312.968 376.256 313.435 c +377.128 314.287 376.5 315.837 375.072 316.144 c +372.339 316.732 370.883 312.921 368.242 312.958 c +367.376 312.97 366.522 313.434 365.688 313.164 c +364.193 312.68 364.245 310.727 363.414 309.477 c +362.973 308.812 362.287 308.373 361.6 307.97 c +360.971 307.601 360.29 307.247 359.573 307.376 c +358.158 307.63 357.457 309.671 355.927 309.407 c +354.909 309.231 354.497 308.023 353.57 307.626 c +351.565 306.767 349.464 309.196 350.687 311.606 c +350.994 312.21 351.511 312.714 351.628 313.386 c +352.012 315.591 348.595 316.507 348.809 318.669 c +349.114 321.75 357.544 328.633 351.222 326.644 c +350.678 326.473 350.393 325.905 350.375 325.32 c +350.307 323.089 352.898 321.857 354.52 323.305 c +356.957 325.481 354.325 330.188 349.855 328.893 c +347.77 328.289 345.971 326.289 343.841 326.995 c +341.6 327.738 341.008 330.658 342.759 332.368 c +345.044 334.601 350.7 335.397 348.253 338.231 c +346.887 339.811 340.367 339.412 343.433 341.96 c +344.256 342.644 345.211 341.648 346.172 341.15 c +360.05 333.946 356.162 361.409 345.366 350.641 c +345.034 350.31 344.832 349.879 344.655 349.445 c +344.285 348.54 344.008 347.598 343.626 346.697 c +336.48 329.814 311.069 357.19 331.616 353.345 c +332.145 353.246 332.589 352.916 333.057 352.654 c +334.03 352.108 335.247 352.011 335.758 352.874 c +337.35 355.565 332.751 355.199 328.407 353.484 c +324.207 351.826 320.887 357.838 316.693 356.731 c +312.638 355.66 310.093 358.43 312.098 359.248 c +312.909 359.58 314.553 358.11 314.777 359.482 c +315.218 362.185 311.328 358.812 311.015 360.268 c +310.789 361.321 312.33 361.136 313.766 360.742 c +315.947 360.145 318.784 363.867 320.502 361.369 c +322.454 358.532 317.419 358.153 313.259 357.433 c +310.623 356.977 308.993 354.308 310.012 351.936 c +310.927 349.803 313.848 349.1 314.417 346.8 c +314.928 344.734 314.522 341.795 316.568 342.171 c +317.345 342.314 317.863 343.286 318.681 343.095 c +319.409 342.925 319.551 341.952 320.21 341.651 c +324.662 339.617 322.175 347.66 315.541 347.899 c +312.927 347.993 310.899 350.034 309.971 352.533 c +309.04 355.044 308.685 358.208 306.093 358.814 c +303.709 359.371 301.982 357.027 299.863 355.928 c +298.244 355.089 296.236 355.159 295.358 356.612 c +294.516 358.004 295.276 359.781 296.782 360.62 c +303.283 364.242 305.576 354.727 300.768 354.33 c +299.09 354.191 298.512 356.277 297.214 357.175 c +293.922 359.455 290.983 354.61 287.529 354.349 c +284.108 354.09 281.873 357.596 283.609 360.129 c +284.189 360.974 285.271 361.565 285.234 362.614 c +285.21 363.274 284.678 363.829 284.718 364.493 c +285.112 370.964 291.257 362.23 293.246 363.297 c +296.325 364.948 292.832 371.073 285.626 368.613 c +283.944 368.039 282.524 366.814 283.255 365.61 c +286.427 360.385 296.872 389.414 292.909 371.46 c +292.756 370.764 291.99 370.504 291.351 370.18 c +280.216 364.528 292.856 350.928 298.767 359.487 c +299.603 360.698 299.466 362.265 299.779 363.691 c +300.003 364.709 300.435 365.782 299.902 366.68 c +296.362 372.641 287.456 362.075 296.561 359.074 c +298.917 358.297 301.251 359.771 303.036 361.59 c +304.296 362.874 305.944 363.972 307.097 362.911 c +307.928 362.146 307.593 360.61 308.595 360.003 c +311.543 358.219 311.103 363.277 309.418 368.026 c +308.032 371.932 310.662 379.372 305.76 377.941 c +304.979 377.713 304.472 377.025 303.942 376.412 c +301.975 374.139 299.159 372.026 299.901 369.134 c +300.621 366.33 303.939 366.202 304.513 368.185 c +304.618 368.547 304.545 368.953 304.234 369.145 c +303.416 369.65 302.306 368.439 303 366.96 c +304.427 363.921 307.961 360.752 305.065 359.132 c +303.482 358.247 301.187 360.158 299.855 358.638 c +299.357 358.069 299.406 357.239 299.11 356.552 c +298.785 355.794 298.086 355.275 297.282 355.083 c +295.754 354.718 294.011 355.553 292.689 354.621 c +291.182 353.559 291.443 350.717 289.441 350.344 c +287.727 350.025 286.787 352.181 285.175 352.452 c +282.212 352.95 281.408 348.376 278.667 348.204 c +276.588 348.074 275.331 350.534 273.29 350.638 c +269.5 350.83 268.312 345.222 271.689 340.447 c +272.073 339.904 272.491 339.35 273.122 339.138 c +275.551 338.319 277.818 344.37 280.409 341.531 c +283.083 338.602 276.852 337.288 276.654 334.853 c +276.609 334.309 276.805 333.787 276.997 333.277 c +277.332 332.388 277.664 331.476 277.617 330.525 c +277.585 329.874 277.373 329.244 276.992 328.715 c +276.774 328.413 276.505 328.152 276.269 327.864 c +273.614 324.627 274.376 317.763 269.535 318.114 c +268.118 318.216 266.675 319.349 265.456 318.504 c +264.618 317.924 264.574 316.728 265.378 316.264 c +266.855 315.411 269.572 322.402 271.017 318.203 c +271.12 317.905 271.033 317.571 270.781 317.384 c +268.094 315.391 270.305 320.366 269.73 322.291 c +269.387 323.436 267.49 323.699 267.596 325.021 c +268.032 330.457 275.695 324.782 270.712 322.843 c +270.002 322.567 269.348 323.165 268.765 323.694 c +265.746 326.434 261.164 326.204 259.732 322.935 c +258.33 319.738 261.166 316.39 265.038 315.445 c +266.708 315.037 268.569 314.934 269.73 313.653 c +271.051 312.193 271.029 309.522 273.051 308.99 c +276 308.214 286.408 319.995 283.809 310.835 c +283.443 309.546 280.808 308.803 281.904 307.378 c +282.603 306.469 283.873 307.337 284.837 308.403 c +285.982 309.668 287.575 310.392 288.932 311.419 c +289.764 312.049 290.514 312.895 290.353 313.9 c +290.05 315.791 287.425 316.332 286.049 314.569 c +285.268 313.568 285.286 312.158 286.11 311.198 c +287.676 309.375 289.447 307.328 287.639 306.906 c +285.918 306.505 286.2 309.297 284.977 309.74 c +283.583 310.245 282.95 308.377 282.349 306.789 c +281.408 304.303 278.437 303.08 277.75 300.488 c +276.5 295.77 282.113 294.347 283.159 297.253 c +284.47 300.898 278.467 299.984 276.967 302.102 c +275.551 304.101 277.211 306.929 279.959 306.964 c +281.024 306.978 282.196 306.548 283.011 307.259 c +284.429 308.495 282.787 310.418 282.782 312.14 c +282.776 313.897 284.477 315.152 284.669 316.881 c +284.731 317.435 284.627 318.005 284.789 318.54 c +285.545 321.023 288.845 319.979 291.723 319.001 c +293.193 318.502 294.548 317.561 293.935 316.493 c +293.07 314.987 291.248 316.723 290.026 318.99 c +288.598 321.641 285.059 322.174 282.408 320.464 c +279.496 318.585 276.268 316.026 274.87 318.659 c +273.991 320.315 275.805 323.824 273.234 323.866 c +272.635 323.875 272.173 323.398 271.615 323.199 c +265.431 320.991 263.76 334.597 273.955 332.667 c +274.646 332.536 275.321 332.275 276.025 332.318 c +278.102 332.446 279.244 334.627 279.352 336.87 c +279.423 338.356 279.065 339.923 277.79 340.615 c +277.084 340.998 276.129 341.068 275.812 341.825 c +274.951 343.881 279.203 345.844 281.493 341.688 c +285.319 334.749 272.732 331.112 275.908 337.329 c +276.088 337.682 276.478 337.878 276.666 338.227 c +278.123 340.93 273.079 342.275 273.095 338.915 c +273.104 337.05 275.626 337.455 277.691 337.407 c +279.867 337.356 281.444 335.569 283.314 334.503 c +286.537 332.667 287.819 329.555 285.722 328.867 c +281.306 327.42 284.363 336.022 280.997 335.728 c +278.688 335.526 278.382 331.26 282.415 329.924 c +285.815 328.797 289.535 330.095 289.845 333.176 c +290.263 337.329 285.207 337.12 285.313 334.608 c +285.326 334.303 285.542 334.053 285.779 334.138 c +286.132 334.265 285.884 334.718 285.684 335.118 c +281.976 342.553 291.832 333.151 293.778 333.984 c +295.878 334.883 292.37 341.36 296.607 340.597 c +298.788 340.204 297.285 336.761 298.979 335.967 c +302.343 334.39 300.885 339.677 299.217 344.307 c +298.13 347.324 296.421 350.048 295.175 348.23 c +294.834 347.731 294.983 347.05 295.491 346.711 c +296.823 345.821 300.284 349.969 300.867 346.754 c +301.031 345.848 299.762 345.222 300.019 344.309 c +300.187 343.708 301.05 343.415 300.952 342.748 c +300.857 342.11 299.955 342.023 299.756 341.437 c +297.655 335.259 305.181 343.063 305.949 341.496 c +307.392 338.548 302.071 339.982 301.682 338.457 c +300.628 334.324 306.128 338.575 308.524 338.069 c +310.241 337.706 310.453 335.59 310.698 333.754 c +310.925 332.06 311.558 330.423 311.534 328.71 c +311.517 327.531 311.13 326.324 310.101 325.797 c +309.265 325.369 308.291 325.565 307.397 325.862 c +304.866 326.704 302.556 328.36 301.942 330.922 c +299.515 341.057 313.81 339.31 310.872 332.991 c +310.409 331.998 309.185 331.748 308.384 331.03 c +306.48 329.323 307.337 325.234 304.466 324.67 c +299.284 323.653 297.639 333.88 305.831 333.795 c +315.77 333.692 312.99 320.693 306.248 322.742 c +304.411 323.3 303.522 325.86 301.487 325.688 c +297.878 325.382 299.705 320.585 301.418 316.325 c +301.878 315.18 302.041 313.883 302.88 312.968 c +304.342 311.372 307.376 311.539 308.043 309.324 c +308.48 307.874 309.026 306.295 309.959 307.001 c +310.716 307.574 309.827 308.522 308.985 309.327 c +306.737 311.478 309.089 314.865 308.422 317.654 c +307.801 320.252 304.63 322.457 306.12 324.953 c +306.436 325.482 306.956 325.858 307.557 325.996 c +309.52 326.448 311.164 324.405 313.131 324.632 c +317.489 325.133 317.083 331.266 313.096 331.305 c +310.931 331.326 310.168 328.808 309.213 326.787 c +308.388 325.042 307.108 323.205 308.112 321.586 c +308.414 321.1 308.931 320.757 309.474 320.88 c +309.958 320.99 310.246 321.442 310.59 321.795 c +311.506 322.735 312.862 322.993 314.178 323.004 c +317.163 323.031 319.231 324.867 318.045 326.239 c +316.716 327.776 315.19 325.332 313.764 323.295 c +312.516 321.512 310.09 321.262 308.327 320.041 c +296.9 312.124 312.871 300.896 316.039 310.105 c +316.464 311.34 316.217 313.09 317.544 313.307 c +323.101 314.218 316.578 306.378 319.249 305.576 c +322.2 304.689 333.76 311.708 326.939 306.81 c +326.655 306.606 326.278 306.648 325.95 306.538 c +323.924 305.86 325.294 302.997 328.136 301.088 c +329.451 300.205 330.421 298.898 330.912 297.392 c +331.062 296.931 331.19 296.427 331.598 296.162 c +332.432 295.621 333.402 296.49 334.325 296.332 c +336.774 295.913 334.158 288.753 338.29 290.073 c +339.483 290.454 339.533 292.072 338.433 292.477 c +337.734 292.735 336.814 292.104 336.273 292.717 c +335.063 294.088 337.788 296.107 338.862 293.844 c +339.017 293.518 339.017 293.149 339.012 292.79 c +339.003 291.989 338.898 291.114 338.203 290.764 c +336.637 289.974 335.755 292.417 334.297 292.56 c +334.049 292.585 333.798 292.542 333.578 292.424 c +332.283 291.728 333.044 289.937 332.601 288.658 c +332.185 287.458 330.854 286.96 330.003 286.045 c +329.469 285.472 328.97 284.712 328.211 284.852 c +325.755 285.305 328.629 287.691 330.476 289.885 c +337.748 298.527 317.099 304.513 319.228 290.8 c +319.414 289.6 320.562 289.225 320.913 289.863 c +321.356 290.667 320.03 290.833 319.346 291.359 c +317.739 292.594 320.206 294.173 321.09 295.877 c +321.28 296.244 321.368 296.654 321.35 297.067 c +321.231 299.759 317.822 300.373 316.299 302.391 c +313.732 305.791 311.027 310.072 309.511 306.978 c +308.026 303.947 313.227 303.964 314.547 301.93 c +314.945 301.318 315.009 300.528 314.569 299.963 c +312.637 297.485 301.367 315.84 303.9 302.931 c +304.134 301.736 305.642 301.696 306.912 301.521 c +312.358 300.771 314.559 305.919 311.528 305.836 c +311.144 305.826 310.817 305.565 310.687 305.201 c +310.184 303.792 312.677 302.749 311.931 301.319 c +311.895 301.255 l +310.56 298.928 310.052 296.067 312.099 295.045 c +313.976 294.107 317.844 295.817 317.694 293.052 c +317.617 291.64 314.685 290.928 315.713 289.307 c +316.782 287.621 318.231 290.179 319.814 291.556 c +322.611 293.988 326.241 296.944 323.104 297.009 c +322.614 297.02 322.239 296.629 321.787 296.457 c +316.079 294.284 318.038 304.686 327.971 306.929 c +329.709 307.321 331.288 308.394 331.722 310.093 c +332.194 311.939 330.326 312.614 329.87 311.718 c +329.456 310.906 330.891 310.407 330.677 309.624 c +330.299 308.247 328.618 309.622 327.874 311.962 c +325.078 320.759 310.853 310.326 320.914 304.023 c +321.393 303.723 321.992 303.714 322.126 304.147 c +322.277 304.635 321.659 304.934 321.002 304.959 c +319.658 305.01 318.264 305.327 317.037 304.756 c +313.986 303.335 314.969 299.086 313.324 296.408 c +312.042 294.32 309.519 293.592 307.404 292.393 c +306.084 291.644 304.891 290.676 303.503 290.058 c +301.857 289.325 299.974 289.127 298.374 289.939 c +295.329 291.485 295.057 295.361 294.028 298.601 c +293.323 300.821 292.105 302.89 291.865 305.213 c +291.336 310.358 285.965 310.245 286.825 307.729 c +287.155 306.764 290.195 306.598 288.923 305.209 c +287.366 303.509 287.156 307.286 286.141 307.458 c +284.292 307.77 283.918 303.768 287.947 303.24 c +289.804 302.996 291.734 302.609 293.445 303.385 c +295.96 304.525 298.538 307.27 300.196 305.091 c +302.298 302.326 296.02 299.494 298.261 296.723 c +299.942 294.645 302.62 297.373 304.865 297.024 c +307.188 296.664 308.148 293.957 307.611 291.402 c +307.448 290.626 307.179 289.874 307.066 289.089 c +306.177 282.943 312.868 279.075 317.028 282.668 c +317.754 283.295 318.234 284.14 318.777 284.928 c +319.699 286.265 320.893 287.49 322.492 287.736 c +331.761 289.163 329.02 275.955 322.939 279.226 c +322.046 279.707 321.71 280.803 322.047 281.779 c +322.967 284.445 326.7 284.398 327.51 281.785 c +328.091 279.907 326.735 276.789 329.037 276.721 c +329.474 276.708 329.875 276.96 330.311 276.968 c +333.696 277.025 330.932 272.459 332.021 270.54 c +335.273 264.809 343.943 273.046 336.908 276.932 c +334.724 278.138 332.463 276.273 333.215 274.468 c +334.038 272.492 337.218 273.029 337.362 275.55 c +337.623 280.122 328.74 281.25 328.199 273.643 c +328.053 271.594 328.919 269.561 328.527 267.537 c +328.015 264.887 326.06 261.888 328.36 260.477 c +329.857 259.559 331.729 260.894 333.317 260.261 c +336.082 259.158 335.665 254.81 332.128 252.711 c +330.499 251.744 328.618 251.295 326.969 250.364 c +322.704 247.958 321.551 242.679 324.86 240.461 c +331.716 235.864 334.58 247.136 328.701 247.053 c +327.824 247.04 327.009 246.27 326.167 246.619 c +324.78 247.193 325.625 249.071 325.145 250.325 c +324.962 250.804 324.586 251.177 324.135 251.423 c +322.543 252.29 320.382 251.463 318.979 252.681 c +306.95 263.121 336.382 267.896 326.612 254.849 c +325.868 253.855 324.384 254.16 323.34 253.571 c +322.03 252.83 321.449 250.718 319.829 251.003 c +318.532 251.232 318.14 252.829 318.538 254.285 c +318.92 255.682 319.757 256.943 321.049 257.589 c +323.779 258.955 324.975 255.799 323.516 255.238 c +323.193 255.113 322.84 255.255 322.594 255.508 c +317.037 261.243 330.925 263.966 327.944 256.559 c +327.249 254.83 324.779 255.775 323.499 254.741 c +323.062 254.388 322.829 253.817 323.094 253.35 c +325.779 248.629 325.327 257.59 326.899 258.506 c +327.834 259.051 329.077 258.195 329.98 258.823 c +333.178 261.044 326.825 265.924 322.107 260.106 c +318.964 256.229 322.322 252.837 323.789 254.6 c +324.75 255.755 319.444 264.99 324.262 260.578 c +324.799 260.087 325.207 258.951 325.609 259.628 c +325.77 259.9 325.487 260.194 325.137 260.345 c +323.594 261.007 321.731 261.503 321.421 263.132 c +320.866 266.047 324.965 267.931 327.245 265.116 c +330.748 260.793 334.694 253.636 335.248 258.99 c +335.542 261.823 328.184 260.548 329.737 264.253 c +330.236 265.445 332.384 265.333 332.478 266.774 c +332.677 269.83 329.041 266.876 326.153 265.966 c +324.493 265.443 321.987 266.444 321.545 264.561 c +320.991 262.197 325.381 260.582 326.962 264.451 c +327.141 264.891 327.265 265.379 327.641 265.672 c +329.793 267.346 331.665 260.194 334.012 263.187 c +335.247 264.762 332.458 265.697 331.66 267.184 c +331.614 267.269 331.575 267.358 331.533 267.446 c +330.118 270.468 326.458 271.361 324.775 269.123 c +324.532 268.8 324.367 268.414 324.048 268.164 c +322.097 266.632 319.092 269.746 321.539 272.188 c +322.601 273.248 324.307 273.209 325.541 272.291 c +327.849 270.573 327.745 267.132 325.745 264.813 c +324.674 263.572 323.232 262.292 323.935 260.879 c +325.333 258.073 329.716 260.231 328.171 263.219 c +327.398 264.714 325.361 264.359 323.852 264.95 c +321.864 265.729 321.113 267.947 320.097 269.814 c +318.812 272.175 317.732 274.963 319.753 276.097 c +321.63 277.149 323.378 275.08 324.86 273.227 c +330.619 266.03 337.501 274.827 332.889 276.951 c +332.365 277.193 331.758 277.102 331.267 276.794 c +328.629 275.139 331.078 271.61 330.529 268.9 c +330.495 268.729 330.447 268.561 330.393 268.395 c +328.906 263.901 323.683 264.261 323.235 267.307 c +323.194 267.585 323.197 267.899 322.968 268.061 c +321.148 269.346 320.516 264.964 323.305 265.81 c +323.587 265.896 323.814 266.093 324.048 266.271 c +325.826 267.626 328.126 268.02 330.331 267.636 c +333.277 267.125 336.664 265.992 337.992 268.504 c +338.322 269.128 338.353 269.849 338.421 270.549 c +338.469 271.042 338.539 271.537 338.729 271.996 c +340.318 275.838 346.191 274.926 349.68 270.325 c +350.589 269.126 351.399 267.845 352.463 266.779 c +354.172 265.067 356.56 263.784 356.988 261.377 c +357.121 260.63 357.02 259.849 356.592 259.224 c +354.911 256.769 351.737 258.548 352.49 260.546 c +353.056 262.049 355.417 261.323 356.185 262.618 c +356.614 263.341 356.251 264.203 356.102 265.026 c +355.618 267.706 357.477 270.25 360.156 270.451 c +362.09 270.596 363.893 269.302 365.818 269.59 c +366.518 269.695 367.195 270.012 367.9 269.915 c +371.947 269.36 369.002 263.853 370.7 261.345 c +373.42 257.327 379.116 260.932 377.068 264.705 c +375.717 267.196 372.157 265.644 369.948 266.937 c +368.882 267.561 368.06 268.826 366.811 268.61 c +363.829 268.092 366.023 264.319 368.491 261.013 c +369.803 259.257 369.862 256.881 371.023 255.03 c +373.286 251.424 378.322 250.936 380.884 254.144 c +382.375 256.01 381.466 258.379 379.816 258.213 c +378.019 258.032 377.775 255.179 380.046 253.379 c +381.82 251.974 383.914 251.066 385.946 250.074 c +389.573 248.301 393.666 248.573 393.855 251.518 c +394.061 254.724 389.117 256.305 386.062 252.604 c +383.84 249.911 383.794 245.984 386.406 243.907 c +387.294 243.201 388.459 242.544 388.205 241.473 c +387.875 240.081 386.021 240.359 384.393 240.805 c +381.682 241.547 378.755 240.626 377.235 238.292 c +375.105 235.022 373.334 230.423 370.605 232.584 c +368.203 234.487 370.758 238.819 376.033 238.964 c +377.654 239.008 378.649 240.184 377.964 240.903 c +377.335 241.564 376.075 240.875 376.16 239.548 c +376.362 236.39 380.643 236.324 384.533 237.567 c +385.603 237.909 386.772 238.254 387.254 239.264 c +387.725 240.25 387.276 241.521 387.971 242.393 c +390.014 244.958 395.403 241.337 392.072 236.753 c +391.198 235.55 389.859 234.767 388.38 234.616 c +385.741 234.348 382.465 234.659 382.517 232.232 c +382.524 231.886 382.651 231.546 382.6 231.202 c +382.28 229.087 379.29 230.478 378.119 229.35 c +376.553 227.842 378.622 225.67 381.186 224.3 c +383.269 223.187 384.892 221.178 384.276 219.027 c +382.397 212.467 373.285 216.554 376.239 221.768 c +376.879 222.897 378.229 223.264 379.49 223.59 c +387.446 225.647 383.393 234.939 380.031 231.491 c +378.333 229.75 378.017 220.575 376.835 226.083 c +376.632 227.027 378.352 227.492 377.957 228.478 c +377.863 228.71 377.644 228.857 377.406 228.938 c +374.958 229.771 374.453 226.224 373.038 224.108 c +372.234 222.905 370.729 221.98 370.979 220.521 c +371.089 219.885 371.575 219.291 371.35 218.67 c +370.045 215.055 367.183 220.714 365.56 220.144 c +358.479 217.656 370.619 215.189 371.218 212.619 c +372.051 209.044 366.38 208.665 361.093 212.372 c +358.551 214.154 357.221 216.848 359.105 217.724 c +359.403 217.863 359.741 217.873 360.056 217.964 c +360.163 217.995 360.267 218.035 360.377 218.053 c +365.028 218.831 358.207 210.744 362.112 210.977 c +363.445 211.057 363.398 212.903 362.707 214.567 c +361.933 216.428 360.833 218.372 359.297 217.646 c +357.469 216.781 358.723 214.184 361.029 212.383 c +362.748 211.04 364.845 209.855 365.927 211.352 c +367.132 213.02 365.145 215.518 362.329 214.826 c +358.521 213.889 360.545 209.729 362.284 210.897 c +363.122 211.459 361.304 214.821 363.529 214.2 c +364.056 214.052 364.03 213.363 364.318 212.93 c +365.321 211.422 367.128 213.282 368.403 215.51 c +369.511 217.444 371.832 218.187 373.412 219.729 c +374.307 220.602 374.947 221.73 374.999 222.979 c +375.147 226.471 371.412 228.531 368.992 226.563 c +367.784 225.581 367.351 223.508 365.696 223.512 c +359.471 223.528 363.867 232.852 367.632 228.399 c +368.451 227.431 367.56 225.97 368.155 224.901 c +368.939 223.492 372.291 223.744 371.711 221.636 c +371.427 220.606 370.03 220.368 369.154 221.22 c +368.048 222.297 368.422 224.115 369.639 225.259 c +371.086 226.621 373.411 226.96 374.33 228.767 c +374.813 229.718 374.736 230.855 375.186 231.82 c +376.881 235.451 381.309 233.495 380.508 230.932 c +380.066 229.518 377.444 229.428 377.656 227.707 c +377.881 225.884 380.913 225.973 382.639 228.751 c +383.38 229.944 384.253 231.162 385.623 231.444 c +385.873 231.495 386.13 231.509 386.381 231.555 c +387.193 231.704 387.916 232.178 388.313 232.9 c +391.544 238.776 381.67 241.745 380.988 235.578 c +380.721 233.168 383.845 232.134 384.402 229.939 c +385.568 225.338 379.484 224.939 379.439 228.072 c +379.437 228.203 379.458 228.337 379.42 228.463 c +379.087 229.554 377.184 228.574 377.52 226.191 c +378.019 222.642 373.431 220.801 373.073 217.418 c +372.217 209.348 384.358 208.591 384.583 216.487 c +384.662 219.222 381.617 221.866 383.294 224.35 c +384.155 225.624 385.852 225.762 387.266 226.323 c +389.559 227.232 391.619 229.417 393.982 228.528 c +395.657 227.898 397.039 225.733 398.684 226.739 c +401.179 228.266 398.914 232.312 396.033 230.697 c +394.323 229.739 394.924 227.399 395.487 225.358 c +396.005 223.483 395.798 221.363 394.147 220.687 c +393.123 220.268 391.976 220.755 390.906 220.521 c +388.788 220.057 388.03 217.259 385.898 216.834 c +384.319 216.52 382.132 217.079 382.005 215.449 c +381.959 214.857 382.402 214.343 382.995 214.276 c +389.427 213.549 381.323 220.48 382.107 222.651 c +382.781 224.516 386.483 224.188 386.323 226.567 c +386.13 229.454 380.71 228.868 379.271 222.886 c +378.951 221.557 378.439 220.245 378.551 218.878 c +379.121 211.909 387.745 213.387 387.11 218.019 c +386.92 219.41 385.486 220.258 384.244 219.686 c +383.075 219.148 382.901 217.7 382.601 216.438 c +381.301 210.964 375.508 212.383 375.996 215.189 c +376.555 218.396 385.011 212.889 384.085 218.185 c +383.126 223.672 378.076 216.03 375.942 216.908 c +372.282 218.413 376.494 222.604 382.798 224.511 c +383.209 224.635 383.608 224.802 384.033 224.867 c +387.89 225.451 393.418 224.948 390.989 227.683 c +390.451 228.289 389.504 228.207 388.84 227.666 c +384.905 224.456 390.314 219.209 393.263 222.802 c +394.942 224.846 392.699 227.699 390.383 226.586 c +388.41 225.638 389.305 222.441 387.44 221.387 c +383.252 219.021 379.086 227.129 385.762 229.273 c +388.104 230.026 390.589 228.483 392.951 229.138 c +395.126 229.741 397.509 230.066 397.407 228.36 c +397.245 225.677 393.459 227.958 392.384 226.595 c +390.943 224.766 395.19 222.468 393.328 220.65 c +392.277 219.624 390.866 220.892 389.497 221.445 c +388.095 222.011 386.466 221.532 385.893 220.193 c +385.214 218.603 386.632 216.598 385.477 215.189 c +383.555 212.846 380.102 215.426 381.642 217.796 c +382.512 219.137 384.695 218.491 385.649 219.736 c +387.432 222.06 384.041 223.979 383.046 222.083 c +382.37 220.795 391.926 217.29 385.731 216.549 c +385.158 216.48 384.791 217.042 384.464 217.54 c +379.588 224.949 372.288 216.332 376.922 213.856 c +378.512 213.007 380.707 215.418 382.105 213.856 c +382.878 212.992 382.398 211.626 381.276 210.981 c +380.067 210.285 378.85 211.084 379.157 211.942 c +379.25 212.204 379.512 212.363 379.632 212.612 c +381.469 216.418 376.629 211.874 373.745 210.733 c +372.287 210.156 370.819 211.595 370.78 213.447 c +370.757 214.544 371.086 215.786 370.249 216.506 c +369.749 216.937 368.982 216.94 368.534 217.431 c +365.611 220.633 372.75 221.106 372.877 223.301 c +372.928 224.185 372.087 224.632 371.679 224.19 c +371.6 224.104 371.564 223.991 371.541 223.876 c +371.288 222.601 372.336 221.477 373.688 221.2 c +378.892 220.131 380.242 226.808 376.451 227.901 c +374.723 228.399 371.875 227.484 372.199 229.463 c +372.461 231.07 379.543 234.635 374.789 233.836 c +374.589 233.802 374.432 233.661 374.26 233.558 c +373.422 233.057 372.344 233.387 371.807 234.23 c +370.388 236.459 373.347 238.596 373.328 240.964 c +373.32 241.981 372.768 242.899 372.619 243.901 c +372.44 245.099 372.835 246.281 373.352 247.374 c +373.817 248.356 374.481 249.326 375.541 249.437 c +376.698 249.557 377.553 248.556 378.574 248.04 c +384.988 244.798 385.81 255.277 381.045 253.327 c +380.364 253.048 380.24 252.162 379.667 251.729 c +374.963 248.173 371.929 259.688 380.041 258.527 c +382.071 258.236 383.312 256.286 385.12 255.385 c +385.384 255.254 385.66 255.146 385.951 255.106 c +390.029 254.541 390.993 261.053 386.39 261.589 c +384.583 261.799 382.799 259.925 381.125 260.919 c +380.325 261.394 380.058 262.356 379.67 263.196 c +378.948 264.754 378.27 266.565 379.605 267.226 c +381.079 267.957 382.048 265.992 382.852 264.24 c +382.984 263.951 383.158 263.664 383.457 263.56 c +385.901 262.717 383.676 265.95 382.584 268.422 c +381.151 271.666 387.284 274.937 389.832 269.546 c +390.639 267.839 390.435 265.834 391.139 264.086 c +391.311 263.657 391.54 263.246 391.888 262.942 c +393.84 261.236 396.882 263.776 398.898 262.245 c +398.951 262.205 399.003 262.162 399.045 262.11 c +405.258 254.529 396.609 267.488 393.222 266.409 c +392.932 266.317 392.725 266.072 392.613 265.788 c +391.494 262.966 396.193 260.673 397.948 264.332 c +398.44 265.36 398.112 266.591 397.12 266.839 c +393.787 267.673 392.957 260.433 398.738 261.218 c +400.537 261.463 402.628 261.897 402.812 260.328 c +402.968 259.006 400.431 258.171 401.316 256.749 c +402.019 255.618 412.151 260.68 407.29 255.6 c +406.902 255.193 406.275 255.449 405.734 255.383 c +404.856 255.275 404.386 254.409 403.838 253.717 c +403.185 252.892 402.311 252.287 401.41 251.745 c +398.935 250.258 395.879 249.44 393.91 251.326 c +393.442 251.775 393.098 252.368 392.514 252.66 c +392.201 252.816 391.833 252.876 391.588 253.127 c +391.248 253.476 391.288 254.009 391.178 254.478 c +390.356 257.987 385.782 255.83 382.435 256.247 c +378.799 256.7 376.148 261.396 372.42 259.97 c +370.095 259.081 369.063 255.671 366.396 255.914 c +361.765 256.336 363.862 262.789 368.358 268.265 c +369.051 269.108 369.713 270.097 370.795 270.24 c +372.564 270.473 373.24 268.516 372.179 267.88 c +371.235 267.315 366.519 270.498 368.191 267.483 c +368.41 267.087 368.945 267.178 369.391 267.113 c +371.335 266.827 371.061 264.003 372.582 263.108 c +375.323 261.492 377.314 265.691 377.111 270.57 c +377.082 271.261 377.066 272.019 376.515 272.426 c +370.792 276.645 375.015 265.763 373.262 264.659 c +370.994 263.231 369.495 266.814 369.439 270.832 c +369.419 272.239 368.996 273.637 369.229 275.029 c +369.352 275.763 369.655 276.454 369.8 277.183 c +369.907 277.721 369.927 278.274 370.071 278.803 c +370.334 279.769 370.975 280.568 371.712 281.246 c +372.478 281.951 373.487 282.482 374.336 281.98 c +379.562 278.89 370.641 273.469 370.31 279.418 c +370.218 281.072 374.766 282.084 372.747 284.089 c +370.898 285.923 368.605 277.456 366.643 281.634 c +366.038 282.921 367.956 283.424 369.707 283.787 c +375.968 285.082 375.306 297.25 363.763 298.212 c +363.163 298.262 362.506 298.227 362.201 297.729 c +361.569 296.697 362.93 295.427 364.76 295.756 c +366.234 296.021 367.405 297.11 366.891 298.213 c +366.27 299.544 361.8 298.402 362.917 300.987 c +363.204 301.654 364.077 301.668 364.845 301.47 c +366.779 300.973 368.666 301.542 368.353 302.885 c +368.024 304.301 366.071 303.736 364.418 302.629 c +361.039 300.367 359.69 297.02 362.027 296.636 c +362.526 296.554 363.011 296.801 363.323 297.204 c +364.104 298.215 363.597 299.756 364.412 300.746 c +364.928 301.373 365.918 301.731 365.827 302.57 c +365.771 303.086 365.289 303.426 364.753 303.474 c +361.515 303.762 362.293 297.926 359.3 297.862 c +356.644 297.805 355.816 301.676 358.568 302.798 c +363.208 304.69 364.385 297.659 360.417 297.55 c +359.443 297.523 358.764 298.487 357.815 298.624 c +353.866 299.194 352.991 291.989 358.475 292.046 c +361.261 292.075 364.342 296.087 366.391 293.327 c +366.808 292.764 366.896 291.949 367.521 291.603 c +369.634 290.433 372.026 287.737 369.806 288.691 c +369.545 288.804 369.294 289.141 369.103 288.911 c +368.955 288.734 369.17 288.516 369.411 288.365 c +372.008 286.735 368.669 283.874 365.143 281.615 c +357.331 276.609 364.418 267.239 369.661 270.91 c +371.043 271.878 372.583 273.106 373.182 271.832 c +374.166 269.737 370.417 270.059 370.02 268.694 c +368.713 264.199 376.034 267.126 376.589 274.146 c +376.616 274.49 376.682 274.836 376.621 275.177 c +376.167 277.712 371.801 277.723 371.279 274.093 c +371.01 272.225 371.377 269.798 369.582 269.801 c +367.243 269.806 369.261 277.188 365.417 275.275 c +364.91 275.023 364.69 274.361 364.13 274.221 c +362.851 273.901 361.859 275.955 363.451 277.423 c +365.993 279.769 369.956 278.27 372.49 275.345 c +373.115 274.623 373.675 273.845 374.302 273.123 c +374.774 272.579 375.226 271.914 374.857 271.349 c +374.405 270.655 373.055 271.068 372.795 270.18 c +371.338 265.208 376.64 271.897 378.125 271.591 c +380.15 271.174 378.529 268.222 379.802 267.271 c +381.286 266.163 392.635 275.757 387.798 267.953 c +387.667 267.741 387.444 267.601 387.195 267.592 c +386.31 267.562 385.968 268.727 386.372 269.818 c +386.991 271.488 388.216 272.88 388.73 274.587 c +389.858 278.331 393.14 279.039 393.333 277.141 c +393.415 276.344 392.857 275.179 393.726 275.198 c +394.127 275.207 394.255 275.679 394.377 276.087 c +395.216 278.884 398.87 278.336 401.973 278.275 c +402.983 278.255 404.001 278.391 404.905 278.844 c +408.906 280.844 413.346 284.95 414.299 280.958 c +414.988 278.073 409.058 277.031 410.481 273.921 c +412.449 269.618 418.729 274.188 415.018 277.473 c +414.727 277.731 414.362 277.879 414.001 278.02 c +411.534 278.979 408.951 279.716 406.304 279.597 c +402.535 279.428 400.888 276.038 402.73 274.644 c +403.509 274.055 404.552 274.373 405.521 274.425 c +406.711 274.49 407.893 274.095 408.716 273.235 c +414.642 267.042 404.183 260.415 401.188 266.849 c +399.721 270.002 405.042 273.263 402.798 276.363 c +401.246 278.506 397.87 277.53 395.993 274.859 c +393.297 271.022 394.903 266.33 398.259 266.507 c +401 266.651 401.903 270.716 404.695 270.701 c +406.467 270.691 407.504 268.894 406.579 267.715 c +405.186 265.94 402.9 268.252 401.627 271.336 c +400.103 275.03 395.755 278.353 398.141 281.78 c +401.209 286.188 406.419 281.631 403.963 278.79 c +402.668 277.293 398.066 279.227 398.414 276.121 c +398.535 275.041 399.833 274.525 400.87 275.125 c +401.446 275.458 402.014 276.051 402.561 275.687 c +402.637 275.636 402.7 275.567 402.741 275.485 c +403.295 274.376 400.894 273.15 399.902 275.466 c +399.166 277.184 399.555 279.142 399.114 280.949 c +398.938 281.671 398.632 282.354 398.442 283.072 c +397.041 288.376 391.232 287.535 392.758 284.957 c +393.17 284.261 394.654 284.298 394.476 283.313 c +394.258 282.104 392.703 283.119 391.814 282.805 c +386.291 280.851 395.745 278.828 396.184 276.789 c +396.443 275.589 395.507 273.77 396.897 273.562 c +397.616 273.455 398.081 274.24 397.662 274.747 c +397.058 275.477 396.078 274.377 395.373 274.729 c +393.351 275.74 396.433 277.186 399.93 276.741 c +400.924 276.615 402.003 277.169 402.865 276.606 c +408.134 273.161 397.923 266.019 396.223 274.282 c +395.632 277.154 396.331 281.303 393.644 280.363 c +392.245 279.873 392.579 277.701 391.288 277.078 c +388.848 275.902 387.823 279.925 389.556 284.288 c +390.689 287.142 389.78 290.34 390.416 293.325 c +391.668 299.202 397.956 296.908 396.751 294.133 c +396.361 293.236 394.994 293.14 394.732 292.169 c +393.553 287.786 403.028 289.149 400.34 296.027 c +398.001 302.01 391.78 299.677 392.71 296.666 c +392.889 296.087 393.395 295.696 393.953 295.451 c +394.376 295.265 394.83 295.156 395.245 294.952 c +399.947 292.638 396.595 286.792 393.257 288.532 c +391.815 289.284 391.797 291.372 393.243 292.309 c +393.551 292.508 393.932 292.681 393.961 293.044 c +394.048 294.131 391.696 294.355 391.576 292.111 c +391.379 288.431 394.77 285.608 398.224 286.625 c +399.573 287.022 401.03 287.028 401.001 285.976 c +401 285.921 400.991 285.866 400.985 285.811 c +400.024 276.828 416.376 282.575 408.476 290.43 c +406.472 292.423 406.57 294.825 407.999 294.416 c +408.506 294.271 408.697 293.556 409.247 293.529 c +412.787 293.352 408.19 296.941 408.807 297.822 c +409.636 299.008 410.823 297.31 411.921 295.896 c +413.316 294.101 416.146 294.63 416.771 296.791 c +416.991 297.552 416.815 298.437 417.322 299.062 c +420.509 302.992 422.218 294.809 424.737 295.038 c +427.287 295.269 426.72 298.746 427.965 300.679 c +430.179 304.115 436.708 301.393 438.33 305.551 c +439.145 307.643 437.362 310.117 438.62 312.065 c +439.362 313.215 440.809 313.513 442.151 313.799 c +443.693 314.128 445.44 314.311 446.203 313.031 c +446.655 312.272 446.428 311.324 446.656 310.481 c +447.476 307.449 451.706 307.319 452.693 310.262 c +453.821 313.623 448.964 315.205 448.449 318.266 c +445.651 334.896 472.636 322.327 458.161 315.454 c +456.14 314.494 453.115 317.773 451.545 315.373 c +449.838 312.764 454.638 311.374 454.442 309.012 c +454.112 305.035 447.527 305.544 448.153 310.258 c +448.566 313.372 452.7 313.729 456.39 312.411 c +457.439 312.036 458.649 311.985 458.951 312.894 c +459.242 313.774 458.33 314.607 457.384 314.268 c +456.809 314.061 456.485 313.459 456.568 312.846 c +456.865 310.652 463.766 311.409 461.654 307.841 c +460.398 305.719 455.108 302.37 458.907 303.397 c +459.371 303.523 459.468 304.079 459.71 304.487 c +461.142 306.907 470.453 298.599 469.315 305.863 c +469.004 307.844 467.452 310.741 469.372 309.828 c +470.43 309.325 469.163 308.036 469.495 307.237 c +469.669 306.818 470.158 306.651 470.412 306.282 c +471.3 304.995 467.327 302.099 470.136 301.244 c +471.178 300.927 472.222 303.063 473.255 302.024 c +473.973 301.302 473.008 300.078 471.39 299.939 c +468.277 299.672 465.045 299.341 462.576 297.419 c +461.021 296.208 459.946 294.457 458.286 293.389 c +457.711 293.019 457.061 292.74 456.381 292.805 c +454.115 293.022 452.211 297.677 450.022 295.285 c +447.008 291.99 454.852 290.642 453.853 287.898 c +453.045 285.681 449.233 286.151 448.097 289.669 c +446.68 294.056 451.17 295.843 452.304 293.719 c +453.265 291.919 450.454 291.015 449.92 289.403 c +449.355 287.699 451.15 286.28 451.245 284.569 c +451.338 282.899 449.981 281.623 448.461 280.816 c +446.661 279.86 444.505 279.211 443.709 277.323 c +443.121 275.931 443.545 274.395 443.931 272.936 c +444.182 271.987 444.935 271.354 445.449 271.818 c +445.952 272.27 445.317 272.974 445.452 273.554 c +445.748 274.825 448.201 274.637 448.494 272.24 c +448.973 268.324 452.025 266.914 452.527 268.798 c +452.936 270.336 450.585 270.346 449.867 271.402 c +448.782 272.995 454.742 278.619 449.769 278.463 c +448.275 278.416 448.481 276.304 447.497 275.473 c +440.917 269.918 437.675 286.984 448.961 284.502 c +450.486 284.167 451.814 283.219 452.555 281.846 c +453.492 280.112 453.568 277.706 455.452 276.972 c +457.102 276.329 459.057 277.706 460.593 276.716 c +461.977 275.823 461.851 273.901 461.306 272.233 c +461.089 271.567 460.837 270.908 460.721 270.216 c +460.48 268.786 460.832 267.331 460.708 265.889 c +460.338 261.564 456.408 258.52 451.954 258.462 c +449.949 258.436 447.7 258.873 446.391 257.353 c +444.303 254.927 447.185 251.929 447.732 248.95 c +448.159 246.624 446.844 244.322 444.698 244.303 c +439.458 244.256 438.515 254.676 447.724 255.192 c +450.788 255.363 454.267 254.181 456.404 256.458 c +456.889 256.974 457.206 257.625 457.691 258.141 c +458.566 259.072 459.835 259.446 460.993 259.971 c +462.711 260.751 464.243 261.914 465.306 263.473 c +466.808 265.674 467.214 268.435 468.635 270.685 c +470.255 273.248 473.125 275.438 472.445 278.437 c +471.437 282.889 465.134 288.817 470.652 289.117 c +472.229 289.203 473.135 287.324 474.668 287.175 c +476.564 286.991 477.907 289.058 477.17 291.024 c +474.9 297.079 475.393 305.251 478.111 300.464 c +478.897 299.079 472.847 291.953 478.066 294.202 c +478.35 294.324 478.52 294.603 478.616 294.899 c +479.363 297.217 476.011 299.537 477.51 301.773 c +479.655 304.971 478.378 311.131 477.267 307.236 c +477.182 306.939 477.352 306.619 477.249 306.326 c +476.828 305.124 475.527 306.459 474.532 308.02 c +473.376 309.832 469.541 308.819 469.246 311.387 c +469.009 313.446 471.898 314.635 474.275 312.922 c +474.976 312.417 475.555 311.764 476.226 311.221 c +479.681 308.427 484.825 306.069 482.584 302.577 c +481.992 301.656 480.884 301.218 480.233 300.341 c +478.367 297.827 480.747 294.791 482.969 292.216 c +484.901 289.975 487.453 287.951 489.373 289.616 c +489.968 290.131 490.232 290.963 490.905 291.38 c +493.368 292.906 494.67 288.997 496.838 287.584 c +499.599 285.784 503.684 284.337 501.426 282.459 c +499.61 280.949 498.416 284.095 496.935 286.25 c +496.319 287.147 495.297 287.715 494.233 287.544 c +492.641 287.287 491.603 285.381 489.937 285.611 c +487.364 285.968 487.565 298.39 482.797 292.545 c +481.683 291.179 484.405 287.744 481.746 287.208 c +479.659 286.787 480.286 289.795 480.644 292.399 c +481.937 301.793 468.096 297.375 473.24 292.057 c +474.157 291.109 476.615 291.102 475.939 289.611 c +475.393 288.409 473.115 288.978 473.294 291.07 c +473.45 292.884 475.308 293.792 476.792 294.855 c +476.897 294.93 477.002 295.008 477.115 295.071 c +509.357 312.972 472.34 254.539 471.101 288.083 c +471.036 289.835 472.683 290.958 473.702 292.354 c +475.196 294.399 475.593 297.465 478.08 298.238 c +479.152 298.572 480.333 298.172 480.526 297.175 c +481.078 294.325 476.559 295.436 475.645 293.704 c +475.415 293.269 475.307 292.68 474.817 292.63 c +473.797 292.526 473.391 294.585 475.325 295.023 c +477.611 295.541 480.226 293.489 482.163 295.095 c +484.51 297.041 483.61 306.151 487.737 302.335 c +488.928 301.233 490.053 299.15 490.638 300.601 c +490.873 301.185 490.257 301.787 489.519 301.639 c +487.001 301.131 489.069 297.327 487.313 296.287 c +486.463 295.784 485.44 296.258 484.654 296.927 c +482.139 299.063 479.344 301.73 477.376 299.589 c +476.319 298.44 476.858 296.74 477.016 295.187 c +477.193 293.456 477.103 291.423 478.685 290.815 c +479.525 290.493 480.46 290.909 480.543 291.722 c +480.673 293.01 478.894 293.41 477.18 292.807 c +474.199 291.758 470.84 292.186 470.401 294.764 c +469.977 297.251 474.294 300.796 471.004 302.263 c +469.081 303.122 467.227 300.572 467.958 297.531 c +468.552 295.063 469.874 292.724 472.199 291.758 c +474.809 290.674 477.639 291.746 480.354 292.506 c +483.008 293.25 485.881 292.668 486.026 290.437 c +486.245 287.075 481.174 287.102 476.695 290.319 c +474.842 291.651 472.535 292.765 472.207 295.025 c +471.618 299.07 476.634 301.447 479.416 298.411 c +484.753 292.585 474.197 288.581 474.045 294.185 c +473.995 296.02 477.249 296.373 476.91 298.322 c +476.807 298.915 476.267 299.477 476.579 300.023 c +481.446 308.541 476.901 293.608 478.875 293.517 c +480.199 293.456 480.766 295.689 478.895 296.67 c +478.151 297.06 477.291 297.09 476.453 297.117 c +475.133 297.158 473.859 297.75 474.086 298.796 c +474.621 301.257 480.512 296.043 480.159 300.087 c +480.078 301.01 478.07 301.836 479.152 302.701 c +482.484 305.369 479.892 298.61 481.255 298.589 c +483.519 298.556 478.059 305.778 482.458 303.715 c +483.829 303.072 481.901 301.552 482.353 300.671 c +483.018 299.375 484.784 300.897 485.694 300.175 c +487.583 298.676 484.065 297.769 481.977 296.378 c +480.068 295.106 477.966 293.122 477.587 295.043 c +477.428 295.851 478.46 296.421 478.329 297.228 c +477.979 299.376 475.179 297.872 476.333 296.641 c +476.598 296.358 477.054 296.455 477.36 296.747 c +481.3 300.504 472.504 305.14 471.745 298.718 c +471.461 296.312 474.353 295.212 475.539 296.923 c +477.787 300.167 471.302 300.989 471.387 303.558 c +471.487 306.58 476.697 307.111 479.536 302.397 c +480.385 300.986 481.446 299.492 483.016 299.69 c +489.284 300.478 482.466 308.349 484.873 311.021 c +485.565 311.788 486.746 312.122 487.052 313.135 c +487.633 315.058 485.143 316.432 482.408 315.901 c +481.626 315.749 480.832 315.551 480.049 315.715 c +476.546 316.445 476.555 324.234 471.967 322.648 c +468.968 321.611 469.353 316.898 473.039 316.23 c +475.157 315.847 477.283 317.629 479.313 316.754 c +484.191 314.651 490.73 313.395 487.522 316.556 c +486.968 317.103 486.038 316.83 485.407 317.257 c +484.333 317.982 484.389 320.919 482.748 319.995 c +482.156 319.661 482.209 318.819 482.651 318.187 c +483.326 317.223 484.507 316.328 483.914 315.327 c +483.012 313.803 481.84 311.787 483.257 312.448 c +483.858 312.728 481.929 315.546 483.847 314.841 c +484.626 314.555 483.586 313.793 483.523 313.184 c +483.454 312.514 484.299 312.087 484.993 312.526 c +486.838 313.692 484.489 315.712 483.482 317.69 c +479.963 324.604 491.273 328.057 492.347 320.925 c +492.578 319.392 491.536 317.961 490.006 317.678 c +487.487 317.211 485.441 319.672 485.545 322.517 c +485.586 323.631 486.01 324.761 487.025 325.138 c +488.809 325.801 490.589 323.946 489.976 321.893 c +488.235 316.06 481.371 305.255 487.686 310.561 c +488.312 311.088 488.265 311.994 488.399 312.796 c +489.7 320.598 500.232 318.416 499.11 312.076 c +498.82 310.438 497.343 309.373 495.722 308.88 c +494.655 308.555 493.463 308.401 492.744 307.54 c +491.083 305.549 493.043 302.837 495.646 301.13 c +497.759 299.743 498.603 297.374 497.05 296.566 c +495.085 295.545 494.502 298.634 493.242 300.458 c +491.637 302.781 486.685 303.829 488.621 306.627 c +489.385 307.731 490.98 307.464 492.131 308.06 c +495.063 309.579 494.307 314.053 490.899 314.578 c +488.195 314.995 486.245 312.268 485.892 309.228 c +485.709 307.655 485.607 305.867 484.189 305.251 c +483.375 304.897 482.414 305.182 482.103 305.973 c +481.674 307.068 482.996 308.933 481.537 309.368 c +480.398 309.708 480.171 308.068 479.4 307.313 c +478.886 306.809 478.086 306.753 477.533 306.296 c +475.574 304.68 477.406 301.197 481.294 300.686 c +482.877 300.478 484.493 300.526 486.047 300.151 c +487.518 299.796 489.006 299.083 490.435 299.611 c +492.226 300.273 492.903 302.344 492.661 304.323 c +492.546 305.257 492.132 306.202 491.252 306.325 c +489.453 306.577 488.676 299.5 486.021 302.82 c +485.415 303.579 486.176 304.511 486.527 305.418 c +487.482 307.891 484.66 310.493 485.847 312.924 c +487.667 316.65 498.339 311.238 497.515 318.257 c +497.375 319.444 496.297 320.297 495.166 320.033 c +491.588 319.2 492.808 312.109 498.71 313.555 c +500.086 313.892 501.641 314.556 502.414 313.437 c +502.772 312.918 502.694 312.228 502.321 311.708 c +500.144 308.685 495.86 312.664 495.291 319.305 c +494.952 323.271 498.222 324.677 498.935 322.946 c +499.42 321.768 497.538 320.889 497.946 319.716 c +498.576 317.905 501.23 319.726 502.174 318.484 c +503 317.397 501.035 313.439 503.594 314.337 c +504.224 314.558 504.309 315.406 503.89 316.057 c +502.299 318.531 495.16 315.784 495.829 320.45 c +495.991 321.577 497.122 322.254 498.309 322.196 c +503.087 321.961 499.554 314.586 497.917 318.56 c +497.836 318.756 497.885 318.979 497.821 319.181 c +491.006 340.794 509.211 308.292 498.502 310.341 c +497.053 310.619 498.213 312.484 497.888 313.63 c +497.647 314.478 496.517 315.068 496.851 315.968 c +497.26 317.067 504.563 314.918 501.345 318.285 c +501.019 318.626 500.461 318.477 500.067 318.712 c +499.58 319.003 499.566 319.644 499.48 320.208 c +499.335 321.154 498.662 321.952 497.869 321.715 c +497.15 321.501 496.946 320.576 497.507 320.061 c +498.358 319.28 500.789 319.097 499.593 318.135 c +499.23 317.843 498.729 318.218 498.317 318.068 c +489.093 314.718 504.159 318.196 504.446 316.162 c +504.705 314.319 501.763 315.21 501.273 314.037 c +499.752 310.398 505.609 313.122 506.89 311.898 c +507.06 311.736 507.181 311.529 507.342 311.359 c +508.852 309.766 510.955 311.555 510.061 312.915 c +509.557 313.68 508.482 313.268 507.622 313.437 c +506.346 313.687 505.83 315.1 504.875 315.937 c +503.228 317.382 500.842 316.879 498.674 317.001 c +496.341 317.132 494.18 318.495 494.427 320.547 c +494.576 321.786 495.26 323.274 494.108 323.594 c +488.887 325.047 494.846 318.242 493.402 317.42 c +492.55 316.935 491.498 317.707 491.439 318.857 c +491.381 319.979 492.292 320.876 493.225 320.556 c +495.908 319.635 493.537 314.349 489.886 317.105 c +489.064 317.725 488.645 318.737 488.74 319.764 c +489.047 323.098 492.908 322.896 493.063 320.826 c +493.197 319.048 490.685 319.364 489.41 318.463 c +486.85 316.652 488.794 312.415 492.159 313.303 c +494.321 313.873 494.963 316.577 493.306 317.915 c +489.191 321.24 485.797 314.198 490.112 312.966 c +491.892 312.458 493.418 314.55 492.364 316.384 c +491.249 318.326 489.509 320.496 491.381 320.781 c +493.14 321.048 491.529 313.185 494.912 316.346 c +495.31 316.718 495.212 317.366 494.773 317.745 c +487.633 323.918 492.265 308.99 489.6 308.633 c +486.932 308.276 487.213 312.188 485.512 313.61 c +477.201 320.561 474.48 302.472 483.258 306.723 c +484.636 307.39 484.175 309.364 485.071 310.477 c +487.116 313.013 490.401 310.2 488.839 308.189 c +488.277 307.465 487.122 307.596 486.526 306.906 c +481.62 301.222 492.295 305.044 497.191 311.371 c +497.565 311.854 498.06 312.234 498.633 312.447 c +500.34 313.082 502.103 312.187 503.769 311.44 c +505.539 310.647 507.491 310.048 509.304 310.72 c +514.697 312.72 519.685 311.349 517.292 308.952 c +515.953 307.611 503.946 318.844 508.691 309.772 c +509.613 308.009 512.255 310.667 513.26 309.163 c +513.704 308.499 513.16 307.573 513.596 306.906 c +518.618 299.223 517.362 330.713 520.409 314.732 c +520.612 313.669 519.102 313.151 519.11 312.127 c +519.116 311.445 519.812 310.977 519.872 310.303 c +520.53 302.85 509.497 311.449 515.883 317.26 c +517.121 318.387 517.881 320.001 516.807 320.843 c +516.126 321.376 514.747 321.349 514.943 322.301 c +515.114 323.134 516.479 323.189 517.057 322.041 c +520.102 315.985 509.274 312.802 508.72 320.139 c +508.622 321.429 509.459 322.678 509.114 323.941 c +508.804 325.075 508.108 326.38 509.127 326.75 c +510.545 327.265 510.69 322.002 512.699 324.15 c +513.096 324.574 512.847 325.267 512.266 325.58 c +507.297 328.256 504.369 316.745 513.331 317.355 c +514.726 317.449 516.125 318.11 517.451 317.614 c +519.61 316.806 520.036 314.023 518.987 311.697 c +518.61 310.861 518.086 310.097 517.406 309.481 c +516.554 308.709 515.369 308.286 514.542 308.963 c +512.865 310.335 515.324 312.904 514.038 314.407 c +513.364 315.195 512.125 315.127 511.491 314.286 c +507.941 309.578 518.989 304.882 519.631 313.653 c +519.66 314.045 519.632 314.438 519.651 314.83 c +519.777 317.382 522.162 318.777 523.541 317.508 c +524.643 316.492 523.842 314.809 522.599 315.022 c +521.682 315.179 521.557 316.309 521.435 317.294 c +521.152 319.588 519.526 321.486 519.146 323.762 c +518.596 327.06 519.938 331.368 516.682 332.47 c +514.726 333.132 512.445 331.328 510.677 332.595 c +507.659 334.76 511.134 338.113 512.781 336.209 c +513.27 335.644 512.965 334.841 512.854 334.101 c +512.322 330.568 516.406 328.671 517.795 325.584 c +518.781 323.392 518.288 320.87 518.84 318.544 c +519.603 315.328 518.597 312.416 516.693 313.238 c +515.538 313.736 514.962 316.381 513.641 315.231 c +511.578 313.435 516.383 312.538 515.727 311.072 c +514.808 309.016 512.993 312.042 511.421 312.282 c +509.494 312.575 508.672 310.115 510.186 309.271 c +511.705 308.425 512.848 310.841 514.344 310.587 c +514.842 310.503 515.289 310.121 515.791 310.233 c +518.741 310.888 515.24 315.582 510.555 312.919 c +509.578 312.364 508.361 312.187 507.707 313.001 c +506.242 314.824 509.74 316.819 508.679 318.659 c +508.16 319.558 506.566 320.008 507.033 321.094 c +507.815 322.912 509.751 320.464 511.008 320.799 c +511.985 321.059 512.126 322.249 512.343 323.267 c +512.934 326.037 515.285 328.024 518.08 328.616 c +528.8 330.882 534.552 338.629 528.47 339.739 c +527.255 339.961 525.694 339.271 525.061 340.418 c +524.557 341.332 525.308 342.453 526.471 342.571 c +530.949 343.024 528.813 336.441 531 334.032 c +543.086 320.719 549.646 352.029 534.208 344.034 c +532.442 343.12 532.038 339.52 529.721 340.348 c +528.983 340.611 528.624 341.398 528.567 342.197 c +528.461 343.674 529.226 345.082 530.545 345.746 c +534.099 347.535 537.022 343.669 535.041 341.42 c +533.9 340.126 530.98 340.767 530.76 338.729 c +530.373 335.14 536.347 337.402 536.966 334.877 c +537.027 334.63 537.017 334.373 537.04 334.12 c +537.065 333.835 537.138 333.543 537.359 333.362 c +543.056 328.675 534.905 337.419 535.181 339.991 c +535.293 341.029 536.516 341.303 537.539 341.65 c +538.806 342.08 539.865 342.983 541.145 343.375 c +543.061 343.962 545.569 343.708 546.234 345.633 c +546.455 346.274 546.318 347.007 546.651 347.601 c +548.352 350.631 553.537 347.548 550.883 344.027 c +548.347 340.661 542.505 344.044 544.733 348.655 c +547.106 353.566 548.188 359.222 544.898 357.114 c +543.512 356.226 544.642 348.584 541.661 352.193 c +540.971 353.029 545.028 358.859 541.26 356.713 c +540.585 356.328 541.63 354.106 540.183 354.415 c +539.917 354.472 539.796 354.752 539.628 354.963 c +538.526 356.351 535.385 354.397 534.768 356.565 c +531.829 366.885 543.247 353.543 544.706 355.62 c +545.47 356.706 544.397 358.004 544.443 359.257 c +544.5 360.759 545.917 361.678 547.299 362.363 c +553.023 365.204 556.102 359.686 553.515 358.237 c +551.386 357.045 550.072 360.913 548.036 360.347 c +547.751 360.268 547.503 360.101 547.263 359.93 c +544.215 357.75 540.494 356.555 539.516 359.244 c +538.799 361.217 540.831 362.972 543.275 363.413 c +547.649 364.202 549.292 367.749 547.159 368.691 c +545.789 369.296 544.705 367.694 544.062 366.044 c +543.454 364.485 542.376 363.008 540.778 363.07 c +539.182 363.133 538.103 364.697 538.325 366.353 c +538.507 367.709 539.516 368.818 540.859 369.031 c +543.043 369.378 544.899 367.171 547.079 367.597 c +549.763 368.121 550.727 371.524 549.025 374.104 c +546.607 377.768 542.055 376.019 542.515 373.235 c +542.794 371.548 544.865 371.288 546.668 371.035 c +548.986 370.711 551.427 369.697 553.414 370.969 c +554.478 371.65 555.363 372.929 556.597 372.567 c +559.929 371.588 556.165 367.609 557.134 365.516 c +557.663 364.372 559.022 364.024 560.315 363.993 c +563.447 363.919 566.577 365.276 567.509 368.16 c +567.919 369.427 567.583 370.851 566.426 371.154 c +565.619 371.366 564.836 370.78 564.015 370.855 c +559.411 371.278 561.213 380.038 567.298 377.218 c +571.007 375.5 569.788 367.722 574.842 367.93 c +575.643 367.963 576.367 368.351 577.079 368.718 c +579.108 369.764 581.29 370.757 582.431 372.742 c +585.309 377.75 579.949 381.869 577.062 379.235 c +570.238 373.009 585.971 371.162 584.873 366.636 c +579.32 343.742 555.14 382.49 578.944 374.501 c +579.626 374.272 580.089 373.666 580.696 373.286 c +582.142 372.38 584.505 372.467 584.71 370.669 c +585.034 367.827 580.768 367.307 580.405 370.165 c +580.258 371.316 581.505 372.381 580.986 373.491 c +580.054 375.484 577.191 374.134 578.018 372.274 c +578.293 371.655 579.027 371.483 579.712 371.391 c +582.182 371.057 584.673 370.91 587.137 370.536 c +588.531 370.324 589.971 369.742 590.011 368.448 c +590.056 366.942 588.269 366.407 586.647 366.069 c +582.565 365.219 579.088 362.359 578.31 358.313 c +578.04 356.906 577.983 355.276 576.713 354.632 c +575.007 353.767 573.327 355.445 572.234 357.31 c +570.601 360.096 569.084 363.313 570.738 365.978 c +573.703 370.754 578.682 366.069 576.305 363.842 c +574.754 362.389 573.054 365.098 571.36 364.856 c +568.743 364.483 567.934 342.367 564.325 355.612 c +563.865 357.3 569.901 362.922 565.077 361.64 c +564.261 361.424 564.214 360.333 564.637 359.408 c +565.851 356.755 568.718 355.465 570.346 357.151 c +574.383 361.333 565.351 363.419 564.881 367.001 c +564.651 368.751 565.998 370.235 566.262 371.953 c +566.987 376.679 561.426 377.06 561.103 374.307 c +561.023 373.624 561.478 372.792 560.879 372.373 c +560.113 371.838 559.513 372.971 558.75 373.404 c +557.286 374.234 556.077 372.438 554.754 371.333 c +551.114 368.293 545.451 371.247 544.14 376.82 c +543.893 377.866 543.663 379.047 542.668 379.4 c +541.331 379.873 540.04 378.552 540.53 377.18 c +541.252 375.16 545.722 376.236 545.517 373.45 c +545.335 370.963 541.921 372.149 538.945 374.303 c +538.262 374.798 537.421 375.205 537.237 376.032 c +536.966 377.26 538.357 378.192 538.286 379.413 c +538.222 380.515 537.133 381.254 536.017 381.021 c +535.511 380.916 535.067 380.608 534.822 380.153 c +533.767 378.19 536.087 376.407 537.512 377.693 c +539.471 379.461 535.83 381.134 535.458 383.089 c +534.478 388.235 545.803 385.441 544.526 390.825 c +544.343 391.599 544.054 392.493 544.732 392.677 c +545.246 392.817 545.565 392.235 545.812 391.703 c +546.901 389.35 549.779 389.289 550.356 391.092 c +551.06 393.293 547.52 395.266 544.991 392.501 c +543.332 390.687 543.19 388.003 541.853 385.958 c +540.025 383.161 536.173 380.994 537.5 377.81 c +538.349 375.772 540.679 376.36 540.576 377.665 c +540.502 378.606 539.203 378.891 538.687 378.001 c +537.428 375.829 541.193 376.401 543.665 375.846 c +545.597 375.412 545.97 372.981 547.446 371.792 c +549.848 369.855 552.927 371.835 552.219 374.118 c +551.143 377.588 545.92 375.611 547.434 372.277 c +548.391 370.167 555.893 368.948 551.815 366.744 c +551.214 366.419 550.478 366.718 550.12 367.331 c +548.696 369.776 552.664 373.064 556.88 370.145 c +568.544 362.07 556.101 350.529 551.462 356.793 c +551.096 357.287 550.884 357.935 550.316 358.19 c +548.846 358.851 547.83 356.993 548.901 356.221 c +550.01 355.421 551.174 357.778 552.284 356.921 c +555.333 354.568 548.993 354.736 548.38 353.363 c +546.041 348.124 557.725 349.165 554.835 357.042 c +554.13 358.963 553.247 361.135 554.716 362.415 c +556.103 363.624 557.505 362.11 556.813 361.296 c +556.485 360.911 555.921 361.128 555.416 361.221 c +551.066 362.027 550.664 355.82 554.319 355.762 c +556.641 355.725 557.041 364.282 560.638 360.608 c +562.473 358.734 559.41 356.202 557.935 358.273 c +556.99 359.602 564.756 368.407 558.233 365.363 c +557.654 365.092 557.602 364.355 557.646 363.687 c +557.833 360.816 556.247 358.46 554.495 359.346 c +553.654 359.771 553.398 361.04 552.409 361.143 c +547.179 361.688 551.26 353.576 553.678 357.909 c +554.17 358.788 552.087 360.581 553.695 361.095 c +555.078 361.538 554.425 359.47 554.374 357.887 c +554.343 356.964 555.128 356.309 555.672 355.572 c +559.307 350.647 553.901 344.897 549.533 347.62 c +548.086 348.522 547.566 350.332 547.947 352.023 c +548.544 354.68 551.045 356.487 553.658 355.937 c +556.474 355.345 558.705 351.822 561.526 353.196 c +564.074 354.436 563.732 359.987 567.31 359.303 c +569.2 358.942 569.383 356.601 569.986 354.743 c +570.585 352.896 571.959 351.456 573.139 349.921 c +575.667 346.632 574.252 342.869 571.83 343.359 c +571.2 343.487 570.611 344.012 570.005 343.744 c +557.617 338.272 583.997 334.664 573.301 342.971 c +573.086 343.138 572.799 343.136 572.53 343.167 c +570.501 343.394 568.02 344.716 567.556 342.77 c +567.142 341.038 569.571 340.818 571.09 339.933 c +571.676 339.591 572.362 339.257 572.673 339.757 c +572.846 340.037 572.68 340.377 572.678 340.7 c +572.669 342.273 575.01 342.647 575.513 340.972 c +576.126 338.927 572.555 337.31 569.838 340.322 c +567.577 342.829 569.22 345.621 570.829 344.927 c +571.214 344.761 571.432 344.37 571.758 344.112 c +572.466 343.555 573.432 343.721 574.327 343.696 c +576.538 343.635 578.81 342.286 580.78 343.41 c +581.76 343.969 582.396 345.093 583.521 345.31 c +586.047 345.798 587.147 342.654 585.284 341.613 c +584.554 341.205 583.334 341.267 583.404 340.382 c +583.478 339.458 584.743 339.764 585.464 339.374 c +591.069 336.34 580.573 335.625 579.648 333.386 c +578.885 331.54 581.179 327.409 578.239 327.901 c +576.398 328.21 577.51 330.661 579.201 332.753 c +580.104 333.87 580.336 335.388 581.216 336.523 c +583.655 339.672 588.573 338.75 589.557 335.031 c +590.09 333.017 588.906 330.632 590.303 328.975 c +590.363 328.904 590.427 328.836 590.489 328.766 c +591.58 327.535 591.84 325.766 592.933 324.537 c +594.834 322.4 597.706 323.6 597.403 325.462 c +597.105 327.289 594.689 326.572 592.832 326.751 c +590.018 327.022 588.064 325.584 589.278 324.636 c +589.501 324.462 589.806 324.454 590.056 324.325 c +593.434 322.598 587.496 321.63 585.208 319.689 c +582.943 317.769 585.536 304.61 580.365 310.864 c +580.064 311.228 579.97 311.772 579.534 311.979 c +571.156 315.956 582.255 305.482 580.073 304.62 c +577.677 303.674 578.334 308.068 576.662 308.207 c +574.579 308.381 574.038 304.134 578.341 302.976 c +579.499 302.664 580.663 302.375 581.812 302.034 c +582.61 301.797 583.437 301.536 584.242 301.754 c +585.913 302.207 586.433 304.284 587.937 305.06 c +588.708 305.457 589.604 305.439 590.456 305.584 c +593.054 306.026 595.019 304.717 594.121 303.504 c +593.066 302.078 591.36 304.394 590.154 303.771 c +587.484 302.391 590.983 297.171 594.354 300.867 c +596.46 303.177 593.913 305.603 592.515 304.44 c +591.074 303.24 594.483 300.753 592.558 299.638 c +591.806 299.202 590.899 299.855 590.631 300.835 c +589.739 304.102 593.467 306.878 596.786 305.087 c +599.838 303.44 599.546 299.352 600.755 296.185 c +603.481 289.042 599.399 283.936 596.983 286.823 c +596.424 287.491 596.527 288.47 596.09 289.213 c +595.039 290.998 590.825 291.782 592.656 293.87 c +594.727 296.231 596.43 291.384 598.352 291.735 c +599.163 291.883 599.706 292.723 600.538 292.772 c +602.254 292.871 602.887 290.594 601.407 289.813 c +598.432 288.241 598.923 293.545 597.135 294.729 c +594.598 296.408 586.515 295.573 590.63 298.414 c +592 299.359 593.964 295.911 595.277 297.756 c +597.235 300.509 591.875 299.335 590.441 300.609 c +586.473 304.134 595.773 310.579 598.362 302.263 c +599.819 297.586 595.244 294.295 592.481 296.568 c +589.539 298.988 593.348 302.542 596.401 305.776 c +597.191 306.613 597.812 307.603 598.675 308.366 c +599.375 308.983 600.271 309.427 601.144 309.142 c +619.569 303.123 586.634 288.273 594.149 306.043 c +594.841 307.68 597.331 307.424 598.158 308.953 c +598.708 309.968 598.178 311.185 598.415 312.296 c +598.962 314.864 600.989 318.061 598.454 318.047 c +595.104 318.03 598.632 312.471 596.033 311.963 c +593.033 311.376 595.215 315.479 595.519 318.507 c +595.792 321.227 592.47 322.436 591.458 324.794 c +590.627 326.73 591.211 329.503 589.155 330.352 c +587.192 331.162 584.132 328.375 582.871 330.799 c +582.21 332.071 583.337 333.557 584.797 333.296 c +587.277 332.853 586.431 329.477 584.993 326.515 c +583.796 324.046 584.117 321.036 586.399 320.001 c +587.838 319.348 589.437 320.128 589.376 321.453 c +589.274 323.669 586.297 322.715 583.685 321.994 c +580.271 321.051 574.983 322.47 575.397 318.728 c +575.422 318.497 575.492 318.275 575.539 318.048 c +576.026 315.688 574.12 313.628 573.889 311.276 c +573.68 309.137 574.347 306.479 572.332 305.758 c +568.57 304.412 568.334 312.06 564.759 311.115 c +563.593 310.806 563.101 309.513 562.165 308.79 c +560.39 307.416 557.876 308.415 555.836 307.618 c +551.331 305.857 554.721 301.018 556.733 302.866 c +557.341 303.425 557.041 304.381 556.47 305.097 c +553.804 308.442 554.611 312.02 556.699 311.267 c +558.506 310.615 557.022 308.141 557.891 306.863 c +559.685 304.225 564.343 307.82 562.585 314.306 c +561.978 316.547 561.415 319.155 559.21 319.434 c +555.614 319.888 555.464 314.932 555.621 310.476 c +555.657 309.451 555.335 308.374 554.414 308.245 c +551.813 307.88 551.501 312.59 554.92 312.237 c +557.194 312.002 556.873 309.001 557.602 306.877 c +558.363 304.663 560.774 303.482 562.687 304.583 c +565.362 306.122 567.843 311.018 569.368 307.799 c +570.839 304.694 565.611 305.589 563.205 304.203 c +554.263 299.053 568.368 289.903 569.345 298.992 c +569.516 300.579 567.755 301.494 567.231 302.929 c +566.761 304.213 567.413 305.624 568.649 305.733 c +571.296 305.967 572.39 300.85 567.538 299.102 c +566.225 298.629 564.837 298.398 563.442 298.44 c +561.72 298.491 560.047 298.955 558.357 299.281 c +549.535 300.98 548.193 291.73 552.427 291.246 c +553.72 291.098 554.759 292.276 554.395 293.487 c +553.455 296.607 548.338 294.272 547.506 287.737 c +547.219 285.482 546.085 283.349 544.038 282.407 c +543.656 282.231 543.244 282.103 542.922 281.83 c +541.669 280.771 542.501 278.739 541.571 277.47 c +538.622 273.443 533.896 280.069 536.247 289.295 c +536.598 290.675 536.608 292.113 536.806 293.522 c +537.27 296.833 540.091 298.671 541.684 297.074 c +543.751 295.002 540.685 290.837 536.945 293.119 c +528.688 298.158 539.161 307.059 542.406 300.688 c +542.96 299.6 542.502 298.286 541.461 297.6 c +535.604 293.733 533.117 303.47 538.332 303.446 c +540.324 303.437 540.551 300.092 542.577 300.157 c +546.654 300.287 540.681 310.09 546.297 309.015 c +547.489 308.787 547.79 307.224 548.877 306.774 c +549.531 306.504 550.296 306.726 550.942 306.433 c +556.063 304.114 547.614 299.706 549.105 297.137 c +549.647 296.202 550.812 295.945 551.915 296.026 c +553.324 296.129 554.766 296.67 556.077 296.11 c +558.175 295.214 558.451 292.202 560.568 291.335 c +563.215 290.251 565.412 292.987 564.04 294.866 c +563.524 295.572 562.587 295.705 561.768 295.996 c +559.455 296.821 558.043 299.034 556.078 300.476 c +554.027 301.98 551.266 302.41 549.687 300.641 c +548.899 299.758 548.741 298.521 548.261 297.447 c +547.971 296.796 547.555 296.15 547.688 295.447 c +549.182 287.533 554.964 299.45 557.619 298.801 c +559.817 298.263 560.185 295.205 558.373 293.046 c +557.854 292.429 557.24 291.752 557.54 291.03 c +558.041 289.821 559.631 290.591 560.855 290.446 c +562.757 290.22 565.029 287.529 565.974 289.67 c +567.377 292.848 561.265 291.848 561.312 294.103 c +561.342 295.551 563.443 295.826 563.733 297.164 c +564.235 299.483 560.909 299.322 558.243 299.67 c +557.534 299.762 556.857 300.044 556.338 300.535 c +554.646 302.133 555.314 304.815 554.435 306.898 c +552.316 311.916 546.415 309.432 547.4 306.167 c +547.483 305.893 547.638 305.647 547.834 305.438 c +548.704 304.512 550.076 304.48 551.311 304.214 c +553.288 303.789 555.078 302.623 555.855 300.769 c +556.749 298.638 557.354 295.858 559.381 296.472 c +561.201 297.023 560.748 301.618 563.43 300.648 c +564.641 300.211 565.846 297.73 566.575 299.323 c +567.203 300.698 564.834 300.533 564.342 301.408 c +561.069 307.221 573.361 305.516 568.636 300.15 c +567.962 299.384 566.819 299.557 565.826 299.389 c +562.972 298.907 560.543 299.841 561.545 301.248 c +562.055 301.963 563.063 301.541 563.916 301.593 c +566.613 301.758 566.43 305.478 568.218 307.083 c +573.565 311.886 576.918 301.883 571.728 302.41 c +571.163 302.468 570.742 302.961 570.835 303.506 c +571.099 305.046 573.898 304.67 574.777 301.65 c +575.26 299.99 576.033 298.412 576.301 296.701 c +576.569 294.995 576.323 293.246 575.589 291.682 c +574.494 289.346 571.916 288.774 571.15 290.355 c +570.356 291.993 572.574 293.101 574.87 293.593 c +575.964 293.828 577.215 293.982 577.591 293.039 c +578.483 290.802 572.534 291 574.059 288.456 c +578.742 280.641 575.642 302.552 580.296 295.538 c +580.955 294.544 579.865 291.378 581.667 292.383 c +582.006 292.573 582.018 293.041 582.281 293.314 c +585.443 296.58 582.292 290.186 581.973 287.017 c +581.813 285.419 583.711 284.544 585.642 284.789 c +587.29 284.999 589.035 284.716 588.956 283.395 c +588.849 281.62 580.168 276.952 586.039 278.223 c +586.935 278.418 586.649 280.19 587.719 280.147 c +588.464 280.117 588.456 279.09 588.975 278.674 c +591.608 276.56 593.374 282.097 589.85 281.85 c +588.826 281.778 588.532 280.52 588.626 279.338 c +588.89 276.01 591.349 273.854 593.02 275.277 c +594.162 276.251 593.36 278.366 594.671 279.206 c +597.863 281.253 601.732 274.014 595.099 272.021 c +593.606 271.572 592.017 271.705 590.524 272.155 c +587.567 273.046 586.177 275.921 587.864 277.34 c +590.257 279.352 593.422 275.847 591.076 273.621 c +589.663 272.281 587.513 273.778 585.812 273.151 c +582.78 272.034 584.11 267.956 585.724 264.435 c +588.774 257.783 595.286 258.933 594.349 262.183 c +593.565 264.906 583.44 270.291 590.278 268.768 c +590.945 268.62 591.146 267.795 591.726 267.475 c +593.324 266.593 595.368 268.999 593.631 271.222 c +593.063 271.949 592.166 272.481 592.043 273.409 c +591.79 275.31 594.213 275.894 596.415 276.211 c +600.584 276.812 603.838 280.235 603.006 284.085 c +602.338 287.179 598.897 288.965 598.393 292.107 c +598.066 294.145 599.129 296.184 601.067 296.753 c +602.637 297.215 604.246 296.319 604.179 294.891 c +603.856 288.014 596.685 296.76 594.152 295.55 c +592.769 294.889 592.981 293.194 594.026 293.068 c +595.69 292.868 594.774 296.411 596.53 296.102 c +599.243 295.625 588.818 282.335 596.381 289.535 c +596.551 289.697 596.601 289.951 596.775 290.109 c +598.463 291.634 599.16 287.651 595.902 285.926 c +592.53 284.14 594.49 279.622 595.762 275.664 c +596.632 272.957 596.547 270.046 595.682 267.337 c +595.068 265.411 594.116 263.383 595.065 261.599 c +597.241 257.505 602.748 260.082 601.541 263.602 c +601.004 265.166 598.928 266.788 600.484 267.7 c +603.716 269.595 602.542 263.293 604.415 263.156 c +606.336 263.015 606.54 265.711 604.843 265.909 c +603.397 266.078 603.257 262.78 601.541 263.556 c +599.377 264.535 602.74 266.24 603.04 267.784 c +603.135 268.274 602.942 268.781 602.517 269.036 c +601.136 269.864 599.959 267.945 599.604 265.749 c +599.159 263.003 598.574 259.836 600.972 259.252 c +603.686 258.59 605.793 262.514 603.223 265.712 c +600.46 269.151 596.693 266.32 597.895 264.321 c +599.592 261.499 602.914 266.963 604.688 264.899 c +605.502 263.952 604.556 262.434 605.322 261.464 c +607.643 258.526 611.9 270.211 614.063 264.131 c +614.573 262.699 612.735 261.937 611.126 261.285 c +604.996 258.804 607.857 251.584 611.858 252.684 c +613.561 253.153 614.162 255.274 612.984 256.653 c +611.35 258.566 608.486 257.272 606.208 255.551 c +602.878 253.036 599.851 249.568 601.889 246.514 c +603.676 243.837 607.472 244.682 610.716 246.001 c +613.129 246.981 615.633 248.435 615.382 250.863 c +615.244 252.201 614.077 253.181 612.935 252.76 c +610.553 251.881 611.722 247.168 616.768 247.167 c +616.951 247.167 617.134 247.168 617.318 247.163 c +618.148 247.141 618.978 246.983 619.802 247.099 c +629.887 248.523 621.753 261.38 617.654 254.964 c +616.327 252.888 619.9 251.023 619.087 248.947 c +618.346 247.057 615.846 247.832 613.807 247.74 c +611.433 247.633 609.336 245.675 606.974 246.226 c +602.936 247.168 602.311 252.77 606.185 254.718 c +608.498 255.88 611.969 254.716 613.286 257.179 c +613.759 258.065 613.684 259.26 614.525 259.852 c +616.412 261.18 620.361 255.149 621.804 259.153 c +622.5 261.085 619.496 262.767 617.847 260.487 c +617.269 259.687 617.266 258.645 617.46 257.673 c +617.894 255.506 619.84 254.304 620.982 255.403 c +621.616 256.013 621.431 257.198 622.236 257.637 c +629.647 261.68 619.957 251.736 620.43 248.91 c +620.589 247.961 621.493 247.404 622.421 247.08 c +628.154 245.078 630.435 251.138 627.58 252.54 c +625.17 253.722 622.823 247.461 620.264 250.293 c +619.549 251.083 619.855 252.348 620.85 252.81 c +622.801 253.715 625.083 250.242 626.934 252.021 c +627.813 252.865 627.27 254.236 627.512 255.385 c +627.758 256.552 628.841 257.541 628.522 258.728 c +628.371 259.288 627.914 259.835 628.206 260.351 c +629.833 263.219 629.696 257.923 630.876 256.008 c +637.972 244.487 632.747 265.409 624.561 267.572 c +618.865 269.077 621.596 275.543 624.747 274.211 c +625.989 273.685 625.83 272.061 626.099 270.74 c +626.793 267.334 630.652 265.879 634.367 266.388 c +638.54 266.961 640.453 270.796 638.303 272.554 c +637.462 273.243 636.28 273.105 635.247 272.707 c +629.731 270.579 626.748 277.118 630.474 276.729 c +630.54 276.722 630.604 276.707 630.67 276.699 c +632.05 276.525 632.545 278.949 633.987 278.563 c +634.47 278.434 634.815 277.91 635.328 277.965 c +637.29 278.176 635.061 280.35 635.069 281.761 c +635.08 283.708 640.456 283.543 638.878 286.283 c +638.157 287.534 636.521 286.446 635.195 286.523 c +617.19 287.58 640.562 311.308 643.553 293 c +643.785 291.579 643.033 290.196 643.106 288.764 c +643.356 283.879 649.363 283.698 649.974 287.168 c +650.181 288.338 649.268 289.403 649.354 290.578 c +649.441 291.757 650.111 293.184 649.011 293.564 c +647.937 293.934 646.947 292.444 647.79 290.992 c +648.296 290.121 649.253 289.563 650.162 289.895 c +652.694 290.819 651.269 294.314 649.107 293.466 c +647.181 292.71 652.921 284.366 647.275 286.383 c +646.342 286.716 646.456 287.942 646.649 289.017 c +647.348 292.924 644.634 296.408 641.456 295.543 c +638.96 294.863 638.102 291.799 639.272 289.216 c +640.326 286.89 642.117 284.332 640.195 282.906 c +638.628 281.745 636.793 283.308 635.099 284.469 c +633.942 285.261 632.518 285.858 632.08 287.199 c +631.52 288.914 633.03 291.077 631.622 292.441 c +629.822 294.185 626.445 292.156 627.188 288.823 c +627.553 287.186 627.757 285.365 626.424 285.349 c +625.552 285.34 625.069 286.372 625.413 287.337 c +625.69 288.113 626.37 288.681 627.187 288.771 c +636.321 289.769 630.844 275.161 624.796 281.692 c +623.014 283.616 625.753 286.142 625.281 288.394 c +624.907 290.178 622.992 291.135 621.137 290.72 c +620.697 290.621 620.263 290.435 620.02 290.056 c +618.786 288.126 622.521 285.372 625.906 288.778 c +627.389 290.269 629.182 291.789 630.982 290.937 c +632.659 290.144 633.226 287.22 635.297 287.688 c +637.896 288.276 637.534 292.611 634.138 292.628 c +630.359 292.647 627.444 294.736 629.692 295.464 c +629.954 295.548 630.231 295.469 630.502 295.423 c +634.791 294.709 637.154 300.159 633.766 302.751 c +632.223 303.93 630.141 303.42 628.215 303.422 c +623.792 303.428 621.492 307.444 623.631 309.512 c +624.799 310.64 626.598 310.035 628.17 310.247 c +628.67 310.315 629.152 310.472 629.619 310.663 c +633.617 312.294 636.633 310.029 635.275 308.323 c +634.808 307.736 633.714 307.483 633.955 306.698 c +636.278 299.122 635.833 312.787 638.012 311.182 c +638.717 310.663 638.214 309.482 637.027 309.073 c +635.232 308.455 633.5 309.475 633.838 310.836 c +634.179 312.205 637.202 313.907 635.107 314.422 c +633.294 314.867 634.532 312.16 633.908 311.174 c +632.987 309.718 628.281 313.611 628.459 310.046 c +628.522 308.774 630.342 308.842 631.942 309.779 c +634.795 311.451 638.467 311.046 640.053 308.343 c +641.575 305.749 640.193 302.64 638.323 300.143 c +635.106 295.847 631.865 290.732 635.305 287.358 c +637.033 285.664 639.729 285.68 641.912 286.85 c +642.398 287.11 642.868 287.428 643.415 287.514 c +669.692 291.664 628.621 255.467 639.055 281.904 c +639.477 282.975 641.581 283.823 640.429 284.759 c +639.771 285.295 638.75 284.24 638.118 284.868 c +637.325 285.656 638.689 286.972 640.8 286.503 c +643.193 285.971 644.091 284.026 642.894 283.537 c +641.045 282.781 641.477 286.103 640.233 286.314 c +637.312 286.809 638.417 280.909 643.872 281.716 c +644.964 281.877 646.163 281.708 646.562 280.749 c +647.247 279.102 641.06 274.294 645.825 274.236 c +647.663 274.214 646.719 276.759 647.307 278.189 c +647.945 279.739 649.957 279.592 651.63 279.858 c +652.819 280.047 654.11 280.522 655.029 279.744 c +657.812 277.39 652.736 275.129 652.065 272.461 c +651.41 269.861 654.028 267.624 657.09 267.831 c +659.734 268.009 661.481 270.275 660.346 271.983 c +659.035 273.955 655.357 271.906 654.255 274.197 c +652.91 276.995 657.877 278.102 657.608 280.63 c +657.322 283.325 645.771 282.961 650.8 287.813 c +652.175 289.14 655.359 286.621 656.255 288.941 c +658.581 294.959 650.086 288.541 647.48 289.508 c +646.907 289.721 646.477 290.2 646.298 290.785 c +645.302 294.054 651.009 295.515 650.167 298.747 c +649.564 301.061 646.081 301.056 645.342 303.287 c +645.203 303.706 645.196 304.158 645.048 304.574 c +643.749 308.224 638.227 305.829 635.389 299.738 c +634.156 297.092 633.357 293.997 635.635 293.11 c +637.135 292.525 638.661 293.724 639.283 295.37 c +640.02 297.318 639.282 299.48 637.523 299.624 c +637.001 299.666 636.404 299.491 636.044 299.883 c +635.728 300.227 635.849 300.738 635.98 301.197 c +636.513 303.067 637.781 304.627 639.013 303.82 c +641.423 302.243 637.288 300.768 635.442 298.791 c +635.2 298.531 635.017 298.215 634.731 298.003 c +633.287 296.93 627.987 300.014 629.007 296.4 c +629.433 294.889 631.342 295.999 632.9 296.162 c +635.341 296.417 639.113 292.888 639.75 296.159 c +639.906 296.962 639.306 297.64 638.842 298.314 c +638.505 298.804 638.16 299.365 637.573 299.394 c +636.413 299.451 634.194 297.103 634.35 299.083 c +634.411 299.85 635.581 299.649 635.862 300.249 c +637.514 303.768 633.202 299.218 631.055 298.724 c +628.802 298.205 628.063 301.757 630.505 302.151 c +630.828 302.203 631.201 302.143 631.408 302.4 c +631.856 302.958 631.117 303.861 630.257 303.402 c +629.996 303.263 629.755 302.998 629.479 303.112 c +628.547 303.493 629.787 305.167 631.48 304.046 c +632.355 303.466 633.407 303.251 634.367 302.831 c +634.435 302.802 634.502 302.771 634.562 302.728 c +635.698 301.928 633.888 300.887 633.587 299.801 c +632.177 294.711 642.112 295.741 638.911 301.433 c +637.902 303.227 635.225 303.102 633.904 301.21 c +632.239 298.825 634.364 296.378 636.045 297.295 c +637.697 298.195 631.322 307.815 637.682 304.84 c +638.462 304.475 638.473 303.148 639.4 303.037 c +640.871 302.862 640.853 305.196 639.021 307.136 c +637.895 308.327 637.198 310.179 635.529 310.252 c +632.393 310.391 631.251 305.639 634.767 304.125 c +637.779 302.828 640.273 306.316 643.311 306.661 c +648.964 307.303 655.066 308.508 651.918 311.323 c +651.012 312.132 649.703 311.625 648.501 311.42 c +645.762 310.952 643.353 309.619 644.509 308.082 c +644.897 307.566 645.605 307.485 646.251 307.621 c +652.493 308.932 660.795 299.173 653.52 302.469 c +653.005 302.703 652.674 303.419 652.09 303.255 c +651.507 303.09 651.565 302.331 651.633 301.668 c +651.793 300.113 650.922 298.364 651.989 297.147 c +653.935 294.928 656.932 297.476 655.527 299.411 c +654.448 300.897 647.166 300.621 650.937 302.91 c +651.46 303.228 652.055 302.832 652.633 302.635 c +654.406 302.031 656.01 303.452 657.659 304.325 c +658.653 304.851 659.819 305.363 659.878 306.462 c +659.921 307.268 659.215 308.07 659.633 308.808 c +660.946 311.13 662.258 307.39 663.505 304.341 c +663.762 303.715 664.263 303.232 664.85 302.896 c +665.239 302.674 665.673 302.506 665.957 302.157 c +667.14 300.698 664.314 297.88 666.454 296.747 c +672.489 293.552 666.565 303.153 667.853 305.402 c +670.262 309.606 676.875 304.587 672.659 300.786 c +671.853 300.059 670.633 300.05 670.14 300.897 c +668.854 303.107 673.422 305.961 675.589 301.676 c +676.115 300.637 676.257 299.393 675.567 298.48 c +674.732 297.374 673.19 297.395 671.835 297.133 c +670.081 296.794 668.725 295.429 669.356 294.096 c +670.596 291.476 673.654 294.678 675.727 294.129 c +685.071 291.654 673.314 280.252 671.499 288.957 c +671.375 289.551 671.642 290.158 672.166 290.463 c +673.677 291.342 675.186 289.586 675.884 287.512 c +676.201 286.566 676.557 285.615 677.219 284.867 c +679.669 282.101 685.269 280.37 682.628 277.392 c +680.553 275.053 677.958 278.532 675.245 280.147 c +672.375 281.856 671.894 284.669 673.637 284.686 c +675.434 284.703 674.524 282.039 675.572 281.248 c +677.049 280.133 678.404 278.583 677.015 278.731 c +676.809 278.753 676.669 278.927 676.529 279.08 c +674.724 281.053 671.503 280.348 670.836 277.871 c +670.643 277.157 670.195 276.562 669.776 276.887 c +669.342 277.222 669.866 277.769 670.419 278.203 c +671.338 278.924 671.263 280.38 672.18 281.104 c +674.406 282.86 678.113 279.73 676.051 275.99 c +675.119 274.298 673.127 272.934 673.681 271.026 c +673.848 270.45 674.266 269.978 674.429 269.401 c +674.91 267.688 673.309 266.355 672.028 265.062 c +671.823 264.855 671.624 264.635 671.532 264.359 c +670.868 262.367 674.346 261.97 674.266 260.195 c +673.874 251.531 662.055 262.002 670.615 263.001 c +670.832 263.026 671.053 262.972 671.218 262.83 c +672.277 261.916 670.377 260.572 670.969 259.587 c +671.712 258.353 673.29 259.826 674.366 259.414 c +675.737 258.888 675.392 256.912 674.123 255.445 c +671.72 252.668 671.892 249.168 674.205 249.066 c +674.775 249.04 675.323 249.362 675.887 249.258 c +678.086 248.856 677.981 244.665 674.133 244.296 c +670.412 243.94 665.38 246.553 664.401 242.657 c +663.628 239.577 664.015 234.775 661.654 236.86 c +660.346 238.015 662.431 239.474 662.521 240.911 c +662.592 242.062 661.401 243.116 661.908 244.224 c +667.79 257.099 675.844 232.513 663.336 238.069 c +662.381 238.493 662.017 239.689 661.063 240.115 c +658.272 241.359 656.325 237.427 658.84 235.997 c +659.904 235.392 661.375 236.2 662.334 235.377 c +663.038 234.772 662.946 233.735 662.753 232.802 c +662.463 231.403 662.1 229.998 662.219 228.571 c +662.231 228.43 662.247 228.29 662.269 228.151 c +663.141 222.743 670.191 222.239 673.562 218.37 c +674.077 217.778 674.505 217.074 674.437 216.296 c +674.325 215.028 673.04 213.581 674.207 212.822 c +678.63 209.947 675.783 218.452 677.761 218.66 c +678.421 218.729 678.932 218.205 679.477 217.832 c +680.52 217.117 681.84 216.952 683.041 217.35 c +684.58 217.86 685.623 219.332 685.027 220.689 c +683.729 223.646 679.15 221.327 677.428 215.794 c +677.08 214.676 676.555 213.573 675.559 212.959 c +673.861 211.911 671.35 212.706 670.02 211.111 c +669.028 209.923 669.32 207.786 667.772 207.198 c +667.173 206.97 666.498 207.134 666.057 207.599 c +665.007 208.708 665.501 211.494 663.603 211.274 c +663.066 211.212 662.724 210.705 662.963 210.305 c +663.599 209.244 665.356 210.585 664.177 211.621 c +663.929 211.839 663.533 211.872 663.378 212.173 c +662.459 213.956 665.602 212.985 666.065 213.756 c +666.941 215.216 664.173 215.507 664.126 216.658 c +663.981 220.216 667.251 215.635 669.811 214.344 c +674.215 212.122 674.029 225.752 679.307 221.402 c +681.061 219.957 679.033 217.107 680.448 215.499 c +681.455 214.355 683.253 214.776 683.487 216.12 c +683.647 217.036 682.824 217.714 682.311 218.48 c +680.862 220.642 681.452 224.568 678.57 224.839 c +677.651 224.926 676.788 224.355 675.869 224.442 c +674.708 224.553 673.957 225.587 673.062 226.319 c +671.724 227.413 669.836 227.65 668.938 226.384 c +664.182 219.673 678.438 219.153 673.99 225.368 c +673.301 226.331 670.435 225.592 670.927 227.389 c +671.147 228.191 672.233 228.001 672.869 228.423 c +677.842 231.723 667.921 237.696 667.195 230.209 c +667.034 228.554 668.487 227.358 669.293 225.933 c +670.129 224.457 670.239 222.722 670.345 221.033 c +670.499 218.575 669.204 216.472 667.605 217.162 c +666.388 217.688 666.64 219.628 665.423 220.153 c +661.075 222.03 663.548 215.36 669.036 211.157 c +670.985 209.664 671.154 206.686 673.189 205.291 c +675.072 204 677.143 205.333 676.656 206.787 c +675.961 208.86 673.557 206.664 671.717 206.625 c +670.293 206.596 669.338 207.993 667.987 208.339 c +664.554 209.217 663.204 204.593 660.341 203.189 c +658.762 202.414 656.835 202.697 655.844 204.097 c +652.97 208.156 658.852 214.138 664.461 209.958 c +666.277 208.605 667.932 206.334 669.951 207.316 c +670.432 207.55 670.786 207.966 671.117 208.384 c +673.543 211.445 673.31 215.411 670.566 215.826 c +668.58 216.127 667.367 213.732 665.445 213.574 c +662.146 213.303 660.525 217.929 663.072 221.9 c +667.664 229.058 658.463 235.026 658.444 229.32 c +658.44 228.035 660.315 226.13 658.62 225.884 c +658.289 225.836 658 226.055 657.749 226.282 c +654.731 229.022 655.729 233.03 658.282 232.944 c +658.46 232.938 658.637 232.901 658.798 232.824 c +660.54 231.986 658.015 227.53 660.983 227.558 c +662.527 227.573 662.971 229.889 661.271 230.553 c +660.231 230.96 659.248 230.109 658.2 229.796 c +656.533 229.298 654.765 230.213 654.509 231.855 c +654.253 233.5 656.977 233.093 655.869 232.164 c +655.811 232.116 655.733 232.108 655.658 232.101 c +651.193 231.689 647.035 229.449 648.143 226.081 c +649.102 223.162 655.832 221.271 652.551 218.231 c +650.809 216.616 648.771 218.805 649.91 220.078 c +650.74 221.005 652.63 219.482 653.301 220.764 c +654.335 222.739 650.854 222.234 649.81 223.302 c +642.351 230.936 661.629 229.525 659.141 218.905 c +658.827 217.564 658.502 216.152 657.447 215.263 c +656.227 214.235 654.5 214.311 653.001 213.808 c +651.519 213.31 650.38 212.029 650.886 210.725 c +651.319 209.611 653.014 208.683 652.102 207.682 c +648.872 204.135 650.182 211.927 648.78 212.69 c +646.25 214.064 646.362 209.839 647.338 205.763 c +648.044 202.813 645.207 198.807 648.244 197.085 c +651.371 195.312 658.911 195.575 655.061 192.817 c +654.509 192.422 653.771 192.588 653.181 192.963 c +651.11 194.279 650.66 197.618 648.093 198.015 c +647.469 198.111 646.809 197.968 646.225 198.22 c +644.974 198.759 644.77 200.423 645.558 201.7 c +647.088 204.18 650.598 204.343 653.035 202.414 c +653.695 201.892 654.259 201.23 655.036 200.898 c +657.637 199.789 660.425 202.168 660.496 205.389 c +660.611 210.632 659.343 217.228 663.776 215.979 c +664.516 215.77 665.077 215.173 665.281 214.43 c +665.882 212.239 663.312 210.275 664.042 208.093 c +664.422 206.957 665.661 206.404 666.467 207.073 c +669.741 209.793 662.818 210.17 661.768 212.152 c +660.444 214.648 664.126 215.97 667.553 216.909 c +668.625 217.202 669.663 217.748 670.772 217.61 c +673.397 217.285 673.913 214.204 672.089 213.391 c +671.136 212.967 670.138 213.651 669.436 214.504 c +667.169 217.26 663.991 218.325 663.398 216.137 c +662.674 213.462 667.22 213.538 667.508 211.382 c +667.825 209.007 664.457 207.826 663.083 210.162 c +662.512 211.131 662.788 212.348 663.546 213.209 c +664.073 213.806 664.822 214.243 665.059 215.011 c +666.211 218.751 659.725 220.392 659.131 215.663 c +659.077 215.237 659.148 214.805 659.089 214.38 c +658.792 212.258 655.2 210.354 657.172 208.473 c +659.619 206.141 660.651 210.991 661.53 215.32 c +662.052 217.893 662.275 220.68 660.344 220.324 c +659.107 220.096 658.833 218.396 659.994 217.725 c +660.834 217.239 661.882 217.843 662.772 217.502 c +663.993 217.034 664.184 215.451 663.626 214.111 c +663.193 213.073 662.783 211.87 663.663 211.402 c +667.953 209.121 662.97 219.96 667.164 217.821 c +668.536 217.122 666.5 214.254 668.406 213.841 c +669.156 213.679 669.647 214.566 670.372 214.645 c +680.622 215.763 665.366 208.819 665.661 206.613 c +665.713 206.231 665.921 205.898 666.133 205.577 c +666.802 204.563 667.543 203.53 667.562 202.313 c +667.585 200.879 666.811 199.159 668.086 198.437 c +669.711 197.516 673.626 204.368 674.681 199.743 c +674.869 198.922 674.094 198.234 673.164 198.116 c +670.415 197.77 668.647 200.752 670.22 202.735 c +671.006 203.725 672.434 203.791 673.451 204.512 c +680.406 209.444 670.385 217.183 667.498 210.797 c +667.404 210.589 667.347 210.365 667.242 210.161 c +666.546 208.805 663.783 208.494 664.421 206.717 c +664.828 205.582 666.684 205.805 667.044 204.634 c +667.625 202.744 659.526 202.281 663.253 199.402 c +666.735 196.713 665.393 203.875 667.026 204.262 c +667.806 204.446 668.477 203.837 668.991 203.188 c +669.943 201.988 669.915 200.438 668.844 200.254 c +667.393 200.004 666.924 202.487 669.044 204.383 c +670.242 205.455 671.163 206.786 671.975 208.172 c +675.764 214.643 682.436 213.876 682.12 210.183 c +681.763 206.005 675.28 208.657 673.847 205.698 c +673.638 205.267 673.582 204.785 673.54 204.308 c +672.974 197.91 679.562 197.501 679.675 200.522 c +679.69 200.926 679.507 201.301 679.269 201.627 c +675.684 206.534 669.335 201.632 672.01 197.759 c +672.591 196.919 673.673 196.571 674.589 196.997 c +677.389 198.3 673.279 206.078 678.404 205.595 c +681.072 205.343 686.884 197.87 685.46 203.447 c +685.123 204.767 679.933 203.542 681.614 206.267 c +682.452 207.626 684.257 205.417 685.188 206.359 c +685.694 206.871 685.284 207.801 685.803 208.305 c +688.652 211.065 690.689 203.229 684.964 203.366 c +683.325 203.406 681.768 203.988 680.186 204.403 c +674.842 205.806 673.969 199.844 676.688 199.843 c +677.515 199.843 678.154 200.971 678.983 200.573 c +682.645 198.811 676.095 197.464 676.18 196.104 c +676.304 194.142 679.64 194.634 681.25 198.206 c +683.389 202.95 688.831 201.62 688.644 198.536 c +688.52 196.476 685.795 195.672 683.57 197.034 c +682.773 197.521 682.078 198.204 681.169 198.441 c +680.312 198.665 679.423 198.449 678.543 198.379 c +674.63 198.066 671.239 200.507 667.665 202.063 c +664.001 203.658 659.658 204.748 658.276 208.498 c +657.903 209.512 657.746 210.712 656.794 211.236 c +654.75 212.361 653.368 209.542 651.494 208.38 c +650.286 207.631 648.801 207.689 647.4 207.5 c +645.289 207.217 643.269 206.334 641.134 206.388 c +640.612 206.402 640.093 206.472 639.571 206.481 c +636.784 206.53 634.306 204.657 634.63 202.161 c +634.857 200.411 636.496 199.372 638.051 198.493 c +639.105 197.898 640.177 197.288 641.377 197.11 c +642.874 196.888 644.357 197.369 645.853 197.555 c +647.056 197.705 648.388 197.996 648.487 199.105 c +648.771 202.275 634.335 195.481 640.17 202.569 c +640.744 203.266 642.234 202.967 642.387 204.004 c +642.558 205.157 640.832 205.417 639.199 204.52 c +637.503 203.589 635.377 203.607 634.523 205.147 c +634.289 205.568 634.218 206.065 634.384 206.515 c +635.4 209.268 640.847 207.937 639.757 203.157 c +639.209 200.757 636.897 199.172 634.701 199.969 c +634.177 200.159 633.71 200.506 633.497 201.019 c +632.867 202.543 634.396 204.082 636.37 204.175 c +638.965 204.297 641.598 202.405 643.967 203.673 c +645.521 204.506 646.106 206.319 646.355 208.084 c +646.67 210.311 646.499 212.717 644.81 214.148 c +643.997 214.836 642.942 215.138 642.025 215.673 c +641.158 216.179 640.596 217.102 641.13 217.755 c +641.922 218.722 643.258 217.552 644.014 215.925 c +645.481 212.767 649.068 213.511 649.027 215.548 c +649.009 216.431 647.962 217.244 648.493 218.063 c +651.77 223.114 649.349 213.515 650.718 211.485 c +652.458 208.905 657.211 212.762 654.346 218.875 c +652.841 222.085 649.688 222.222 649.568 220.433 c +649.493 219.311 650.901 218.69 651.756 219.536 c +653.044 220.812 644.672 228.332 651.412 227.063 c +652.635 226.832 652.353 225.21 652.104 223.796 c +651.43 219.964 653.126 214.294 649.185 215.008 c +647.648 215.286 646.97 217.08 647.525 218.698 c +648.372 221.168 651.652 222.65 651.161 225.389 c +650.803 227.386 648.646 228.246 646.58 228.692 c +639.937 230.125 641.176 236.77 644.208 235.928 c +646.157 235.387 641.885 224.44 647.654 228.616 c +648.77 229.425 647.625 230.868 647.358 232.182 c +646.763 235.106 650.64 236.299 651.594 238.831 c +652.779 241.977 649.158 243.122 648.479 241.383 c +648.348 241.047 648.452 240.664 648.331 240.324 c +647.389 237.671 642.013 240.601 645.406 244.265 c +645.479 244.344 645.555 244.42 645.626 244.5 c +646.781 245.813 646.405 248.107 647.966 249.045 c +650.661 250.663 653.045 247.161 651 245.447 c +650.845 245.317 650.65 245.222 650.456 245.277 c +650.054 245.39 649.965 245.937 650.302 246.274 c +651.515 247.487 654.145 244.994 651.714 242.875 c +648.625 240.183 644.111 237.493 647.355 236.089 c +649.631 235.103 650.051 238.581 650.801 241.36 c +651.588 244.275 654.765 245.483 657.83 246.044 c +659.771 246.399 661.678 245.673 661.43 244.2 c +660.968 241.449 644.813 251.213 652.035 242.248 c +652.832 241.259 655.764 240.851 654.242 239.803 c +653.072 238.997 652.643 242.41 651.395 241.338 c +649.822 239.985 653.123 240.329 654.459 239.605 c +655.304 239.148 655.078 237.983 655.438 237.137 c +655.791 236.31 656.652 235.889 657.358 235.343 c +663.114 230.898 669.723 226.304 669.656 231.771 c +669.627 234.131 666.644 234.954 663.816 234.278 c +661.71 233.775 659.61 232.945 658.363 231.179 c +657.345 229.738 657.086 227.888 657.729 226.247 c +659.464 221.815 665.23 221.46 670.262 223.057 c +671.426 223.427 672.637 223.987 672.868 225.155 c +673.717 229.451 667.666 227.293 662.219 224.255 c +659.95 222.99 656.699 223.226 655.505 220.811 c +654.32 218.412 656.48 216.13 658.324 217.075 c +660.512 218.198 656.441 224.997 661.057 224.391 c +661.739 224.302 662.216 223.647 662.899 223.567 c +664.234 223.41 664.916 225 664.889 226.609 c +664.851 228.964 664.432 231.289 663.957 233.595 c +663.822 234.25 663.684 234.925 663.881 235.566 c +665.277 240.118 673.874 237.713 671.302 231.097 c +669.857 227.378 666.788 223.127 670.331 222.478 c +675.147 221.596 672.007 228.682 673.838 231.229 c +674.767 232.521 676.743 232.806 677.335 234.327 c +677.617 235.052 677.465 235.888 677.805 236.591 c +678.825 238.693 682.159 238.323 683.257 235.624 c +684.12 233.502 683.074 230.8 684.672 229.054 c +689.947 223.291 695.422 233.351 689.482 234.786 c +688.427 235.04 686.926 234.659 686.838 235.776 c +686.775 236.582 687.874 236.882 688.006 237.631 c +689.848 248.069 685.984 231.467 682.687 230.071 c +677.526 227.885 676.893 239.179 684.382 236.644 c +685.84 236.15 686.73 234.781 687.351 233.364 c +688.747 230.18 685.491 228.784 684.863 230.292 c +684.693 230.699 684.949 231.153 684.841 231.577 c +681.919 243.106 675.913 223.305 684.831 225.514 c +685.286 225.627 685.757 225.812 686.193 225.634 c +688.03 224.88 686.02 222.786 683.471 221.274 c +682.279 220.567 681.543 219.133 680.154 218.882 c +676.481 218.22 676.171 223.06 678.812 223.226 c +679.808 223.289 680.42 222.253 680.558 221.162 c +680.898 218.49 679.144 216.084 676.922 216.571 c +673.815 217.252 674.816 222.948 671.394 223.219 c +668.716 223.431 667.537 219.817 669.022 216.441 c +670.801 212.397 675.106 212.13 675.695 214.639 c +676.187 216.737 670.542 221.829 675.166 221.549 c +676.446 221.472 676.626 219.762 676.132 218.199 c +675.647 216.666 675.315 214.984 676.16 213.629 c +676.613 212.901 677.395 212.285 677.279 211.423 c +677.01 209.434 664.228 213.189 670.011 207.474 c +670.42 207.069 671.077 207.093 671.531 207.467 c +673.148 208.799 671.188 210.983 668.658 212.383 c +666.825 213.397 665.862 215.428 667.077 216.626 c +668.442 217.971 670.874 216.755 670.694 214.557 c +670.597 213.37 669.639 212.524 668.819 211.663 c +663.374 205.944 656.381 203.826 655.68 208.693 c +655.462 210.203 656.61 211.698 656.069 213.158 c +655.336 215.136 651.328 216.115 652.843 218.401 c +654.124 220.335 656.433 218.034 658.335 215.69 c +659.834 213.842 662.288 213.162 664.665 213.468 c +665.839 213.619 666.969 214.003 668.129 214.237 c +670.996 214.817 672.284 217.148 670.856 218.003 c +669.233 218.976 667.74 214.693 666.022 216.468 c +664.687 217.847 668.187 219.688 666.745 221.066 c +665.505 222.251 663.039 219.984 664.776 216.863 c +666.203 214.3 667.384 211.277 665.587 209.131 c +660.587 203.158 655.424 213.235 660.991 213.609 c +662.396 213.704 664.357 210.373 665.25 212.611 c +665.943 214.345 662.963 214.17 662.566 215.36 c +661.96 217.174 665.214 218.792 666.886 215.962 c +667.332 215.206 667.498 214.306 667.238 213.469 c +666.644 211.557 664.452 210.874 662.35 210.913 c +660.304 210.952 658.385 210.128 658.872 208.697 c +659.135 207.927 660.049 207.755 660.834 207.51 c +664.449 206.377 665.773 202.202 668.683 199.9 c +670.313 198.611 672.511 198.05 674.1 199.253 c +675.621 200.404 675.691 202.529 675.325 204.454 c +674.314 209.777 669.169 211.357 667.64 208.467 c +667.417 208.044 667.354 207.545 667.546 207.108 c +668.741 204.397 674.385 206.947 672.351 213.066 c +668.825 223.674 678.112 229.061 681.276 224.594 c +682.735 222.535 680.983 219.389 682.781 217.507 c +684.003 216.229 685.98 216.493 687.698 217.126 c +689.155 217.664 690.586 218.388 692.145 218.371 c +692.604 218.366 693.066 218.296 693.517 218.386 c +701.317 219.959 694.208 233.051 687.648 225.521 c +686.297 223.97 686.26 221.141 684.096 220.767 c +681.721 220.356 677.797 225.583 676.694 221.655 c +676.355 220.443 677.749 219.519 677.737 218.317 c +677.713 216.061 674.669 216.338 672.736 215.408 c +668.615 213.427 663.821 210.975 664.644 214.514 c +664.961 215.879 666.733 215.761 667.97 216.315 c +668.925 216.743 669.549 217.64 669.922 218.62 c +670.696 220.653 670.423 222.988 668.848 224.445 c +665.548 227.499 660.161 224.226 656.586 226.719 c +654.68 228.047 652.604 227.93 652.834 226.596 c +653.029 225.464 654.582 225.96 655.42 225.443 c +657.091 224.413 653.134 218.557 657.287 219.159 c +658.108 219.278 658.69 220.489 659.536 220.054 c +660.947 219.327 658.363 216.975 659.949 216.301 c +660.594 216.026 661.101 216.73 661.597 217.275 c +663.12 218.951 665.958 218.427 667.509 220.069 c +670.174 222.889 666.484 225.71 665.004 223.897 c +663.375 221.902 667.78 220.644 667.017 218.807 c +666.159 216.744 663.818 218.926 661.7 220.706 c +661.127 221.187 660.412 221.477 659.873 221.996 c +658.417 223.396 658.198 226.338 655.992 226.275 c +651.229 226.14 655.645 220.142 654.883 216.809 c +654.669 215.871 654.026 215.118 653.444 214.356 c +652.386 212.971 651.181 211.439 649.516 211.73 c +649.057 211.811 648.639 212.048 648.335 212.402 c +S +0 1 0 rg +398.5 312 m +398.5 312.398 398.342 312.779 398.061 313.061 c +397.779 313.342 397.398 313.5 397 313.5 c +396.602 313.5 396.221 313.342 395.939 313.061 c +395.658 312.779 395.5 312.398 395.5 312 c +395.5 311.602 395.658 311.221 395.939 310.939 c +396.221 310.658 396.602 310.5 397 310.5 c +397.398 310.5 397.779 310.658 398.061 310.939 c +398.342 311.221 398.5 311.602 398.5 312 c +f +1 0 0 rg +649.835 212.402 m +649.835 212.8 649.677 213.182 649.396 213.463 c +649.114 213.744 648.733 213.902 648.335 213.902 c +647.937 213.902 647.556 213.744 647.274 213.463 c +646.993 213.182 646.835 212.8 646.835 212.402 c +646.835 212.005 646.993 211.623 647.274 211.342 c +647.556 211.06 647.937 210.902 648.335 210.902 c +648.733 210.902 649.114 211.06 649.396 211.342 c +649.677 211.623 649.835 212.005 649.835 212.402 c +f +endstream +endobj +3 0 obj +<< +/ProcSet [/PDF ] +/ExtGState << +/GS1 4 0 R +>> +>> +endobj +4 0 obj +<< +/Type /ExtGState +/SA false +/SM 0.02 +/OP false +/op false +/OPM 1 +/BG2 /Default +/UCR2 /Default +/HT /Default +/TR2 /Default +>> +endobj +1 0 obj +<< +/Type /Page +/Parent 5 0 R +/Resources 3 0 R +/Contents 2 0 R +>> +endobj +6 0 obj +<< +/S /D +>> +endobj +7 0 obj +<< +/Nums [0 6 0 R ] +>> +endobj +5 0 obj +<< +/Type /Pages +/Kids [1 0 R] +/Count 1 +/MediaBox [0 0 698 473] +>> +endobj +8 0 obj +<< +/CreationDate (D:20150820211513+01'00') +/ModDate (D:20150820211513+01'00') +/Producer (PSNormalizer.framework) +>> +endobj +9 0 obj +<< +/Type /Catalog +/Pages 5 0 R +/PageLabels 7 0 R +>> +endobj +xref +0 10 +0000000000 65535 f +0000395349 00000 n +0000000016 00000 n +0000395143 00000 n +0000395209 00000 n +0000395494 00000 n +0000395429 00000 n +0000395456 00000 n +0000395575 00000 n +0000395706 00000 n +trailer +<< +/Size 10 +/Root 9 0 R +/Info 8 0 R +/ID [<be51200857157bea7d813e308f1ca948><be51200857157bea7d813e308f1ca948>] +>> +startxref +395773 +%%EOF diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.mp new file mode 100644 index 00000000000..be171d03e55 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.mp @@ -0,0 +1,19 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path a; a = (left .. right) scaled 42; +pair P; P = origin; r = 31; +draw a rotated r withcolor 2/3 red; draw a rotated (90+r) withcolor 2/3 red; +drawdot P withpen pencircle scaled dotlabeldiam; +label("$P$", P shifted 10 dir 68); + z0 = P + 20 dir -20; + draw z0 -- P + cutafter fullcircle scaled 8 shifted P + withpen pencircle scaled 1/4; + label.rt("\textit{pole}", z0); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.pdf Binary files differnew file mode 100644 index 00000000000..07f6e21964a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/callout.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.mp new file mode 100644 index 00000000000..b4cca18faa5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.mp @@ -0,0 +1,49 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef through(expr a, b, o) = + save t; numeric t; t = 1+o/abs(a-b); + t[b,a] -- t[a,b] +enddef; + +beginfig(1); + path T; T = origin -- 377 dir 10 -- 233 dir 70 -- cycle; + pair m; + m = whatever * (point 0 of T - point 1 of T) rotated 90 shifted point 1/2 of T + = whatever * (point 1 of T - point 2 of T) rotated 90 shifted point 3/2 of T + = whatever * (point 2 of T - point 3 of T) rotated 90 shifted point 5/2 of T; + + drawoptions(withcolor 3/4); + draw unitsquare scaled 5 rotated angle (point 1 of T-point 0 of T) shifted point 1/2 of T; + draw unitsquare scaled 5 rotated angle (point 2 of T-point 1 of T) shifted point 3/2 of T; + draw unitsquare scaled 5 rotated angle (point 0 of T-point 2 of T) shifted point 5/2 of T; + drawoptions(dashed evenly scaled 1/4 withcolor 1/2); + draw through(point 1/2 of T, m, 10); + draw through(point 3/2 of T, m, 10); + draw through(point 5/2 of T, m, 10); + drawoptions(); + draw fullcircle scaled 2 abs (point 0 of T - m) shifted m withcolor 2/3 red; + draw T; + + draw m withpen pencircle scaled dotlabeldiam; label("$m$", m + 10 dir 12); + +vardef mark_equal(expr a, b, n) = + save m, s; picture m; m = image( + numeric s; 2s = n - 1; for t=-s upto s: + draw (down--up) scaled 2 rotated -13 shifted (t,0) withpen pencircle scaled 1/4; + endfor + ); + draw m rotated angle (b-a) shifted 1/4[a,b]; + draw m rotated angle (b-a) shifted 3/4[a,b]; +enddef; + + mark_equal(point 0 of T, point 1 of T, 1); + mark_equal(point 1 of T, point 2 of T, 2); + mark_equal(point 2 of T, point 0 of T, 3); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.pdf Binary files differnew file mode 100644 index 00000000000..a1ce79e1968 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/circumcircle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/clocks.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/clocks.mp new file mode 100644 index 00000000000..045c0f16824 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/clocks.mp @@ -0,0 +1,47 @@ +vardef clock_roman primary h = + if h<5: "" for i=1 upto h: & "I" endfor + elseif h<9: "V" for i=6 upto h: & "I" endfor + elseif h=9: "IX" + else: "X" for i=11 upto h: & "I" endfor + fi +enddef; + +path hand[]; +hand1 = origin .. (.257,1/50) .. (.377,1/60) & (.377,1/60) {up} .. (.40,3/50) .. (.60, 1/40) .. {right} (.75,0); +hand1 := (hand1 .. reverse hand1 reflectedabout(left,right) .. cycle) scaled 50; + +hand2 = origin .. (.60, 1/64) .. {right} (.925,0); +hand2 := (hand2 .. reverse hand2 reflectedabout(left,right) .. cycle) scaled 50; + +% hour of the day to degrees +vardef htod(expr hours) = 30*((15-hours) mod 12) enddef; +vardef mtod(expr minutes) = 6*((75-minutes) mod 60) enddef; + +vardef clock(expr hours, minutes) = image( + % face and outer ring + fill fullcircle scaled 100 withcolor 1/256(240, 240, 230); + draw fullcircle scaled 99 withcolor .8 white; + draw fullcircle scaled 100 withpen pencircle scaled 7/8; + % hour and minute marks + for t=0 step 6 until 359: + draw ((48,0)--(49,0)) rotated t; + endfor + for t=0 step 30 until 359: + draw ((47,0)--(49,0)) rotated t withpen pencircle scaled 7/8; + endfor + % numerals + for h=1 upto 12: + label( + if known roman_numerals_please: + clock_roman h infont "bchr8r" rotated ((12-h)*30) + else: + decimal h infont "bchr8r" + fi, (40,0) rotated htod(h)); + endfor + % hands rotated to the given time + filldraw hand1 rotated htod(hours+minutes/60) withpen pencircle scaled 7/8; + filldraw hand2 rotated mtod(minutes) withpen pencircle scaled 7/8; + % draw the center on top + fill fullcircle scaled 5; + fill fullcircle scaled 3 withcolor .4 white; +) enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.mp new file mode 100644 index 00000000000..8d8da6b507f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.mp @@ -0,0 +1,27 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +\mplibtextextlabel{enable} +vardef reuleaux(expr n, r) = + save a; numeric a; a = 90/n; + for t = 0 step 4a until 359: + (0, r) rotated t {left rotated (3a + t)} .. {left rotated (a + t)} + endfor cycle +enddef; +vardef median(expr p) = origin for i=1 upto length p: + point i of p / length p endfor enddef; +input colorbrewer-rgb +beginfig(1); + for n = 3 upto 7: + path p; p = reuleaux(n, 42) shifted (90n, 0); + pair m; m = point (n+1)/2 of p; + fill p withcolor if odd n: Oranges else: Blues fi 8 2; + % draw tensepath(p) withcolor Blues 8 6; + %draw p rotatedabout(median(p), 180/n) withcolor Blues 8 6; + draw p; + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.pdf Binary files differnew file mode 100644 index 00000000000..9c0606cfd3a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-antireuleaux-set.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.mp new file mode 100644 index 00000000000..793b4fac8ba --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.mp @@ -0,0 +1,19 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +vardef polygon_with_side(expr n, s) = + save a, b, r; numeric a, b, r; + a * n = 360; a + 2b = 180; r = s * sind(b) / sind(a); + for i = 0 upto n-1: (0, r) rotated (a * i) -- endfor cycle +enddef; +for n = 11 downto 3: + path p; p = polygon_with_side(n, 72); + fill p withcolor (n/32)[white, 3/4 if odd n: red else: blue fi]; + draw p; +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.pdf Binary files differnew file mode 100644 index 00000000000..c53cf71886f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-fixed-polygon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.mp new file mode 100644 index 00000000000..9abf287338d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.mp @@ -0,0 +1,66 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef median primary P = + (origin for i=1 upto length P: + point i of P endfor) / length P +enddef; + +primarydef p enlarged s = p shifted -median p scaled s shifted median p enddef; + +path u, c, s; +u = unitsquare shifted -(1/2, 1/2) scaled 72; +c = fullcircle scaled 72 shifted 108 right; +s = (superellipse(right, up, left, down, 0.8)) scaled 36 shifted 216 right; + +picture p[]; +p1 = image( +draw origin--left scaled 50 withcolor background; +ahangle := 30; numeric r, x; r = 9/16; x = -1; +forsuffixes $=u, c, s: + drawarrow subpath(r, r + length $) of $; + draw fullcircle scaled 2 shifted median $ withcolor .67 red; + for i=0 upto length $-1: + fill fullcircle scaled 2 shifted point i of $ withcolor .67 red; + label(decimal i, point i of ($ enlarged 1.15)); + endfor +endfor); + +p2 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + fill median $ -- subpath (1,2) of $ -- cycle withcolor .8[blue,white]; + draw median $ -- point 1 of $; + draw median $ -- point 2 of $; + draw $; +endfor +); + +p3 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + r := 1/5 length $; + fill median $ -- subpath (0,r) of $ -- cycle withcolor .8[red,white]; + draw median $ -- point 0 of $; + draw median $ -- point r of $; + draw $; + endfor +); + +p4 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + fill median $ -- subpath (-1,1) of $ -- cycle withcolor .8[black,white]; + draw median $ -- point -1 of $; + draw median $ -- point 1 of $; + draw $; + endfor +); + +beginfig(1); +for i=1 upto 4: draw p[i] shifted (0,-108i); endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.pdf Binary files differnew file mode 100644 index 00000000000..f99b1bbf2fb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-points.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.mp new file mode 100644 index 00000000000..14f9b287384 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.mp @@ -0,0 +1,18 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input archimedean-tools +beginfig(1); + path P[]; P3 = for i=0 upto 2: 6 up rotated 120i -- endfor cycle; + fill P3 withcolor 3/4 red; draw P3; + for n = 4 upto 23: + numeric m; m = floor(n / 2); + P[n] = poly n of subpath (m, m-1) of P[n-1]; + fill P[n] withcolor (n/32)[3/4 if odd n: red else: blue fi, white]; + draw P[n]; label(decimal n, median(P[n])); + endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.pdf Binary files differnew file mode 100644 index 00000000000..4034d6a3599 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-chain.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.mp new file mode 100644 index 00000000000..9943092ea80 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.mp @@ -0,0 +1,35 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef median primary P = + (origin for i=1 upto length P: + point i of P endfor) / length P +enddef; + +primarydef p enlarged s = p shifted -median p scaled s shifted median p enddef; + +vardef polygon(expr n, r) = + for i = 0 upto n - 1: (0, r) rotated (360 / n * i) -- endfor cycle +enddef; + +path u, c, s; +u = polygon(5, 36); +c = polygon(6, 36) shifted 108 right; +s = polygon(7, 36) shifted 216 right; + +beginfig(1); +draw origin--left scaled 50 withcolor background; +ahangle := 30; numeric r, x; r = 9/16; x = -1; +forsuffixes $=u, c, s: + drawarrow subpath(r, r + length $) of $; + draw fullcircle scaled 2 shifted median $ withcolor .67 red; + for i=0 upto length $-1: + fill fullcircle scaled 2 shifted point i of $ withcolor .67 red; + label(decimal i, point i of ($ enlarged 1.15)); + endfor +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.pdf Binary files differnew file mode 100644 index 00000000000..3c4a736834a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygon-tops.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.mp new file mode 100644 index 00000000000..22d4e42f978 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.mp @@ -0,0 +1,70 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef median primary P = + (origin for i=1 upto length P: + point i of P endfor) / length P +enddef; + +primarydef p enlarged s = p shifted -median p scaled s shifted median p enddef; + +vardef polygon(expr n, r) = + for i = 0 upto n - 1: (r, 0) rotated (360 / n * i) -- endfor cycle +enddef; + +path u, c, s; +u = polygon(5, 36); +c = polygon(6, 36) shifted 108 right; +s = polygon(7, 36) shifted 216 right; + +picture p[]; +p1 = image( +draw origin--left scaled 50 withcolor background; +ahangle := 30; numeric r, x; r = 9/16; x = -1; +forsuffixes $=u, c, s: + drawarrow subpath(r, r + length $) of $; + draw fullcircle scaled 2 shifted median $ withcolor .67 red; + for i=0 upto length $-1: + fill fullcircle scaled 2 shifted point i of $ withcolor .67 red; + label(decimal i, point i of ($ enlarged 1.15)); + endfor +endfor); + +p2 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + fill median $ -- subpath (1,2) of $ -- cycle withcolor .8[blue,white]; + draw median $ -- point 1 of $; + draw median $ -- point 2 of $; + draw $; +endfor +); + +p3 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + r := 1/5 length $; + fill median $ -- subpath (0,r) of $ -- cycle withcolor .8[red,white]; + draw median $ -- point 0 of $; + draw median $ -- point r of $; + draw $; + endfor +); + +p4 = image( +draw origin--left scaled 50 withcolor background; +forsuffixes $=u,c,s: + fill median $ -- subpath (-1,1) of $ -- cycle withcolor .8[black,white]; + draw median $ -- point -1 of $; + draw median $ -- point 1 of $; + draw $; + endfor +); + +beginfig(1); +for i=1 upto 4: draw p[i] shifted (0,-108i); endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.pdf Binary files differnew file mode 100644 index 00000000000..4e827ad6d9b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-polygons.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.mp new file mode 100644 index 00000000000..f4e69f3b51d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.mp @@ -0,0 +1,66 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef urp(expr n) = + save a; numeric a; a = 90/n; + for i=0 upto n-1: + 1/2 up rotated (a * 4i) {left rotated (a + a * 4i)} .. {left rotated (3a + a * 4i)} + endfor cycle +enddef; +vardef through@#(expr a, b) = save d; numeric d; d = abs(a-b); + (1+@#/d)[b, a] -- (1+@#/d)[a, b] enddef; +input colorbrewer-rgb +beginfig(1); + path p, c; p = urp(5) scaled 320; c = fullcircle scaled 320; + + pair A, B, C; + A = point 0 of p; + B = point 1 of p; + C = point 3 of p; + + drawoptions(withcolor 7/8); + draw c; + draw through 42(origin, A); + draw through 42(origin, B); + draw through 42(C, A); + draw through 42(C, B); + draw through 42(B, B shifted 64 up); + + forsuffixes $=origin, B: + draw (left--right) scaled 2 rotated 13 shifted $ shifted 42 up; + draw (left--right) scaled 2 rotated 13 shifted $ shifted 41 up; + endfor + ahangle := 30; + forsuffixes $=A, B: + drawarrow (reverse unitsquare scaled 5 -- 48 up) rotated angle ($ - C) shifted $; + endfor + + drawoptions(); + draw p withcolor Reds 8 7; + numeric a; a = 18; + label("$\alpha$", 32 dir 11/2 a shifted A); + label("$\alpha$", 32 dir 31/2 a shifted A); + label("$\alpha$", 32 dir 17/2 a shifted B); + label("$\alpha$", 32 dir 37/2 a shifted B); + label("$2\alpha$", 28 dir 14/2 a shifted C); + label("$3\alpha$", 24 dir 13/2 a shifted B); + label("$4\alpha$", 20 dir 7a); + + dotlabel.urt("$A$", A); + dotlabel.lrt("$B$", B); + dotlabel.lrt("$C$", C); + dotlabel.urt("$O$", origin); + + label.lft("$r$", 1/2 A); + +label.bot(btex \vbox{\hsize 4in \small\noindent +This proof only works for Reuleaux polygons with an odd number of sides, +because otherwise the point $C$ does not (quite) lie on the circle.\strut} etex, +point 1/2 of bbox currentpicture shifted 21 down); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.pdf Binary files differnew file mode 100644 index 00000000000..190c7b6b225 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-geometry.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.mp new file mode 100644 index 00000000000..4088ea84216 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.mp @@ -0,0 +1,31 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +\mplibtextextlabel{enable} +vardef reuleaux(expr n, r) = + save a; numeric a; a = 90/n; + for t = 0 step 4a until 359: + (0, r) rotated t {left rotated (a + t)} .. {left rotated (3a + t)} + endfor cycle +enddef; +vardef median(expr p) = origin for i=1 upto length p: + point i of p / length p endfor enddef; +input colorbrewer-rgb +beginfig(1); + for n = 3 upto 7: + path p; p = reuleaux(n, 42) shifted (90n, 0); + pair m; m = point (n+1)/2 of p; + fill p withcolor if odd n: Oranges else: Blues fi 8 2; + fill subpath (0, 1) of p -- m -- cycle + withcolor if odd n: Oranges else: Blues fi 8 3; + %draw fullcircle scaled 2 abs(point 0 of p - m) shifted m + % withpen pencircle scaled 2 withcolor 3/4; + %draw tensepath(p) withcolor Blues 8 6; + %draw p rotatedabout(median(p), 180/n) withcolor Blues 8 6; + draw p; + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.pdf Binary files differnew file mode 100644 index 00000000000..9863d3d1cf4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-reuleaux-set.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.mp new file mode 100644 index 00000000000..a3296e6af22 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.mp @@ -0,0 +1,28 @@ +\documentclass{standalone} +\usepackage{luamplib} +\def \id#1{\mathord{\hbox{\it #1\/}}} +\def \kw#1{{\hbox{\bf #1\thinspace}}} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +path unitse; unitse = superellipse(1/2 right, 1/2 up, 1/2 left, 1/2 down,.8); +path xx, yy; xx = (left -- right) scaled 144; yy = (down -- up) scaled 89; +path u, c, s; +u = unitsquare scaled 72; +c = fullcircle scaled 72; +s = unitse scaled 72; + +beginfig(1); +drawarrow xx withcolor .67 white; +drawarrow yy withcolor .67 white; +draw u; label.top("$\id{unitsquare}$", point 5/2 of u); +drawoptions(withcolor .67 red); +draw c; label("$\id{fullcircle}$", 3/4[point 2 of c, point 6 of c]); +drawoptions(withcolor .67 blue); +draw s; label.lrt("$\id{superellipse}()$", point 7 of s); +drawoptions(); +dotlabel.bot("$\scriptstyle (1,0)$", point 1 of u); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.pdf Binary files differnew file mode 100644 index 00000000000..7f3a42a63e8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-standards.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.mp new file mode 100644 index 00000000000..b39a9bbf92a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.mp @@ -0,0 +1,29 @@ +\documentclass{standalone} +\usepackage{dwmpcode} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\def \kw#1{\mathop{\hbox{\bf #1\thinspace}}} +\def \id#1{\mathord{\hbox{\it #1\/}}} +\begin{document} +\begin{mplibcode} +beginfig(1); +path xx, yy; xx = left scaled 8 -- right scaled 89; yy = down scaled 8 -- up scaled 55; +path t; t = origin -- (55,0) -- (55,34) -- cycle; +picture p[]; +p1 = image( +ahangle := 30; +drawarrow xx withcolor .67 white; +drawarrow yy withcolor .67 white; +fill t withcolor .8[blue,white]); + +p2 = image( +draw p1; +draw t; +dotlabel.rt(btex $(55,34)$ etex scaled 0.8, point 2 of t); +) shifted 144 right; +draw p1; draw p2; +label.bot(btex \mpl{fill t withcolor 0.8[blue,white];} etex scaled 0.8, point 1/2 of bbox p1); +label.bot(btex \mpl{draw t;} etex scaled 0.8, point 1/2 of bbox p2); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.pdf Binary files differnew file mode 100644 index 00000000000..e42164b4b77 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/closed-triangles.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.mp new file mode 100644 index 00000000000..d7127912309 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.mp @@ -0,0 +1,21 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + color brg, pbr; + brg = 1/256 (1, 66, 37); + pbr = 1/256 (223, 52, 57); + N = 5; n = 0; + for y=1 upto N: + for x=1 upto N: + fill fullcircle scaled 16 shifted 20(x,y) + withpen pencircle scaled 2 + withcolor (n/N/N)[pbr, brg]; + label(decimal incr n infont "phvr8r", 20(x,y)) + withcolor white; + endfor + endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.pdf Binary files differnew file mode 100644 index 00000000000..9f1803d89c3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-blend-toy.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.mp new file mode 100644 index 00000000000..057e923eddf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.mp @@ -0,0 +1,42 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input color-hsv-macro +beginfig(2); + defaultfont := "phvr8r"; + defaultscale := 3/4; + path h,d,b; numeric n; + h = ((-2,0)--(0,0)--(-1,3)--(-2,3)--cycle) scaled 60; + d = h rotated 180; + n = 10; + b = subpath (0,1) of h -- point 1+1/n of d -- (xpart point 0 of h, ypart point 1+1/n of d) -- cycle; + fill b withcolor hsv_color(123, 1/8, 7/8); + draw subpath (2.13,4) of b; + + for i=1 upto n: + fill point 4-(i-1)/n of h -- point 1+(i-1)/n of h + -- point 1+i/n of h -- point 4-i/n of h -- cycle + withcolor hsv_color(42, 1/4 + 3/4 * i/n, 1 - i/3n); + fill point 4-(i-1)/n of d -- point 1+(i-1)/n of d + -- point 1+i/n of d -- point 4-i/n of d -- cycle + withcolor hsv_color(200, i/n - 1/n, 1 - i/3n); + endfor + string s; + for i=1 upto n-1: + draw point 4-i/n of h -- point 1+i/n of h; + draw point 4-i/n of d -- point 1+i/n of d; + s := decimal if i < 4: (i**2+1) else: (10 + (i-3)*10) fi & "00"; + label.rt(s, point 1+i/n of h); + label.lft(s, point 1+i/n of d); + endfor + label.rt("Metres", point 2 of h); + label.lft("Metres", point 2 of d); + label.lft("Hypsometric tints" infont defaultfont scaled defaultscale rotated 90, point 7/2 of h); + label.rt("Bathymetric tints" infont defaultfont scaled defaultscale rotated -90, point 7/2 of d); + label.lft("sea level", point 0 of h); + label("areas below sea level", center b); + draw h; draw d; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.pdf Binary files differnew file mode 100644 index 00000000000..8f03ce2b73d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-bathymetric.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.mp new file mode 100644 index 00000000000..392853e7bc2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.mp @@ -0,0 +1,28 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input color-hsv-macro +beginfig(1); + defaultfont := "phvr8r"; + numeric s[], v[]; + s0 = 1/2; v0 = 7/8; + s1 = 7/8; v1 = 7/8; + s2 = 7/8; v2 = 1/2; + for y=0 upto 2: + for h=0 step 15 until 360: + fill fullcircle scaled 24 shifted (h, -32y) withcolor hsv_color(h, s[y], v[y]); + draw fullcircle scaled 24 shifted (h, -32y) withcolor white; + if y=1: label(decimal h infont defaultfont scaled 1/2, (h,-16)); fi + endfor + endfor + + label.urt("Less saturation", (-20,12)); + label.lrt("Lower value", (-20,-76)); + + drawarrow (-15, -12) -- (-15,12); + drawarrow (-15, -52) -- (-15,-76); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.pdf Binary files differnew file mode 100644 index 00000000000..a2a2d68a083 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-gamut.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-macro.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-macro.mp new file mode 100644 index 00000000000..1ec265a0556 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/color-hsv-macro.mp @@ -0,0 +1,15 @@ +vardef hsv_color(expr h,s,v) = + % following wikipedia article on "HSL and HSV" + save chroma, hh, x, m; + chroma = v*s; + hh = h/60; + x = chroma * (1-abs(hh mod 2 - 1)); + m = v - chroma; + if hh < 1: (chroma,x,0)+(m,m,m) + elseif hh < 2: (x,chroma,0)+(m,m,m) + elseif hh < 3: (0,chroma,x)+(m,m,m) + elseif hh < 4: (0,x,chroma)+(m,m,m) + elseif hh < 5: (x,0,chroma)+(m,m,m) + else: (chroma,0,x)+(m,m,m) + fi +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/compass-rose.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/compass-rose.mp new file mode 100644 index 00000000000..26952e26e2f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/compass-rose.mp @@ -0,0 +1,35 @@ +vardef compass_rose(expr shade, highlight) = + save currentpicture, s; + picture currentpicture; currentpicture := nullpicture; + drawoptions(withcolor shade); + draw fullcircle scaled 144 withpen pencircle scaled 2; + draw fullcircle scaled 138; + draw thelabel("NW" infont defaultfont scaled 3/4, 64 up) rotated +45; + draw thelabel("NE" infont defaultfont scaled 3/4, 64 up) rotated -45; + draw thelabel("SE" infont defaultfont scaled 3/4, 64 down) rotated +45; + draw thelabel("SW" infont defaultfont scaled 3/4, 64 down) rotated -45; + draw fullcircle scaled 120; + draw fullcircle scaled 118; + draw fullcircle scaled 108; + draw fullcircle scaled 106; + for t=0 step 15 until 350: draw ((53,0) -- (60,0)) rotated t; endfor + for t=0 step 45 until 350: draw ((69,0) -- (80,0)) rotated t; endfor + path s; s = 8 right -- 60 up -- 8 left -- cycle; + for t=0 upto 3: filldraw s rotated (45 + 90t); endfor + s := s scaled 1.414; + for t=0 upto 3: + s := s rotated 90t; + fill s withcolor background; + fill subpath (-1/2, 1) of s -- cycle if t=0: withcolor highlight fi; + draw s; + endfor + fill fullcircle scaled 28 withcolor background; + draw fullcircle scaled 28; + fill fullcircle scaled dotlabeldiam; + label.top("N" infont "cmbx12", 84 up); + label.bot("S" infont "cmbx12", 84 down); + label.rt("E" infont "cmbx12", 84 right); + label.lft("W" infont "cmbx12", 84 left); + drawoptions(); + currentpicture +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.mp new file mode 100644 index 00000000000..3b187fad261 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.mp @@ -0,0 +1,48 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +picture axes, dot, opendot, P[]; +numeric u; u = 42; +interim ahangle := 30; +axes = image( + path xx, yy; xx = (left--right) scaled 1.2 u; yy = xx rotated 90; + draw fullcircle scaled 2u; + drawarrow xx; label.rt("$\Re$", point 1 of xx); + drawarrow yy; label.top("$\Im$", point 1 of yy); +); +dot = image(fill fullcircle scaled dotlabeldiam); +opendot = image(draw dot; unfill fullcircle scaled 3/4 dotlabeldiam); +z1 = 0.7 dir 76; +z2 = 1.5 dir 60; +z3 = 1 dir 42; + +vardef connect(expr a, b, shade) = + path c; c = (a -- origin -- b) scaled u; + drawarrow c cutafter fullcircle scaled 5 shifted point 2 of c withcolor shade; + draw dot shifted point 0 of c; draw opendot shifted point 2 of c; +enddef; + +vardef zinverse(expr z) = 1/abs z * dir - angle z enddef; +vardef zsqrt(expr z) = if abs z > 0: sqrt(abs z) * dir 1/2 angle fi z enddef; + +input colorbrewer-rgb +P1 = image( +draw axes withcolor 3/4; +label.lrt("\small\texttt{zinverse()}", ulcorner axes shifted 10 left); +for i=1 upto 3: connect(z[i], zinverse(z[i]), SetTwo[7][2+i]); endfor +); +P2 = image( +draw axes withcolor 3/4; +label.lrt("\small\texttt{zsqrt()}", ulcorner axes); +for i=1 upto 3: connect(z[i], zsqrt(z[i]), SetTwo[7][2+i]); endfor +); +beginfig(1); + interim labeloffset := 12; + label.lft(P1, origin); + label.rt(P2, origin); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.pdf Binary files differnew file mode 100644 index 00000000000..b1dae071348 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-inverse-and-sqrt.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.mp new file mode 100644 index 00000000000..a1510bc64be --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.mp @@ -0,0 +1,32 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric u; u = 1cm; + z1 = 2 dir 15; z2 = 1.2 dir 60; + z3 = z1+z2; z4 = z1 zscaled z2; z5 = (x1,-y1); + drawoptions(withcolor 2/3 white); + draw (1/2 left -- 3 right) scaled u ; + draw (1/2 down -- 3 up ) scaled u ; + draw subpath (0,3) of fullcircle scaled 2u rotated -22.5; + drawoptions(); + dotlabel.lrt (btex $\scriptstyle 1$ etex, (u,0)); + dotlabel.ulft(btex $\scriptstyle i$ etex, (0,u)); + interim ahangle := 30; + forsuffixes @=1,2,3,4,5: + x@ := x@ * u; y@ := y@ * u; + drawarrow origin -- z@ + cutafter fullcircle scaled 5 shifted z@ + withcolor 2/3 if @ < 3: blue else: red fi; + endfor + fill fullcircle scaled dotlabeldiam; + dotlabel.rt (btex $A$ etex, z1); + dotlabel.urt(btex $B$ etex, z2); + dotlabel.top(btex $A+B$ etex, z3); + dotlabel.top(btex $A \times B$ etex, z4); + dotlabel.rt (btex $\bar{A}$ etex, z5); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.pdf Binary files differnew file mode 100644 index 00000000000..11370d7ce71 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/complex-operators.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.mp new file mode 100644 index 00000000000..41d94bae343 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.mp @@ -0,0 +1,22 @@ +\documentclass[margin=1mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +pair a, b, c, d, e, f, g; +a = origin; b = 180 right; c = 90 up; +d = 2/5[b, c]; e = 4/5[b,c]; f = 1/2[e, a]; g = 1/2[a, b]; + +fill a--b--c--cycle withcolor 15/16[blue, white]; +draw a--b--c--a--e--g--f; draw g--d; +dotlabel.llft("$a$", a); +dotlabel.lrt ("$b$", b); +dotlabel.ulft("$c$", c); +dotlabel.urt ("$d$", d); +dotlabel.urt ("$e$", e); +dotlabel.ulft("$f$", f); +dotlabel.bot ("$g$", g); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.pdf Binary files differnew file mode 100644 index 00000000000..4ca336f3672 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/conway.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.mp new file mode 100644 index 00000000000..cf4e3ad416d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.mp @@ -0,0 +1,36 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{fontspec} +\setmainfont{TeX Gyre Pagella} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + picture p, q; + p = thelabel.rt("\fontsize{48}{48}\selectfont plain", origin); + q = thelabel.rt("\fontsize{48}{48}\selectfont rotated", origin) rotated 30; + + picture P[]; + numeric i; i = 0; + forsuffixes @=p,q: + P[incr i] = image( + fill bbox @ withcolor 15/16[red, white]; + draw llcorner @ -- lrcorner @ -- urcorner @ -- ulcorner @ -- cycle + withcolor 7/8[red, white]; + draw llcorner @ -- urcorner @ withcolor 7/8[red, white]; + draw ulcorner @ -- lrcorner @ withcolor 7/8[red, white]; + draw @ withcolor 3/4; + dotlabel.lft("\texttt{llcorner}", llcorner @); + dotlabel.rt ("\texttt{lrcorner}", lrcorner @); + dotlabel.rt ("\texttt{urcorner}", urcorner @); + dotlabel.lft("\texttt{ulcorner}", ulcorner @); + draw fullcircle scaled 3 shifted center @; + ); + endfor + labeloffset := 20; + label.top(P1, origin); + label.bot(P2, origin); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.pdf Binary files differnew file mode 100644 index 00000000000..2588267ec8c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/corners.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.mp new file mode 100644 index 00000000000..e6893d03bae --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.mp @@ -0,0 +1,71 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path xx, yy, base; + +pair A, M, N, O, P, Q, R; +numeric t; t = 0.6; + +base = fullcircle scaled 500; +xx = 12 left -- point 0 of base + 12 right; +yy = 12 down -- point 2 of base + 12 up; + +O = origin; +A = point 0 of base; +R = (0, ypart point t of base); +Q = (xpart point t of base, 0); +M = 1/2[R, Q]; +N = 1/2[M, point t of base]; + +P = whatever[R, Q]; P - point t of base = whatever * (R-Q) rotated 90; + +path qa; qa = point 0 of base {left} + for i=1/4 step 1/4 until 2: + hide(pair a, b, p; + a = (xpart point i of base, 0); + b = (0, ypart point i of base); + p = whatever[a, b]; p - point i of base = whatever * (a - b) rotated 90; + ) .. p endfor; + +draw qa withcolor 3/4[1/2 red, white]; + +draw R -- point t of base -- O withcolor 3/4; +draw N -- P -- point t of base -- Q withcolor 3/4; +draw fullcircle scaled abs(M - point t of base) + shifted N withcolor 3/4; +draw R -- Q; + +draw subpath (-1, 3) of base + cutbefore xx shifted 1/2 point 0 of yy + cutafter yy shifted 1/2 point 0 of xx + withcolor 3/4[2/3 blue, white]; + +ahangle := 30; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); + +labeloffset := 5; +dotlabel.bot("$S$", A); +dotlabel.llft("$O$", O); +dotlabel.lft("$B$", R); +dotlabel.bot("$A$", Q); +dotlabel.bot("$P$", P); +dotlabel.bot("$M$", M); +dotlabel.top("$N$", N); +dotlabel.urt("$T$", point t of base); + +draw P withpen pencircle scaled 2 withcolor 3/4[1/2 red, white]; + +drawoptions(withcolor 5/8[1/2 blue, white]); +label("$\scriptstyle \theta$", 16 dir 1/2 angle point t of base shifted O); +label("$\scriptstyle 2\theta$", 12 dir 0 shifted M); +label("$\scriptstyle 4\theta$", 8 dir angle (Q-R) shifted N); +drawoptions(); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.pdf Binary files differnew file mode 100644 index 00000000000..da5f00a8e55 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-construction.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.mp new file mode 100644 index 00000000000..340144f721d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.mp @@ -0,0 +1,19 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + numeric a; a = 144; + for n=1 upto 7: + path p; p = a * right for t=6 step 6 until 90: + .. a * (cosd(t) ** n, sind(t) ** n) + endfor; + p := for i=0 upto 3: p rotated 90i & endfor cycle; + fill p withcolor Oranges[9][n]; draw p; + endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.pdf Binary files differnew file mode 100644 index 00000000000..18eb3b64d9e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid-family.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.mp new file mode 100644 index 00000000000..b5722052172 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.mp @@ -0,0 +1,21 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path base; base = fullcircle scaled 300; + path astroid; astroid = + for t=0 step 1/16 until 8: + hide(pair a, b, p; + a = (xpart point t of base, 0); + b = (0, ypart point t of base); + draw a -- b withpen pencircle scaled 1/4 withcolor 3/4; + p = whatever[a, b]; p - point t of base = whatever * (a - b) rotated 90; + ) p -- + endfor cycle; + draw astroid withcolor 2/3 red; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.pdf Binary files differnew file mode 100644 index 00000000000..550b18858a8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-astroid.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.mp new file mode 100644 index 00000000000..4336fa7ab73 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.mp @@ -0,0 +1,54 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + numeric u; u = 144; + + path base; base = fullcircle rotated 180 scaled u; + + path cardioid; + cardioid = for t = 0 step 1/4 until length base: + point 0 of base reflectedabout(precontrol t of base, postcontrol t of base) .. + endfor cycle; + + numeric t; t = 5.4; + pair A, M, P, P', Q, Q', R; + A = point 0 of base; + Q = point t of base; + Q' = point t-4 of base; + P = A reflectedabout(precontrol t of base, postcontrol t of base); + P' = A reflectedabout(precontrol t-4 of base, postcontrol t-4 of base); + M = 1/2[P, P']; + R = whatever[P, Q] = whatever[P', Q']; + + %draw Q' -- R -- Q withcolor 3/4; + draw 3[postcontrol t of base, precontrol t of base] + -- 5[precontrol t of base, postcontrol t of base] withcolor 3/4; + %draw 5[postcontrol t-4 of base, precontrol t-4 of base] + % -- 3[precontrol t-4 of base, postcontrol t-4 of base] withcolor 3/4; + + draw fullcircle scaled 2 abs (Q-A) shifted Q withcolor 7/8; + + % + %draw P' -- Q' -- Q -- P -- cycle; + draw A -- Q -- P -- cycle; + + draw base withcolor 2/3 blue; + draw origin withpen pencircle scaled dotlabeldiam withcolor 2/3 blue; + draw cardioid withcolor 1/4[white, 1/2 red]; + + dotlabel.ulft("$A$", A); + %dotlabel.ulft("$M$", M); + dotlabel.top ("$P$", P); + %dotlabel.llft("$P'$", P'); + dotlabel.urt ("$Q$", Q); + %dotlabel.bot ("$Q'$", Q'); + %dotlabel.lrt ("$R$", R); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.pdf Binary files differnew file mode 100644 index 00000000000..cab8862bc79 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-construction.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.mp new file mode 100644 index 00000000000..30a69897f39 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.mp @@ -0,0 +1,49 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + numeric a; 2a = 144; + + path base; base = fullcircle rotated 180 scaled 2a shifted (a, 0); + path c[]; numeric n; n = -1; + numeric s; s = 1/4; + for t = 0 step s until length base: + c[incr n] = fullcircle + scaled 2 abs (point t of base - point 0 of base) + shifted point t of base; + draw c[n] withpen pencircle scaled 1/4 withcolor 3/4; + endfor + + path cardoid; + cardoid = for t = 0 step s until length base: + point 0 of base reflectedabout(precontrol t of base, postcontrol t of base) .. + endfor cycle; + + path polar; + polar = for t=0 upto 360: 2a * (1 + cosd(t)) * dir t .. endfor cycle; + + path rolling, aux; + aux = base rotatedabout(point 0 of base, 180); + rolling = for t = 0 step 1/4 until length base: + point t of aux rotatedabout(center base, 45t) .. + endfor cycle; + + % draw rolling withpen pencircle scaled 2 withcolor 3/4[blue, white]; + % draw polar withpen pencircle scaled 5/4 withcolor 3/4[green, white]; + + draw base withcolor 2/3 blue; + draw cardoid withcolor 2/3 red; + + % for i=1 upto n-1: + % draw center c[i] withpen pencircle scaled 3/2; + % endfor + + dotlabel.urt("$A$", point 0 of base); + dotlabel.urt("$Q$", point 5.4 of base); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.pdf Binary files differnew file mode 100644 index 00000000000..3deefb36198 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-cardioid-simple.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.mp new file mode 100644 index 00000000000..a94e38463f2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.mp @@ -0,0 +1,56 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +secondarydef a through b = + begingroup; save d; numeric d; d = abs(a-b); (1+12/d)[b,a]--(1+12/d)[a,b] endgroup +enddef; +beginfig(1); +path ellipse; ellipse = fullcircle scaled 300 yscaled 5/8 rotated 13; +z0 = 1/2[point 4 of ellipse, point 0 of ellipse]; +numeric a, b, e; +2a = abs (point 4 of ellipse - point 0 of ellipse); +2b = abs (point 6 of ellipse - point 2 of ellipse); +e = 1 +-+ b/a; +z1 = e[z0, point 0 of ellipse]; +z2 = e[z0, point 4 of ellipse]; +z3 = 240 dir 25; +path pp, qq; +pp = fullcircle scaled 2 abs (z1 - z3) shifted z3; +qq = fullcircle scaled 4a shifted z2; +z4 = pp intersectionpoint qq; +z5 = reverse pp intersectionpoint qq; +numeric t, u; +(t, whatever) = ellipse intersectiontimes (z2 -- z4); +(u, whatever) = ellipse intersectiontimes (z2 -- z5); + +vardef f(expr x) = + angle (z3 - point x of ellipse) + 90 > angle direction x of ellipse +enddef; +drawarrow z3 -- point solve f(0, t) of ellipse withcolor 2/3 blue; + +drawoptions(dashed evenly withcolor 7/8); +draw point 0 of ellipse through point 4 of ellipse; +draw point 2 of ellipse through point 6 of ellipse; +drawoptions(withcolor 3/4); +draw z4 -- z1 -- z5; +draw z2 -- z4 -- z3 -- z5 -- cycle; +draw point t of ellipse -- z1 -- point u of ellipse; +drawoptions(); +draw point t of ellipse -- z3 -- point u of ellipse withcolor 2/3 red; +dotlabel.llft("$F_1$", z1); dotlabel.llft("$F_2$", z2); +dotlabel.urt("$A$", z3); +dotlabel.ulft("$P$", z4); dotlabel.lrt ("$Q$", z5); +dotlabel.ulft("$T$", point t of ellipse); +dotlabel.lrt("$T'$", point u of ellipse); +draw ellipse; +picture P; P = currentpicture; currentpicture := nullpicture; +draw pp dashed withdots scaled 1/2; +draw qq dashed withdots scaled 1/2; +bboxmargin := 24; clip currentpicture to bbox P; +draw P; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.pdf Binary files differnew file mode 100644 index 00000000000..7cb7034eadf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse-tangents.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.mp new file mode 100644 index 00000000000..f08f6ee2046 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.mp @@ -0,0 +1,49 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +secondarydef a through b = + begingroup; save d; numeric d; d = abs(a-b); (1+12/d)[b,a] -- (1+12/d)[a,b] endgroup +enddef; +beginfig(1); + path ellipse; ellipse = fullcircle scaled 300 yscaled 5/8 rotated 13; + numeric a, b, e; + 2a = abs (point 4 of ellipse - point 0 of ellipse); + 2b = abs (point 6 of ellipse - point 2 of ellipse); + e = 1 +-+ b/a; + + z0 = 1/2[point 0 of ellipse, point 4 of ellipse]; + z1 = e[z0, point 0 of ellipse]; + z2 = e[z0, point 4 of ellipse]; + + drawoptions(withcolor 3/4); + draw point 0 of ellipse through point 4 of ellipse; + draw point 2 of ellipse through point 6 of ellipse; + drawoptions(withcolor 1/2); + label.top("$a$", 1/2[z0, point 0 of ellipse]); + label.bot("$ae$", 1/2[z0, z1]); + label.rt("$b$", 1/2[z0, point 2 of ellipse]); + drawoptions(); + + numeric t; t = 1.732; + draw z1 -- point t of ellipse -- z2; + drawoptions(withcolor 1/2); + draw (left--right) scaled 21 + rotated angle direction t of ellipse + shifted point t of ellipse; + draw (1/2 down--up) scaled 21 + rotated angle direction t of ellipse + shifted point t of ellipse; + drawoptions(); + + draw ellipse withcolor 3/4 red; + + dotlabel.urt("$T$", point t of ellipse); + dotlabel.lrt("$F_1$", z1); + dotlabel.lrt("$F_2$", z2); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.pdf Binary files differnew file mode 100644 index 00000000000..0da741f270f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-ellipse.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.mp new file mode 100644 index 00000000000..f8ea6ef2635 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.mp @@ -0,0 +1,54 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + pair O; O = origin; + path c; c = fullcircle scaled 288; + pair S; S = point 0 of c shifted 42 right; + path hyperbola, last; + + numeric t; + (t, whatever) = c intersectiontimes fullcircle scaled abs(O-S) shifted 1/2[O,S]; + + numeric s; s = 1/16; + for t=-t + 6s step s until t - 5s: + path ray; + ray = (origin -- unitvector(S - point t of c)) scaled 200 + rotated if t < 0: - fi 90 shifted point t of c; + draw S -- ray withcolor 7/8; + if known last: + pair p; + p = whatever[point 0 of ray, point 1 of ray] + = whatever[point 0 of last, point 1 of last]; + hyperbola := if known hyperbola: hyperbola .. fi p; + fi + last := ray; + endfor + + + drawoptions(withcolor 1/2); + drawdblarrow 2[O, point t of c] -- O -- 2[O, point -t of c]; + draw O -- 1.2[O, S]; + + drawoptions(withcolor 3/4[blue, white]); + draw subpath (-1.4, 1.4) of c; + draw 1.4[S, point t of c] -- S -- 1.4[S, point -t of c]; + drawoptions(); + + draw hyperbola withcolor 3/4[red, white]; + for t=0 upto length hyperbola: + draw point t of hyperbola withpen pencircle scaled 3/2 withcolor red; + endfor + + + dotlabel.lrt("$S$", S); + dotlabel.llft("$A$", point 0 of c); + dotlabel.lft("$O$", origin); + +endfig; +\end{mplibcode}\llap{\texttt{\tiny\jobname}\quad} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.pdf Binary files differnew file mode 100644 index 00000000000..d08764066be --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-construction.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.mp new file mode 100644 index 00000000000..d13ae0c09fa --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.mp @@ -0,0 +1,82 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric alpha; alpha = 34; + transform t; + origin transformed t = origin; + right transformed t = dir -alpha; + up transformed t = dir alpha; + + path xx, yy; + xx = (origin--right) scaled 144; + yy = (origin--up) scaled 144; + + numeric a, s; s = 1/64; a = 3/2; + path hh; + for x = 8 * a * s step s until 8/a: + hh := if known hh: hh ... fi (a * x, a / x); + endfor; + hh := hh scaled 16; + path C; C = fullcircle scaled 2a scaled sqrt(2) scaled 16; + pair F; F = (xpart point 0 of C, ypart point 2 of C); + + interim ahangle := 30; + picture P[]; + P1 = image( + draw point 0 of C -- F -- point 2 of C withcolor 3/4[blue, white]; + draw subpath (-1/2, 5/2) of C withcolor 3/4[blue, white]; + drawarrow xx withcolor 1/2; + drawarrow yy withcolor 1/2; + draw hh withcolor 2/3 red; dotlabel.urt("$S$", F); + ); + P2 = image( + hh := hh transformed t; + C := fullcircle scaled 2 abs(point directiontime down of hh of hh); + F := F rotated -45; + (p, whatever) = C intersectiontimes (fullcircle scaled abs(F) shifted 1/2 F); + draw point p of C -- F -- point -p of C withcolor 3/4[blue, white]; + draw subpath (-alpha/30, alpha/30) of C withcolor 3/4[blue, white]; + drawarrow xx transformed t withcolor 1/2; + drawarrow yy transformed t withcolor 1/2; + draw hh withcolor 2/3 red; + dotlabel.urt("$S$", F); + ); + + label.lft(P1, 10 left); + label.rt(P2, 10 right); + + + + %path C; + %C = fullcircle scaled 4 cosd(alpha) scaled 32a ; + %draw C withcolor 1/2; + + %pair S; + %S = whatever[precontrol +alpha/45 of C, postcontrol +alpha/45 of C] + % = whatever[precontrol -alpha/45 of C, postcontrol -alpha/45 of C]; + %draw (64a * right) withpen pencircle scaled 3 withcolor 3/4[blue, white]; + %draw S withpen pencircle scaled 3/2 withcolor red; + + %draw hh withcolor 2/3 red; + %%draw hh rotated 180 withcolor 2/3 red; + + %% path t; + %% t = point 4 of hh -- point 80 of hh -- point 400 of hh -- cycle; + + %% pair a, b, c; + %% a = whatever[point 0 of t, point 1 of t]; point 2 of t - a = whatever * (point 0 of t-point 1 of t) rotated 90; + %% b = whatever[point 2 of t, point 1 of t]; point 0 of t - b = whatever * (point 2 of t-point 1 of t) rotated 90; + + %% draw t; c = whatever[point 2 of t, a] = whatever[point 0 of t, b]; + + %% draw c withpen pencircle scaled 3; + + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.pdf Binary files differnew file mode 100644 index 00000000000..2129104b889 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-hyperbola-function.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.mp new file mode 100644 index 00000000000..6066360a2a6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.mp @@ -0,0 +1,36 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path base; +base = for t=0 upto 11: 42 up rotated -30t .. endfor cycle; + +path limacon; limacon = for t=0 upto length base - 1: + 42 dir angle point 2t of base + shifted point t of base .. +endfor cycle; + +draw base withcolor 2/3 blue; + +for i=1 upto 9: + draw point i/10 of base -- point i/10 of limacon + withpen pencircle scaled 1/4 + withcolor 7/8; +endfor +for i=1 step 1 until 12: + draw center base -- point i of base -- point i of limacon + withpen pencircle scaled 1/4 + withcolor 3/4; + draw point i of base withpen pencircle scaled 2; + %draw point i of limacon withpen pencircle scaled 1; +endfor +draw limacon withcolor 2/3 red; + +draw origin withpen pencircle scaled 2; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.pdf Binary files differnew file mode 100644 index 00000000000..22d08a83bcd --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-durer.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.mp new file mode 100644 index 00000000000..9647c805a43 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.mp @@ -0,0 +1,39 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + numeric a; 2a = 144; + + path base; base = fullcircle rotated 180 scaled 2a shifted (2a, 0); + path c[]; numeric n; n = -1; + numeric s; s = 1/4; + pair A; A = 2[center base, point 0 of base]; + for t = 0 step s until length base: + c[incr n] = fullcircle + scaled 2 abs (point t of base - A) + shifted point t of base; + draw c[n] withpen pencircle scaled 1/4 withcolor 3/4; + endfor + + path limacon; + limacon = for t = 0 step s until length base: + A reflectedabout(precontrol t of base, postcontrol t of base) .. + endfor cycle; + + % path polar; + % polar = for t=0 upto 359: 2a * (1 + 2 cosd(t)) * dir t .. endfor cycle; + % draw polar withpen pencircle scaled 5/4 withcolor 3/4[green, white]; + + draw base withcolor 2/3 blue; draw center base withpen pencircle scaled 2 withcolor 2/3 blue; + draw limacon withcolor 2/3 red; + + dotlabel.lft("$A$", A); + dotlabel.urt("$Q$", point 5.4 of base); + dotlabel.ulft("$P$", A reflectedabout(precontrol 5.4 of base, postcontrol 5.4 of base)); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.pdf Binary files differnew file mode 100644 index 00000000000..8ceb70b5207 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-limacon-simple.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.mp new file mode 100644 index 00000000000..52f3f8c3cc4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.mp @@ -0,0 +1,77 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\def\kw#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textbf{#1}}\else\hbox{\bf#1\/}\fi\endgroup} +\def\op#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textrm{#1}}\else\hbox{\rm#1\/}\fi\endgroup} +\def\id#1{\begingroup\def\_{\kern.04em + \vbox{\hrule width.3em height .6pt}\kern.08em}% +\ifmmode\mathop{\textit{#1}}\else\hbox{\it#1\/}\fi\endgroup} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +% A--B = directrix, S = focus +vardef parabola(expr A, B, S) = + save m, q, n, parabola; + pair n; + n = whatever[A, B]; + n - S = whatever * (A-B) rotated 90; + path parabola; + for t=0 step 1/64 until 1: + pair m, q; + m = 1/2[S, t[A, B]]; + q = whatever[S, n]; q - m = whatever * (S - m) rotated 90; + parabola := if known parabola: parabola -- fi q reflectedabout(S, m); + endfor + parabola +enddef; +input colorbrewer-rgb +beginfig(1); + + numeric i; i = 16; + pair a, b, s; a = 160 up rotated 5; b = 160 down rotated 5; s = 60 * right; + draw a--b; + + path ff; ff = (-1, 1){1, -2} .. (-1/2, 1/4){1, -1} .. (0, 0){right} .. (1/2, 1/4){1, 1} .. (1, 1){1, 2}; + + path p; p = parabola(a, b, s); + pair tab; tab = whatever[a, b]; point i of p - tab = whatever * (a-b) rotated 90; + pair q; q = point i of p reflectedabout(s, tab); + pair n; n = whatever[a,b] = whatever[q, s]; + pair o; o = 1/2[n, s]; + + % draw ff scaled 4 abs(s-o) + % rotated angle (b-a) + % shifted o + % withpen pencircle scaled 2 withcolor 7/8[red, white]; + + interim ahangle := 24; + drawarrow (b--a) shifted (o-n) withcolor 3/4; + drawarrow (1/2[a, n] --b) rotatedabout(n, 90) withcolor 3/4; + + draw tab -- point i of p -- q -- tab -- s withcolor 3/4; + + drawarrow s -- point i of p + -- s reflectedabout(precontrol i of p rotatedabout(point i of p, 90), + postcontrol i of p rotatedabout(point i of p, 90)) + withcolor Blues 8 4; + + draw p withcolor Blues 8 6; + dotlabel.lrt("$S$", s); + dotlabel.urt("$A$", a); + dotlabel.lrt("$B$", b); + dotlabel.ulft("\kw{point} $i$ \kw{of} $p$", point i of p); + interim dotlabeldiam := 2; + dotlabel.bot("$\scriptstyle q$", q); + dotlabel.llft("$\scriptstyle n$", n); + dotlabel.llft("$\scriptstyle o$", o); + dotlabel.lft("$\scriptstyle m\:$", 1/2[tab, s]); + dotlabel.lft("$\scriptstyle t[A, B]$", tab); + +endfig; +\end{mplibcode}\llap{\tiny\texttt{\jobname}} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.pdf Binary files differnew file mode 100644 index 00000000000..ab701828034 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola-directrix.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.mp new file mode 100644 index 00000000000..98c166560ba --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.mp @@ -0,0 +1,41 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + pair O, S; O = origin; S = 66 right; + path parabola, last; + for q = -144 step 8 until 144: + pair Q; Q = (0, q); + path ray; + ray = (origin -- unitvector(S - Q)) scaled 300 + rotated if q < 0: - fi 90 shifted Q; + draw S -- ray withcolor 7/8; + if known last: + pair t; + t = whatever[point 0 of ray, point 1 of ray] + = whatever[point 0 of last, point 1 of last]; + parabola := if known parabola: parabola .. fi t; + fi + last := ray; + endfor + + draw parabola withcolor 3/4[red, white]; + for t=0 upto length parabola: + draw point t of parabola withpen pencircle scaled 3/2 withcolor red; + endfor + draw (up--down) scaled 300; + + dotlabel.lft("$A$", O); + dotlabel.rt("$S$", S); + + % vardef signum(expr x) = if x=0: 1 else: abs(x) / x fi enddef; + % path cart; + % cart = subpath (1, infinity) of (origin for x=-304 step 8 until 304: + % .. (x, 16 sqrt abs(x)) scaled signum(x) endfor); + + % drawarrow cart withcolor 1/3 green; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.pdf Binary files differnew file mode 100644 index 00000000000..2889b2a82be --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-parabola.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.mp new file mode 100644 index 00000000000..ba9b37122c4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.mp @@ -0,0 +1,16 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\mplibnumbersystem{decimal} +\begin{mplibcode} +beginfig(1); + path S; S = origin for t=1 upto 360: .. 1/12 t * dir 8t endfor; + drawarrow S; + input rope + draw rope S shifted 64 right; + z0 = urcorner currentpicture - llcorner currentpicture; + currentpicture := currentpicture scaled (300 / x0); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.pdf Binary files differnew file mode 100644 index 00000000000..a74df7785a5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-archimedes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.mp new file mode 100644 index 00000000000..81e45147c70 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.mp @@ -0,0 +1,14 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric a; a = 2.6; path S; + S = right for t=1 upto 360: .. a ** (t/64) * dir 4t endfor; + drawarrow S; +% input ruler-cm +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.pdf Binary files differnew file mode 100644 index 00000000000..0226fe100ca --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-equiangular.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.mp new file mode 100644 index 00000000000..5347da94848 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.mp @@ -0,0 +1,32 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + drawoptions(withpen pencircle scaled 1/4 withcolor 1/4); + path s[]; s0 = unitsquare; + fill s0 withcolor 1/2[2/3 blue, white]; draw s0; + numeric a, b, t, n; a = 1; b = 1; n = 11; + for i = 1 upto n: + t := b; b := b + a; a := t; + s[i] = unitsquare scaled a; + s[i] := s[i] shifted (point i of s[i-1] - point i-1 of s[i]); + fill s[i] withcolor (1/2 + i/32)[2/3 blue, white]; + draw s[i]; + endfor + for i = n-1 upto n: + draw point i-2 of s[i-2] -- point i of s[i]; + endfor + drawoptions(); + drawarrow origin for i=0 upto n: .. point i of s[i] endfor withcolor 2/3 red; + for i = 5 upto n: + label(TEX(decimal arclength subpath (0, 1) of s[i]) + scaled 0.8 rotated angle point n of s[n], center s[i]); + endfor + currentpicture := currentpicture rotated - angle point n of s[n]; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.pdf Binary files differnew file mode 100644 index 00000000000..0863722fc38 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-sq.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.mp new file mode 100644 index 00000000000..5bf37d00b70 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.mp @@ -0,0 +1,39 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path t[], base; pair apex; + base = (left--right) scaled 100; + apex = whatever * dir +72 shifted point 0 of base + = whatever * dir -72 shifted point 1 of base; + t0 = (base -- apex -- cycle); + transform S; + r = arclength subpath (0, 1) of t0 / arclength subpath (2, 3) of t0; + point 0 of t0 transformed S = (r*r)[point 0 of t0, point 2 of t0]; + point 1 of t0 transformed S = point 0 of t0; + point 2 of t0 transformed S = point 1 of t0; + + n = 16; + for i=1 upto n: + t[i] = t[i-1] transformed S; + draw subpath (2,3) of t[i] withpen pencircle scaled 1/4; + endfor + draw point 0 of t0 -- point 3/2 of t0 withpen pencircle scaled 1/8 withcolor blue; + draw point 0 of t1 -- point 3/2 of t1 withpen pencircle scaled 1/8 withcolor blue; + draw t0; + drawarrow point 2 of t[n] for i=n-1 downto 0: .. point 2 of t[i] endfor withcolor 2/3 red; + + z0 = whatever[point 0 of t0, point 3/2 of t0] + = whatever[point 0 of t1, point 3/2 of t1]; + numeric a; a = angle (point 2 of t0 - z0); + drawoptions(withcolor 1/2 green); + label.lft(TEX("$a$") rotated a, point 5/2 of t0); + label.bot(TEX("$b$") rotated a, point 1/2 of t0); + label.rt(TEX("$x$") rotated a, point 1/2 of t1); + drawoptions(); + currentpicture := currentpicture rotated -a; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.pdf Binary files differnew file mode 100644 index 00000000000..24cf426568d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/curves-spiral-gnomon-trig.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-code.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-code.mp new file mode 100644 index 00000000000..f81c74ae6e8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-code.mp @@ -0,0 +1,63 @@ +numeric r, pi; +r = 1.25cm; % radius of the wheel +pi = 3.14159265; % constant +% +% define the cycloid +path c; +c = (0,-r) rotated 100 shifted (r*-100/180*pi,r) + for t=-99 upto 460: + -- (0,-r) rotated -t shifted (r*t/180*pi,r) + endfor; +% and the axes +drawoptions(withcolor .5 white); +path xx, yy; +yy = (down -- 5 up) scaled 1/2 r; +xx = (xpart point 0 of c, 0) -- (xpart point infinity of c,0); +draw fullcircle scaled 1/4r; drawarrow xx; drawarrow yy; +drawoptions(); +label.rt (btex $x$ etex, point 1 of xx); +label.top(btex $y$ etex, point 1 of yy); +% draw the cycloid on top of the axes +draw c withcolor .67 red; + +% define a couple of related points: +% z1 center of the blue wheel +% z2 intersection of rim and cycloid +t = 84; % if you change t then the wheel will "roll" along... +z1 = (r*t/180*pi,r); +z2 = (0,-r) rotated -t shifted z1; + +% draw the auxiliary lines +draw (0,y2) -- z2 -- (x2,0) dashed withdots scaled .6; +draw z2 -- z1 -- (x1,0); + +% draw the rolling circle +draw fullcircle scaled 2r shifted z1 withcolor .67 blue; +% mark the centre and intersection with cycloid +fill fullcircle scaled dotlabeldiam shifted z1; +fill fullcircle scaled dotlabeldiam shifted z2; + +% some arc arrows and labels +path a[]; +z3 = (x1,5/12y1); +a1 = z3 {left} .. {left rotatedabout(z1,-t)} z3 rotatedabout(z1,-t); +drawarrow subpath (.05,.95) of a1; +label.llft(btex $\theta$ etex, point .5 of a1); + +a2 = subpath (0,1) of reverse quartercircle scaled 2.2r shifted z1; +drawarrow a2 rotatedabout(z1,-100); +drawarrow a2 rotatedabout(z1,80); + +% finally all the other labels +label.top(btex $r$ etex, .5[z1,z2]); +label.lft(btex $y$ etex, (0,y2)); +% give all the x-axis labels a common baseline with mathstrut +label.bot(btex $\mathstrut x$ etex, (x2,0)); +label.bot(btex $\mathstrut r\theta$ etex, (x1,0)); +label.bot(btex $\mathstrut 2\pi r$ etex, (r*2pi,0)); +% notice how nicely the coordinates work... +dotlabel.top(btex $(\pi r,2r)$ etex, (pi*r,2r)); +% and a little alignment to finish +label(btex $\vcenter{\halign{&$#$\hfil\cr +x=r(\theta-\sin\theta)\cr +y=r(1-\cos\theta)\cr}}$ etex,(4.2r,r)); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra-code.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra-code.mp new file mode 100644 index 00000000000..15ea28144fb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra-code.mp @@ -0,0 +1,61 @@ +numeric R, r, pi; +R = 1.8cm; % radius of the outer part +r = 1.3cm; % radius of the inner part +pi = 3.14159265; % constant +% define the cycloid +path c; +c = (0,-R) rotated 100 shifted (r*-100/180*pi,r) + for t=-99 upto 460: + -- (0,-R) rotated -t shifted (r*t/180*pi,r) + endfor; +% axes +drawoptions(withcolor .5 white); +path xx, yy; +yy = (down -- 5 up) scaled 1/2 r; +xx = (xpart point 0 of c, 0) -- (xpart point infinity of c,0); +draw fullcircle scaled 1/4r; drawarrow xx; drawarrow yy; +drawoptions(); +label.rt (btex $x$ etex, point 1 of xx); +label.top(btex $y$ etex, point 1 of yy); + +% draw the cycloid on top of the axes +draw c withcolor .67 red; + +% define a couple of related points: +% z1 center of the blue wheel +% z2 intersection of rim and cycloid +t = 124; % if you change t then the wheel will "roll" along... +z1 = (r*t/180*pi,r); +z2 = (0,-R) rotated -t shifted z1; + +% draw the auxiliary lines +draw (0,y2) -- z2 -- (x2,0) dashed withdots scaled .6; +draw z2 -- z1 -- (x1,0); +% draw the rolling circle and mark centre and intersection +draw fullcircle scaled 2r shifted z1 withcolor 2/3 blue; +draw fullcircle scaled 2R shifted z1 withcolor 1/2[2/3 blue, white]; +fill fullcircle scaled dotlabeldiam shifted z1; +fill fullcircle scaled dotlabeldiam shifted z2; +% some arc arrows and labels +path a[]; +z3 = (x1,5/12y1); +a1 = z3 {left} .. {left rotatedabout(z1,-t)} z3 rotatedabout(z1,-t); +drawarrow subpath (.05,.95) of a1; +label.llft(btex $\theta$ etex, point .5 of a1); +a2 = subpath (0,1) of reverse quartercircle scaled 2.2r shifted z1; +drawarrow a2 rotatedabout(z1,-100); +% finally all the other labels +label.rt (btex $r$ etex, (x1,.5y1)); +label.urt(btex $R$ etex, .6[z1,z2]); +label.lft(btex $y$ etex, (0,y2)); +% give all the x-axis labels a common baseline with mathstrut +label.bot(btex $\mathstrut x$ etex, (x2,0)); +label.bot(btex $\mathstrut r\theta$ etex, (x1,0)); +label.bot(btex $\mathstrut 2\pi r$ etex, (r*2pi,0)); +draw (down--up) scaled 2 shifted (r*2pi,0) withcolor .5 white; +% notice how nicely the coordinates work... +dotlabel.top(btex $(\pi r,R+r)$ etex, (pi*r,R+r)); +% and a little alignment to finish +label(btex $\vcenter{\halign{&$#$\hfil\cr +x=r\theta-R\sin\theta\cr +y=r-R\cos\theta\cr}}$ etex,(4.75r,r)); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.mp new file mode 100644 index 00000000000..af41bcdf463 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.mp @@ -0,0 +1,10 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +input cycloids-extra-code +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.pdf Binary files differnew file mode 100644 index 00000000000..80daf06271e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids-extra.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.mp new file mode 100644 index 00000000000..86788b5c465 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.mp @@ -0,0 +1,10 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + input cycloids-code +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.pdf Binary files differnew file mode 100644 index 00000000000..6334dd9ed2f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/cycloids.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.mp new file mode 100644 index 00000000000..27203d4961f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.mp @@ -0,0 +1,56 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +beginfig(1); + z.P = 200 up rotated 21; z.A = 100 left rotated -21; + z.B = origin; z.C = 90 right rotated 42; + + z.A' = 3/8[z.P, z.A]; + z.B' = 1/2[z.P, z.B]; + z.C' = 5/8[z.P, z.C]; + + z.R = whatever [z.A, z.B] = whatever [z.A', z.B']; + z.S = whatever [z.B, z.C] = whatever [z.B', z.C']; + z.T = whatever [z.C, z.A] = whatever [z.C', z.A']; + + path t[]; + t1 = z.A--z.B--z.C--cycle; + t2 = z.A'--z.B'--z.C'--cycle; + + fill t1 withcolor 7/8[red, white]; + fill t2 withcolor 7/8[blue, white]; + draw t1 withcolor 1/2 white; + draw t2 withcolor 1/2 white; + + drawoptions(dashed withdots scaled 1/2); + draw z.P--z.A; + draw z.P--z.B; + draw z.P--z.C; + + drawoptions(dashed evenly scaled 1/2); + draw z.B--z.R--z.B'; + draw z.C--z.S--z.C'; + undraw subpath (1/4, 3/4) of (z.C'--z.T) withpen + pencircle scaled 5; + draw z.C--z.T--z.C'; + drawoptions(withcolor 2/3 red); + draw 9/8[z.S,z.R] -- 9/8[z.R,z.S]; + picture pp; pp = thelabel("perspectrix", origin); + draw pp shifted 7 down rotated angle (z.S-z.R) + shifted 1/2[z.R, z.T]; + dotlabel.urt("perspector", z.P); + + drawoptions(); + dotlabel.lft (btex $A$ etex, z.A); + dotlabel.llft(btex $B$ etex, z.B); + dotlabel.lrt (btex $C$ etex, z.C); + dotlabel.lft (btex $A'$ etex, z.A'); + dotlabel.llft(btex $B'$ etex, z.B'); + dotlabel.bot (btex $C'$ etex, z.C'); + label.rt(btex Desargues' Theorem etex, (x.C', 1/2(y.P+y.C'))); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.pdf Binary files differnew file mode 100644 index 00000000000..bbb38bb28be --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/desargues.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.mp new file mode 100644 index 00000000000..a68153004e2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.mp @@ -0,0 +1,41 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +vardef dice(expr pip_count, pip_color) = + save d,r,p, ul, ur, lr, ll; + r=1/8; path d; picture p; + %d = (for i=0 upto 3: subpath (r+i,1+i-r) of unitsquare .. endfor cycle) scaled 30; + d = for i=0 upto 3: quartercircle scaled 3 shifted (15,15) rotated 90i -- endfor cycle; + p = image(draw fullcircle scaled 6; fill fullcircle scaled 6 withcolor pip_color); + pair ul, ur, ll, lr; + ul = 1/5[ulcorner d, lrcorner d]; + lr = 4/5[ulcorner d, lrcorner d]; + ur = 1/5[urcorner d, llcorner d]; + ll = 4/5[urcorner d, llcorner d]; + image(fill d withcolor background; draw d; + if odd(pip_count): + draw p shifted center d; + fi; + if pip_count > 1: + draw p shifted ul; + draw p shifted lr; + fi; + if pip_count > 3: + draw p shifted ur; + draw p shifted ll; + fi; + if pip_count = 6: + draw p shifted 1/2[ul,ur]; + draw p shifted 1/2[ll,lr]; + fi) +enddef; + +beginfig(1); +for i=0 upto 4: + draw dice(1+floor uniformdeviate 6, red) rotated (2 normaldeviate) shifted (36i,0); +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.pdf Binary files differnew file mode 100644 index 00000000000..e5fc396365f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dice.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.mp new file mode 100644 index 00000000000..f09885dfb5c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.mp @@ -0,0 +1,69 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +ahangle := 30; +beginfig(1); + +path h; pair A, B, C, D, O; numeric theta; + +h = halfcircle scaled 320; + +O = origin; +A = point 4 of h; +B = point 0 of h; +C = point 5/4 of h; +D = (xpart C, ypart A); + +2theta = angle C; + +draw unitsquare scaled 8 rotated angle (C-D) shifted D withcolor 3/4; +draw unitsquare scaled 8 rotated angle (A-C) shifted C withcolor 3/4; + +draw A--C--B withcolor Reds 7 7; +draw O--C--D withcolor Reds 7 7; + +drawoptions(withcolor Blues 7 6); +draw h; +label.ulft("$x^2 + y^2 = 1$", point 3 of h); +drawoptions(); + +primarydef o through p = (1+o/arclength(p))[point 1 of p, point 0 of p] -- (1+o/arclength(p))[point 0 of p, point 1 of p] enddef; +drawarrow 16 through (A--B); +drawarrow 16 through (O--point 2 of h); + +dotlabel.bot("$A$", A); +dotlabel.bot("$B$", B); +dotlabel.urt("$C \smash{\;\bigl(\cos2\theta, \sin2\theta\bigr)}$", C); +dotlabel.bot("$D$", D); +dotlabel.llft("$O$", O); + +label("$\theta$", 28 dir 1/2 theta shifted A); +label("$2\theta$", 20 dir theta); + +label("$x$", B shifted 24 right); +label("$y$", point 2 of h shifted 24 up); + +draw thelabel.top("$2\cos\theta$", origin) rotated theta shifted 1/2[A, C]; +draw thelabel.top("$2\sin\theta$", origin) rotated (theta-90) shifted 1/2[B, C]; + +label.bot("$\triangle ACD \sim \triangle ABC$", point 1/2 of bbox currentpicture shifted 24 down); + +path bb; bb = bbox currentpicture shifted 12 down; + +label.bot(btex \vbox{\openup 4pt\halign{\hfil $#$\hfil\cr +CD \Big/ AC = BC \Big/ AB\cr +\sin 2\theta \big/ 2 \cos\theta = 2 \sin\theta \big/ 2\cr +\sin 2\theta = 2\sin\theta \cos\theta\cr}} etex, point 1/4 of bb); + +label.bot(btex \vbox{\openup 4pt\halign{\hfil $#$\hfil\cr +AD \Big/ AC = AC \Big/ AB\cr +\bigl(1 + \cos 2\theta \bigr) \big/ 2 \cos\theta = 2 \cos\theta \big/ 2\cr +\cos 2\theta = 2\cos^2\theta - 1\cr}} etex, point 3/4 of bb); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.pdf Binary files differnew file mode 100644 index 00000000000..f0721c8b485 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-angle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.mp new file mode 100644 index 00000000000..a701cbe8a08 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.mp @@ -0,0 +1,57 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\mplibnumbersystem{double} +\begin{mplibcode} +beginfig(1); + +vardef zinverse(expr z) = 1/abs z * dir - angle z enddef; + +vardef fizz(expr X) = + pair m, n; + m = right; + n = origin; + numeric a, x; + x = X; + forever: + exitif x = 0; + m := m zscaled zinverse((-1, 1)); + a := x mod 2; + n := n + a * m; + x := x div 2; + endfor + n +enddef; +input colorbrewer-rgb +color shade[]; +shade0 = Reds 5 4; shade1 = Oranges 5 4; +shade2 = Greens 5 4; shade3 = Blues 5 4; + +beginfig(1); + numeric s, t; s = 256; t = 4; + for n=0 upto (s/t*s/t-1): + numeric h, v; + h = floor 1/8 (n mod 32); + v = n mod 4; + fill fullcircle scaled t shifted (fizz(n) scaled s) + withcolor (1/2 + 1/8 v)[white, shade[h]]; + endfor; + path xx, yy; + xx = (left--right) scaled (s+8); + yy = xx rotated 90; + for i=-1 upto 1: + draw xx shifted (0, s*i) withpen pencircle scaled 1/8; + draw yy shifted (s*i, 0) withpen pencircle scaled 1/8; + endfor + dotlabel.lrt(btex $-1-i$ etex, (-1, -1) scaled s); + dotlabel.lrt(btex $-1$ etex, (-1, 0) scaled s); + dotlabel.lrt(btex $-1+i$ etex, (-1, 1) scaled s); + dotlabel.lrt(btex $-i$ etex, (0, -1) scaled s); + dotlabel.lrt(btex $+i$ etex, (0, 1) scaled s); + dotlabel.lrt(btex $+1-i$ etex, (1, -1) scaled s); + dotlabel.lrt(btex $+1$ etex, (1, 0) scaled s); + dotlabel.lrt(btex $+1+i$ etex, (1, 1) scaled s); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.pdf Binary files differnew file mode 100644 index 00000000000..ccede3d7c5a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/double-dragon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.mp new file mode 100644 index 00000000000..16c40d8a49b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.mp @@ -0,0 +1,73 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric s; s = 21; + path alpha; + alpha = ((-2s, s) {right} + .. halfcircle rotated -90 scaled 2s shifted (2s, 0) + .. {left} (-2s, -s)) shifted (s*left); + + vardef overdraw(expr a, b, r, P, shade) = + linecap := butt; + undraw subpath (a+r, b-r) of P withpen pencircle scaled 2; + draw subpath (a, b) of P withcolor shade; + enddef; + + picture cb; cb = image( + draw alpha withcolor 2/3 red; + undraw alpha rotated 180 withpen pencircle scaled 2; + draw alpha rotated 180 withcolor 2/3 blue; + overdraw(0.21, 0.36, 0.02, alpha, 2/3 red); + overdraw(0.67, 0.86, 0.02, alpha, 2/3 red); + overdraw(3.4, 4.3, 0.1, alpha, 2/3 red); + overdraw(5.4, 5.6, 0.02, alpha, 2/3 red); + overdraw(5.4, 5.6, 0.02, alpha rotated 180, 2/3 blue); + ); + + picture P[]; + + P1 = image(draw cb; label.rt("\texttt{draw cb;}", point 3/2 of bbox currentpicture)); + P2 = image(draw cb withpen pencircle scaled 4; label.rt("\texttt{draw cb withpen pencircle scaled 4;}", point 3/2 of bbox currentpicture)); + P3 = image(draw cb withcolor 1/2; label.rt("\texttt{draw cb withcolor 1/2;}", point 3/2 of bbox currentpicture)); + P4 = image(draw cb withpen pencircle scaled 4 withcolor 1/2; label.rt("\texttt{draw cb withpen pencircle scaled 4 withcolor 1/2;}", point 3/2 of bbox currentpicture)); + P5 = image( + color bagel; bagel = 1/256(187, 146, 79); + for i=4 step -1/4 until 1/2: + draw cb withpen pencircle scaled i + withcolor (i/4)[white, bagel]; + endfor + label.rt(btex \vbox{\halign{\texttt{#}\cr + for i=4 step -1/4 until 1/2:\cr + \quad draw cb withpen pencircle scaled i \cr + \qquad withcolor sqrt(i/4)[white, bagel];\cr + endfor\cr}} etex, point 3/2 of bbox currentpicture); + ); + + P6 = image( + for e within cb: + draw pathpart e withpen penpart e scaled 4 + withcolor 7/8[colorpart e, background]; + endfor + label.rt(btex \vbox{\halign{\texttt{#}\cr + for e within cb:\cr + \quad draw pathpart e withpen penpart e scaled 4\cr + \qquad withcolor 7/8[colorpart e, background];\cr + endfor\cr}} etex, point 3/2 of bbox currentpicture); + ); + + for i=1 upto 6: + if known P[i]: + pair p; p = 60i * down; + label.rt(P[i], p); + fill superellipse(right, up, left, down, 0.8) scaled 6 shifted p + withcolor 2/3; + label("\textsf{" & decimal i & "}", p) withcolor white; + fi; + endfor + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.pdf Binary files differnew file mode 100644 index 00000000000..6eb8f7dbff1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/draw-picture.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.mp new file mode 100644 index 00000000000..014541eb18f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.mp @@ -0,0 +1,64 @@ +\documentclass[border=0mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +color TR, TB, TG; +TB = (.2,.2,.7); +TR = (0.54,0,0); +TG = (0, 0.44, 0); + +path xx, yy; +xx = (left--right) scaled 144; +yy = (down--up) scaled 89; + +ahangle := 30; +picture P[]; +P0 = image(drawarrow xx withcolor 1/2; drawarrow yy withcolor 1/2); +P1 = image(draw P0; + path c, a; + c = fullcircle scaled 4cm shifted (34, 21); + a = point 1 of c -- center c; + draw c withcolor TR; + draw fullcircle scaled 3 shifted (34,21); label.lrt("$(34,21)$", (34,21)); + drawdblarrow a; label.ulft("2 cm", point 1/2 of a); +); + +vardef circle_through(expr A, B, C) = + save o; pair o; + o = whatever * (A-B) rotated 90 shifted 1/2[A,B] + = whatever * (B-C) rotated 90 shifted 1/2[B,C]; + fullcircle scaled 2 abs (A-o) shifted o +enddef; + +P2 = image(draw P0; + pair A, B, C; + A = (-21, -13); + B = (58, 21); + C = (89, -34); + + path c[]; + c1 = fullcircle scaled 2 abs(A-B) shifted A; + c2 = fullcircle scaled abs(A-B) shifted 1/2[A, B]; + c3 = circle_through(A, B, C); + + draw c1 withcolor TR; label.ulft("I", point 3 of c1) withcolor TR; + + draw A -- B dashed withdots scaled 1/4 withpen pencircle scaled 1/4 withcolor TB; + draw c2 withcolor TB; label.ulft("II", point 3 of c2) withcolor TB; + draw fullcircle scaled 2 shifted 1/2[A, B] withcolor TB; + + draw c3 withcolor TG; label.urt("III", point 1 of c3) withcolor TG; + + dotlabel.llft("$A$", A); + dotlabel.urt("$B$", B); + dotlabel.lrt("$C$", C); +); + +beginfig(1); +labeloffset := 10; +label.top(P1, origin); +label.bot(P2, origin); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.pdf Binary files differnew file mode 100644 index 00000000000..e7e8f22f0a3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/drawing-circles.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dwmpcode.sty b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dwmpcode.sty new file mode 100644 index 00000000000..ccc13d95a81 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dwmpcode.sty @@ -0,0 +1,49 @@ +\NeedsTeXFormat{LaTeX2e}[1994/06/01] +\ProvidesPackage{dwmpcode}[2021/12/30 v0.01 Code setting in DwMP] +\RequirePackage{listings} +\RequirePackage{xcolor} +\definecolor{textblue}{rgb}{.2,.2,.7} +\definecolor{textred}{rgb}{0.54,0,0} +\definecolor{textgreen}{rgb}{0,0.43,0} +\definecolor{squash}{rgb}{0.793, 0.359, 0.05} +\definecolor{carrot}{rgb}{0.934, 0.445, 0.082} +\def\red#1{\textcolor{textred}{#1}} +\def\blue#1{\textcolor{textblue}{#1}} +\def\green#1{\textcolor{textgreen}{#1}} +\newcommand\mpstyle{\lstset{ +language=Metapost, +basicstyle=\ttfamily, +keywordstyle=\color{textblue}, +keywordstyle=[5]\color{squash}, +keywordstyle=[6]\color{carrot}, +commentstyle=\color{textred}, +stringstyle=\color{textgreen}, +frame=none, +columns=fullflexible, +keepspaces=true, +xleftmargin=\parindent, +showstringspaces=false, +morekeywords={cmykcolor, step, eps, exitif, rotatedabout}, +morestring=[s]{btex}{etex} +}} +\lstnewenvironment{smallcode}[1][]{\mpstyle\lstset{basicstyle=\small\ttfamily,#1}}{} +\lstnewenvironment{code}[1][]{\mpstyle\lstset{#1}}{} +\newcommand\mpexternal[2][]{{\mpstyle\lstinputlisting[#1]{#2}}} +\newcommand\mpl[1]{{\mpstyle\lstinline!#1!}} +% +\newcommand\texstyle{\lstset{ +language=[LaTeX]Tex, +basicstyle=\ttfamily, +keywordstyle=\color{textblue}, +commentstyle=\color{textred}, +stringstyle=\color{textgreen}, +frame=none, +columns=fullflexible, +keepspaces=true, +xleftmargin=\parindent, +showstringspaces=false, +}} +\lstnewenvironment{texcode}[1][]{\texstyle\lstset{basicstyle=\small\ttfamily,#1}}{} +\newcommand\txl[1]{{\texstyle\lstinline!#1!}} +% +\endinput diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.mp new file mode 100644 index 00000000000..d831d99a4b2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.mp @@ -0,0 +1,19 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(2); +path c; c = fullcircle scaled 100; draw c withcolor .67 red; +for i=0 upto 7: + fill fullcircle scaled 3 shifted point i of c; + z[i] = point i of c scaled 1.15; + write "label(btex $p_" & decimal i & "$ etex,(" + & decimal x[i] & "," & decimal y[i] + & "));" to ".mplabels"; +endfor +write EOF to ".mplabels"; +input ".mplabels"; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.pdf Binary files differnew file mode 100644 index 00000000000..94ed338990e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/dynamic-labels.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.mp new file mode 100644 index 00000000000..746638a83c0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.mp @@ -0,0 +1,59 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common +beginfig(1); + +path base, cup, cap, egg; + +base = fullcircle scaled 180; +z0 = origin; +z1 = point -2/3 of base; +z2 = point 2/3 of base; +z3 = point 10/3 of base; +z4 = point 14/3 of base; +z5 = 1/2[z2, z3]; +z6 = 1/2[z4, z1]; + +numeric a, b, c; +a = abs(z3 - z1); +b = a - abs(z4 - z6); +c = a - abs(z4 - z5); + +cup = subpath (4, 8) of fullcircle scaled 2b shifted z6; +cap = fullcircle scaled 2c shifted z5 + cutbefore (z5 -- 2[z4, z5]) + cutafter (z5 -- 2[z1, z5]); + +egg = point 4 of cup {up} .. cap .. {down} cup & cycle; + +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +fill z4 -- z5 -- z6 -- cycle withcolor light_eggshell; + +drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); +label.top("$\scriptstyle \sqrt 3$", 1/2[z4, z6]); +label.lft("$\scriptstyle \sqrt 4 $", 10 down); +label.ulft("$\scriptstyle \sqrt 7$", 7/16[z4, z5]); +draw base; +draw z1 -- z2 -- z3 -- z4 -- z6 -- z5; +draw z0 withpen pencircle scaled 2; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw point 0 of egg -- point 4 of egg; +draw z4 -- point 1 of egg; +draw z1 -- point 3 of egg; +draw egg; +drawoptions(withpen pencircle scaled 2 withcolor 7/16); +forsuffixes $=1,4,5,6: draw z$; endfor +draw numbered_points(egg); +drawoptions(); + +draw P shifted 240 right; + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.pdf Binary files differnew file mode 100644 index 00000000000..1f445d96984 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-357.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-common.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-common.mp new file mode 100644 index 00000000000..a9b909f3887 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-common.mp @@ -0,0 +1,11 @@ +color eggshell, dark_eggshell, light_eggshell; +eggshell = 3/4[1/4[red, green], white]; +dark_eggshell = 1/2[1/4[red, green], white]; +light_eggshell = 7/8[3/16[red, green], white]; + +vardef numbered_points(expr egg) = image( + for i=1 upto length egg: + draw point i of egg; + label(decimal i, point i of egg scaled 1.06); + endfor; +) enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.mp new file mode 100644 index 00000000000..472f3ab0a3c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.mp @@ -0,0 +1,80 @@ +\documentclass{standalone} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +numeric a; a = 56; +path r[]; % the rings +r1 = fullcircle scaled 2a shifted (0, -3/2 a); +r2 = fullcircle scaled 2a shifted (0, -1/2 a); +r3 = fullcircle scaled 2a shifted (0, +1/2 a); +r4 = fullcircle scaled 2a shifted (0, +3/2 a); +r5 = r2 rotatedabout(point 2 of r2, -60); +r6 = r2 rotatedabout(point 2 of r2, +60); + +pair o[]; % the centres of rotation for each arc +o1 = point 6 of r5; +o2 = point 2 of r3; +o3 = point 6 of r6; +o4 = whatever[o3, point 2+4/3 of r2] = whatever[o2, point 2-4/3 of r1]; +o8 = whatever[o1, point 2-4/3 of r2] = whatever[o2, point 2+4/3 of r1]; +o6 = 1/2[point 2-4/3 of r1, point 2+4/3 of r1]; +o5 = whatever[o6, point 2-4/3 of r3] = whatever[o4, point 2+4/3 of r1]; +o7 = whatever[o6, point 2+4/3 of r3] = whatever[o8, point 2-4/3 of r1]; + +pair u[], t[]; % directions and points for the egg +u0 = (o8 - o1) rotated 90; t0 = directionpoint u0 of r6; +u1 = (o2 - o1) rotated 90; t1 = directionpoint u1 of r4; +u2 = (o2 - o3) rotated 90; t2 = directionpoint u2 of r4; +u3 = (o4 - o3) rotated 90; t3 = directionpoint u3 of r5; + +u4 = (o5 - o4) rotated 90; +u5 = (o6 - o5) rotated 90; +u6 = (o6 - o7) rotated 90; +u7 = (o7 - o8) rotated 90; +t4 = directionpoint u4 of fullcircle scaled 2 abs (t3 - o4) shifted o4; +t5 = directionpoint u5 of fullcircle scaled 2 abs (t4 - o5) shifted o5; +t6 = directionpoint u6 of fullcircle scaled 2 abs (t5 - o6) shifted o6; +t7 = directionpoint u7 of fullcircle scaled 2 abs (t6 - o7) shifted o7; + +path egg; +egg = for i=0 upto 7: t[i] {u[i]} .. endfor cycle; + +input eggs-common + +beginfig(1); + fill egg withpen pencircle scaled 2 withcolor eggshell; + picture P; P = currentpicture; + + drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); + for i=1 upto 6: draw r[i]; endfor + draw point 2+4/3 of r1 -- point 2-4/3 of r1 -- o2 -- cycle; + draw point 2+4/3 of r3 -- o7; + draw point 2-4/3 of r3 -- o5; + + + drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); + draw t0 -- o1 -- t1; + draw t2 -- o3 -- t3; + draw o4 -- t4; + draw o5 -- t5; + draw o7 -- t6; + draw o8 -- t7; + draw egg; + + drawoptions(withpen pencircle scaled 2 withcolor 7/16); + t8 = t0; + for i=1 upto 8: + draw o[i]; + label("$\scriptscriptstyle " & decimal i &"$", + o[i] + 4.2 (unitvector(t[i-1]-o[i]) + unitvector (t[i]-o[i]))); + endfor + drawoptions(); + draw numbered_points(egg); + + draw P shifted 240 right; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.pdf Binary files differnew file mode 100644 index 00000000000..bf092abbca4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-better.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.mp new file mode 100644 index 00000000000..519fd82f1d1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.mp @@ -0,0 +1,84 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common +beginfig(1); +numeric a; a = 56; +path r[], s[]; +for i=1 upto 4: + r[i] = fullcircle scaled 2a shifted (0, a * i - 5/2 a); % -2.5a so the origin is in centre +endfor +r5 = r2 rotatedabout(point 2 of r2, 60); +r6 = r2 rotatedabout(point 2 of r2, -60); + + +z1 = subpath (4, 8) of r5 intersectionpoint (point 6 of r6 -- 8[point 6 of r6, point 2/3 of r2]); +z2 = subpath (0, 4) of r4 intersectionpoint (point 6 of r6 -- 8[point 6 of r6, point 2 of r3]); +z3 = whatever [z1, point 6 of r6] = whatever [point 2 of r3, point 10/3 of r1]; +z4 = z3 reflectedabout(up, down); +z7 = 1/2[point 10/3 of r1, point 2/3 of r1]; +z5 = whatever [z3, point 2/3 of r1] = whatever [z7, point 10/3 of r3]; +z6 = z5 reflectedabout(up, down); + +s1 = fullcircle scaled 2 length (z2 - point 6 of r6) shifted point 6 of r6 cutbefore z1 cutafter z2; +s3 = fullcircle rotated angle (point 2/3 of r1 - z3) scaled 2 length (z1-z3) shifted z3 cutafter z1; +s5 = fullcircle rotated angle (z7 - z5) scaled 2 (length (z1-z3) - length (z3-z5)) shifted z5 cutafter point 0 of s3; + +s2 = reverse s1 reflectedabout(up, down); +s4 = reverse s3 reflectedabout(up, down); +s6 = reverse s5 reflectedabout(up, down); + +path egg; + +egg = point 0 of s1 {direction 0 of s1} .. + point 2 of s1 {direction 2 of s1} .. + point 0 of s2 {direction 0 of s2} .. + point 0 of s4 {direction 0 of s4} .. + point 0 of s6 {direction 0 of s6} .. + point 1 of s6 {direction 1 of s6} .. + point 0 of s5 {direction 0 of s5} .. + point 0 of s3 {direction 0 of s3} .. cycle; + +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; + +drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); +for i=1 upto 6: + draw r[i]; +endfor +draw point 2 of r3 -- point 2/3 of r1 -- point 10/3 of r1 -- cycle; +draw z5 -- point 10/3 of r3; +draw z6 -- point 2/3 of r3; +draw point 2/3 of r1 withpen pencircle scaled 2; +draw point 10/3 of r1 withpen pencircle scaled 2; +draw point 2/3 of r3 withpen pencircle scaled 2; +draw point 10/3 of r3 withpen pencircle scaled 2; + +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw point 6 of r6 -- point 8 of s1; +draw point 6 of r6 -- point 0 of s1; +draw point 6 of r5 -- point 8 of s2; +draw point 6 of r5 -- point 0 of s2; + +draw z3 -- point 0 of s3; +draw z4 -- point 8 of s4; +draw z5 -- point 0 of s5; +draw z6 -- point 8 of s6; + +for $=z3, z4, z5, z6, z7, point 2 of r3, point 6 of r5, point 6 of r6: + draw $ withpen pencircle scaled 2; +endfor + +draw egg; +draw numbered_points(egg); + +drawoptions(); + +draw P shifted 240 right; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.pdf Binary files differnew file mode 100644 index 00000000000..8e9e1dd3c80 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-five-point.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.mp new file mode 100644 index 00000000000..e168217aad2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.mp @@ -0,0 +1,45 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common +beginfig(1); + +path egg, a, b, c, d; +a = fullcircle scaled 80; +b = a scaled 2 shifted point 6 of a; +c = halfcircle scaled 2 (abs(point 0 of a - point 5 of b) - abs(point 0 of a)); +d = fullcircle scaled 2 abs(point 2 of a - point 2 of c) shifted point 2 of c; +egg = point 0 of c {up} .. subpath (1,3) of d .. {down} point 4 of c .. subpath (5, 7) of b .. cycle; + +fill egg withpen pencircle scaled 2 withcolor 3/4[1/4[red, green], white]; +picture P; P = currentpicture; +drawoptions(withpen pencircle scaled 1/4 withcolor darker_eggshell); +draw a; draw b; draw c; draw d; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw point 0 of c -- point 3 of egg; +draw point 4 of c -- point 1 of egg; +draw point 0 of a -- point 5 of egg; +draw point 4 of a -- point 7 of egg; +draw point 0 of c -- point 4 of c; +draw point 2 of d -- point 6 of b; +draw egg; +drawoptions(withpen pencircle scaled 2 withcolor 7/16); +for i=1 upto length egg: + draw point i of egg; + label(decimal i, point i of egg scaled 1.06); +endfor; +draw point 0 of a; +draw point 4 of a; +draw point 6 of a; +draw point 2 of c; +drawoptions(); + +draw P shifted 240 right; + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.pdf Binary files differnew file mode 100644 index 00000000000..ffbf1a34383 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-four-point.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.mp new file mode 100644 index 00000000000..2c8c6d72266 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.mp @@ -0,0 +1,33 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +path yolk, base; +color cooked_egg_yolk, cooked_egg_white; +cooked_egg_yolk = 1/256(216, 136, 49); +cooked_egg_white = 1/256(235, 237, 233); + +vardef fried_egg(expr r) = + save base, yolk; path base, yolk; + yolk = for i=0 upto 17: (r + 1/8 normaldeviate) * dir 20i .. endfor cycle; + base = (for i=0 upto 17: (2r + 1/8r * normaldeviate) * dir 20i .. endfor cycle) + shifted (uniformdeviate r/2, uniformdeviate r/2); + image( + fill base withcolor cooked_egg_white; + fill yolk withcolor cooked_egg_yolk; + fill subpath (6.7, 9.6) of yolk scaled 0.8 -- + subpath (9.6, 6.7) of yolk scaled 0.66 -- cycle + withcolor 1/2[cooked_egg_yolk, white]; + ) +enddef; + +for i=0 upto 1: + draw fried_egg(40) shifted 120 dir 120i; +endfor + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.pdf Binary files differnew file mode 100644 index 00000000000..b75e01b5bb2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-fried.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.mp new file mode 100644 index 00000000000..6c13a6afb39 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.mp @@ -0,0 +1,63 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common +beginfig(1); + +path base; +base = fullcircle scaled 200; + +pair m, n, n', p; +path aa, bb; + +m = 1/2 point 0 of base; +aa = halfcircle scaled 2 abs (point 2 of base - m) shifted m cutbefore (origin -- 1000 up); +n = point infinity of aa; +n' = n reflectedabout(up, down); +bb = subpath (0, 2) of base shifted n cutafter (origin -- 1000 up); +p = point infinity of bb; + +path dome; +path cap, cup, egg; +dome = fullcircle + scaled 2 (abs(n - point 0 of base) - abs(n - point 0 of bb)) + shifted p; +cap = dome + cutbefore (point 4 of bb -- 2[n, point 4 of bb]) + cutafter (point 4 of bb -- 2[n', point 4 of bb]); +cup = subpath (4, 8) of base; +path egg; egg = point 4 of cup {up} .. cap .. {down} cup & cycle; + +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); +draw m -- aa; +draw bb; +draw origin -- point 2 of base; +draw base; draw dome; +label.bot("$m$", m); +label.ulft("$n$", n); +label.urt("$n'$", n'); +% label.lft("$p$", p); + +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw n -- point 1 of egg; +draw n' -- point 3 of egg; +draw point 0 of egg -- point 4 of egg; +draw egg; + +forsuffixes $=n, n', p, origin: draw $ withpen pencircle scaled 2; endfor +draw m withpen pencircle scaled 2 withcolor dark_eggshell; +draw numbered_points(egg); + +drawoptions(); + +draw P shifted 240 right; + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.pdf Binary files differnew file mode 100644 index 00000000000..171112387e0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-gold.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.mp new file mode 100644 index 00000000000..6bd228dd4f1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.mp @@ -0,0 +1,31 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input eggs-common +path a, b, c, d, egg; numeric r; r = 100; +a = fullcircle scaled 2r; +b = fullcircle scaled 4r shifted point 4 of a; +c = fullcircle scaled 4r shifted point 0 of a; +d = fullcircle scaled 2 abs (point 2 of a - point 1 of b) + shifted point 2 of a; +egg = subpath (0, 1) of b .. point 2 of d .. + subpath (3, 4) of c .. subpath (5, 7) of a .. cycle; +beginfig(1); +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell); +draw a; draw d; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw point 1 of egg -- point 4 of egg -- + point 0 of egg -- point 3 of egg; +draw egg; +drawoptions(withpen pencircle scaled 2 withcolor 7/16); +draw center a; +draw center d; +draw numbered_points(egg); +drawoptions(); +draw P shifted 240 right; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.pdf Binary files differnew file mode 100644 index 00000000000..3cea5ce5d22 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-moss.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.mp new file mode 100644 index 00000000000..adbd86c3bc3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.mp @@ -0,0 +1,35 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef pentapath(expr a, b) = + save c, d, e; + pair c, d, e; + c = a rotatedabout(b, -108); + d = b rotatedabout(c, -108); + e = b rotatedabout(a, 108); + a -- b -- c -- d -- e -- cycle +enddef; +input colorbrewer-rgb +beginfig(1); + + path p[]; + p0 = for i=1 upto 5: 20 right rotated -18 rotated 72i -- endfor cycle; + draw p0 dashed withdots scaled 1/4; + for i=1 upto 3: + p[i] = pentapath(point 4 of p[i-1], point 2 of p[i-1]); + draw p[i] dashed withdots scaled 1/4; + draw point 0 of p0 {point 2 of p0 - point 3 of p0} + .. point 1 of p0 {point 3 of p0 - point 4 of p0} + .. point 2 of p[i] {point 4 of p[i] - point 0 of p[i]} + .. point 3 of p[i] {point 0 of p[i] - point 1 of p[i]} + .. point 4 of p[i] {point 1 of p[i] - point 2 of p[i]} + .. cycle withcolor Spectral[4][i]; + endfor + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.pdf Binary files differnew file mode 100644 index 00000000000..18fa3c1fe7d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-pentagons.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.mp new file mode 100644 index 00000000000..8f63cd6e8b6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.mp @@ -0,0 +1,30 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common +beginfig(1); +path egg; +%egg = for t=90,105,120,135,150,165,-180,-165,-150,-135,-120,-105,-90,-75,-60,-45,-30,-15,0,15,30,45,60,75: +%egg = for t=90, 135, 180, -135, -90, -45, 0, 45: +egg = for t=-180 step 15 until 180 - eps: + (0.78 cosd(1/4 t) * sind(t), -cosd(t)) .. + endfor cycle; +egg := egg scaled 128; + +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw egg; +drawoptions(withpen pencircle scaled 2 withcolor 7/16); +draw origin; +for i=1 upto length egg: draw point i of egg; endfor +drawoptions(); + +draw P shifted 240 right; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.pdf Binary files differnew file mode 100644 index 00000000000..9a291f90593 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-perfect.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.mp new file mode 100644 index 00000000000..3eeca4babe2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.mp @@ -0,0 +1,27 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +path egg, spot; +egg = (for t=-180 step 15 until 180 - eps: + (0.78 cosd(1/4 t) * sind(t), -cosd(t)) .. +endfor cycle) scaled 100; + +spot = fullcircle scaled 4 shifted 3/4 point 3 of egg; + +vardef fade_filled(expr egg, spot, dark, light, n) = image( + for i = 0 upto n: + fill interpath(i/n, egg, spot) withcolor ((i/n)**1/3)[dark,light]; + endfor) +enddef; + +beginfig(1); + color a, b; + a = 1/256(150, 100, 60); + b = 1/256(256, 220, 180); + draw fade_filled(egg, spot, a, b, 256) rotated -30; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.pdf Binary files differnew file mode 100644 index 00000000000..ec2143cdc27 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-shaded.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.mp new file mode 100644 index 00000000000..89f8dda5b4c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.mp @@ -0,0 +1,20 @@ +\documentclass{standalone} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +path egg; +egg = (superellipse(right, 1.6 up, left, 1.2 down, 0.69)) scaled 100; +input eggs-common +beginfig(1); + fill egg withpen pencircle scaled 2 withcolor eggshell; + picture P; P = currentpicture; + drawoptions(withcolor 1/2); + draw origin withpen pencircle scaled 2; + draw egg withpen pencircle scaled 1/4; + drawoptions(); + draw numbered_points(egg) withpen pencircle scaled 2; + draw P shifted 240 right; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.pdf Binary files differnew file mode 100644 index 00000000000..2022f1ed2d6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-super.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.mp new file mode 100644 index 00000000000..f38d86fcadb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.mp @@ -0,0 +1,45 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input eggs-common + +numeric r, a, b, t; a = 60; b = 45; r = a ++ b; +pair p, q; p = -q = (b, 0); +path base, cap, egg; +base = subpath (4, 8) of fullcircle scaled 2(2r-b); +cap = subpath (0, 4) of fullcircle scaled 2r shifted (0, a) + cutbefore ((b, 0) -- (b, 2r)) + cutafter ((-b, 0) -- (-b, 2r)); +egg = point 4 of base {up} .. cap .. {down} base & cycle; +% more naturally +% base {up} .. cap .. {down} & cycle +% but then point 0 would not be at 3 o'clock + +beginfig(1); +fill egg withpen pencircle scaled 2 withcolor eggshell; +picture P; P = currentpicture; +fill origin -- (-b, 0) -- (0, a) -- cycle withcolor light_eggshell; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +label.top("$\scriptstyle 3$", (-1/2b, 0)); +label.lft("$\scriptstyle 4$", (0, 1/2a)); +label.ulft("$\scriptstyle 5$", 1/2[(-b, 0), (0, a)]); + +draw fullcircle scaled 2(2r-b); draw origin withpen pencircle scaled 2; +draw fullcircle scaled 2r shifted (0, a); draw (0, a) withpen pencircle scaled 2; + +draw p -- subpath (3, 4) of egg -- cycle; draw p withpen pencircle scaled 2; +draw q -- subpath (0, 1) of egg -- cycle; draw q withpen pencircle scaled 2; + +draw numbered_points(egg); + +drawoptions(); + +draw P shifted 240 right; + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.pdf Binary files differnew file mode 100644 index 00000000000..2e4a9089cf7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/eggs-thom.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.mp new file mode 100644 index 00000000000..eac172d4f3e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.mp @@ -0,0 +1,38 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + +numeric s; s = 13; +path atom; +atom = origin + -- (2s,0) rotated -30 -- (2s,0) rotated -30 + (0,s) + -- ( s,0) rotated 30 -- ( s,0) rotated 30 + (0,s) + -- (0,2s) -- cycle; + +picture p[]; +for i=0 upto 2: + p[i] = image( + fill atom rotated -120i withcolor (7/8 - 1/8i) ; + draw atom rotated -120i; + ); +endfor + +n = 13; +for i=-n upto n: + for j=-n upto n: + forsuffixes $=0,1,2: + draw p$ shifted ((3i*s,0) rotated -30 + + (0,floor(1/2i)*3s + 3j*s)); + endfor + endfor +endfor + +clip currentpicture to (unitsquare shifted -(1/2,1/2) + xscaled 55.425s yscaled 30s); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.pdf Binary files differnew file mode 100644 index 00000000000..391fc26d5d1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/escher.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.mp new file mode 100644 index 00000000000..72101fb1da2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.mp @@ -0,0 +1,24 @@ +\documentclass[border=8pt]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + for i=0 upto 15: + label.top(decimal i infont "cmss10" scaled 0.7, (15i,108)) withcolor .67 red; + for j=0 upto 7: + draw char (i+16j) infont "eurm10" shifted (15i-3,97-14j); + if i=0: + label.lft(decimal 16j infont "cmss10" scaled 0.7, (-8,100-14j)) withcolor .67 red; + fi + % if (i + 16j) > 0: + % draw char (i + 16j) infont "cmmi10" + % scaled 0.5 + % shifted (15i - 6, 97-14j) + % withcolor .67 blue; + % fi + endfor + endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.pdf Binary files differnew file mode 100644 index 00000000000..1da31b1984b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/euler-sampler.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.mp new file mode 100644 index 00000000000..01307ce3d01 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.mp @@ -0,0 +1,39 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef through(expr a, b, o) = + save t; numeric t; t = 1+o/abs(a-b); + t[b,a] -- t[a,b] +enddef; + +beginfig(1); + pair A, B, C; + A = origin; B = 233 dir 10; C = 144 dir 70; + pair a, b, m, t; + a = A + 22 unitvector (C-A) - 22 unitvector (B-A); + b = B + 22 unitvector (A-B) + 22 unitvector (C-B); + m = whatever[A,a] = whatever [B,b]; t = whatever[A,B]; + t-m = whatever * (B-A) rotated 90; + + drawoptions(dashed evenly scaled 1/4 withcolor 1/2 white); + draw t -- m; + draw unitsquare scaled 5 rotated angle (B-A) shifted t; + draw through(A, m, 10); + draw through(A, t, 10); + draw through(B, m, 10); + drawoptions(); + draw fullcircle scaled 2 abs (t-m) shifted m withcolor 2/3 blue; + draw A--B--C--cycle; + dotlabel.urt(btex $m$ etex, m); + dotlabel.bot(btex $t$ etex, t); + dotlabel.bot(btex $A$ etex, A); + dotlabel.urt(btex $B$ etex, B); + dotlabel.top(btex $C$ etex, C); + dotlabel.urt(btex $a$ etex, a); + dotlabel.top(btex $b$ etex, b); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.pdf Binary files differnew file mode 100644 index 00000000000..817cd59350a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/excircle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.mp new file mode 100644 index 00000000000..8d03d948467 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.mp @@ -0,0 +1,31 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{fontspec} +\setmainfont{PlayfairDisplay-Black} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +randomseed:=2128.5073; +beginfig(1); +n = 40; r = 7 ; s = 44; +path explosion, splash; +explosion = for i=1 upto n: + (s if odd(i): - else: + fi r + uniformdeviate r,0) rotated (i*360/n) -- +endfor cycle; + +splash = for i=1 upto n: + (s if odd(i): - else: + fi r + uniformdeviate r,0) rotated (i*360/n) .. +endfor cycle; +splash := splash shifted (3s,0); + +fill explosion withcolor Oranges 7 4; +draw explosion withpen pencircle scaled 2 withcolor Reds 7 7; +label(TEX("\textbf{BOOM!}") scaled 1.6, center explosion) withcolor Reds 7 7; + +fill splash withcolor Blues 7 2; +draw splash withpen pencircle scaled 2 withcolor Blues 7 7; +label(TEX("\bfseries SPLAT!") scaled 1.6, center splash) withcolor Blues 7 7; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.pdf Binary files differnew file mode 100644 index 00000000000..d5c1c094d9d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/explode.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.mp new file mode 100644 index 00000000000..dfe7086052f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.mp @@ -0,0 +1,57 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +% parameters +u = 1cm; +ymax = xmax = 2.75; +xmin = ymin = -1.75; + +% make a plain grid +path xx, yy; +xx = ((xmin,0) -- (xmax,0)) scaled u; +yy = ((0,ymin) -- (0,ymax)) scaled u; + +drawoptions(dashed withdots scaled 1/4 withcolor 3/4 white); +for i = ceiling ymin upto floor ymax: draw xx shifted (0,i*u); endfor +for i = ceiling xmin upto floor xmax: draw yy shifted (i*u,0); endfor + +drawoptions(withpen pencircle scaled .7); +xx := xx scaled 1.05; +yy := yy scaled 1.05; +drawarrow xx; +drawarrow yy; +drawoptions(); + +label.urt("A" infont defaultfont scaled 8, origin) withcolor 1/4 green; + +% draw the "transparent" superellipse box +path se; +%se = unitsquare shifted 1/2 down shifted 1/4 left scaled 3cm; +se = (superellipse(right, up, left, down, 0.81)) +shifted 1/2 right scaled 30 rotated 30; + +alpha = 5/8; % alpha: 0=invisible, 1=opaque +color filler; filler = .95[red,white]; +picture fg, bg; +bg = currentpicture; +fg = image( + for e within bg: + draw e withcolor alpha[colorpart e, filler]; + endfor + draw se withpen pencircle scaled 2 withcolor 3/4; + draw subpath (2.718, 3.1415) of se + shifted - center se scaled 7/8 shifted + center se + withpen pencircle scaled 2 withcolor white; + +); +clip fg to se; + +fill se withcolor filler; +draw fg; +draw se withcolor 3/4 blue; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.pdf Binary files differnew file mode 100644 index 00000000000..07f247a29d3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/fake-transparency.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.mp new file mode 100644 index 00000000000..d7f9a41db5c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.mp @@ -0,0 +1,58 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef pi_sixths(expr n) = + save s, f, q; string s, f; numeric q; + s = if n < 0: "-" else: "" fi; q = abs(n); + if q mod 6 = 0: + f = if q > 6: decimal 1/6 q else: "" fi; + elseif q mod 3 = 0: + f = "\frac{" & decimal 1/3 q & "}{2}"; + elseif q mod 2 = 0: + f = "\frac{" & decimal 1/2 q & "}{3}"; + else: + f = "\frac{" & decimal q & "}{6}"; + fi + "$\scriptstyle" & s & f & "\pi$" +enddef; + +beginfig(1); + numeric u, pi; u = 50; pi = 3.141592653589793; + + path xx, yy; + xx = (3.5 left -- 4 right) scaled u; + yy = (1.2 down -- 1.3 up) scaled u; + + path ss, tt, uu; + ss = origin for x=1 upto 360: -- (x, sind(x)) endfor; + tt = origin for x=1 upto 360: -- (x, 1/2 sind(3x)) endfor; + uu = origin for x=1 upto 360: -- (x, ypart point x of ss + ypart point x of tt) endfor; + + forsuffixes $=ss, tt, uu: + $ := $ shifted 360 left & $; + $ := $ xscaled (pi/180) scaled u; + $ := $ cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx; + endfor + + draw ss withcolor 1/2[blue, white]; + draw tt withcolor 1/2[red, white]; + draw uu withcolor 1/4 green; + + label.top("$f(x)=sin(x)$", point 290 of ss) withcolor 1/2[blue, white]; + label.bot("$g(x)=\frac12 sin(3x)$", point 295 of tt) withcolor 1/2[red, white]; + label.urt("$f(x) + g(x)$", point 350 of uu) withcolor 1/4 green; + + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); + + for i=-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7: + draw (down--up) scaled 2 shifted (pi * i/6 * u, 0); + label.bot(pi_sixths(i), (pi * i/6 * u, -2)); + endfor + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.pdf Binary files differnew file mode 100644 index 00000000000..29973d3b2a0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-addition-of-sines.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.mp new file mode 100644 index 00000000000..21e17dca8cc --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.mp @@ -0,0 +1,34 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path xx, yy; +xx = (left -- right) scaled 150; +yy = (down -- up) scaled 50; + +numeric n; n = 6; + +path ff; ff = origin {right} for x = 1 upto n: ... {1, 3x*x} (x, x*x*x) endfor; +ff := ff reflectedabout(origin, dir 45); +ff := reverse ff rotated 180 & ff; +ff := ff xscaled (150/n/n/n) yscaled (50/n); + +for i = 1-n upto n-1: + draw yy shifted (i * xpart directionpoint (1, 1/3) of ff, 0) withcolor 7/8; +endfor +for i = -1, 1: + draw xx shifted (0, i * ypart directionpoint (1, 1/3) of ff) withcolor 7/8; +endfor + +draw ff withcolor 2/3 blue; + +label("$y = \sqrt[3]x$", (-84, 14)); +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.pdf Binary files differnew file mode 100644 index 00000000000..4f3dc1f744c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-cuberoot.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.mp new file mode 100644 index 00000000000..cb36f02f6dd --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.mp @@ -0,0 +1,64 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + +numeric minx, maxx, s, u, v; +minx = 13/8; s = 1/16; maxx = 19/4; +u = 89; v = 3072; + +def f(expr x) = 1/256 mlog(x) / x enddef; + +path ff, xx, yy; +ff = for x=minx step s until maxx-s: (x, f(x)) .. endfor (maxx, f(maxx)); +ff := ff xscaled u yscaled v; +xx = origin -- right scaled (maxx-minx) scaled u; +yy = origin -- up scaled 0.09v; +xx := xx shifted point 0 of ff shifted 20 down; +yy := yy shifted point 0 of ff shifted 20 left; + +numeric pi, e, fpi, fe; +pi = 3.141592653589793 u; fpi = f(3.141592653589793) * v; +e = 2.718281828459045 u; fe = f(2.718281828459045) * v; + +path ee, pp; +ee = (e, ypart point 0 of xx) -- (e, fe) -- (xpart point 0 of yy, fe); +pp = (pi, ypart point 0 of xx) -- (pi, fpi) -- (xpart point 0 of yy, fpi); + +draw ee dashed withdots scaled 1/4 withcolor 2/3 red; +draw pp dashed withdots scaled 1/2 withcolor 2/3 red; +draw ff withcolor 3/4 blue; +drawarrow xx; +drawarrow yy; + +for x=2 upto 4: + draw (down--up) scaled 2 shifted (x * u, ypart point 0 of xx); + label.bot("$" & decimal x & "$", (x * u, ypart point 0 of xx - 2)); +endfor +for y=31 upto 38: + draw (left--right) scaled 2 shifted (xpart point 0 of yy, y/100*v); +endfor +for y=32, 35, 38: + label.lft("$" & decimal (y/100) & "$", (xpart point 0 of yy-2, y/100*v)); +endfor + +drawoptions(withcolor 1/2 red); +label.bot("$e$", point 0 of ee shifted 4 down); +label.lft("$1/e$", point 2 of ee shifted 2 left); + +label.bot("$\pi$", point 0 of pp shifted 4 down); +label.lft("$\ln\pi/\pi$", point 2 of pp shifted 2 left); + +drawoptions(withcolor 2/3 blue); +label.urt("$\displaystyle y={\ln x\over x}$", point 42 of ff); + +drawoptions(); +label.rt("$x$", point 1 of xx); +label.top("$y$", point 1 of yy); +label("\dots\ hence\enspace $e^\pi > \pi^e$.", (4u, 0.38v)); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.pdf Binary files differnew file mode 100644 index 00000000000..175bde4577d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-epi-v-pie.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.mp new file mode 100644 index 00000000000..bfea46f1747 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.mp @@ -0,0 +1,49 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +numeric u; u = 42; + +path xx, yy; +xx = (-3u, 0) -- (5u, 0); +yy = xx rotated 90; + +path ee, ll, nn; +numeric minx, maxx, s; +minx = -3; maxx = 1/256 mlog(4.5); s = 1/4; +ee = (for x = minx step s until maxx - s: + (x, mexp(256x)){1, mexp(256x)} ... +endfor (maxx, mexp(256 maxx)){1, mexp(256 maxx)}) scaled u; +ll = ee reflectedabout(origin, dir 45); +nn = (for x=1 step s until 4-s: (x, 1/x) ... endfor (4, 1/4)) scaled u; +nn := reverse nn reflectedabout(origin, dir 45) & nn; + +draw unitsquare xscaled mexp(256) scaled u withcolor 7/8; +draw unitsquare yscaled mexp(256) scaled u withcolor 7/8; + +path T[]; +numeric p; p = directiontime dir 45 of ee; +T1 = (precontrol p of ee -- postcontrol p of ee) shifted - point p of ee scaled 1/2 u shifted point p of ee; +T2 = (precontrol p of ll -- postcontrol p of ll) shifted - point p of ll scaled 1/2 u shifted point p of ll; +drawoptions(withpen pencircle scaled 1/4 withcolor 1/2); +draw T1; draw T2; draw interpath(1/2, T1, T2) dashed evenly; +drawoptions(); + +draw nn; label.urt("$1/x$", point 0 of nn); +draw ee withcolor 2/3 blue; label.top("$e^x$", point infinity of ee) withcolor 2/3 blue; +draw ll withcolor 3/4 red; label.top("$\ln(x)$", point infinity of ll) withcolor 3/4 red; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); + +dotlabel.lft("$e$", (0, mexp(256) * u)); +dotlabel.bot("$e$", (mexp(256) * u, 0)); +dotlabel.ulft("$1$", (0, u)); +dotlabel.lrt("$1$", (u, 0)); + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.pdf Binary files differnew file mode 100644 index 00000000000..eab1af76eda --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-exponential.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.mp new file mode 100644 index 00000000000..cf56cede6b7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.mp @@ -0,0 +1,25 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +numeric a, c; c = 100; a = sqrt(2) * c; +vardef f(expr x) = a * cosd(x) / (1 + sind(x) ** 2) enddef; +vardef g(expr x) = f(x) * sind(x) enddef; +numeric mint, maxt, s; mint = 0; s = 30; maxt = 360; +path p; +p = for t = mint step s until maxt - s: + (f(t), g(t)) ... +endfor cycle; +draw p withcolor 3/4 blue; +path xx, yy; +xx = (left -- right) scaled 150; +yy = (down -- up) scaled 55; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +dotlabel.bot("$F_1$", c * left); +dotlabel.bot("$F_2$", c * right); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.pdf Binary files differnew file mode 100644 index 00000000000..d9dd8653c7a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-lemniscate.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.mp new file mode 100644 index 00000000000..afa0d854678 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.mp @@ -0,0 +1,31 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + numeric n; n = 2; + path r; r = (for t=0 upto 360: + cosd(n * t) * dir t ... + endfor cycle) scaled 150; + + numeric d; d = 29; + path k; k = for t = 0 upto 360: + point d * t mod 360 of r -- + endfor cycle; + + draw k dashed withdots scaled 1/8 + withpen pencircle scaled 1/4 + withcolor 1/2[blue, white]; + draw r withcolor 2/3 red; + + path xx, yy; + xx = (left -- right) scaled 160; + yy = (down -- up) scaled 160; + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.pdf Binary files differnew file mode 100644 index 00000000000..a4a94febe55 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-maurer-rose.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.mp new file mode 100644 index 00000000000..7d86c3b2abf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.mp @@ -0,0 +1,24 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path p; +numeric a, b, j, k; a = 144; b = 89; j = 3; k = 2; +p = for t = 0 upto 360: + (a * cosd(j * t), b * sind(k * t)) ... +endfor cycle; + +draw p withcolor 2/3 red; + +path xx, yy; +xx = (left -- right) scaled 150; +yy = (down -- up) scaled 100; +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.pdf Binary files differnew file mode 100644 index 00000000000..8f7bed75f40 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-parametric.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.mp new file mode 100644 index 00000000000..b88aa49a6ab --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.mp @@ -0,0 +1,42 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +input colorbrewer-rgb +numeric t, s, u, v; +t = 3; s = 1; +u = 50; v = 10; + +path xx, yy; +xx = (left -- right) scaled t scaled u; +yy = 50 down -- 100 up; + +picture P[]; +for k = 1 upto 3: + s := s * 1/2; + P[k] = image( + for n=2 upto 7: + path c; c = (for x = -t step s until t-s: (x, x**n) ... endfor (t, t**n)) xscaled u yscaled v + cutbefore xx shifted point if odd n: 0 else: 1 fi of yy + cutafter xx shifted point 1 of yy if n > 5: shifted (0, v*n - 5v) fi; + draw c withcolor Spectral[6][n-1]; + for i=0 upto length(c): + draw point i of c withpen pencircle scaled 1; + endfor + label("$\scriptstyle x^" & decimal n & "$", point infinity of c shifted 3 right shifted 6 unitvector(direction infinity of c)); + label("Step: $\frac1{" & decimal (1/s) & "}$", (30, 80)); + endfor + for i=1,2: + draw (i*u, 0) -- (i*u, -2); + label.bot(decimal i, (i*u, -2)); + endfor + drawarrow xx; + drawarrow yy; + ); + draw P[k] shifted (0, -160k); +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.pdf Binary files differnew file mode 100644 index 00000000000..4888cb89f44 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-powers.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.mp new file mode 100644 index 00000000000..ae07cfd5704 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.mp @@ -0,0 +1,35 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef pulse(expr w, h, d) = +for i=0 upto 4: x[i] = w/4 * i; endfor + y0 = y1 = 0; + y3 = y4 = d; + y2 = h; + z0 .. 1/2[z0, z1] .. controls z1 + .. 1/2[z1, z2] .. controls z2 + .. 1/2[z2, z3] .. controls z3 + .. 1/2[z3, z4] .. z4 +enddef; + +beginfig(1); + path p; p = pulse(300, 100, -40); + + draw point 0 of p -- postcontrol 1 of p -- postcontrol 2 of p -- postcontrol 3 of p -- point 5 of p + dashed withdots scaled 1/2 withcolor 2/3 red; + for i=1 upto 3: draw postcontrol i of p withpen pencircle scaled 2 withcolor 2/3 red; endfor + label.lrt("$z_1$", postcontrol 1 of p) withcolor 2/3 red; + label.top("$z_2$", postcontrol 2 of p) withcolor 2/3 red; + label.llft("$z_3$", postcontrol 3 of p) withcolor 2/3 red; + + draw p withcolor 1/2 blue; + draw p shifted 120 up withcolor 1/2 blue; + for i=0 upto length p: draw point i of p withpen pencircle scaled 2; endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.pdf Binary files differnew file mode 100644 index 00000000000..6b60a628bd4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-pulse.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.mp new file mode 100644 index 00000000000..a9bbf7f85ec --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.mp @@ -0,0 +1,35 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path xx, yy; +xx = (left -- right) scaled 150; +yy = (down -- up) scaled 150; + +path ff, negative_ff; +ff = (1,1) for x = 3/2 step 1/2 until 6: ... (x, 1/x) endfor; +ff := reverse ff reflectedabout(origin, dir 45) & ff; +ff := ff scaled 24; +negative_ff = ff reflectedabout(origin, dir -45); + +for i=-6 upto 6: + draw xx shifted (0, 24i) withpen pencircle scaled 1/4 withcolor 7/8; + draw yy shifted (24i, 0) withpen pencircle scaled 1/4 withcolor 7/8; +endfor + +forsuffixes @ = ff, negative_ff: + draw @ withcolor 2/3 red; + for i=0 upto length @: + draw point i of @ withpen pencircle scaled 1; + endfor +endfor + +label("$y = 1/x$", (-84, 84)); +drawarrow xx; label.rt("$x$", point 1 of xx); +drawarrow yy; label.top("$y$", point 1 of yy); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.pdf Binary files differnew file mode 100644 index 00000000000..34670c96056 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-reflection.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.mp new file mode 100644 index 00000000000..2a854ede622 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.mp @@ -0,0 +1,57 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef pi_quarters(expr n) = + save s, f, q; string s, f; numeric q; + s = if n < 0: "-" else: "" fi; q = abs(n); + if q mod 4 = 0: + f = if q > 4: decimal 1/4 q else: "" fi; + elseif q mod 2 = 0: + f = "\frac{" & decimal 1/2 q & "}{2}"; + else: + f = "\frac{" & decimal q & "}{4}"; + fi + "$\scriptstyle" & s & f & "\pi$" +enddef; + +beginfig(1); + numeric u, pi; u = 50; pi = 3.141592653589793; + + path xx, yy; + xx = (3.5 left -- 3.6 right) scaled u; + yy = (1.1 down -- 1.2 up) scaled u; + + path ss; + ss = origin for t=1 upto 360: -- (t, sind(t)) endfor; + ss := ss shifted 360 left & ss; + ss := ss xscaled (pi/180) scaled u; + + drawoptions(dashed withdots scaled 1/4); + draw ((1/4 pi, 0) .. (1/4 pi, sind(45))) scaled u; + draw ((1/2 pi, 0) .. (1/2 pi, sind(90))) scaled u; + draw ((3/4 pi, 0) .. (3/4 pi, sind(135))) scaled u; + drawoptions(); + + draw ss cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx + withcolor 3/4 blue; + draw ss shifted (-1/2 pi * u ,0) + cutbefore yy shifted point 0 of xx + cutafter yy shifted point 1 of xx + withcolor 2/3 red; + + drawarrow xx; label.rt("$t$", point 1 of xx); + drawarrow yy; label.top("$u(t)$", point 1 of yy); + + for i=-4, -3, -2, -1, 1, 2, 3, 4: + draw (down--up) scaled 2 shifted (pi * i/4 * u, 0); + label.bot(pi_quarters(i), (pi * i/4 * u, -2)); + endfor + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.pdf Binary files differnew file mode 100644 index 00000000000..cce783b5bd1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-sines.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.mp new file mode 100644 index 00000000000..a22b39a7834 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.mp @@ -0,0 +1,44 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + z1 = 377 right; z2 = 233 up; + + path ff; + ff = origin .. (72, 144){1,2} .. (84, 144) .. (96, 144){1,1} .. (220, 220){right} .. (370, 160){2,-1.3}; + + for t=2, 4, 4.9: + draw point t of ff -- (xpart point t of ff, y2 + 6) dashed evenly scaled 1/2; + endfor + label.top("Strain hardening", (1/2 (xpart point 2 of ff + xpart point 4 of ff), y2)); + label.top("Necking", (1/2 (xpart point 4 of ff + xpart point 4.9 of ff), y2)); + + path rr; + rr = point 0.4 of ff -- (xpart point 0.8 of ff, ypart point 0.4 of ff) -- point 0.8 of ff; + draw rr; label.bot("Run", point 1/2 of rr); label.rt("Rise", point 3/2 of rr); + + vardef pin_label@#(expr p, a, b)= + draw a -- b cutbefore fullcircle scaled 8 shifted a withpen pencircle scaled 1/4 withcolor 1/2 white; + label@#(p, b); + enddef; + + pin_label.lrt("Yield strength", point 1.2 of ff, point 2 of ff + (8, -18)); + pin_label.bot("Ultimate strength", point 4 of ff, point 4 of ff + (4, -24)); + pin_label.bot("Fracture", point 5 of ff, point 5 of ff + (-8, -18)); + + draw ff withpen pencircle scaled 1 withcolor 2/3 blue; + clip currentpicture to unitsquare scaled 400; % clip thick pen at origin + + drawdblarrow z1 -- origin -- z2; + label.ulft("Strain, $\epsilon$", z1); + label.urt("Stress, $\sigma$", z2); + + label("$\displaystyle\hbox{Young's modulus} = \hbox{Slope} = {\hbox{Rise}\over\hbox{Run}}$", + 1/2 z1 shifted 36 up) withcolor 2/3 blue; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.pdf Binary files differnew file mode 100644 index 00000000000..c880df8f0f1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/func-stress.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.mp new file mode 100644 index 00000000000..540256bddb8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.mp @@ -0,0 +1,69 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +numeric _sqrtpp; +_sqrtpp = 2.50662827463; + +vardef gauss(expr mu, sigma, x) = + if abs(x - mu) < 4 sigma: + mexp(-128 * (((x - mu) / sigma) ** 2)) / _sqrtpp / sigma + else: + 0 + fi + enddef; + +vardef gauss_curve(expr mu, sigma, a, b, s) = + (a, gauss(mu, sigma, a)) for x = a + s step s until b: .. (x, gauss(mu, sigma, x)) endfor + enddef; + +vardef percent(expr n, N) = + save p, s; + numeric p; + string s; + p = 1 - n / N / N; + s = decimal floor(1000 p); + substring (0, length(s) - 1) of s & "." & substring (length(s)-1, infinity) of s & "\thinspace\%" +enddef; + +path Z; Z = gauss_curve(0, 1, -4, 4, 1/8) xscaled 50 yscaled 220; +path A, B; +A = subpath (16,48) of Z -- (xpart point 48 of Z, 0) -- (xpart point 16 of Z, 0) -- cycle; +B = subpath (24,40) of Z -- (xpart point 40 of Z, 0) -- (xpart point 24 of Z, 0) -- cycle; +beginfig(1); + draw Z withcolor Reds 8 5; + numeric N, stack_height[]; N = 100; + numeric plump, fat, gross; gross = plump = fat = 0; + for i=1 upto N: for j = 1 upto N: + numeric r, k; + r = 50 normaldeviate; + k = round(r); + if known stack_height[k]: + stack_height[k] := stack_height[k] + 1; + else: + stack_height[k] := 1; + fi + pair z; z = (r, uniformdeviate 1/4 + stack_height[k]); + color shade; shade = Greens 8 8; + if abs(r) > 50: plump := plump + 1; shade := Blues 8 8; fi + if abs(r) > 100: fat := fat + 1; shade := Oranges 8 6 ; fi + if abs(r) > 150: gross := gross + 1; shade := Reds 8 8; fi + draw z withpen pencircle scaled 1/2 withcolor shade; + undraw z withpen pencircle scaled 1/4; + endfor endfor + label("\textsc{Observed values}", (-180, 96)); + label("$abs(r) \le 1$: " & percent(plump, N), (-180, 80)); + label("$abs(r) \le 2$: " & percent(fat, N), (-180, 68)); + label("$abs(r) \le 3$: " & percent(gross, N), (-180, 56)); + draw (left--right) scaled 220; + for i = -4 upto 4: + draw (50i, 0) -- (50i, -5); + label.bot("\hbox to 5pt{\hss$" & decimal i & "$}", (50i, -5)); + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.pdf Binary files differnew file mode 100644 index 00000000000..1be302a804f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gaussian.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.mp new file mode 100644 index 00000000000..16852ad54ef --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.mp @@ -0,0 +1,23 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +vardef equilateral_triangle_point(expr a, b) = + b shifted -a rotated 60 shifted a +enddef; +beginfig(1); +path c; c = fullcircle scaled 144; +numeric n; n = 8; +for i=0 upto n-1: + pair a,b,p,q; + a = point 8/n * i of c; + b = point 8/n * (i + 1) of c; + p = equilateral_triangle_point(a,b); + q = equilateral_triangle_point(b,a); + draw a -- p -- b withcolor .67 green; + draw a -- q -- b withcolor .67 red; +endfor +draw c withcolor .53 blue; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.pdf Binary files differnew file mode 100644 index 00000000000..fce93941704 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/geometry-triangles-on-circle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/glenshiel.jpg b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/glenshiel.jpg Binary files differnew file mode 100644 index 00000000000..65c5fae8666 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/glenshiel.jpg diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.mp new file mode 100644 index 00000000000..417c5986909 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.mp @@ -0,0 +1,28 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef gcd(expr a, b) = + if b = 0: a else: gcd(b, a mod b) fi +enddef; +beginfig(1); +for n=2 upto 24: + for s=1 upto floor n/2: + pair p; p = (12n - 24s, -24n); + path gon; gon = ( + for t=0 upto n/gcd(s,n) - 1: + 10 up rotated (360/n * s * t) -- + endfor cycle); + if (n mod s = 0): + fill gon shifted p withcolor PuBuGn[9][1+floor (n/s/6)]; + label("$" & decimal (n/s) & "$", p); + fi + draw gon shifted p withpen pencircle scaled 1/8; + endfor +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.pdf Binary files differnew file mode 100644 index 00000000000..acdbb350d84 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/gons.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.mp new file mode 100644 index 00000000000..b4fc2b8f1b6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.mp @@ -0,0 +1,34 @@ +\documentclass[border=1mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef grid(expr ll, ur, grid_unit) = + save llx, lly, urx, ury, G; numeric llx, lly, urx, ury; + (llx, lly) = ll; (urx, ury) = ur; + picture G; G = image( + for x = floor(llx / grid_unit) + 1 upto floor(urx / grid_unit): + draw (x * grid_unit, lly) -- (x * grid_unit, ury); + endfor + for y = floor(lly / grid_unit) + 1 upto floor(ury / grid_unit): + draw (llx, y * grid_unit) -- (urx, y * grid_unit); + endfor + fill fullcircle; % <-- you might not want this + ); G enddef; + +input colorbrewer-rgb +beginfig(1); + path C; + C = fullcircle scaled 120 shifted 12 up rotated 6; + for t=0, 1.23, 4: draw center C -- point t of C withcolor Blues 8 8; endfor + draw C withcolor Reds 8 8; + dotlabel.urt("Start", point 0 of C); + + picture P; P = currentpicture; currentpicture := nullpicture; + draw grid(llcorner P, urcorner P, 1mm) withpen pencircle scaled 1/4 withcolor Blues 8 1; + draw grid(llcorner P, urcorner P, 1cm) withpen pencircle scaled 1/4 withcolor Blues 8 2; + draw P; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.pdf Binary files differnew file mode 100644 index 00000000000..d6cd20458e0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/graph-paper.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.mp new file mode 100644 index 00000000000..76bbe6b86ca --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.mp @@ -0,0 +1,29 @@ +%\documentclass[border=5mm]{standalone} +%\usepackage{luamplib} +%\begin{document} +%\begin{mplibcode} +prologues := 3; +outputtemplate := "%j.%{outputformat}"; +beginfig(1); +string ab, AB; + +ab = ("" for i=11 upto 23: & char i endfor + & "o" for i=24 upto 33: & char i endfor); + +AB = ("AB" & char 0 & char 1 & "EZH" & char 2 & "IK" + & char 3 & "MNO" & char 4 & char 5 & "P" + & char 6 & "T" & char 7 & char 8 & "X" + & char 9 & char 10); + +draw ab infont "cmmi10"; +draw AB infont "cmmi10" shifted 12 down; +draw ab infont "eurm10" shifted 32 down; +draw AB infont "eurm10" shifted 44 down; + +undraw (6 left -- 180 right) shifted 12 up; +undraw (6 left -- 180 right) shifted 50 down; + +endfig; +%\end{mplibcode} +%\end{document} +end diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.pdf Binary files differnew file mode 100644 index 00000000000..a98ad701dc8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-default-encoding.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.mp new file mode 100644 index 00000000000..fbdcdcc513e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.mp @@ -0,0 +1,21 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(2); +string ab, AB; +ab = "abgdezhjiklmnoxprstufqyw"; +AB = "ABGDEZHJIKLMNOXPRSTUFQYW"; +y := 0; +for $="grmn1000", "gporsonrg6r", "gneohellenicrg6r": + draw $ infont "cmss10" scaled 0.8 shifted (0,y) withcolor .67 red; + draw ab infont $ shifted (0,y-10); + draw AB infont $ shifted (0,y-22); + y := y - 40; +endfor +undraw (6 left -- 180 right) shifted 12 up; +undraw (6 left -- 180 right) shifted 108 down; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.pdf Binary files differnew file mode 100644 index 00000000000..383e3a63df5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-gfs-encoding.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.mp new file mode 100644 index 00000000000..0a872fe16e6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.mp @@ -0,0 +1,25 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +vardef setg(text t) = + save G; picture G; + save x; numeric x; x = 0; + G = image( + for w = t: + picture g; + g = w infont "gporsonrg6r"; + draw g shifted (x, 0); + x := x + xpart (urcorner g - llcorner g) + 3; + endfor + ); G enddef; +beginfig(1); +picture homer; +homer = setg("m" & char 168 & "nin", char 138 & "eide", "je" & char 128, + "Phlh" & char 240 & char 136 & "deiw", ">Aqil" & char 168 & "oc"); +undraw 10 left -- 272 right; +draw homer scaled 1.732 withcolor .54 red; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.pdf Binary files differnew file mode 100644 index 00000000000..f455cf1a214 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/greek-homer.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.mp new file mode 100644 index 00000000000..b336628462e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.mp @@ -0,0 +1,53 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef thatch(expr a, b, c, penw, gap) = + picture H; + pair v; + v = gap * unitvector(c - 1/2[a, b]); + H = image( + for i=1 upto 120: + draw (a--b) + shifted (i * v) + withpen pencircle scaled penw; + endfor + ); + clip H to a--b--c--cycle; draw H; +enddef; + +beginfig(1); + + path h, t; + + h = for i=0 upto 5: 84 right rotated 60i -- endfor cycle; + t = (origin -- subpath (0, 1) of h -- cycle) + shifted -1/3(point 0 of h + point 1 of h) + scaled 1.08 + rotated 90; + + thatch(point 2 of t, point 0 of t, point 1 of t, 1/4, 3/2); + thatch(point 4 of h, point 0 of t, point 2 of t, 1/4, 5/4); + thatch(point 0 of t, point 0 of h, point 1 of t, 1/4, 3/4); + thatch(point 1 of h, point 1 of t, point 0 of h, 1/4, 1); + thatch(point 4 of h, point 2 of t, point 3 of h, 1/4, 2); + thatch(point 4 of h, point 0 of t, point 5 of h, 1/4, 1); + thatch(point 5 of h, point 0 of t, point 6 of h, 1/4, 3/4); + + draw h; + draw t; + + for i=0 upto 2: + draw point 2i of h -- point i of t; + draw point 2i of h -- point i+1 of t; + draw point 2i+1 of h -- point i+1 of t; + endfor + + input ruler-cm + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.pdf Binary files differnew file mode 100644 index 00000000000..48a513c8ff7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/icosahedron.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.mp new file mode 100644 index 00000000000..337bef2e616 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.mp @@ -0,0 +1,17 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +path p; p = origin -- dir 30; +numeric n, r; r = 3; +for i=1 upto 12: + n := length p; + p := p rotated (45 - r); + p := p & reverse p rotatedabout(point n of p, 90 + 2r); +endfor +draw p scaled (384 / xpart (urcorner p - llcorner p)) withcolor .54 red; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.pdf Binary files differnew file mode 100644 index 00000000000..5f26760b2e9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh-open.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.mp new file mode 100644 index 00000000000..6ff5b94df05 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.mp @@ -0,0 +1,18 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +path p; p = origin -- right rotated 30; +numeric n; +for i=1 upto 12: + n := length p; + p := p rotated 45; + p := p & reverse p rotatedabout(point n of p, 90); +endfor +draw p scaled (384 / xpart (urcorner p - llcorner p)) + withcolor (.2, .2, .7); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.pdf Binary files differnew file mode 100644 index 00000000000..d779719752d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heigh.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.mp new file mode 100644 index 00000000000..a2647356f8d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.mp @@ -0,0 +1,36 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +def width(expr P) = xpart (urcorner P - llcorner P) enddef; +picture s[]; +path p; p = origin -- 16 right; +s1 = image(undraw (origin -- up) scaled 21; draw p; + for t=0, 1: + draw point t of p withpen pencircle scaled 3/2 withcolor 0.74 red; + endfor +); +for i=2 upto 5: + s[i] = image( + p := p rotated 45; + p := p & reverse p rotatedabout(point length p of p, 90); + draw p; + for t=0, 1/2 length p, length p: + draw point t of p withpen pencircle scaled 3/2 withcolor 0.74 red; + endfor + ) shifted (0 for j=i-1 downto 1: + width(s[j]) + 30 endfor, 0); +endfor + +beginfig(1); +draw s1; draw s2; draw s3; draw s4; draw s5; +ahangle := 30; +drawoptions(withcolor (.2,.2,.7)); +for i=1 upto 4: + drawarrow (origin -- 14 right) shifted (xpart lrcorner s[i] + 6, 4); +endfor +drawoptions(); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.pdf Binary files differnew file mode 100644 index 00000000000..a58b4bbcfc4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ifs-heighway-stages.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cafe-wall.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cafe-wall.mp new file mode 100644 index 00000000000..da81df29638 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cafe-wall.mp @@ -0,0 +1,24 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + numeric u; u = 21; +picture strip; +strip = image( + for i=-10 upto 10: + fill unitsquare shifted (2i,0) scaled u; + draw unitsquare shifted (2i,0) scaled u withcolor 1/2; + endfor + for i=0, 1: + draw ((-20, i) -- (20, i)) scaled u withcolor 1/2; + endfor +); +for i=0 upto 9: + draw strip shifted (4 normaldeviate, i*u); +endfor +clip currentpicture to unitsquare shifted 1/2 left xscaled 29.2 yscaled 10 scaled u; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cubes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cubes.mp new file mode 100644 index 00000000000..2b083debb14 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-cubes.mp @@ -0,0 +1,46 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(2); + numeric u, v; + u = 60; + v = 21 * sqrt(3); + path face[]; + for i=0 upto 2: + face[i] = unitsquare scaled u rotated 45 yscaled (1/sqrt(3)) rotated (120-120i); + endfor + picture cube, sides; + cube = image( + for i=0 upto 2: + fill face[i] withcolor Oranges[8][i+1]; + endfor + for i=0 upto 2: + draw subpath (1, 4) of face[i]; + endfor + ); + sides = image( + for i=0, 2: + fill face[i] withcolor Oranges[8][i+1]; + endfor + for i=0, 2: + draw face[i]; + endfor + ); + draw cube shifted (0u, 2v); + draw cube shifted (0u, 4v); + draw cube shifted (0u, 6v); + draw cube shifted (1u, 5v); + draw cube shifted (2u, 4v); + draw cube shifted (3u, 3v); + draw cube shifted (2u, 2v); + draw cube shifted (u, v); + draw cube; + draw sides shifted (0u, 2v); +endfig; + +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-fraser-spiral.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-fraser-spiral.mp new file mode 100644 index 00000000000..850d957e79f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-fraser-spiral.mp @@ -0,0 +1,26 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\mplibsetformat{metafun} +\begin{mplibcode} +beginfig(1); + path s; + s = origin for i=1 upto 90: .. (30i, 0) rotated 4i endfor; + + path e[], f[]; + for i = 0 upto 17: + e[i] = s rotated 20i; + f[i] = s reflectedabout(left, right) rotated 20i; + endfor + + for i=0 upto 8: + fill e[2i] -- reverse e[2i+1] .. cycle withcolor 1/2; + endfor + for i=0 upto 8: + fill f[2i] -- reverse f[2i+1] .. cycle withcolor transparent(2, 1/2, 0); + endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-ring.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-ring.mp new file mode 100644 index 00000000000..85aaa6492fa --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-ring.mp @@ -0,0 +1,42 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{graphicx} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +%label("$\includegraphics{ring-11.png}$", origin); +path S; +S = (-117, 4) {dir 30} .. {right} 30 up .. {dir -36} (117, -4) .. {left} 88 down + .. (-200, -50) .. {up} (-266, 30) {down} -- (-266, -50) + .. (-200, -108) {dir -28} .. 148 down {right} + .. (200, -108) .. {up} (266, -30); +S := S & subpath (5, 2) of S rotated 180 & cycle; +input colorbrewer-rgb + +fill S withcolor Greens 8 3; +fill S rotated 180 withcolor Reds 8 3; + +picture rules; rules = image( + for t=0 step 1/32 until directiontime down of subpath(12, 13) of S: + draw point 12+t of S -- point 12+t of S shifted 100 down + cutafter S; + endfor + for t=3 step 1/16 until 5: + draw point t of S -- point t of S shifted 100 down cutafter subpath (6, 8) of S; + endfor + for t=8+1/16 step 1/16 until 12: + draw point t of S -- 1/2[point 1 of S, point 3 of S] cutafter subpath (1, 3) of S; + endfor +); + +for r = 0, 180: + draw rules rotated r; + draw S rotated r; +endfor + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-triangle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-triangle.mp new file mode 100644 index 00000000000..370a4800af5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-impossible-triangle.mp @@ -0,0 +1,41 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + + numeric u; + + u = 42; + + z0 = (0, 3u); + z1 = z0 rotated 120; + z2 = z1 rotated 120; + + z3 = z0 shifted (1/2u, 3/2u * sqrt(3)); + z4 = z3 shifted (-u,0); + + z5-z4 = whatever * (z0-z1); + z6 = whatever [z0, z2]; + y5 = y6 = y2 - sqrt(3) * 1/2 u; + + z7-z3 = whatever * (z0-z1); + z7 = whatever [z1, z2]; + + %dotlabels.top(0, 1, 2, 3, 4, 5, 6, 7); + + path vii; + vii = z3--z4--z5--z6--z2--z7--cycle; + + for i=0 upto 2: + fill vii rotated 120i withcolor Blues[9][i+2]; + endfor + for i=0 upto 2: + draw vii rotated 120i; + endfor + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-pinna.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-pinna.mp new file mode 100644 index 00000000000..070802a5d95 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-pinna.mp @@ -0,0 +1,23 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path s; s = unitsquare shifted -(1/2, 1/2) scaled 23; + for n = 1 upto 4: + numeric N; N = 10n + 8; + numeric a; a = 30 normaldeviate; + for t=0 upto N-1: + draw s rotated if odd n: - fi 13 shifted (5N * right) rotated (360 / N * t + a) + withcolor t mod 2; + endfor + endfor + picture P; + P = currentpicture; currentpicture := nullpicture; + fill bbox P withcolor 0.42; + draw P; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-shaded-diamonds.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-shaded-diamonds.mp new file mode 100644 index 00000000000..adb4b003a60 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-shaded-diamonds.mp @@ -0,0 +1,33 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +path diamond; picture shaded; +diamond = (left -- 3 down -- right -- 3 up -- cycle) scaled 13; +shaded = image( +for i=0 upto 256: + draw (left--right) scaled 15 shifted (0, 78/256 i - 39) + withpen pencircle scaled 0.32 + withcolor (i/256)[white, Greens 8 8]; +endfor); clip shaded to diamond; + + pair u, v; + u = point 2 of diamond - point 0 of diamond; + v = point 3 of diamond - point 0 of diamond; + +beginfig(1); + for i=0 upto 8: + for j=0 upto min(8-i, 4): + draw shaded shifted (i * u + j * v); + endfor + endfor + clip currentpicture to -1/2u -- 9u -- 5u + 4v -- 4v - 1/2u -- cycle; + + draw currentpicture rotated 180; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-wonky-grid.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-wonky-grid.mp new file mode 100644 index 00000000000..74fe8ddf994 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/illusions-wonky-grid.mp @@ -0,0 +1,27 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + path o; numeric r; r = 1/4; + o = (for i=0 upto 3: subpath (i+r, i+1-r) of unitsquare shifted -(1/2, 1/2) -- endfor cycle) scaled 42; + picture unit; path s; s = unitsquare scaled arclength subpath (1, 3/2) of o + rotated -45 shifted point 3/2 of o; + unit = image( + fill o withcolor Blues 8 5; + for i=0 upto 3: fill s rotated 90i; endfor + ); + + pair u, v; u = 42 right; v = u rotated 90; numeric n; n = 3; + for i=-n upto n: + for j=-2n upto 2n: + draw unit if (i+j) mod 4 < 2: reflectedabout (dir 135, dir -45) fi + shifted ((2i + j mod 2)*u + j*v); + endfor + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.mp new file mode 100644 index 00000000000..050beebf22a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.mp @@ -0,0 +1,38 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef through(expr a, b, o) = + save t; numeric t; t = 1+o/abs(a-b); + t[b,a] -- t[a,b] +enddef; + +beginfig(1); + pair A, B, C; + A = origin; B = 377 dir 10; C = 233 dir 70; + pair a, b, m, t; + a = A + 22 unitvector (C-A) + 22 unitvector (B-A); + b = B + 22 unitvector (A-B) + 22 unitvector (C-B); + m = whatever[A,a] = whatever [B,b]; t = whatever[A,B]; + t-m = whatever * (B-A) rotated 90; + + drawoptions(dashed evenly scaled 1/4 withcolor 1/2 white); + draw t -- m; + draw unitsquare scaled 5 rotated angle (B-A) shifted t; + draw through(A, m, 10); + draw through(B, m, 10); + drawoptions(); + draw fullcircle scaled 2 abs (t-m) shifted m withcolor 2/3 red; + draw A--B--C--cycle; + dotlabel.top(btex $m$\thinspace\strut etex, m); + dotlabel.bot(btex $t$ etex, t); + dotlabel.bot(btex $A$ etex, A); + dotlabel.urt(btex $B$ etex, B); + dotlabel.top(btex $C$ etex, C); + dotlabel.top(btex $a$ etex, a); + dotlabel.top(btex $b$ etex, b); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.pdf Binary files differnew file mode 100644 index 00000000000..fe062e227e8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/incircle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.mp new file mode 100644 index 00000000000..670c1f12b50 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.mp @@ -0,0 +1,48 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +picture p, pp; +p = "proof" infont "pplri8r" scaled 4; +pp = "proof" infont "pplri8r" scaled 8; +(wd, ht) = urcorner pp; +(xx, dp) = llcorner pp; +xheight = ypart urcorner ("x" infont "pplri8r" scaled 8); + +beginfig(3); +drawoptions( withpen pencircle scaled .5 withcolor .7[.74 red, white]); +draw origin -- (0,ht) -- (wd, ht) -- (wd, dp) -- (0,dp) -- cycle; +for y=0,xheight: + draw (0,y) -- (wd,y); +endfor +draw bbox pp dashed withdots scaled 1/4; +drawoptions(); +draw pp withcolor .5 white; +fill fullcircle scaled 4 shifted center pp withcolor .7[3/4 red,white]; + +vardef east primary p = 1/2[urcorner p, lrcorner p] enddef; +vardef west primary p = 1/2[ulcorner p, llcorner p] enddef; +vardef eastx primary p = lrcorner p shifted (+1,3) enddef; +vardef westx primary p = llcorner p shifted (-1,3) enddef; + +picture c[]; ahangle := 30; string s[]; +c0 = "center" infont "pplr8r" shifted center pp shifted (21,27); +c1 = "urcorner" infont "pplr8r" shifted urcorner pp shifted (13,8); +c2 = "ulcorner" infont "pplr8r" shifted ulcorner pp; c2 := c2 shifted (-13-xpart urcorner c2,8); +c3 = "llcorner" infont "pplr8r" shifted llcorner pp; c3 := c3 shifted (-13-xpart urcorner c3,-13); +c4 = "lrcorner" infont "pplr8r" shifted lrcorner pp shifted (13,-13); +c5 = "bboxmargin" infont "pplr8r" scaled 0.8; +draw c0 withcolor .67 red; drawarrow center c0 .. {dir -120} center pp shifted ( 1, 3) cutbefore bbox c0; +draw c1 withcolor .67 red; drawarrow westx c1 .. {dir -120} urcorner pp shifted ( 1, 1); +draw c2 withcolor .67 red; drawarrow eastx c2 .. {dir -60} ulcorner pp shifted (-1, 1); +draw c3 withcolor .67 red; drawarrow eastx c3 .. {dir +60} llcorner pp shifted (-2,-2); +draw c4 withcolor .67 red; drawarrow westx c4 .. {dir +120} lrcorner pp shifted ( 1,-1); +label.bot(c5, point 1/2 of bbox pp) withcolor 1/4[.67 red, white]; + +c6 = ("x-height" infont "pplr8r"); c6 := c6 shifted (-13-xpart urcorner c6,xheight-2.2); +c7 = ("origin" infont "pplr8r"); c7 := c7 shifted (-13-xpart urcorner c7,-2.2); +draw c6 withcolor .67 blue; drawarrow (-12,xheight) -- (-1,xheight); +draw c7 withcolor .67 blue; drawarrow (-12,0) -- (-1,0); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.pdf Binary files differnew file mode 100644 index 00000000000..acc76a9f1da --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-annotated.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.mp new file mode 100644 index 00000000000..0b2a4d965b3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.mp @@ -0,0 +1,19 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +interim bboxmargin := 2; +picture p, pp; +p = "proof" infont "pplri8r" scaled 4; +pp = image( +draw (left -- 7 right) scaled 14 withcolor .7 white; +draw p; +draw bbox currentpicture withcolor 3/4[red, white]); +beginfig(1); +draw bbox p withcolor 3/4[red, white]; +draw p; +draw pp shifted 120 right; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.pdf Binary files differnew file mode 100644 index 00000000000..1e772668cc8 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/infont-example.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.mp new file mode 100644 index 00000000000..e7f5e902cc3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.mp @@ -0,0 +1,44 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +label(btex \vbox{\halign{\hfil\itshape # \hfil\cr +The paths are drawn with\cr +arrows to show where\cr +they start \& stop.\cr}} etex, origin); + +ahangle := 30; +path A, B; +A = fullcircle scaled 200 shifted 40 left; +B = fullcircle scaled 200 rotated 144 shifted 40 right; + +forsuffixes $=A, B: + drawarrow $ cutafter fullcircle scaled 6 shifted point 0 of $; + for t=0 upto 7: + drawdot point t of $ withpen pencircle scaled 2; + endfor +endfor + +label.ulft("$A$", point 3.14 of A); +label.urt("$B$", point 6.28 of B); + +drawoptions(withcolor 0.54 red); +numeric t, u; (t,u) = A intersectiontimes B; +draw fullcircle scaled 6 shifted point t of A; +z0 = point t of A shifted (-3, 16); +draw z0 -- point t of A cutafter fullcircle scaled 8 shifted point t of A; +label.top("\texttt{A intersectiontimes B}", z0); +drawoptions(withcolor (.2, .2, .7)); +numeric t, u; (t,u) = B intersectiontimes A; +draw fullcircle scaled 6 shifted point t of B; +z1 = point t of B shifted (-3, -16); +draw z1 -- point t of B cutafter fullcircle scaled 8 shifted point t of B; +label.bot("\texttt{B intersectiontimes A}", z1); +drawoptions(); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.pdf Binary files differnew file mode 100644 index 00000000000..8cf9d43814b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-AB-or-BA.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.mp new file mode 100644 index 00000000000..2915dc737c0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.mp @@ -0,0 +1,93 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +color tr, tb; tr = 0.54 red; tb = (0.2, 0.2, 0.7); +ahangle := 30; +path A, B; +A = subpath (1, 2) of fullcircle scaled 240 shifted 48 left; +B = subpath (7, 8) of fullcircle scaled 240 rotated 144 shifted 48 right; + +picture P[]; +P1 = image( + drawarrow A; label.rt("$A$", point 0 of A); + drawarrow B; label.rt("$B$", point 0 of B); +); +vardef boxed(expr p) = + save d; pair d; d = point infinity of p - point 0 of p; + unitsquare xscaled xpart d yscaled ypart d shifted point 0 of p +enddef; + +P2 = image( + draw A withcolor 3/4; + draw B withcolor 3/4; + draw boxed(A) withcolor tr; + draw boxed(B) withcolor tb; +); + +P3 = image( + draw A withcolor 3/4; + draw B withcolor 3/4; + path s[]; + numeric m; m = arctime 1/2 arclength A of A; + s1 = boxed(subpath (0, m) of A); + s3 = boxed(subpath (m, infinity) of A); + numeric m; m = arctime 1/2 arclength B of B; + s2 = boxed(subpath (0, m) of B); + s4 = boxed(subpath (m, infinity) of B); + draw s3 withcolor 7/8; + draw s4 withcolor 7/8; + draw s2 withcolor tb; + draw s1 withcolor tr; + label.urt("$\scriptstyle 1$", point 1 of s1); + label.ulft("$\scriptstyle 2$", point 0 of s2); + label.urt("$\scriptstyle 3$", point 1 of s3); + label.ulft("$\scriptstyle 4$", point 3 of s4); +); + +draw P1; +draw P2 shifted 120 right; +draw P3 shifted 240 right; + +P4 = image( + draw A withcolor 3/4; + draw B withcolor 3/4; + numeric m[]; + m1 = arctime 1/4 arclength A of A; + m2 = arctime 1/2 arclength A of A; + draw boxed(subpath (0, m1) of A) withcolor 7/8; + draw boxed(subpath (m1, m2) of A) withcolor tr; + numeric m[]; + m1 = arctime 1/4 arclength B of B; + m2 = arctime 1/2 arclength B of B; + draw boxed(subpath (0, m1) of B) withcolor 7/8; + draw boxed(subpath (m1, m2) of B) withcolor tb; +); +P5 = image( + draw A withcolor 3/4; + draw B withcolor 3/4; + numeric m[]; + m1 = arctime 1/4 arclength A of A; + m2 = arctime 3/8 arclength A of A; + m3 = arctime 1/2 arclength A of A; + draw boxed(subpath (m1, m2) of A) withcolor 7/8; + draw boxed(subpath (m2, m3) of A) withcolor tr; + numeric m[]; + m1 = arctime 1/4 arclength B of B; + m2 = arctime 3/8 arclength B of B; + m3 = arctime 1/2 arclength B of B; + draw boxed(subpath (m2, m3) of B) withcolor 7/8; + draw boxed(subpath (m1, m2) of B) withcolor tb; +); + +draw P4 shifted 89 down; +draw P5 shifted 89 down shifted 120 right; +interim bboxmargin := 0; +label.top("and so on\dots", center bbox P5 shifted 89 down shifted 240 right); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.pdf Binary files differnew file mode 100644 index 00000000000..4d70f7d5e64 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-algorithm.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.mp new file mode 100644 index 00000000000..5350b3b20c5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.mp @@ -0,0 +1,28 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path A, B; +A = (origin {dir 42} .. 120 right {dir 42}) rotated 6; +B = A reflectedabout (left, right) shifted 10 up; +drawarrow A; label.llft("$A$", point 0 of A); +drawarrow B; label.ulft("$B$", point 0 of B); + +pair P[]; numeric n; n=0; +path R; R := A; %take a copy of A +forever: + R := R cutbefore B; % snip where we cross B + exitif length cuttings = 0; % stop if nothing was cut + P[incr n] = point 0 of R; % capture the point + R := subpath (epsilon, infinity) of R; % nudge along +endfor + +draw fullcircle scaled 4 shifted P1 withcolor .54 red; +draw fullcircle scaled 4 shifted P2 withcolor .54 red; +draw fullcircle scaled 4 shifted P3 withcolor .54 red; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.pdf Binary files differnew file mode 100644 index 00000000000..24485553806 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-all-three.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.mp new file mode 100644 index 00000000000..9ed3a02c93a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.mp @@ -0,0 +1,21 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path A, B; +A = (origin {dir 42} .. 120 right {dir 42}) rotated 6; +B = A reflectedabout (left, right) shifted 10 up; +drawarrow A; label.llft("$A$", point 0 of A); +drawarrow B; label.ulft("$B$", point 0 of B); +draw fullcircle scaled 4 + shifted (A intersectionpoint B) + withcolor .54 red; +draw fullcircle scaled 4 + shifted (reverse A intersectionpoint B) + withcolor (.2, .2, .7); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.pdf Binary files differnew file mode 100644 index 00000000000..cb3c6d55701 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/intersection-only-two.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.mp new file mode 100644 index 00000000000..977e5ced89f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.mp @@ -0,0 +1,26 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +vardef f(expr x) = sqrt(-1/2 - x * x + sqrt(1/4 + 2 * x * x)) enddef; +numeric s; s = 1/8; +path limb; + +limb = origin for x = s step s until 1: .. (x, f(x)) endfor {down}; +limb := limb scaled 128; + +path lemniscate; +lemniscate = limb + & reverse limb reflectedabout(left, right) + & limb reflectedabout(up, down) + & reverse limb rotated 180 + & cycle; + +draw limb withpen pencircle scaled 2 withcolor 7/8[red, white]; +drawarrow lemniscate withcolor 2/3 blue; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.pdf Binary files differnew file mode 100644 index 00000000000..ef3d5bdfa32 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/lemniscate-as-function.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.mp new file mode 100644 index 00000000000..cf52919d6ec --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.mp @@ -0,0 +1,56 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +numeric u; u = 32; +z1 = right scaled u; +z2 = z1 rotated 90; +z3 = z2 rotated 90; +z4 = z3 rotated 90; +z5 = 1/2[z1,z2]; +z6 = 1/2[z2,z3]; +z7 = 1/2[z3,z4]; +z8 = 1/2[z4,z1]; + +color tb, tr; +tb = (.2,.2,.7); +tr = 0.54 red; + +drawoptions (withpen pencircle scaled 2); +picture p; +for i=0 upto 2: + for j=0 upto 2: + linecap := i; + linejoin := j; + p := image( + draw unitsquare shifted -(1/2,1/2) scaled 2u withcolor 7/8; + label(decimal linecap, z7) withcolor tb; + label(decimal linejoin, z8) withcolor tr; + drawarrow z1--z3; + draw z2--z4; + drawdot(z5); + drawdot(z6); + drawarrow halfcircle scaled u rotated 180 shifted z4; + ) shifted (5/2u*i, -11/4u*j); + draw p; + if (i=1) and (j=1): draw bbox p dashed withdots scaled 3/4 + withpen pencircle scaled 1/2 + ; fi + endfor + endfor + + label("linecap" infont "cmtt10" scaled 1.2, (5/2u, 7/4u)); + label("butt" infont "cmtt10" , ( 0, 5/4u)) withcolor tb; + label("rounded" infont "cmtt10" , (5/2u, 5/4u)) withcolor tb; + label("squared" infont "cmtt10" , (5/1u, 5/4u)) withcolor tb; + + label("linejoin" infont "cmtt10" scaled 1.2 rotated 90, (-7/4u, -11/4u)); + label("mitered" infont "cmtt10" rotated 90, (-5/4u,0)) withcolor tr; + label("rounded" infont "cmtt10" rotated 90, (-5/4u,-11/4u)) withcolor tr; + label("beveled" infont "cmtt10" rotated 90, (-5/4u,-11/2u)) withcolor tr; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.pdf Binary files differnew file mode 100644 index 00000000000..c65cacdde4d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/line-caps-and-joins.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.mp new file mode 100644 index 00000000000..396c9ccd4cc --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.mp @@ -0,0 +1,52 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric u, m, m', b, b'; + u = 1.44cm; + b = 3.6u; b' = b + 1/2 u; + m = -1; m' = 3/4 m; + + path xx, yy; + xx = (left -- 5 right) scaled u; + yy = xx rotated 90; + + numeric minx, maxx; path ff, gg; + minx = xpart point 1/16 of xx; + maxx = xpart point 15/16 of xx; + ff = (minx, minx * m + b) -- (maxx, maxx * m + b); + gg = (minx, minx * m' + b') -- (maxx, maxx * m' + b'); + + z0 = point 0.4 of ff; + z1 = point 0.54 of ff; + z1 0 = whatever [point 0 of gg, point 1 of gg]; x1 0 = x0; + z1 1 = whatever [point 0 of gg, point 1 of gg]; x1 1 = x1; + + forsuffixes @=0, 1: + draw (x@, 0) -- z@ -- (0, y@) dashed evenly scaled 3/4; + draw z@ -- z1 @ -- (0, y1 @) dashed withdots scaled 1/2; + label.bot("$x_{" & decimal @ & "}$", (x@, 0)); + label.lft("$y_{" & decimal @ & "}$", (0, y@)); + label.lft("$y'_{" & decimal @ & "}$", (0, y1 @)); + endfor + + draw ff withcolor 2/3 red; + draw gg withcolor 3/4 blue; + drawarrow xx; drawarrow yy; + + label.rt("$x$", point 1 of xx); + label.top("$y$", point 1 of yy); + + dotlabel.urt("$b$", (0, b)); + dotlabel.urt("$b'$", (0, b')); + + draw thelabel("slope: $m=" & decimal m & "$", 7 up) + rotated angle (1, m) shifted point 2/3 of ff; + draw thelabel("slope: $m'=" & decimal m' & "$", 7 up) + rotated angle (1, m') shifted point 2/3 of gg; + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.pdf Binary files differnew file mode 100644 index 00000000000..5e511e976c2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/linear-graph.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.mp new file mode 100644 index 00000000000..102117cfb0d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.mp @@ -0,0 +1,9 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + draw for i=0 upto 5: 20 dir 60i -- endfor cycle; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.pdf Binary files differnew file mode 100644 index 00000000000..5a3ea399226 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/little-hexagon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/london-boroughs.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/london-boroughs.mp new file mode 100644 index 00000000000..a8053b25ac0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/london-boroughs.mp @@ -0,0 +1,34 @@ +path Kingston_upon_Thames, Croydon, Bromley, Hounslow, Ealing, Havering, Hillingdon, Harrow, Brent, Barnet, Lambeth, Southwark, Lewisham, Greenwich, Bexley, Enfield, Waltham_Forest, Redbridge, Sutton, Richmond_upon_Thames, Merton, Wandsworth, Hammersmith_and_Fulham, Kensington_and_Chelsea, Westminster, Camden, Tower_Hamlets, Islington, Hackney, Haringey, Newham, Barking_and_Dagenham, City_of_London; +Barking_and_Dagenham = (436.2, 348.3)--(435.8, 347.9)--(435.7, 347.8)--(435.7, 347.6)--(435.7, 347.4)--(435.7, 347.2)--(435.8, 347.0)--(435.8, 346.9)--(435.8, 346.7)--(435.7, 346.6)--(435.6, 346.4)--(435.6, 346.3)--(435.5, 346.1)--(435.5, 345.8)--(435.9, 345.3)--(435.7, 345.1)--(435.5, 344.9)--(435.5, 344.7)--(435.5, 344.5)--(435.7, 344.4)--(435.9, 344.4)--(436.0, 344.3)--(436.1, 344.1)--(436.1, 343.9)--(436.0, 343.4)--(435.9, 343.0)--(435.9, 342.8)--(435.9, 342.7)--(435.9, 342.6)--(435.9, 342.5)--(436.0, 342.4)--(436.1, 342.2)--(436.4, 342.2)--(436.5, 342.3)--(436.6, 342.3)--(436.7, 342.3)--(436.7, 342.2)--(436.8, 342.2)--(436.9, 342.1)--(437.1, 341.7)--(437.1, 341.6)--(437.1, 341.4)--(437.1, 341.2)--(437.2, 340.9)--(437.3, 340.6)--(437.4, 340.5)--(437.6, 340.1)--(437.8, 339.5)--(438.0, 339.1)--(438.2, 338.7)--(438.3, 338.4)--(438.6, 338.0)--(438.7, 337.7)--(438.7, 337.4)--(438.6, 337.2)--(438.8, 336.8)--(438.7, 336.6)--(439.2, 336.1)--(439.3, 336.0)--(439.5, 335.8)--(439.7, 335.5)--(439.8, 335.4)--(440.3, 334.5)--(440.4, 334.5)--(440.5, 334.2)--(440.5, 334.0)--(440.7, 333.1)--(440.6, 332.8)--(440.7, 332.7)--(440.8, 332.5)--(440.8, 332.4)--(440.7, 332.4)--(440.7, 332.5)--(440.6, 332.5)--(440.7, 332.6)--(440.6, 332.6)--(440.5, 332.7)--(440.1, 332.4)--(440.0, 332.5)--(439.8, 332.4)--(439.1, 332.0)--(439.0, 332.0)--(439.1, 332.0)--(438.7, 332.2)--(438.7, 332.7)--(438.6, 333.2)--(438.6, 333.6)--(438.5, 334.0)--(438.4, 334.6)--(438.3, 335.2)--(438.1, 335.8)--(438.1, 335.9)--(437.9, 335.9)--(437.9, 336.0)--(437.7, 336.4)--(437.7, 336.5)--(437.6, 336.8)--(437.0, 338.1)--(436.8, 338.4)--(436.8, 338.5)--(436.5, 339.1)--(436.4, 339.3)--(436.3, 339.4)--(436.3, 339.6)--(436.2, 339.7)--(436.1, 339.7)--(435.9, 339.5)--(435.8, 339.5)--(435.7, 339.5)--(435.6, 339.5)--(435.5, 339.5)--(435.4, 339.5)--(435.3, 339.5)--(435.3, 339.4)--(435.2, 339.5)--(435.3, 339.5)--(435.3, 339.6)--(435.4, 339.8)--(435.4, 340.0)--(435.4, 340.2)--(435.4, 340.4)--(435.8, 340.6)--(435.8, 340.7)--(435.6, 341.0)--(435.5, 341.1)--(435.4, 341.4)--(435.1, 341.9)--(434.9, 342.3)--(434.8, 342.6)--(434.7, 342.7)--(434.6, 342.9)--(434.4, 343.3)--(434.3, 343.5)--(434.3, 343.8)--(434.3, 343.9)--(434.2, 344.0)--(434.2, 344.3)--(434.2, 344.6)--(434.2, 344.8)--(434.2, 345.0)--(434.2, 345.1)--(434.2, 345.2)--(434.2, 345.3)--(434.2, 345.4)--(434.3, 345.5)--(434.3, 345.6)--(434.4, 346.1)--(434.5, 346.5)--(434.6, 346.7)--(434.8, 347.3)--(435.0, 347.7)--(435.1, 348.1)--(435.2, 348.4)--(435.2, 348.5)--(435.2, 348.6)--(435.8, 348.5)--(435.8, 348.4)--(436.0, 348.3)--(435.9, 348.2)--(435.8, 348.0)--(436.6, 348.1)--(437.0, 348.0)--(437.1, 348.0)--(437.2, 348.0)--(437.5, 347.8)--(437.7, 347.8)--(437.7, 348.0)--(437.8, 348.0)--(438.0, 348.0)--(438.3, 348.0)--(438.4, 348.0)--(438.5, 348.0)--(438.6, 348.0)--(438.6, 348.1)--(438.7, 348.1)--(438.8, 348.1)--(439.0, 348.1)--(439.3, 348.1)--(439.5, 348.1)--(439.8, 348.2)--(440.2, 348.3)--(440.4, 348.5)--(440.7, 348.6)--(441.0, 348.9)--(441.1, 349.0)--(441.3, 348.8)--(441.5, 348.9)--(441.6, 349.0)--(441.7, 348.8)--(441.8, 348.6)--(441.9, 348.4)--(442.0, 348.5)--(442.0, 348.6)--(442.1, 348.7)--(442.2, 348.7)--(442.3, 348.8)--(442.5, 348.8)--(443.0, 349.1)--(443.4, 349.3)--(443.8, 349.5)--(444.1, 349.6)--(444.3, 349.7)--(444.4, 349.8)--(444.5, 349.9)--(444.4, 350.0)--(444.4, 350.1)--(444.4, 350.2)--(444.5, 350.2)--(444.6, 350.2)--(444.8, 350.3)--(444.9, 350.4)--(445.0, 350.5)--(445.2, 350.6)--(445.2, 350.7)--(445.3, 350.8)--(445.4, 350.9)--(445.5, 350.9)--(445.6, 351.0)--(446.0, 351.2)--(446.1, 351.3)--(446.2, 351.4)--(446.6, 351.6)--(446.8, 351.8)--(447.2, 352.2)--(447.4, 352.3)--(447.6, 352.4)--(447.8, 352.4)--(448.5, 352.6)--(448.8, 352.7)--(448.9, 352.7)--(449.1, 352.7)--(449.4, 352.8)--(449.8, 352.9)--(450.0, 352.9)--(450.1, 352.9)--(450.2, 353.0)--(450.3, 353.0)--(450.4, 353.0)--(450.5, 353.0)--(450.5, 353.1)--(450.6, 353.2)--(450.7, 353.3)--(451.1, 353.4)--(451.2, 353.4)--(451.2, 353.5)--(451.2, 353.6)--(451.1, 353.8)--(451.2, 354.0)--(451.2, 354.1)--(451.2, 354.2)--(451.3, 354.3)--(451.4, 354.5)--(451.5, 354.7)--(451.9, 354.9)--(451.8, 354.8)--(451.8, 354.5)--(451.7, 354.1)--(451.7, 354.0)--(451.7, 353.8)--(451.7, 353.6)--(451.7, 353.5)--(451.9, 352.8)--(452.1, 352.1)--(452.2, 352.0)--(452.3, 351.6)--(452.4, 351.2)--(452.4, 351.0)--(452.5, 351.0)--(452.5, 350.9)--(452.6, 350.7)--(452.9, 350.9)--(453.1, 351.0)--(453.2, 351.1)--(453.7, 351.4)--(454.1, 351.6)--(454.6, 351.9)--(454.7, 352.1)--(455.1, 352.3)--(455.4, 352.4)--(455.6, 352.6)--(455.7, 352.7)--(455.8, 352.8)--(456.0, 352.9)--(456.3, 353.2)--(456.7, 353.5)--(456.8, 353.6)--(456.9, 353.7)--(457.1, 353.8)--(457.2, 353.9)--(457.5, 354.1)--(458.0, 354.3)--(458.6, 354.6)--(458.8, 354.8)--(458.9, 354.9)--(459.2, 355.0)--(459.5, 355.1)--(459.8, 355.3)--(459.9, 355.3)--(460.1, 355.5)--(460.2, 355.5)--(460.3, 355.6)--(460.5, 355.8)--(460.6, 355.9)--(460.8, 356.1)--(461.0, 356.3)--(461.1, 356.5)--(461.3, 356.7)--(461.5, 357.0)--(461.9, 357.6)--(462.0, 357.7)--(462.1, 357.8)--(462.2, 357.9)--(462.3, 357.9)--(462.5, 357.9)--(462.6, 357.9)--(462.7, 357.9)--(462.7, 358.6)--(463.7, 358.5)--(464.6, 358.4)--(465.2, 358.7)--(465.5, 359.0)--(465.4, 359.6)--(465.5, 359.6)--(465.7, 359.9)--(467.0, 361.7)--(466.7, 362.0)--(466.6, 362.0)--(466.6, 362.2)--(465.6, 363.0)--(465.9, 363.3)--(466.0, 363.9)--(468.7, 363.5)--(468.6, 364.0)--(469.2, 364.0)--(469.3, 364.0)--(469.9, 364.0)--(470.9, 365.4)--(469.8, 365.6)--(469.4, 365.8)--(469.1, 365.9)--(468.8, 366.0)--(469.6, 368.0)--(470.3, 369.7)--(469.7, 370.0)--(469.8, 370.4)--(470.0, 370.5)--(470.1, 370.5)--(470.2, 370.6)--(470.4, 370.6)--(473.7, 371.7)--(473.9, 371.9)--(474.1, 372.1)--(474.2, 372.2)--(474.3, 372.4)--(474.5, 372.6)--(474.8, 372.8)--(475.0, 373.0)--(475.1, 373.2)--(475.3, 373.4)--(475.4, 373.7)--(475.5, 373.8)--(475.6, 374.0)--(475.9, 374.1)--(476.0, 374.2)--(476.2, 374.3)--(476.3, 374.3)--(476.4, 374.3)--(476.8, 374.4)--(476.8, 374.5)--(476.8, 374.6)--(476.9, 374.8)--(477.0, 375.4)--(477.0, 375.8)--(477.0, 375.9)--(477.0, 376.2)--(477.0, 376.3)--(476.9, 376.5)--(476.9, 376.8)--(477.0, 377.0)--(477.1, 377.2)--(477.2, 377.6)--(477.3, 377.9)--(477.4, 378.3)--(477.5, 378.6)--(477.5, 378.7)--(477.4, 378.9)--(477.4, 379.0)--(477.4, 379.1)--(477.3, 379.1)--(477.2, 379.1)--(477.1, 379.2)--(477.1, 379.3)--(477.1, 379.6)--(477.1, 379.7)--(477.1, 379.8)--(477.0, 379.9)--(477.0, 380.0)--(477.6, 380.2)--(478.2, 380.4)--(477.9, 381.2)--(477.8, 381.6)--(477.7, 381.9)--(477.6, 382.0)--(477.7, 382.1)--(477.6, 382.1)--(477.5, 381.9)--(477.1, 381.7)--(477.1, 381.8)--(476.9, 382.2)--(476.8, 382.4)--(476.6, 382.7)--(476.6, 382.9)--(476.6, 383.1)--(476.6, 383.3)--(476.5, 383.3)--(476.5, 383.6)--(476.5, 384.0)--(476.5, 384.5)--(476.4, 384.7)--(476.4, 385.0)--(476.4, 385.3)--(476.8, 385.5)--(478.0, 386.2)--(477.9, 386.5)--(477.9, 386.6)--(477.9, 386.8)--(477.8, 387.0)--(477.7, 387.3)--(477.6, 387.6)--(477.6, 387.9)--(477.6, 388.0)--(477.5, 388.4)--(477.4, 388.4)--(477.3, 388.4)--(477.4, 388.7)--(479.3, 389.5)--(479.2, 389.7)--(479.1, 390.0)--(479.0, 390.2)--(478.9, 390.2)--(478.8, 390.4)--(478.8, 390.5)--(478.7, 390.7)--(478.6, 390.9)--(478.5, 390.9)--(478.3, 390.9)--(478.0, 391.0)--(476.2, 391.1)--(475.2, 391.2)--(475.2, 391.5)--(475.2, 391.8)--(475.3, 391.9)--(475.4, 392.0)--(475.4, 392.6)--(475.4, 392.7)--(475.1, 393.7)--(474.8, 393.7)--(474.9, 394.3)--(474.1, 396.8)--(474.2, 396.9)--(475.6, 397.3)--(476.2, 397.5)--(476.4, 397.5)--(476.5, 397.6)--(476.7, 397.6)--(477.3, 397.8)--(477.0, 398.4)--(476.9, 398.7)--(476.7, 399.1)--(476.6, 399.4)--(476.4, 399.8)--(476.3, 400.1)--(476.2, 400.6)--(476.9, 401.1)--(477.9, 402.0)--(478.7, 402.6)--(480.4, 404.0)--(481.1, 404.6)--(481.5, 404.9)--(481.5, 405.0)--(481.6, 405.0)--(481.7, 405.1)--(482.5, 405.9)--(483.6, 407.1)--(484.1, 407.6)--(484.5, 408.1)--(484.6, 408.1)--(485.2, 408.7)--(487.0, 410.7)--(487.7, 411.4)--(488.4, 411.1)--(488.7, 410.9)--(488.8, 410.9)--(488.8, 410.6)--(488.8, 410.5)--(488.7, 410.0)--(488.7, 409.5)--(488.6, 408.9)--(488.5, 408.5)--(488.8, 408.4)--(488.9, 408.4)--(488.8, 408.0)--(490.0, 408.8)--(490.2, 408.4)--(490.5, 407.9)--(490.8, 407.4)--(491.0, 407.0)--(490.9, 406.2)--(490.8, 405.2)--(490.8, 404.7)--(490.8, 403.8)--(490.7, 402.4)--(490.8, 402.1)--(491.0, 401.5)--(491.1, 401.1)--(491.2, 400.7)--(491.2, 400.4)--(491.2, 400.0)--(491.2, 399.2)--(491.2, 398.4)--(491.2, 397.2)--(491.2, 395.7)--(491.2, 394.5)--(491.2, 394.0)--(491.1, 393.7)--(491.0, 393.2)--(490.9, 393.0)--(490.6, 392.7)--(490.4, 392.4)--(490.0, 391.6)--(489.6, 390.9)--(489.5, 390.6)--(488.9, 390.7)--(488.8, 389.2)--(488.8, 387.5)--(488.8, 387.0)--(488.8, 386.7)--(488.8, 385.7)--(488.7, 385.0)--(489.5, 385.1)--(489.5, 384.9)--(489.6, 384.6)--(489.6, 384.5)--(489.6, 384.3)--(489.5, 383.8)--(489.5, 383.5)--(489.5, 383.0)--(489.5, 382.8)--(489.5, 382.4)--(489.5, 382.2)--(489.5, 382.1)--(490.2, 382.3)--(490.4, 380.9)--(490.5, 380.3)--(490.4, 380.3)--(490.5, 379.2)--(490.5, 379.0)--(490.6, 378.9)--(490.8, 378.8)--(490.8, 378.6)--(490.9, 378.4)--(489.8, 378.2)--(488.7, 378.0)--(488.8, 377.8)--(488.8, 377.5)--(488.8, 377.4)--(488.8, 377.3)--(488.9, 377.3)--(489.1, 377.3)--(489.1, 377.2)--(489.2, 377.2)--(489.2, 377.1)--(490.2, 377.2)--(490.3, 377.0)--(490.6, 376.6)--(490.7, 376.6)--(490.8, 376.6)--(490.9, 376.6)--(491.0, 376.6)--(491.0, 376.5)--(491.1, 376.5)--(491.1, 376.4)--(491.3, 376.3)--(491.5, 376.3)--(491.6, 376.3)--(491.7, 376.3)--(491.8, 376.4)--(491.9, 376.5)--(492.0, 376.6)--(492.1, 376.5)--(492.3, 376.3)--(492.7, 376.0)--(492.9, 375.8)--(493.3, 375.4)--(493.6, 375.0)--(493.9, 374.7)--(494.1, 374.5)--(494.4, 374.2)--(494.5, 374.1)--(494.7, 373.9)--(494.8, 373.8)--(495.0, 373.6)--(495.2, 373.5)--(495.3, 373.5)--(495.5, 373.4)--(495.6, 373.3)--(495.7, 373.2)--(495.8, 373.0)--(496.1, 372.8)--(496.5, 372.4)--(496.7, 372.2)--(496.9, 372.2)--(497.1, 372.0)--(497.3, 371.8)--(497.4, 371.7)--(497.6, 371.6)--(497.8, 371.4)--(498.0, 371.2)--(498.1, 371.0)--(498.2, 370.9)--(498.2, 370.7)--(498.3, 370.6)--(498.5, 370.5)--(498.6, 370.4)--(498.6, 370.3)--(498.7, 370.1)--(498.9, 370.0)--(499.1, 369.9)--(499.2, 369.9)--(499.4, 369.8)--(499.5, 369.7)--(499.5, 369.6)--(499.9, 369.8)--(500.1, 370.0)--(500.3, 370.1)--(500.6, 370.2)--(500.8, 370.4)--(501.2, 370.7)--(501.6, 370.9)--(501.9, 371.1)--(502.1, 371.2)--(502.2, 371.3)--(502.4, 371.4)--(502.6, 371.6)--(502.7, 371.6)--(502.8, 371.7)--(503.1, 371.8)--(503.4, 371.8)--(503.6, 371.8)--(503.7, 371.8)--(503.9, 371.9)--(504.0, 371.9)--(504.1, 372.0)--(504.3, 372.1)--(504.4, 372.1)--(504.5, 372.3)--(504.7, 372.4)--(504.8, 372.5)--(505.0, 372.6)--(505.1, 372.6)--(505.2, 372.7)--(505.3, 372.8)--(505.5, 372.9)--(505.9, 373.2)--(506.0, 373.2)--(506.3, 373.3)--(506.5, 373.4)--(506.8, 373.4)--(507.0, 373.5)--(507.2, 373.6)--(507.4, 373.7)--(507.7, 373.7)--(508.2, 373.6)--(508.8, 373.5)--(508.9, 373.4)--(509.2, 373.4)--(509.4, 373.4)--(509.7, 373.5)--(509.9, 373.5)--(510.2, 373.5)--(510.6, 373.6)--(511.0, 373.7)--(511.3, 373.7)--(511.6, 373.6)--(512.1, 373.6)--(512.2, 373.6)--(512.3, 373.6)--(512.7, 373.5)--(512.9, 373.5)--(513.0, 373.5)--(513.1, 373.6)--(513.2, 373.6)--(513.3, 373.5)--(513.8, 373.5)--(514.1, 373.5)--(514.3, 373.4)--(514.4, 373.4)--(514.5, 373.5)--(514.6, 373.6)--(514.9, 373.9)--(515.5, 374.4)--(515.5, 374.1)--(515.5, 373.9)--(515.5, 373.7)--(515.5, 373.6)--(515.5, 373.5)--(515.3, 373.3)--(515.2, 373.1)--(515.1, 373.0)--(514.9, 372.8)--(514.8, 372.7)--(514.8, 372.6)--(514.7, 372.5)--(514.7, 372.2)--(514.6, 371.7)--(514.5, 371.5)--(514.5, 371.4)--(514.4, 371.3)--(514.4, 371.2)--(514.3, 370.8)--(514.0, 370.1)--(513.9, 369.7)--(514.0, 369.7)--(514.0, 369.6)--(514.1, 369.5)--(514.1, 369.4)--(514.3, 369.3)--(514.5, 369.1)--(514.6, 368.9)--(515.0, 368.7)--(515.3, 368.5)--(515.3, 368.4)--(515.4, 368.3)--(515.4, 368.1)--(515.4, 367.9)--(515.4, 367.8)--(515.4, 367.7)--(515.4, 367.6)--(515.5, 367.5)--(515.5, 367.4)--(515.5, 367.2)--(515.5, 367.0)--(515.4, 366.9)--(515.3, 366.8)--(515.4, 366.7)--(515.4, 366.6)--(515.3, 366.5)--(515.4, 366.4)--(515.3, 366.3)--(515.3, 366.2)--(515.3, 366.0)--(515.3, 365.9)--(515.3, 365.8)--(515.3, 365.7)--(515.3, 365.5)--(515.5, 365.4)--(515.5, 365.3)--(515.6, 365.2)--(515.5, 365.1)--(515.5, 365.0)--(515.6, 364.8)--(515.7, 364.8)--(515.7, 364.7)--(515.7, 364.6)--(515.6, 364.6)--(515.5, 364.6)--(515.5, 364.4)--(515.5, 364.3)--(515.7, 364.3)--(516.0, 364.3)--(516.2, 364.3)--(516.3, 364.3)--(516.4, 364.2)--(516.6, 364.0)--(516.7, 363.8)--(517.0, 363.7)--(517.1, 363.7)--(517.1, 363.6)--(517.1, 363.5)--(517.1, 363.4)--(517.3, 363.3)--(517.4, 363.2)--(517.5, 363.0)--(517.6, 362.9)--(517.6, 362.8)--(517.7, 362.6)--(517.6, 362.6)--(517.6, 362.5)--(517.5, 362.4)--(517.5, 362.3)--(517.6, 362.2)--(517.7, 362.2)--(517.8, 362.2)--(517.9, 362.1)--(517.9, 362.0)--(517.8, 361.9)--(517.8, 361.8)--(517.9, 361.7)--(518.0, 361.7)--(518.2, 361.5)--(518.3, 361.4)--(518.3, 361.3)--(518.4, 361.2)--(518.5, 361.1)--(518.6, 361.1)--(518.7, 361.0)--(518.8, 360.9)--(519.0, 360.8)--(519.1, 360.8)--(519.3, 360.4)--(519.4, 360.4)--(519.4, 360.3)--(519.4, 360.2)--(519.3, 360.1)--(519.3, 360.0)--(519.3, 359.8)--(519.2, 359.6)--(519.1, 359.5)--(519.1, 359.3)--(519.1, 359.1)--(519.1, 359.0)--(519.1, 358.9)--(518.9, 358.9)--(518.8, 358.8)--(518.8, 358.7)--(518.6, 358.5)--(518.3, 358.2)--(518.1, 358.0)--(517.6, 357.5)--(517.6, 357.3)--(517.6, 357.2)--(517.5, 356.9)--(517.5, 356.8)--(517.5, 356.7)--(517.5, 356.6)--(517.4, 356.5)--(517.3, 356.3)--(517.2, 356.0)--(517.2, 355.9)--(517.2, 355.8)--(517.1, 355.7)--(517.1, 355.4)--(517.0, 355.2)--(516.9, 354.9)--(516.8, 354.7)--(516.7, 354.5)--(516.6, 354.2)--(516.6, 354.1)--(516.4, 354.0)--(516.3, 354.0)--(516.1, 353.9)--(516.0, 353.8)--(515.7, 353.6)--(515.5, 353.4)--(515.3, 353.2)--(515.1, 353.1)--(514.8, 352.9)--(514.6, 352.7)--(514.5, 352.6)--(514.4, 352.5)--(514.3, 352.4)--(513.9, 351.9)--(513.8, 351.8)--(513.7, 351.6)--(513.6, 351.4)--(513.5, 351.2)--(513.4, 351.1)--(513.2, 350.9)--(513.0, 350.7)--(512.9, 350.5)--(512.8, 350.3)--(512.7, 350.1)--(512.7, 349.8)--(512.7, 349.7)--(512.6, 349.5)--(512.6, 349.3)--(512.6, 349.2)--(512.5, 349.1)--(512.5, 348.9)--(512.5, 348.8)--(512.4, 348.6)--(512.5, 348.2)--(512.5, 348.1)--(512.5, 348.0)--(512.6, 348.0)--(512.5, 347.9)--(512.5, 347.8)--(512.5, 347.7)--(512.5, 347.6)--(512.5, 347.5)--(512.5, 347.3)--(512.4, 347.2)--(512.4, 346.9)--(512.4, 346.7)--(512.3, 346.6)--(512.3, 346.5)--(512.3, 346.4)--(512.3, 346.3)--(512.2, 346.3)--(512.1, 346.2)--(512.0, 346.1)--(512.0, 346.0)--(511.9, 346.0)--(511.9, 345.9)--(511.7, 345.7)--(511.6, 345.5)--(511.5, 345.4)--(511.4, 345.4)--(511.3, 345.4)--(511.2, 345.4)--(511.0, 345.4)--(510.9, 345.3)--(510.7, 345.2)--(510.6, 345.1)--(510.4, 345.0)--(510.3, 344.9)--(510.2, 344.8)--(509.9, 344.6)--(509.7, 344.4)--(509.4, 344.2)--(509.3, 344.1)--(509.2, 343.9)--(509.1, 343.8)--(508.7, 343.2)--(508.6, 343.0)--(508.3, 342.3)--(508.1, 341.9)--(507.8, 341.3)--(507.7, 341.0)--(507.6, 340.9)--(507.6, 340.8)--(507.6, 340.7)--(507.6, 340.6)--(507.5, 340.4)--(507.5, 340.3)--(507.4, 340.3)--(507.4, 340.1)--(507.4, 340.0)--(507.3, 339.9)--(507.3, 339.7)--(507.4, 339.6)--(507.4, 339.5)--(507.4, 339.4)--(507.3, 339.3)--(507.3, 339.2)--(507.3, 339.0)--(507.2, 338.9)--(507.1, 338.8)--(507.1, 338.7)--(507.0, 338.6)--(507.0, 338.4)--(506.9, 338.3)--(506.9, 338.1)--(506.8, 338.0)--(506.7, 337.6)--(506.6, 337.6)--(506.5, 337.5)--(506.5, 337.4)--(506.4, 337.4)--(506.4, 337.3)--(506.3, 337.2)--(506.2, 337.1)--(506.0, 336.8)--(505.9, 336.7)--(505.8, 336.6)--(505.7, 336.5)--(505.6, 336.3)--(505.4, 336.1)--(505.3, 336.0)--(505.2, 335.9)--(505.2, 335.8)--(505.1, 335.7)--(505.0, 335.6)--(504.9, 335.5)--(504.8, 335.5)--(504.8, 335.4)--(504.7, 335.3)--(504.7, 335.2)--(504.7, 335.0)--(504.6, 334.9)--(504.5, 334.8)--(504.5, 334.7)--(504.5, 334.6)--(504.4, 334.6)--(504.4, 334.5)--(504.3, 334.5)--(504.3, 334.4)--(504.2, 334.4)--(504.1, 334.3)--(504.0, 334.2)--(503.9, 334.1)--(503.9, 334.0)--(503.8, 333.9)--(503.8, 333.8)--(503.8, 333.5)--(503.7, 333.5)--(503.6, 333.4)--(503.6, 333.3)--(503.5, 333.3)--(503.5, 333.2)--(503.4, 333.0)--(503.3, 333.0)--(503.2, 333.0)--(503.1, 332.9)--(503.1, 332.8)--(503.1, 332.6)--(503.0, 332.4)--(502.9, 332.2)--(502.9, 332.0)--(502.8, 331.9)--(502.8, 331.8)--(502.7, 331.7)--(502.6, 331.5)--(502.4, 331.3)--(502.4, 331.2)--(502.4, 331.1)--(502.5, 330.9)--(502.4, 330.7)--(502.2, 330.3)--(502.2, 330.2)--(502.2, 330.1)--(502.2, 330.0)--(502.2, 329.9)--(502.2, 329.8)--(502.2, 329.7)--(502.2, 329.6)--(502.2, 329.5)--(502.1, 329.4)--(502.0, 329.4)--(502.0, 329.3)--(502.0, 329.2)--(502.0, 329.1)--(502.0, 329.0)--(501.9, 328.7)--(501.8, 328.4)--(501.6, 328.0)--(501.5, 327.7)--(501.4, 327.3)--(501.4, 326.8)--(501.3, 326.8)--(501.3, 326.6)--(501.1, 326.0)--(501.1, 325.9)--(501.1, 325.8)--(501.1, 325.7)--(501.1, 325.4)--(501.2, 325.3)--(501.2, 325.2)--(501.1, 325.0)--(501.1, 324.8)--(500.8, 323.8)--(500.8, 323.5)--(500.6, 323.0)--(500.5, 322.6)--(500.5, 322.5)--(500.4, 322.1)--(500.4, 321.9)--(500.3, 321.8)--(500.3, 321.7)--(500.3, 321.6)--(500.2, 321.3)--(500.1, 321.0)--(500.0, 320.7)--(500.0, 320.5)--(499.9, 320.3)--(499.9, 320.1)--(499.8, 320.0)--(499.8, 319.9)--(499.6, 319.4)--(499.6, 319.1)--(499.6, 319.0)--(499.5, 318.9)--(499.5, 318.8)--(499.4, 318.3)--(499.2, 317.2)--(499.2, 317.1)--(499.2, 317.0)--(499.1, 316.7)--(499.1, 316.4)--(499.1, 316.2)--(499.0, 316.1)--(499.1, 316.0)--(499.1, 315.9)--(499.1, 315.7)--(499.1, 315.6)--(499.0, 315.3)--(499.0, 315.0)--(498.9, 314.7)--(498.9, 314.6)--(498.9, 314.5)--(498.9, 314.4)--(498.7, 314.4)--(498.6, 314.3)--(497.9, 314.5)--(497.2, 314.6)--(497.0, 314.6)--(497.0, 314.7)--(496.8, 314.7)--(496.8, 314.6)--(496.6, 314.7)--(496.3, 314.6)--(496.1, 314.7)--(495.8, 314.8)--(495.5, 314.8)--(495.4, 314.8)--(495.2, 314.8)--(494.9, 314.9)--(494.8, 314.9)--(494.6, 314.9)--(494.5, 315.0)--(494.3, 315.0)--(493.8, 315.1)--(493.2, 315.4)--(492.4, 315.7)--(492.3, 315.7)--(492.0, 315.9)--(491.5, 316.0)--(491.1, 316.2)--(490.7, 316.4)--(490.5, 316.5)--(490.4, 316.6)--(490.4, 316.7)--(490.0, 316.7)--(489.5, 317.0)--(489.5, 317.2)--(489.9, 317.0)--(489.9, 317.2)--(489.9, 317.4)--(489.7, 317.6)--(489.5, 317.7)--(489.3, 317.7)--(488.9, 317.9)--(488.7, 317.7)--(488.6, 317.5)--(488.7, 317.4)--(488.6, 317.2)--(488.3, 317.6)--(488.1, 317.8)--(487.7, 318.0)--(487.3, 318.4)--(485.9, 319.4)--(486.0, 319.5)--(485.4, 320.0)--(485.2, 320.2)--(485.0, 320.3)--(484.1, 320.7)--(484.0, 320.8)--(483.5, 321.0)--(483.2, 321.1)--(483.0, 321.2)--(482.0, 321.4)--(481.5, 321.4)--(481.4, 321.5)--(481.3, 321.6)--(481.1, 321.7)--(481.0, 321.7)--(480.9, 321.7)--(480.8, 321.7)--(480.8, 321.6)--(480.7, 321.6)--(480.7, 321.5)--(480.6, 321.4)--(480.5, 321.4)--(480.4, 321.4)--(480.3, 321.4)--(480.2, 321.4)--(480.1, 321.5)--(479.5, 321.7)--(478.9, 321.8)--(478.6, 321.8)--(478.2, 321.9)--(477.8, 321.9)--(476.8, 322.0)--(476.4, 322.0)--(476.2, 322.0)--(476.1, 321.9)--(475.9, 321.9)--(475.6, 321.8)--(474.7, 321.6)--(474.3, 321.5)--(474.2, 321.5)--(474.1, 321.5)--(473.8, 321.5)--(473.6, 321.4)--(473.3, 321.3)--(472.7, 321.0)--(472.3, 320.8)--(472.1, 320.7)--(471.6, 320.5)--(471.3, 320.4)--(471.2, 320.3)--(471.0, 320.2)--(470.9, 320.0)--(470.6, 319.8)--(470.6, 319.7)--(470.5, 319.6)--(470.4, 319.6)--(470.2, 319.4)--(469.9, 319.1)--(469.7, 319.2)--(469.5, 319.0)--(469.3, 318.9)--(469.2, 318.8)--(468.9, 318.6)--(468.7, 318.5)--(468.7, 318.4)--(468.5, 318.3)--(468.0, 318.0)--(468.0, 317.8)--(468.1, 317.7)--(468.1, 317.6)--(467.5, 317.3)--(467.4, 317.4)--(464.4, 315.9)--(464.3, 315.9)--(464.0, 315.8)--(463.9, 315.8)--(463.6, 315.7)--(463.5, 315.7)--(463.2, 315.6)--(462.8, 315.5)--(462.4, 315.5)--(462.1, 315.6)--(461.9, 315.6)--(461.3, 315.6)--(461.2, 315.7)--(460.1, 315.9)--(460.1, 316.0)--(459.6, 316.0)--(459.5, 316.1)--(459.3, 316.1)--(459.2, 316.0)--(459.1, 315.9)--(458.5, 316.1)--(457.7, 316.3)--(457.6, 316.5)--(457.3, 316.7)--(457.1, 316.8)--(456.5, 317.4)--(456.2, 317.6)--(455.9, 317.8)--(455.8, 317.9)--(455.7, 318.0)--(455.6, 318.0)--(455.6, 318.1)--(455.5, 318.1)--(455.5, 318.2)--(455.4, 318.3)--(455.3, 318.3)--(455.3, 318.4)--(455.2, 318.5)--(455.1, 318.5)--(455.0, 318.6)--(455.0, 318.7)--(454.9, 318.9)--(454.8, 319.2)--(454.8, 319.3)--(454.9, 319.4)--(454.8, 319.5)--(454.8, 319.6)--(454.8, 319.7)--(454.8, 319.8)--(454.8, 320.2)--(454.7, 320.4)--(454.7, 320.8)--(454.8, 320.8)--(454.9, 321.0)--(454.8, 321.2)--(454.8, 321.5)--(454.8, 321.6)--(454.9, 321.9)--(455.0, 322.1)--(454.9, 322.4)--(455.0, 322.4)--(454.9, 322.6)--(454.8, 322.6)--(454.7, 322.7)--(454.4, 323.1)--(454.1, 323.5)--(453.6, 324.0)--(453.3, 324.3)--(452.9, 324.9)--(452.8, 325.1)--(452.8, 325.2)--(452.9, 325.4)--(452.9, 325.7)--(452.9, 326.0)--(453.0, 326.3)--(453.0, 326.6)--(453.1, 327.1)--(453.1, 327.2)--(453.0, 327.4)--(453.0, 327.6)--(452.9, 327.9)--(452.8, 328.4)--(452.8, 328.5)--(452.7, 328.6)--(452.7, 328.8)--(452.6, 328.9)--(452.3, 329.2)--(452.2, 329.4)--(452.0, 329.4)--(452.0, 329.3)--(451.9, 328.9)--(451.8, 328.9)--(451.7, 328.8)--(451.4, 328.7)--(451.2, 328.7)--(451.1, 328.8)--(450.8, 329.1)--(450.6, 329.3)--(450.3, 329.4)--(450.0, 329.5)--(449.6, 329.3)--(448.9, 329.0)--(448.8, 329.0)--(448.7, 328.9)--(448.6, 328.9)--(448.5, 328.8)--(448.4, 328.7)--(448.3, 328.7)--(448.2, 328.7)--(448.1, 328.7)--(448.1, 328.6)--(447.9, 328.5)--(447.8, 328.6)--(447.7, 328.7)--(447.6, 328.7)--(447.5, 328.7)--(447.5, 328.8)--(447.4, 328.8)--(447.2, 328.9)--(447.1, 328.9)--(447.0, 329.0)--(447.0, 329.1)--(446.6, 329.4)--(446.4, 329.6)--(446.0, 329.8)--(445.8, 329.9)--(444.7, 330.3)--(444.5, 330.4)--(444.3, 330.5)--(444.1, 330.6)--(443.6, 331.2)--(443.4, 331.3)--(443.3, 331.5)--(443.0, 331.9)--(442.7, 332.2)--(442.5, 332.5)--(442.0, 332.5)--(441.9, 332.5)--(441.8, 332.6)--(441.6, 332.5)--(441.4, 332.5)--(441.3, 332.6)--(441.2, 332.7)--(441.1, 332.9)--(441.0, 333.4)--(440.9, 334.3)--(440.7, 334.6)--(440.6, 334.9)--(440.3, 335.4)--(440.2, 335.4)--(440.0, 335.7)--(439.5, 336.3)--(439.6, 336.7)--(439.8, 337.0)--(439.7, 337.1)--(439.5, 337.4)--(439.2, 337.2)--(439.2, 337.3)--(439.1, 337.4)--(439.0, 337.5)--(439.0, 337.7)--(438.9, 337.8)--(439.0, 337.9)--(438.9, 338.1)--(438.7, 338.3)--(438.5, 338.7)--(438.1, 339.4)--(438.0, 339.7)--(437.9, 340.1)--(437.6, 340.6)--(437.5, 340.7)--(437.5, 340.8)--(437.4, 341.0)--(437.4, 341.5)--(437.3, 341.7)--(437.2, 342.0)--(437.0, 342.3)--(436.9, 342.5)--(436.9, 342.7)--(436.8, 342.8)--(436.8, 342.7)--(436.8, 342.5)--(436.7, 342.5)--(436.5, 342.5)--(436.3, 342.4)--(436.2, 342.5)--(436.2, 342.7)--(436.2, 342.8)--(436.2, 343.1)--(436.2, 343.2)--(436.2, 343.4)--(436.3, 343.9)--(436.3, 344.1)--(436.4, 344.2)--(436.4, 344.4)--(436.4, 344.8)--(435.9, 345.6)--(435.8, 345.8)--(435.8, 345.9)--(435.7, 346.0)--(435.8, 346.2)--(435.9, 346.4)--(436.0, 346.6)--(436.1, 347.1)--(436.0, 347.3)--(436.0, 347.7)--(436.0, 347.9)--(436.2, 348.2)--cycle; +Barnet = (245.8, 483.6)--(245.9, 483.2)--(246.1, 482.7)--(246.2, 482.3)--(246.3, 482.0)--(246.4, 481.7)--(246.5, 481.4)--(246.6, 481.4)--(246.7, 481.4)--(247.6, 481.4)--(247.9, 481.4)--(248.1, 481.4)--(248.4, 481.8)--(248.8, 481.7)--(249.3, 481.6)--(249.0, 480.8)--(249.0, 480.7)--(248.8, 480.2)--(248.5, 479.4)--(248.2, 478.4)--(248.1, 478.4)--(248.8, 478.2)--(249.2, 478.1)--(250.1, 477.9)--(251.0, 477.6)--(251.2, 477.6)--(251.5, 477.4)--(251.7, 477.2)--(251.9, 477.0)--(252.1, 476.7)--(252.1, 476.8)--(252.5, 477.7)--(253.2, 478.9)--(253.1, 478.9)--(253.4, 479.6)--(254.2, 481.2)--(255.6, 481.9)--(256.2, 482.0)--(256.2, 481.9)--(258.1, 482.1)--(257.4, 480.2)--(256.9, 478.9)--(256.1, 476.8)--(255.8, 476.0)--(255.7, 475.6)--(257.1, 475.2)--(257.2, 475.2)--(258.0, 474.9)--(258.2, 474.8)--(259.4, 474.4)--(260.5, 474.1)--(262.2, 473.5)--(262.9, 473.3)--(265.0, 472.6)--(270.2, 470.9)--(271.3, 470.8)--(271.5, 470.7)--(271.8, 470.6)--(272.8, 469.8)--(273.1, 469.6)--(273.4, 469.3)--(275.0, 468.8)--(275.2, 468.9)--(275.3, 468.7)--(276.9, 468.2)--(277.3, 468.1)--(277.4, 468.1)--(277.5, 467.7)--(277.5, 467.5)--(277.7, 467.4)--(277.8, 467.3)--(278.1, 467.1)--(278.2, 466.9)--(278.3, 466.4)--(278.3, 466.0)--(278.3, 465.7)--(278.4, 465.6)--(278.1, 465.5)--(278.0, 465.5)--(277.9, 465.2)--(278.0, 464.8)--(278.2, 464.9)--(278.4, 464.9)--(278.4, 464.8)--(278.5, 464.7)--(278.7, 464.2)--(278.8, 464.0)--(279.1, 463.6)--(279.1, 463.5)--(279.1, 463.4)--(279.2, 462.8)--(279.2, 462.3)--(279.2, 462.1)--(279.3, 462.0)--(279.3, 461.8)--(279.6, 461.9)--(280.2, 462.1)--(281.0, 460.6)--(279.7, 459.9)--(279.4, 459.7)--(279.3, 459.3)--(280.0, 459.0)--(280.2, 458.9)--(280.1, 458.6)--(280.0, 458.5)--(280.1, 458.4)--(279.5, 457.3)--(279.9, 457.1)--(279.8, 456.8)--(280.1, 456.7)--(280.2, 456.7)--(280.4, 456.7)--(280.8, 456.7)--(281.5, 456.8)--(281.6, 456.7)--(281.6, 456.5)--(281.6, 456.3)--(281.6, 456.1)--(281.6, 456.0)--(281.7, 455.5)--(281.8, 455.2)--(282.0, 454.3)--(282.1, 454.2)--(282.4, 453.6)--(282.5, 453.2)--(284.5, 453.9)--(285.3, 452.1)--(286.0, 451.2)--(286.3, 450.8)--(286.6, 450.3)--(286.5, 450.2)--(286.6, 450.0)--(286.7, 449.9)--(286.9, 449.7)--(287.2, 449.3)--(287.4, 449.0)--(287.6, 448.8)--(287.8, 448.5)--(288.2, 448.1)--(289.2, 447.2)--(289.3, 447.1)--(289.5, 447.0)--(289.8, 446.8)--(290.8, 446.1)--(291.3, 445.8)--(291.5, 445.7)--(291.9, 445.4)--(292.0, 445.2)--(292.1, 445.1)--(292.2, 445.0)--(292.2, 444.9)--(292.0, 444.7)--(292.2, 444.6)--(292.1, 444.4)--(292.2, 444.3)--(292.4, 444.5)--(292.4, 444.4)--(292.5, 444.4)--(292.6, 444.2)--(292.5, 444.1)--(292.7, 443.9)--(292.9, 443.7)--(293.1, 443.5)--(293.4, 443.4)--(293.8, 443.2)--(294.3, 442.9)--(294.6, 442.9)--(295.0, 442.8)--(295.5, 442.7)--(295.8, 442.6)--(295.7, 442.1)--(295.5, 441.7)--(295.4, 441.2)--(295.1, 441.2)--(294.9, 440.9)--(294.8, 440.5)--(294.7, 440.2)--(294.5, 439.7)--(294.8, 439.5)--(295.0, 439.4)--(294.9, 439.3)--(294.7, 439.3)--(294.5, 439.0)--(294.5, 438.9)--(294.5, 438.8)--(294.5, 438.7)--(294.4, 438.5)--(294.4, 438.4)--(294.3, 438.2)--(294.1, 437.9)--(294.0, 437.7)--(293.9, 437.6)--(293.8, 437.4)--(293.8, 437.2)--(293.7, 437.0)--(293.6, 436.8)--(293.5, 436.7)--(293.4, 436.5)--(293.2, 436.4)--(293.2, 436.3)--(293.1, 436.3)--(293.1, 436.2)--(293.0, 436.2)--(293.0, 436.1)--(293.0, 436.0)--(292.9, 436.0)--(292.9, 435.9)--(292.9, 435.6)--(292.8, 435.1)--(292.6, 434.4)--(292.6, 434.2)--(292.6, 434.0)--(292.5, 434.0)--(292.5, 433.9)--(292.4, 433.9)--(292.4, 433.8)--(292.4, 433.7)--(292.5, 433.6)--(292.5, 433.5)--(292.5, 433.3)--(292.5, 433.2)--(292.3, 432.8)--(292.3, 432.7)--(292.2, 432.3)--(292.1, 432.0)--(292.0, 431.8)--(292.0, 431.5)--(291.8, 431.4)--(291.7, 431.5)--(291.6, 431.5)--(291.7, 430.8)--(291.3, 430.2)--(290.9, 429.8)--(290.5, 429.4)--(290.3, 429.1)--(289.8, 428.4)--(289.7, 428.3)--(289.1, 427.5)--(289.0, 427.4)--(288.8, 427.2)--(288.9, 427.1)--(288.7, 427.0)--(288.3, 426.3)--(288.2, 426.2)--(288.1, 426.2)--(288.0, 426.2)--(287.8, 426.0)--(287.8, 425.9)--(287.8, 425.8)--(287.7, 425.7)--(287.6, 425.6)--(287.6, 425.5)--(287.5, 425.4)--(287.5, 425.2)--(287.4, 425.0)--(287.4, 424.8)--(287.3, 424.8)--(287.3, 424.7)--(287.3, 424.6)--(287.3, 424.5)--(286.9, 424.3)--(286.8, 424.3)--(286.6, 424.1)--(286.2, 423.9)--(286.0, 423.9)--(285.9, 423.8)--(285.6, 423.7)--(286.1, 422.9)--(286.8, 422.0)--(286.8, 421.9)--(287.4, 421.0)--(287.9, 420.3)--(288.3, 419.7)--(288.7, 419.2)--(289.2, 418.6)--(289.8, 417.9)--(288.1, 417.1)--(287.0, 416.6)--(286.6, 416.3)--(286.6, 415.7)--(286.6, 415.3)--(286.6, 415.2)--(286.6, 415.1)--(286.7, 414.7)--(286.8, 413.8)--(286.9, 413.6)--(287.0, 413.1)--(287.0, 413.0)--(287.1, 412.9)--(287.2, 412.6)--(287.4, 412.2)--(287.5, 412.1)--(287.5, 412.0)--(287.6, 411.6)--(287.7, 411.3)--(287.7, 410.7)--(287.7, 410.6)--(287.6, 410.4)--(287.6, 410.2)--(287.6, 410.1)--(287.4, 409.8)--(287.0, 409.3)--(286.9, 409.2)--(286.9, 409.0)--(286.8, 408.7)--(286.7, 408.5)--(286.5, 408.2)--(286.5, 408.0)--(286.4, 407.9)--(286.3, 407.7)--(286.1, 407.1)--(286.1, 406.9)--(286.1, 406.7)--(286.1, 406.6)--(285.7, 406.4)--(284.6, 405.7)--(284.4, 405.5)--(284.0, 405.3)--(284.1, 405.2)--(283.9, 405.0)--(283.2, 404.6)--(281.4, 403.5)--(281.3, 403.7)--(281.2, 403.8)--(280.9, 404.4)--(280.3, 405.3)--(280.2, 405.5)--(280.1, 405.8)--(280.1, 406.1)--(279.9, 407.1)--(279.9, 407.3)--(279.8, 407.4)--(279.9, 407.8)--(279.9, 408.2)--(279.9, 408.6)--(279.9, 409.3)--(279.7, 409.7)--(279.4, 410.1)--(279.1, 410.7)--(279.0, 410.8)--(278.9, 410.9)--(278.8, 411.0)--(278.6, 411.4)--(278.5, 411.4)--(278.4, 411.5)--(277.9, 411.9)--(277.9, 412.0)--(277.9, 412.1)--(277.9, 412.2)--(278.0, 412.3)--(277.7, 412.2)--(277.6, 412.0)--(277.4, 411.7)--(277.1, 410.9)--(276.2, 408.6)--(276.2, 408.5)--(275.4, 406.5)--(274.2, 403.6)--(274.2, 403.5)--(274.2, 403.4)--(274.2, 403.3)--(274.2, 403.0)--(274.2, 402.9)--(274.3, 402.7)--(274.4, 402.1)--(274.7, 401.0)--(274.8, 400.8)--(274.8, 400.4)--(275.0, 400.0)--(275.2, 399.8)--(275.2, 399.6)--(275.3, 399.4)--(275.4, 399.2)--(275.4, 399.1)--(275.4, 398.9)--(275.7, 398.2)--(275.7, 398.0)--(275.7, 397.9)--(275.8, 397.6)--(276.4, 397.8)--(276.4, 397.6)--(276.5, 397.4)--(276.5, 397.3)--(276.4, 397.2)--(276.2, 397.0)--(276.0, 396.9)--(275.9, 396.9)--(275.9, 396.2)--(275.8, 395.7)--(275.8, 395.5)--(275.7, 395.3)--(275.7, 395.2)--(275.8, 394.8)--(275.5, 394.7)--(275.5, 394.4)--(275.6, 394.2)--(275.6, 394.1)--(275.6, 394.0)--(275.6, 393.6)--(275.6, 393.4)--(275.6, 393.1)--(275.6, 393.0)--(275.5, 392.8)--(276.6, 392.9)--(276.6, 392.7)--(276.7, 392.4)--(276.6, 392.4)--(276.6, 392.2)--(276.6, 392.0)--(276.6, 391.4)--(277.3, 391.3)--(277.5, 391.3)--(277.6, 391.1)--(277.7, 390.9)--(277.6, 390.9)--(277.2, 390.9)--(277.2, 390.4)--(276.3, 389.3)--(276.1, 389.0)--(276.0, 388.9)--(275.9, 389.1)--(275.7, 389.2)--(275.6, 389.3)--(275.4, 389.5)--(275.2, 389.7)--(275.0, 389.9)--(274.9, 389.9)--(274.8, 389.8)--(274.4, 389.3)--(274.4, 389.2)--(274.2, 389.1)--(274.0, 388.9)--(273.9, 388.9)--(273.6, 388.8)--(273.3, 388.6)--(273.3, 388.7)--(273.2, 388.7)--(272.8, 388.3)--(272.7, 388.3)--(272.6, 388.3)--(272.4, 388.1)--(272.3, 387.9)--(272.4, 387.8)--(272.2, 387.7)--(271.8, 387.5)--(271.8, 387.1)--(271.6, 386.6)--(271.4, 386.3)--(271.5, 386.1)--(271.1, 386.0)--(271.0, 386.0)--(271.0, 385.9)--(271.0, 385.8)--(270.9, 385.6)--(270.9, 385.3)--(270.9, 385.1)--(270.9, 384.6)--(270.9, 384.5)--(271.0, 384.5)--(271.0, 383.5)--(271.1, 383.5)--(271.2, 382.5)--(271.2, 382.4)--(271.1, 382.2)--(271.0, 382.1)--(270.9, 381.9)--(271.0, 381.9)--(271.1, 381.9)--(270.9, 381.5)--(270.8, 381.4)--(270.7, 381.0)--(270.6, 380.9)--(270.4, 380.4)--(270.3, 380.5)--(269.5, 380.9)--(269.4, 380.6)--(269.4, 380.4)--(269.3, 380.2)--(269.3, 380.0)--(269.3, 379.8)--(269.4, 379.7)--(269.4, 379.1)--(269.4, 378.7)--(269.5, 378.1)--(269.5, 377.9)--(269.5, 377.7)--(269.5, 377.4)--(269.5, 377.1)--(269.2, 376.9)--(268.8, 376.8)--(268.5, 376.7)--(268.3, 376.7)--(268.3, 376.0)--(268.3, 375.4)--(268.3, 375.3)--(268.0, 375.1)--(267.9, 375.0)--(267.9, 374.9)--(267.8, 374.8)--(267.6, 374.8)--(267.3, 374.5)--(267.1, 374.3)--(267.0, 374.2)--(267.0, 374.1)--(266.9, 374.0)--(266.9, 373.9)--(266.8, 373.9)--(266.8, 373.8)--(266.8, 373.7)--(266.7, 373.5)--(266.7, 373.1)--(266.7, 372.9)--(266.7, 372.5)--(266.6, 372.5)--(266.6, 372.3)--(266.5, 372.2)--(266.4, 372.1)--(266.3, 371.9)--(266.3, 371.8)--(266.2, 371.8)--(265.9, 371.9)--(265.7, 372.0)--(265.7, 372.1)--(265.2, 372.3)--(265.2, 372.4)--(265.1, 372.5)--(264.7, 372.6)--(264.4, 372.8)--(264.1, 372.8)--(263.9, 372.8)--(263.7, 373.0)--(263.6, 372.8)--(263.6, 372.7)--(263.6, 372.6)--(263.5, 372.6)--(263.5, 372.5)--(263.4, 372.5)--(263.3, 372.5)--(263.2, 372.5)--(263.1, 372.4)--(263.0, 372.4)--(262.5, 372.3)--(262.2, 372.2)--(262.0, 372.1)--(261.8, 372.1)--(261.7, 372.1)--(261.8, 371.9)--(261.7, 371.8)--(261.2, 371.4)--(261.1, 371.3)--(261.0, 371.2)--(260.9, 371.0)--(260.8, 371.0)--(260.0, 370.2)--(259.9, 370.2)--(259.8, 370.2)--(260.0, 370.0)--(259.8, 369.7)--(259.6, 369.6)--(259.5, 369.5)--(259.1, 369.4)--(258.8, 369.3)--(258.5, 369.1)--(258.2, 369.0)--(258.1, 369.0)--(258.1, 368.9)--(258.0, 368.9)--(258.0, 368.8)--(257.9, 368.8)--(257.8, 368.7)--(257.7, 368.6)--(257.6, 368.5)--(257.5, 368.2)--(257.4, 368.1)--(257.3, 368.1)--(257.3, 368.0)--(257.2, 368.0)--(257.1, 368.0)--(257.0, 368.0)--(257.0, 367.9)--(256.8, 367.8)--(256.6, 367.7)--(256.4, 367.4)--(256.1, 367.4)--(256.0, 367.4)--(256.0, 367.3)--(255.9, 367.2)--(255.9, 367.1)--(255.8, 367.1)--(255.6, 366.8)--(255.6, 366.7)--(255.6, 366.6)--(255.5, 366.4)--(255.5, 366.2)--(255.5, 365.6)--(255.5, 365.4)--(255.5, 365.1)--(255.3, 364.3)--(255.3, 364.1)--(255.3, 363.8)--(255.2, 363.5)--(255.2, 363.3)--(255.1, 363.2)--(255.0, 363.1)--(254.8, 363.0)--(254.7, 362.9)--(254.4, 362.9)--(254.0, 362.9)--(253.6, 362.5)--(253.1, 362.2)--(253.0, 362.1)--(252.9, 362.2)--(252.8, 362.1)--(252.7, 362.1)--(252.6, 362.0)--(252.5, 362.0)--(252.5, 361.9)--(252.5, 361.8)--(252.3, 361.7)--(252.1, 361.6)--(252.0, 361.7)--(251.8, 361.7)--(251.5, 361.8)--(251.4, 361.8)--(251.3, 361.8)--(251.1, 361.9)--(251.0, 361.8)--(251.0, 361.9)--(250.9, 361.8)--(250.9, 361.5)--(250.9, 361.1)--(250.9, 361.0)--(250.9, 360.9)--(251.0, 360.6)--(251.0, 360.4)--(251.1, 360.2)--(251.0, 360.2)--(250.8, 360.1)--(250.6, 360.0)--(250.5, 359.9)--(250.4, 359.8)--(250.2, 360.1)--(250.0, 359.9)--(249.8, 359.7)--(249.8, 359.3)--(249.8, 359.1)--(249.8, 359.0)--(249.8, 358.9)--(249.7, 358.9)--(249.6, 358.7)--(249.6, 358.6)--(249.5, 358.6)--(249.4, 358.5)--(249.2, 358.0)--(249.1, 357.8)--(249.1, 357.7)--(249.1, 357.6)--(249.1, 357.5)--(249.1, 357.3)--(249.2, 357.2)--(249.2, 357.1)--(249.2, 357.0)--(249.2, 356.9)--(249.3, 356.8)--(248.9, 356.8)--(248.7, 356.8)--(248.5, 356.7)--(248.2, 356.6)--(247.9, 356.5)--(247.7, 356.5)--(247.6, 356.5)--(246.9, 356.3)--(246.5, 356.2)--(246.3, 356.1)--(246.1, 356.1)--(246.0, 356.1)--(245.9, 356.0)--(245.6, 355.9)--(245.4, 355.8)--(245.3, 355.8)--(245.2, 355.8)--(244.9, 355.7)--(244.8, 355.7)--(244.8, 355.9)--(244.8, 356.0)--(244.8, 356.4)--(244.8, 356.6)--(244.8, 356.7)--(244.7, 357.0)--(244.6, 356.9)--(244.5, 356.9)--(244.3, 356.9)--(244.0, 356.7)--(243.6, 356.6)--(243.3, 356.4)--(243.1, 356.3)--(242.7, 356.1)--(242.4, 356.5)--(242.2, 356.8)--(241.9, 357.3)--(241.3, 356.9)--(241.0, 356.8)--(240.7, 356.6)--(240.4, 356.3)--(240.2, 356.0)--(239.9, 355.7)--(239.7, 355.6)--(239.5, 355.5)--(239.3, 355.7)--(239.0, 356.2)--(238.5, 356.7)--(238.2, 357.2)--(238.1, 357.3)--(237.6, 357.9)--(237.4, 358.1)--(237.2, 358.3)--(237.1, 358.5)--(236.9, 358.7)--(236.5, 359.3)--(236.1, 359.8)--(235.8, 360.1)--(235.6, 360.5)--(235.3, 360.8)--(234.6, 362.1)--(234.4, 362.5)--(234.0, 363.2)--(233.7, 363.5)--(233.4, 363.9)--(233.1, 364.3)--(232.9, 364.6)--(232.4, 365.2)--(231.9, 365.9)--(231.5, 366.4)--(231.2, 366.7)--(231.1, 366.8)--(230.9, 367.1)--(230.8, 367.3)--(230.6, 367.5)--(230.2, 367.9)--(230.0, 368.1)--(229.9, 368.3)--(229.7, 368.4)--(229.3, 368.8)--(229.1, 368.9)--(228.9, 369.1)--(228.7, 369.3)--(228.6, 369.4)--(228.5, 369.5)--(228.1, 370.0)--(227.8, 370.5)--(227.6, 370.8)--(227.3, 371.1)--(227.0, 371.4)--(226.8, 371.8)--(226.4, 372.3)--(226.1, 372.7)--(225.2, 373.8)--(225.0, 373.7)--(224.9, 373.6)--(224.8, 373.5)--(224.7, 373.6)--(224.6, 373.6)--(224.5, 373.6)--(224.5, 373.5)--(224.4, 373.6)--(224.4, 373.8)--(224.2, 373.9)--(224.1, 374.0)--(224.0, 374.1)--(223.9, 374.1)--(223.8, 374.1)--(223.7, 374.1)--(223.7, 374.2)--(223.9, 374.2)--(223.9, 374.3)--(223.9, 374.4)--(223.7, 374.4)--(223.6, 374.4)--(223.5, 374.3)--(223.6, 374.2)--(223.6, 374.1)--(223.5, 374.1)--(223.4, 374.2)--(223.2, 374.2)--(223.1, 374.3)--(223.0, 374.3)--(222.7, 374.2)--(222.6, 374.2)--(222.5, 374.2)--(222.4, 374.3)--(222.3, 374.3)--(222.3, 374.2)--(222.2, 374.2)--(222.2, 374.1)--(222.3, 374.1)--(222.3, 374.0)--(222.3, 373.9)--(222.2, 373.8)--(222.1, 373.9)--(222.0, 373.9)--(222.0, 373.8)--(222.0, 373.7)--(222.2, 373.6)--(222.2, 373.5)--(222.1, 373.5)--(222.0, 373.5)--(221.8, 373.6)--(221.8, 373.7)--(221.7, 373.7)--(221.6, 373.9)--(221.5, 374.0)--(221.3, 374.0)--(221.2, 373.8)--(221.1, 373.8)--(220.9, 373.8)--(220.8, 373.8)--(220.7, 373.8)--(220.6, 373.8)--(220.6, 373.9)--(220.7, 374.0)--(220.8, 374.1)--(220.7, 374.1)--(220.6, 374.1)--(220.5, 374.1)--(220.4, 374.0)--(220.3, 373.9)--(220.2, 373.9)--(220.3, 374.0)--(220.2, 374.1)--(220.1, 374.1)--(220.1, 374.0)--(220.0, 373.8)--(219.9, 373.8)--(219.9, 373.9)--(219.8, 373.9)--(219.8, 374.0)--(219.7, 374.1)--(219.7, 374.2)--(219.7, 374.3)--(219.7, 374.4)--(219.6, 374.5)--(219.5, 374.5)--(219.3, 374.6)--(219.2, 374.6)--(219.1, 374.5)--(219.0, 374.6)--(218.9, 374.6)--(218.9, 374.5)--(218.9, 374.4)--(219.0, 374.4)--(219.0, 374.3)--(219.0, 374.2)--(218.9, 374.2)--(218.7, 374.2)--(218.6, 374.2)--(218.5, 374.1)--(218.3, 374.1)--(218.2, 374.0)--(218.0, 374.0)--(217.9, 374.0)--(217.8, 374.0)--(217.8, 374.1)--(217.8, 374.2)--(217.8, 374.3)--(217.7, 374.3)--(217.7, 374.2)--(217.6, 374.2)--(217.6, 374.1)--(217.6, 374.0)--(217.5, 373.9)--(217.4, 373.8)--(217.3, 373.7)--(217.2, 373.6)--(217.1, 373.5)--(216.9, 373.5)--(216.8, 373.6)--(216.7, 373.8)--(216.6, 373.8)--(216.5, 373.8)--(216.5, 373.7)--(216.3, 373.3)--(216.1, 373.2)--(216.1, 373.1)--(216.0, 373.1)--(216.0, 373.0)--(216.1, 373.0)--(216.2, 372.8)--(216.4, 372.7)--(216.5, 372.6)--(216.6, 372.5)--(216.6, 372.4)--(216.3, 372.1)--(216.3, 371.9)--(216.2, 371.8)--(216.2, 371.6)--(216.2, 371.4)--(216.2, 371.2)--(216.3, 371.2)--(216.3, 371.3)--(216.4, 371.3)--(216.5, 371.3)--(216.6, 371.3)--(216.6, 371.2)--(216.6, 371.1)--(216.5, 371.1)--(216.5, 370.9)--(216.3, 370.7)--(216.2, 370.6)--(216.2, 370.5)--(216.3, 370.3)--(216.2, 370.3)--(216.2, 370.2)--(216.0, 370.2)--(215.9, 370.3)--(215.8, 370.3)--(215.7, 370.2)--(215.7, 370.1)--(215.7, 370.0)--(215.8, 370.0)--(215.9, 369.9)--(215.9, 369.8)--(215.8, 369.7)--(215.7, 369.7)--(215.5, 369.7)--(215.3, 369.7)--(215.2, 369.8)--(215.1, 369.9)--(214.9, 369.7)--(214.8, 369.7)--(214.7, 369.8)--(214.7, 369.9)--(214.5, 370.0)--(214.4, 370.1)--(214.3, 370.1)--(214.2, 370.1)--(214.2, 370.2)--(214.1, 370.2)--(214.1, 370.3)--(214.0, 370.4)--(213.8, 370.6)--(213.7, 370.8)--(213.5, 371.1)--(213.3, 371.4)--(213.0, 371.6)--(213.0, 371.7)--(212.9, 371.7)--(212.9, 371.8)--(212.9, 372.0)--(212.8, 372.1)--(212.7, 372.3)--(212.6, 372.5)--(212.5, 372.6)--(212.3, 372.7)--(212.0, 373.0)--(211.9, 373.2)--(211.8, 373.5)--(211.7, 373.8)--(211.6, 373.9)--(211.6, 374.0)--(211.6, 374.1)--(211.6, 374.2)--(211.7, 374.2)--(211.7, 374.3)--(211.9, 374.3)--(212.0, 374.3)--(212.1, 374.3)--(212.3, 374.4)--(212.5, 374.4)--(212.6, 374.5)--(212.7, 374.6)--(212.8, 374.6)--(212.8, 374.7)--(212.8, 374.8)--(212.7, 374.9)--(212.5, 375.4)--(212.4, 375.6)--(212.2, 375.9)--(212.1, 376.2)--(211.9, 376.7)--(211.8, 377.0)--(211.7, 377.3)--(211.7, 377.4)--(211.6, 377.6)--(211.4, 378.5)--(211.3, 378.9)--(211.3, 379.1)--(211.2, 379.3)--(211.1, 379.4)--(211.1, 379.5)--(210.9, 379.9)--(210.8, 380.2)--(210.7, 380.7)--(210.5, 381.1)--(210.5, 381.2)--(210.4, 381.8)--(210.4, 381.9)--(210.4, 382.0)--(210.4, 382.1)--(210.4, 382.3)--(210.5, 382.4)--(210.5, 382.6)--(210.5, 382.8)--(210.5, 383.0)--(210.5, 383.3)--(210.5, 383.4)--(210.5, 383.6)--(210.5, 383.7)--(210.5, 383.9)--(210.5, 384.0)--(210.5, 384.1)--(210.6, 384.4)--(210.7, 384.5)--(210.8, 384.6)--(210.9, 384.7)--(211.0, 384.8)--(211.1, 384.9)--(211.3, 384.9)--(211.5, 385.1)--(211.7, 385.3)--(211.8, 385.4)--(211.9, 385.5)--(212.1, 385.8)--(212.3, 386.3)--(212.5, 386.4)--(212.9, 386.5)--(213.2, 386.7)--(213.5, 386.8)--(214.5, 387.2)--(214.6, 387.2)--(214.6, 387.3)--(214.4, 387.5)--(213.4, 389.2)--(213.1, 389.5)--(212.0, 391.2)--(211.6, 391.9)--(211.1, 392.4)--(211.0, 392.6)--(210.6, 393.0)--(210.3, 393.3)--(210.0, 393.5)--(209.4, 394.2)--(208.4, 395.4)--(208.1, 395.7)--(207.9, 395.9)--(207.7, 396.3)--(207.5, 396.5)--(206.4, 398.0)--(205.8, 398.8)--(204.9, 400.0)--(204.5, 400.4)--(204.3, 400.7)--(203.8, 401.3)--(203.5, 401.6)--(203.2, 402.0)--(202.8, 402.4)--(202.5, 402.8)--(202.2, 403.3)--(201.9, 403.8)--(201.2, 404.7)--(201.1, 404.8)--(200.8, 405.2)--(200.2, 406.0)--(200.0, 406.3)--(199.0, 407.4)--(198.9, 407.6)--(197.0, 409.9)--(196.4, 410.6)--(195.6, 412.0)--(195.3, 412.4)--(195.1, 412.7)--(194.8, 413.2)--(194.5, 413.5)--(194.3, 413.6)--(194.0, 413.9)--(193.9, 414.1)--(193.4, 414.7)--(192.8, 415.5)--(192.4, 416.1)--(191.8, 416.9)--(190.9, 418.3)--(190.4, 419.0)--(189.5, 420.0)--(189.1, 420.4)--(189.0, 420.6)--(188.8, 420.7)--(188.2, 421.2)--(187.7, 421.8)--(187.1, 422.5)--(186.6, 423.1)--(186.5, 423.3)--(186.2, 423.8)--(186.0, 424.1)--(185.1, 425.3)--(183.6, 427.2)--(182.9, 428.2)--(182.6, 428.7)--(182.0, 429.3)--(181.7, 429.9)--(181.3, 430.4)--(181.1, 430.7)--(180.6, 431.4)--(179.6, 432.7)--(179.3, 433.1)--(179.1, 433.4)--(178.6, 433.9)--(178.2, 434.4)--(177.6, 435.2)--(177.3, 435.7)--(176.8, 436.4)--(176.4, 437.0)--(176.1, 437.3)--(175.9, 437.7)--(174.8, 438.8)--(174.5, 439.4)--(174.1, 440.2)--(173.8, 440.9)--(173.6, 441.7)--(173.6, 441.9)--(173.6, 442.0)--(174.0, 443.1)--(174.4, 444.2)--(174.5, 444.2)--(174.6, 444.3)--(174.7, 444.4)--(174.8, 444.4)--(175.0, 444.3)--(175.1, 444.3)--(175.2, 444.3)--(175.3, 444.2)--(175.4, 444.2)--(175.4, 444.1)--(175.6, 444.0)--(175.8, 444.2)--(176.2, 444.2)--(176.6, 444.0)--(176.7, 444.0)--(176.8, 444.0)--(177.0, 443.8)--(177.1, 443.8)--(177.2, 443.7)--(177.3, 443.7)--(177.4, 443.7)--(177.6, 443.6)--(177.7, 443.6)--(177.9, 443.6)--(178.3, 443.6)--(178.4, 443.7)--(178.5, 443.7)--(178.7, 443.7)--(179.0, 443.7)--(179.4, 443.6)--(180.1, 443.3)--(181.3, 443.6)--(181.5, 443.7)--(181.9, 443.9)--(182.1, 444.0)--(182.9, 444.4)--(183.0, 444.5)--(183.1, 444.6)--(183.2, 444.6)--(183.4, 444.6)--(184.0, 444.7)--(184.4, 444.8)--(184.8, 444.8)--(184.9, 444.7)--(185.0, 444.7)--(185.5, 444.6)--(185.7, 444.6)--(185.9, 444.7)--(186.3, 444.8)--(186.5, 444.9)--(186.8, 445.0)--(187.1, 445.1)--(187.5, 445.2)--(187.7, 445.3)--(187.8, 445.4)--(188.0, 445.7)--(188.3, 445.9)--(188.6, 446.2)--(189.2, 446.4)--(190.3, 446.8)--(190.9, 446.8)--(191.2, 446.8)--(191.6, 446.8)--(191.9, 446.8)--(192.2, 446.8)--(192.5, 446.9)--(192.6, 447.0)--(192.8, 447.0)--(193.1, 447.1)--(193.3, 447.2)--(193.5, 447.4)--(193.7, 447.5)--(194.1, 447.4)--(194.3, 447.4)--(194.6, 447.4)--(194.9, 447.4)--(195.4, 447.3)--(195.6, 447.3)--(195.6, 447.4)--(195.4, 447.5)--(195.3, 447.6)--(195.3, 447.7)--(195.2, 447.8)--(195.2, 448.0)--(195.4, 448.6)--(195.5, 449.1)--(195.6, 449.3)--(195.8, 449.7)--(195.9, 450.0)--(195.9, 450.1)--(195.9, 450.2)--(195.9, 450.4)--(196.1, 450.7)--(196.1, 451.0)--(196.1, 451.1)--(196.7, 451.1)--(197.0, 451.1)--(197.3, 451.1)--(197.6, 451.1)--(198.0, 451.1)--(198.2, 451.2)--(198.4, 451.4)--(198.4, 451.3)--(198.9, 451.4)--(199.3, 451.5)--(199.2, 451.9)--(199.1, 452.3)--(199.1, 452.5)--(199.1, 452.7)--(199.1, 452.8)--(199.1, 452.9)--(199.1, 453.1)--(200.2, 453.5)--(201.1, 453.4)--(201.3, 453.4)--(201.6, 453.3)--(201.7, 453.2)--(201.8, 453.1)--(201.8, 453.0)--(201.9, 453.0)--(202.0, 453.2)--(202.1, 453.1)--(202.6, 454.3)--(202.7, 454.3)--(202.9, 454.2)--(203.0, 454.1)--(203.1, 454.0)--(203.2, 453.9)--(203.4, 453.7)--(203.5, 453.6)--(203.7, 453.5)--(203.8, 453.4)--(203.9, 453.3)--(204.0, 453.2)--(204.0, 453.1)--(204.1, 453.0)--(204.1, 452.8)--(204.1, 452.7)--(204.1, 452.6)--(204.2, 452.4)--(204.3, 452.2)--(204.3, 452.1)--(204.4, 452.1)--(204.5, 452.0)--(204.6, 451.8)--(204.8, 451.7)--(204.9, 451.7)--(205.1, 451.6)--(205.5, 451.5)--(205.7, 451.4)--(205.8, 451.4)--(206.1, 451.3)--(206.1, 451.2)--(206.4, 451.2)--(206.6, 451.2)--(206.7, 451.1)--(206.8, 451.1)--(206.9, 451.2)--(207.1, 451.9)--(207.4, 452.5)--(207.6, 452.9)--(208.1, 452.7)--(208.1, 452.8)--(208.1, 452.9)--(208.6, 453.1)--(208.7, 453.2)--(209.0, 453.7)--(209.3, 454.3)--(209.7, 455.4)--(210.0, 455.9)--(210.2, 456.4)--(210.3, 456.8)--(210.4, 457.1)--(210.5, 457.5)--(210.7, 458.0)--(210.8, 458.4)--(210.8, 458.5)--(210.8, 458.8)--(210.9, 459.1)--(211.0, 459.7)--(211.3, 462.6)--(211.6, 465.4)--(211.3, 465.5)--(211.2, 465.5)--(211.0, 465.6)--(210.9, 465.7)--(210.8, 465.8)--(210.7, 465.9)--(210.6, 466.1)--(210.7, 466.1)--(210.7, 466.2)--(210.7, 466.4)--(210.7, 466.6)--(210.8, 466.7)--(211.0, 466.9)--(211.1, 467.0)--(211.2, 467.0)--(211.2, 467.1)--(211.3, 467.1)--(211.5, 467.0)--(211.6, 467.0)--(211.7, 467.1)--(212.0, 467.0)--(212.2, 466.9)--(212.3, 466.8)--(212.6, 466.6)--(212.7, 466.5)--(212.9, 466.3)--(213.0, 466.2)--(213.8, 466.5)--(214.0, 466.7)--(214.3, 466.9)--(214.4, 466.9)--(214.9, 467.2)--(215.2, 467.4)--(215.4, 467.6)--(215.7, 467.7)--(215.9, 467.8)--(216.1, 467.9)--(216.2, 467.9)--(216.3, 467.9)--(216.4, 467.9)--(216.6, 468.0)--(216.8, 468.1)--(216.9, 468.2)--(217.1, 468.3)--(217.5, 468.4)--(217.7, 468.0)--(218.4, 468.4)--(218.7, 468.5)--(218.9, 468.7)--(219.4, 469.0)--(219.8, 469.1)--(219.6, 469.6)--(220.0, 469.8)--(220.3, 470.0)--(220.4, 470.1)--(220.7, 470.3)--(220.8, 470.3)--(221.0, 470.4)--(221.3, 470.5)--(221.7, 470.6)--(221.9, 470.5)--(222.0, 470.5)--(222.2, 470.1)--(222.4, 469.7)--(222.5, 469.8)--(222.6, 469.9)--(222.8, 469.9)--(223.0, 470.0)--(223.6, 470.4)--(224.4, 470.8)--(224.5, 470.9)--(224.6, 471.0)--(224.8, 471.1)--(224.9, 471.1)--(225.2, 471.4)--(225.3, 471.4)--(225.4, 471.4)--(225.6, 471.6)--(226.0, 471.7)--(226.1, 471.7)--(226.3, 471.7)--(226.3, 471.3)--(226.4, 471.1)--(226.5, 470.9)--(226.3, 470.9)--(226.5, 470.5)--(226.6, 470.2)--(226.7, 470.1)--(227.2, 469.4)--(227.4, 469.1)--(227.7, 468.8)--(227.8, 468.6)--(228.2, 469.0)--(228.0, 469.2)--(228.4, 469.4)--(228.8, 469.7)--(229.5, 470.3)--(230.2, 470.9)--(231.1, 471.6)--(231.3, 471.9)--(232.0, 472.4)--(232.3, 472.6)--(232.5, 472.8)--(232.7, 472.8)--(232.9, 472.0)--(234.1, 472.6)--(235.7, 473.9)--(235.9, 474.0)--(236.6, 474.6)--(236.7, 474.7)--(237.1, 474.2)--(237.4, 473.8)--(237.6, 473.5)--(237.7, 473.7)--(238.0, 473.8)--(238.3, 474.1)--(239.0, 474.5)--(240.3, 475.2)--(240.5, 475.3)--(239.1, 478.0)--(238.6, 478.9)--(238.1, 479.8)--(239.0, 480.5)--(240.3, 479.4)--(240.7, 480.0)--(240.9, 480.4)--(241.8, 481.6)--(241.9, 481.7)--(242.5, 481.6)--(243.1, 481.4)--(243.3, 481.3)--(243.5, 481.3)--(243.6, 481.2)--(243.8, 481.1)--(243.9, 481.0)--(244.2, 480.9)--(244.1, 481.6)--(244.0, 482.2)--(243.9, 482.3)--(243.9, 482.6)--(243.4, 483.4)--(244.1, 483.4)--(244.5, 483.4)--(245.0, 483.4)--(245.6, 483.5)--cycle; +Bexley = (472.3, 313.0)--(473.2, 313.4)--(474.1, 313.9)--(475.2, 314.6)--(475.4, 314.8)--(475.5, 314.8)--(475.6, 314.8)--(475.6, 314.9)--(475.8, 314.9)--(476.0, 315.0)--(476.2, 315.0)--(476.4, 315.1)--(476.6, 315.1)--(476.8, 315.1)--(477.3, 315.0)--(477.6, 315.0)--(477.8, 315.1)--(477.8, 315.2)--(477.9, 315.2)--(478.0, 315.2)--(479.3, 314.9)--(479.5, 314.8)--(479.6, 314.7)--(479.7, 314.6)--(480.6, 314.2)--(480.8, 314.0)--(481.1, 313.8)--(481.2, 313.7)--(481.4, 313.6)--(482.1, 313.2)--(482.2, 313.1)--(484.2, 311.8)--(484.3, 312.0)--(485.3, 311.4)--(486.1, 310.9)--(488.6, 309.5)--(488.8, 309.3)--(489.4, 309.1)--(489.6, 309.0)--(490.0, 308.9)--(490.3, 308.7)--(490.6, 308.6)--(490.8, 308.5)--(491.1, 308.3)--(491.3, 308.2)--(491.4, 308.2)--(491.6, 308.4)--(491.7, 308.4)--(491.7, 308.2)--(491.7, 308.1)--(491.7, 308.0)--(491.8, 307.9)--(491.9, 307.9)--(492.1, 308.0)--(492.2, 307.9)--(492.2, 307.8)--(492.4, 307.6)--(492.7, 307.5)--(492.8, 307.4)--(493.0, 307.4)--(493.0, 307.5)--(493.0, 307.9)--(493.1, 308.0)--(493.2, 307.9)--(493.6, 307.9)--(493.7, 307.9)--(493.8, 307.8)--(493.9, 307.9)--(494.0, 307.9)--(494.2, 308.0)--(494.3, 308.1)--(494.9, 308.0)--(495.2, 308.0)--(495.3, 308.0)--(495.6, 307.8)--(495.8, 307.8)--(496.7, 307.7)--(497.5, 307.6)--(497.5, 307.5)--(499.3, 307.4)--(499.9, 307.3)--(500.0, 307.3)--(500.2, 307.3)--(500.5, 307.1)--(500.9, 307.0)--(501.4, 306.8)--(501.5, 306.7)--(501.7, 306.6)--(501.8, 306.6)--(501.9, 306.6)--(502.0, 306.6)--(502.4, 306.5)--(502.8, 306.3)--(503.0, 306.3)--(503.2, 306.2)--(503.6, 305.9)--(504.4, 305.3)--(504.7, 305.1)--(504.8, 304.9)--(504.9, 304.8)--(505.2, 304.3)--(505.4, 304.0)--(506.2, 302.5)--(506.4, 302.3)--(506.4, 302.2)--(506.5, 302.2)--(506.6, 302.1)--(506.7, 302.0)--(506.8, 302.0)--(506.8, 301.9)--(507.2, 301.3)--(507.3, 301.1)--(507.3, 301.0)--(507.3, 300.9)--(507.3, 300.8)--(507.4, 300.7)--(507.5, 300.4)--(507.6, 300.1)--(507.7, 300.0)--(507.9, 299.7)--(508.0, 299.7)--(508.4, 298.7)--(508.3, 298.7)--(508.4, 298.5)--(508.5, 298.3)--(508.6, 298.1)--(508.6, 298.0)--(508.7, 297.8)--(508.7, 297.6)--(508.7, 297.4)--(508.7, 297.0)--(508.8, 296.3)--(508.8, 295.5)--(508.8, 295.1)--(508.8, 294.9)--(508.8, 294.1)--(508.8, 293.9)--(508.9, 292.7)--(508.9, 292.6)--(508.9, 292.5)--(508.9, 292.4)--(509.0, 292.3)--(509.1, 292.1)--(509.1, 292.0)--(509.0, 291.7)--(509.0, 291.6)--(509.2, 290.7)--(509.2, 290.5)--(509.3, 290.2)--(509.3, 290.0)--(509.2, 289.9)--(509.2, 289.8)--(509.3, 289.5)--(509.3, 289.2)--(509.4, 288.8)--(509.4, 288.7)--(509.5, 288.6)--(509.7, 288.3)--(509.8, 288.2)--(509.8, 288.1)--(509.8, 288.0)--(509.9, 287.9)--(510.0, 287.6)--(510.0, 287.4)--(510.0, 287.3)--(510.1, 287.3)--(510.1, 287.2)--(510.2, 287.2)--(510.2, 287.1)--(510.3, 287.0)--(510.5, 286.7)--(510.7, 286.8)--(511.3, 285.9)--(511.0, 285.7)--(511.1, 285.6)--(511.0, 285.5)--(511.1, 285.4)--(511.2, 285.2)--(511.3, 285.0)--(511.4, 285.1)--(511.6, 284.9)--(511.8, 285.0)--(513.3, 283.1)--(513.0, 282.7)--(513.1, 282.7)--(513.1, 282.6)--(513.2, 282.6)--(513.5, 282.9)--(514.5, 282.2)--(515.7, 281.4)--(516.1, 281.1)--(517.0, 280.6)--(517.1, 280.6)--(517.2, 280.5)--(517.3, 280.5)--(517.5, 280.4)--(517.7, 280.3)--(518.1, 280.2)--(519.3, 279.9)--(520.0, 279.7)--(520.8, 279.5)--(521.2, 279.4)--(521.6, 279.3)--(521.8, 279.3)--(521.9, 279.2)--(522.0, 279.2)--(522.0, 279.1)--(521.9, 278.5)--(522.1, 278.4)--(522.2, 279.1)--(522.3, 279.2)--(523.6, 279.2)--(523.6, 279.0)--(523.8, 279.0)--(523.8, 278.9)--(523.9, 278.9)--(524.0, 278.9)--(524.0, 278.8)--(524.1, 278.8)--(524.3, 278.8)--(524.4, 278.8)--(524.5, 278.8)--(524.6, 278.8)--(524.6, 278.7)--(524.7, 278.7)--(524.7, 278.8)--(524.8, 278.9)--(524.9, 279.0)--(525.1, 279.1)--(525.2, 279.1)--(525.3, 279.1)--(525.4, 279.1)--(525.5, 279.2)--(525.6, 279.2)--(525.7, 279.1)--(525.8, 279.1)--(525.8, 279.0)--(525.9, 279.0)--(526.0, 279.0)--(526.1, 279.1)--(526.2, 279.1)--(526.2, 279.0)--(526.3, 279.0)--(526.3, 279.1)--(526.3, 279.0)--(526.4, 279.1)--(526.5, 279.1)--(526.6, 279.1)--(526.7, 279.1)--(526.8, 279.1)--(526.8, 279.2)--(526.8, 279.1)--(526.9, 279.1)--(526.9, 279.0)--(527.0, 279.1)--(527.0, 279.0)--(527.1, 279.1)--(527.2, 279.1)--(527.3, 279.2)--(527.4, 279.2)--(527.4, 279.1)--(527.5, 279.2)--(527.6, 279.2)--(527.7, 279.2)--(527.8, 279.1)--(527.8, 279.0)--(527.7, 278.9)--(527.8, 278.9)--(527.9, 278.9)--(528.0, 279.0)--(528.1, 279.1)--(528.1, 279.2)--(528.2, 279.2)--(528.2, 279.3)--(528.2, 279.5)--(528.4, 279.6)--(528.5, 279.6)--(528.6, 279.6)--(528.6, 279.5)--(528.6, 279.4)--(528.8, 279.3)--(528.8, 279.2)--(528.9, 279.1)--(529.0, 279.2)--(529.1, 279.4)--(529.2, 279.5)--(529.2, 279.6)--(529.2, 279.7)--(529.2, 279.9)--(529.4, 279.9)--(529.5, 279.9)--(529.6, 279.9)--(529.7, 279.9)--(529.8, 279.9)--(529.7, 279.8)--(529.8, 279.8)--(529.8, 279.7)--(529.8, 279.6)--(529.9, 279.4)--(529.9, 279.3)--(530.0, 279.2)--(530.1, 279.2)--(530.1, 279.1)--(530.1, 279.0)--(530.1, 278.9)--(530.1, 278.7)--(530.1, 278.6)--(530.0, 278.6)--(529.9, 278.6)--(529.8, 278.6)--(529.7, 278.4)--(529.6, 278.4)--(529.4, 278.4)--(529.3, 278.3)--(529.2, 278.3)--(529.2, 278.2)--(529.3, 278.2)--(529.5, 278.3)--(529.6, 278.3)--(529.7, 278.3)--(529.7, 278.4)--(529.8, 278.4)--(529.9, 278.5)--(530.0, 278.5)--(530.1, 278.5)--(530.2, 278.6)--(530.2, 278.7)--(530.2, 279.1)--(530.2, 279.2)--(530.1, 279.3)--(530.0, 279.4)--(529.9, 279.5)--(530.0, 279.6)--(530.0, 279.7)--(529.9, 280.0)--(530.0, 280.0)--(530.1, 280.0)--(530.1, 280.1)--(530.2, 280.2)--(530.2, 280.3)--(530.2, 280.4)--(530.3, 280.4)--(530.4, 280.4)--(530.5, 280.4)--(530.6, 280.4)--(530.8, 280.5)--(530.9, 280.5)--(531.0, 280.5)--(531.2, 280.5)--(531.3, 280.5)--(531.3, 280.4)--(531.4, 280.4)--(531.4, 280.5)--(531.5, 280.5)--(531.5, 280.6)--(531.6, 280.6)--(531.8, 280.7)--(531.9, 280.7)--(532.0, 280.7)--(532.0, 280.6)--(531.9, 280.5)--(532.1, 280.7)--(532.2, 280.7)--(532.3, 280.5)--(532.3, 280.4)--(532.4, 280.3)--(532.5, 280.3)--(532.7, 280.5)--(532.9, 280.5)--(533.0, 280.6)--(533.0, 280.7)--(533.0, 280.8)--(532.9, 281.0)--(533.0, 281.1)--(533.0, 281.2)--(533.1, 281.2)--(533.1, 281.3)--(533.2, 281.3)--(533.3, 281.3)--(533.4, 281.3)--(533.6, 281.3)--(533.6, 281.4)--(533.8, 281.4)--(533.9, 281.4)--(534.0, 281.4)--(534.1, 281.5)--(534.1, 281.4)--(534.2, 281.5)--(534.2, 281.6)--(534.3, 281.6)--(534.4, 281.6)--(534.5, 281.6)--(534.6, 281.7)--(534.7, 281.7)--(534.8, 281.8)--(535.0, 281.8)--(535.0, 281.9)--(535.1, 281.9)--(535.2, 281.8)--(535.2, 281.7)--(535.3, 281.7)--(535.4, 281.9)--(535.6, 282.1)--(535.6, 282.3)--(535.8, 282.6)--(535.8, 282.7)--(536.3, 282.9)--(536.5, 282.9)--(536.7, 282.9)--(536.8, 282.9)--(537.0, 282.8)--(537.1, 282.7)--(537.2, 282.6)--(537.3, 282.6)--(537.4, 282.6)--(537.5, 282.6)--(537.7, 282.4)--(538.6, 281.9)--(538.7, 281.9)--(538.8, 281.8)--(538.9, 281.8)--(539.0, 281.7)--(539.3, 281.5)--(539.7, 281.3)--(539.8, 281.2)--(539.9, 281.2)--(540.1, 281.0)--(540.9, 280.6)--(540.9, 280.5)--(540.6, 280.4)--(540.5, 280.4)--(540.4, 280.3)--(540.3, 280.3)--(540.3, 280.2)--(540.2, 280.2)--(540.1, 280.1)--(540.1, 280.0)--(540.1, 279.9)--(540.0, 279.8)--(539.9, 279.7)--(539.9, 279.6)--(539.8, 279.5)--(539.8, 279.4)--(539.7, 279.3)--(539.7, 279.2)--(539.8, 278.8)--(539.8, 278.7)--(539.7, 278.6)--(539.8, 278.2)--(539.9, 278.2)--(540.0, 278.1)--(540.0, 277.8)--(539.9, 277.8)--(539.9, 277.7)--(540.0, 277.6)--(540.0, 277.3)--(540.0, 277.2)--(540.0, 277.1)--(539.9, 277.0)--(539.9, 276.9)--(539.9, 276.8)--(539.8, 276.7)--(539.7, 276.5)--(539.5, 276.4)--(539.4, 276.4)--(539.4, 276.3)--(539.3, 276.3)--(539.2, 276.3)--(539.1, 276.3)--(538.7, 276.1)--(538.6, 276.1)--(538.5, 276.1)--(538.3, 276.0)--(538.2, 275.9)--(538.0, 275.9)--(537.8, 275.8)--(537.5, 275.7)--(537.5, 275.6)--(537.4, 275.6)--(537.1, 275.3)--(537.0, 275.2)--(536.9, 275.0)--(536.8, 274.8)--(536.6, 274.7)--(536.6, 274.5)--(536.6, 274.4)--(536.6, 274.2)--(536.6, 273.9)--(536.6, 273.7)--(536.6, 273.6)--(536.6, 273.5)--(536.7, 273.3)--(536.7, 273.2)--(536.6, 273.1)--(536.7, 273.0)--(536.7, 272.8)--(536.8, 272.7)--(536.8, 272.5)--(536.8, 272.4)--(536.8, 272.3)--(536.3, 271.8)--(536.2, 271.6)--(536.1, 271.5)--(535.5, 270.8)--(535.4, 270.8)--(535.2, 270.7)--(535.1, 270.7)--(535.1, 270.6)--(535.0, 270.4)--(534.8, 269.9)--(534.7, 269.8)--(534.6, 269.7)--(534.6, 269.6)--(534.6, 269.5)--(534.7, 269.4)--(534.8, 269.3)--(534.8, 269.2)--(534.9, 269.1)--(534.9, 269.0)--(535.0, 268.9)--(535.1, 268.9)--(535.1, 268.8)--(535.1, 268.7)--(535.2, 268.7)--(535.2, 268.6)--(535.5, 268.3)--(535.9, 267.9)--(536.0, 267.9)--(536.3, 267.7)--(536.4, 267.6)--(536.5, 267.4)--(536.6, 267.2)--(536.7, 267.1)--(536.7, 266.9)--(536.7, 266.7)--(536.7, 266.6)--(536.7, 266.5)--(536.7, 266.4)--(536.7, 266.2)--(536.6, 265.6)--(536.4, 265.1)--(536.2, 264.4)--(536.1, 264.1)--(536.1, 264.0)--(536.1, 263.6)--(536.1, 263.5)--(536.1, 263.0)--(536.2, 262.8)--(536.2, 262.7)--(536.3, 262.0)--(536.4, 261.2)--(536.4, 260.7)--(536.4, 260.6)--(536.4, 260.5)--(536.3, 260.3)--(536.2, 260.3)--(536.2, 260.2)--(536.1, 260.2)--(535.2, 259.7)--(534.8, 259.5)--(534.5, 259.4)--(534.5, 259.3)--(534.4, 259.3)--(534.3, 259.0)--(534.1, 258.8)--(534.0, 258.7)--(533.9, 258.6)--(533.8, 258.5)--(533.4, 258.3)--(533.4, 258.2)--(533.4, 258.1)--(533.3, 258.0)--(533.2, 258.0)--(533.1, 257.8)--(533.0, 257.8)--(532.9, 257.8)--(532.6, 257.6)--(532.4, 257.5)--(532.4, 257.4)--(532.3, 257.4)--(532.2, 257.1)--(532.2, 257.0)--(532.1, 256.9)--(531.8, 256.6)--(531.7, 256.3)--(531.3, 255.7)--(531.2, 255.6)--(531.1, 255.6)--(530.0, 255.7)--(529.9, 255.7)--(528.7, 255.8)--(528.6, 255.8)--(528.4, 255.7)--(528.3, 255.7)--(527.6, 254.9)--(527.5, 254.6)--(527.7, 254.6)--(528.3, 255.4)--(528.6, 255.2)--(528.6, 255.1)--(528.2, 254.4)--(528.3, 254.4)--(528.4, 254.4)--(528.4, 254.5)--(528.5, 254.6)--(528.5, 254.7)--(528.7, 255.0)--(528.8, 255.1)--(529.1, 255.6)--(531.0, 255.4)--(531.4, 255.3)--(531.5, 255.2)--(531.6, 255.2)--(531.6, 255.1)--(531.7, 255.0)--(531.7, 254.8)--(531.6, 254.6)--(531.4, 254.0)--(531.3, 253.3)--(531.2, 253.2)--(531.3, 253.2)--(531.6, 253.2)--(531.8, 253.1)--(532.1, 253.1)--(532.1, 253.0)--(532.2, 252.7)--(532.2, 252.6)--(532.1, 252.5)--(531.8, 252.0)--(531.8, 251.9)--(531.8, 251.8)--(531.8, 251.7)--(531.9, 251.4)--(531.9, 251.2)--(531.8, 251.2)--(531.6, 251.1)--(531.6, 251.0)--(531.5, 250.8)--(531.4, 250.7)--(531.3, 250.7)--(531.2, 250.7)--(530.9, 250.9)--(530.8, 250.8)--(530.8, 250.7)--(530.5, 250.6)--(530.3, 250.4)--(530.2, 250.3)--(530.2, 250.2)--(530.3, 250.2)--(530.4, 250.1)--(530.4, 250.0)--(530.3, 250.0)--(530.3, 249.9)--(530.2, 249.9)--(530.1, 249.9)--(530.0, 249.9)--(530.0, 249.8)--(530.0, 249.7)--(530.1, 249.5)--(530.0, 249.5)--(529.9, 249.5)--(529.8, 249.5)--(529.8, 249.4)--(529.8, 249.3)--(529.7, 249.2)--(529.5, 249.3)--(529.4, 249.3)--(529.3, 249.3)--(529.3, 249.2)--(529.3, 249.1)--(529.2, 249.0)--(529.1, 249.0)--(529.0, 249.0)--(529.0, 248.9)--(528.9, 248.9)--(528.9, 248.8)--(529.0, 248.7)--(528.8, 248.6)--(528.6, 248.6)--(528.5, 248.6)--(528.4, 248.5)--(528.3, 248.5)--(528.3, 248.4)--(528.2, 248.3)--(528.1, 248.3)--(528.0, 248.4)--(528.0, 248.5)--(527.9, 248.4)--(527.9, 248.3)--(527.8, 248.2)--(527.7, 248.2)--(527.6, 248.2)--(527.5, 248.2)--(527.4, 248.2)--(527.3, 248.2)--(527.2, 248.2)--(527.1, 248.1)--(527.0, 248.2)--(526.9, 248.2)--(526.8, 248.2)--(526.8, 248.3)--(526.7, 248.4)--(526.8, 248.4)--(526.8, 248.5)--(526.9, 248.6)--(526.9, 248.7)--(526.8, 248.8)--(526.7, 248.8)--(526.7, 248.9)--(526.7, 248.8)--(526.6, 248.8)--(526.6, 248.7)--(526.6, 248.6)--(526.6, 248.5)--(526.5, 248.5)--(526.5, 248.4)--(526.4, 248.4)--(526.3, 248.5)--(526.3, 248.6)--(526.2, 248.6)--(526.1, 248.6)--(526.1, 248.5)--(526.1, 248.3)--(526.1, 248.2)--(526.0, 248.2)--(526.0, 248.3)--(525.9, 248.3)--(525.8, 248.3)--(525.8, 248.2)--(525.7, 248.2)--(525.7, 248.1)--(525.6, 248.1)--(525.6, 248.0)--(525.5, 248.0)--(525.5, 248.1)--(525.5, 248.2)--(525.5, 248.3)--(525.4, 248.3)--(525.3, 248.3)--(525.2, 248.3)--(525.2, 248.2)--(525.1, 248.2)--(525.1, 248.1)--(524.8, 248.0)--(524.7, 248.0)--(524.7, 247.9)--(524.7, 247.8)--(524.6, 247.8)--(524.6, 247.7)--(524.5, 247.7)--(524.4, 247.5)--(524.3, 247.5)--(524.2, 247.1)--(524.1, 247.0)--(524.0, 246.9)--(523.9, 246.9)--(523.5, 244.8)--(521.9, 245.1)--(521.7, 244.5)--(521.6, 244.5)--(521.1, 244.6)--(521.0, 244.2)--(520.9, 244.0)--(520.9, 243.0)--(521.0, 242.8)--(521.0, 242.6)--(521.1, 242.6)--(520.8, 242.3)--(520.4, 241.8)--(519.9, 241.2)--(519.5, 240.7)--(518.9, 240.0)--(518.8, 240.1)--(518.5, 240.2)--(518.2, 239.9)--(518.1, 239.9)--(517.9, 239.7)--(517.8, 239.7)--(517.7, 239.7)--(517.5, 239.6)--(517.0, 239.5)--(516.7, 239.4)--(516.7, 238.9)--(516.6, 238.7)--(516.4, 238.6)--(516.3, 238.6)--(516.1, 238.5)--(515.9, 238.4)--(515.7, 238.2)--(515.4, 238.6)--(515.2, 238.5)--(515.1, 238.6)--(514.7, 238.3)--(513.4, 237.1)--(513.3, 236.9)--(513.2, 236.9)--(512.7, 237.3)--(512.3, 237.5)--(512.1, 237.6)--(512.0, 237.8)--(511.9, 237.8)--(511.8, 237.9)--(511.7, 238.0)--(511.6, 238.0)--(511.5, 238.0)--(511.4, 238.0)--(511.2, 238.0)--(511.0, 238.0)--(511.0, 238.2)--(510.8, 237.9)--(510.8, 237.8)--(510.9, 237.7)--(510.8, 237.7)--(510.8, 237.6)--(510.7, 237.5)--(510.7, 237.4)--(510.6, 237.3)--(510.5, 237.2)--(510.4, 237.1)--(510.3, 237.0)--(510.0, 236.6)--(509.9, 236.3)--(509.8, 236.1)--(509.7, 235.9)--(509.7, 235.8)--(509.5, 235.5)--(509.0, 234.1)--(509.1, 234.0)--(509.1, 233.9)--(509.1, 233.8)--(509.0, 233.8)--(509.0, 233.7)--(509.0, 233.6)--(508.9, 233.6)--(508.8, 233.5)--(508.6, 233.1)--(508.5, 232.9)--(508.4, 232.3)--(508.3, 232.0)--(508.3, 231.7)--(508.2, 231.6)--(508.1, 231.5)--(508.0, 231.4)--(508.0, 231.3)--(507.9, 231.1)--(507.8, 230.9)--(507.7, 230.7)--(507.6, 230.5)--(507.6, 230.4)--(507.5, 230.2)--(507.4, 230.0)--(507.3, 229.8)--(507.3, 229.7)--(507.2, 229.6)--(507.2, 229.4)--(507.0, 229.0)--(507.0, 228.9)--(507.0, 228.7)--(506.9, 228.6)--(506.9, 228.4)--(506.9, 227.9)--(507.1, 227.5)--(507.1, 226.2)--(507.2, 226.1)--(507.2, 226.0)--(507.2, 225.5)--(506.9, 225.2)--(506.8, 225.1)--(506.7, 225.0)--(507.1, 224.8)--(506.9, 224.0)--(506.8, 223.7)--(506.4, 223.7)--(506.2, 223.3)--(505.7, 222.3)--(505.7, 221.9)--(505.6, 221.9)--(505.6, 221.8)--(505.5, 221.7)--(505.4, 221.7)--(505.2, 221.8)--(505.3, 221.8)--(505.3, 222.1)--(505.0, 222.1)--(504.9, 222.3)--(504.6, 222.3)--(504.4, 222.4)--(504.2, 222.5)--(504.0, 222.6)--(503.4, 222.8)--(503.3, 222.8)--(503.0, 222.9)--(502.8, 222.6)--(502.5, 222.4)--(502.4, 222.3)--(502.4, 222.4)--(502.4, 222.8)--(502.3, 222.9)--(502.2, 223.0)--(502.1, 223.1)--(502.0, 223.3)--(501.9, 223.5)--(501.7, 223.4)--(501.6, 223.3)--(501.5, 223.4)--(501.4, 223.5)--(501.4, 223.6)--(501.3, 223.6)--(501.2, 223.7)--(501.1, 223.7)--(501.0, 223.7)--(500.8, 223.8)--(500.6, 223.9)--(500.4, 223.9)--(500.2, 224.0)--(500.0, 224.0)--(499.6, 224.1)--(499.5, 223.6)--(499.4, 223.2)--(499.4, 223.1)--(499.3, 222.8)--(499.3, 222.7)--(499.4, 222.4)--(499.4, 222.3)--(499.3, 222.1)--(499.3, 222.0)--(499.2, 221.9)--(499.0, 221.4)--(498.8, 221.1)--(498.5, 220.7)--(498.3, 220.4)--(498.2, 219.6)--(498.1, 219.0)--(498.1, 218.3)--(498.0, 218.0)--(498.0, 217.9)--(498.0, 217.7)--(498.0, 217.5)--(498.1, 217.2)--(498.2, 216.7)--(498.2, 216.5)--(498.2, 216.3)--(498.2, 216.2)--(498.2, 216.0)--(498.2, 215.8)--(498.2, 215.6)--(498.1, 215.2)--(498.0, 214.6)--(497.9, 214.2)--(497.8, 213.9)--(497.3, 213.1)--(496.9, 212.7)--(496.8, 212.6)--(496.7, 212.4)--(496.9, 212.3)--(497.0, 212.2)--(497.5, 212.0)--(498.1, 211.5)--(498.1, 211.4)--(498.6, 211.0)--(498.7, 210.9)--(498.8, 210.7)--(499.2, 210.3)--(499.0, 210.0)--(498.8, 209.5)--(498.4, 209.4)--(498.2, 209.4)--(497.7, 209.4)--(497.6, 209.4)--(497.5, 209.4)--(497.3, 209.4)--(497.2, 209.4)--(496.9, 209.3)--(496.7, 209.3)--(496.7, 209.1)--(496.8, 208.3)--(496.8, 207.2)--(496.9, 206.9)--(496.9, 206.7)--(496.9, 206.5)--(496.9, 206.4)--(496.8, 206.3)--(496.6, 205.7)--(496.5, 205.5)--(496.5, 205.4)--(496.4, 205.4)--(496.3, 205.4)--(496.2, 205.3)--(496.1, 205.1)--(496.0, 204.9)--(496.0, 204.6)--(495.9, 204.1)--(495.9, 204.0)--(495.9, 203.9)--(495.8, 203.8)--(495.6, 203.6)--(495.6, 203.5)--(495.8, 203.0)--(496.0, 202.6)--(497.3, 202.4)--(497.9, 202.3)--(498.8, 202.3)--(498.7, 202.1)--(498.7, 202.0)--(498.6, 201.8)--(498.6, 201.7)--(498.6, 201.5)--(498.5, 201.4)--(498.5, 201.1)--(498.4, 200.0)--(498.3, 199.4)--(497.7, 199.4)--(497.4, 199.4)--(497.1, 199.4)--(496.8, 199.5)--(496.3, 199.6)--(495.8, 199.8)--(495.6, 199.2)--(495.5, 199.1)--(495.3, 199.2)--(494.9, 199.4)--(494.4, 199.6)--(493.9, 199.8)--(493.4, 200.0)--(493.3, 200.0)--(493.2, 200.0)--(493.2, 200.1)--(492.9, 200.2)--(492.6, 200.4)--(492.4, 200.5)--(492.2, 200.6)--(491.9, 200.8)--(491.1, 201.2)--(490.8, 201.4)--(490.6, 201.4)--(490.3, 201.6)--(489.7, 201.9)--(489.5, 202.0)--(489.2, 202.1)--(489.0, 202.2)--(488.7, 202.3)--(488.6, 202.4)--(488.4, 202.5)--(488.3, 202.7)--(488.1, 202.8)--(488.0, 202.9)--(487.8, 203.0)--(487.6, 203.1)--(487.5, 203.2)--(487.2, 203.4)--(487.0, 203.4)--(486.7, 203.7)--(486.4, 203.9)--(485.9, 204.2)--(485.2, 204.7)--(485.1, 204.8)--(484.9, 204.8)--(484.8, 204.9)--(484.4, 205.1)--(484.2, 205.2)--(483.9, 205.3)--(483.7, 205.3)--(483.5, 205.4)--(483.3, 205.4)--(482.4, 205.6)--(482.0, 205.7)--(481.5, 205.8)--(480.9, 205.9)--(480.8, 205.9)--(480.6, 205.9)--(480.5, 205.9)--(480.3, 205.8)--(480.2, 205.8)--(480.1, 205.7)--(480.0, 205.7)--(480.0, 205.6)--(479.9, 205.5)--(479.8, 205.5)--(479.6, 205.6)--(479.5, 205.7)--(479.3, 205.7)--(479.2, 205.6)--(479.1, 205.6)--(479.0, 205.6)--(478.9, 205.6)--(478.8, 205.5)--(478.6, 205.4)--(478.4, 205.4)--(478.1, 205.2)--(477.4, 204.8)--(477.0, 204.6)--(476.7, 204.5)--(476.5, 204.4)--(475.8, 204.2)--(475.4, 204.0)--(475.2, 204.0)--(474.9, 203.9)--(474.6, 203.8)--(474.5, 203.8)--(474.3, 203.8)--(474.0, 203.7)--(473.9, 203.7)--(473.4, 203.7)--(473.1, 203.7)--(472.8, 203.7)--(472.5, 203.6)--(471.8, 203.5)--(471.4, 203.5)--(470.8, 203.5)--(470.7, 203.5)--(470.5, 203.3)--(470.1, 203.4)--(470.1, 203.5)--(470.1, 203.6)--(469.9, 203.6)--(469.8, 203.7)--(469.5, 203.7)--(469.2, 203.8)--(468.6, 203.9)--(468.0, 204.0)--(467.5, 204.2)--(467.1, 204.3)--(466.6, 204.5)--(466.4, 204.6)--(466.2, 204.7)--(466.2, 204.8)--(465.8, 205.0)--(465.3, 205.2)--(464.6, 205.6)--(464.4, 205.7)--(464.2, 205.8)--(464.0, 206.0)--(463.9, 206.0)--(463.7, 206.1)--(463.6, 206.2)--(463.5, 206.2)--(463.5, 206.3)--(463.4, 206.4)--(463.3, 206.5)--(463.2, 206.6)--(463.1, 206.7)--(463.0, 206.7)--(462.9, 206.7)--(463.0, 206.8)--(462.9, 206.9)--(462.0, 207.5)--(461.6, 207.8)--(460.9, 208.3)--(460.3, 208.8)--(460.1, 208.9)--(459.8, 209.2)--(459.4, 209.6)--(458.9, 210.0)--(458.8, 210.0)--(458.1, 210.6)--(457.6, 211.1)--(457.5, 211.1)--(457.1, 211.4)--(457.1, 211.5)--(457.0, 211.6)--(456.9, 211.7)--(456.7, 211.9)--(456.5, 212.1)--(456.2, 212.3)--(456.2, 212.4)--(455.8, 212.7)--(455.6, 213.0)--(455.4, 213.2)--(455.1, 213.5)--(455.0, 213.6)--(454.8, 213.7)--(454.8, 213.8)--(454.6, 214.0)--(454.5, 214.1)--(454.3, 214.2)--(454.1, 214.4)--(454.0, 214.6)--(453.7, 215.0)--(453.5, 215.2)--(453.3, 215.4)--(453.2, 215.6)--(453.1, 215.7)--(452.6, 216.4)--(452.4, 216.6)--(452.2, 216.8)--(452.1, 216.9)--(451.9, 217.2)--(451.5, 217.7)--(451.2, 218.3)--(450.9, 218.7)--(450.6, 219.3)--(450.0, 220.2)--(449.7, 220.8)--(449.5, 221.1)--(449.4, 221.3)--(449.1, 221.6)--(449.0, 221.7)--(448.7, 221.9)--(448.4, 222.1)--(447.9, 222.3)--(447.6, 222.4)--(447.4, 222.5)--(447.3, 222.5)--(447.2, 222.5)--(447.2, 222.6)--(446.5, 222.8)--(444.8, 223.3)--(443.8, 223.7)--(443.6, 223.7)--(443.6, 223.8)--(443.1, 223.9)--(443.2, 223.9)--(443.2, 224.0)--(443.3, 224.1)--(443.4, 224.2)--(443.7, 224.5)--(443.8, 224.7)--(444.0, 224.9)--(444.1, 225.2)--(443.8, 225.6)--(444.0, 225.7)--(444.3, 226.0)--(444.2, 226.1)--(443.9, 226.5)--(444.4, 227.0)--(444.3, 227.0)--(444.0, 227.2)--(443.7, 227.5)--(443.6, 227.7)--(443.2, 228.0)--(443.3, 228.1)--(443.9, 228.7)--(444.3, 229.2)--(444.6, 229.1)--(444.7, 229.0)--(444.9, 228.9)--(445.2, 228.8)--(445.3, 228.9)--(445.4, 229.1)--(445.5, 229.4)--(445.6, 229.5)--(445.7, 229.6)--(445.8, 229.8)--(445.9, 230.1)--(445.9, 230.3)--(446.0, 230.5)--(445.9, 230.6)--(445.8, 230.6)--(445.9, 230.7)--(446.0, 230.9)--(446.1, 231.0)--(446.3, 231.2)--(446.4, 231.3)--(446.3, 231.5)--(446.4, 231.5)--(446.4, 231.6)--(446.5, 231.6)--(446.5, 231.7)--(446.7, 231.9)--(446.6, 231.9)--(446.6, 232.0)--(446.7, 232.1)--(446.8, 232.2)--(446.7, 232.3)--(446.8, 232.6)--(447.0, 232.7)--(446.9, 232.8)--(447.2, 233.2)--(447.5, 233.0)--(447.8, 232.8)--(447.9, 232.7)--(447.9, 232.8)--(448.4, 233.4)--(448.5, 233.6)--(448.6, 233.8)--(448.8, 234.0)--(449.5, 234.8)--(449.6, 235.1)--(448.8, 235.8)--(448.6, 235.9)--(448.5, 236.0)--(448.6, 236.1)--(448.7, 236.2)--(448.6, 236.3)--(448.5, 236.5)--(448.6, 236.6)--(448.7, 236.7)--(449.1, 236.4)--(449.5, 236.0)--(449.8, 235.7)--(450.0, 235.9)--(450.2, 236.0)--(450.4, 236.1)--(450.5, 236.2)--(450.9, 236.5)--(451.0, 236.5)--(451.3, 236.5)--(451.6, 236.5)--(451.5, 236.9)--(451.3, 237.2)--(451.2, 237.5)--(451.1, 237.8)--(451.0, 238.1)--(450.9, 238.4)--(450.8, 238.8)--(450.9, 238.8)--(451.0, 238.9)--(451.1, 238.9)--(451.2, 238.9)--(451.2, 239.0)--(451.4, 239.1)--(451.5, 239.3)--(451.5, 239.4)--(451.5, 239.5)--(451.5, 239.7)--(451.7, 239.8)--(451.8, 240.0)--(451.9, 240.2)--(452.0, 240.5)--(452.0, 240.8)--(452.0, 241.3)--(451.9, 242.0)--(451.8, 242.3)--(451.8, 242.5)--(451.5, 243.5)--(451.2, 244.0)--(451.0, 244.5)--(451.0, 244.8)--(451.0, 245.1)--(450.9, 245.7)--(450.9, 246.0)--(450.9, 246.1)--(450.8, 246.4)--(450.8, 246.7)--(450.7, 247.3)--(450.7, 247.8)--(450.6, 248.2)--(450.5, 248.8)--(450.5, 249.1)--(450.5, 249.2)--(450.4, 249.4)--(450.4, 249.6)--(450.3, 249.8)--(450.3, 250.0)--(450.3, 250.1)--(450.3, 250.2)--(450.3, 250.4)--(450.2, 250.9)--(450.0, 251.3)--(450.0, 251.4)--(449.6, 251.5)--(448.8, 251.8)--(448.2, 252.0)--(447.6, 252.3)--(447.0, 252.5)--(446.7, 252.8)--(446.6, 252.8)--(446.3, 253.0)--(445.9, 253.5)--(445.8, 253.4)--(445.7, 253.5)--(445.2, 254.0)--(445.1, 254.1)--(445.1, 254.2)--(445.6, 254.3)--(446.6, 254.5)--(448.0, 254.9)--(447.8, 255.1)--(447.7, 255.4)--(447.6, 255.6)--(447.6, 255.8)--(447.5, 255.9)--(447.5, 256.0)--(447.5, 256.1)--(447.5, 256.2)--(447.5, 256.3)--(447.5, 256.7)--(447.5, 256.8)--(447.5, 257.2)--(447.5, 257.5)--(447.6, 257.9)--(447.6, 258.0)--(447.6, 258.4)--(447.7, 258.7)--(447.7, 259.1)--(447.7, 259.4)--(447.6, 259.6)--(447.4, 260.2)--(447.3, 260.3)--(447.3, 260.7)--(447.3, 261.4)--(447.3, 261.8)--(447.3, 262.2)--(447.3, 262.3)--(447.4, 262.4)--(448.0, 262.3)--(448.2, 262.8)--(448.5, 263.5)--(448.7, 264.0)--(448.9, 264.3)--(449.0, 264.8)--(449.3, 264.8)--(449.3, 264.9)--(449.5, 265.2)--(449.7, 265.6)--(449.9, 265.7)--(450.1, 265.9)--(450.3, 266.0)--(450.5, 266.2)--(450.7, 266.3)--(450.9, 266.3)--(451.3, 266.5)--(451.6, 266.6)--(451.8, 266.7)--(451.9, 266.8)--(452.3, 267.1)--(452.5, 267.3)--(452.7, 267.5)--(452.9, 267.8)--(453.2, 268.0)--(453.4, 268.3)--(453.3, 268.3)--(453.3, 268.4)--(453.4, 268.4)--(453.4, 268.5)--(453.5, 268.6)--(453.4, 268.6)--(453.5, 268.7)--(453.6, 268.8)--(453.8, 268.9)--(453.9, 268.9)--(453.9, 269.0)--(454.0, 269.1)--(454.3, 269.2)--(454.4, 269.3)--(454.5, 269.4)--(454.7, 269.6)--(455.0, 269.8)--(455.2, 269.9)--(455.3, 269.9)--(455.4, 270.0)--(455.6, 270.0)--(455.7, 270.0)--(456.0, 270.1)--(456.2, 270.1)--(456.4, 270.0)--(457.1, 270.0)--(457.1, 270.1)--(457.2, 270.8)--(457.3, 271.0)--(457.4, 271.1)--(457.6, 271.5)--(457.7, 271.6)--(458.0, 272.2)--(458.1, 272.3)--(458.1, 272.4)--(458.2, 272.5)--(458.5, 272.5)--(458.9, 272.5)--(459.2, 272.4)--(459.5, 272.3)--(460.1, 272.1)--(460.4, 271.9)--(460.4, 271.8)--(460.6, 271.5)--(460.7, 271.5)--(460.8, 271.5)--(461.1, 272.0)--(461.2, 272.0)--(461.3, 271.9)--(461.6, 271.7)--(461.6, 271.6)--(461.7, 271.7)--(461.8, 271.7)--(462.0, 271.9)--(462.1, 272.0)--(462.3, 272.2)--(462.5, 272.4)--(462.6, 272.6)--(462.7, 272.7)--(462.8, 272.7)--(463.0, 272.4)--(463.3, 272.7)--(463.7, 272.2)--(463.8, 272.3)--(464.2, 272.6)--(464.3, 272.6)--(464.4, 272.7)--(464.4, 272.8)--(464.4, 273.0)--(464.5, 273.0)--(464.5, 273.1)--(464.6, 273.1)--(464.7, 273.2)--(464.7, 273.3)--(465.0, 273.5)--(465.1, 273.5)--(465.1, 273.3)--(465.3, 273.1)--(465.4, 272.8)--(465.6, 272.5)--(465.9, 272.3)--(466.2, 272.0)--(466.4, 271.7)--(466.6, 271.4)--(466.8, 271.2)--(466.9, 271.1)--(466.9, 271.0)--(467.0, 270.9)--(467.2, 270.7)--(467.6, 270.4)--(467.6, 270.3)--(467.8, 270.2)--(468.0, 270.4)--(468.1, 270.6)--(468.2, 270.6)--(468.4, 270.9)--(468.5, 271.1)--(468.5, 271.2)--(468.6, 271.4)--(468.8, 271.8)--(469.0, 272.2)--(469.1, 272.6)--(469.4, 272.8)--(469.5, 273.0)--(469.8, 273.2)--(470.0, 273.5)--(470.1, 273.7)--(470.2, 273.8)--(470.5, 274.4)--(470.8, 274.8)--(471.0, 275.2)--(471.2, 275.5)--(471.9, 276.5)--(472.1, 276.8)--(472.4, 276.7)--(472.5, 276.6)--(472.6, 276.6)--(472.7, 276.5)--(473.0, 276.5)--(473.1, 276.5)--(473.3, 276.5)--(473.6, 276.4)--(473.7, 276.4)--(473.9, 276.3)--(474.1, 276.1)--(474.4, 276.0)--(474.5, 275.9)--(474.7, 275.7)--(475.0, 275.6)--(475.2, 275.4)--(475.6, 275.1)--(475.8, 274.9)--(475.9, 274.8)--(475.9, 274.7)--(476.0, 274.6)--(476.1, 274.6)--(476.0, 274.9)--(476.0, 275.1)--(475.9, 275.3)--(475.8, 275.9)--(475.6, 276.6)--(475.5, 277.1)--(475.2, 278.0)--(474.9, 279.0)--(474.8, 279.5)--(474.6, 280.1)--(474.5, 280.5)--(474.5, 280.8)--(474.5, 281.1)--(474.5, 282.1)--(474.4, 283.0)--(474.4, 284.3)--(474.3, 284.6)--(474.3, 284.8)--(474.3, 284.9)--(473.9, 286.2)--(473.9, 286.4)--(473.9, 286.5)--(473.9, 286.7)--(473.9, 286.8)--(473.9, 287.0)--(473.9, 287.6)--(473.9, 287.7)--(473.9, 287.8)--(473.8, 288.1)--(473.7, 288.9)--(473.7, 289.8)--(473.7, 290.4)--(473.6, 290.7)--(473.6, 292.0)--(473.5, 292.8)--(473.5, 293.3)--(473.4, 295.0)--(473.4, 296.1)--(473.4, 296.2)--(473.3, 297.3)--(473.2, 299.0)--(473.2, 300.0)--(473.1, 301.1)--(473.1, 301.8)--(473.1, 302.1)--(473.1, 302.5)--(473.1, 303.0)--(473.0, 303.7)--(473.0, 304.5)--(472.9, 305.8)--(472.9, 307.0)--(472.8, 307.7)--(472.8, 308.1)--(472.7, 309.0)--(472.7, 309.7)--(472.7, 310.0)--(472.7, 310.2)--(472.6, 310.8)--(472.6, 311.1)--(472.6, 311.5)--(472.5, 312.6)--cycle; +Brent = (252.0, 325.1)--(251.8, 325.2)--(251.8, 325.3)--(251.8, 325.4)--(251.7, 325.4)--(251.6, 325.4)--(251.5, 325.4)--(251.4, 325.3)--(251.1, 325.4)--(251.0, 325.9)--(250.9, 326.2)--(251.0, 326.3)--(251.0, 326.4)--(251.0, 326.6)--(251.0, 326.7)--(251.0, 326.8)--(251.0, 327.3)--(251.0, 327.6)--(251.0, 327.8)--(250.8, 328.1)--(250.7, 328.2)--(250.5, 328.4)--(250.5, 328.5)--(250.4, 328.6)--(250.3, 328.6)--(250.2, 328.7)--(250.1, 328.8)--(250.0, 328.9)--(249.9, 329.0)--(249.8, 329.1)--(249.6, 329.2)--(249.2, 329.5)--(249.1, 329.6)--(248.9, 329.7)--(248.8, 329.7)--(248.7, 329.8)--(248.6, 329.9)--(248.5, 330.0)--(248.5, 330.1)--(248.5, 330.2)--(248.4, 330.3)--(248.3, 330.5)--(248.2, 330.5)--(248.1, 330.5)--(247.9, 330.6)--(247.7, 330.7)--(247.5, 330.8)--(247.4, 330.9)--(247.4, 330.8)--(247.2, 330.8)--(247.0, 330.8)--(246.7, 330.8)--(246.3, 330.9)--(245.8, 330.9)--(245.6, 330.9)--(245.4, 330.8)--(245.1, 330.8)--(244.9, 330.7)--(244.8, 330.7)--(244.6, 330.7)--(244.4, 330.7)--(244.2, 330.7)--(244.0, 330.6)--(243.5, 330.5)--(243.3, 330.4)--(243.0, 330.3)--(242.8, 330.2)--(242.5, 330.0)--(242.4, 330.0)--(242.0, 329.7)--(241.8, 329.7)--(241.6, 329.6)--(241.4, 329.5)--(241.0, 329.5)--(240.7, 329.5)--(240.6, 329.4)--(240.5, 329.4)--(240.3, 329.4)--(240.1, 329.3)--(239.9, 329.3)--(239.8, 329.2)--(239.7, 329.2)--(239.3, 329.1)--(239.0, 329.0)--(238.9, 328.9)--(238.9, 328.8)--(238.9, 328.7)--(238.9, 328.6)--(238.9, 328.5)--(239.0, 328.0)--(239.1, 327.9)--(239.1, 327.8)--(239.1, 327.7)--(239.1, 327.6)--(239.0, 327.5)--(239.0, 327.4)--(238.9, 327.3)--(238.8, 327.2)--(238.7, 327.2)--(238.6, 327.1)--(238.5, 326.9)--(238.5, 326.6)--(238.4, 326.4)--(238.4, 326.2)--(238.5, 325.1)--(238.2, 325.3)--(238.1, 325.4)--(237.8, 325.6)--(237.6, 325.7)--(237.1, 325.9)--(236.9, 325.9)--(236.6, 326.0)--(236.4, 326.1)--(236.1, 326.2)--(235.2, 326.4)--(235.0, 326.4)--(234.7, 326.5)--(234.4, 326.6)--(234.1, 326.7)--(233.9, 326.9)--(233.7, 326.9)--(233.6, 327.0)--(233.3, 327.1)--(233.2, 327.2)--(233.1, 327.2)--(232.7, 327.3)--(232.5, 327.4)--(232.2, 327.4)--(231.9, 327.4)--(231.9, 327.3)--(231.4, 327.2)--(231.0, 327.2)--(230.4, 327.1)--(230.4, 327.4)--(230.3, 327.4)--(230.2, 327.4)--(230.1, 327.4)--(230.0, 327.5)--(229.9, 327.5)--(229.8, 327.6)--(229.6, 327.7)--(229.3, 327.7)--(229.1, 327.8)--(228.8, 327.9)--(228.7, 328.0)--(228.4, 328.1)--(228.2, 328.1)--(228.0, 328.2)--(227.8, 328.4)--(227.6, 328.5)--(227.1, 328.8)--(226.7, 329.1)--(226.4, 329.3)--(226.0, 329.7)--(225.8, 329.9)--(225.6, 330.0)--(225.5, 330.0)--(225.2, 329.9)--(225.1, 329.9)--(225.0, 329.8)--(224.9, 329.8)--(224.2, 329.5)--(224.0, 329.5)--(223.6, 329.3)--(222.8, 329.2)--(222.3, 329.2)--(222.1, 329.2)--(221.7, 329.2)--(221.4, 329.1)--(221.1, 329.1)--(221.0, 329.1)--(220.3, 329.0)--(219.5, 328.9)--(219.4, 328.9)--(219.3, 328.9)--(219.2, 329.0)--(219.0, 329.1)--(218.6, 329.2)--(218.5, 329.3)--(217.6, 329.8)--(217.4, 329.9)--(217.4, 330.0)--(217.3, 330.0)--(217.2, 330.1)--(217.0, 330.4)--(216.8, 330.7)--(216.7, 330.7)--(216.6, 330.8)--(216.4, 330.9)--(216.2, 330.9)--(215.5, 331.1)--(214.2, 331.5)--(214.1, 331.2)--(214.0, 331.1)--(213.9, 331.1)--(213.8, 331.2)--(213.7, 331.2)--(213.5, 331.3)--(213.4, 331.4)--(213.3, 331.4)--(213.2, 331.4)--(212.8, 331.4)--(212.0, 331.3)--(211.1, 331.2)--(210.8, 331.2)--(210.6, 331.1)--(210.5, 331.6)--(210.5, 331.7)--(210.5, 331.8)--(210.4, 331.8)--(210.4, 331.9)--(210.4, 332.0)--(210.4, 332.1)--(210.3, 332.1)--(210.3, 332.2)--(210.2, 332.2)--(209.7, 332.4)--(209.6, 332.5)--(209.3, 332.6)--(209.2, 332.5)--(209.1, 332.5)--(208.9, 332.3)--(208.1, 331.9)--(207.7, 331.8)--(207.6, 331.7)--(207.5, 331.7)--(207.5, 331.5)--(207.4, 331.4)--(207.0, 331.0)--(206.4, 330.4)--(205.9, 329.9)--(205.5, 329.6)--(205.2, 329.4)--(204.8, 329.2)--(204.8, 329.1)--(204.5, 329.0)--(204.6, 328.8)--(204.6, 328.7)--(204.5, 328.5)--(204.5, 328.4)--(204.4, 328.2)--(204.3, 328.2)--(204.3, 328.1)--(204.2, 328.0)--(203.7, 327.5)--(203.4, 327.1)--(203.1, 327.0)--(202.7, 326.7)--(202.5, 326.6)--(202.3, 326.5)--(201.8, 326.5)--(201.9, 326.4)--(201.9, 326.3)--(201.7, 326.2)--(201.6, 326.2)--(201.5, 326.2)--(201.4, 326.3)--(201.2, 326.5)--(200.7, 326.2)--(200.6, 326.5)--(200.0, 326.4)--(199.4, 326.3)--(198.6, 326.1)--(197.3, 325.8)--(196.0, 325.5)--(194.9, 325.0)--(194.8, 324.9)--(194.7, 324.9)--(194.6, 324.9)--(194.4, 324.8)--(194.3, 324.7)--(194.0, 324.6)--(193.9, 324.6)--(193.8, 324.6)--(193.7, 324.6)--(192.6, 324.9)--(192.4, 324.9)--(192.0, 325.0)--(191.8, 325.1)--(191.2, 325.2)--(191.1, 325.2)--(191.2, 325.1)--(190.1, 325.3)--(189.8, 325.7)--(189.7, 325.9)--(189.2, 326.3)--(188.8, 326.7)--(188.4, 327.1)--(188.0, 327.5)--(187.7, 327.8)--(187.5, 328.0)--(188.2, 328.5)--(188.9, 328.8)--(189.5, 329.2)--(189.9, 329.4)--(190.0, 329.4)--(190.0, 329.5)--(190.1, 329.7)--(190.3, 329.7)--(191.1, 330.1)--(191.2, 330.2)--(191.5, 329.4)--(192.4, 329.7)--(192.9, 329.9)--(193.3, 329.3)--(193.3, 329.2)--(193.8, 329.4)--(194.2, 329.6)--(194.5, 329.8)--(194.7, 329.9)--(194.8, 330.1)--(194.8, 330.3)--(194.9, 330.5)--(194.9, 330.9)--(195.0, 331.4)--(195.2, 331.4)--(195.2, 331.5)--(195.3, 331.9)--(195.4, 331.9)--(195.5, 332.0)--(195.3, 332.1)--(195.2, 332.2)--(195.0, 332.3)--(194.9, 332.5)--(194.7, 332.6)--(194.5, 332.9)--(194.1, 333.4)--(193.5, 334.2)--(192.8, 335.1)--(192.2, 335.8)--(192.1, 335.9)--(191.9, 335.8)--(191.0, 335.0)--(190.3, 334.5)--(189.9, 334.2)--(189.2, 333.7)--(187.9, 333.0)--(186.9, 332.6)--(186.7, 332.6)--(185.6, 332.0)--(185.5, 332.0)--(185.0, 331.8)--(184.7, 331.7)--(184.6, 331.6)--(184.0, 331.7)--(183.5, 331.5)--(183.4, 331.5)--(183.4, 331.6)--(183.3, 331.6)--(183.1, 331.9)--(183.0, 332.0)--(182.9, 332.0)--(182.8, 332.0)--(182.7, 332.0)--(182.6, 332.0)--(182.4, 331.9)--(182.3, 331.8)--(182.2, 331.8)--(182.2, 331.7)--(182.1, 331.6)--(182.0, 331.6)--(181.9, 331.5)--(181.7, 331.0)--(181.4, 330.7)--(181.1, 330.4)--(180.4, 329.6)--(179.8, 329.2)--(179.1, 328.7)--(178.4, 328.4)--(178.3, 328.2)--(176.8, 328.7)--(175.9, 329.0)--(175.0, 329.3)--(174.9, 329.3)--(175.0, 329.4)--(175.1, 329.5)--(175.2, 329.7)--(175.2, 329.8)--(175.3, 329.9)--(175.4, 330.0)--(175.6, 330.1)--(175.7, 330.2)--(175.7, 330.3)--(175.8, 330.6)--(175.8, 331.0)--(175.8, 331.5)--(175.9, 332.0)--(175.9, 332.6)--(175.9, 332.7)--(175.9, 333.4)--(175.9, 334.1)--(175.9, 334.4)--(175.8, 336.1)--(175.8, 336.4)--(176.6, 336.9)--(176.7, 336.9)--(176.5, 337.2)--(176.1, 337.6)--(175.8, 337.9)--(175.5, 338.2)--(175.1, 338.9)--(175.0, 339.0)--(174.6, 339.7)--(173.9, 340.6)--(174.0, 340.6)--(174.0, 340.7)--(174.1, 340.9)--(174.2, 341.1)--(174.3, 341.5)--(174.3, 341.9)--(174.2, 342.0)--(173.9, 342.4)--(173.6, 342.5)--(173.6, 342.8)--(174.2, 342.8)--(174.8, 342.9)--(174.9, 342.9)--(174.8, 343.0)--(174.8, 343.1)--(174.5, 343.5)--(174.1, 343.9)--(173.8, 344.2)--(173.2, 344.6)--(173.1, 344.7)--(173.0, 344.7)--(172.0, 345.2)--(171.9, 345.2)--(171.9, 345.3)--(171.8, 345.4)--(171.6, 345.6)--(171.5, 345.8)--(171.3, 346.0)--(171.2, 346.2)--(171.1, 346.5)--(171.0, 346.8)--(171.0, 347.1)--(170.8, 347.3)--(170.1, 347.8)--(169.7, 348.2)--(169.6, 348.1)--(168.7, 348.7)--(168.1, 349.1)--(168.2, 349.2)--(167.6, 349.6)--(167.4, 349.7)--(167.3, 349.8)--(167.2, 349.8)--(166.9, 350.0)--(166.4, 350.2)--(166.0, 350.5)--(165.4, 350.8)--(164.9, 351.1)--(164.4, 351.4)--(164.2, 351.5)--(163.8, 351.7)--(163.0, 352.2)--(162.4, 352.5)--(161.8, 352.8)--(161.5, 353.1)--(160.8, 353.4)--(160.2, 353.7)--(159.7, 353.8)--(159.2, 353.9)--(158.5, 354.1)--(157.8, 354.2)--(157.2, 354.4)--(156.5, 354.5)--(155.9, 354.7)--(155.8, 354.7)--(155.8, 354.6)--(155.4, 354.8)--(154.8, 355.0)--(154.9, 355.1)--(155.3, 356.4)--(155.9, 356.3)--(155.9, 356.6)--(155.9, 357.0)--(155.9, 357.6)--(156.3, 358.2)--(156.8, 359.0)--(157.3, 359.8)--(157.2, 359.9)--(157.8, 360.5)--(157.6, 360.6)--(157.7, 360.6)--(158.6, 361.4)--(158.7, 361.5)--(158.8, 361.6)--(158.9, 361.6)--(159.1, 361.6)--(159.2, 361.7)--(159.4, 361.7)--(159.8, 361.7)--(159.7, 362.0)--(159.5, 362.3)--(159.7, 362.6)--(159.5, 363.5)--(159.5, 364.4)--(159.4, 365.5)--(159.1, 365.6)--(158.7, 365.8)--(158.7, 366.3)--(158.6, 366.8)--(158.9, 366.9)--(159.3, 367.0)--(160.2, 367.3)--(160.1, 367.6)--(160.7, 367.7)--(161.1, 367.8)--(161.3, 367.9)--(161.8, 368.2)--(161.8, 368.4)--(162.2, 368.6)--(162.7, 368.9)--(163.3, 369.4)--(163.8, 369.8)--(163.6, 370.3)--(163.3, 370.9)--(162.8, 371.8)--(162.4, 372.7)--(161.9, 373.6)--(161.9, 373.9)--(161.8, 374.0)--(161.8, 374.2)--(161.8, 374.4)--(161.7, 374.7)--(161.4, 376.6)--(161.4, 376.8)--(161.3, 377.1)--(161.0, 377.8)--(160.7, 378.6)--(160.6, 379.0)--(160.5, 379.2)--(160.5, 379.3)--(160.5, 379.5)--(160.4, 379.7)--(160.5, 379.8)--(161.4, 380.1)--(162.7, 380.6)--(164.3, 381.4)--(164.6, 381.6)--(164.9, 381.8)--(165.2, 382.0)--(165.5, 382.3)--(165.9, 382.5)--(167.0, 383.7)--(168.9, 385.5)--(169.4, 385.9)--(169.5, 386.0)--(169.7, 386.2)--(170.6, 386.8)--(171.4, 387.3)--(173.0, 388.2)--(174.0, 388.8)--(174.3, 388.9)--(174.5, 389.1)--(174.7, 389.1)--(174.7, 389.2)--(175.0, 389.3)--(175.4, 389.4)--(175.9, 389.5)--(176.2, 389.6)--(176.6, 389.6)--(176.9, 389.7)--(177.2, 389.7)--(177.3, 389.7)--(177.9, 389.7)--(178.2, 389.7)--(178.4, 389.6)--(178.6, 389.6)--(178.7, 389.5)--(179.2, 389.3)--(179.7, 389.2)--(179.9, 389.2)--(180.0, 389.2)--(180.2, 389.2)--(181.7, 389.1)--(182.7, 389.0)--(184.2, 388.8)--(186.4, 388.4)--(189.8, 387.8)--(190.9, 387.5)--(190.9, 387.6)--(191.0, 387.6)--(191.0, 387.7)--(191.0, 388.3)--(191.0, 388.4)--(191.0, 388.5)--(191.0, 388.6)--(190.9, 388.7)--(190.8, 388.9)--(190.6, 389.4)--(190.5, 390.2)--(190.4, 390.6)--(190.4, 390.8)--(190.3, 391.2)--(190.2, 391.8)--(189.8, 392.9)--(189.7, 393.3)--(189.5, 393.6)--(189.4, 393.8)--(189.3, 394.0)--(189.3, 394.1)--(189.1, 394.4)--(188.9, 394.6)--(188.8, 394.7)--(188.7, 394.8)--(188.5, 395.0)--(188.4, 395.1)--(188.2, 395.2)--(188.0, 395.4)--(187.9, 395.5)--(187.7, 395.6)--(187.6, 395.6)--(187.4, 395.7)--(187.2, 395.8)--(186.6, 396.0)--(186.4, 396.0)--(186.1, 396.2)--(186.0, 396.2)--(185.9, 396.3)--(185.7, 396.4)--(185.6, 396.5)--(185.2, 396.9)--(185.4, 397.1)--(185.7, 397.2)--(185.9, 397.3)--(186.1, 397.4)--(186.6, 397.6)--(186.9, 397.7)--(187.1, 397.7)--(187.5, 398.0)--(187.7, 398.2)--(188.0, 398.5)--(188.1, 398.4)--(188.4, 398.3)--(188.5, 398.8)--(188.6, 398.8)--(188.9, 399.0)--(189.2, 399.1)--(189.5, 399.2)--(190.0, 399.4)--(190.5, 399.5)--(191.1, 399.7)--(191.4, 399.7)--(192.8, 400.0)--(194.8, 400.4)--(194.4, 400.8)--(195.3, 401.4)--(196.4, 402.0)--(196.4, 402.1)--(196.5, 402.1)--(196.6, 402.2)--(196.7, 402.3)--(196.8, 402.3)--(196.9, 402.4)--(197.0, 402.4)--(197.1, 402.5)--(197.2, 402.5)--(197.3, 402.5)--(197.4, 402.5)--(197.5, 402.5)--(197.6, 402.5)--(197.7, 402.5)--(197.8, 402.5)--(198.1, 402.5)--(198.1, 402.4)--(198.2, 402.4)--(198.3, 402.4)--(198.4, 402.4)--(198.4, 402.5)--(198.5, 402.5)--(198.6, 402.6)--(198.8, 402.8)--(199.0, 403.0)--(199.3, 403.3)--(199.6, 403.5)--(199.8, 403.7)--(200.0, 403.9)--(200.1, 404.0)--(200.3, 404.1)--(200.6, 404.3)--(201.1, 404.8)--(201.2, 404.7)--(201.9, 403.8)--(202.2, 403.3)--(202.5, 402.8)--(202.8, 402.4)--(203.2, 402.0)--(203.5, 401.6)--(203.8, 401.3)--(204.3, 400.7)--(204.5, 400.4)--(204.9, 400.0)--(205.8, 398.8)--(206.4, 398.0)--(207.5, 396.5)--(207.7, 396.3)--(207.9, 395.9)--(208.1, 395.7)--(208.4, 395.4)--(209.4, 394.2)--(210.0, 393.5)--(210.3, 393.3)--(210.6, 393.0)--(211.0, 392.6)--(211.1, 392.4)--(211.6, 391.9)--(212.0, 391.2)--(213.1, 389.5)--(213.4, 389.2)--(214.4, 387.5)--(214.6, 387.3)--(214.6, 387.2)--(214.5, 387.2)--(213.5, 386.8)--(213.2, 386.7)--(212.9, 386.5)--(212.5, 386.4)--(212.3, 386.3)--(212.1, 385.8)--(211.9, 385.5)--(211.8, 385.4)--(211.7, 385.3)--(211.5, 385.1)--(211.3, 384.9)--(211.1, 384.9)--(211.0, 384.8)--(210.9, 384.7)--(210.8, 384.6)--(210.7, 384.5)--(210.6, 384.4)--(210.5, 384.1)--(210.5, 384.0)--(210.5, 383.9)--(210.5, 383.7)--(210.5, 383.6)--(210.5, 383.4)--(210.5, 383.3)--(210.5, 383.0)--(210.5, 382.8)--(210.5, 382.6)--(210.5, 382.4)--(210.4, 382.3)--(210.4, 382.1)--(210.4, 382.0)--(210.4, 381.9)--(210.4, 381.8)--(210.5, 381.2)--(210.5, 381.1)--(210.7, 380.7)--(210.8, 380.2)--(210.9, 379.9)--(211.1, 379.5)--(211.1, 379.4)--(211.2, 379.3)--(211.3, 379.1)--(211.3, 378.9)--(211.4, 378.5)--(211.6, 377.6)--(211.7, 377.4)--(211.7, 377.3)--(211.8, 377.0)--(211.9, 376.7)--(212.1, 376.2)--(212.2, 375.9)--(212.4, 375.6)--(212.5, 375.4)--(212.7, 374.9)--(212.8, 374.8)--(212.8, 374.7)--(212.8, 374.6)--(212.7, 374.6)--(212.6, 374.5)--(212.5, 374.4)--(212.3, 374.4)--(212.1, 374.3)--(212.0, 374.3)--(211.9, 374.3)--(211.7, 374.3)--(211.7, 374.2)--(211.6, 374.2)--(211.6, 374.1)--(211.6, 374.0)--(211.6, 373.9)--(211.7, 373.8)--(211.8, 373.5)--(211.9, 373.2)--(212.0, 373.0)--(212.3, 372.7)--(212.5, 372.6)--(212.6, 372.5)--(212.7, 372.3)--(212.8, 372.1)--(212.9, 372.0)--(212.9, 371.8)--(212.9, 371.7)--(213.0, 371.7)--(213.0, 371.6)--(213.3, 371.4)--(213.5, 371.1)--(213.7, 370.8)--(213.8, 370.6)--(214.0, 370.4)--(214.1, 370.3)--(214.1, 370.2)--(214.2, 370.2)--(214.2, 370.1)--(214.3, 370.1)--(214.4, 370.1)--(214.5, 370.0)--(214.7, 369.9)--(214.7, 369.8)--(214.8, 369.7)--(214.9, 369.7)--(215.1, 369.9)--(215.2, 369.8)--(215.3, 369.7)--(215.5, 369.7)--(215.7, 369.7)--(215.8, 369.7)--(215.9, 369.8)--(215.9, 369.9)--(215.8, 370.0)--(215.7, 370.0)--(215.7, 370.1)--(215.7, 370.2)--(215.8, 370.3)--(215.9, 370.3)--(216.0, 370.2)--(216.2, 370.2)--(216.2, 370.3)--(216.3, 370.3)--(216.2, 370.5)--(216.2, 370.6)--(216.3, 370.7)--(216.5, 370.9)--(216.5, 371.1)--(216.6, 371.1)--(216.6, 371.2)--(216.6, 371.3)--(216.5, 371.3)--(216.4, 371.3)--(216.3, 371.3)--(216.3, 371.2)--(216.2, 371.2)--(216.2, 371.4)--(216.2, 371.6)--(216.2, 371.8)--(216.3, 371.9)--(216.3, 372.1)--(216.6, 372.4)--(216.6, 372.5)--(216.5, 372.6)--(216.4, 372.7)--(216.2, 372.8)--(216.1, 373.0)--(216.0, 373.0)--(216.0, 373.1)--(216.1, 373.1)--(216.1, 373.2)--(216.3, 373.3)--(216.5, 373.7)--(216.5, 373.8)--(216.6, 373.8)--(216.7, 373.8)--(216.8, 373.6)--(216.9, 373.5)--(217.1, 373.5)--(217.2, 373.6)--(217.3, 373.7)--(217.4, 373.8)--(217.5, 373.9)--(217.6, 374.0)--(217.6, 374.1)--(217.6, 374.2)--(217.7, 374.2)--(217.7, 374.3)--(217.8, 374.3)--(217.8, 374.2)--(217.8, 374.1)--(217.8, 374.0)--(217.9, 374.0)--(218.0, 374.0)--(218.2, 374.0)--(218.3, 374.1)--(218.5, 374.1)--(218.6, 374.2)--(218.7, 374.2)--(218.9, 374.2)--(219.0, 374.2)--(219.0, 374.3)--(219.0, 374.4)--(218.9, 374.4)--(218.9, 374.5)--(218.9, 374.6)--(219.0, 374.6)--(219.1, 374.5)--(219.2, 374.6)--(219.3, 374.6)--(219.5, 374.5)--(219.6, 374.5)--(219.7, 374.4)--(219.7, 374.3)--(219.7, 374.2)--(219.7, 374.1)--(219.8, 374.0)--(219.8, 373.9)--(219.9, 373.9)--(219.9, 373.8)--(220.0, 373.8)--(220.1, 374.0)--(220.1, 374.1)--(220.2, 374.1)--(220.3, 374.0)--(220.2, 373.9)--(220.3, 373.9)--(220.4, 374.0)--(220.5, 374.1)--(220.6, 374.1)--(220.7, 374.1)--(220.8, 374.1)--(220.7, 374.0)--(220.6, 373.9)--(220.6, 373.8)--(220.7, 373.8)--(220.8, 373.8)--(220.9, 373.8)--(221.1, 373.8)--(221.2, 373.8)--(221.3, 374.0)--(221.5, 374.0)--(221.6, 373.9)--(221.7, 373.7)--(221.8, 373.7)--(221.8, 373.6)--(222.0, 373.5)--(222.1, 373.5)--(222.2, 373.5)--(222.2, 373.6)--(222.0, 373.7)--(222.0, 373.8)--(222.0, 373.9)--(222.1, 373.9)--(222.2, 373.8)--(222.3, 373.9)--(222.3, 374.0)--(222.3, 374.1)--(222.2, 374.1)--(222.2, 374.2)--(222.3, 374.2)--(222.3, 374.3)--(222.4, 374.3)--(222.5, 374.2)--(222.6, 374.2)--(222.7, 374.2)--(223.0, 374.3)--(223.1, 374.3)--(223.2, 374.2)--(223.4, 374.2)--(223.5, 374.1)--(223.6, 374.1)--(223.6, 374.2)--(223.5, 374.3)--(223.6, 374.4)--(223.7, 374.4)--(223.9, 374.4)--(223.9, 374.3)--(223.9, 374.2)--(223.7, 374.2)--(223.7, 374.1)--(223.8, 374.1)--(223.9, 374.1)--(224.0, 374.1)--(224.1, 374.0)--(224.2, 373.9)--(224.4, 373.8)--(224.4, 373.6)--(224.5, 373.5)--(224.5, 373.6)--(224.6, 373.6)--(224.7, 373.6)--(224.8, 373.5)--(224.9, 373.6)--(225.0, 373.7)--(225.2, 373.8)--(226.1, 372.7)--(226.4, 372.3)--(226.8, 371.8)--(227.0, 371.4)--(227.3, 371.1)--(227.6, 370.8)--(227.8, 370.5)--(228.1, 370.0)--(228.5, 369.5)--(228.6, 369.4)--(228.7, 369.3)--(228.9, 369.1)--(229.1, 368.9)--(229.3, 368.8)--(229.7, 368.4)--(229.9, 368.3)--(230.0, 368.1)--(230.2, 367.9)--(230.6, 367.5)--(230.8, 367.3)--(230.9, 367.1)--(231.1, 366.8)--(231.2, 366.7)--(231.5, 366.4)--(231.9, 365.9)--(232.4, 365.2)--(232.9, 364.6)--(233.1, 364.3)--(233.4, 363.9)--(233.7, 363.5)--(234.0, 363.2)--(234.4, 362.5)--(234.6, 362.1)--(235.3, 360.8)--(235.6, 360.5)--(235.8, 360.1)--(236.1, 359.8)--(236.5, 359.3)--(236.9, 358.7)--(237.1, 358.5)--(237.2, 358.3)--(237.4, 358.1)--(237.6, 357.9)--(238.1, 357.3)--(238.2, 357.2)--(238.5, 356.7)--(239.0, 356.2)--(239.3, 355.7)--(239.5, 355.5)--(239.5, 355.4)--(239.7, 355.2)--(239.9, 354.9)--(240.0, 354.8)--(240.2, 354.4)--(240.3, 354.3)--(240.6, 353.8)--(240.8, 353.6)--(241.0, 353.4)--(241.1, 353.3)--(241.5, 352.8)--(241.8, 352.5)--(242.2, 352.0)--(242.6, 351.6)--(243.0, 351.1)--(243.5, 350.6)--(243.8, 350.3)--(243.9, 350.1)--(244.0, 350.0)--(244.3, 349.6)--(244.6, 349.2)--(245.1, 348.6)--(245.5, 347.9)--(246.1, 347.1)--(246.5, 346.5)--(246.6, 346.3)--(246.9, 346.0)--(247.2, 345.4)--(247.8, 344.7)--(247.8, 344.6)--(248.3, 343.9)--(249.6, 342.2)--(250.0, 341.7)--(250.8, 340.8)--(251.4, 339.9)--(251.6, 339.8)--(251.7, 339.7)--(251.8, 339.5)--(252.5, 338.6)--(253.7, 337.0)--(254.5, 335.9)--(254.6, 335.7)--(255.3, 334.8)--(254.3, 332.3)--(254.3, 332.2)--(254.5, 331.9)--(254.7, 331.5)--(254.8, 331.4)--(254.8, 331.2)--(254.8, 331.0)--(254.7, 330.7)--(254.6, 330.5)--(254.4, 330.2)--(254.3, 329.8)--(254.0, 329.3)--(253.5, 328.3)--(252.6, 326.4)--(252.1, 325.4)--(252.0, 325.2)--cycle; +Bromley = (403.7, 75.3)--(403.6, 75.5)--(403.6, 75.7)--(403.5, 75.9)--(403.4, 76.0)--(403.4, 76.2)--(403.4, 76.3)--(403.3, 76.5)--(403.2, 76.7)--(403.2, 76.9)--(403.1, 77.2)--(403.1, 77.5)--(403.0, 77.7)--(402.9, 77.9)--(402.9, 78.4)--(402.9, 78.5)--(402.9, 78.6)--(402.9, 79.0)--(402.8, 79.1)--(402.8, 79.2)--(402.8, 79.3)--(402.7, 79.9)--(402.7, 80.0)--(402.7, 80.1)--(402.7, 80.2)--(402.5, 80.6)--(402.4, 80.8)--(402.4, 80.9)--(402.4, 81.0)--(402.4, 81.1)--(402.4, 81.2)--(402.4, 81.4)--(402.3, 81.9)--(402.2, 82.0)--(402.2, 82.2)--(402.1, 82.3)--(402.1, 82.5)--(402.0, 82.6)--(402.0, 82.7)--(401.9, 82.8)--(401.8, 82.9)--(401.8, 83.0)--(401.7, 83.1)--(401.7, 83.2)--(401.7, 83.3)--(401.6, 83.4)--(401.6, 83.5)--(401.6, 83.6)--(401.6, 83.7)--(401.6, 84.0)--(401.4, 84.4)--(401.3, 84.9)--(401.3, 85.1)--(401.3, 85.4)--(400.9, 86.9)--(400.8, 87.0)--(400.8, 87.2)--(400.8, 87.4)--(400.8, 87.5)--(400.8, 87.7)--(400.9, 87.9)--(401.0, 88.2)--(401.1, 88.6)--(401.2, 88.9)--(401.3, 89.2)--(401.3, 89.6)--(401.3, 90.0)--(401.4, 90.8)--(401.5, 91.1)--(401.5, 91.2)--(401.5, 91.3)--(401.6, 91.6)--(401.7, 92.2)--(401.8, 92.8)--(402.0, 93.7)--(401.8, 93.6)--(401.4, 93.6)--(401.3, 93.5)--(401.2, 93.5)--(401.1, 93.5)--(400.6, 93.4)--(400.5, 93.3)--(400.4, 93.3)--(400.3, 93.2)--(400.0, 93.1)--(399.8, 93.1)--(399.7, 93.0)--(399.4, 93.0)--(399.4, 93.1)--(399.3, 93.7)--(399.0, 94.7)--(398.9, 95.1)--(398.6, 95.8)--(398.6, 96.1)--(398.5, 96.5)--(398.5, 96.6)--(398.5, 96.8)--(398.4, 97.4)--(398.4, 97.7)--(398.3, 98.0)--(398.2, 98.3)--(398.2, 98.5)--(398.2, 98.7)--(398.0, 100.0)--(398.0, 100.2)--(397.7, 101.0)--(397.4, 102.1)--(397.2, 102.5)--(397.1, 102.8)--(397.1, 103.2)--(397.0, 103.6)--(396.9, 104.1)--(396.8, 104.7)--(396.7, 105.1)--(396.6, 105.6)--(396.5, 106.2)--(396.3, 106.8)--(396.1, 107.4)--(396.0, 107.7)--(396.0, 108.0)--(395.9, 108.2)--(395.9, 108.3)--(395.9, 108.7)--(396.0, 108.8)--(396.3, 109.2)--(396.3, 109.3)--(396.4, 109.3)--(396.4, 109.5)--(396.3, 110.0)--(396.3, 110.1)--(396.3, 110.2)--(396.3, 110.3)--(396.5, 110.5)--(396.5, 110.7)--(396.6, 111.3)--(396.3, 111.4)--(396.1, 111.5)--(395.9, 111.7)--(395.6, 111.9)--(395.4, 112.3)--(395.2, 112.6)--(394.9, 112.8)--(394.8, 112.9)--(394.9, 113.0)--(394.8, 113.3)--(394.6, 113.9)--(394.6, 114.3)--(394.5, 115.0)--(394.3, 115.7)--(394.2, 116.1)--(394.1, 116.4)--(393.8, 117.6)--(393.7, 117.9)--(393.6, 118.4)--(393.5, 118.9)--(393.4, 119.3)--(393.3, 119.7)--(393.1, 120.2)--(393.1, 120.4)--(393.0, 120.5)--(393.1, 120.5)--(393.0, 120.8)--(392.9, 120.8)--(392.8, 121.5)--(392.9, 121.6)--(392.8, 121.9)--(392.7, 122.3)--(392.6, 122.6)--(392.6, 122.7)--(392.5, 123.1)--(392.3, 123.8)--(392.1, 124.3)--(392.1, 124.4)--(392.1, 124.6)--(392.1, 124.7)--(392.1, 125.0)--(392.0, 125.3)--(391.9, 125.5)--(391.8, 126.1)--(391.9, 126.1)--(391.8, 126.3)--(391.6, 126.7)--(391.6, 127.0)--(391.4, 127.5)--(391.2, 128.4)--(391.1, 128.5)--(391.0, 129.1)--(390.9, 129.6)--(390.8, 129.7)--(390.8, 129.9)--(390.7, 130.1)--(390.6, 130.4)--(390.5, 130.5)--(390.5, 130.8)--(390.4, 131.3)--(390.4, 131.9)--(390.4, 132.0)--(390.3, 132.4)--(390.3, 132.6)--(390.2, 132.9)--(390.1, 133.3)--(390.1, 133.4)--(390.1, 133.6)--(390.0, 133.7)--(390.0, 133.8)--(389.9, 133.9)--(390.0, 133.9)--(390.0, 134.0)--(389.9, 134.1)--(389.8, 134.2)--(389.8, 134.3)--(389.5, 134.7)--(389.4, 134.9)--(389.3, 135.1)--(389.1, 135.2)--(389.0, 135.3)--(389.0, 135.4)--(388.7, 135.7)--(388.5, 136.0)--(388.3, 136.3)--(388.2, 136.5)--(388.0, 136.8)--(387.8, 136.9)--(387.7, 137.2)--(387.5, 137.4)--(387.3, 137.6)--(387.1, 137.7)--(387.0, 137.9)--(386.8, 138.0)--(386.5, 138.2)--(385.8, 138.7)--(385.5, 138.9)--(385.3, 139.0)--(385.2, 139.0)--(385.1, 139.0)--(385.1, 138.9)--(385.0, 138.8)--(384.9, 138.8)--(384.6, 138.8)--(384.4, 138.9)--(384.2, 139.1)--(384.0, 139.3)--(383.8, 139.6)--(383.6, 139.8)--(383.4, 139.9)--(383.0, 140.3)--(382.6, 140.7)--(382.2, 141.2)--(381.9, 141.7)--(381.4, 142.6)--(381.1, 142.8)--(381.0, 143.0)--(380.8, 143.2)--(380.7, 143.3)--(380.6, 143.4)--(380.8, 143.5)--(380.7, 143.5)--(380.7, 143.7)--(380.6, 143.8)--(380.5, 144.0)--(380.4, 144.2)--(380.3, 144.5)--(380.3, 144.7)--(380.2, 144.9)--(380.2, 145.0)--(380.1, 145.1)--(380.0, 145.3)--(379.9, 145.5)--(379.8, 145.6)--(379.7, 145.7)--(379.6, 145.8)--(379.5, 145.9)--(379.5, 146.0)--(379.4, 146.0)--(379.4, 146.2)--(379.3, 146.3)--(379.1, 146.4)--(378.9, 146.6)--(378.8, 146.7)--(378.7, 147.0)--(378.6, 147.1)--(378.5, 147.3)--(378.4, 147.5)--(378.3, 147.7)--(378.1, 147.8)--(378.0, 147.9)--(377.9, 148.2)--(377.8, 148.4)--(377.3, 148.0)--(377.1, 147.8)--(376.9, 147.7)--(376.7, 147.8)--(376.8, 148.1)--(376.2, 148.9)--(376.2, 149.3)--(376.5, 149.3)--(376.5, 149.6)--(377.0, 149.6)--(377.1, 149.6)--(377.1, 150.0)--(377.1, 150.2)--(377.0, 150.5)--(377.0, 150.8)--(377.0, 151.1)--(376.9, 151.1)--(376.8, 151.4)--(376.8, 151.7)--(376.8, 151.9)--(376.8, 152.2)--(376.8, 152.4)--(376.8, 152.5)--(376.8, 152.6)--(376.7, 152.7)--(376.7, 152.9)--(376.7, 153.1)--(376.7, 153.5)--(376.7, 154.0)--(376.7, 154.3)--(376.6, 154.3)--(376.6, 154.4)--(376.5, 154.4)--(376.6, 154.5)--(376.6, 154.7)--(376.7, 154.9)--(376.7, 155.4)--(376.4, 155.8)--(376.2, 156.2)--(376.2, 156.5)--(376.0, 157.0)--(375.6, 157.9)--(375.6, 158.0)--(375.5, 158.2)--(375.5, 158.3)--(375.5, 158.5)--(375.3, 158.7)--(375.3, 158.9)--(375.1, 159.2)--(375.0, 159.5)--(375.0, 159.6)--(374.9, 159.6)--(374.7, 160.0)--(374.9, 160.1)--(374.9, 160.5)--(374.8, 160.6)--(374.8, 160.9)--(374.8, 161.0)--(374.7, 161.1)--(374.5, 161.6)--(374.4, 162.1)--(374.3, 162.4)--(374.3, 162.7)--(374.2, 163.0)--(374.2, 163.3)--(373.3, 163.2)--(373.4, 162.9)--(373.4, 162.8)--(373.4, 162.7)--(373.4, 162.6)--(373.4, 162.5)--(373.4, 162.4)--(373.4, 162.3)--(373.3, 162.2)--(373.3, 162.1)--(373.3, 162.0)--(373.2, 162.0)--(373.2, 161.9)--(373.2, 161.8)--(373.1, 161.8)--(373.1, 161.7)--(373.0, 161.7)--(373.0, 161.6)--(372.9, 161.5)--(372.9, 161.4)--(372.8, 161.4)--(372.8, 161.3)--(372.7, 161.3)--(372.7, 161.2)--(372.6, 161.2)--(372.5, 161.1)--(372.4, 161.1)--(372.4, 161.0)--(372.3, 161.0)--(372.2, 161.0)--(372.2, 160.9)--(372.1, 160.9)--(372.0, 160.9)--(371.9, 160.9)--(371.9, 160.8)--(371.8, 160.8)--(371.7, 160.8)--(371.6, 160.8)--(371.5, 160.8)--(371.4, 160.7)--(371.3, 160.7)--(371.2, 160.7)--(371.1, 160.7)--(370.2, 160.6)--(369.7, 160.6)--(368.8, 160.4)--(368.1, 160.3)--(367.7, 160.3)--(367.5, 160.4)--(367.4, 160.4)--(367.4, 160.5)--(367.3, 160.5)--(367.3, 160.4)--(367.2, 160.5)--(367.6, 162.7)--(367.2, 162.6)--(367.0, 163.6)--(366.6, 165.5)--(366.4, 166.6)--(366.4, 167.4)--(366.6, 169.2)--(366.8, 170.3)--(366.8, 170.5)--(367.1, 172.2)--(367.2, 173.1)--(367.2, 173.2)--(366.8, 173.3)--(366.3, 173.4)--(366.0, 173.5)--(365.7, 173.6)--(365.3, 173.6)--(365.2, 173.6)--(365.0, 173.6)--(364.8, 173.7)--(364.4, 173.8)--(364.0, 173.9)--(363.8, 174.0)--(363.6, 174.1)--(363.5, 174.0)--(363.1, 174.1)--(362.8, 174.2)--(362.5, 174.4)--(362.1, 174.6)--(361.4, 175.3)--(361.0, 175.8)--(360.7, 176.2)--(360.5, 176.5)--(360.4, 176.8)--(360.3, 177.0)--(360.1, 176.9)--(359.9, 176.8)--(359.8, 177.0)--(359.6, 177.2)--(359.6, 177.3)--(359.3, 177.9)--(359.2, 178.1)--(359.0, 178.2)--(358.7, 178.3)--(358.5, 178.3)--(358.3, 178.3)--(357.9, 178.3)--(357.4, 178.3)--(357.3, 178.3)--(356.7, 178.5)--(356.6, 178.7)--(356.5, 178.6)--(356.4, 178.7)--(356.4, 179.1)--(356.2, 179.2)--(355.9, 179.2)--(355.9, 179.5)--(355.8, 179.7)--(355.8, 179.8)--(355.4, 180.0)--(355.4, 179.9)--(355.2, 180.1)--(355.3, 180.3)--(355.2, 180.3)--(356.3, 181.8)--(356.9, 182.6)--(357.0, 183.1)--(357.3, 183.5)--(357.2, 183.6)--(356.9, 183.2)--(356.6, 183.4)--(356.0, 183.8)--(357.0, 185.3)--(356.7, 185.6)--(356.4, 185.7)--(356.1, 186.3)--(355.7, 186.8)--(355.3, 187.4)--(355.2, 187.2)--(354.9, 187.1)--(354.7, 187.0)--(354.2, 186.9)--(353.8, 186.7)--(353.4, 186.6)--(353.2, 186.4)--(352.7, 186.2)--(352.3, 185.9)--(351.7, 185.5)--(351.3, 185.2)--(351.0, 184.9)--(350.9, 184.8)--(350.3, 184.8)--(350.1, 184.6)--(350.0, 184.8)--(350.4, 185.1)--(350.0, 185.7)--(348.9, 187.3)--(348.4, 187.2)--(348.1, 187.3)--(347.8, 187.3)--(347.7, 187.3)--(347.2, 187.4)--(347.3, 187.6)--(347.3, 187.8)--(347.0, 187.9)--(346.9, 187.9)--(346.5, 188.0)--(346.4, 188.1)--(346.2, 188.2)--(346.1, 188.3)--(346.0, 188.3)--(345.8, 188.5)--(345.7, 188.6)--(345.6, 188.6)--(345.5, 188.7)--(345.4, 188.8)--(345.3, 188.9)--(345.1, 189.0)--(345.0, 189.1)--(344.8, 189.3)--(344.7, 189.3)--(344.7, 189.4)--(344.6, 189.4)--(344.6, 189.5)--(344.5, 189.7)--(344.4, 189.7)--(344.3, 189.8)--(344.3, 189.9)--(344.2, 190.1)--(344.2, 190.2)--(344.1, 190.3)--(344.1, 190.5)--(344.1, 190.6)--(343.9, 190.9)--(343.9, 191.0)--(343.9, 191.1)--(343.8, 191.3)--(343.7, 191.5)--(343.6, 191.6)--(343.6, 191.7)--(343.5, 191.8)--(343.2, 192.4)--(342.9, 192.8)--(342.6, 193.2)--(342.3, 193.5)--(342.0, 193.8)--(341.7, 194.2)--(341.5, 194.5)--(341.3, 194.8)--(341.2, 195.1)--(341.0, 195.5)--(341.0, 195.6)--(340.9, 196.0)--(340.8, 196.6)--(340.8, 197.0)--(340.8, 197.4)--(340.8, 197.6)--(340.8, 197.7)--(340.9, 198.1)--(341.0, 198.4)--(341.1, 198.8)--(341.2, 199.1)--(341.3, 199.5)--(340.8, 199.6)--(340.6, 199.7)--(340.5, 199.7)--(340.4, 199.8)--(340.3, 199.9)--(340.1, 200.0)--(339.5, 200.4)--(339.6, 200.5)--(339.5, 200.6)--(339.4, 200.6)--(339.3, 200.7)--(339.3, 200.8)--(339.2, 200.9)--(339.1, 200.9)--(339.0, 201.0)--(338.9, 201.0)--(338.7, 201.3)--(338.6, 201.3)--(338.5, 201.3)--(338.4, 201.3)--(338.3, 201.3)--(338.0, 201.5)--(337.8, 201.6)--(337.6, 201.8)--(337.5, 201.9)--(336.8, 202.1)--(336.6, 202.2)--(336.3, 202.3)--(336.1, 202.4)--(335.8, 202.5)--(335.8, 202.6)--(335.8, 202.7)--(335.6, 203.0)--(335.5, 203.3)--(335.5, 203.7)--(335.4, 204.1)--(335.4, 204.2)--(335.3, 204.3)--(335.3, 204.5)--(335.4, 204.6)--(335.4, 204.7)--(335.5, 204.8)--(335.8, 205.1)--(335.9, 205.3)--(336.0, 205.6)--(336.2, 205.9)--(336.3, 206.2)--(336.4, 206.3)--(336.5, 206.5)--(336.8, 206.9)--(336.9, 207.1)--(337.0, 207.2)--(337.1, 207.3)--(337.0, 207.3)--(337.0, 207.5)--(337.1, 207.6)--(337.1, 207.8)--(337.1, 208.0)--(337.1, 208.1)--(337.2, 208.1)--(337.2, 208.2)--(337.2, 208.3)--(337.3, 208.6)--(337.6, 209.4)--(338.3, 211.1)--(338.9, 212.8)--(339.0, 213.1)--(339.3, 213.8)--(339.3, 213.9)--(339.4, 213.9)--(339.4, 214.0)--(339.5, 214.1)--(339.5, 214.2)--(339.6, 214.2)--(339.7, 214.2)--(339.7, 214.3)--(339.8, 214.3)--(339.9, 214.4)--(340.0, 214.4)--(340.1, 214.4)--(340.2, 214.5)--(340.4, 214.5)--(340.6, 214.5)--(340.8, 214.6)--(341.1, 214.6)--(341.2, 214.6)--(341.4, 214.6)--(341.7, 214.6)--(341.8, 214.6)--(341.9, 214.6)--(342.0, 214.6)--(342.1, 214.6)--(342.2, 214.6)--(342.3, 214.5)--(342.4, 214.5)--(342.5, 214.5)--(342.5, 214.4)--(342.6, 214.4)--(343.1, 214.2)--(343.3, 214.1)--(343.6, 213.9)--(343.6, 214.2)--(343.7, 214.3)--(344.0, 214.3)--(344.2, 214.3)--(344.2, 214.2)--(344.6, 213.9)--(344.9, 213.7)--(345.1, 213.7)--(345.5, 213.4)--(345.7, 213.7)--(345.9, 213.6)--(346.1, 213.6)--(346.2, 213.6)--(346.4, 213.6)--(346.4, 213.5)--(346.5, 213.4)--(346.6, 213.4)--(346.7, 213.7)--(347.3, 213.7)--(347.4, 213.7)--(347.4, 213.6)--(347.7, 213.6)--(347.8, 213.6)--(347.9, 213.5)--(347.9, 213.6)--(348.1, 213.5)--(348.3, 213.4)--(348.4, 213.4)--(348.6, 213.2)--(348.8, 213.1)--(348.7, 213.0)--(348.7, 212.9)--(348.7, 212.8)--(348.8, 212.8)--(349.8, 212.2)--(349.9, 212.2)--(350.1, 212.1)--(350.3, 212.0)--(350.9, 211.7)--(351.1, 211.5)--(351.1, 211.4)--(351.4, 211.3)--(351.9, 211.2)--(352.1, 211.2)--(352.2, 211.2)--(352.3, 211.2)--(352.4, 211.2)--(352.7, 211.2)--(352.7, 211.3)--(353.2, 211.2)--(353.4, 211.8)--(353.4, 212.1)--(355.0, 212.0)--(355.5, 212.0)--(355.6, 211.3)--(355.6, 211.0)--(355.6, 210.8)--(355.9, 210.8)--(356.3, 210.9)--(356.4, 210.9)--(356.5, 211.0)--(356.8, 211.0)--(356.9, 211.1)--(357.2, 211.1)--(357.4, 211.1)--(357.7, 211.2)--(357.8, 211.2)--(358.7, 211.3)--(358.7, 211.2)--(358.9, 211.2)--(359.6, 211.2)--(359.6, 211.0)--(359.4, 211.0)--(359.4, 210.7)--(360.7, 211.2)--(361.2, 211.4)--(361.1, 211.6)--(361.1, 211.7)--(361.3, 211.7)--(361.4, 211.8)--(361.6, 211.9)--(361.7, 211.9)--(361.7, 211.7)--(361.7, 211.8)--(362.6, 212.2)--(362.5, 212.4)--(362.5, 212.5)--(362.8, 212.7)--(362.9, 212.8)--(362.9, 212.9)--(363.2, 213.0)--(363.5, 213.0)--(363.7, 212.9)--(363.8, 212.9)--(364.0, 212.9)--(364.4, 212.8)--(364.7, 212.7)--(364.8, 212.6)--(364.9, 212.8)--(365.0, 213.1)--(365.2, 213.5)--(365.4, 213.8)--(366.1, 213.8)--(366.3, 213.8)--(366.5, 213.8)--(366.7, 213.9)--(367.2, 213.9)--(367.5, 213.9)--(367.7, 214.0)--(367.7, 213.6)--(368.1, 213.6)--(368.1, 213.5)--(368.3, 213.5)--(368.5, 213.5)--(369.0, 213.6)--(369.4, 213.6)--(369.3, 214.2)--(369.2, 214.5)--(369.9, 214.7)--(370.2, 214.7)--(370.3, 214.7)--(370.4, 214.7)--(370.5, 214.7)--(370.7, 214.5)--(370.9, 214.5)--(371.0, 214.4)--(371.7, 213.9)--(372.1, 213.7)--(372.1, 213.6)--(372.2, 213.5)--(372.2, 213.4)--(372.4, 213.2)--(372.6, 213.1)--(372.7, 213.0)--(372.9, 212.9)--(373.3, 212.6)--(373.4, 212.5)--(373.6, 212.6)--(373.6, 212.5)--(373.7, 212.5)--(373.7, 212.4)--(373.8, 212.3)--(374.1, 212.2)--(374.3, 212.1)--(374.6, 212.0)--(374.7, 211.9)--(374.9, 211.7)--(375.1, 211.5)--(375.2, 211.3)--(375.5, 211.0)--(375.5, 210.9)--(375.6, 210.7)--(375.8, 210.4)--(375.9, 210.3)--(376.0, 210.4)--(376.1, 210.5)--(376.2, 210.4)--(376.8, 209.9)--(377.0, 209.6)--(376.6, 209.1)--(376.5, 209.0)--(376.6, 209.0)--(376.8, 208.8)--(377.0, 208.7)--(377.2, 208.5)--(377.1, 208.4)--(377.0, 208.3)--(377.0, 208.2)--(377.0, 208.1)--(376.9, 208.0)--(376.9, 207.9)--(376.9, 207.8)--(376.9, 207.3)--(376.9, 207.0)--(376.8, 206.8)--(376.7, 206.6)--(376.6, 206.4)--(376.4, 206.2)--(376.0, 205.8)--(376.6, 205.5)--(376.3, 204.9)--(376.5, 204.8)--(376.6, 204.6)--(376.8, 204.5)--(377.1, 204.3)--(377.1, 204.2)--(377.1, 204.1)--(377.4, 204.1)--(377.5, 204.2)--(377.6, 204.2)--(377.6, 204.1)--(377.7, 204.1)--(379.3, 203.9)--(379.3, 203.1)--(379.7, 203.1)--(380.0, 203.1)--(380.3, 203.1)--(380.8, 203.1)--(381.2, 203.2)--(381.7, 203.2)--(381.9, 203.2)--(381.9, 203.1)--(381.8, 203.1)--(381.8, 203.0)--(381.7, 201.9)--(381.8, 201.9)--(381.8, 201.8)--(381.9, 201.8)--(381.9, 201.6)--(382.4, 201.6)--(382.9, 201.6)--(383.6, 201.6)--(384.5, 201.6)--(385.4, 202.0)--(385.4, 202.1)--(385.5, 202.2)--(385.6, 202.3)--(385.7, 202.4)--(385.9, 202.5)--(386.1, 202.6)--(386.3, 202.6)--(386.4, 202.7)--(386.5, 202.7)--(387.2, 202.9)--(387.1, 203.2)--(387.1, 203.5)--(387.1, 203.8)--(387.2, 204.4)--(387.4, 204.4)--(387.5, 204.4)--(387.6, 204.4)--(387.9, 204.2)--(387.9, 203.8)--(388.0, 203.6)--(388.1, 203.3)--(388.2, 203.2)--(388.2, 203.1)--(388.2, 203.0)--(388.3, 203.0)--(388.3, 202.9)--(388.3, 202.8)--(389.5, 203.4)--(389.3, 203.7)--(389.3, 204.0)--(389.4, 204.0)--(389.4, 204.1)--(391.2, 204.4)--(391.2, 204.6)--(391.1, 204.6)--(391.4, 204.8)--(391.5, 204.9)--(391.5, 205.0)--(391.5, 205.1)--(391.5, 205.7)--(391.6, 206.0)--(391.6, 206.1)--(391.6, 206.2)--(391.6, 206.3)--(391.8, 206.5)--(392.1, 206.7)--(392.1, 206.8)--(392.3, 206.9)--(392.4, 207.1)--(392.9, 207.4)--(393.9, 206.3)--(394.1, 206.1)--(395.3, 207.1)--(395.5, 207.3)--(395.6, 207.4)--(395.5, 207.6)--(395.4, 207.9)--(395.4, 208.0)--(395.5, 208.1)--(395.3, 208.3)--(395.5, 208.7)--(395.5, 208.9)--(395.6, 209.0)--(395.7, 209.2)--(395.7, 209.3)--(395.8, 209.4)--(395.8, 209.6)--(395.8, 209.7)--(395.8, 209.8)--(395.9, 209.9)--(396.0, 210.2)--(396.3, 210.1)--(396.4, 210.4)--(396.3, 210.4)--(396.3, 210.6)--(396.3, 210.8)--(396.4, 210.7)--(396.7, 210.6)--(396.8, 211.1)--(397.0, 211.9)--(397.2, 212.5)--(397.6, 212.4)--(397.7, 212.3)--(398.5, 211.9)--(398.6, 212.1)--(399.0, 212.8)--(399.2, 213.0)--(399.3, 213.2)--(399.6, 213.3)--(399.7, 213.7)--(400.0, 213.8)--(400.8, 214.4)--(400.9, 214.9)--(401.5, 215.0)--(401.4, 215.5)--(401.2, 216.1)--(401.5, 216.1)--(401.6, 216.1)--(401.9, 216.1)--(402.3, 216.1)--(402.6, 216.2)--(403.2, 216.6)--(403.4, 216.8)--(403.5, 216.9)--(403.7, 217.0)--(403.9, 217.0)--(404.0, 217.0)--(404.2, 217.0)--(404.3, 217.1)--(404.5, 217.2)--(405.0, 217.1)--(405.1, 217.2)--(405.3, 217.1)--(405.5, 217.0)--(406.0, 216.9)--(406.1, 217.0)--(406.3, 217.2)--(406.4, 217.2)--(406.4, 217.3)--(406.5, 217.4)--(406.6, 217.5)--(406.9, 217.7)--(407.1, 217.8)--(407.3, 218.0)--(407.5, 218.2)--(407.7, 218.4)--(407.9, 218.5)--(407.9, 218.6)--(408.1, 218.7)--(408.2, 218.8)--(408.4, 218.9)--(408.8, 219.2)--(409.0, 219.4)--(409.5, 219.2)--(410.1, 218.6)--(410.3, 218.5)--(411.2, 217.5)--(411.7, 217.0)--(412.0, 216.7)--(412.3, 216.3)--(412.4, 216.2)--(412.5, 216.1)--(412.9, 215.9)--(413.2, 215.7)--(413.3, 215.5)--(413.8, 215.1)--(414.0, 215.0)--(414.1, 214.9)--(414.4, 214.7)--(414.6, 214.5)--(414.8, 214.3)--(415.0, 214.2)--(415.1, 213.9)--(415.4, 213.6)--(415.6, 213.4)--(415.8, 213.1)--(416.7, 212.3)--(417.6, 213.6)--(418.4, 214.9)--(418.5, 214.9)--(418.6, 214.9)--(418.6, 215.0)--(418.6, 215.4)--(418.6, 215.7)--(418.6, 215.8)--(418.6, 215.9)--(418.6, 216.0)--(418.5, 216.5)--(418.4, 216.5)--(418.4, 216.6)--(418.4, 216.9)--(418.3, 216.9)--(418.2, 217.1)--(418.1, 217.7)--(418.1, 218.1)--(417.7, 218.1)--(417.7, 218.3)--(417.9, 218.5)--(418.0, 218.6)--(418.0, 219.5)--(418.0, 219.7)--(417.9, 219.9)--(417.8, 220.2)--(417.9, 220.3)--(417.7, 220.8)--(417.7, 221.1)--(417.6, 221.3)--(417.6, 221.4)--(417.6, 221.5)--(417.5, 221.9)--(417.5, 222.0)--(417.4, 222.1)--(417.4, 222.3)--(417.4, 222.4)--(417.3, 222.6)--(417.3, 222.8)--(417.3, 223.1)--(417.3, 223.3)--(417.3, 223.4)--(417.4, 223.5)--(417.4, 223.9)--(417.4, 224.0)--(417.4, 224.5)--(417.1, 224.3)--(415.3, 223.1)--(414.7, 222.6)--(414.4, 223.2)--(413.8, 222.8)--(413.7, 223.0)--(413.6, 223.3)--(413.2, 223.5)--(413.1, 223.3)--(413.0, 223.2)--(412.9, 223.0)--(412.8, 223.1)--(413.1, 223.5)--(413.0, 223.6)--(412.9, 223.7)--(412.4, 224.0)--(412.3, 224.1)--(412.2, 224.1)--(412.1, 224.2)--(412.0, 224.4)--(411.8, 224.6)--(411.4, 224.8)--(411.1, 225.1)--(411.3, 225.3)--(411.4, 225.5)--(411.4, 225.8)--(411.3, 226.3)--(411.3, 226.7)--(411.2, 227.2)--(411.1, 227.7)--(411.1, 227.8)--(411.0, 227.8)--(410.6, 227.8)--(410.4, 227.8)--(410.4, 227.9)--(410.3, 227.9)--(410.1, 227.9)--(409.4, 227.5)--(409.0, 227.2)--(408.9, 226.9)--(408.8, 226.9)--(408.7, 227.2)--(408.7, 227.3)--(408.6, 228.1)--(408.5, 228.1)--(408.4, 228.4)--(408.4, 228.6)--(408.4, 229.0)--(408.3, 229.4)--(408.3, 229.6)--(408.3, 229.7)--(409.1, 230.0)--(409.1, 229.9)--(411.0, 230.4)--(411.1, 230.4)--(411.1, 230.7)--(411.1, 230.9)--(411.1, 231.1)--(411.0, 231.5)--(410.9, 232.0)--(410.9, 232.2)--(410.9, 232.5)--(411.0, 232.8)--(411.1, 233.0)--(411.1, 233.2)--(411.2, 233.3)--(411.2, 233.4)--(411.4, 233.6)--(411.4, 233.7)--(411.5, 233.7)--(411.5, 233.9)--(411.5, 234.0)--(411.5, 234.1)--(411.8, 235.4)--(412.0, 236.6)--(412.1, 236.6)--(412.3, 236.5)--(412.4, 236.5)--(412.6, 236.4)--(412.7, 236.4)--(412.9, 236.3)--(413.2, 236.2)--(413.3, 236.1)--(413.5, 236.1)--(413.6, 236.0)--(413.8, 235.9)--(413.9, 235.9)--(414.0, 235.9)--(414.1, 235.8)--(414.2, 235.8)--(414.3, 235.8)--(414.3, 235.7)--(414.4, 235.7)--(414.5, 235.5)--(414.5, 235.4)--(414.6, 235.4)--(414.6, 235.3)--(414.8, 235.3)--(415.0, 235.2)--(415.0, 235.1)--(415.1, 235.0)--(415.4, 234.8)--(415.6, 234.6)--(415.8, 234.6)--(415.9, 234.5)--(416.0, 234.5)--(416.1, 234.5)--(416.4, 234.3)--(416.5, 234.2)--(416.5, 234.1)--(416.6, 234.1)--(416.7, 234.0)--(417.1, 233.9)--(417.3, 233.8)--(417.6, 233.5)--(417.7, 233.5)--(418.0, 233.4)--(418.1, 233.4)--(418.3, 233.2)--(418.5, 233.1)--(418.6, 233.1)--(418.7, 233.1)--(418.8, 232.9)--(418.9, 232.9)--(418.9, 232.8)--(419.5, 232.2)--(419.8, 231.9)--(420.2, 231.6)--(420.4, 231.4)--(420.4, 231.2)--(420.6, 230.9)--(420.7, 230.5)--(420.9, 230.2)--(420.9, 230.1)--(421.1, 229.7)--(421.2, 229.5)--(421.4, 229.4)--(421.9, 228.9)--(422.3, 228.5)--(422.5, 228.3)--(422.5, 228.1)--(422.5, 227.9)--(423.0, 227.2)--(423.3, 226.8)--(423.4, 226.6)--(423.6, 226.4)--(423.9, 225.9)--(424.4, 225.2)--(424.8, 224.7)--(425.5, 224.0)--(425.7, 223.8)--(426.1, 223.4)--(426.8, 222.8)--(427.0, 222.5)--(427.6, 221.6)--(427.8, 221.3)--(428.1, 220.7)--(428.5, 220.0)--(428.8, 219.4)--(429.2, 218.8)--(429.4, 218.5)--(429.5, 218.4)--(430.4, 217.3)--(430.6, 216.9)--(430.7, 216.9)--(431.6, 215.8)--(431.9, 215.5)--(432.2, 215.2)--(432.3, 215.3)--(432.4, 215.3)--(432.5, 215.3)--(432.6, 215.3)--(432.7, 215.3)--(433.1, 215.5)--(433.6, 215.8)--(433.8, 215.8)--(434.1, 214.7)--(434.4, 214.3)--(435.3, 214.7)--(435.4, 214.8)--(435.5, 214.9)--(435.6, 215.0)--(435.6, 215.1)--(435.7, 215.1)--(436.0, 215.5)--(436.3, 215.8)--(436.1, 216.2)--(436.5, 216.3)--(436.4, 216.5)--(437.7, 216.9)--(437.6, 217.3)--(438.0, 217.7)--(439.0, 218.7)--(440.0, 219.7)--(440.1, 219.9)--(440.2, 220.0)--(440.9, 220.6)--(441.1, 220.8)--(441.3, 221.1)--(441.5, 221.4)--(442.4, 222.9)--(442.0, 223.0)--(442.2, 223.5)--(442.7, 223.3)--(442.9, 223.2)--(443.3, 222.4)--(443.5, 223.3)--(443.6, 223.7)--(443.8, 223.7)--(444.8, 223.3)--(446.5, 222.8)--(447.2, 222.6)--(447.2, 222.5)--(447.3, 222.5)--(447.4, 222.5)--(447.6, 222.4)--(447.9, 222.3)--(448.4, 222.1)--(448.7, 221.9)--(449.0, 221.7)--(449.1, 221.6)--(449.4, 221.3)--(449.5, 221.1)--(449.7, 220.8)--(450.0, 220.2)--(450.6, 219.3)--(450.9, 218.7)--(451.2, 218.3)--(451.5, 217.7)--(451.9, 217.2)--(452.1, 216.9)--(452.2, 216.8)--(452.4, 216.6)--(452.6, 216.4)--(453.1, 215.7)--(453.2, 215.6)--(453.3, 215.4)--(453.5, 215.2)--(453.7, 215.0)--(454.0, 214.6)--(454.1, 214.4)--(454.3, 214.2)--(454.5, 214.1)--(454.6, 214.0)--(454.8, 213.8)--(454.8, 213.7)--(455.0, 213.6)--(455.1, 213.5)--(455.4, 213.2)--(455.6, 213.0)--(455.8, 212.7)--(456.2, 212.4)--(456.2, 212.3)--(456.5, 212.1)--(456.7, 211.9)--(456.9, 211.7)--(457.0, 211.6)--(457.1, 211.5)--(457.1, 211.4)--(457.5, 211.1)--(457.6, 211.1)--(458.1, 210.6)--(458.8, 210.0)--(458.9, 210.0)--(459.4, 209.6)--(459.8, 209.2)--(460.1, 208.9)--(460.3, 208.8)--(460.9, 208.3)--(461.6, 207.8)--(462.0, 207.5)--(462.9, 206.9)--(463.0, 206.8)--(462.9, 206.7)--(463.0, 206.7)--(463.1, 206.7)--(463.2, 206.6)--(463.3, 206.5)--(463.4, 206.4)--(463.5, 206.3)--(463.5, 206.2)--(463.6, 206.2)--(463.7, 206.1)--(463.9, 206.0)--(464.0, 206.0)--(464.2, 205.8)--(464.4, 205.7)--(464.6, 205.6)--(465.3, 205.2)--(465.8, 205.0)--(466.2, 204.8)--(466.2, 204.7)--(466.4, 204.6)--(466.6, 204.5)--(467.1, 204.3)--(467.5, 204.2)--(468.0, 204.0)--(468.6, 203.9)--(469.2, 203.8)--(469.5, 203.7)--(469.8, 203.7)--(469.9, 203.6)--(470.1, 203.6)--(470.1, 203.5)--(470.1, 203.4)--(470.5, 203.3)--(470.7, 203.5)--(470.8, 203.5)--(471.4, 203.5)--(471.8, 203.5)--(472.5, 203.6)--(472.8, 203.7)--(473.1, 203.7)--(473.4, 203.7)--(473.9, 203.7)--(474.0, 203.7)--(474.3, 203.8)--(474.5, 203.8)--(474.6, 203.8)--(474.9, 203.9)--(475.2, 204.0)--(475.4, 204.0)--(475.8, 204.2)--(476.5, 204.4)--(476.7, 204.5)--(477.0, 204.6)--(477.4, 204.8)--(478.1, 205.2)--(478.4, 205.4)--(478.6, 205.4)--(478.8, 205.5)--(478.9, 205.6)--(479.0, 205.6)--(479.1, 205.6)--(479.2, 205.6)--(479.3, 205.7)--(479.5, 205.7)--(479.6, 205.6)--(479.8, 205.5)--(479.9, 205.5)--(480.0, 205.6)--(480.0, 205.7)--(480.1, 205.7)--(480.2, 205.8)--(480.3, 205.8)--(480.5, 205.9)--(480.6, 205.9)--(480.8, 205.9)--(480.9, 205.9)--(481.5, 205.8)--(482.0, 205.7)--(482.4, 205.6)--(483.3, 205.4)--(483.5, 205.4)--(483.7, 205.3)--(483.9, 205.3)--(484.2, 205.2)--(484.4, 205.1)--(484.8, 204.9)--(484.9, 204.8)--(485.1, 204.8)--(485.2, 204.7)--(485.9, 204.2)--(486.4, 203.9)--(486.7, 203.7)--(487.0, 203.4)--(487.2, 203.4)--(487.5, 203.2)--(487.6, 203.1)--(487.8, 203.0)--(488.0, 202.9)--(488.1, 202.8)--(488.3, 202.7)--(488.4, 202.5)--(488.6, 202.4)--(488.7, 202.3)--(489.0, 202.2)--(489.2, 202.1)--(489.5, 202.0)--(489.7, 201.9)--(490.3, 201.6)--(490.6, 201.4)--(490.8, 201.4)--(491.1, 201.2)--(491.9, 200.8)--(492.2, 200.6)--(492.4, 200.5)--(492.6, 200.4)--(492.9, 200.2)--(493.2, 200.1)--(493.2, 200.0)--(493.3, 200.0)--(493.4, 200.0)--(493.9, 199.8)--(494.4, 199.6)--(494.9, 199.4)--(495.3, 199.2)--(495.5, 199.1)--(495.4, 198.8)--(495.4, 198.7)--(495.8, 198.4)--(496.1, 198.2)--(496.4, 198.0)--(496.6, 197.7)--(496.6, 197.6)--(496.7, 197.6)--(496.7, 197.5)--(496.8, 197.5)--(496.8, 197.4)--(496.9, 197.3)--(496.9, 197.2)--(497.0, 197.2)--(497.0, 197.1)--(497.1, 197.1)--(497.2, 197.0)--(497.3, 197.0)--(497.3, 196.9)--(497.4, 196.9)--(497.5, 196.9)--(497.5, 196.8)--(497.6, 196.8)--(497.7, 196.8)--(497.8, 196.8)--(497.8, 196.7)--(497.9, 196.7)--(498.0, 196.7)--(498.1, 196.7)--(498.2, 196.8)--(498.3, 196.7)--(498.3, 196.6)--(498.3, 196.5)--(498.6, 196.0)--(498.7, 196.0)--(498.8, 196.0)--(498.8, 195.9)--(499.0, 195.7)--(499.2, 195.5)--(499.4, 195.2)--(499.6, 194.9)--(500.0, 194.3)--(500.1, 194.2)--(500.0, 194.1)--(499.9, 193.8)--(500.0, 193.8)--(500.1, 193.8)--(500.3, 193.8)--(500.5, 193.3)--(500.6, 193.1)--(500.8, 192.8)--(500.9, 192.6)--(501.0, 192.5)--(501.0, 192.4)--(501.1, 192.1)--(501.2, 191.8)--(501.3, 191.6)--(501.4, 191.4)--(501.5, 191.1)--(501.6, 190.9)--(501.6, 190.7)--(501.7, 190.4)--(501.7, 190.2)--(501.8, 189.9)--(501.9, 189.4)--(502.0, 189.0)--(501.9, 188.7)--(502.0, 188.4)--(502.0, 188.1)--(502.0, 187.8)--(502.1, 187.5)--(502.2, 187.3)--(502.2, 187.1)--(502.3, 187.0)--(502.4, 186.7)--(502.5, 186.3)--(502.7, 185.9)--(502.8, 185.6)--(502.9, 185.4)--(502.9, 185.2)--(503.0, 185.1)--(503.2, 184.8)--(503.3, 184.6)--(503.4, 184.3)--(503.6, 183.9)--(503.9, 183.5)--(504.0, 183.3)--(504.2, 183.0)--(504.3, 182.9)--(504.4, 182.7)--(504.6, 182.5)--(504.9, 182.2)--(505.1, 181.9)--(505.3, 181.7)--(505.4, 181.6)--(504.9, 181.5)--(504.7, 181.4)--(504.6, 181.4)--(504.2, 181.4)--(503.9, 181.3)--(503.5, 181.3)--(503.1, 181.3)--(502.6, 181.2)--(502.0, 181.3)--(501.2, 181.3)--(500.6, 181.3)--(500.2, 181.4)--(500.0, 181.4)--(499.4, 181.4)--(499.0, 181.4)--(498.6, 181.4)--(498.3, 181.4)--(497.8, 181.5)--(497.3, 181.5)--(496.8, 181.5)--(496.0, 181.5)--(495.4, 181.6)--(495.2, 181.6)--(495.2, 181.1)--(495.1, 180.9)--(495.4, 180.5)--(495.9, 180.0)--(496.4, 179.7)--(496.7, 179.6)--(496.7, 179.5)--(496.7, 179.4)--(496.6, 179.3)--(496.6, 179.1)--(496.5, 178.9)--(496.5, 178.7)--(496.5, 178.5)--(496.5, 178.4)--(496.4, 178.3)--(496.2, 177.9)--(496.1, 177.8)--(496.1, 177.6)--(496.0, 177.4)--(496.0, 177.2)--(496.0, 177.0)--(496.1, 176.9)--(496.3, 176.5)--(496.5, 176.2)--(496.2, 175.8)--(496.3, 175.7)--(496.5, 175.3)--(496.8, 174.9)--(496.9, 174.7)--(497.1, 174.6)--(497.2, 174.5)--(497.2, 174.4)--(497.3, 174.4)--(497.3, 174.3)--(497.3, 174.2)--(497.3, 174.1)--(497.3, 174.0)--(497.3, 173.9)--(497.0, 173.9)--(497.0, 173.7)--(497.0, 173.4)--(496.9, 172.8)--(496.9, 172.4)--(496.9, 172.2)--(496.9, 171.7)--(496.9, 171.5)--(497.0, 171.5)--(497.1, 171.4)--(497.4, 171.3)--(497.4, 170.5)--(497.5, 169.9)--(497.5, 169.3)--(497.4, 169.2)--(497.4, 169.1)--(497.4, 168.7)--(496.9, 168.6)--(496.9, 168.5)--(496.9, 168.3)--(497.0, 167.8)--(496.9, 167.5)--(497.2, 167.4)--(497.4, 167.4)--(498.0, 167.3)--(498.0, 167.1)--(497.9, 166.4)--(498.4, 166.2)--(498.9, 166.0)--(498.8, 165.6)--(498.9, 165.6)--(499.0, 165.5)--(499.2, 165.4)--(499.4, 165.4)--(499.5, 165.3)--(499.5, 165.2)--(499.5, 164.9)--(499.4, 164.7)--(499.3, 164.3)--(499.2, 164.0)--(499.2, 163.9)--(499.2, 163.7)--(499.1, 163.4)--(499.1, 163.1)--(499.2, 162.8)--(499.2, 162.7)--(499.2, 162.4)--(499.1, 162.2)--(498.7, 162.3)--(498.6, 162.4)--(498.5, 162.3)--(498.3, 162.0)--(498.1, 161.8)--(497.9, 161.4)--(497.9, 161.3)--(497.3, 160.6)--(497.3, 160.5)--(497.1, 160.3)--(498.0, 159.6)--(498.0, 159.4)--(498.0, 159.2)--(498.0, 159.0)--(498.1, 158.8)--(498.3, 158.8)--(497.6, 156.5)--(498.1, 156.3)--(499.0, 156.0)--(498.8, 155.2)--(498.7, 154.6)--(498.7, 154.5)--(498.7, 154.4)--(498.6, 154.4)--(498.5, 154.4)--(498.4, 154.4)--(498.3, 154.4)--(498.3, 154.5)--(498.2, 154.5)--(498.1, 154.6)--(497.7, 154.9)--(497.2, 155.3)--(497.2, 155.4)--(496.9, 154.8)--(496.9, 154.6)--(496.8, 154.2)--(496.7, 154.0)--(495.8, 153.0)--(495.7, 152.9)--(496.1, 152.6)--(496.5, 152.2)--(496.2, 151.7)--(495.8, 151.0)--(495.3, 150.0)--(494.8, 149.1)--(494.4, 148.5)--(494.3, 148.3)--(494.5, 148.0)--(494.6, 147.9)--(494.5, 147.8)--(494.5, 147.7)--(494.4, 147.6)--(494.4, 147.5)--(494.3, 147.4)--(494.3, 147.3)--(494.2, 147.2)--(494.2, 147.1)--(494.2, 147.0)--(494.1, 146.9)--(494.1, 146.8)--(494.1, 146.7)--(494.0, 146.6)--(494.0, 146.5)--(494.0, 146.4)--(494.0, 146.3)--(494.0, 146.2)--(494.0, 146.1)--(494.0, 146.0)--(494.0, 145.9)--(494.0, 145.8)--(494.1, 145.8)--(494.2, 145.8)--(494.2, 145.7)--(494.3, 145.7)--(494.3, 145.6)--(494.4, 145.6)--(494.4, 145.5)--(494.5, 145.5)--(494.6, 145.5)--(494.6, 145.3)--(494.6, 145.2)--(494.6, 145.1)--(494.6, 145.0)--(494.5, 145.0)--(494.5, 144.9)--(494.5, 144.8)--(494.5, 144.7)--(494.5, 144.6)--(494.4, 144.5)--(494.4, 144.4)--(494.4, 144.3)--(494.4, 144.2)--(494.5, 144.2)--(494.5, 144.1)--(494.5, 144.0)--(494.5, 143.9)--(494.4, 143.9)--(494.4, 143.7)--(494.4, 143.6)--(494.3, 143.5)--(494.3, 143.4)--(494.3, 143.3)--(494.7, 143.2)--(495.1, 143.1)--(494.9, 142.0)--(494.7, 140.9)--(494.6, 140.4)--(494.4, 140.1)--(494.0, 139.4)--(493.9, 139.4)--(493.9, 139.2)--(493.8, 139.1)--(493.8, 138.4)--(493.7, 138.0)--(493.7, 137.9)--(493.7, 137.8)--(493.7, 137.7)--(493.7, 137.6)--(493.6, 137.3)--(493.3, 137.3)--(493.2, 137.1)--(493.2, 137.0)--(493.1, 136.9)--(493.1, 136.8)--(493.1, 136.7)--(493.1, 136.5)--(493.1, 136.3)--(493.1, 136.0)--(493.1, 135.8)--(493.1, 135.7)--(493.1, 135.4)--(493.1, 135.1)--(493.1, 135.0)--(493.0, 135.0)--(493.0, 134.9)--(493.0, 134.8)--(493.0, 134.7)--(491.9, 134.1)--(492.1, 133.6)--(492.1, 133.4)--(492.0, 133.3)--(491.8, 133.1)--(491.7, 133.1)--(491.6, 133.0)--(491.5, 133.0)--(491.5, 132.9)--(491.4, 132.8)--(491.2, 132.6)--(491.1, 132.5)--(491.0, 132.4)--(490.9, 132.2)--(490.8, 131.8)--(490.4, 131.1)--(490.4, 131.0)--(491.0, 130.9)--(490.9, 130.5)--(490.8, 130.5)--(490.7, 130.5)--(490.6, 130.6)--(490.5, 130.6)--(490.3, 130.6)--(490.2, 130.6)--(490.1, 130.6)--(490.1, 130.2)--(490.1, 130.1)--(490.0, 130.1)--(489.9, 130.1)--(489.8, 130.0)--(489.7, 129.9)--(489.7, 129.8)--(489.6, 129.8)--(489.6, 129.7)--(489.6, 129.6)--(489.6, 129.5)--(489.6, 129.4)--(489.4, 129.2)--(489.3, 129.3)--(489.2, 129.3)--(489.1, 129.3)--(489.0, 129.3)--(488.9, 129.3)--(488.7, 129.3)--(488.7, 129.2)--(488.7, 129.1)--(488.7, 129.0)--(488.7, 128.9)--(488.8, 128.9)--(488.8, 128.8)--(488.9, 128.8)--(488.9, 128.7)--(489.0, 128.7)--(489.0, 128.6)--(489.1, 128.6)--(489.1, 128.5)--(489.2, 128.4)--(489.2, 128.3)--(489.3, 128.3)--(489.3, 128.2)--(489.3, 128.1)--(489.4, 128.1)--(489.4, 128.0)--(489.4, 127.9)--(489.4, 127.8)--(489.4, 127.7)--(489.4, 127.6)--(489.3, 127.4)--(489.3, 127.3)--(489.1, 127.4)--(489.0, 127.5)--(488.8, 127.6)--(488.6, 127.7)--(488.4, 127.7)--(488.3, 127.8)--(488.1, 127.9)--(487.8, 128.0)--(487.7, 128.0)--(487.7, 128.1)--(487.6, 128.1)--(487.5, 128.1)--(487.4, 128.2)--(487.3, 128.2)--(487.2, 128.3)--(487.1, 128.3)--(487.0, 128.3)--(486.8, 128.4)--(486.7, 128.4)--(486.1, 128.6)--(485.9, 128.6)--(485.6, 128.7)--(485.6, 128.4)--(485.4, 128.4)--(485.2, 128.4)--(484.7, 128.5)--(484.2, 128.6)--(484.0, 128.6)--(483.6, 128.7)--(482.8, 128.7)--(482.5, 128.7)--(482.5, 128.8)--(482.4, 128.8)--(482.3, 128.8)--(482.1, 128.8)--(482.0, 128.9)--(481.8, 128.9)--(481.7, 128.9)--(481.4, 128.9)--(481.3, 128.9)--(481.2, 128.9)--(481.1, 128.9)--(481.1, 129.0)--(481.0, 129.0)--(480.7, 128.8)--(480.2, 128.6)--(480.1, 128.5)--(480.0, 128.4)--(479.9, 128.4)--(479.9, 128.1)--(479.6, 127.9)--(479.3, 127.7)--(479.0, 127.6)--(478.7, 127.4)--(478.4, 127.3)--(477.9, 127.2)--(477.5, 127.1)--(477.4, 127.2)--(477.4, 127.1)--(476.9, 127.1)--(476.5, 127.0)--(476.4, 126.9)--(476.2, 126.6)--(475.9, 126.2)--(475.8, 126.2)--(475.8, 125.9)--(475.8, 125.8)--(475.7, 125.8)--(475.6, 125.8)--(475.5, 125.3)--(475.4, 124.8)--(475.3, 123.9)--(475.3, 123.7)--(475.5, 122.9)--(475.7, 122.0)--(475.9, 122.1)--(476.5, 122.3)--(477.0, 120.9)--(476.5, 120.5)--(476.9, 119.5)--(477.1, 118.6)--(477.3, 117.9)--(477.5, 117.2)--(477.6, 117.0)--(477.8, 116.5)--(478.0, 116.2)--(478.4, 115.9)--(478.9, 115.4)--(479.0, 115.3)--(478.9, 115.2)--(478.6, 114.6)--(478.2, 113.9)--(478.0, 113.6)--(477.9, 113.5)--(477.7, 113.2)--(477.5, 113.0)--(477.2, 112.7)--(477.0, 112.6)--(477.0, 112.5)--(476.9, 112.4)--(476.8, 112.3)--(476.7, 112.3)--(476.7, 112.2)--(476.6, 112.1)--(476.6, 112.0)--(476.5, 112.0)--(476.5, 111.9)--(476.4, 111.9)--(476.4, 111.8)--(476.4, 111.7)--(476.4, 111.6)--(476.4, 111.5)--(476.4, 111.4)--(476.4, 111.2)--(476.4, 110.9)--(476.5, 110.8)--(476.1, 110.6)--(475.9, 110.8)--(475.6, 111.2)--(475.0, 110.6)--(474.6, 109.8)--(474.0, 108.2)--(473.9, 108.2)--(473.6, 108.3)--(473.1, 108.4)--(473.2, 108.4)--(472.2, 108.6)--(471.9, 108.6)--(471.5, 108.9)--(471.3, 108.9)--(471.1, 108.8)--(471.1, 108.3)--(471.0, 108.0)--(470.9, 107.8)--(470.9, 107.3)--(470.5, 107.4)--(470.1, 107.7)--(469.7, 107.9)--(469.2, 108.1)--(469.1, 108.2)--(469.0, 108.1)--(468.9, 108.1)--(468.7, 108.0)--(468.4, 108.0)--(468.1, 108.1)--(467.7, 108.1)--(467.6, 108.1)--(467.5, 108.0)--(467.4, 108.0)--(467.4, 107.9)--(467.2, 107.5)--(467.1, 107.4)--(467.0, 107.2)--(467.0, 107.1)--(466.9, 107.1)--(466.8, 107.0)--(466.6, 106.7)--(466.4, 106.4)--(466.3, 106.4)--(465.9, 106.4)--(465.6, 106.4)--(465.5, 106.4)--(465.5, 106.2)--(465.0, 106.1)--(464.7, 105.9)--(464.7, 105.8)--(464.7, 105.7)--(464.7, 105.6)--(464.5, 104.9)--(464.5, 104.8)--(464.5, 104.6)--(464.4, 104.5)--(464.4, 104.4)--(464.3, 104.2)--(463.9, 103.7)--(463.9, 103.6)--(463.8, 103.5)--(463.5, 103.3)--(463.2, 102.9)--(462.7, 102.2)--(462.3, 101.8)--(461.8, 101.3)--(461.6, 101.1)--(461.3, 100.8)--(460.5, 100.1)--(460.2, 99.9)--(460.0, 99.8)--(459.8, 99.7)--(459.7, 99.7)--(459.4, 99.4)--(459.3, 99.4)--(458.9, 99.2)--(458.6, 99.0)--(458.4, 98.9)--(458.1, 98.8)--(458.0, 98.7)--(457.8, 98.6)--(457.5, 98.5)--(457.3, 98.3)--(457.1, 98.2)--(457.0, 98.1)--(456.9, 98.1)--(456.8, 98.0)--(456.5, 97.9)--(456.3, 97.9)--(456.2, 97.8)--(455.9, 97.6)--(455.6, 97.1)--(455.5, 96.8)--(455.4, 96.7)--(455.2, 96.3)--(454.9, 95.9)--(454.6, 95.6)--(454.3, 95.2)--(454.0, 95.0)--(454.0, 94.7)--(454.1, 94.6)--(454.1, 94.5)--(454.1, 94.4)--(454.2, 94.2)--(454.3, 94.0)--(454.4, 93.8)--(454.5, 93.6)--(454.4, 93.6)--(454.4, 93.5)--(454.3, 92.5)--(454.1, 92.1)--(454.1, 91.8)--(454.1, 91.7)--(454.1, 91.4)--(454.1, 91.3)--(454.2, 91.3)--(454.2, 91.2)--(454.1, 90.9)--(454.1, 90.7)--(454.0, 90.6)--(453.9, 90.4)--(453.8, 90.4)--(453.8, 90.3)--(453.7, 90.2)--(453.7, 90.1)--(453.6, 89.5)--(453.5, 89.5)--(453.5, 89.4)--(453.2, 89.0)--(453.2, 88.8)--(453.3, 88.7)--(453.4, 88.3)--(453.4, 88.2)--(453.5, 88.1)--(453.5, 88.0)--(453.5, 87.9)--(453.6, 87.9)--(453.6, 87.8)--(453.7, 87.2)--(453.8, 87.0)--(453.8, 86.8)--(453.9, 86.7)--(453.9, 86.6)--(454.0, 86.6)--(454.0, 86.5)--(454.1, 86.5)--(454.1, 86.4)--(454.0, 86.3)--(453.6, 86.1)--(453.7, 85.9)--(453.9, 85.4)--(454.0, 85.1)--(454.1, 84.7)--(454.2, 83.9)--(453.8, 83.8)--(453.3, 83.6)--(453.0, 83.5)--(452.8, 83.4)--(453.1, 82.7)--(453.2, 82.5)--(453.7, 81.7)--(454.0, 81.3)--(454.2, 81.0)--(454.4, 80.7)--(454.5, 80.4)--(454.7, 80.0)--(455.1, 79.1)--(455.2, 78.9)--(455.2, 78.8)--(455.2, 78.7)--(455.2, 78.4)--(455.2, 78.1)--(455.3, 77.6)--(455.4, 77.5)--(455.4, 77.4)--(455.5, 77.4)--(455.7, 77.2)--(455.9, 76.9)--(456.0, 76.7)--(456.2, 76.6)--(456.3, 76.5)--(456.5, 76.2)--(457.1, 75.5)--(457.5, 75.0)--(457.6, 74.8)--(457.7, 74.8)--(457.7, 74.7)--(458.0, 74.5)--(458.9, 73.8)--(458.9, 73.7)--(458.8, 73.6)--(458.7, 73.5)--(458.6, 73.5)--(458.0, 73.2)--(457.9, 73.1)--(457.8, 73.1)--(457.8, 73.0)--(457.7, 73.0)--(457.6, 72.9)--(456.5, 71.5)--(456.3, 71.2)--(456.1, 71.1)--(456.1, 71.0)--(456.1, 70.6)--(456.0, 70.5)--(455.7, 70.1)--(455.7, 70.0)--(455.6, 70.0)--(455.6, 69.9)--(455.5, 69.8)--(455.4, 69.7)--(455.3, 69.6)--(455.2, 69.5)--(455.1, 69.4)--(455.0, 69.4)--(454.9, 69.3)--(454.7, 69.3)--(454.0, 69.0)--(453.6, 68.6)--(453.5, 68.5)--(453.3, 68.5)--(453.0, 68.4)--(452.8, 68.3)--(452.7, 68.3)--(452.6, 68.3)--(452.5, 68.2)--(452.4, 68.1)--(452.4, 68.0)--(452.3, 68.0)--(452.3, 68.1)--(452.2, 68.0)--(452.0, 68.0)--(451.8, 67.9)--(451.7, 67.9)--(451.6, 67.9)--(451.6, 67.8)--(451.5, 67.8)--(451.4, 67.8)--(451.3, 67.8)--(451.2, 67.8)--(451.1, 67.8)--(451.0, 67.8)--(450.9, 67.8)--(450.8, 67.8)--(450.5, 67.8)--(450.3, 67.9)--(450.2, 67.9)--(450.1, 67.9)--(450.0, 67.9)--(449.7, 67.8)--(449.5, 67.9)--(449.4, 67.9)--(449.2, 67.9)--(449.2, 67.8)--(449.1, 67.8)--(449.0, 67.8)--(448.9, 67.8)--(448.8, 67.8)--(448.7, 67.8)--(448.5, 67.8)--(448.4, 67.8)--(448.0, 67.8)--(447.9, 67.8)--(447.7, 67.8)--(447.4, 67.7)--(447.0, 67.7)--(446.9, 67.6)--(446.7, 67.6)--(446.6, 67.6)--(446.4, 67.5)--(446.3, 67.5)--(446.2, 67.5)--(446.1, 67.4)--(445.9, 67.4)--(445.8, 67.4)--(445.8, 67.3)--(445.7, 67.3)--(445.6, 67.3)--(445.4, 67.2)--(445.2, 67.1)--(445.1, 67.0)--(445.0, 67.0)--(444.9, 66.9)--(444.8, 66.9)--(444.7, 66.9)--(444.5, 66.9)--(443.3, 66.5)--(442.6, 66.3)--(442.6, 66.1)--(442.5, 66.2)--(442.4, 66.2)--(442.3, 66.2)--(442.2, 66.2)--(442.1, 66.2)--(442.0, 66.2)--(441.9, 66.1)--(441.6, 66.1)--(441.5, 66.1)--(441.5, 66.0)--(441.4, 66.0)--(441.3, 66.0)--(441.2, 65.9)--(441.1, 65.9)--(441.0, 65.8)--(440.9, 65.7)--(440.8, 65.7)--(440.7, 65.7)--(440.6, 65.6)--(440.5, 65.6)--(440.4, 65.6)--(440.4, 65.5)--(440.3, 65.5)--(440.2, 65.5)--(440.0, 65.5)--(439.9, 65.5)--(439.8, 65.5)--(439.7, 65.5)--(439.6, 65.5)--(439.3, 65.5)--(439.2, 65.6)--(439.1, 65.5)--(438.9, 65.5)--(438.4, 65.3)--(438.1, 65.2)--(437.9, 65.2)--(437.6, 65.1)--(437.3, 65.1)--(436.9, 64.9)--(436.5, 64.8)--(436.4, 64.8)--(436.3, 64.9)--(436.1, 65.1)--(436.1, 65.2)--(436.0, 65.2)--(436.0, 65.3)--(435.9, 65.3)--(435.9, 65.4)--(435.9, 65.5)--(435.8, 65.7)--(435.8, 65.8)--(435.7, 65.9)--(435.7, 66.0)--(435.7, 66.1)--(435.7, 66.2)--(435.6, 66.2)--(435.6, 66.3)--(435.6, 66.4)--(435.5, 66.4)--(435.5, 66.5)--(435.4, 66.6)--(435.4, 66.7)--(435.4, 66.8)--(435.3, 66.8)--(435.3, 66.9)--(435.3, 67.0)--(435.2, 67.0)--(435.2, 67.1)--(435.2, 67.2)--(435.1, 67.2)--(435.1, 67.3)--(435.0, 67.4)--(434.9, 67.6)--(434.8, 67.6)--(434.8, 67.7)--(434.7, 67.8)--(434.7, 67.9)--(434.6, 67.9)--(434.6, 68.0)--(434.6, 68.1)--(434.5, 68.1)--(434.4, 68.1)--(434.3, 68.0)--(434.2, 68.0)--(434.1, 68.0)--(434.0, 67.9)--(433.9, 67.9)--(433.8, 67.9)--(433.7, 67.8)--(433.4, 67.8)--(433.1, 68.0)--(432.9, 68.2)--(432.8, 68.2)--(432.7, 68.3)--(432.6, 68.4)--(432.4, 68.5)--(432.2, 68.6)--(432.2, 68.7)--(432.0, 68.8)--(431.7, 69.0)--(431.6, 69.0)--(431.5, 69.1)--(431.4, 69.2)--(431.3, 69.2)--(431.3, 69.3)--(431.2, 69.4)--(431.0, 69.6)--(431.0, 69.7)--(430.9, 69.7)--(430.9, 69.8)--(430.8, 69.8)--(430.7, 69.8)--(430.6, 69.8)--(430.3, 69.7)--(430.2, 69.7)--(430.0, 69.6)--(429.9, 69.6)--(429.7, 69.6)--(429.6, 69.5)--(429.5, 69.5)--(429.4, 69.5)--(429.3, 69.5)--(429.2, 69.5)--(429.1, 69.5)--(429.0, 69.5)--(428.8, 69.5)--(428.6, 69.6)--(428.4, 69.6)--(428.3, 69.7)--(428.2, 69.7)--(428.1, 69.7)--(428.0, 69.7)--(427.9, 69.7)--(427.5, 69.8)--(427.3, 69.7)--(427.2, 69.6)--(427.1, 69.5)--(427.0, 69.2)--(426.9, 68.9)--(426.7, 68.7)--(426.3, 68.5)--(426.2, 68.5)--(426.2, 68.4)--(426.1, 68.4)--(426.0, 68.4)--(426.0, 68.3)--(425.9, 68.3)--(425.8, 68.3)--(425.7, 68.3)--(425.7, 68.2)--(425.6, 68.2)--(425.5, 68.2)--(425.4, 68.2)--(425.3, 68.2)--(425.2, 68.2)--(425.1, 68.2)--(425.0, 68.2)--(425.1, 68.5)--(425.2, 69.2)--(425.2, 69.3)--(425.2, 69.5)--(425.2, 69.6)--(425.2, 69.8)--(425.3, 70.4)--(425.4, 70.5)--(425.4, 70.6)--(425.4, 70.7)--(425.4, 71.1)--(425.4, 71.8)--(425.5, 72.1)--(425.5, 72.5)--(425.6, 72.6)--(425.6, 72.7)--(425.6, 72.8)--(425.7, 73.0)--(425.7, 73.1)--(425.8, 73.4)--(425.8, 73.5)--(425.9, 73.9)--(425.9, 74.0)--(426.0, 74.3)--(426.0, 74.4)--(426.0, 74.6)--(426.1, 74.6)--(426.2, 74.8)--(426.1, 74.8)--(425.9, 74.9)--(425.8, 75.0)--(425.6, 75.1)--(425.5, 75.2)--(425.4, 75.2)--(425.3, 75.3)--(425.3, 75.8)--(425.3, 76.0)--(425.3, 76.2)--(425.2, 76.4)--(425.2, 76.5)--(425.1, 77.1)--(425.1, 77.4)--(425.0, 77.6)--(424.9, 77.9)--(424.8, 78.2)--(424.7, 78.5)--(424.5, 78.8)--(424.4, 78.9)--(424.3, 79.1)--(424.1, 79.5)--(424.1, 79.6)--(424.0, 79.5)--(423.8, 79.3)--(423.8, 79.4)--(423.7, 79.3)--(423.6, 79.5)--(423.7, 79.5)--(423.3, 79.9)--(423.2, 80.0)--(423.2, 79.9)--(423.1, 79.9)--(422.6, 80.2)--(422.2, 80.6)--(421.8, 81.2)--(421.5, 81.5)--(421.4, 81.6)--(420.7, 82.3)--(420.7, 82.4)--(420.6, 82.4)--(420.6, 82.3)--(420.4, 82.5)--(420.5, 82.6)--(420.4, 82.7)--(420.3, 82.8)--(420.2, 82.9)--(419.9, 83.1)--(419.5, 83.4)--(418.8, 83.8)--(418.7, 83.8)--(418.7, 83.9)--(418.6, 84.0)--(418.4, 84.1)--(418.2, 84.3)--(418.0, 84.5)--(417.6, 83.9)--(417.4, 83.7)--(417.3, 83.7)--(417.2, 83.6)--(416.8, 83.3)--(416.7, 83.2)--(416.6, 82.9)--(416.4, 82.6)--(416.4, 82.5)--(416.3, 82.4)--(416.2, 82.3)--(415.7, 82.1)--(415.6, 82.1)--(415.6, 82.0)--(415.4, 81.9)--(415.1, 81.7)--(414.7, 81.3)--(414.6, 81.3)--(414.4, 81.0)--(414.1, 80.4)--(414.0, 80.4)--(413.9, 80.2)--(413.8, 80.2)--(413.5, 79.6)--(413.4, 79.5)--(413.2, 79.4)--(412.8, 78.8)--(412.5, 78.4)--(412.4, 78.1)--(412.3, 77.9)--(412.3, 77.8)--(412.2, 77.5)--(412.1, 77.2)--(412.0, 76.7)--(412.0, 76.5)--(412.0, 76.4)--(411.9, 76.3)--(411.9, 76.1)--(411.8, 75.9)--(411.8, 75.8)--(411.7, 75.6)--(411.5, 75.2)--(411.4, 75.0)--(411.3, 74.9)--(411.2, 74.7)--(410.8, 74.0)--(410.7, 73.7)--(410.2, 73.0)--(410.2, 72.9)--(410.1, 72.8)--(410.0, 72.3)--(409.9, 72.1)--(409.9, 71.8)--(409.9, 71.7)--(409.9, 71.5)--(409.9, 71.4)--(409.9, 71.1)--(409.9, 71.0)--(409.9, 70.8)--(409.9, 70.7)--(409.8, 70.6)--(409.6, 70.2)--(409.6, 70.1)--(409.6, 70.0)--(409.5, 69.8)--(409.5, 69.3)--(409.4, 69.2)--(409.4, 69.1)--(409.4, 68.8)--(409.4, 68.6)--(409.3, 68.3)--(409.0, 67.4)--(408.9, 66.9)--(408.8, 66.6)--(408.6, 66.6)--(408.1, 66.7)--(407.6, 66.7)--(406.9, 66.7)--(406.4, 66.7)--(406.0, 66.7)--(405.7, 67.3)--(405.6, 67.5)--(405.5, 67.8)--(405.5, 68.1)--(405.4, 68.3)--(405.4, 68.8)--(405.4, 68.9)--(405.2, 69.5)--(405.1, 69.7)--(405.0, 70.4)--(404.9, 70.8)--(404.7, 71.6)--(404.5, 72.0)--(404.4, 72.4)--(404.3, 72.8)--(404.2, 73.3)--(404.1, 73.9)--(403.9, 74.5)--(403.9, 74.8)--cycle; +Camden = (288.4, 372.2)--(288.3, 372.1)--(288.3, 372.0)--(288.5, 371.7)--(288.8, 371.3)--(289.0, 370.6)--(289.1, 370.1)--(289.3, 368.9)--(289.3, 368.4)--(289.4, 368.1)--(289.4, 368.0)--(289.5, 367.8)--(289.7, 367.2)--(289.7, 367.1)--(289.7, 367.0)--(289.7, 366.9)--(289.7, 366.8)--(289.7, 366.3)--(289.7, 366.1)--(289.7, 366.0)--(289.7, 365.8)--(289.7, 365.7)--(289.8, 365.5)--(289.8, 365.2)--(289.8, 364.9)--(289.8, 364.6)--(289.8, 364.5)--(289.8, 364.4)--(289.7, 364.2)--(289.6, 363.7)--(289.6, 363.6)--(289.6, 363.4)--(289.6, 363.2)--(289.6, 362.8)--(289.6, 362.6)--(289.6, 362.5)--(289.7, 362.3)--(289.7, 362.2)--(289.8, 362.1)--(289.8, 362.0)--(290.0, 361.8)--(290.6, 360.5)--(290.8, 360.1)--(290.9, 359.9)--(291.4, 358.8)--(291.5, 358.6)--(292.2, 357.3)--(292.3, 357.2)--(292.4, 357.1)--(292.4, 357.0)--(292.5, 356.9)--(292.9, 356.6)--(293.3, 356.4)--(293.6, 356.3)--(293.7, 356.2)--(293.8, 356.1)--(293.9, 356.0)--(294.0, 355.7)--(294.2, 355.4)--(294.2, 355.3)--(294.4, 355.1)--(294.7, 354.8)--(295.2, 354.2)--(296.0, 353.5)--(296.2, 353.3)--(296.6, 353.0)--(296.6, 352.9)--(296.8, 352.8)--(296.9, 352.7)--(296.9, 352.6)--(296.9, 352.5)--(297.0, 352.5)--(297.0, 352.1)--(297.0, 351.9)--(297.3, 351.0)--(297.4, 350.7)--(297.5, 350.6)--(297.7, 350.4)--(298.0, 350.0)--(298.2, 349.9)--(298.8, 349.4)--(299.0, 349.3)--(299.1, 349.1)--(299.2, 349.1)--(299.3, 349.0)--(299.5, 348.7)--(299.6, 348.6)--(299.6, 348.5)--(299.6, 348.4)--(299.8, 347.8)--(300.0, 346.9)--(300.1, 346.3)--(300.2, 345.8)--(300.2, 345.7)--(300.4, 344.7)--(300.5, 344.0)--(300.6, 343.6)--(300.6, 343.5)--(300.6, 343.3)--(300.6, 343.1)--(300.7, 342.8)--(300.8, 342.4)--(300.9, 342.0)--(301.1, 341.7)--(301.2, 341.4)--(301.2, 341.3)--(301.3, 341.1)--(301.4, 340.8)--(301.8, 339.9)--(302.0, 339.6)--(302.2, 339.3)--(302.5, 338.9)--(302.6, 338.6)--(302.7, 338.5)--(302.9, 337.8)--(303.0, 337.5)--(303.1, 337.2)--(303.2, 336.7)--(303.2, 336.0)--(303.3, 335.8)--(303.3, 335.5)--(303.3, 335.2)--(303.3, 334.1)--(303.3, 333.5)--(303.3, 332.1)--(303.2, 330.3)--(303.3, 329.9)--(303.3, 329.8)--(303.6, 329.9)--(304.2, 330.0)--(305.1, 330.1)--(305.7, 329.9)--(306.3, 329.7)--(306.7, 329.6)--(307.1, 329.4)--(307.5, 329.2)--(307.8, 329.0)--(307.9, 328.9)--(307.9, 328.8)--(307.9, 328.7)--(308.0, 328.6)--(308.0, 328.5)--(308.1, 327.7)--(308.1, 327.3)--(308.2, 326.9)--(308.2, 326.8)--(308.3, 326.7)--(308.3, 326.6)--(308.4, 326.5)--(308.8, 326.1)--(309.0, 325.9)--(309.4, 325.5)--(309.5, 325.4)--(309.6, 325.4)--(309.7, 325.3)--(310.0, 325.2)--(309.9, 325.0)--(309.5, 324.6)--(309.2, 324.2)--(309.2, 324.1)--(309.3, 323.9)--(309.4, 323.5)--(309.6, 323.2)--(309.6, 323.1)--(309.7, 323.0)--(309.9, 322.8)--(310.4, 322.3)--(310.5, 322.2)--(310.7, 322.1)--(310.9, 322.1)--(311.3, 321.9)--(311.8, 321.8)--(312.2, 321.6)--(312.3, 321.6)--(312.5, 321.6)--(312.6, 321.5)--(312.7, 321.4)--(312.9, 321.5)--(313.1, 321.1)--(313.2, 320.9)--(313.4, 320.5)--(314.3, 320.6)--(314.6, 320.1)--(314.7, 319.9)--(314.8, 319.6)--(314.9, 319.2)--(315.0, 319.0)--(315.1, 318.5)--(315.4, 317.3)--(315.5, 316.6)--(315.2, 316.4)--(315.0, 316.3)--(314.7, 316.2)--(314.4, 316.0)--(314.1, 315.8)--(314.0, 315.8)--(313.9, 315.7)--(313.6, 315.7)--(313.0, 315.8)--(312.7, 315.8)--(312.0, 316.0)--(311.2, 316.1)--(310.7, 316.2)--(310.2, 316.2)--(309.7, 316.1)--(309.7, 316.0)--(309.7, 315.8)--(309.8, 315.8)--(310.0, 315.4)--(310.4, 314.8)--(310.9, 313.9)--(311.1, 313.4)--(311.3, 312.9)--(311.2, 312.9)--(310.8, 312.8)--(310.8, 312.7)--(309.7, 312.3)--(309.1, 313.6)--(307.4, 312.9)--(307.1, 312.7)--(306.6, 312.4)--(306.4, 312.4)--(306.4, 312.2)--(306.4, 312.1)--(306.3, 312.0)--(306.0, 311.9)--(305.8, 311.8)--(305.3, 311.9)--(304.6, 312.1)--(304.2, 312.2)--(304.0, 311.9)--(303.5, 312.5)--(303.1, 312.1)--(303.0, 312.0)--(302.7, 311.7)--(302.4, 311.4)--(301.9, 310.9)--(301.2, 310.5)--(300.9, 310.2)--(300.8, 310.1)--(300.7, 310.0)--(300.7, 309.9)--(300.6, 309.7)--(300.5, 309.7)--(300.4, 309.7)--(300.3, 309.6)--(300.2, 309.7)--(300.0, 309.9)--(299.8, 310.1)--(299.7, 310.2)--(299.4, 310.4)--(299.3, 310.5)--(299.2, 310.5)--(299.0, 310.5)--(298.8, 311.2)--(298.7, 311.6)--(298.2, 313.2)--(298.2, 313.4)--(298.2, 313.5)--(298.2, 313.8)--(298.2, 313.9)--(298.2, 314.0)--(297.9, 314.5)--(297.7, 314.5)--(297.7, 314.4)--(297.4, 314.3)--(296.8, 314.1)--(296.7, 314.6)--(296.4, 314.8)--(296.0, 315.2)--(295.8, 315.0)--(295.7, 315.0)--(295.6, 315.0)--(295.4, 315.4)--(295.4, 315.5)--(294.8, 316.5)--(294.4, 316.2)--(294.0, 316.7)--(293.6, 316.4)--(292.8, 317.4)--(292.7, 317.6)--(292.7, 317.7)--(292.6, 317.8)--(292.3, 318.1)--(292.0, 318.5)--(291.6, 319.1)--(291.1, 319.7)--(290.4, 320.5)--(289.3, 321.9)--(289.2, 321.8)--(289.1, 321.9)--(288.9, 321.9)--(288.9, 322.0)--(289.0, 322.6)--(288.9, 322.7)--(288.6, 322.7)--(288.4, 322.7)--(288.5, 322.0)--(288.1, 322.0)--(288.0, 322.0)--(287.7, 321.9)--(287.3, 323.4)--(286.3, 323.1)--(284.3, 329.9)--(283.5, 332.2)--(283.1, 333.7)--(282.1, 336.9)--(281.7, 336.8)--(281.3, 336.7)--(281.1, 336.7)--(281.0, 336.7)--(280.7, 336.6)--(280.6, 336.6)--(280.4, 336.5)--(280.2, 336.5)--(280.0, 336.3)--(278.8, 335.9)--(278.1, 335.6)--(277.5, 335.5)--(276.8, 336.5)--(275.8, 336.0)--(274.8, 335.4)--(274.6, 335.3)--(274.5, 335.2)--(273.7, 334.7)--(272.6, 335.9)--(271.5, 337.0)--(271.4, 337.1)--(271.2, 337.2)--(270.8, 337.6)--(270.6, 337.7)--(270.5, 337.7)--(270.5, 337.8)--(269.5, 336.8)--(268.8, 337.5)--(267.7, 336.6)--(267.4, 337.1)--(267.3, 337.1)--(267.3, 337.2)--(267.3, 337.3)--(267.4, 338.7)--(266.1, 338.8)--(264.3, 338.9)--(264.2, 338.9)--(264.0, 338.9)--(263.8, 338.9)--(263.6, 338.8)--(263.3, 338.8)--(263.1, 338.7)--(263.0, 338.6)--(262.9, 338.6)--(262.1, 338.2)--(261.3, 337.7)--(260.5, 337.3)--(260.4, 337.1)--(260.3, 337.1)--(260.1, 336.9)--(260.0, 336.8)--(260.0, 336.7)--(259.5, 336.0)--(259.4, 335.9)--(257.9, 333.5)--(257.9, 333.4)--(257.8, 333.4)--(257.8, 333.3)--(257.4, 333.0)--(257.2, 332.9)--(257.0, 333.2)--(256.9, 333.3)--(256.8, 333.4)--(256.8, 333.5)--(256.7, 333.6)--(256.6, 333.6)--(256.5, 333.7)--(256.1, 334.0)--(255.8, 334.2)--(255.6, 334.4)--(255.4, 334.6)--(255.3, 334.8)--(254.6, 335.7)--(254.5, 335.9)--(253.7, 337.0)--(252.5, 338.6)--(251.8, 339.5)--(251.7, 339.7)--(251.6, 339.8)--(251.4, 339.9)--(250.8, 340.8)--(250.0, 341.7)--(249.6, 342.2)--(248.3, 343.9)--(247.8, 344.6)--(247.8, 344.7)--(247.2, 345.4)--(246.9, 346.0)--(246.6, 346.3)--(246.5, 346.5)--(246.1, 347.1)--(245.5, 347.9)--(245.1, 348.6)--(244.6, 349.2)--(244.3, 349.6)--(244.0, 350.0)--(243.9, 350.1)--(243.8, 350.3)--(243.5, 350.6)--(243.0, 351.1)--(242.6, 351.6)--(242.2, 352.0)--(241.8, 352.5)--(241.5, 352.8)--(241.1, 353.3)--(241.0, 353.4)--(240.8, 353.6)--(240.6, 353.8)--(240.3, 354.3)--(240.2, 354.4)--(240.0, 354.8)--(239.9, 354.9)--(239.7, 355.2)--(239.5, 355.4)--(239.5, 355.5)--(239.7, 355.6)--(239.9, 355.7)--(240.2, 356.0)--(240.4, 356.3)--(240.7, 356.6)--(241.0, 356.8)--(241.3, 356.9)--(241.9, 357.3)--(242.2, 356.8)--(242.4, 356.5)--(242.7, 356.1)--(243.1, 356.3)--(243.3, 356.4)--(243.6, 356.6)--(244.0, 356.7)--(244.3, 356.9)--(244.5, 356.9)--(244.6, 356.9)--(244.7, 357.0)--(244.8, 356.7)--(244.8, 356.6)--(244.8, 356.4)--(244.8, 356.0)--(244.8, 355.9)--(244.8, 355.7)--(244.9, 355.7)--(245.2, 355.8)--(245.3, 355.8)--(245.4, 355.8)--(245.6, 355.9)--(245.9, 356.0)--(246.0, 356.1)--(246.1, 356.1)--(246.3, 356.1)--(246.5, 356.2)--(246.9, 356.3)--(247.6, 356.5)--(247.7, 356.5)--(247.9, 356.5)--(248.2, 356.6)--(248.5, 356.7)--(248.7, 356.8)--(248.9, 356.8)--(249.3, 356.8)--(249.2, 356.9)--(249.2, 357.0)--(249.2, 357.1)--(249.2, 357.2)--(249.1, 357.3)--(249.1, 357.5)--(249.1, 357.6)--(249.1, 357.7)--(249.1, 357.8)--(249.2, 358.0)--(249.4, 358.5)--(249.5, 358.6)--(249.6, 358.6)--(249.6, 358.7)--(249.7, 358.9)--(249.8, 358.9)--(249.8, 359.0)--(249.8, 359.1)--(249.8, 359.3)--(249.8, 359.7)--(250.0, 359.9)--(250.2, 360.1)--(250.4, 359.8)--(250.5, 359.9)--(250.6, 360.0)--(250.8, 360.1)--(251.0, 360.2)--(251.1, 360.2)--(251.0, 360.4)--(251.0, 360.6)--(250.9, 360.9)--(250.9, 361.0)--(250.9, 361.1)--(250.9, 361.5)--(250.9, 361.8)--(251.0, 361.9)--(251.0, 361.8)--(251.1, 361.9)--(251.3, 361.8)--(251.4, 361.8)--(251.5, 361.8)--(251.8, 361.7)--(252.0, 361.7)--(252.1, 361.6)--(252.3, 361.7)--(252.5, 361.8)--(252.5, 361.9)--(252.5, 362.0)--(252.6, 362.0)--(252.7, 362.1)--(252.8, 362.1)--(252.9, 362.2)--(253.0, 362.1)--(253.1, 362.2)--(253.6, 362.5)--(254.0, 362.9)--(254.4, 362.9)--(254.7, 362.9)--(254.8, 363.0)--(255.0, 363.1)--(255.1, 363.2)--(255.2, 363.3)--(255.2, 363.5)--(255.3, 363.8)--(255.3, 364.1)--(255.3, 364.3)--(255.5, 365.1)--(255.5, 365.4)--(255.5, 365.6)--(255.5, 366.2)--(255.5, 366.4)--(255.6, 366.6)--(255.6, 366.7)--(255.6, 366.8)--(255.8, 367.1)--(255.9, 367.1)--(255.9, 367.2)--(256.0, 367.3)--(256.0, 367.4)--(256.1, 367.4)--(256.4, 367.4)--(256.6, 367.7)--(256.8, 367.8)--(257.0, 367.9)--(257.0, 368.0)--(257.1, 368.0)--(257.2, 368.0)--(257.3, 368.0)--(257.3, 368.1)--(257.4, 368.1)--(257.5, 368.2)--(257.6, 368.5)--(257.7, 368.6)--(257.8, 368.7)--(257.9, 368.8)--(258.0, 368.8)--(258.0, 368.9)--(258.1, 368.9)--(258.1, 369.0)--(258.2, 369.0)--(258.5, 369.1)--(258.8, 369.3)--(259.1, 369.4)--(259.5, 369.5)--(259.6, 369.6)--(259.8, 369.7)--(260.0, 370.0)--(259.8, 370.2)--(259.9, 370.2)--(260.0, 370.2)--(260.8, 371.0)--(260.9, 371.0)--(261.0, 371.2)--(261.1, 371.3)--(261.2, 371.4)--(261.7, 371.8)--(261.8, 371.9)--(261.7, 372.1)--(261.8, 372.1)--(262.0, 372.1)--(262.2, 372.2)--(262.5, 372.3)--(263.0, 372.4)--(263.1, 372.4)--(263.2, 372.5)--(263.3, 372.5)--(263.4, 372.5)--(263.5, 372.5)--(263.5, 372.6)--(263.6, 372.6)--(263.6, 372.7)--(263.6, 372.8)--(263.7, 373.0)--(263.9, 372.8)--(264.1, 372.8)--(264.4, 372.8)--(264.7, 372.6)--(265.1, 372.5)--(265.2, 372.4)--(265.2, 372.3)--(265.7, 372.1)--(265.7, 372.0)--(265.9, 371.9)--(266.2, 371.8)--(266.3, 371.8)--(266.3, 371.9)--(266.4, 372.1)--(266.5, 372.2)--(266.6, 372.3)--(266.6, 372.5)--(266.7, 372.5)--(266.7, 372.9)--(266.7, 373.1)--(266.7, 373.5)--(266.8, 373.7)--(266.8, 373.8)--(266.8, 373.9)--(266.9, 373.9)--(266.9, 374.0)--(267.0, 374.1)--(267.0, 374.2)--(267.1, 374.3)--(267.3, 374.5)--(267.6, 374.8)--(267.8, 374.8)--(267.9, 374.9)--(267.9, 375.0)--(268.0, 375.1)--(268.3, 375.3)--(268.3, 375.4)--(268.5, 375.5)--(268.8, 375.6)--(269.2, 375.8)--(269.8, 375.9)--(270.3, 375.9)--(271.0, 376.0)--(271.2, 376.0)--(271.4, 376.0)--(271.5, 376.0)--(271.7, 375.9)--(271.8, 375.8)--(272.0, 375.8)--(272.1, 375.8)--(272.2, 375.8)--(272.5, 375.7)--(272.7, 375.6)--(272.8, 375.6)--(272.9, 375.6)--(273.0, 375.6)--(273.1, 375.6)--(273.2, 375.6)--(273.3, 375.6)--(273.8, 375.6)--(274.3, 375.7)--(275.0, 375.8)--(275.1, 375.8)--(275.2, 375.9)--(275.3, 375.9)--(275.4, 375.9)--(275.5, 375.9)--(275.6, 375.9)--(275.7, 375.9)--(275.8, 375.9)--(275.9, 375.9)--(276.0, 375.9)--(276.2, 375.7)--(276.9, 375.3)--(278.2, 375.2)--(279.3, 375.1)--(280.3, 375.0)--(281.2, 374.9)--(282.3, 374.8)--(282.8, 374.8)--(283.0, 374.7)--(283.2, 374.5)--(283.4, 374.4)--(283.7, 374.2)--(284.4, 373.9)--(285.1, 373.8)--(285.8, 373.6)--(286.5, 373.3)--(286.9, 373.3)--(287.0, 373.2)--(287.2, 373.1)--(287.4, 373.0)--(288.4, 372.4)--cycle; +City_of_London = (311.5, 307.8)--(311.4, 308.0)--(311.4, 308.4)--(311.4, 308.6)--(311.5, 308.8)--(311.4, 308.9)--(311.3, 309.2)--(311.2, 309.2)--(311.0, 309.5)--(311.1, 309.6)--(311.0, 309.8)--(310.8, 310.0)--(310.9, 310.1)--(310.8, 310.1)--(310.9, 310.2)--(310.9, 310.3)--(311.3, 310.5)--(311.2, 310.8)--(311.1, 311.1)--(311.5, 311.2)--(311.7, 311.2)--(311.7, 311.4)--(311.4, 312.3)--(311.3, 312.8)--(311.3, 312.9)--(311.1, 313.4)--(310.9, 313.9)--(310.4, 314.8)--(310.0, 315.4)--(309.8, 315.8)--(309.7, 315.8)--(309.7, 316.0)--(309.7, 316.1)--(310.2, 316.2)--(310.7, 316.2)--(311.2, 316.1)--(312.0, 316.0)--(312.7, 315.8)--(313.0, 315.8)--(313.6, 315.7)--(313.9, 315.7)--(314.0, 315.8)--(314.1, 315.8)--(314.4, 316.0)--(314.7, 316.2)--(315.0, 316.3)--(315.2, 316.4)--(315.5, 316.6)--(315.6, 316.6)--(316.0, 316.8)--(317.0, 317.4)--(317.8, 317.8)--(318.0, 317.9)--(318.1, 318.0)--(318.5, 318.2)--(318.7, 318.3)--(318.9, 318.4)--(319.0, 318.4)--(319.0, 318.5)--(319.1, 318.5)--(319.4, 318.6)--(319.7, 318.7)--(320.0, 318.9)--(320.3, 319.0)--(320.8, 319.2)--(320.8, 319.5)--(320.9, 319.8)--(320.9, 320.1)--(321.0, 320.1)--(321.0, 320.2)--(321.0, 320.3)--(321.0, 320.4)--(320.9, 320.8)--(320.8, 321.1)--(320.7, 321.2)--(320.7, 321.3)--(320.6, 321.5)--(320.5, 321.5)--(321.3, 322.1)--(321.4, 321.9)--(321.5, 321.9)--(321.6, 321.5)--(321.9, 321.7)--(321.9, 321.6)--(322.5, 321.9)--(322.9, 321.0)--(323.0, 320.4)--(323.1, 320.1)--(323.4, 320.1)--(323.6, 320.2)--(323.6, 320.1)--(323.7, 320.1)--(323.8, 319.9)--(324.4, 320.1)--(324.5, 319.6)--(324.6, 319.6)--(324.9, 319.5)--(325.2, 319.5)--(325.5, 319.5)--(325.9, 319.4)--(326.3, 319.3)--(326.2, 318.5)--(326.3, 318.4)--(326.6, 318.3)--(327.5, 317.9)--(327.9, 317.6)--(328.7, 317.3)--(328.8, 317.2)--(329.0, 317.8)--(329.1, 317.9)--(329.2, 318.4)--(329.4, 318.7)--(329.5, 318.9)--(330.8, 318.4)--(331.2, 318.7)--(331.5, 319.0)--(331.7, 319.3)--(331.8, 319.5)--(332.0, 319.8)--(332.2, 320.2)--(332.3, 320.8)--(332.5, 320.8)--(333.2, 320.5)--(334.1, 320.4)--(333.9, 319.9)--(333.9, 319.5)--(333.9, 319.4)--(333.8, 318.8)--(333.7, 318.1)--(333.5, 317.4)--(334.3, 317.5)--(334.5, 317.6)--(334.5, 317.0)--(334.4, 317.0)--(334.6, 316.8)--(334.7, 316.6)--(334.7, 316.5)--(334.8, 316.5)--(334.8, 316.3)--(335.0, 315.9)--(335.0, 315.8)--(335.3, 315.1)--(335.4, 315.0)--(335.4, 314.9)--(335.7, 314.6)--(336.6, 313.6)--(336.8, 313.3)--(337.1, 313.0)--(337.2, 312.9)--(337.4, 312.6)--(337.7, 312.3)--(337.8, 311.8)--(337.9, 311.4)--(338.0, 310.9)--(338.1, 310.3)--(338.1, 309.7)--(338.2, 309.5)--(338.2, 309.3)--(338.3, 309.1)--(338.3, 308.9)--(338.4, 308.7)--(338.4, 308.6)--(338.4, 308.4)--(338.4, 308.1)--(338.4, 308.0)--(338.3, 307.9)--(338.3, 307.8)--(338.2, 307.8)--(338.1, 307.8)--(337.9, 307.8)--(337.7, 307.8)--(337.5, 307.7)--(337.4, 307.7)--(337.3, 307.6)--(337.1, 307.6)--(337.0, 307.6)--(336.6, 307.4)--(336.5, 307.4)--(336.4, 307.4)--(336.4, 307.5)--(336.3, 307.5)--(336.3, 307.7)--(336.3, 307.8)--(336.1, 307.7)--(336.0, 308.1)--(335.9, 308.2)--(335.8, 308.2)--(335.5, 308.2)--(335.5, 308.1)--(335.5, 308.0)--(335.5, 307.9)--(335.5, 307.8)--(335.4, 307.8)--(335.1, 307.8)--(334.9, 307.7)--(334.8, 307.6)--(334.7, 307.5)--(334.5, 307.2)--(334.4, 307.0)--(334.2, 306.9)--(334.1, 306.6)--(334.0, 306.5)--(334.3, 306.4)--(334.3, 306.3)--(334.2, 306.1)--(334.1, 305.8)--(334.1, 305.7)--(334.1, 305.6)--(334.0, 305.2)--(333.9, 305.2)--(333.8, 305.1)--(333.3, 305.2)--(333.2, 305.3)--(333.1, 305.4)--(333.0, 305.4)--(332.6, 305.6)--(332.5, 305.6)--(332.5, 305.7)--(332.4, 305.7)--(332.3, 305.7)--(331.1, 305.9)--(331.0, 305.9)--(330.9, 305.9)--(330.9, 305.7)--(330.4, 305.8)--(329.7, 305.9)--(329.6, 305.9)--(329.2, 305.9)--(328.8, 306.0)--(328.6, 306.1)--(328.6, 306.2)--(328.1, 306.3)--(328.0, 306.3)--(327.9, 306.3)--(327.8, 306.3)--(327.8, 306.2)--(327.6, 306.2)--(327.4, 306.2)--(327.0, 306.2)--(326.8, 306.2)--(326.6, 306.2)--(326.4, 306.2)--(325.9, 306.4)--(325.6, 306.5)--(325.3, 306.6)--(325.1, 306.7)--(324.8, 306.7)--(324.7, 306.8)--(324.2, 307.0)--(323.9, 307.1)--(323.5, 307.2)--(323.2, 307.3)--(323.1, 307.3)--(322.8, 307.4)--(322.7, 307.4)--(322.8, 307.7)--(322.9, 307.9)--(322.8, 307.9)--(322.8, 307.8)--(322.5, 307.9)--(322.4, 307.5)--(322.2, 307.6)--(322.2, 307.5)--(321.7, 307.7)--(321.2, 307.8)--(321.0, 307.9)--(321.0, 307.8)--(320.9, 307.9)--(320.8, 307.9)--(320.7, 307.9)--(320.6, 307.9)--(320.4, 308.0)--(320.2, 308.0)--(320.1, 308.0)--(319.9, 308.0)--(319.7, 308.0)--(319.6, 308.0)--(317.5, 308.0)--(317.5, 307.9)--(317.3, 307.9)--(317.2, 307.9)--(317.1, 307.9)--(317.1, 308.0)--(316.7, 308.0)--(316.3, 308.0)--(315.7, 308.0)--(314.3, 308.0)--(314.2, 308.0)--(313.6, 307.9)--(311.8, 307.9)--(311.8, 307.8)--(311.7, 307.8)--cycle; +Croydon = (350.1, 95.0)--(350.0, 95.0)--(347.5, 95.2)--(345.9, 95.2)--(345.1, 97.8)--(344.7, 97.6)--(344.0, 97.3)--(343.9, 97.2)--(343.8, 97.1)--(343.5, 97.0)--(343.1, 96.9)--(342.9, 96.8)--(342.5, 96.7)--(342.3, 96.6)--(342.1, 96.5)--(341.6, 96.5)--(341.6, 96.4)--(341.1, 96.2)--(340.8, 96.2)--(340.0, 96.1)--(339.7, 96.0)--(339.7, 95.6)--(339.7, 94.7)--(339.8, 94.2)--(339.5, 94.1)--(339.4, 94.1)--(339.3, 94.1)--(339.2, 94.1)--(339.1, 94.0)--(339.0, 94.0)--(338.8, 93.8)--(338.7, 93.7)--(338.6, 93.6)--(338.4, 93.4)--(338.2, 93.1)--(338.3, 93.0)--(338.2, 93.0)--(338.1, 92.7)--(338.0, 92.7)--(337.9, 92.6)--(337.8, 92.6)--(337.6, 92.9)--(337.5, 92.9)--(337.4, 92.9)--(337.2, 92.7)--(336.9, 92.6)--(336.5, 92.5)--(336.4, 92.5)--(336.5, 92.2)--(336.1, 92.0)--(335.7, 91.6)--(336.1, 91.1)--(336.3, 90.8)--(336.6, 90.3)--(336.8, 89.9)--(337.1, 89.5)--(337.5, 88.7)--(337.6, 88.5)--(337.8, 88.0)--(337.8, 87.7)--(337.9, 87.2)--(337.9, 86.9)--(337.8, 86.5)--(337.8, 85.8)--(337.6, 85.7)--(337.5, 85.6)--(337.4, 85.6)--(337.3, 85.5)--(336.8, 85.1)--(336.6, 85.0)--(336.4, 84.9)--(335.4, 84.2)--(334.6, 83.8)--(334.6, 83.7)--(334.5, 83.6)--(334.0, 83.0)--(333.4, 82.3)--(333.3, 82.1)--(333.1, 81.9)--(333.2, 81.5)--(333.2, 81.4)--(333.2, 81.2)--(333.2, 81.0)--(333.2, 80.6)--(333.2, 80.4)--(333.3, 79.7)--(333.2, 79.5)--(333.2, 79.3)--(333.2, 79.2)--(333.0, 78.9)--(332.7, 78.8)--(332.7, 78.7)--(332.7, 78.6)--(332.6, 78.5)--(332.6, 78.4)--(332.6, 78.3)--(331.9, 78.2)--(331.8, 78.1)--(331.6, 77.6)--(331.7, 77.5)--(331.8, 77.4)--(331.8, 76.9)--(331.8, 76.8)--(331.8, 76.6)--(331.8, 76.4)--(331.8, 76.0)--(331.7, 75.5)--(329.9, 74.7)--(329.4, 74.5)--(329.2, 74.5)--(328.8, 75.2)--(328.5, 75.3)--(328.5, 75.4)--(328.3, 75.4)--(328.0, 75.3)--(327.3, 75.0)--(327.4, 74.8)--(327.4, 74.7)--(327.3, 74.6)--(327.4, 74.5)--(327.5, 74.1)--(327.5, 74.0)--(327.7, 73.8)--(328.1, 73.5)--(328.3, 73.4)--(328.5, 73.3)--(328.7, 73.2)--(328.8, 73.2)--(329.0, 73.2)--(329.4, 73.2)--(329.5, 73.1)--(327.1, 71.2)--(326.1, 70.5)--(326.1, 70.4)--(325.9, 70.3)--(325.5, 69.9)--(325.4, 69.8)--(325.3, 69.7)--(325.2, 69.6)--(325.1, 69.6)--(325.0, 69.6)--(324.9, 69.5)--(324.6, 69.4)--(324.2, 69.3)--(324.1, 69.3)--(323.9, 69.2)--(323.8, 69.2)--(323.6, 69.0)--(321.2, 67.3)--(320.0, 66.3)--(319.5, 66.0)--(319.2, 65.7)--(318.7, 65.3)--(318.1, 64.9)--(315.5, 65.0)--(315.4, 65.0)--(315.4, 64.9)--(315.4, 64.8)--(315.5, 64.3)--(315.6, 64.0)--(315.5, 63.9)--(315.4, 64.0)--(315.2, 63.9)--(315.3, 63.8)--(315.2, 63.8)--(315.1, 63.7)--(315.0, 63.5)--(315.0, 63.4)--(314.8, 63.1)--(314.8, 63.0)--(314.7, 62.8)--(314.5, 62.4)--(314.4, 62.2)--(314.4, 62.1)--(314.3, 62.0)--(314.2, 62.0)--(314.1, 61.7)--(314.0, 61.5)--(314.0, 61.3)--(313.9, 61.2)--(314.0, 61.1)--(314.0, 60.8)--(313.9, 60.6)--(313.7, 60.1)--(313.6, 59.7)--(313.5, 59.5)--(313.5, 59.2)--(313.5, 59.0)--(313.2, 59.0)--(312.9, 59.0)--(311.1, 58.8)--(309.0, 58.5)--(308.9, 58.6)--(308.9, 58.8)--(308.8, 58.8)--(308.7, 58.9)--(308.6, 59.0)--(308.1, 59.7)--(307.9, 60.1)--(307.8, 60.2)--(307.7, 60.3)--(307.7, 60.5)--(307.6, 61.0)--(307.6, 61.4)--(307.5, 61.5)--(307.5, 61.6)--(307.0, 62.4)--(306.8, 62.6)--(306.3, 63.2)--(306.2, 63.4)--(306.1, 63.4)--(305.8, 63.8)--(305.2, 64.5)--(304.8, 64.9)--(304.7, 64.9)--(304.7, 65.0)--(304.5, 65.5)--(304.4, 65.6)--(304.2, 66.2)--(304.0, 66.7)--(303.9, 66.9)--(303.8, 67.2)--(303.8, 67.3)--(303.8, 67.4)--(303.8, 67.5)--(303.8, 67.6)--(303.9, 67.7)--(304.0, 67.9)--(304.0, 68.0)--(304.0, 68.1)--(303.9, 68.2)--(303.8, 68.3)--(303.4, 68.6)--(303.3, 68.8)--(303.1, 69.0)--(302.8, 69.5)--(302.7, 69.6)--(302.7, 69.7)--(302.6, 69.7)--(302.5, 69.8)--(302.4, 69.9)--(302.0, 70.6)--(301.6, 71.2)--(301.6, 71.3)--(301.5, 71.3)--(300.8, 71.2)--(300.7, 71.2)--(300.5, 71.1)--(300.4, 71.0)--(300.3, 71.0)--(300.3, 71.1)--(300.1, 72.0)--(300.0, 72.5)--(300.0, 72.8)--(299.9, 73.0)--(299.5, 73.9)--(299.4, 73.9)--(299.2, 73.7)--(299.1, 73.7)--(299.0, 73.7)--(298.7, 73.5)--(298.6, 73.4)--(298.5, 73.4)--(298.4, 73.3)--(297.9, 72.9)--(297.7, 72.8)--(297.5, 72.7)--(297.3, 72.6)--(297.3, 72.5)--(297.2, 72.5)--(297.1, 72.4)--(297.0, 72.4)--(296.8, 72.5)--(296.7, 72.6)--(296.5, 72.7)--(296.2, 72.8)--(296.0, 72.8)--(295.9, 72.8)--(295.7, 72.9)--(295.1, 74.3)--(294.6, 73.5)--(294.3, 73.7)--(293.7, 72.7)--(293.1, 72.9)--(292.0, 73.5)--(291.7, 73.6)--(291.0, 73.6)--(290.8, 73.0)--(290.7, 73.1)--(290.6, 73.1)--(290.5, 73.2)--(290.0, 73.6)--(289.9, 73.6)--(289.7, 73.7)--(288.9, 74.3)--(288.8, 74.3)--(288.3, 74.6)--(286.9, 74.1)--(286.9, 74.2)--(285.9, 76.7)--(285.7, 76.7)--(285.7, 76.8)--(285.2, 77.6)--(285.2, 77.7)--(285.2, 77.8)--(287.0, 79.1)--(287.4, 79.9)--(286.9, 79.8)--(286.5, 79.8)--(286.0, 79.8)--(285.9, 79.9)--(285.8, 80.0)--(285.7, 80.1)--(285.6, 80.1)--(285.5, 80.1)--(286.0, 80.8)--(286.2, 81.2)--(286.6, 82.1)--(286.9, 83.0)--(287.4, 84.1)--(287.4, 84.2)--(286.7, 84.3)--(286.5, 84.2)--(286.4, 84.3)--(286.1, 84.3)--(285.9, 84.3)--(285.8, 84.4)--(285.5, 84.6)--(285.3, 84.7)--(285.1, 84.8)--(284.8, 84.9)--(284.6, 84.8)--(284.6, 84.9)--(284.6, 85.0)--(284.6, 85.2)--(284.9, 86.1)--(285.0, 86.7)--(285.2, 87.4)--(285.3, 87.5)--(285.1, 88.0)--(285.1, 88.1)--(285.0, 88.2)--(285.0, 88.3)--(284.9, 88.6)--(284.8, 88.8)--(284.5, 89.3)--(284.4, 89.4)--(284.3, 89.5)--(284.0, 90.0)--(283.9, 90.2)--(283.7, 90.4)--(283.6, 90.9)--(283.6, 91.2)--(283.5, 91.6)--(283.3, 91.6)--(283.1, 91.4)--(282.9, 91.4)--(282.6, 91.8)--(282.5, 92.0)--(282.4, 92.1)--(282.4, 92.2)--(282.5, 92.3)--(282.4, 92.6)--(282.2, 92.9)--(282.3, 92.9)--(282.2, 93.2)--(281.9, 94.1)--(281.9, 94.3)--(281.9, 94.4)--(284.1, 95.6)--(284.2, 95.7)--(285.6, 96.4)--(285.6, 96.5)--(285.5, 96.6)--(285.6, 96.6)--(285.8, 96.7)--(286.0, 96.8)--(286.0, 97.0)--(286.2, 97.1)--(286.2, 97.0)--(286.8, 97.3)--(287.6, 97.9)--(288.2, 98.3)--(288.6, 97.5)--(288.7, 97.5)--(288.9, 97.6)--(289.0, 97.7)--(289.1, 97.6)--(289.6, 97.4)--(289.7, 97.4)--(289.7, 97.5)--(289.9, 97.5)--(290.4, 97.8)--(290.5, 97.8)--(290.7, 98.1)--(290.9, 98.0)--(291.2, 98.0)--(291.5, 98.0)--(291.7, 98.2)--(292.0, 98.3)--(292.5, 98.6)--(292.9, 98.8)--(293.1, 99.0)--(293.4, 100.0)--(294.0, 101.7)--(293.8, 101.7)--(293.9, 102.1)--(293.8, 102.3)--(292.7, 103.1)--(292.4, 103.4)--(292.1, 103.6)--(290.9, 104.4)--(290.4, 104.8)--(290.5, 104.8)--(291.2, 105.4)--(292.5, 106.1)--(293.6, 106.7)--(294.0, 107.0)--(293.3, 107.8)--(293.2, 107.9)--(293.0, 108.6)--(292.8, 108.9)--(292.7, 109.5)--(292.7, 109.9)--(292.6, 110.5)--(292.6, 110.8)--(292.4, 111.2)--(292.2, 112.2)--(291.9, 113.5)--(291.7, 114.4)--(291.6, 115.2)--(291.5, 115.2)--(291.3, 115.9)--(291.4, 116.0)--(292.6, 116.4)--(293.0, 116.6)--(293.4, 116.8)--(293.6, 117.2)--(293.6, 117.3)--(293.5, 117.6)--(293.7, 117.7)--(293.9, 117.8)--(294.0, 117.9)--(294.1, 118.0)--(294.0, 118.2)--(293.8, 118.7)--(293.7, 118.9)--(293.6, 118.9)--(293.3, 119.6)--(293.3, 119.7)--(293.6, 119.8)--(293.6, 119.9)--(293.5, 119.9)--(293.8, 120.0)--(294.1, 120.3)--(294.4, 120.5)--(294.4, 120.4)--(295.0, 120.7)--(294.9, 120.9)--(295.0, 121.0)--(295.2, 121.1)--(295.4, 121.2)--(295.6, 121.3)--(297.1, 122.1)--(297.9, 122.4)--(298.4, 122.7)--(298.7, 122.8)--(298.8, 122.8)--(299.0, 122.8)--(299.0, 122.4)--(299.1, 122.4)--(299.3, 122.5)--(299.6, 122.5)--(299.9, 122.5)--(300.1, 122.5)--(300.5, 122.5)--(301.0, 122.5)--(301.2, 122.4)--(301.6, 122.4)--(301.6, 122.3)--(301.5, 122.9)--(301.4, 123.6)--(301.3, 123.6)--(302.4, 123.7)--(302.6, 123.7)--(302.4, 124.0)--(302.4, 124.3)--(302.3, 124.3)--(302.9, 124.4)--(303.2, 124.5)--(303.4, 124.6)--(303.6, 124.6)--(303.7, 124.7)--(303.8, 124.8)--(304.0, 124.9)--(304.0, 125.0)--(303.9, 125.2)--(304.1, 125.4)--(304.2, 125.5)--(304.1, 125.7)--(304.4, 125.9)--(304.5, 125.8)--(304.6, 125.8)--(305.0, 125.9)--(305.1, 125.8)--(305.2, 125.7)--(305.3, 125.3)--(305.3, 125.1)--(305.4, 124.3)--(305.4, 124.0)--(305.6, 123.7)--(305.5, 123.7)--(305.5, 123.5)--(305.4, 123.4)--(305.5, 123.1)--(305.6, 123.1)--(305.9, 123.3)--(306.1, 123.4)--(306.2, 123.5)--(306.4, 123.5)--(307.0, 123.6)--(309.8, 123.9)--(310.8, 124.0)--(311.1, 123.9)--(311.1, 124.0)--(311.2, 124.3)--(311.4, 124.1)--(312.2, 124.2)--(312.5, 124.2)--(312.4, 125.2)--(312.1, 125.2)--(312.1, 125.3)--(312.0, 126.3)--(311.7, 127.5)--(311.6, 128.0)--(311.5, 128.4)--(311.4, 129.0)--(311.3, 129.6)--(311.2, 130.3)--(311.0, 131.2)--(310.8, 132.0)--(310.7, 132.3)--(310.7, 132.4)--(310.0, 132.3)--(309.9, 132.8)--(309.7, 133.5)--(309.5, 134.7)--(309.3, 135.7)--(309.0, 137.5)--(307.1, 137.1)--(307.0, 137.3)--(306.8, 138.1)--(306.8, 138.2)--(306.7, 138.7)--(307.5, 139.0)--(307.6, 138.8)--(308.6, 138.9)--(308.6, 139.0)--(308.0, 139.6)--(307.9, 139.9)--(308.2, 140.0)--(308.3, 139.9)--(308.6, 140.0)--(308.5, 140.6)--(308.6, 140.6)--(308.4, 141.1)--(308.9, 141.2)--(308.8, 141.4)--(308.9, 141.7)--(308.7, 142.4)--(308.8, 142.4)--(308.9, 142.4)--(308.8, 142.6)--(309.1, 142.8)--(309.0, 143.1)--(309.0, 143.4)--(308.9, 143.5)--(309.2, 143.7)--(308.9, 145.3)--(308.7, 145.2)--(308.8, 145.2)--(308.8, 145.1)--(308.7, 145.1)--(308.1, 145.0)--(308.1, 145.1)--(308.0, 145.2)--(307.9, 145.4)--(307.6, 145.6)--(307.3, 145.7)--(306.9, 145.8)--(306.9, 145.9)--(306.9, 146.0)--(307.6, 146.2)--(308.3, 146.5)--(308.3, 146.6)--(308.3, 147.0)--(308.2, 147.3)--(308.2, 147.7)--(308.1, 148.1)--(308.0, 148.2)--(308.0, 148.5)--(307.9, 148.6)--(307.9, 148.8)--(307.8, 148.9)--(307.8, 149.1)--(307.6, 150.0)--(307.5, 150.6)--(307.5, 150.8)--(307.4, 151.0)--(307.3, 151.4)--(307.3, 151.5)--(307.3, 151.7)--(307.3, 151.8)--(307.3, 152.1)--(307.3, 152.2)--(307.3, 152.3)--(307.3, 152.4)--(307.1, 152.7)--(307.0, 152.8)--(306.6, 153.6)--(306.3, 154.3)--(306.2, 154.3)--(306.3, 154.4)--(306.4, 154.4)--(306.4, 154.6)--(306.3, 154.9)--(306.2, 155.1)--(306.0, 155.3)--(305.5, 155.5)--(304.9, 155.8)--(304.1, 156.3)--(304.0, 156.3)--(304.5, 156.4)--(304.8, 156.5)--(304.7, 157.1)--(305.1, 157.1)--(305.3, 157.2)--(305.4, 157.3)--(305.2, 157.8)--(305.1, 157.8)--(304.9, 158.4)--(304.8, 158.7)--(304.7, 159.0)--(304.6, 159.2)--(304.5, 159.5)--(304.3, 160.4)--(304.1, 161.2)--(303.9, 161.8)--(303.8, 162.2)--(303.8, 162.4)--(303.7, 162.7)--(303.6, 162.9)--(303.3, 163.2)--(302.6, 164.0)--(302.1, 164.5)--(302.1, 164.6)--(302.9, 164.8)--(303.2, 164.9)--(303.1, 165.1)--(303.1, 165.4)--(303.0, 165.9)--(302.9, 165.9)--(302.9, 166.3)--(302.7, 167.3)--(302.6, 167.6)--(302.6, 168.0)--(302.6, 168.1)--(302.7, 168.1)--(302.8, 168.2)--(303.0, 168.2)--(303.0, 168.3)--(303.1, 168.4)--(303.0, 168.4)--(302.4, 168.8)--(301.7, 169.0)--(301.8, 169.1)--(302.0, 169.4)--(302.2, 169.6)--(302.3, 169.8)--(302.5, 170.0)--(302.5, 170.1)--(302.4, 170.3)--(302.2, 170.4)--(302.1, 170.6)--(301.6, 171.0)--(301.3, 171.3)--(300.8, 171.8)--(300.7, 171.9)--(300.4, 172.2)--(300.1, 172.5)--(299.8, 172.7)--(300.0, 172.9)--(300.2, 173.3)--(300.3, 173.3)--(300.2, 173.3)--(300.1, 173.4)--(300.0, 173.5)--(299.7, 173.7)--(299.3, 173.9)--(299.2, 174.0)--(299.0, 174.1)--(299.1, 174.2)--(299.2, 174.4)--(299.3, 174.5)--(299.4, 174.6)--(299.6, 174.7)--(299.7, 174.8)--(300.6, 175.4)--(301.8, 176.3)--(302.3, 176.6)--(302.9, 177.1)--(302.8, 177.1)--(302.6, 177.1)--(302.3, 177.2)--(302.2, 177.3)--(302.4, 177.5)--(302.9, 178.0)--(303.4, 178.5)--(304.0, 179.2)--(304.4, 179.8)--(305.2, 180.9)--(305.7, 181.5)--(305.8, 181.6)--(305.9, 181.8)--(305.7, 182.0)--(305.8, 182.1)--(305.7, 182.2)--(305.6, 182.3)--(305.5, 182.4)--(305.3, 182.4)--(305.1, 182.5)--(304.8, 182.5)--(304.9, 182.6)--(305.0, 183.0)--(305.0, 183.1)--(305.1, 183.2)--(305.1, 183.3)--(305.0, 183.3)--(304.9, 183.6)--(304.7, 183.9)--(304.5, 184.2)--(304.4, 184.3)--(304.4, 184.4)--(304.2, 184.6)--(304.1, 184.7)--(304.1, 184.8)--(303.9, 185.1)--(303.7, 185.3)--(303.5, 185.7)--(303.4, 185.9)--(303.3, 186.0)--(303.2, 186.3)--(303.1, 186.3)--(303.0, 186.4)--(302.9, 186.5)--(302.8, 186.7)--(302.7, 186.8)--(302.5, 187.0)--(302.3, 187.2)--(302.1, 187.3)--(301.4, 187.9)--(301.4, 188.0)--(301.3, 188.2)--(301.3, 188.3)--(301.2, 188.3)--(301.1, 188.5)--(300.9, 188.8)--(300.8, 188.9)--(300.8, 189.0)--(300.6, 189.8)--(300.7, 189.9)--(300.7, 190.1)--(300.6, 190.1)--(300.6, 190.2)--(300.5, 190.3)--(300.0, 192.0)--(299.8, 193.6)--(300.0, 193.7)--(300.2, 193.7)--(300.2, 194.1)--(300.1, 194.2)--(300.1, 194.3)--(300.1, 194.5)--(300.6, 194.6)--(300.6, 194.9)--(300.9, 194.9)--(301.2, 194.9)--(301.9, 195.0)--(301.9, 195.3)--(302.0, 195.3)--(302.1, 195.5)--(302.3, 195.9)--(302.4, 196.2)--(302.5, 196.3)--(302.4, 196.4)--(302.5, 196.5)--(302.6, 196.6)--(302.7, 196.6)--(302.7, 196.5)--(302.8, 196.5)--(302.9, 196.8)--(303.0, 197.5)--(303.1, 197.7)--(303.1, 197.9)--(303.2, 198.1)--(303.0, 198.1)--(303.2, 198.3)--(303.3, 198.3)--(303.8, 198.6)--(304.0, 198.8)--(304.1, 198.8)--(304.2, 198.6)--(304.4, 198.5)--(304.5, 198.6)--(304.5, 198.8)--(305.0, 199.2)--(305.3, 199.3)--(305.2, 199.4)--(305.2, 199.5)--(305.2, 199.6)--(305.2, 199.8)--(305.3, 200.0)--(305.4, 200.2)--(305.4, 200.4)--(305.5, 200.7)--(305.6, 200.7)--(305.8, 200.7)--(306.0, 200.8)--(306.2, 201.0)--(306.2, 201.2)--(306.3, 201.2)--(306.5, 201.2)--(306.6, 201.2)--(306.6, 201.4)--(306.6, 201.5)--(306.7, 201.7)--(306.8, 201.8)--(307.0, 202.0)--(307.1, 202.3)--(307.2, 202.5)--(307.3, 202.7)--(307.4, 202.9)--(307.4, 203.0)--(307.5, 203.1)--(307.6, 203.3)--(307.6, 203.4)--(307.7, 203.4)--(307.7, 203.5)--(307.7, 203.6)--(307.8, 203.7)--(307.9, 204.0)--(308.0, 204.3)--(308.1, 204.5)--(308.2, 204.7)--(308.2, 204.9)--(308.2, 205.2)--(308.3, 205.4)--(308.6, 205.6)--(308.8, 205.8)--(309.0, 206.0)--(309.3, 206.2)--(309.4, 206.3)--(309.5, 206.4)--(309.7, 206.6)--(309.8, 206.6)--(310.2, 206.9)--(310.3, 207.0)--(310.6, 207.1)--(310.9, 207.2)--(311.0, 207.3)--(311.2, 207.5)--(311.2, 207.6)--(311.3, 207.7)--(311.4, 207.8)--(311.4, 207.9)--(311.7, 208.2)--(311.9, 208.5)--(311.9, 208.6)--(312.0, 208.7)--(312.2, 209.0)--(312.2, 209.1)--(312.2, 209.2)--(312.3, 209.4)--(312.4, 209.6)--(312.8, 209.9)--(313.0, 210.1)--(313.1, 210.4)--(313.2, 210.5)--(313.6, 210.5)--(314.0, 210.4)--(314.4, 210.4)--(314.7, 210.4)--(315.0, 210.4)--(315.1, 210.4)--(315.2, 210.4)--(315.3, 210.5)--(315.5, 210.5)--(315.6, 210.4)--(316.0, 210.3)--(316.5, 210.2)--(317.1, 210.0)--(317.5, 209.9)--(317.7, 209.9)--(317.8, 209.9)--(317.9, 209.9)--(318.0, 209.9)--(318.5, 209.9)--(318.8, 210.0)--(319.1, 210.0)--(321.5, 210.0)--(321.9, 210.0)--(322.9, 210.0)--(323.1, 210.0)--(323.3, 210.0)--(323.5, 210.0)--(323.8, 210.0)--(323.9, 210.1)--(324.2, 210.1)--(324.7, 210.2)--(325.6, 210.3)--(325.8, 210.3)--(325.9, 210.3)--(326.1, 210.3)--(326.2, 210.3)--(326.4, 210.3)--(326.6, 210.3)--(326.7, 210.2)--(326.9, 210.1)--(327.1, 210.1)--(327.4, 209.9)--(327.5, 209.7)--(327.8, 209.4)--(328.0, 209.2)--(328.2, 209.0)--(328.4, 208.9)--(328.9, 208.6)--(329.0, 208.6)--(329.1, 208.5)--(329.2, 208.5)--(329.2, 208.4)--(329.3, 208.4)--(329.5, 208.2)--(329.7, 207.9)--(330.1, 207.4)--(330.3, 207.2)--(330.4, 207.2)--(330.6, 207.1)--(331.2, 206.8)--(331.3, 206.7)--(331.4, 206.6)--(331.6, 206.6)--(331.7, 206.6)--(331.8, 206.5)--(332.0, 206.5)--(332.2, 206.6)--(332.5, 206.7)--(333.3, 206.9)--(333.7, 207.0)--(334.0, 207.1)--(334.4, 207.2)--(334.8, 207.2)--(335.6, 207.1)--(335.8, 207.1)--(336.0, 207.1)--(336.2, 207.1)--(336.5, 207.2)--(336.6, 207.2)--(336.9, 207.3)--(337.0, 207.3)--(337.1, 207.3)--(337.0, 207.2)--(336.9, 207.1)--(336.8, 206.9)--(336.5, 206.5)--(336.4, 206.3)--(336.3, 206.2)--(336.2, 205.9)--(336.0, 205.6)--(335.9, 205.3)--(335.8, 205.1)--(335.5, 204.8)--(335.4, 204.7)--(335.4, 204.6)--(335.3, 204.5)--(335.3, 204.3)--(335.4, 204.2)--(335.4, 204.1)--(335.5, 203.7)--(335.5, 203.3)--(335.6, 203.0)--(335.8, 202.7)--(335.8, 202.6)--(335.8, 202.5)--(336.1, 202.4)--(336.3, 202.3)--(336.6, 202.2)--(336.8, 202.1)--(337.5, 201.9)--(337.6, 201.8)--(337.8, 201.6)--(338.0, 201.5)--(338.3, 201.3)--(338.4, 201.3)--(338.5, 201.3)--(338.6, 201.3)--(338.7, 201.3)--(338.9, 201.0)--(339.0, 201.0)--(339.1, 200.9)--(339.2, 200.9)--(339.3, 200.8)--(339.3, 200.7)--(339.4, 200.6)--(339.5, 200.6)--(339.6, 200.5)--(339.5, 200.4)--(340.1, 200.0)--(340.3, 199.9)--(340.4, 199.8)--(340.5, 199.7)--(340.6, 199.7)--(340.8, 199.6)--(341.3, 199.5)--(341.2, 199.1)--(341.1, 198.8)--(341.0, 198.4)--(340.9, 198.1)--(340.8, 197.7)--(340.8, 197.6)--(340.8, 197.4)--(340.8, 197.0)--(340.8, 196.6)--(340.9, 196.0)--(341.0, 195.6)--(341.0, 195.5)--(341.2, 195.1)--(341.3, 194.8)--(341.5, 194.5)--(341.7, 194.2)--(342.0, 193.8)--(342.3, 193.5)--(342.6, 193.2)--(342.9, 192.8)--(343.2, 192.4)--(343.5, 191.8)--(343.6, 191.7)--(343.6, 191.6)--(343.7, 191.5)--(343.8, 191.3)--(343.9, 191.1)--(343.9, 191.0)--(343.9, 190.9)--(344.1, 190.6)--(344.1, 190.5)--(344.1, 190.3)--(344.2, 190.2)--(344.2, 190.1)--(344.3, 189.9)--(344.3, 189.8)--(344.4, 189.7)--(344.5, 189.7)--(344.6, 189.5)--(344.6, 189.4)--(344.7, 189.4)--(344.7, 189.3)--(344.8, 189.3)--(345.0, 189.1)--(345.1, 189.0)--(345.3, 188.9)--(345.4, 188.8)--(345.5, 188.7)--(345.6, 188.6)--(345.7, 188.6)--(345.8, 188.5)--(346.0, 188.3)--(346.1, 188.3)--(346.2, 188.2)--(346.4, 188.1)--(346.5, 188.0)--(346.9, 187.9)--(347.0, 187.9)--(347.3, 187.8)--(347.3, 187.6)--(347.2, 187.4)--(347.7, 187.3)--(347.8, 187.3)--(348.1, 187.3)--(348.4, 187.2)--(348.9, 187.3)--(350.0, 185.7)--(350.4, 185.1)--(350.0, 184.8)--(350.1, 184.6)--(350.3, 184.8)--(350.9, 184.8)--(351.0, 184.9)--(351.3, 185.2)--(351.7, 185.5)--(352.3, 185.9)--(352.7, 186.2)--(353.2, 186.4)--(353.4, 186.6)--(353.8, 186.7)--(354.2, 186.9)--(354.7, 187.0)--(354.9, 187.1)--(355.2, 187.2)--(355.3, 187.4)--(355.7, 186.8)--(356.1, 186.3)--(356.4, 185.7)--(356.7, 185.6)--(357.0, 185.3)--(356.0, 183.8)--(356.6, 183.4)--(356.9, 183.2)--(357.2, 183.6)--(357.3, 183.5)--(357.0, 183.1)--(356.9, 182.6)--(356.3, 181.8)--(355.2, 180.3)--(355.3, 180.3)--(355.2, 180.1)--(355.4, 179.9)--(355.4, 180.0)--(355.8, 179.8)--(355.8, 179.7)--(355.9, 179.5)--(355.9, 179.2)--(356.2, 179.2)--(356.4, 179.1)--(356.4, 178.7)--(356.5, 178.6)--(356.6, 178.7)--(356.7, 178.5)--(357.3, 178.3)--(357.4, 178.3)--(357.9, 178.3)--(358.3, 178.3)--(358.5, 178.3)--(358.7, 178.3)--(359.0, 178.2)--(359.2, 178.1)--(359.3, 177.9)--(359.6, 177.3)--(359.6, 177.2)--(359.8, 177.0)--(359.9, 176.8)--(360.1, 176.9)--(360.3, 177.0)--(360.4, 176.8)--(360.5, 176.5)--(360.7, 176.2)--(361.0, 175.8)--(361.4, 175.3)--(362.1, 174.6)--(362.5, 174.4)--(362.8, 174.2)--(363.1, 174.1)--(363.5, 174.0)--(363.6, 174.1)--(363.8, 174.0)--(364.0, 173.9)--(364.4, 173.8)--(364.8, 173.7)--(365.0, 173.6)--(365.2, 173.6)--(365.3, 173.6)--(365.7, 173.6)--(366.0, 173.5)--(366.3, 173.4)--(366.8, 173.3)--(367.2, 173.2)--(367.2, 173.1)--(367.1, 172.2)--(366.8, 170.5)--(366.8, 170.3)--(366.6, 169.2)--(366.4, 167.4)--(366.4, 166.6)--(366.6, 165.5)--(367.0, 163.6)--(367.2, 162.6)--(367.6, 162.7)--(367.2, 160.5)--(367.3, 160.4)--(367.3, 160.5)--(367.4, 160.5)--(367.4, 160.4)--(367.5, 160.4)--(367.7, 160.3)--(368.1, 160.3)--(368.8, 160.4)--(369.7, 160.6)--(370.2, 160.6)--(371.1, 160.7)--(371.2, 160.7)--(371.3, 160.7)--(371.4, 160.7)--(371.5, 160.8)--(371.6, 160.8)--(371.7, 160.8)--(371.8, 160.8)--(371.9, 160.8)--(371.9, 160.9)--(372.0, 160.9)--(372.1, 160.9)--(372.2, 160.9)--(372.2, 161.0)--(372.3, 161.0)--(372.4, 161.0)--(372.4, 161.1)--(372.5, 161.1)--(372.6, 161.2)--(372.7, 161.2)--(372.7, 161.3)--(372.8, 161.3)--(372.8, 161.4)--(372.9, 161.4)--(372.9, 161.5)--(373.0, 161.6)--(373.0, 161.7)--(373.1, 161.7)--(373.1, 161.8)--(373.2, 161.8)--(373.2, 161.9)--(373.2, 162.0)--(373.3, 162.0)--(373.3, 162.1)--(373.3, 162.2)--(373.4, 162.3)--(373.4, 162.4)--(373.4, 162.5)--(373.4, 162.6)--(373.4, 162.7)--(373.4, 162.8)--(373.4, 162.9)--(373.3, 163.2)--(374.2, 163.3)--(374.2, 163.0)--(374.3, 162.7)--(374.3, 162.4)--(374.4, 162.1)--(374.5, 161.6)--(374.7, 161.1)--(374.8, 161.0)--(374.8, 160.9)--(374.8, 160.6)--(374.9, 160.5)--(374.9, 160.1)--(374.7, 160.0)--(374.9, 159.6)--(375.0, 159.6)--(375.0, 159.5)--(375.1, 159.2)--(375.3, 158.9)--(375.3, 158.7)--(375.5, 158.5)--(375.5, 158.3)--(375.5, 158.2)--(375.6, 158.0)--(375.6, 157.9)--(376.0, 157.0)--(376.2, 156.5)--(376.2, 156.2)--(376.4, 155.8)--(376.7, 155.4)--(376.7, 154.9)--(376.6, 154.7)--(376.6, 154.5)--(376.5, 154.4)--(376.6, 154.4)--(376.6, 154.3)--(376.7, 154.3)--(376.7, 154.0)--(376.7, 153.5)--(376.7, 153.1)--(376.7, 152.9)--(376.7, 152.7)--(376.8, 152.6)--(376.8, 152.5)--(376.8, 152.4)--(376.8, 152.2)--(376.8, 151.9)--(376.8, 151.7)--(376.8, 151.4)--(376.9, 151.1)--(377.0, 151.1)--(377.0, 150.8)--(377.0, 150.5)--(377.1, 150.2)--(377.1, 150.0)--(377.1, 149.6)--(377.0, 149.6)--(376.5, 149.6)--(376.5, 149.3)--(376.2, 149.3)--(376.2, 148.9)--(376.8, 148.1)--(376.7, 147.8)--(376.9, 147.7)--(377.1, 147.8)--(377.3, 148.0)--(377.8, 148.4)--(377.9, 148.2)--(378.0, 147.9)--(378.1, 147.8)--(378.3, 147.7)--(378.4, 147.5)--(378.5, 147.3)--(378.6, 147.1)--(378.7, 147.0)--(378.8, 146.7)--(378.9, 146.6)--(379.1, 146.4)--(379.3, 146.3)--(379.4, 146.2)--(379.4, 146.0)--(379.5, 146.0)--(379.5, 145.9)--(379.6, 145.8)--(379.7, 145.7)--(379.8, 145.6)--(379.9, 145.5)--(380.0, 145.3)--(380.1, 145.1)--(380.2, 145.0)--(380.2, 144.9)--(380.3, 144.7)--(380.3, 144.5)--(380.4, 144.2)--(380.5, 144.0)--(380.6, 143.8)--(380.7, 143.7)--(380.7, 143.5)--(380.8, 143.5)--(380.6, 143.4)--(380.7, 143.3)--(380.8, 143.2)--(381.0, 143.0)--(381.1, 142.8)--(381.4, 142.6)--(381.9, 141.7)--(382.2, 141.2)--(382.6, 140.7)--(383.0, 140.3)--(383.4, 139.9)--(383.6, 139.8)--(383.8, 139.6)--(384.0, 139.3)--(384.2, 139.1)--(384.4, 138.9)--(384.6, 138.8)--(384.9, 138.8)--(385.0, 138.8)--(385.1, 138.9)--(385.1, 139.0)--(385.2, 139.0)--(385.3, 139.0)--(385.5, 138.9)--(385.8, 138.7)--(386.5, 138.2)--(386.8, 138.0)--(387.0, 137.9)--(387.1, 137.7)--(387.3, 137.6)--(387.5, 137.4)--(387.7, 137.2)--(387.8, 136.9)--(388.0, 136.8)--(388.2, 136.5)--(388.3, 136.3)--(388.5, 136.0)--(388.7, 135.7)--(389.0, 135.4)--(389.0, 135.3)--(389.1, 135.2)--(389.3, 135.1)--(389.4, 134.9)--(389.5, 134.7)--(389.8, 134.3)--(389.8, 134.2)--(389.9, 134.1)--(390.0, 134.0)--(390.0, 133.9)--(389.9, 133.9)--(390.0, 133.8)--(390.0, 133.7)--(390.1, 133.6)--(390.1, 133.4)--(390.1, 133.3)--(390.2, 132.9)--(390.3, 132.6)--(390.3, 132.4)--(390.4, 132.0)--(390.4, 131.9)--(390.4, 131.3)--(390.5, 130.8)--(390.5, 130.5)--(390.6, 130.4)--(390.7, 130.1)--(390.8, 129.9)--(390.8, 129.7)--(390.9, 129.6)--(391.0, 129.1)--(391.1, 128.5)--(391.2, 128.4)--(391.4, 127.5)--(391.6, 127.0)--(391.6, 126.7)--(391.8, 126.3)--(391.9, 126.1)--(391.8, 126.1)--(391.9, 125.5)--(392.0, 125.3)--(392.1, 125.0)--(392.1, 124.7)--(392.1, 124.6)--(392.1, 124.4)--(392.1, 124.3)--(392.3, 123.8)--(392.5, 123.1)--(392.6, 122.7)--(392.6, 122.6)--(392.7, 122.3)--(392.8, 121.9)--(392.9, 121.6)--(392.8, 121.5)--(392.9, 120.8)--(393.0, 120.8)--(393.1, 120.5)--(393.0, 120.5)--(393.1, 120.4)--(393.1, 120.2)--(393.3, 119.7)--(393.4, 119.3)--(393.5, 118.9)--(393.6, 118.4)--(393.7, 117.9)--(393.8, 117.6)--(394.1, 116.4)--(394.2, 116.1)--(394.3, 115.7)--(394.5, 115.0)--(394.6, 114.3)--(394.6, 113.9)--(394.8, 113.3)--(394.9, 113.0)--(394.8, 112.9)--(394.9, 112.8)--(395.2, 112.6)--(395.4, 112.3)--(395.6, 111.9)--(395.9, 111.7)--(396.1, 111.5)--(396.3, 111.4)--(396.6, 111.3)--(396.5, 110.7)--(396.5, 110.5)--(396.3, 110.3)--(396.3, 110.2)--(396.3, 110.1)--(396.3, 110.0)--(396.4, 109.5)--(396.4, 109.3)--(396.3, 109.3)--(396.3, 109.2)--(396.0, 108.8)--(395.9, 108.7)--(395.9, 108.3)--(395.9, 108.2)--(396.0, 108.0)--(395.1, 107.8)--(394.4, 107.7)--(394.0, 107.5)--(393.8, 108.1)--(393.5, 108.7)--(393.2, 109.2)--(392.7, 109.6)--(391.8, 110.4)--(391.0, 111.2)--(390.8, 111.4)--(390.3, 111.7)--(389.6, 112.2)--(389.2, 112.5)--(389.3, 112.9)--(388.6, 113.0)--(388.5, 113.0)--(388.4, 113.0)--(388.3, 113.0)--(388.2, 113.0)--(388.1, 113.0)--(388.0, 113.1)--(387.9, 113.0)--(387.8, 113.0)--(387.7, 113.0)--(387.6, 113.0)--(387.5, 113.0)--(387.4, 113.0)--(387.3, 113.0)--(387.2, 113.0)--(387.1, 112.9)--(387.0, 112.9)--(386.9, 112.9)--(386.8, 112.9)--(386.7, 112.7)--(386.6, 112.6)--(386.7, 112.5)--(386.8, 112.1)--(386.6, 111.9)--(386.0, 111.9)--(385.0, 110.3)--(384.8, 110.3)--(384.8, 110.1)--(384.8, 109.6)--(384.7, 109.4)--(384.6, 109.2)--(384.4, 109.0)--(384.4, 108.6)--(384.4, 108.4)--(384.2, 108.6)--(384.2, 108.8)--(384.0, 109.1)--(383.8, 109.3)--(383.8, 109.4)--(383.7, 109.7)--(383.6, 110.0)--(383.5, 110.3)--(383.2, 110.8)--(383.0, 111.0)--(382.7, 111.4)--(382.4, 111.8)--(382.3, 111.9)--(382.2, 111.9)--(381.9, 111.8)--(381.8, 111.9)--(381.7, 112.2)--(381.6, 112.8)--(381.5, 113.1)--(381.1, 113.6)--(381.0, 113.9)--(380.9, 114.2)--(380.8, 114.3)--(380.7, 114.9)--(380.6, 115.0)--(380.6, 115.1)--(380.4, 115.2)--(380.2, 115.4)--(379.9, 115.7)--(379.9, 115.8)--(379.9, 116.1)--(379.8, 116.4)--(379.3, 117.0)--(379.2, 117.2)--(378.7, 117.5)--(378.5, 117.6)--(378.2, 117.7)--(377.6, 117.7)--(377.4, 117.7)--(377.3, 117.7)--(377.2, 117.8)--(376.9, 117.8)--(376.6, 118.0)--(376.3, 117.9)--(376.0, 117.9)--(375.8, 117.9)--(375.7, 117.8)--(375.4, 117.7)--(375.0, 117.6)--(374.8, 117.5)--(374.6, 117.5)--(374.3, 117.3)--(374.0, 117.2)--(373.9, 117.1)--(373.8, 117.0)--(373.6, 116.9)--(373.1, 116.8)--(373.0, 116.7)--(372.9, 116.7)--(372.7, 116.7)--(372.6, 116.6)--(372.5, 116.6)--(372.0, 116.6)--(371.8, 116.6)--(371.6, 116.6)--(371.3, 116.5)--(370.9, 116.6)--(370.7, 116.7)--(370.2, 117.1)--(370.1, 117.2)--(370.0, 117.2)--(369.8, 117.2)--(369.5, 117.3)--(369.1, 117.4)--(368.8, 117.4)--(368.4, 117.6)--(368.3, 117.7)--(368.1, 117.7)--(367.9, 117.7)--(367.7, 117.8)--(367.6, 117.8)--(367.3, 117.4)--(366.7, 116.8)--(366.6, 116.6)--(366.4, 116.2)--(366.3, 115.9)--(366.2, 115.5)--(366.0, 115.2)--(365.9, 115.0)--(365.9, 114.8)--(365.8, 114.6)--(365.7, 114.0)--(365.6, 113.6)--(365.4, 113.2)--(365.0, 112.3)--(364.4, 112.1)--(364.0, 112.1)--(363.2, 112.2)--(362.9, 112.1)--(362.6, 112.1)--(362.3, 112.0)--(361.8, 111.9)--(361.6, 111.7)--(361.3, 111.5)--(361.0, 111.3)--(360.7, 111.2)--(360.5, 111.1)--(360.4, 111.0)--(360.1, 111.0)--(359.9, 111.0)--(359.7, 110.9)--(359.2, 110.9)--(359.4, 110.3)--(359.4, 110.2)--(359.0, 110.0)--(358.9, 109.9)--(358.7, 109.7)--(358.7, 109.4)--(358.7, 109.1)--(358.7, 108.9)--(359.0, 108.2)--(359.2, 107.9)--(359.4, 107.8)--(359.7, 107.5)--(359.9, 107.3)--(360.3, 106.8)--(360.4, 106.5)--(360.2, 106.4)--(360.6, 105.8)--(360.7, 105.6)--(360.9, 105.1)--(361.0, 104.9)--(361.0, 104.8)--(361.0, 104.7)--(361.0, 104.5)--(361.1, 104.1)--(361.1, 103.9)--(361.1, 103.0)--(361.1, 102.7)--(360.9, 102.6)--(360.9, 102.7)--(360.8, 102.7)--(360.5, 102.8)--(360.2, 102.8)--(360.0, 102.8)--(359.8, 102.7)--(359.7, 102.3)--(359.4, 101.9)--(359.2, 101.6)--(359.1, 101.4)--(359.1, 101.3)--(359.0, 100.9)--(359.0, 100.8)--(358.8, 100.6)--(358.8, 100.0)--(358.8, 99.7)--(358.8, 99.5)--(358.5, 99.5)--(358.2, 99.4)--(358.0, 99.4)--(357.9, 99.4)--(357.7, 99.2)--(357.6, 99.1)--(357.2, 98.8)--(356.8, 98.5)--(356.4, 98.1)--(356.3, 98.1)--(355.8, 98.2)--(355.6, 98.3)--(355.4, 98.6)--(355.2, 98.5)--(355.1, 98.4)--(354.9, 98.2)--(354.4, 97.7)--(354.3, 97.6)--(354.1, 97.3)--(353.9, 97.1)--(353.7, 96.9)--(353.6, 96.9)--(353.5, 96.9)--(353.1, 96.7)--(353.0, 96.7)--(352.9, 96.7)--(352.8, 96.7)--(352.7, 96.7)--(352.5, 96.7)--(352.4, 96.7)--(352.2, 96.6)--(352.2, 96.5)--(351.9, 96.2)--(351.8, 96.0)--(351.6, 95.9)--(351.5, 95.8)--(351.4, 95.7)--(351.2, 95.6)--(350.6, 95.3)--(350.2, 95.1)--cycle; +Ealing = (102.5, 328.8)--(102.5, 328.9)--(102.4, 329.0)--(102.4, 329.1)--(102.3, 329.2)--(102.2, 329.3)--(102.1, 329.3)--(102.0, 329.3)--(101.9, 329.3)--(101.7, 329.4)--(101.6, 329.4)--(101.5, 329.4)--(101.4, 329.4)--(101.4, 329.5)--(101.3, 329.5)--(101.3, 329.7)--(101.3, 329.8)--(101.2, 330.0)--(101.2, 330.4)--(101.1, 330.6)--(101.1, 330.7)--(101.0, 330.7)--(100.9, 330.8)--(100.6, 330.8)--(100.5, 330.8)--(100.4, 330.9)--(100.3, 331.0)--(100.3, 331.1)--(100.2, 331.2)--(100.2, 331.3)--(100.1, 331.5)--(100.0, 331.5)--(100.0, 331.6)--(99.8, 331.6)--(99.7, 331.6)--(99.6, 331.6)--(99.5, 331.5)--(99.2, 331.5)--(99.1, 331.4)--(99.0, 331.4)--(98.9, 331.4)--(98.8, 331.5)--(98.7, 331.5)--(98.6, 331.5)--(98.6, 331.6)--(98.5, 331.7)--(98.4, 331.7)--(98.4, 331.8)--(98.4, 332.0)--(98.5, 332.2)--(98.5, 332.4)--(98.5, 332.5)--(98.5, 332.6)--(98.6, 332.7)--(98.6, 332.8)--(98.5, 332.9)--(98.4, 332.9)--(98.4, 333.0)--(98.3, 333.0)--(98.1, 333.0)--(97.8, 333.1)--(97.6, 333.2)--(97.5, 333.2)--(97.4, 333.3)--(97.3, 333.3)--(97.2, 333.3)--(97.1, 333.5)--(97.0, 333.7)--(97.0, 333.8)--(97.1, 333.9)--(97.2, 334.0)--(97.4, 334.0)--(97.7, 334.1)--(97.9, 334.2)--(97.9, 334.3)--(98.0, 334.3)--(98.0, 334.4)--(97.9, 334.4)--(97.8, 334.5)--(97.7, 334.6)--(97.6, 334.6)--(97.6, 334.7)--(97.5, 334.8)--(97.5, 334.9)--(97.4, 334.9)--(97.3, 335.0)--(97.1, 335.2)--(97.1, 335.3)--(97.1, 335.4)--(97.1, 335.5)--(97.1, 335.6)--(97.1, 335.7)--(97.2, 335.8)--(97.3, 335.8)--(97.4, 335.7)--(97.5, 335.6)--(97.6, 335.6)--(97.7, 335.6)--(97.7, 335.5)--(97.8, 335.4)--(97.9, 335.4)--(98.1, 335.4)--(98.3, 335.4)--(98.4, 335.4)--(98.5, 335.4)--(98.6, 335.5)--(98.9, 335.5)--(99.0, 335.5)--(99.2, 335.5)--(99.4, 335.6)--(99.5, 335.6)--(99.6, 335.7)--(99.9, 335.8)--(99.9, 335.9)--(100.0, 335.9)--(100.3, 336.0)--(100.6, 336.1)--(100.9, 336.2)--(101.3, 336.3)--(101.8, 336.5)--(102.3, 336.6)--(103.1, 336.9)--(104.0, 337.1)--(104.5, 337.3)--(105.1, 337.5)--(105.0, 337.6)--(105.6, 337.8)--(106.8, 338.2)--(107.2, 338.3)--(107.5, 338.3)--(107.9, 338.3)--(108.3, 338.4)--(109.0, 338.4)--(109.0, 338.3)--(109.5, 338.4)--(109.6, 338.4)--(110.3, 338.3)--(110.5, 338.3)--(111.1, 338.2)--(112.2, 338.2)--(112.4, 338.2)--(113.8, 338.5)--(113.7, 339.0)--(113.6, 339.8)--(113.6, 340.1)--(113.6, 340.2)--(113.5, 340.2)--(113.4, 340.5)--(113.4, 340.8)--(113.3, 341.0)--(113.2, 341.4)--(113.1, 341.7)--(113.1, 341.8)--(113.0, 341.9)--(112.8, 342.3)--(112.5, 342.1)--(111.9, 341.9)--(111.9, 342.0)--(111.8, 342.4)--(111.5, 343.6)--(111.6, 343.6)--(111.6, 343.7)--(111.5, 344.0)--(111.4, 344.0)--(111.4, 344.1)--(111.3, 344.4)--(111.4, 344.4)--(111.5, 344.4)--(111.9, 344.3)--(112.1, 344.3)--(112.3, 344.3)--(112.5, 344.2)--(112.8, 344.2)--(113.4, 344.2)--(114.0, 344.1)--(113.9, 344.6)--(113.8, 345.1)--(113.9, 345.4)--(114.4, 345.3)--(114.6, 345.3)--(114.9, 345.5)--(115.4, 345.7)--(115.9, 346.0)--(117.2, 346.6)--(117.9, 347.0)--(118.0, 346.9)--(118.3, 347.0)--(118.6, 347.3)--(119.0, 347.5)--(119.4, 347.6)--(119.9, 347.9)--(120.5, 348.2)--(120.9, 348.5)--(121.5, 348.9)--(122.1, 349.4)--(122.8, 350.0)--(122.9, 350.1)--(123.1, 350.3)--(123.5, 350.7)--(123.7, 350.8)--(124.0, 351.1)--(125.2, 351.9)--(125.7, 352.2)--(125.6, 352.5)--(125.6, 352.6)--(125.7, 352.6)--(125.7, 352.4)--(125.8, 352.1)--(126.0, 351.7)--(126.3, 351.3)--(126.5, 351.0)--(126.6, 351.0)--(127.0, 350.5)--(127.6, 351.0)--(128.3, 351.4)--(128.5, 351.3)--(128.7, 351.6)--(129.1, 351.2)--(129.3, 351.5)--(129.6, 351.5)--(129.7, 351.5)--(129.8, 351.5)--(129.9, 351.6)--(130.0, 351.6)--(130.1, 351.6)--(130.4, 351.8)--(130.5, 351.9)--(130.6, 352.0)--(130.8, 352.1)--(131.0, 352.2)--(131.1, 352.3)--(131.3, 352.3)--(131.4, 352.3)--(131.6, 352.4)--(131.8, 352.5)--(132.0, 352.5)--(132.5, 352.7)--(132.6, 352.7)--(132.7, 352.7)--(132.9, 352.7)--(133.1, 352.8)--(133.3, 352.8)--(133.5, 352.9)--(133.4, 353.1)--(133.7, 353.2)--(133.8, 353.2)--(134.3, 353.3)--(134.3, 353.4)--(134.5, 353.4)--(134.7, 353.4)--(134.8, 353.4)--(134.9, 353.5)--(135.2, 353.6)--(135.5, 353.7)--(135.8, 353.8)--(135.9, 353.9)--(136.2, 354.0)--(136.1, 354.2)--(136.1, 354.3)--(136.2, 354.3)--(136.2, 354.4)--(136.1, 354.5)--(136.2, 354.5)--(136.3, 354.5)--(136.4, 354.6)--(136.4, 354.8)--(136.3, 355.1)--(136.2, 355.4)--(136.3, 355.4)--(136.9, 355.5)--(137.7, 355.7)--(137.8, 355.8)--(138.4, 355.9)--(139.9, 356.4)--(141.1, 356.8)--(142.3, 357.1)--(143.7, 357.4)--(144.3, 357.6)--(145.6, 358.0)--(146.5, 358.3)--(146.7, 358.0)--(146.7, 357.9)--(147.6, 357.1)--(147.8, 357.0)--(147.9, 356.9)--(148.0, 356.9)--(148.0, 356.8)--(148.5, 356.5)--(149.0, 356.2)--(149.7, 356.0)--(150.0, 355.9)--(150.3, 355.9)--(150.8, 355.9)--(151.1, 355.8)--(152.4, 355.8)--(152.6, 355.8)--(152.8, 355.7)--(152.9, 355.7)--(153.3, 355.6)--(153.4, 355.5)--(153.7, 355.4)--(154.3, 355.2)--(154.3, 355.1)--(154.4, 355.1)--(154.6, 355.1)--(154.7, 355.0)--(154.8, 355.0)--(155.4, 354.8)--(155.8, 354.6)--(155.8, 354.7)--(155.9, 354.7)--(156.5, 354.5)--(157.2, 354.4)--(157.8, 354.2)--(158.5, 354.1)--(159.2, 353.9)--(159.7, 353.8)--(160.2, 353.7)--(160.8, 353.4)--(161.5, 353.1)--(161.8, 352.8)--(162.4, 352.5)--(163.0, 352.2)--(163.8, 351.7)--(164.2, 351.5)--(164.4, 351.4)--(164.9, 351.1)--(165.4, 350.8)--(166.0, 350.5)--(166.4, 350.2)--(166.9, 350.0)--(167.2, 349.8)--(167.3, 349.8)--(167.4, 349.7)--(167.6, 349.6)--(168.2, 349.2)--(168.1, 349.1)--(168.7, 348.7)--(169.6, 348.1)--(169.7, 348.2)--(170.1, 347.8)--(170.8, 347.3)--(171.0, 347.1)--(171.0, 346.8)--(171.1, 346.5)--(171.2, 346.2)--(171.3, 346.0)--(171.5, 345.8)--(171.6, 345.6)--(171.8, 345.4)--(171.9, 345.3)--(171.9, 345.2)--(172.0, 345.2)--(173.0, 344.7)--(173.1, 344.7)--(173.2, 344.6)--(173.8, 344.2)--(174.1, 343.9)--(174.5, 343.5)--(174.8, 343.1)--(174.8, 343.0)--(174.9, 342.9)--(174.8, 342.9)--(174.2, 342.8)--(173.6, 342.8)--(173.6, 342.5)--(173.9, 342.4)--(174.2, 342.0)--(174.3, 341.9)--(174.3, 341.5)--(174.2, 341.1)--(174.1, 340.9)--(174.0, 340.7)--(174.0, 340.6)--(173.9, 340.6)--(174.6, 339.7)--(175.0, 339.0)--(175.1, 338.9)--(175.5, 338.2)--(175.8, 337.9)--(176.1, 337.6)--(176.5, 337.2)--(176.7, 336.9)--(176.6, 336.9)--(175.8, 336.4)--(175.8, 336.1)--(175.9, 334.4)--(175.9, 334.1)--(175.9, 333.4)--(175.9, 332.7)--(175.9, 332.6)--(175.9, 332.0)--(175.8, 331.5)--(175.8, 331.0)--(175.8, 330.6)--(175.7, 330.3)--(175.7, 330.2)--(175.6, 330.1)--(175.4, 330.0)--(175.3, 329.9)--(175.2, 329.8)--(175.2, 329.7)--(175.1, 329.5)--(175.0, 329.4)--(174.9, 329.3)--(175.0, 329.3)--(175.9, 329.0)--(176.8, 328.7)--(178.3, 328.2)--(178.4, 328.4)--(179.1, 328.7)--(179.8, 329.2)--(180.4, 329.6)--(181.1, 330.4)--(181.4, 330.7)--(181.7, 331.0)--(181.9, 331.5)--(182.0, 331.6)--(182.1, 331.6)--(182.2, 331.7)--(182.2, 331.8)--(182.3, 331.8)--(182.4, 331.9)--(182.6, 332.0)--(182.7, 332.0)--(182.8, 332.0)--(182.9, 332.0)--(183.0, 332.0)--(183.1, 331.9)--(183.3, 331.6)--(183.4, 331.6)--(183.4, 331.5)--(183.5, 331.5)--(184.0, 331.7)--(184.6, 331.6)--(184.7, 331.7)--(185.0, 331.8)--(185.5, 332.0)--(185.6, 332.0)--(186.7, 332.6)--(186.9, 332.6)--(187.9, 333.0)--(189.2, 333.7)--(189.9, 334.2)--(190.3, 334.5)--(191.0, 335.0)--(191.9, 335.8)--(192.1, 335.9)--(192.2, 335.8)--(192.8, 335.1)--(193.5, 334.2)--(194.1, 333.4)--(194.5, 332.9)--(194.7, 332.6)--(194.9, 332.5)--(195.0, 332.3)--(195.2, 332.2)--(195.3, 332.1)--(195.5, 332.0)--(195.4, 331.9)--(195.3, 331.9)--(195.2, 331.5)--(195.2, 331.4)--(195.0, 331.4)--(194.9, 330.9)--(194.9, 330.5)--(194.8, 330.3)--(194.8, 330.1)--(194.7, 329.9)--(194.5, 329.8)--(194.2, 329.6)--(193.8, 329.4)--(193.3, 329.2)--(193.3, 329.3)--(192.9, 329.9)--(192.4, 329.7)--(191.5, 329.4)--(191.2, 330.2)--(191.1, 330.1)--(190.3, 329.7)--(190.1, 329.7)--(190.0, 329.5)--(190.0, 329.4)--(189.9, 329.4)--(189.5, 329.2)--(188.9, 328.8)--(188.2, 328.5)--(187.5, 328.0)--(187.7, 327.8)--(188.0, 327.5)--(188.4, 327.1)--(188.8, 326.7)--(189.2, 326.3)--(189.7, 325.9)--(189.8, 325.7)--(190.1, 325.3)--(191.2, 325.1)--(191.1, 325.2)--(191.2, 325.2)--(191.8, 325.1)--(192.0, 325.0)--(192.4, 324.9)--(192.6, 324.9)--(193.7, 324.6)--(193.8, 324.6)--(193.9, 324.6)--(194.0, 324.6)--(194.3, 324.7)--(194.4, 324.8)--(194.6, 324.9)--(194.7, 324.9)--(194.8, 324.9)--(194.9, 325.0)--(196.0, 325.5)--(197.3, 325.8)--(198.6, 326.1)--(199.4, 326.3)--(200.0, 326.4)--(200.6, 326.5)--(200.7, 326.2)--(201.2, 326.5)--(201.4, 326.3)--(201.5, 326.2)--(201.6, 326.2)--(201.7, 326.2)--(201.9, 326.3)--(201.9, 326.4)--(201.8, 326.5)--(202.3, 326.5)--(202.5, 326.6)--(202.7, 326.7)--(203.1, 327.0)--(203.4, 327.1)--(203.7, 327.5)--(204.2, 328.0)--(204.3, 328.1)--(204.3, 328.2)--(204.4, 328.2)--(204.5, 328.4)--(204.5, 328.5)--(204.6, 328.7)--(204.6, 328.8)--(204.5, 329.0)--(204.8, 329.1)--(204.8, 329.2)--(205.2, 329.4)--(205.5, 329.6)--(205.9, 329.9)--(206.4, 330.4)--(207.0, 331.0)--(207.4, 331.4)--(207.5, 331.5)--(207.5, 331.7)--(207.6, 331.7)--(207.7, 331.8)--(208.1, 331.9)--(208.9, 332.3)--(209.1, 332.5)--(209.2, 332.5)--(209.3, 332.6)--(209.6, 332.5)--(209.7, 332.4)--(210.2, 332.2)--(210.3, 332.2)--(210.3, 332.1)--(210.4, 332.1)--(210.4, 332.0)--(210.4, 331.9)--(210.4, 331.8)--(210.5, 331.8)--(210.5, 331.7)--(210.5, 331.6)--(210.6, 331.1)--(210.8, 331.2)--(211.1, 331.2)--(212.0, 331.3)--(212.8, 331.4)--(213.2, 331.4)--(213.3, 331.4)--(213.4, 331.4)--(213.5, 331.3)--(213.7, 331.2)--(213.8, 331.2)--(213.9, 331.1)--(214.0, 331.1)--(214.1, 331.2)--(214.2, 331.5)--(215.5, 331.1)--(216.2, 330.9)--(216.4, 330.9)--(216.6, 330.8)--(216.7, 330.7)--(216.8, 330.7)--(217.0, 330.4)--(217.2, 330.1)--(217.3, 330.0)--(217.4, 330.0)--(217.3, 329.8)--(217.3, 329.6)--(217.2, 329.4)--(217.0, 328.9)--(216.9, 328.9)--(217.4, 328.6)--(218.1, 328.3)--(218.0, 328.1)--(217.9, 328.1)--(217.7, 328.1)--(217.6, 328.1)--(217.6, 328.0)--(217.4, 328.0)--(217.2, 327.8)--(217.0, 327.7)--(216.5, 327.2)--(215.9, 326.6)--(215.7, 326.3)--(215.4, 325.9)--(215.4, 326.0)--(215.3, 326.0)--(215.2, 325.9)--(215.2, 325.8)--(214.7, 325.1)--(214.6, 325.0)--(214.8, 324.9)--(214.9, 324.8)--(214.8, 324.6)--(214.6, 324.4)--(214.5, 324.4)--(214.8, 323.9)--(214.8, 323.8)--(214.8, 323.7)--(214.7, 323.6)--(214.5, 323.4)--(214.2, 323.0)--(213.4, 321.6)--(213.4, 321.5)--(213.3, 321.3)--(213.2, 321.0)--(213.2, 320.8)--(213.2, 320.5)--(213.3, 320.1)--(213.5, 319.7)--(213.6, 319.2)--(213.7, 318.8)--(213.8, 318.2)--(214.7, 316.4)--(214.7, 316.2)--(214.9, 315.9)--(214.8, 315.6)--(214.8, 315.5)--(214.7, 315.4)--(214.7, 315.3)--(214.7, 315.2)--(214.7, 315.1)--(214.7, 315.0)--(214.7, 314.9)--(214.7, 314.8)--(214.7, 314.7)--(214.8, 314.1)--(215.1, 312.8)--(215.4, 311.1)--(215.7, 310.4)--(215.7, 310.1)--(215.8, 309.9)--(215.9, 309.3)--(215.9, 309.1)--(216.0, 309.1)--(216.0, 309.0)--(216.0, 308.9)--(216.1, 308.7)--(216.4, 308.2)--(216.9, 307.4)--(217.3, 306.8)--(217.7, 306.0)--(217.9, 305.6)--(217.9, 305.5)--(218.0, 305.0)--(218.2, 304.6)--(218.2, 304.0)--(218.3, 303.8)--(218.4, 303.5)--(218.4, 303.1)--(218.4, 303.0)--(218.6, 302.2)--(218.7, 302.0)--(218.9, 301.1)--(218.9, 301.0)--(217.9, 301.0)--(217.9, 300.8)--(218.0, 300.6)--(218.0, 300.5)--(218.0, 300.3)--(218.1, 300.1)--(218.1, 300.0)--(218.3, 299.5)--(218.5, 298.7)--(218.1, 298.6)--(217.9, 298.5)--(216.9, 298.4)--(216.9, 298.6)--(216.2, 298.5)--(216.1, 298.4)--(216.0, 298.7)--(215.9, 298.7)--(215.9, 298.6)--(215.8, 298.6)--(215.7, 298.6)--(215.6, 298.6)--(215.6, 298.5)--(215.6, 298.4)--(215.5, 298.4)--(215.3, 298.4)--(215.0, 298.5)--(214.8, 298.6)--(214.7, 298.6)--(213.8, 298.4)--(213.8, 298.5)--(213.8, 298.7)--(213.6, 298.6)--(213.0, 298.5)--(212.9, 298.5)--(213.0, 298.3)--(213.0, 298.2)--(212.6, 298.1)--(212.4, 298.0)--(212.4, 298.1)--(212.2, 298.3)--(212.0, 298.2)--(212.1, 298.2)--(212.0, 298.2)--(212.4, 297.8)--(212.5, 297.8)--(212.5, 297.7)--(212.5, 297.6)--(212.7, 297.4)--(212.9, 297.1)--(213.1, 296.9)--(213.2, 296.8)--(213.2, 296.7)--(213.3, 296.6)--(213.3, 296.4)--(213.4, 296.3)--(213.4, 296.2)--(213.4, 295.8)--(213.5, 295.4)--(213.5, 295.3)--(213.5, 295.2)--(213.5, 295.0)--(213.5, 294.9)--(213.6, 294.6)--(213.6, 294.3)--(213.6, 294.1)--(213.7, 294.0)--(213.7, 293.8)--(213.8, 293.7)--(213.8, 293.5)--(213.8, 293.3)--(213.7, 293.1)--(213.5, 292.8)--(213.4, 292.3)--(213.2, 292.1)--(213.0, 291.6)--(212.8, 291.1)--(212.5, 290.6)--(212.5, 290.5)--(212.3, 290.0)--(212.3, 289.9)--(212.3, 289.8)--(212.2, 289.6)--(212.2, 289.5)--(212.2, 289.3)--(212.1, 289.3)--(212.0, 289.2)--(212.0, 289.0)--(211.9, 289.0)--(211.9, 288.9)--(212.0, 288.9)--(212.0, 288.7)--(212.1, 288.6)--(212.0, 288.4)--(212.0, 287.7)--(211.9, 287.7)--(211.7, 287.7)--(211.4, 287.7)--(210.6, 287.7)--(209.9, 287.6)--(209.0, 287.5)--(208.8, 287.4)--(208.6, 287.4)--(208.0, 287.3)--(207.9, 287.3)--(207.7, 287.3)--(207.6, 287.3)--(207.6, 287.2)--(207.3, 287.2)--(207.0, 287.1)--(206.3, 287.0)--(205.8, 286.9)--(205.0, 286.7)--(204.3, 286.6)--(203.6, 286.4)--(203.5, 286.5)--(203.3, 286.5)--(203.1, 286.5)--(202.7, 286.5)--(202.4, 286.6)--(201.9, 286.7)--(201.4, 287.0)--(201.2, 287.1)--(201.0, 287.3)--(200.9, 287.3)--(200.9, 287.4)--(200.7, 287.6)--(200.5, 287.8)--(200.4, 288.0)--(200.3, 288.3)--(200.2, 288.8)--(200.0, 289.0)--(199.8, 289.2)--(199.6, 289.5)--(199.3, 289.7)--(198.9, 290.1)--(197.9, 290.8)--(197.5, 291.1)--(197.2, 291.4)--(196.8, 291.9)--(196.3, 292.4)--(196.2, 292.6)--(196.1, 292.8)--(196.0, 293.0)--(195.9, 293.2)--(195.8, 293.5)--(195.7, 293.7)--(195.6, 293.9)--(195.4, 294.4)--(195.2, 294.8)--(195.1, 295.0)--(195.0, 295.1)--(194.9, 295.3)--(194.6, 295.7)--(194.3, 296.1)--(194.2, 296.1)--(194.1, 296.0)--(193.2, 295.3)--(193.1, 295.1)--(192.6, 294.8)--(192.1, 294.4)--(191.5, 294.1)--(191.3, 294.0)--(191.2, 294.0)--(190.9, 293.8)--(190.6, 293.7)--(190.1, 293.6)--(189.4, 293.7)--(189.2, 293.8)--(188.8, 293.8)--(188.4, 293.9)--(187.9, 294.0)--(187.4, 294.2)--(186.9, 294.3)--(186.5, 294.4)--(185.8, 294.5)--(185.5, 294.5)--(185.4, 294.5)--(185.2, 294.5)--(185.1, 294.5)--(185.0, 294.5)--(184.9, 294.4)--(184.4, 294.1)--(184.0, 293.9)--(183.6, 293.7)--(183.2, 293.4)--(182.0, 292.7)--(181.1, 292.3)--(180.9, 292.2)--(180.5, 291.9)--(180.5, 291.8)--(180.6, 291.3)--(180.7, 291.1)--(180.8, 291.1)--(180.8, 291.0)--(180.9, 290.9)--(181.0, 290.8)--(181.0, 290.6)--(181.0, 290.3)--(181.1, 290.2)--(181.2, 290.1)--(181.3, 289.9)--(181.4, 289.8)--(181.5, 289.5)--(181.7, 289.1)--(181.8, 288.9)--(181.9, 288.7)--(182.2, 288.2)--(182.3, 288.0)--(182.5, 287.7)--(182.4, 287.7)--(182.8, 287.0)--(182.3, 286.9)--(181.5, 286.7)--(180.4, 286.4)--(180.2, 286.8)--(180.2, 287.0)--(180.2, 287.2)--(180.2, 287.3)--(179.5, 287.5)--(179.2, 287.6)--(178.8, 287.7)--(178.4, 287.8)--(177.9, 288.0)--(177.4, 288.1)--(177.3, 288.2)--(177.2, 288.3)--(177.0, 288.3)--(177.0, 288.2)--(177.0, 288.0)--(177.0, 287.7)--(177.1, 287.4)--(177.2, 287.0)--(177.3, 286.5)--(176.6, 286.1)--(175.9, 285.7)--(175.6, 285.5)--(175.3, 285.4)--(175.0, 285.2)--(174.4, 284.7)--(173.6, 284.1)--(172.9, 283.5)--(172.9, 283.6)--(172.5, 284.1)--(172.4, 284.2)--(172.3, 284.3)--(171.9, 284.8)--(171.7, 285.1)--(171.5, 285.3)--(171.4, 285.2)--(171.4, 285.3)--(171.3, 285.3)--(171.1, 285.1)--(170.9, 285.4)--(170.8, 285.5)--(170.6, 285.7)--(170.7, 285.7)--(170.8, 285.8)--(171.1, 286.2)--(171.0, 286.2)--(170.9, 286.4)--(170.2, 287.2)--(170.2, 287.3)--(170.5, 287.5)--(170.4, 287.5)--(170.4, 287.6)--(170.1, 287.8)--(169.1, 287.1)--(168.5, 286.5)--(168.2, 286.2)--(167.8, 285.9)--(167.3, 286.3)--(166.9, 286.6)--(166.6, 286.8)--(166.2, 287.0)--(165.5, 287.3)--(164.8, 287.7)--(164.4, 287.6)--(163.9, 287.8)--(163.8, 287.7)--(163.3, 287.1)--(162.9, 286.7)--(162.4, 287.4)--(162.0, 287.8)--(160.3, 286.7)--(159.9, 287.0)--(159.6, 287.1)--(159.5, 287.2)--(159.4, 287.2)--(159.0, 287.4)--(159.0, 287.3)--(158.8, 287.4)--(158.4, 287.5)--(158.0, 287.6)--(157.4, 287.8)--(157.0, 287.8)--(157.0, 287.9)--(156.6, 287.9)--(156.5, 287.9)--(156.1, 287.9)--(155.5, 287.9)--(155.0, 287.9)--(154.3, 287.9)--(153.8, 287.8)--(153.1, 287.7)--(152.4, 287.6)--(152.3, 287.7)--(151.8, 287.6)--(150.9, 288.1)--(150.0, 288.6)--(149.0, 289.2)--(148.2, 289.6)--(147.5, 290.0)--(146.7, 290.6)--(146.5, 290.7)--(146.4, 290.8)--(146.3, 290.8)--(146.3, 290.9)--(146.2, 290.9)--(146.0, 290.9)--(145.9, 290.9)--(145.8, 290.9)--(145.6, 290.8)--(144.7, 290.5)--(144.0, 290.2)--(143.2, 289.9)--(143.1, 289.9)--(143.1, 289.8)--(143.0, 289.9)--(142.9, 289.9)--(142.7, 289.8)--(142.5, 289.7)--(142.4, 289.7)--(142.3, 289.7)--(142.1, 289.7)--(142.1, 289.6)--(142.0, 289.6)--(141.9, 289.5)--(141.7, 289.5)--(141.5, 289.4)--(141.3, 289.3)--(141.1, 289.3)--(140.8, 289.3)--(140.7, 289.2)--(140.5, 289.1)--(140.4, 289.1)--(140.3, 288.9)--(140.0, 288.6)--(139.7, 288.4)--(139.3, 288.1)--(139.0, 288.0)--(138.9, 287.9)--(138.8, 287.8)--(138.6, 287.8)--(138.4, 287.6)--(138.3, 287.6)--(138.3, 287.5)--(138.2, 287.5)--(138.2, 287.4)--(138.1, 287.3)--(137.9, 287.3)--(137.8, 287.2)--(137.7, 287.2)--(137.6, 287.2)--(137.5, 287.1)--(137.4, 287.2)--(137.4, 287.1)--(137.2, 287.0)--(137.2, 286.9)--(137.2, 286.8)--(137.0, 286.7)--(137.0, 286.6)--(136.9, 286.6)--(136.9, 286.1)--(136.9, 285.8)--(136.8, 285.6)--(136.6, 285.5)--(136.4, 285.3)--(136.3, 285.1)--(136.2, 284.9)--(136.0, 284.6)--(135.8, 284.2)--(135.5, 284.6)--(135.3, 284.4)--(135.0, 284.1)--(134.9, 283.9)--(134.8, 283.8)--(134.8, 283.7)--(134.7, 283.7)--(134.7, 283.6)--(134.6, 283.5)--(134.4, 283.4)--(134.1, 283.2)--(133.9, 283.1)--(133.8, 283.0)--(133.7, 283.0)--(133.8, 282.8)--(134.0, 282.5)--(133.5, 282.2)--(133.0, 281.9)--(132.7, 281.7)--(131.8, 281.2)--(131.3, 280.9)--(131.3, 281.0)--(131.4, 281.1)--(131.4, 281.3)--(131.3, 281.4)--(131.3, 281.5)--(131.1, 281.5)--(131.0, 281.5)--(130.9, 281.5)--(130.8, 281.6)--(130.7, 281.8)--(130.5, 282.0)--(130.4, 282.1)--(130.3, 282.2)--(130.2, 282.4)--(130.1, 282.4)--(130.0, 282.5)--(129.9, 282.5)--(129.8, 282.9)--(129.3, 284.0)--(129.2, 284.3)--(129.1, 284.7)--(129.0, 284.9)--(128.9, 285.1)--(128.7, 285.4)--(128.6, 285.8)--(128.5, 286.3)--(128.0, 286.3)--(127.8, 286.2)--(127.6, 286.2)--(127.5, 286.2)--(127.0, 286.4)--(127.1, 287.0)--(127.1, 287.2)--(127.1, 287.4)--(127.1, 287.5)--(127.2, 287.6)--(127.0, 287.6)--(127.0, 287.7)--(126.6, 287.4)--(126.3, 287.3)--(126.1, 287.2)--(126.1, 287.1)--(125.8, 286.9)--(125.5, 286.8)--(124.7, 286.3)--(124.3, 286.1)--(124.1, 286.0)--(123.9, 285.9)--(123.7, 285.8)--(123.5, 285.7)--(123.3, 285.6)--(123.1, 285.6)--(123.0, 285.5)--(122.9, 285.5)--(122.5, 285.4)--(122.3, 285.4)--(122.0, 285.4)--(121.8, 285.4)--(121.6, 285.3)--(121.4, 285.3)--(120.7, 285.4)--(120.3, 285.6)--(119.9, 285.6)--(119.1, 285.9)--(118.1, 286.2)--(117.0, 286.6)--(115.8, 287.1)--(114.6, 287.6)--(113.1, 288.2)--(112.6, 288.4)--(111.6, 288.8)--(111.5, 288.9)--(111.5, 288.8)--(110.5, 289.2)--(109.7, 289.5)--(109.2, 289.7)--(108.2, 290.1)--(107.0, 290.6)--(106.8, 290.6)--(107.2, 291.4)--(107.9, 292.8)--(108.0, 292.8)--(108.5, 293.9)--(108.8, 294.3)--(108.9, 294.5)--(109.0, 294.5)--(109.0, 294.6)--(109.1, 294.7)--(109.2, 294.8)--(109.3, 294.9)--(109.4, 295.0)--(109.5, 295.1)--(109.6, 295.1)--(109.7, 295.2)--(109.8, 295.2)--(109.9, 295.3)--(110.0, 295.3)--(110.1, 295.4)--(110.3, 295.4)--(110.4, 295.5)--(110.6, 295.5)--(110.6, 295.6)--(111.1, 295.8)--(111.6, 296.0)--(112.1, 296.4)--(113.0, 297.0)--(113.9, 297.6)--(114.4, 297.9)--(114.9, 298.2)--(115.3, 298.5)--(115.5, 298.6)--(115.5, 298.7)--(115.6, 298.7)--(115.6, 298.8)--(115.8, 298.8)--(115.9, 298.9)--(116.0, 299.1)--(116.0, 299.2)--(116.2, 299.4)--(116.2, 299.6)--(116.3, 299.7)--(116.3, 299.9)--(116.4, 300.1)--(116.5, 300.4)--(116.7, 301.4)--(117.2, 303.2)--(117.5, 304.4)--(117.6, 304.8)--(117.7, 305.2)--(117.8, 305.5)--(117.8, 305.7)--(117.9, 305.9)--(117.9, 306.1)--(118.1, 306.5)--(118.2, 306.7)--(118.5, 307.2)--(118.6, 307.4)--(118.8, 307.6)--(119.1, 307.9)--(120.4, 308.7)--(120.8, 309.0)--(121.4, 309.4)--(121.6, 309.5)--(121.7, 309.6)--(121.8, 309.7)--(121.9, 309.8)--(122.1, 310.0)--(122.3, 310.3)--(122.4, 310.5)--(122.6, 310.8)--(122.7, 310.8)--(123.0, 311.3)--(123.2, 311.3)--(123.2, 311.4)--(123.3, 311.5)--(123.5, 311.8)--(123.7, 312.0)--(123.8, 312.1)--(123.8, 312.2)--(124.0, 312.7)--(124.3, 313.3)--(124.4, 313.4)--(124.8, 314.0)--(125.0, 314.3)--(125.4, 315.1)--(125.5, 315.4)--(125.7, 315.7)--(125.9, 316.2)--(126.0, 316.4)--(126.5, 317.4)--(126.8, 318.1)--(126.9, 318.4)--(127.2, 318.6)--(127.2, 318.8)--(127.4, 318.9)--(127.5, 319.2)--(127.5, 319.3)--(127.6, 319.6)--(127.6, 319.9)--(127.6, 320.1)--(127.6, 320.3)--(127.5, 320.8)--(127.5, 321.1)--(127.4, 321.4)--(127.4, 321.9)--(127.4, 323.5)--(127.3, 323.5)--(127.3, 323.6)--(127.2, 323.6)--(126.8, 323.7)--(126.4, 323.7)--(125.4, 323.8)--(125.0, 323.9)--(124.0, 324.1)--(123.6, 324.2)--(123.0, 324.3)--(121.9, 324.6)--(121.6, 324.7)--(120.8, 325.0)--(120.6, 325.1)--(120.1, 325.1)--(120.0, 324.8)--(119.9, 324.6)--(119.8, 324.2)--(119.3, 324.6)--(118.9, 324.9)--(118.5, 325.1)--(118.3, 325.3)--(118.3, 325.5)--(118.0, 325.6)--(117.9, 325.6)--(117.4, 325.7)--(116.1, 326.1)--(115.3, 326.3)--(114.6, 326.5)--(114.0, 326.6)--(113.7, 326.7)--(113.4, 326.7)--(113.0, 326.8)--(112.9, 326.8)--(111.8, 327.0)--(110.7, 327.3)--(109.8, 327.5)--(109.0, 327.6)--(107.7, 327.8)--(107.6, 327.8)--(107.5, 327.9)--(107.4, 327.9)--(107.3, 327.9)--(107.1, 327.9)--(106.9, 328.0)--(106.8, 328.0)--(105.9, 328.3)--(105.6, 328.3)--(104.2, 328.8)--(104.1, 328.8)--(103.6, 328.9)--(103.3, 328.9)--(103.2, 328.9)--(103.1, 329.0)--(103.0, 329.1)--cycle; +Enfield = (310.2, 509.3)--(310.4, 509.3)--(310.9, 509.3)--(311.4, 509.3)--(311.6, 509.3)--(311.9, 509.2)--(312.3, 509.0)--(312.6, 509.0)--(313.1, 508.8)--(313.6, 508.8)--(314.1, 508.7)--(314.6, 508.6)--(314.7, 508.5)--(315.1, 508.4)--(315.3, 508.4)--(315.5, 508.3)--(316.2, 508.1)--(316.4, 508.0)--(316.6, 507.9)--(316.7, 508.0)--(317.1, 507.8)--(317.5, 507.6)--(317.9, 507.6)--(318.2, 507.5)--(319.1, 507.5)--(319.8, 507.5)--(320.2, 507.4)--(320.4, 507.4)--(321.1, 507.4)--(321.5, 507.5)--(321.9, 507.5)--(322.2, 507.5)--(322.7, 507.6)--(323.2, 507.7)--(323.5, 507.7)--(323.8, 507.8)--(324.1, 507.8)--(324.4, 507.8)--(324.8, 507.7)--(325.4, 507.6)--(325.8, 507.4)--(326.3, 507.3)--(326.7, 507.1)--(326.8, 507.0)--(326.9, 507.0)--(326.9, 506.9)--(327.0, 506.9)--(327.1, 506.9)--(327.2, 506.9)--(327.3, 506.8)--(327.4, 506.8)--(327.5, 506.8)--(327.6, 506.8)--(327.7, 506.8)--(327.8, 506.8)--(328.2, 506.7)--(328.3, 506.7)--(328.4, 506.7)--(328.4, 506.6)--(328.5, 506.6)--(328.6, 506.6)--(328.8, 506.5)--(329.4, 506.2)--(329.6, 506.0)--(329.9, 505.8)--(330.4, 505.5)--(330.7, 505.4)--(331.0, 505.2)--(331.3, 505.0)--(331.6, 504.8)--(332.2, 504.5)--(332.4, 504.4)--(333.0, 504.1)--(333.4, 503.8)--(333.8, 503.6)--(334.0, 503.4)--(334.6, 503.0)--(335.1, 502.6)--(335.5, 502.4)--(335.9, 502.1)--(336.2, 502.0)--(336.6, 501.7)--(336.9, 501.6)--(337.1, 501.4)--(337.7, 501.1)--(338.1, 501.0)--(338.3, 500.9)--(338.6, 500.8)--(339.0, 500.7)--(339.3, 500.6)--(339.5, 500.6)--(339.7, 500.6)--(339.9, 500.5)--(340.7, 500.3)--(341.1, 500.2)--(341.4, 500.2)--(341.5, 500.2)--(341.7, 500.2)--(341.8, 500.2)--(342.3, 500.1)--(342.6, 500.1)--(342.8, 500.3)--(343.0, 500.3)--(343.0, 500.2)--(343.6, 500.3)--(344.0, 500.3)--(344.2, 500.3)--(344.5, 500.3)--(345.0, 500.5)--(345.3, 500.6)--(345.5, 500.7)--(345.7, 500.8)--(346.0, 500.8)--(346.2, 500.8)--(346.7, 500.8)--(347.1, 500.9)--(347.5, 501.0)--(347.9, 501.0)--(348.0, 501.1)--(348.3, 501.2)--(348.6, 501.4)--(348.7, 501.5)--(348.9, 501.6)--(349.2, 501.7)--(349.6, 501.9)--(349.7, 501.7)--(349.8, 501.7)--(349.9, 501.6)--(350.0, 501.6)--(350.2, 501.7)--(350.4, 501.5)--(350.5, 501.3)--(350.6, 501.3)--(350.6, 501.2)--(350.7, 501.2)--(350.7, 501.1)--(350.8, 501.1)--(350.9, 501.1)--(351.0, 501.1)--(351.0, 501.0)--(351.1, 501.0)--(351.2, 501.0)--(351.3, 501.0)--(351.4, 501.0)--(351.5, 501.0)--(351.6, 501.0)--(351.7, 501.0)--(351.8, 501.0)--(351.9, 501.0)--(352.3, 501.1)--(352.7, 501.1)--(353.0, 501.1)--(353.1, 501.0)--(353.4, 501.0)--(353.4, 500.8)--(353.4, 500.7)--(354.2, 500.7)--(354.3, 500.7)--(354.9, 500.7)--(355.2, 500.7)--(356.2, 500.6)--(357.9, 500.5)--(358.0, 500.5)--(358.0, 500.4)--(358.0, 500.3)--(358.1, 500.3)--(359.8, 500.2)--(360.0, 500.2)--(360.0, 500.3)--(360.5, 500.2)--(360.8, 500.2)--(360.9, 500.3)--(362.4, 500.2)--(362.4, 500.3)--(363.3, 500.2)--(364.0, 500.1)--(364.5, 500.1)--(364.6, 500.0)--(364.9, 499.9)--(365.3, 499.9)--(365.7, 499.8)--(366.2, 499.7)--(366.6, 499.6)--(366.7, 499.5)--(367.0, 499.5)--(367.5, 499.3)--(367.6, 499.4)--(367.8, 499.4)--(368.4, 499.3)--(369.2, 499.1)--(370.0, 499.0)--(370.1, 499.0)--(371.1, 498.9)--(371.4, 498.9)--(371.6, 498.9)--(372.6, 498.9)--(373.3, 498.9)--(374.0, 498.9)--(375.3, 498.8)--(375.4, 498.8)--(375.9, 498.8)--(376.0, 498.8)--(376.0, 498.7)--(376.0, 498.6)--(376.0, 497.9)--(376.1, 497.4)--(376.1, 497.3)--(376.3, 496.7)--(376.4, 496.1)--(376.5, 495.6)--(376.6, 494.9)--(376.6, 494.4)--(376.7, 494.2)--(376.7, 494.1)--(376.7, 493.9)--(376.6, 493.7)--(376.6, 493.4)--(376.5, 493.3)--(376.5, 492.9)--(376.4, 492.6)--(376.4, 492.3)--(376.4, 492.1)--(376.3, 491.7)--(376.2, 490.5)--(376.1, 488.9)--(376.1, 488.1)--(376.1, 488.0)--(376.1, 487.9)--(376.1, 487.8)--(376.1, 487.7)--(376.1, 487.6)--(376.1, 487.5)--(376.1, 487.4)--(376.2, 487.4)--(376.2, 487.3)--(376.2, 487.2)--(376.3, 487.1)--(376.5, 486.5)--(376.7, 486.2)--(376.7, 486.1)--(376.7, 486.0)--(376.7, 485.9)--(376.7, 485.8)--(376.7, 485.7)--(376.7, 485.6)--(376.7, 485.5)--(376.7, 485.4)--(376.6, 485.3)--(376.6, 485.2)--(376.5, 485.1)--(376.5, 485.0)--(376.5, 484.9)--(376.4, 484.9)--(376.4, 484.8)--(376.4, 484.7)--(376.4, 484.6)--(376.4, 484.4)--(376.3, 484.3)--(376.3, 484.1)--(376.3, 483.9)--(376.3, 483.8)--(376.3, 483.6)--(376.3, 483.4)--(376.3, 483.2)--(376.3, 481.6)--(376.2, 480.0)--(376.2, 479.9)--(376.3, 479.8)--(376.3, 479.7)--(376.3, 479.6)--(376.3, 479.5)--(376.3, 479.4)--(376.4, 479.3)--(376.4, 479.2)--(376.5, 479.1)--(376.5, 479.0)--(376.6, 478.9)--(376.8, 478.6)--(376.9, 478.4)--(377.2, 477.9)--(377.5, 477.6)--(377.6, 477.5)--(377.6, 477.4)--(377.7, 477.4)--(377.7, 477.3)--(377.8, 477.2)--(377.8, 477.1)--(377.9, 477.1)--(377.9, 477.0)--(378.0, 476.9)--(378.0, 476.8)--(378.0, 476.7)--(378.1, 476.6)--(378.1, 476.5)--(378.1, 476.4)--(378.1, 476.3)--(378.1, 476.2)--(378.1, 476.1)--(378.1, 476.0)--(378.1, 475.9)--(378.1, 475.8)--(378.1, 475.7)--(378.1, 475.6)--(378.1, 475.5)--(378.0, 475.4)--(378.0, 475.3)--(377.6, 473.4)--(377.3, 471.8)--(376.8, 469.8)--(376.6, 468.8)--(376.4, 468.1)--(376.4, 468.0)--(376.4, 467.9)--(376.4, 467.8)--(376.4, 467.7)--(376.4, 467.6)--(376.4, 467.5)--(376.4, 467.4)--(376.4, 467.2)--(376.4, 467.0)--(376.4, 466.8)--(376.4, 466.6)--(376.5, 466.4)--(376.5, 466.2)--(376.6, 465.4)--(376.6, 464.9)--(376.6, 464.2)--(376.5, 463.2)--(376.4, 463.0)--(376.3, 461.5)--(376.3, 460.3)--(376.0, 457.3)--(375.8, 454.0)--(375.8, 453.2)--(375.7, 452.9)--(375.6, 452.4)--(375.3, 451.2)--(374.9, 450.0)--(374.8, 449.7)--(374.8, 449.4)--(374.8, 449.2)--(374.7, 448.8)--(374.5, 448.3)--(374.4, 448.0)--(374.0, 447.3)--(373.6, 446.4)--(373.5, 446.1)--(373.3, 445.8)--(372.8, 444.7)--(372.3, 443.4)--(371.5, 441.8)--(369.8, 438.1)--(369.5, 437.4)--(369.3, 437.1)--(369.2, 436.8)--(369.1, 436.7)--(368.9, 436.3)--(368.8, 436.1)--(368.6, 435.8)--(368.5, 435.5)--(368.4, 435.2)--(368.3, 435.0)--(368.3, 434.8)--(368.2, 434.4)--(368.1, 434.0)--(368.0, 433.7)--(367.9, 433.5)--(367.8, 433.2)--(367.5, 432.8)--(367.4, 432.7)--(367.3, 432.6)--(366.8, 431.9)--(366.6, 431.6)--(366.5, 431.5)--(366.3, 431.1)--(366.2, 431.0)--(365.7, 430.3)--(365.2, 429.5)--(365.0, 429.2)--(364.6, 428.8)--(364.0, 428.1)--(363.8, 427.9)--(363.7, 427.7)--(363.6, 427.5)--(363.4, 427.3)--(363.3, 427.1)--(363.2, 427.0)--(363.1, 426.9)--(363.1, 426.8)--(363.0, 426.6)--(363.0, 426.5)--(362.9, 426.4)--(362.6, 425.8)--(362.2, 425.0)--(361.8, 424.1)--(361.5, 423.6)--(361.4, 423.5)--(361.4, 423.4)--(361.4, 423.3)--(361.3, 423.2)--(361.3, 423.1)--(361.3, 423.0)--(361.3, 422.9)--(361.3, 422.8)--(361.2, 422.8)--(361.2, 422.7)--(361.2, 422.6)--(361.2, 422.5)--(361.2, 422.4)--(361.1, 422.3)--(361.1, 422.2)--(361.1, 422.1)--(361.1, 422.0)--(361.1, 421.9)--(361.2, 421.8)--(361.2, 421.7)--(361.2, 421.6)--(361.3, 421.6)--(361.3, 421.5)--(361.3, 421.4)--(361.4, 421.3)--(361.4, 421.2)--(361.5, 421.1)--(361.5, 421.0)--(361.6, 421.0)--(361.6, 420.9)--(361.7, 420.8)--(362.0, 420.2)--(362.1, 420.2)--(362.1, 420.1)--(362.1, 420.0)--(362.2, 420.0)--(362.2, 419.9)--(362.2, 419.8)--(362.2, 419.7)--(362.3, 419.7)--(362.3, 419.6)--(362.3, 419.5)--(362.3, 419.4)--(362.3, 419.3)--(362.3, 419.2)--(362.3, 419.1)--(362.3, 419.0)--(362.3, 418.9)--(362.3, 418.8)--(362.2, 418.7)--(362.2, 418.6)--(362.2, 418.5)--(362.1, 418.5)--(362.1, 418.4)--(362.0, 418.3)--(362.0, 418.2)--(361.9, 418.2)--(361.8, 418.0)--(361.8, 417.9)--(361.7, 417.8)--(361.6, 417.7)--(361.5, 417.7)--(361.5, 417.6)--(361.4, 417.6)--(361.4, 417.5)--(361.3, 417.5)--(361.2, 417.4)--(361.1, 417.4)--(361.1, 417.3)--(361.0, 417.2)--(360.9, 417.1)--(360.7, 417.0)--(359.7, 416.4)--(359.2, 416.1)--(357.9, 415.2)--(357.8, 415.2)--(357.8, 415.1)--(357.7, 415.1)--(357.6, 415.0)--(357.5, 414.9)--(357.4, 414.8)--(357.4, 414.7)--(357.3, 414.7)--(357.3, 414.6)--(357.0, 414.7)--(356.3, 414.9)--(355.3, 415.1)--(354.6, 415.3)--(353.0, 415.8)--(352.7, 415.9)--(352.4, 415.9)--(352.1, 416.0)--(352.0, 416.1)--(351.8, 416.2)--(351.6, 416.2)--(351.4, 416.3)--(351.2, 416.4)--(350.2, 416.8)--(350.3, 416.8)--(350.1, 416.9)--(349.8, 417.0)--(349.5, 417.1)--(349.3, 417.1)--(349.3, 417.4)--(349.2, 417.4)--(349.2, 417.5)--(349.3, 417.6)--(349.2, 417.6)--(349.1, 417.7)--(348.5, 417.9)--(348.2, 418.0)--(347.4, 418.0)--(347.0, 417.9)--(345.7, 417.8)--(345.0, 417.7)--(343.5, 417.6)--(342.7, 417.5)--(342.3, 417.5)--(340.9, 417.5)--(340.7, 417.5)--(340.6, 417.5)--(340.0, 417.5)--(339.4, 417.8)--(339.2, 417.5)--(339.1, 417.5)--(339.0, 417.5)--(338.9, 417.5)--(338.8, 417.7)--(338.6, 417.5)--(337.9, 417.5)--(337.7, 417.5)--(337.2, 417.5)--(336.9, 417.5)--(336.8, 417.5)--(336.8, 417.6)--(336.4, 417.5)--(336.2, 417.5)--(336.0, 417.4)--(336.0, 417.5)--(335.9, 417.5)--(335.4, 417.4)--(334.8, 417.3)--(334.1, 417.2)--(333.5, 417.1)--(333.2, 417.1)--(332.8, 417.0)--(332.5, 417.1)--(331.8, 417.1)--(331.4, 417.1)--(331.2, 417.1)--(331.1, 417.1)--(331.0, 417.1)--(330.8, 417.1)--(330.0, 417.1)--(329.6, 417.0)--(329.1, 417.0)--(329.0, 417.0)--(328.2, 417.0)--(327.5, 417.0)--(327.4, 417.0)--(327.2, 417.0)--(326.5, 416.9)--(325.9, 417.0)--(325.6, 417.0)--(325.3, 417.1)--(325.0, 417.1)--(324.7, 417.2)--(324.5, 417.2)--(323.8, 417.3)--(323.0, 417.3)--(322.9, 417.2)--(322.6, 417.2)--(322.4, 417.3)--(322.3, 417.3)--(322.3, 417.2)--(322.3, 417.3)--(322.1, 417.3)--(322.1, 417.4)--(322.1, 417.5)--(321.9, 417.5)--(321.9, 417.2)--(321.8, 417.3)--(321.5, 417.3)--(321.1, 417.4)--(320.8, 417.2)--(320.0, 417.0)--(319.9, 417.2)--(319.9, 417.3)--(319.7, 417.7)--(319.5, 417.7)--(319.3, 417.6)--(319.1, 417.6)--(318.8, 417.5)--(318.7, 417.4)--(318.5, 417.2)--(318.4, 417.2)--(318.3, 417.2)--(318.4, 416.8)--(318.1, 416.8)--(317.3, 416.7)--(316.7, 416.7)--(316.4, 416.7)--(316.1, 416.7)--(315.9, 416.7)--(315.8, 416.7)--(315.6, 416.7)--(315.4, 416.7)--(315.3, 416.6)--(315.1, 416.6)--(314.9, 416.2)--(314.6, 416.4)--(314.2, 416.6)--(314.1, 416.6)--(313.9, 416.6)--(313.8, 416.6)--(313.0, 416.6)--(312.7, 416.5)--(312.6, 416.5)--(312.3, 416.5)--(311.8, 416.4)--(311.7, 416.3)--(310.2, 416.3)--(309.8, 416.3)--(309.4, 416.4)--(309.4, 416.6)--(309.3, 416.6)--(309.2, 416.7)--(309.2, 416.6)--(309.1, 416.5)--(308.7, 416.5)--(307.8, 416.4)--(307.1, 416.4)--(307.1, 416.3)--(306.9, 416.3)--(306.8, 416.3)--(306.6, 416.4)--(306.5, 416.4)--(306.0, 416.4)--(305.9, 416.4)--(305.6, 416.4)--(305.6, 416.2)--(304.7, 416.3)--(304.5, 416.1)--(304.1, 416.3)--(303.7, 416.6)--(303.4, 416.2)--(303.1, 416.3)--(301.9, 416.4)--(301.7, 416.5)--(301.6, 416.5)--(301.4, 416.5)--(301.1, 416.5)--(300.6, 416.6)--(300.5, 416.6)--(300.4, 416.5)--(300.0, 417.0)--(300.1, 417.0)--(300.0, 417.1)--(299.9, 417.1)--(299.9, 417.2)--(299.3, 417.8)--(299.4, 417.9)--(299.1, 418.0)--(298.6, 417.5)--(298.7, 417.5)--(298.4, 417.1)--(298.4, 417.2)--(298.3, 417.2)--(297.7, 417.2)--(297.3, 417.3)--(296.8, 417.4)--(296.0, 417.6)--(295.2, 418.1)--(294.9, 418.2)--(294.6, 418.3)--(293.5, 418.7)--(292.4, 419.1)--(292.2, 419.1)--(292.0, 419.0)--(291.7, 418.7)--(291.5, 418.6)--(290.5, 418.2)--(289.8, 417.9)--(289.2, 418.6)--(288.7, 419.2)--(288.3, 419.7)--(287.9, 420.3)--(287.4, 421.0)--(286.8, 421.9)--(286.8, 422.0)--(286.1, 422.9)--(285.6, 423.7)--(285.9, 423.8)--(286.0, 423.9)--(286.2, 423.9)--(286.6, 424.1)--(286.8, 424.3)--(286.9, 424.3)--(287.3, 424.5)--(287.3, 424.6)--(287.3, 424.7)--(287.3, 424.8)--(287.4, 424.8)--(287.4, 425.0)--(287.5, 425.2)--(287.5, 425.4)--(287.6, 425.5)--(287.6, 425.6)--(287.7, 425.7)--(287.8, 425.8)--(287.8, 425.9)--(287.8, 426.0)--(288.0, 426.2)--(288.1, 426.2)--(288.2, 426.2)--(288.3, 426.3)--(288.7, 427.0)--(288.9, 427.1)--(288.8, 427.2)--(289.0, 427.4)--(289.1, 427.5)--(289.7, 428.3)--(289.8, 428.4)--(290.3, 429.1)--(290.5, 429.4)--(290.9, 429.8)--(291.3, 430.2)--(291.7, 430.8)--(291.6, 431.5)--(291.7, 431.5)--(291.8, 431.4)--(292.0, 431.5)--(292.0, 431.8)--(292.1, 432.0)--(292.2, 432.3)--(292.3, 432.7)--(292.3, 432.8)--(292.5, 433.2)--(292.5, 433.3)--(292.5, 433.5)--(292.5, 433.6)--(292.4, 433.7)--(292.4, 433.8)--(292.4, 433.9)--(292.5, 433.9)--(292.5, 434.0)--(292.6, 434.0)--(292.6, 434.2)--(292.6, 434.4)--(292.8, 435.1)--(292.9, 435.6)--(292.9, 435.9)--(292.9, 436.0)--(293.0, 436.0)--(293.0, 436.1)--(293.0, 436.2)--(293.1, 436.2)--(293.1, 436.3)--(293.2, 436.3)--(293.2, 436.4)--(293.4, 436.5)--(293.5, 436.7)--(293.6, 436.8)--(293.7, 437.0)--(293.8, 437.2)--(293.8, 437.4)--(293.9, 437.6)--(294.0, 437.7)--(294.1, 437.9)--(294.3, 438.2)--(294.4, 438.4)--(294.4, 438.5)--(294.5, 438.7)--(294.5, 438.8)--(294.5, 438.9)--(294.5, 439.0)--(294.7, 439.3)--(294.9, 439.3)--(295.0, 439.4)--(294.8, 439.5)--(294.5, 439.7)--(294.7, 440.2)--(294.8, 440.5)--(294.9, 440.9)--(295.1, 441.2)--(295.4, 441.2)--(295.5, 441.7)--(295.7, 442.1)--(295.8, 442.6)--(295.5, 442.7)--(295.0, 442.8)--(294.6, 442.9)--(294.3, 442.9)--(293.8, 443.2)--(293.4, 443.4)--(293.1, 443.5)--(292.9, 443.7)--(292.7, 443.9)--(292.5, 444.1)--(292.6, 444.2)--(292.5, 444.4)--(292.4, 444.4)--(292.4, 444.5)--(292.2, 444.3)--(292.1, 444.4)--(292.2, 444.6)--(292.0, 444.7)--(292.2, 444.9)--(292.2, 445.0)--(292.1, 445.1)--(292.0, 445.2)--(291.9, 445.4)--(291.5, 445.7)--(291.3, 445.8)--(290.8, 446.1)--(289.8, 446.8)--(289.5, 447.0)--(289.3, 447.1)--(289.2, 447.2)--(288.2, 448.1)--(287.8, 448.5)--(287.6, 448.8)--(287.4, 449.0)--(287.2, 449.3)--(286.9, 449.7)--(286.7, 449.9)--(286.6, 450.0)--(286.5, 450.2)--(286.6, 450.3)--(286.3, 450.8)--(286.0, 451.2)--(285.3, 452.1)--(284.5, 453.9)--(282.5, 453.2)--(282.4, 453.6)--(282.1, 454.2)--(282.0, 454.3)--(281.8, 455.2)--(281.7, 455.5)--(281.6, 456.0)--(281.6, 456.1)--(281.6, 456.3)--(281.6, 456.5)--(281.6, 456.7)--(281.5, 456.8)--(280.8, 456.7)--(280.4, 456.7)--(280.2, 456.7)--(280.1, 456.7)--(279.8, 456.8)--(279.9, 457.1)--(279.5, 457.3)--(280.1, 458.4)--(280.0, 458.5)--(280.1, 458.6)--(280.2, 458.9)--(280.0, 459.0)--(279.3, 459.3)--(279.4, 459.7)--(279.7, 459.9)--(281.0, 460.6)--(280.2, 462.1)--(279.6, 461.9)--(279.3, 461.8)--(279.3, 462.0)--(279.2, 462.1)--(279.2, 462.3)--(279.2, 462.8)--(279.1, 463.4)--(279.1, 463.5)--(279.1, 463.6)--(278.8, 464.0)--(278.7, 464.2)--(278.5, 464.7)--(278.4, 464.8)--(278.4, 464.9)--(278.2, 464.9)--(278.0, 464.8)--(277.9, 465.2)--(278.0, 465.5)--(278.1, 465.5)--(278.4, 465.6)--(278.3, 465.7)--(278.3, 466.0)--(278.3, 466.4)--(278.2, 466.9)--(278.1, 467.1)--(277.8, 467.3)--(277.7, 467.4)--(277.5, 467.5)--(277.5, 467.7)--(277.4, 468.1)--(277.3, 468.1)--(276.9, 468.2)--(275.3, 468.7)--(275.2, 468.9)--(275.0, 468.8)--(273.4, 469.3)--(273.1, 469.6)--(272.8, 469.8)--(271.8, 470.6)--(271.5, 470.7)--(271.3, 470.8)--(270.2, 470.9)--(265.0, 472.6)--(262.9, 473.3)--(262.2, 473.5)--(260.5, 474.1)--(259.4, 474.4)--(258.2, 474.8)--(258.0, 474.9)--(257.2, 475.2)--(257.1, 475.2)--(255.7, 475.6)--(255.8, 476.0)--(256.1, 476.8)--(256.9, 478.9)--(257.4, 480.2)--(258.1, 482.1)--(258.5, 482.5)--(259.6, 483.7)--(260.0, 484.1)--(260.7, 484.9)--(261.0, 485.2)--(261.8, 486.1)--(261.5, 486.7)--(262.0, 486.7)--(262.6, 486.7)--(262.5, 487.3)--(262.7, 487.6)--(262.9, 487.4)--(264.7, 487.3)--(265.3, 488.3)--(266.1, 489.8)--(267.5, 492.4)--(267.7, 492.9)--(268.3, 493.8)--(269.3, 495.7)--(269.4, 495.8)--(269.5, 496.0)--(269.8, 496.6)--(270.5, 497.8)--(270.5, 500.0)--(270.5, 500.1)--(270.5, 500.8)--(270.5, 501.4)--(270.5, 501.7)--(270.5, 502.1)--(270.4, 502.6)--(270.5, 503.4)--(270.5, 504.1)--(270.7, 504.1)--(271.0, 504.1)--(271.4, 504.0)--(271.8, 503.9)--(272.2, 503.8)--(272.5, 503.7)--(272.9, 503.6)--(273.1, 503.6)--(273.4, 503.5)--(274.3, 503.3)--(274.5, 503.2)--(274.5, 503.1)--(274.6, 503.1)--(274.7, 503.1)--(274.7, 503.0)--(274.8, 503.0)--(274.8, 502.9)--(274.9, 502.9)--(274.9, 502.8)--(275.1, 502.7)--(275.5, 502.5)--(276.0, 502.3)--(276.5, 502.2)--(276.6, 502.1)--(277.1, 502.0)--(277.6, 501.8)--(278.0, 501.7)--(278.5, 501.6)--(278.9, 501.6)--(279.2, 501.5)--(279.5, 501.5)--(280.0, 501.5)--(280.3, 501.5)--(280.7, 501.6)--(281.3, 501.8)--(281.7, 501.9)--(282.2, 502.0)--(282.5, 502.1)--(282.9, 502.2)--(283.0, 502.4)--(283.3, 502.4)--(283.5, 502.5)--(283.9, 502.7)--(284.5, 503.0)--(285.1, 503.4)--(285.6, 503.7)--(286.0, 503.9)--(286.5, 504.1)--(287.0, 504.3)--(287.4, 504.5)--(287.8, 504.7)--(288.3, 504.9)--(288.8, 505.0)--(289.3, 505.2)--(289.9, 505.3)--(290.4, 505.4)--(290.7, 505.3)--(291.0, 505.3)--(291.0, 505.4)--(291.0, 505.5)--(291.3, 505.5)--(291.7, 505.6)--(292.1, 505.6)--(292.7, 505.6)--(293.4, 505.6)--(294.0, 505.6)--(294.5, 505.6)--(295.0, 505.6)--(295.5, 505.5)--(295.9, 505.5)--(296.3, 505.5)--(297.0, 505.4)--(297.6, 505.4)--(298.4, 505.4)--(298.7, 505.3)--(298.8, 505.3)--(298.9, 505.3)--(299.0, 505.3)--(299.1, 505.3)--(299.2, 505.4)--(299.3, 505.4)--(299.4, 505.4)--(299.5, 505.4)--(299.6, 505.5)--(299.7, 505.5)--(299.9, 505.5)--(300.0, 505.6)--(300.4, 505.7)--(300.9, 505.8)--(301.2, 505.9)--(301.6, 506.0)--(301.7, 505.8)--(301.9, 505.9)--(301.9, 506.0)--(302.0, 506.2)--(302.7, 506.4)--(303.1, 506.7)--(303.4, 506.9)--(303.8, 507.1)--(304.1, 507.3)--(304.5, 507.4)--(304.8, 507.6)--(305.0, 507.8)--(305.3, 508.0)--(305.5, 508.1)--(305.8, 508.3)--(306.5, 508.5)--(307.0, 508.6)--(307.6, 508.8)--(307.5, 509.0)--(307.8, 509.1)--(308.6, 509.2)--(309.1, 509.3)--(309.6, 509.3)--(310.0, 509.3)--cycle; +Greenwich = (472.3, 313.0)--(472.5, 312.6)--(472.6, 311.5)--(472.6, 311.1)--(472.6, 310.8)--(472.7, 310.2)--(472.7, 310.0)--(472.7, 309.7)--(472.7, 309.0)--(472.8, 308.1)--(472.8, 307.7)--(472.9, 307.0)--(472.9, 305.8)--(473.0, 304.5)--(473.0, 303.7)--(473.1, 303.0)--(473.1, 302.5)--(473.1, 302.1)--(473.1, 301.8)--(473.1, 301.1)--(473.2, 300.0)--(473.2, 299.0)--(473.3, 297.3)--(473.4, 296.2)--(473.4, 296.1)--(473.4, 295.0)--(473.5, 293.3)--(473.5, 292.8)--(473.6, 292.0)--(473.6, 290.7)--(473.7, 290.4)--(473.7, 289.8)--(473.7, 288.9)--(473.8, 288.1)--(473.9, 287.8)--(473.9, 287.7)--(473.9, 287.6)--(473.9, 287.0)--(473.9, 286.8)--(473.9, 286.7)--(473.9, 286.5)--(473.9, 286.4)--(473.9, 286.2)--(474.3, 284.9)--(474.3, 284.8)--(474.3, 284.6)--(474.4, 284.3)--(474.4, 283.0)--(474.5, 282.1)--(474.5, 281.1)--(474.5, 280.8)--(474.5, 280.5)--(474.6, 280.1)--(474.8, 279.5)--(474.9, 279.0)--(475.2, 278.0)--(475.5, 277.1)--(475.6, 276.6)--(475.8, 275.9)--(475.9, 275.3)--(476.0, 275.1)--(476.0, 274.9)--(476.1, 274.6)--(476.0, 274.6)--(475.9, 274.7)--(475.9, 274.8)--(475.8, 274.9)--(475.6, 275.1)--(475.2, 275.4)--(475.0, 275.6)--(474.7, 275.7)--(474.5, 275.9)--(474.4, 276.0)--(474.1, 276.1)--(473.9, 276.3)--(473.7, 276.4)--(473.6, 276.4)--(473.3, 276.5)--(473.1, 276.5)--(473.0, 276.5)--(472.7, 276.5)--(472.6, 276.6)--(472.5, 276.6)--(472.4, 276.7)--(472.1, 276.8)--(471.9, 276.5)--(471.2, 275.5)--(471.0, 275.2)--(470.8, 274.8)--(470.5, 274.4)--(470.2, 273.8)--(470.1, 273.7)--(470.0, 273.5)--(469.8, 273.2)--(469.5, 273.0)--(469.4, 272.8)--(469.1, 272.6)--(469.0, 272.2)--(468.8, 271.8)--(468.6, 271.4)--(468.5, 271.2)--(468.5, 271.1)--(468.4, 270.9)--(468.2, 270.6)--(468.1, 270.6)--(468.0, 270.4)--(467.8, 270.2)--(467.6, 270.3)--(467.6, 270.4)--(467.2, 270.7)--(467.0, 270.9)--(466.9, 271.0)--(466.9, 271.1)--(466.8, 271.2)--(466.6, 271.4)--(466.4, 271.7)--(466.2, 272.0)--(465.9, 272.3)--(465.6, 272.5)--(465.4, 272.8)--(465.3, 273.1)--(465.1, 273.3)--(465.1, 273.5)--(465.0, 273.5)--(464.7, 273.3)--(464.7, 273.2)--(464.6, 273.1)--(464.5, 273.1)--(464.5, 273.0)--(464.4, 273.0)--(464.4, 272.8)--(464.4, 272.7)--(464.3, 272.6)--(464.2, 272.6)--(463.8, 272.3)--(463.7, 272.2)--(463.3, 272.7)--(463.0, 272.4)--(462.8, 272.7)--(462.7, 272.7)--(462.6, 272.6)--(462.5, 272.4)--(462.3, 272.2)--(462.1, 272.0)--(462.0, 271.9)--(461.8, 271.7)--(461.7, 271.7)--(461.6, 271.6)--(461.6, 271.7)--(461.3, 271.9)--(461.2, 272.0)--(461.1, 272.0)--(460.8, 271.5)--(460.7, 271.5)--(460.6, 271.5)--(460.4, 271.8)--(460.4, 271.9)--(460.1, 272.1)--(459.5, 272.3)--(459.2, 272.4)--(458.9, 272.5)--(458.5, 272.5)--(458.2, 272.5)--(458.1, 272.4)--(458.1, 272.3)--(458.0, 272.2)--(457.7, 271.6)--(457.6, 271.5)--(457.4, 271.1)--(457.3, 271.0)--(457.2, 270.8)--(457.1, 270.1)--(457.1, 270.0)--(456.4, 270.0)--(456.2, 270.1)--(456.0, 270.1)--(455.7, 270.0)--(455.6, 270.0)--(455.4, 270.0)--(455.3, 269.9)--(455.2, 269.9)--(455.0, 269.8)--(454.7, 269.6)--(454.5, 269.4)--(454.4, 269.3)--(454.3, 269.2)--(454.0, 269.1)--(453.9, 269.0)--(453.9, 268.9)--(453.8, 268.9)--(453.6, 268.8)--(453.5, 268.7)--(453.4, 268.6)--(453.5, 268.6)--(453.4, 268.5)--(453.4, 268.4)--(453.3, 268.4)--(453.3, 268.3)--(453.4, 268.3)--(453.2, 268.0)--(452.9, 267.8)--(452.7, 267.5)--(452.5, 267.3)--(452.3, 267.1)--(451.9, 266.8)--(451.8, 266.7)--(451.6, 266.6)--(451.3, 266.5)--(450.9, 266.3)--(450.7, 266.3)--(450.5, 266.2)--(450.3, 266.0)--(450.1, 265.9)--(449.9, 265.7)--(449.7, 265.6)--(449.5, 265.2)--(449.3, 264.9)--(449.3, 264.8)--(449.0, 264.8)--(448.9, 264.3)--(448.7, 264.0)--(448.5, 263.5)--(448.2, 262.8)--(448.0, 262.3)--(447.4, 262.4)--(447.3, 262.3)--(447.3, 262.2)--(447.3, 261.8)--(447.3, 261.4)--(447.3, 260.7)--(447.3, 260.3)--(447.4, 260.2)--(447.6, 259.6)--(447.7, 259.4)--(447.7, 259.1)--(447.7, 258.7)--(447.6, 258.4)--(447.6, 258.0)--(447.6, 257.9)--(447.5, 257.5)--(447.5, 257.2)--(447.5, 256.8)--(447.5, 256.7)--(447.5, 256.3)--(447.5, 256.2)--(447.5, 256.1)--(447.5, 256.0)--(447.5, 255.9)--(447.6, 255.8)--(447.6, 255.6)--(447.7, 255.4)--(447.8, 255.1)--(448.0, 254.9)--(446.6, 254.5)--(445.6, 254.3)--(445.1, 254.2)--(445.1, 254.1)--(445.2, 254.0)--(445.7, 253.5)--(445.8, 253.4)--(445.9, 253.5)--(446.3, 253.0)--(446.6, 252.8)--(446.7, 252.8)--(447.0, 252.5)--(447.6, 252.3)--(448.2, 252.0)--(448.8, 251.8)--(449.6, 251.5)--(450.0, 251.4)--(450.0, 251.3)--(450.2, 250.9)--(450.3, 250.4)--(450.3, 250.2)--(450.3, 250.1)--(450.3, 250.0)--(450.3, 249.8)--(450.4, 249.6)--(450.4, 249.4)--(450.5, 249.2)--(450.5, 249.1)--(450.5, 248.8)--(450.6, 248.2)--(450.7, 247.8)--(450.7, 247.3)--(450.8, 246.7)--(450.8, 246.4)--(450.9, 246.1)--(450.9, 246.0)--(450.9, 245.7)--(451.0, 245.1)--(451.0, 244.8)--(451.0, 244.5)--(451.2, 244.0)--(451.5, 243.5)--(451.8, 242.5)--(451.8, 242.3)--(451.9, 242.0)--(452.0, 241.3)--(452.0, 240.8)--(452.0, 240.5)--(451.9, 240.2)--(451.8, 240.0)--(451.7, 239.8)--(451.5, 239.7)--(451.5, 239.5)--(451.5, 239.4)--(451.5, 239.3)--(451.4, 239.1)--(451.2, 239.0)--(451.2, 238.9)--(451.1, 238.9)--(451.0, 238.9)--(450.9, 238.8)--(450.8, 238.8)--(450.9, 238.4)--(451.0, 238.1)--(451.1, 237.8)--(451.2, 237.5)--(451.3, 237.2)--(451.5, 236.9)--(451.6, 236.5)--(451.3, 236.5)--(451.0, 236.5)--(450.9, 236.5)--(450.5, 236.2)--(450.4, 236.1)--(450.2, 236.0)--(450.0, 235.9)--(449.8, 235.7)--(449.5, 236.0)--(449.1, 236.4)--(448.7, 236.7)--(448.6, 236.6)--(448.5, 236.5)--(448.6, 236.3)--(448.7, 236.2)--(448.6, 236.1)--(448.5, 236.0)--(448.6, 235.9)--(448.8, 235.8)--(449.6, 235.1)--(449.5, 234.8)--(448.8, 234.0)--(448.6, 233.8)--(448.5, 233.6)--(448.4, 233.4)--(447.9, 232.8)--(447.9, 232.7)--(447.8, 232.8)--(447.5, 233.0)--(447.2, 233.2)--(446.9, 232.8)--(447.0, 232.7)--(446.8, 232.6)--(446.7, 232.3)--(446.8, 232.2)--(446.7, 232.1)--(446.6, 232.0)--(446.6, 231.9)--(446.7, 231.9)--(446.5, 231.7)--(446.5, 231.6)--(446.4, 231.6)--(446.4, 231.5)--(446.3, 231.5)--(446.4, 231.3)--(446.3, 231.2)--(446.1, 231.0)--(446.0, 230.9)--(445.9, 230.7)--(445.8, 230.6)--(445.9, 230.6)--(446.0, 230.5)--(445.9, 230.3)--(445.9, 230.1)--(445.8, 229.8)--(445.7, 229.6)--(445.6, 229.5)--(445.5, 229.4)--(445.4, 229.1)--(445.3, 228.9)--(445.2, 228.8)--(444.9, 228.9)--(444.7, 229.0)--(444.6, 229.1)--(444.3, 229.2)--(443.9, 228.7)--(443.3, 228.1)--(443.2, 228.0)--(443.6, 227.7)--(443.7, 227.5)--(444.0, 227.2)--(444.3, 227.0)--(444.4, 227.0)--(443.9, 226.5)--(444.2, 226.1)--(444.3, 226.0)--(444.0, 225.7)--(443.8, 225.6)--(444.1, 225.2)--(444.0, 224.9)--(443.8, 224.7)--(443.7, 224.5)--(443.4, 224.2)--(443.3, 224.1)--(443.2, 224.0)--(443.2, 223.9)--(443.1, 223.9)--(443.6, 223.8)--(443.6, 223.7)--(443.5, 223.3)--(443.3, 222.4)--(442.9, 223.2)--(442.7, 223.3)--(442.2, 223.5)--(442.0, 223.0)--(442.4, 222.9)--(441.5, 221.4)--(441.3, 221.1)--(441.1, 220.8)--(440.9, 220.6)--(440.2, 220.0)--(440.1, 219.9)--(440.0, 219.7)--(439.0, 218.7)--(438.0, 217.7)--(437.6, 217.3)--(437.7, 216.9)--(436.4, 216.5)--(436.5, 216.3)--(436.1, 216.2)--(436.3, 215.8)--(436.0, 215.5)--(435.7, 215.1)--(435.6, 215.1)--(435.6, 215.0)--(435.5, 214.9)--(435.4, 214.8)--(435.3, 214.7)--(434.4, 214.3)--(434.1, 214.7)--(433.8, 215.8)--(433.6, 215.8)--(433.1, 215.5)--(432.7, 215.3)--(432.6, 215.3)--(432.5, 215.3)--(432.4, 215.3)--(432.3, 215.3)--(432.2, 215.2)--(431.9, 215.5)--(431.6, 215.8)--(430.7, 216.9)--(430.6, 216.9)--(430.4, 217.3)--(429.5, 218.4)--(429.4, 218.5)--(429.2, 218.8)--(428.8, 219.4)--(428.5, 220.0)--(428.1, 220.7)--(427.8, 221.3)--(427.6, 221.6)--(427.0, 222.5)--(426.8, 222.8)--(426.1, 223.4)--(425.7, 223.8)--(425.5, 224.0)--(424.8, 224.7)--(424.4, 225.2)--(423.9, 225.9)--(423.6, 226.4)--(423.4, 226.6)--(423.3, 226.8)--(423.0, 227.2)--(422.5, 227.9)--(422.5, 228.1)--(422.5, 228.3)--(422.3, 228.5)--(421.9, 228.9)--(421.4, 229.4)--(421.2, 229.5)--(421.1, 229.7)--(420.9, 230.1)--(420.9, 230.2)--(420.7, 230.5)--(420.6, 230.9)--(420.4, 231.2)--(420.4, 231.4)--(420.2, 231.6)--(419.8, 231.9)--(419.5, 232.2)--(418.9, 232.8)--(418.9, 232.9)--(418.8, 232.9)--(418.7, 233.1)--(418.6, 233.1)--(418.5, 233.1)--(418.3, 233.2)--(418.1, 233.4)--(418.0, 233.4)--(417.7, 233.5)--(417.6, 233.5)--(417.3, 233.8)--(417.1, 233.9)--(416.7, 234.0)--(416.6, 234.1)--(416.5, 234.1)--(416.5, 234.2)--(416.4, 234.3)--(416.1, 234.5)--(416.0, 234.5)--(415.9, 234.5)--(415.8, 234.6)--(415.6, 234.6)--(415.4, 234.8)--(415.1, 235.0)--(415.0, 235.1)--(415.0, 235.2)--(414.8, 235.3)--(414.6, 235.3)--(414.6, 235.4)--(414.5, 235.4)--(414.5, 235.5)--(414.4, 235.7)--(414.3, 235.7)--(414.3, 235.8)--(414.2, 235.8)--(414.1, 235.8)--(414.0, 235.9)--(413.9, 235.9)--(413.8, 235.9)--(413.6, 236.0)--(413.5, 236.1)--(413.3, 236.1)--(413.2, 236.2)--(412.9, 236.3)--(412.7, 236.4)--(412.6, 236.4)--(412.4, 236.5)--(412.3, 236.5)--(412.1, 236.6)--(412.0, 236.6)--(411.8, 235.4)--(411.5, 234.1)--(411.5, 234.0)--(411.5, 233.9)--(411.5, 233.7)--(411.4, 233.7)--(411.1, 233.6)--(411.0, 233.6)--(410.9, 233.5)--(410.8, 233.5)--(410.6, 233.4)--(410.3, 233.4)--(409.9, 233.4)--(409.6, 233.5)--(409.5, 233.5)--(409.2, 233.5)--(408.6, 233.6)--(408.3, 233.7)--(408.1, 233.7)--(407.9, 233.8)--(407.8, 233.8)--(407.4, 234.0)--(407.1, 234.1)--(406.8, 234.3)--(406.3, 234.5)--(405.9, 234.6)--(405.6, 235.4)--(405.2, 236.3)--(405.8, 236.5)--(405.8, 236.8)--(405.6, 237.2)--(405.6, 237.4)--(405.6, 237.9)--(405.6, 239.0)--(405.8, 239.1)--(406.6, 239.6)--(406.7, 239.6)--(406.7, 239.9)--(406.5, 240.1)--(406.4, 240.6)--(406.3, 240.7)--(406.3, 240.8)--(406.2, 241.0)--(406.2, 241.1)--(406.1, 241.3)--(406.0, 241.6)--(405.7, 241.6)--(405.0, 241.7)--(404.1, 241.9)--(403.2, 242.0)--(402.7, 242.1)--(401.2, 242.6)--(401.0, 243.3)--(401.1, 243.3)--(401.2, 242.9)--(404.5, 243.5)--(404.4, 243.9)--(404.4, 244.0)--(404.3, 244.2)--(404.2, 244.6)--(404.1, 244.6)--(403.4, 244.4)--(403.2, 246.0)--(403.1, 246.0)--(403.1, 246.1)--(403.0, 246.3)--(402.9, 246.7)--(402.8, 246.9)--(402.8, 247.2)--(402.8, 247.3)--(402.7, 247.4)--(402.7, 247.5)--(402.7, 247.6)--(402.7, 247.7)--(402.7, 247.8)--(402.7, 247.9)--(402.7, 248.0)--(402.7, 248.3)--(401.7, 248.6)--(401.2, 248.7)--(400.8, 248.8)--(400.5, 248.9)--(400.4, 248.9)--(400.3, 249.0)--(399.9, 249.1)--(399.7, 249.2)--(399.6, 249.3)--(399.3, 249.4)--(399.1, 249.6)--(398.8, 249.7)--(398.6, 249.8)--(398.5, 249.9)--(398.5, 250.0)--(398.5, 250.1)--(398.5, 250.2)--(398.4, 250.3)--(398.3, 250.5)--(398.1, 250.9)--(398.0, 251.3)--(397.9, 251.5)--(397.7, 251.9)--(397.6, 252.2)--(397.5, 252.6)--(397.3, 252.9)--(397.3, 253.1)--(397.3, 253.4)--(397.2, 254.0)--(397.2, 254.6)--(397.2, 254.9)--(397.2, 255.2)--(397.2, 255.5)--(397.2, 255.9)--(397.2, 256.2)--(397.1, 256.4)--(397.1, 256.7)--(397.0, 257.0)--(396.9, 257.3)--(396.8, 257.7)--(396.8, 257.9)--(396.7, 258.1)--(396.7, 258.2)--(396.6, 258.6)--(396.6, 258.7)--(396.5, 258.8)--(396.5, 258.9)--(396.5, 259.0)--(396.6, 259.3)--(396.6, 259.5)--(396.6, 259.8)--(396.6, 260.1)--(397.1, 260.3)--(397.5, 260.4)--(397.7, 260.4)--(397.8, 260.5)--(398.1, 260.5)--(398.2, 260.6)--(398.3, 260.6)--(398.4, 260.7)--(398.6, 260.9)--(398.9, 261.1)--(399.1, 261.1)--(399.1, 261.2)--(399.2, 261.2)--(399.3, 261.3)--(399.4, 261.3)--(399.3, 261.4)--(399.2, 261.5)--(399.1, 261.8)--(399.0, 261.9)--(399.0, 262.0)--(399.0, 262.2)--(399.1, 262.3)--(399.2, 262.5)--(399.2, 262.6)--(399.2, 262.7)--(399.2, 262.9)--(399.2, 263.1)--(399.1, 263.5)--(398.9, 264.6)--(399.1, 264.6)--(399.5, 264.7)--(399.5, 264.6)--(399.6, 264.6)--(399.7, 264.6)--(399.9, 264.6)--(400.1, 264.5)--(400.2, 264.5)--(400.5, 264.4)--(400.7, 264.2)--(400.9, 264.1)--(401.1, 264.0)--(401.2, 263.9)--(401.3, 263.9)--(401.5, 263.7)--(401.6, 263.9)--(401.7, 264.1)--(401.7, 264.3)--(401.7, 264.5)--(401.5, 264.7)--(401.5, 264.8)--(401.4, 264.8)--(401.4, 264.9)--(401.4, 265.0)--(401.3, 265.1)--(401.1, 265.5)--(400.8, 266.3)--(400.7, 266.6)--(400.6, 267.0)--(400.5, 267.4)--(400.4, 267.7)--(400.4, 268.0)--(400.4, 268.3)--(401.1, 268.5)--(401.3, 268.6)--(401.5, 268.7)--(402.3, 269.0)--(402.6, 269.2)--(402.5, 269.2)--(401.8, 269.0)--(400.6, 268.8)--(400.0, 268.6)--(399.4, 268.5)--(398.4, 268.3)--(397.1, 268.0)--(396.4, 267.9)--(395.2, 267.7)--(393.8, 267.4)--(393.2, 267.3)--(392.7, 267.1)--(392.0, 267.0)--(391.2, 266.8)--(390.7, 266.7)--(390.3, 266.7)--(390.1, 266.6)--(389.8, 266.6)--(389.4, 266.6)--(389.2, 266.6)--(389.1, 266.6)--(389.0, 266.6)--(388.4, 266.7)--(387.5, 266.8)--(386.1, 267.1)--(385.4, 267.3)--(385.2, 267.3)--(384.9, 267.3)--(384.4, 267.5)--(384.0, 267.5)--(383.8, 267.4)--(383.7, 267.4)--(383.0, 267.3)--(382.9, 267.2)--(381.9, 267.0)--(381.3, 266.9)--(381.1, 266.9)--(380.9, 266.9)--(380.8, 267.0)--(380.5, 267.1)--(380.3, 267.3)--(380.1, 267.1)--(379.9, 266.7)--(380.0, 266.4)--(379.8, 266.4)--(379.5, 266.2)--(379.7, 265.8)--(380.1, 265.0)--(380.3, 264.4)--(380.4, 264.3)--(380.5, 264.1)--(380.6, 263.9)--(380.8, 263.6)--(381.0, 263.1)--(380.8, 262.9)--(380.4, 262.6)--(380.1, 262.4)--(380.0, 262.3)--(379.7, 262.1)--(379.5, 262.2)--(379.4, 262.3)--(379.4, 262.4)--(379.2, 262.6)--(379.1, 262.6)--(378.8, 263.0)--(378.7, 263.1)--(378.7, 263.2)--(378.6, 263.4)--(378.4, 263.2)--(378.2, 263.4)--(378.2, 263.5)--(378.1, 263.6)--(378.0, 263.6)--(377.8, 263.6)--(377.7, 263.6)--(377.5, 263.7)--(377.3, 263.8)--(377.1, 263.9)--(376.8, 264.1)--(376.9, 264.3)--(376.8, 264.5)--(376.7, 264.8)--(376.8, 264.8)--(376.9, 264.9)--(376.9, 264.8)--(377.1, 264.9)--(377.0, 265.0)--(376.9, 265.2)--(376.9, 265.4)--(377.0, 265.4)--(377.0, 265.5)--(376.9, 265.5)--(376.8, 265.6)--(376.8, 265.8)--(376.7, 266.3)--(376.6, 266.4)--(376.6, 266.5)--(376.2, 266.4)--(376.2, 266.5)--(376.1, 266.5)--(376.0, 266.6)--(375.9, 266.7)--(375.9, 266.8)--(375.9, 266.9)--(376.0, 267.1)--(376.1, 267.2)--(376.1, 267.3)--(376.1, 267.4)--(376.1, 267.5)--(376.1, 267.6)--(376.0, 267.7)--(375.9, 267.7)--(375.7, 267.7)--(375.6, 267.9)--(375.6, 268.0)--(375.5, 268.1)--(375.5, 268.2)--(375.4, 268.2)--(375.3, 268.3)--(375.2, 268.3)--(375.1, 268.4)--(375.0, 268.5)--(374.9, 268.6)--(374.8, 268.5)--(374.7, 268.6)--(374.6, 268.6)--(374.6, 268.7)--(374.5, 268.7)--(374.4, 268.7)--(374.4, 268.5)--(374.2, 268.6)--(374.3, 268.7)--(374.3, 268.9)--(374.1, 268.9)--(374.1, 269.1)--(374.1, 269.2)--(374.1, 269.4)--(374.0, 269.8)--(374.0, 269.9)--(374.0, 270.0)--(374.1, 270.0)--(374.1, 270.1)--(374.1, 270.0)--(374.2, 270.0)--(374.4, 270.0)--(374.5, 270.0)--(374.7, 269.9)--(375.2, 270.1)--(375.3, 270.0)--(375.3, 270.1)--(375.5, 270.3)--(375.7, 270.5)--(375.8, 270.6)--(375.8, 270.7)--(375.7, 270.7)--(375.6, 271.1)--(375.6, 271.3)--(375.6, 271.4)--(375.7, 271.5)--(375.8, 271.5)--(376.0, 271.8)--(376.1, 271.8)--(376.2, 271.9)--(376.3, 271.9)--(376.3, 271.8)--(376.2, 271.7)--(376.3, 271.6)--(376.6, 272.0)--(376.7, 272.0)--(376.7, 272.1)--(376.8, 272.3)--(376.7, 272.9)--(376.7, 273.2)--(376.7, 273.3)--(376.9, 274.2)--(377.1, 274.6)--(377.4, 275.0)--(377.5, 275.0)--(377.5, 275.1)--(377.9, 275.3)--(378.0, 275.3)--(378.1, 275.4)--(378.3, 276.7)--(377.9, 275.8)--(377.5, 276.1)--(377.4, 276.3)--(377.2, 276.3)--(377.0, 276.3)--(376.9, 276.2)--(376.8, 276.2)--(376.6, 276.1)--(375.9, 275.7)--(375.6, 275.5)--(375.7, 275.2)--(374.2, 274.9)--(373.8, 274.8)--(373.7, 275.5)--(373.7, 276.1)--(372.6, 276.5)--(371.4, 276.9)--(371.7, 277.2)--(371.7, 277.3)--(371.8, 277.5)--(371.8, 277.6)--(371.9, 278.1)--(371.9, 279.0)--(372.1, 279.9)--(372.1, 280.0)--(372.2, 280.4)--(372.2, 280.7)--(372.2, 280.8)--(372.3, 281.1)--(372.4, 281.4)--(372.5, 281.5)--(373.0, 281.2)--(372.9, 281.1)--(373.5, 280.8)--(373.9, 280.5)--(373.9, 280.4)--(374.0, 280.3)--(374.1, 280.4)--(375.0, 279.9)--(375.2, 279.8)--(375.3, 279.8)--(375.4, 279.7)--(375.7, 279.6)--(376.3, 279.3)--(376.6, 279.2)--(376.7, 279.1)--(376.7, 278.8)--(376.8, 278.3)--(376.9, 278.1)--(376.9, 278.0)--(377.0, 277.8)--(377.1, 277.6)--(377.3, 277.4)--(378.3, 277.2)--(378.3, 276.9)--(378.7, 276.7)--(378.8, 276.9)--(378.8, 277.0)--(378.9, 277.3)--(379.3, 277.2)--(379.3, 277.4)--(378.8, 277.4)--(378.6, 277.5)--(377.9, 277.8)--(377.7, 277.9)--(377.3, 278.1)--(377.3, 278.2)--(377.2, 278.3)--(377.2, 278.5)--(377.2, 278.7)--(377.2, 278.8)--(377.2, 278.9)--(377.3, 278.9)--(377.4, 279.0)--(377.9, 279.0)--(378.4, 279.0)--(378.4, 278.9)--(378.4, 278.7)--(378.7, 278.6)--(378.9, 278.6)--(379.0, 278.6)--(379.0, 278.5)--(379.1, 278.5)--(379.1, 278.8)--(379.1, 278.9)--(379.6, 278.8)--(379.6, 278.9)--(380.0, 278.9)--(380.0, 278.7)--(380.3, 278.7)--(380.5, 278.7)--(381.1, 278.7)--(381.2, 278.7)--(381.3, 278.7)--(381.3, 278.8)--(381.4, 278.9)--(381.6, 278.9)--(382.0, 278.9)--(382.1, 278.9)--(382.0, 279.2)--(382.4, 279.2)--(382.7, 279.3)--(382.8, 279.3)--(382.8, 279.4)--(382.8, 279.5)--(383.6, 279.8)--(383.8, 279.8)--(383.8, 279.7)--(383.9, 279.6)--(383.9, 279.5)--(384.6, 279.8)--(386.1, 280.6)--(386.2, 280.7)--(386.4, 280.8)--(386.6, 280.7)--(387.1, 281.1)--(387.2, 281.0)--(387.2, 281.1)--(387.3, 281.0)--(387.4, 281.1)--(387.3, 281.2)--(388.2, 281.9)--(388.1, 282.1)--(388.0, 282.2)--(388.4, 282.6)--(388.5, 282.5)--(388.4, 282.3)--(388.4, 282.2)--(388.7, 282.4)--(388.7, 282.5)--(388.7, 282.6)--(388.8, 282.7)--(389.1, 283.0)--(389.2, 282.9)--(389.5, 283.1)--(389.7, 283.3)--(390.1, 283.9)--(390.1, 284.1)--(390.2, 284.1)--(390.3, 284.3)--(390.3, 284.4)--(390.5, 284.3)--(390.6, 284.6)--(390.5, 284.6)--(390.7, 285.2)--(390.9, 285.1)--(390.9, 285.2)--(390.8, 285.3)--(390.9, 285.8)--(391.0, 285.8)--(391.2, 286.8)--(391.1, 286.8)--(391.1, 287.4)--(391.2, 287.4)--(391.1, 288.4)--(391.1, 288.5)--(391.3, 288.8)--(391.3, 288.9)--(391.2, 289.1)--(391.1, 289.4)--(391.1, 289.7)--(391.0, 290.0)--(391.1, 290.2)--(390.8, 290.1)--(390.7, 290.3)--(390.6, 290.5)--(390.6, 290.6)--(390.5, 290.9)--(390.6, 290.9)--(390.4, 291.3)--(390.5, 291.3)--(390.4, 291.4)--(390.3, 291.4)--(390.3, 291.5)--(390.0, 291.7)--(390.0, 291.8)--(390.0, 291.9)--(390.1, 292.0)--(390.1, 292.1)--(390.2, 292.1)--(390.2, 292.2)--(390.2, 292.4)--(390.1, 292.5)--(390.1, 292.6)--(389.9, 292.9)--(389.1, 292.6)--(388.6, 293.9)--(388.6, 294.0)--(388.5, 294.1)--(388.3, 295.0)--(388.5, 295.1)--(388.1, 296.1)--(388.2, 296.1)--(388.1, 296.6)--(387.9, 296.7)--(387.9, 296.6)--(387.8, 297.2)--(387.7, 297.3)--(387.7, 297.5)--(387.7, 297.6)--(387.6, 298.0)--(387.6, 299.0)--(387.6, 299.3)--(387.9, 299.3)--(387.9, 299.6)--(387.9, 299.8)--(387.8, 299.8)--(387.8, 300.0)--(387.9, 300.1)--(388.0, 300.0)--(388.1, 300.1)--(388.1, 300.2)--(387.7, 300.3)--(387.7, 300.4)--(387.9, 300.9)--(387.9, 301.1)--(388.0, 301.3)--(388.1, 301.4)--(388.2, 301.6)--(388.4, 301.8)--(388.7, 302.1)--(388.8, 302.3)--(388.9, 302.4)--(389.2, 302.6)--(389.3, 302.7)--(389.6, 303.0)--(390.1, 303.2)--(390.4, 303.3)--(390.5, 303.3)--(390.9, 303.4)--(391.3, 303.4)--(391.5, 303.4)--(391.9, 303.2)--(392.5, 302.9)--(392.6, 302.8)--(392.9, 302.6)--(393.2, 302.2)--(393.6, 301.7)--(393.8, 301.4)--(394.8, 300.1)--(394.9, 300.0)--(395.0, 299.8)--(395.4, 299.3)--(396.7, 297.5)--(397.2, 296.9)--(397.4, 296.6)--(397.8, 296.1)--(397.9, 296.1)--(398.1, 295.9)--(398.3, 295.7)--(398.5, 295.5)--(398.8, 295.3)--(398.8, 295.2)--(398.9, 295.2)--(398.9, 294.9)--(399.0, 294.8)--(399.3, 294.4)--(399.4, 294.3)--(399.5, 294.2)--(399.6, 294.1)--(399.7, 294.0)--(400.0, 293.8)--(400.2, 293.7)--(400.3, 293.6)--(400.3, 293.7)--(401.1, 293.2)--(401.3, 293.1)--(401.4, 293.1)--(401.5, 293.0)--(401.7, 292.9)--(401.7, 292.8)--(401.8, 292.8)--(401.9, 292.9)--(402.2, 292.7)--(402.7, 292.5)--(402.7, 292.6)--(403.2, 292.5)--(403.5, 292.4)--(403.8, 292.3)--(404.4, 292.2)--(404.4, 291.7)--(404.6, 291.6)--(404.7, 291.8)--(404.9, 292.0)--(405.2, 292.0)--(405.9, 291.8)--(405.9, 291.6)--(406.3, 291.6)--(406.7, 291.6)--(406.9, 291.6)--(407.5, 291.6)--(408.4, 291.5)--(408.7, 291.6)--(409.0, 291.6)--(409.1, 291.5)--(409.3, 291.6)--(409.3, 291.7)--(409.5, 291.7)--(409.8, 291.7)--(409.9, 291.6)--(410.1, 291.7)--(410.2, 291.8)--(411.2, 292.1)--(411.4, 292.1)--(411.5, 292.1)--(411.6, 292.2)--(412.1, 292.3)--(412.4, 292.3)--(412.7, 292.4)--(413.3, 292.7)--(413.5, 292.7)--(413.7, 292.8)--(413.9, 292.8)--(414.0, 292.9)--(414.2, 292.9)--(414.5, 292.8)--(414.7, 292.9)--(414.8, 292.9)--(415.0, 292.9)--(415.0, 293.0)--(415.1, 293.1)--(415.4, 293.1)--(415.7, 293.2)--(416.6, 293.5)--(417.0, 293.6)--(417.3, 293.6)--(418.0, 293.6)--(418.2, 293.6)--(418.4, 293.6)--(418.9, 293.6)--(419.6, 293.5)--(421.1, 293.4)--(422.7, 293.4)--(423.5, 293.3)--(423.9, 293.3)--(424.3, 293.2)--(424.4, 293.2)--(425.7, 293.1)--(426.7, 293.0)--(427.9, 292.9)--(428.0, 292.8)--(428.1, 292.8)--(428.2, 292.9)--(428.4, 292.9)--(428.4, 292.8)--(428.6, 292.8)--(428.7, 292.9)--(429.4, 292.9)--(429.5, 292.8)--(429.5, 292.4)--(429.7, 292.4)--(429.6, 292.8)--(429.7, 292.9)--(430.2, 292.9)--(430.3, 292.6)--(430.4, 292.6)--(430.4, 292.9)--(431.6, 293.0)--(432.6, 293.1)--(432.7, 293.0)--(433.1, 293.1)--(433.2, 293.1)--(433.7, 293.2)--(433.8, 293.1)--(433.9, 293.1)--(433.9, 293.3)--(434.4, 293.3)--(434.5, 293.3)--(436.5, 293.6)--(437.1, 293.7)--(437.3, 293.7)--(438.2, 293.9)--(439.8, 294.3)--(441.3, 294.8)--(442.0, 295.0)--(442.1, 294.9)--(442.2, 294.8)--(442.4, 294.8)--(442.6, 294.9)--(442.5, 295.3)--(442.9, 295.5)--(443.2, 295.7)--(444.1, 296.5)--(445.3, 297.4)--(446.3, 298.3)--(446.4, 298.2)--(446.5, 298.3)--(446.4, 298.4)--(446.9, 299.3)--(447.3, 300.0)--(447.5, 300.3)--(447.8, 300.7)--(448.8, 302.7)--(449.1, 303.3)--(449.2, 303.5)--(449.3, 303.5)--(449.3, 303.4)--(449.4, 303.4)--(449.5, 303.7)--(449.6, 303.8)--(449.8, 303.9)--(449.9, 304.0)--(449.9, 304.1)--(449.9, 304.4)--(450.0, 305.2)--(450.0, 305.7)--(450.0, 305.8)--(450.2, 305.9)--(450.4, 306.1)--(450.9, 306.9)--(452.1, 308.5)--(452.4, 309.0)--(452.6, 309.4)--(452.7, 309.5)--(452.7, 309.6)--(452.8, 309.7)--(452.9, 309.8)--(453.3, 309.8)--(453.5, 309.8)--(454.3, 309.8)--(454.6, 309.7)--(455.4, 310.0)--(456.1, 310.3)--(456.4, 310.4)--(457.3, 310.5)--(457.8, 310.6)--(458.5, 310.6)--(459.1, 310.6)--(460.0, 310.6)--(460.8, 310.5)--(461.4, 310.5)--(461.6, 310.5)--(462.3, 310.5)--(462.3, 310.4)--(463.1, 310.5)--(463.6, 310.6)--(464.5, 310.7)--(465.3, 310.9)--(466.3, 311.1)--(467.6, 311.4)--(468.2, 311.6)--(469.3, 311.9)--(470.2, 312.2)--(471.5, 312.7)--cycle; +Hackney = (319.3, 378.0)--(319.4, 378.0)--(319.5, 378.1)--(319.6, 378.1)--(319.6, 378.2)--(319.7, 378.2)--(319.8, 378.2)--(319.9, 378.2)--(320.0, 378.2)--(320.1, 378.2)--(320.3, 378.1)--(320.7, 378.0)--(320.8, 378.0)--(320.9, 378.0)--(321.0, 378.0)--(321.1, 378.0)--(321.2, 378.0)--(321.3, 378.0)--(321.4, 378.0)--(321.6, 378.2)--(321.9, 378.4)--(322.0, 378.4)--(322.1, 378.4)--(322.1, 378.5)--(322.3, 378.5)--(322.4, 378.5)--(322.5, 378.5)--(322.6, 378.5)--(322.7, 378.5)--(322.8, 378.5)--(323.0, 378.5)--(323.1, 378.5)--(323.2, 378.5)--(323.3, 378.5)--(323.4, 378.5)--(323.5, 378.5)--(323.6, 378.5)--(323.7, 378.5)--(323.9, 378.6)--(324.1, 378.8)--(324.3, 378.9)--(324.4, 378.9)--(324.5, 378.9)--(324.5, 379.0)--(324.6, 379.0)--(324.7, 379.0)--(324.9, 379.0)--(325.0, 379.0)--(325.1, 379.0)--(325.2, 379.0)--(325.3, 378.9)--(325.4, 378.9)--(325.5, 378.9)--(325.7, 378.9)--(325.9, 379.0)--(326.0, 379.0)--(326.1, 379.0)--(326.2, 379.0)--(326.4, 379.0)--(326.7, 378.9)--(326.7, 379.0)--(326.7, 379.1)--(326.6, 379.2)--(326.5, 379.1)--(326.5, 379.2)--(326.5, 379.4)--(326.9, 379.4)--(327.3, 379.5)--(327.3, 379.6)--(327.4, 379.6)--(327.5, 379.8)--(328.1, 379.9)--(328.8, 380.0)--(329.0, 380.0)--(329.5, 380.1)--(329.9, 380.2)--(330.2, 380.3)--(330.9, 380.5)--(331.6, 380.4)--(331.9, 380.4)--(332.2, 380.3)--(332.5, 380.3)--(332.8, 380.2)--(333.2, 380.1)--(333.5, 380.0)--(334.1, 379.8)--(334.3, 380.2)--(334.3, 380.3)--(334.4, 380.5)--(334.4, 380.4)--(334.6, 380.3)--(334.7, 380.3)--(334.8, 380.3)--(334.8, 380.5)--(335.3, 380.6)--(335.3, 380.7)--(335.4, 380.7)--(335.4, 380.6)--(335.5, 380.6)--(335.6, 380.7)--(335.8, 380.7)--(335.9, 380.7)--(335.9, 380.6)--(336.3, 380.7)--(336.5, 380.7)--(336.7, 380.7)--(336.8, 380.7)--(337.1, 380.8)--(337.1, 380.7)--(337.7, 380.8)--(338.1, 380.9)--(338.4, 381.0)--(338.6, 381.0)--(338.7, 381.1)--(338.8, 381.1)--(339.2, 381.3)--(339.5, 381.3)--(339.8, 381.4)--(340.2, 381.5)--(340.3, 381.5)--(340.4, 381.5)--(340.6, 381.6)--(340.6, 381.9)--(341.0, 382.0)--(341.5, 382.2)--(342.1, 382.4)--(342.3, 382.5)--(342.7, 382.6)--(343.4, 382.9)--(344.4, 383.3)--(344.6, 382.9)--(344.8, 382.2)--(345.1, 381.5)--(345.3, 380.9)--(345.3, 380.7)--(345.5, 380.2)--(345.6, 380.1)--(345.8, 379.6)--(346.0, 379.2)--(346.2, 378.8)--(346.3, 378.6)--(346.4, 378.2)--(346.4, 377.9)--(346.5, 377.7)--(346.5, 377.5)--(346.7, 377.3)--(347.1, 376.8)--(347.4, 376.5)--(347.7, 376.2)--(347.8, 375.8)--(348.0, 375.6)--(348.1, 375.5)--(348.2, 375.4)--(348.3, 375.3)--(348.4, 375.3)--(348.5, 375.3)--(348.7, 375.3)--(349.0, 375.3)--(349.1, 375.2)--(349.2, 375.2)--(349.3, 375.1)--(349.4, 375.0)--(349.5, 374.8)--(350.0, 373.7)--(350.1, 373.4)--(350.2, 373.3)--(350.3, 373.2)--(350.5, 373.0)--(351.1, 372.6)--(351.7, 372.3)--(351.9, 372.1)--(352.0, 372.0)--(352.2, 371.7)--(352.6, 371.3)--(353.1, 370.8)--(353.2, 370.7)--(353.3, 370.6)--(353.5, 370.3)--(353.6, 370.2)--(353.7, 370.1)--(353.8, 370.0)--(354.2, 369.7)--(354.3, 369.6)--(354.3, 369.5)--(354.8, 368.8)--(354.8, 368.7)--(354.9, 368.6)--(354.9, 368.5)--(354.9, 368.4)--(354.9, 368.3)--(354.9, 368.2)--(354.9, 368.1)--(354.9, 368.0)--(354.9, 367.9)--(354.8, 367.9)--(354.8, 367.8)--(354.7, 367.6)--(354.6, 367.4)--(354.6, 367.3)--(354.5, 367.3)--(354.5, 367.2)--(354.5, 367.1)--(354.5, 367.0)--(354.5, 366.9)--(354.5, 366.8)--(354.5, 366.7)--(354.6, 366.7)--(354.6, 366.6)--(354.7, 366.6)--(354.8, 366.5)--(354.9, 366.5)--(354.9, 366.4)--(355.0, 366.4)--(355.4, 366.3)--(355.6, 366.3)--(355.9, 365.9)--(356.1, 365.7)--(356.3, 365.7)--(356.5, 365.7)--(356.6, 365.7)--(356.7, 365.7)--(357.0, 365.7)--(357.3, 365.6)--(357.7, 365.4)--(357.8, 365.4)--(358.0, 365.4)--(358.1, 365.4)--(358.3, 365.4)--(358.4, 365.5)--(358.9, 365.7)--(359.1, 365.8)--(359.2, 365.8)--(359.3, 365.8)--(359.4, 365.9)--(359.5, 365.9)--(359.7, 365.8)--(359.8, 365.7)--(360.0, 365.5)--(360.1, 365.4)--(360.2, 365.3)--(360.3, 365.2)--(360.4, 365.2)--(360.5, 365.2)--(360.7, 365.2)--(360.9, 365.2)--(361.0, 365.3)--(361.2, 365.3)--(361.5, 365.5)--(361.6, 365.6)--(361.7, 365.6)--(361.8, 365.6)--(361.9, 365.6)--(362.0, 365.6)--(362.1, 365.6)--(362.4, 365.6)--(362.9, 365.4)--(363.1, 365.3)--(363.3, 365.2)--(363.6, 365.0)--(363.9, 364.8)--(364.0, 364.7)--(364.1, 364.7)--(364.3, 364.7)--(364.6, 364.7)--(364.8, 364.8)--(365.0, 364.9)--(365.4, 365.1)--(365.7, 365.3)--(365.8, 365.3)--(365.8, 365.4)--(365.9, 365.4)--(366.0, 365.4)--(366.0, 365.5)--(366.1, 365.5)--(366.2, 365.5)--(366.3, 365.6)--(366.4, 365.6)--(366.5, 365.6)--(366.7, 365.6)--(366.8, 365.6)--(367.0, 365.6)--(367.1, 365.5)--(367.6, 365.3)--(367.9, 365.1)--(368.0, 365.0)--(368.3, 364.9)--(368.8, 364.5)--(369.0, 364.4)--(369.1, 364.3)--(369.2, 364.2)--(369.4, 364.1)--(369.7, 363.8)--(370.0, 363.5)--(370.1, 363.3)--(370.2, 363.1)--(370.3, 363.0)--(370.4, 362.9)--(370.5, 362.8)--(370.5, 362.7)--(370.6, 362.5)--(370.6, 362.3)--(370.8, 361.9)--(370.8, 361.5)--(370.8, 361.3)--(370.9, 361.3)--(371.1, 361.2)--(371.4, 361.2)--(371.5, 361.2)--(371.8, 360.9)--(372.3, 360.6)--(373.1, 360.1)--(374.2, 359.3)--(374.5, 359.1)--(374.7, 358.9)--(375.0, 357.7)--(375.1, 357.9)--(375.2, 357.6)--(375.3, 357.3)--(375.4, 357.0)--(375.6, 355.8)--(375.7, 355.1)--(375.7, 355.0)--(375.7, 354.9)--(375.1, 354.9)--(374.5, 354.9)--(374.5, 354.7)--(374.6, 354.6)--(374.6, 354.4)--(374.5, 354.3)--(374.5, 354.1)--(374.5, 353.9)--(374.5, 353.7)--(374.6, 353.5)--(374.7, 353.2)--(375.0, 352.5)--(375.1, 352.0)--(375.3, 351.4)--(375.5, 350.9)--(375.6, 350.6)--(375.6, 350.5)--(375.7, 350.0)--(375.8, 349.6)--(376.0, 349.0)--(376.0, 348.7)--(376.1, 348.2)--(376.1, 347.9)--(376.1, 347.7)--(376.2, 347.6)--(376.2, 347.5)--(376.2, 347.1)--(376.3, 346.9)--(376.4, 346.4)--(376.4, 346.1)--(376.4, 345.8)--(376.3, 345.9)--(376.2, 345.8)--(376.1, 345.9)--(375.8, 345.9)--(375.5, 345.9)--(375.0, 346.0)--(374.5, 346.0)--(374.1, 346.0)--(373.8, 346.0)--(373.0, 345.9)--(372.4, 345.9)--(372.4, 345.8)--(372.2, 345.8)--(372.1, 345.7)--(371.9, 345.7)--(371.3, 345.6)--(370.3, 345.5)--(370.2, 345.6)--(370.1, 345.7)--(370.1, 345.5)--(370.0, 345.4)--(369.5, 345.1)--(369.1, 344.9)--(368.9, 344.8)--(368.6, 344.7)--(368.2, 344.5)--(368.0, 344.5)--(367.8, 344.4)--(367.7, 344.7)--(367.5, 345.0)--(367.5, 345.2)--(367.3, 345.3)--(367.1, 345.4)--(366.7, 345.6)--(366.4, 345.7)--(366.3, 345.8)--(366.0, 346.0)--(365.7, 346.3)--(365.0, 346.9)--(364.9, 347.0)--(364.8, 347.0)--(364.7, 346.9)--(364.5, 346.7)--(364.4, 346.6)--(364.4, 346.4)--(364.2, 346.3)--(363.9, 345.8)--(363.5, 345.5)--(363.0, 345.1)--(362.4, 344.4)--(361.7, 343.7)--(362.2, 343.3)--(362.1, 343.2)--(362.0, 343.2)--(362.0, 343.1)--(361.9, 343.0)--(361.6, 342.5)--(361.2, 341.8)--(360.9, 341.3)--(360.2, 340.2)--(359.8, 339.5)--(359.5, 339.1)--(359.3, 338.8)--(358.7, 338.3)--(357.9, 337.7)--(357.9, 337.6)--(357.8, 337.7)--(357.7, 337.7)--(357.6, 337.6)--(357.4, 337.3)--(357.1, 337.0)--(357.0, 336.9)--(356.2, 336.6)--(355.6, 336.5)--(355.4, 336.5)--(355.3, 336.5)--(355.1, 336.5)--(354.9, 336.6)--(354.8, 336.6)--(354.7, 336.6)--(354.6, 336.7)--(354.5, 336.7)--(354.5, 336.8)--(354.4, 336.8)--(354.2, 337.0)--(353.9, 337.2)--(353.7, 337.4)--(353.5, 337.5)--(353.2, 337.5)--(353.1, 337.5)--(353.0, 337.5)--(352.9, 337.5)--(352.8, 337.5)--(352.4, 337.4)--(352.3, 337.4)--(352.2, 337.3)--(352.1, 337.2)--(351.9, 337.1)--(351.8, 336.9)--(351.6, 336.7)--(351.6, 336.4)--(351.5, 336.0)--(351.5, 335.8)--(351.4, 335.8)--(351.1, 335.9)--(350.8, 336.0)--(350.6, 336.0)--(350.4, 336.0)--(350.2, 336.0)--(350.1, 335.9)--(350.0, 335.9)--(349.8, 335.9)--(349.7, 335.8)--(349.5, 335.8)--(349.2, 335.6)--(348.7, 335.3)--(348.4, 335.1)--(348.2, 335.0)--(347.9, 334.9)--(347.4, 334.8)--(347.2, 334.7)--(347.0, 334.7)--(346.8, 334.8)--(346.6, 334.8)--(346.4, 334.9)--(346.3, 334.9)--(346.2, 335.0)--(346.1, 335.1)--(345.9, 335.3)--(345.6, 335.7)--(345.3, 336.0)--(345.1, 336.2)--(344.8, 336.2)--(344.7, 336.0)--(344.6, 335.8)--(344.5, 335.7)--(344.6, 335.3)--(344.6, 334.8)--(344.7, 334.7)--(344.8, 334.3)--(344.9, 334.1)--(345.0, 333.9)--(345.0, 333.7)--(344.7, 333.7)--(344.3, 333.5)--(343.1, 333.3)--(343.0, 333.6)--(342.9, 333.3)--(342.7, 332.8)--(342.5, 332.3)--(342.3, 331.7)--(342.3, 331.4)--(341.6, 331.3)--(341.1, 331.2)--(340.2, 331.1)--(339.8, 331.1)--(339.3, 331.1)--(338.9, 331.0)--(338.6, 331.0)--(338.4, 330.9)--(338.1, 330.9)--(337.8, 330.7)--(337.7, 330.6)--(337.5, 330.5)--(337.1, 330.3)--(336.9, 330.1)--(336.8, 330.1)--(336.7, 329.9)--(336.5, 329.7)--(336.3, 329.2)--(336.1, 328.5)--(336.0, 328.3)--(335.9, 328.1)--(335.8, 328.1)--(335.6, 327.8)--(335.4, 327.5)--(335.0, 327.1)--(334.8, 326.8)--(335.4, 326.7)--(335.4, 326.4)--(335.3, 326.0)--(335.2, 325.8)--(335.2, 325.7)--(335.2, 325.6)--(335.3, 325.4)--(335.3, 325.1)--(335.3, 324.7)--(335.4, 323.5)--(335.8, 323.6)--(335.9, 323.0)--(336.0, 322.7)--(336.0, 322.6)--(335.9, 322.3)--(335.9, 322.1)--(335.9, 322.0)--(335.8, 321.6)--(335.7, 321.4)--(335.7, 321.2)--(335.7, 321.1)--(335.5, 321.0)--(335.3, 321.2)--(335.0, 321.1)--(334.5, 320.9)--(334.3, 320.8)--(334.1, 320.4)--(333.2, 320.5)--(332.5, 320.8)--(332.3, 320.8)--(332.2, 320.2)--(332.0, 319.8)--(331.8, 319.5)--(331.7, 319.3)--(331.5, 319.0)--(331.2, 318.7)--(330.8, 318.4)--(329.5, 318.9)--(329.6, 319.3)--(329.7, 319.7)--(329.8, 320.4)--(329.9, 320.9)--(329.9, 321.4)--(330.0, 322.4)--(330.0, 322.6)--(330.0, 322.9)--(329.8, 322.9)--(329.4, 322.9)--(329.4, 323.5)--(329.2, 323.6)--(329.2, 323.7)--(329.3, 324.0)--(329.4, 324.4)--(329.6, 324.6)--(329.5, 325.1)--(329.4, 325.5)--(328.5, 325.1)--(328.4, 325.1)--(328.2, 325.0)--(328.0, 325.0)--(327.9, 325.1)--(327.8, 325.2)--(327.5, 325.3)--(327.5, 325.5)--(327.3, 326.1)--(327.1, 326.4)--(327.0, 326.6)--(326.9, 326.7)--(326.8, 326.8)--(326.6, 326.9)--(326.2, 327.1)--(322.1, 328.6)--(322.3, 329.1)--(322.3, 329.3)--(322.3, 329.4)--(322.3, 329.6)--(322.2, 330.0)--(322.0, 330.4)--(321.7, 331.0)--(321.5, 331.6)--(320.9, 332.8)--(321.2, 333.0)--(321.5, 333.1)--(321.6, 333.2)--(322.3, 333.6)--(322.6, 333.9)--(322.6, 333.8)--(323.0, 334.0)--(323.1, 334.1)--(323.5, 334.4)--(324.0, 334.8)--(324.3, 335.1)--(324.6, 335.3)--(324.8, 335.4)--(325.2, 335.7)--(325.5, 336.0)--(325.9, 336.3)--(326.3, 336.6)--(326.6, 336.9)--(326.9, 337.2)--(327.3, 337.5)--(327.5, 337.6)--(327.7, 337.7)--(327.9, 337.8)--(328.0, 337.7)--(328.0, 337.9)--(328.1, 338.1)--(328.1, 338.3)--(328.4, 339.4)--(328.6, 340.6)--(328.7, 341.2)--(329.2, 343.5)--(329.6, 345.2)--(329.8, 346.5)--(329.8, 346.7)--(329.7, 348.2)--(330.1, 348.2)--(332.5, 348.0)--(333.5, 347.9)--(334.5, 347.7)--(334.8, 348.0)--(334.8, 348.1)--(334.8, 348.4)--(334.8, 348.7)--(334.8, 349.1)--(334.6, 349.8)--(334.5, 350.0)--(334.4, 350.3)--(334.3, 350.6)--(333.8, 351.4)--(333.7, 351.7)--(333.1, 353.1)--(333.0, 353.2)--(333.0, 353.3)--(332.8, 353.5)--(332.6, 353.8)--(332.5, 353.9)--(332.5, 354.0)--(332.4, 354.1)--(332.2, 354.1)--(332.0, 354.2)--(331.4, 354.2)--(329.9, 354.4)--(329.6, 354.3)--(329.1, 354.3)--(329.0, 354.2)--(328.9, 354.2)--(328.6, 354.3)--(328.5, 354.3)--(328.4, 354.3)--(328.3, 354.3)--(328.2, 354.4)--(327.9, 354.6)--(327.8, 354.7)--(327.7, 354.7)--(327.6, 354.8)--(327.4, 354.8)--(327.3, 354.9)--(327.0, 355.0)--(326.9, 355.0)--(326.8, 355.1)--(326.8, 355.2)--(326.1, 356.3)--(325.8, 356.1)--(325.7, 356.0)--(325.5, 356.2)--(325.4, 356.3)--(325.3, 356.3)--(325.3, 356.4)--(325.1, 356.5)--(325.0, 356.5)--(324.9, 356.5)--(324.9, 356.8)--(324.9, 357.3)--(324.9, 357.8)--(324.9, 358.3)--(324.9, 359.3)--(324.8, 360.4)--(324.9, 360.5)--(324.8, 360.5)--(324.8, 360.7)--(324.7, 361.1)--(324.5, 361.6)--(324.4, 361.8)--(324.3, 362.1)--(324.1, 362.5)--(323.9, 362.9)--(323.9, 363.0)--(323.9, 363.1)--(323.8, 363.2)--(323.5, 363.2)--(323.4, 363.3)--(323.1, 363.4)--(322.9, 363.4)--(322.8, 363.4)--(322.7, 363.5)--(322.5, 363.5)--(322.4, 363.5)--(322.0, 363.8)--(321.8, 363.9)--(321.6, 364.0)--(321.0, 364.2)--(320.8, 364.2)--(319.0, 363.7)--(318.4, 364.5)--(317.4, 365.5)--(317.3, 365.5)--(317.3, 365.6)--(317.2, 365.6)--(317.1, 365.7)--(317.0, 365.8)--(316.9, 365.9)--(316.6, 366.2)--(316.5, 366.4)--(315.3, 367.5)--(314.8, 367.9)--(314.9, 368.0)--(314.9, 368.1)--(315.8, 368.9)--(316.9, 370.2)--(317.4, 370.7)--(318.5, 372.1)--(318.7, 372.4)--(320.3, 374.5)--(320.5, 374.7)--(320.4, 374.8)--(320.4, 374.9)--(320.3, 375.1)--(320.2, 375.2)--(320.1, 375.5)--(320.0, 375.6)--(320.0, 375.7)--(319.9, 376.0)--(319.9, 376.1)--(319.4, 377.3)--(319.2, 378.0)--cycle; +Hammersmith_and_Fulham = (219.8, 281.0)--(219.7, 281.1)--(219.6, 281.4)--(219.4, 281.4)--(219.2, 281.6)--(219.1, 281.8)--(219.2, 281.9)--(219.1, 282.3)--(219.0, 282.4)--(219.0, 282.6)--(219.0, 282.7)--(219.0, 283.3)--(219.1, 284.2)--(219.1, 284.3)--(219.1, 284.7)--(219.1, 285.5)--(219.1, 285.8)--(219.3, 287.2)--(219.3, 287.6)--(219.4, 288.0)--(219.4, 288.4)--(219.4, 288.6)--(219.5, 288.7)--(219.5, 288.9)--(219.6, 289.2)--(219.4, 289.2)--(219.4, 289.5)--(219.4, 289.7)--(219.5, 289.8)--(219.5, 290.0)--(219.4, 290.6)--(219.5, 290.9)--(219.6, 291.3)--(219.5, 291.3)--(219.2, 291.2)--(219.1, 291.5)--(219.0, 291.8)--(218.9, 291.7)--(218.5, 291.5)--(218.3, 291.3)--(217.9, 291.1)--(217.6, 291.0)--(217.5, 290.9)--(217.3, 290.7)--(217.2, 290.6)--(216.7, 290.3)--(216.5, 290.2)--(216.3, 290.1)--(216.2, 290.4)--(215.7, 291.2)--(215.2, 292.4)--(215.0, 292.7)--(214.9, 292.8)--(215.0, 292.9)--(214.8, 293.2)--(214.8, 293.3)--(214.7, 293.3)--(214.5, 293.7)--(214.4, 293.9)--(214.2, 294.2)--(214.0, 294.4)--(213.7, 294.7)--(213.7, 294.8)--(213.5, 295.0)--(213.5, 295.2)--(213.5, 295.3)--(213.5, 295.4)--(213.4, 295.8)--(213.4, 296.2)--(213.4, 296.3)--(213.3, 296.4)--(213.3, 296.6)--(213.2, 296.7)--(213.2, 296.8)--(213.1, 296.9)--(212.9, 297.1)--(212.7, 297.4)--(212.5, 297.6)--(212.5, 297.7)--(212.5, 297.8)--(212.4, 297.8)--(212.0, 298.2)--(212.1, 298.2)--(212.0, 298.2)--(212.2, 298.3)--(212.4, 298.1)--(212.4, 298.0)--(212.6, 298.1)--(213.0, 298.2)--(213.0, 298.3)--(212.9, 298.5)--(213.0, 298.5)--(213.6, 298.6)--(213.8, 298.7)--(213.8, 298.5)--(213.8, 298.4)--(214.7, 298.6)--(214.8, 298.6)--(215.0, 298.5)--(215.3, 298.4)--(215.5, 298.4)--(215.6, 298.4)--(215.6, 298.5)--(215.6, 298.6)--(215.7, 298.6)--(215.8, 298.6)--(215.9, 298.6)--(215.9, 298.7)--(216.0, 298.7)--(216.1, 298.4)--(216.2, 298.5)--(216.9, 298.6)--(216.9, 298.4)--(217.9, 298.5)--(218.1, 298.6)--(218.5, 298.7)--(218.3, 299.5)--(218.1, 300.0)--(218.1, 300.1)--(218.0, 300.3)--(218.0, 300.5)--(218.0, 300.6)--(217.9, 300.8)--(217.9, 301.0)--(218.9, 301.0)--(218.9, 301.1)--(218.7, 302.0)--(218.6, 302.2)--(218.4, 303.0)--(218.4, 303.1)--(218.4, 303.5)--(218.3, 303.8)--(218.2, 304.0)--(218.2, 304.6)--(218.0, 305.0)--(217.9, 305.5)--(217.9, 305.6)--(217.7, 306.0)--(217.3, 306.8)--(216.9, 307.4)--(216.4, 308.2)--(216.1, 308.7)--(216.0, 308.9)--(216.0, 309.0)--(216.0, 309.1)--(215.9, 309.1)--(215.9, 309.3)--(215.8, 309.9)--(215.7, 310.1)--(215.7, 310.4)--(215.4, 311.1)--(215.1, 312.8)--(214.8, 314.1)--(214.7, 314.7)--(214.7, 314.8)--(214.7, 314.9)--(214.7, 315.0)--(214.7, 315.1)--(214.7, 315.2)--(214.7, 315.3)--(214.7, 315.4)--(214.8, 315.5)--(214.8, 315.6)--(214.9, 315.9)--(214.7, 316.2)--(214.7, 316.4)--(213.8, 318.2)--(213.7, 318.8)--(213.6, 319.2)--(213.5, 319.7)--(213.3, 320.1)--(213.2, 320.5)--(213.2, 320.8)--(213.2, 321.0)--(213.3, 321.3)--(213.4, 321.5)--(213.4, 321.6)--(214.2, 323.0)--(214.5, 323.4)--(214.7, 323.6)--(214.8, 323.7)--(214.8, 323.8)--(214.8, 323.9)--(214.5, 324.4)--(214.6, 324.4)--(214.8, 324.6)--(214.9, 324.8)--(214.8, 324.9)--(214.6, 325.0)--(214.7, 325.1)--(215.2, 325.8)--(215.2, 325.9)--(215.3, 326.0)--(215.4, 326.0)--(215.4, 325.9)--(215.7, 326.3)--(215.9, 326.6)--(216.5, 327.2)--(217.0, 327.7)--(217.2, 327.8)--(217.4, 328.0)--(217.6, 328.0)--(217.6, 328.1)--(217.7, 328.1)--(217.9, 328.1)--(218.0, 328.1)--(218.1, 328.3)--(217.4, 328.6)--(216.9, 328.9)--(217.0, 328.9)--(217.2, 329.4)--(217.3, 329.6)--(217.3, 329.8)--(217.4, 330.0)--(217.4, 329.9)--(217.6, 329.8)--(218.5, 329.3)--(218.6, 329.2)--(219.0, 329.1)--(219.2, 329.0)--(219.3, 328.9)--(219.4, 328.9)--(219.5, 328.9)--(220.3, 329.0)--(221.0, 329.1)--(221.1, 329.1)--(221.4, 329.1)--(221.7, 329.2)--(222.1, 329.2)--(222.3, 329.2)--(222.8, 329.2)--(223.6, 329.3)--(224.0, 329.5)--(224.2, 329.5)--(224.9, 329.8)--(225.0, 329.8)--(225.1, 329.9)--(225.2, 329.9)--(225.5, 330.0)--(225.6, 330.0)--(225.8, 329.9)--(226.0, 329.7)--(226.4, 329.3)--(226.7, 329.1)--(227.1, 328.8)--(227.6, 328.5)--(227.8, 328.4)--(228.0, 328.2)--(228.2, 328.1)--(228.4, 328.1)--(228.7, 328.0)--(228.8, 327.9)--(229.1, 327.8)--(229.3, 327.7)--(229.6, 327.7)--(229.8, 327.6)--(229.6, 327.1)--(229.9, 326.3)--(230.0, 326.2)--(230.0, 326.1)--(230.2, 325.9)--(230.3, 325.7)--(230.4, 325.6)--(230.5, 325.4)--(230.5, 325.2)--(230.6, 325.0)--(230.6, 324.9)--(230.6, 324.7)--(230.7, 324.4)--(230.7, 324.2)--(230.7, 324.0)--(230.7, 323.1)--(230.6, 323.0)--(230.7, 322.7)--(230.7, 322.6)--(230.8, 322.0)--(230.8, 321.8)--(230.8, 321.4)--(231.2, 321.4)--(231.2, 318.7)--(231.2, 318.3)--(230.3, 317.6)--(230.3, 317.4)--(230.2, 317.3)--(231.3, 315.8)--(231.4, 315.7)--(231.4, 315.6)--(231.5, 315.6)--(231.5, 315.5)--(231.6, 315.6)--(231.9, 315.1)--(232.1, 314.9)--(232.3, 314.5)--(232.5, 314.2)--(232.6, 314.0)--(232.7, 313.9)--(232.9, 313.5)--(233.1, 313.4)--(233.0, 313.3)--(233.5, 312.5)--(234.0, 311.6)--(234.2, 311.4)--(234.3, 311.3)--(234.4, 310.9)--(234.5, 310.7)--(234.7, 310.3)--(234.9, 309.9)--(235.1, 309.4)--(235.1, 309.3)--(235.1, 309.1)--(235.2, 308.9)--(235.4, 308.5)--(235.8, 307.6)--(235.9, 307.4)--(235.9, 307.2)--(236.0, 307.1)--(236.0, 307.0)--(236.1, 306.8)--(236.2, 306.6)--(236.2, 306.4)--(236.3, 306.3)--(236.3, 306.2)--(236.4, 306.1)--(236.4, 306.0)--(236.5, 305.5)--(236.6, 305.3)--(236.7, 304.7)--(236.7, 304.6)--(237.0, 304.7)--(237.7, 304.9)--(237.6, 305.4)--(237.7, 305.4)--(237.8, 305.4)--(237.9, 305.4)--(237.9, 305.5)--(238.0, 305.5)--(238.1, 305.6)--(238.2, 305.6)--(238.3, 305.3)--(238.3, 305.2)--(238.3, 305.1)--(238.4, 304.9)--(238.4, 304.8)--(238.5, 304.7)--(238.4, 304.5)--(238.6, 304.4)--(238.7, 304.3)--(238.7, 304.2)--(239.0, 304.2)--(239.2, 304.2)--(239.3, 303.5)--(239.5, 303.0)--(239.6, 302.6)--(239.5, 302.5)--(239.2, 302.4)--(239.0, 302.4)--(239.0, 302.3)--(239.0, 302.1)--(238.9, 301.8)--(239.1, 301.4)--(239.1, 301.2)--(238.9, 301.1)--(238.9, 301.2)--(238.8, 301.2)--(238.3, 301.0)--(237.7, 300.8)--(237.9, 300.4)--(238.0, 300.1)--(238.0, 300.0)--(238.2, 299.7)--(238.4, 299.0)--(238.5, 299.0)--(238.8, 298.4)--(238.9, 298.2)--(238.9, 298.1)--(239.0, 298.2)--(239.2, 297.8)--(239.6, 297.1)--(239.9, 296.6)--(240.1, 295.9)--(240.4, 295.3)--(240.6, 294.9)--(241.3, 293.9)--(241.7, 293.6)--(242.1, 293.2)--(242.3, 293.0)--(242.4, 292.9)--(242.9, 292.5)--(243.3, 292.1)--(243.5, 291.8)--(243.6, 291.7)--(243.8, 291.3)--(244.2, 290.6)--(244.8, 289.9)--(244.9, 289.8)--(245.4, 289.9)--(245.4, 289.8)--(245.4, 289.7)--(245.5, 289.7)--(245.5, 289.6)--(245.6, 289.5)--(245.8, 289.3)--(245.8, 289.2)--(245.9, 289.2)--(246.1, 289.0)--(246.3, 288.9)--(246.6, 288.7)--(246.9, 288.5)--(247.2, 288.2)--(247.5, 287.9)--(247.7, 287.6)--(247.9, 287.4)--(248.0, 287.3)--(248.2, 287.2)--(248.4, 286.9)--(248.5, 286.8)--(248.4, 286.8)--(248.5, 286.7)--(248.6, 286.4)--(248.8, 286.1)--(248.9, 285.9)--(249.0, 285.7)--(249.3, 285.3)--(249.3, 285.2)--(249.0, 285.0)--(249.4, 284.4)--(250.0, 283.6)--(250.2, 283.3)--(250.4, 283.2)--(251.0, 282.4)--(251.1, 282.2)--(251.4, 281.9)--(251.4, 281.8)--(251.9, 281.1)--(252.1, 281.0)--(252.2, 280.8)--(252.3, 280.7)--(252.4, 280.6)--(252.7, 280.4)--(253.2, 280.1)--(253.5, 280.3)--(254.0, 279.9)--(254.1, 279.8)--(254.3, 279.7)--(254.4, 279.6)--(254.4, 279.5)--(254.6, 279.4)--(254.7, 279.2)--(254.8, 279.1)--(254.9, 279.0)--(255.2, 278.6)--(255.5, 278.3)--(255.5, 278.2)--(255.7, 278.0)--(255.8, 277.7)--(256.0, 277.6)--(256.4, 277.0)--(256.5, 276.7)--(256.6, 276.7)--(256.8, 276.4)--(256.9, 276.2)--(257.1, 276.0)--(257.2, 275.8)--(257.3, 275.6)--(257.5, 275.4)--(257.6, 275.2)--(257.7, 275.2)--(258.2, 274.6)--(258.5, 274.1)--(259.0, 273.4)--(259.0, 273.3)--(259.1, 273.3)--(259.5, 272.8)--(259.7, 272.6)--(259.8, 272.5)--(259.9, 272.3)--(260.0, 272.2)--(260.2, 272.0)--(260.3, 272.2)--(260.4, 272.0)--(260.5, 271.9)--(260.6, 271.8)--(260.6, 271.6)--(260.8, 271.1)--(260.9, 271.0)--(261.1, 270.8)--(261.6, 270.2)--(261.7, 270.1)--(261.9, 269.9)--(262.1, 269.6)--(262.2, 269.5)--(262.2, 269.4)--(262.1, 269.4)--(262.0, 269.4)--(262.1, 269.3)--(262.0, 269.3)--(262.0, 269.2)--(262.1, 269.2)--(262.6, 269.2)--(262.8, 269.2)--(262.9, 269.2)--(263.0, 269.1)--(263.1, 269.1)--(263.2, 269.1)--(263.4, 269.2)--(264.4, 269.8)--(264.5, 269.8)--(264.6, 269.8)--(264.7, 269.9)--(264.9, 269.9)--(265.0, 269.9)--(265.1, 269.8)--(265.3, 269.8)--(265.1, 268.0)--(265.0, 267.8)--(265.0, 267.6)--(264.9, 266.7)--(264.8, 266.6)--(264.7, 266.5)--(264.8, 266.5)--(264.8, 266.4)--(264.6, 265.4)--(264.5, 265.0)--(264.4, 264.6)--(264.2, 263.8)--(263.9, 262.9)--(263.5, 261.7)--(263.1, 260.8)--(262.8, 259.9)--(262.6, 259.6)--(262.6, 259.5)--(262.6, 259.4)--(262.5, 259.3)--(262.0, 258.6)--(261.8, 258.3)--(261.5, 257.9)--(261.1, 257.5)--(260.8, 257.2)--(260.3, 257.0)--(259.3, 256.5)--(259.1, 256.4)--(259.0, 256.3)--(258.8, 256.2)--(258.1, 255.9)--(258.0, 255.8)--(257.9, 255.8)--(257.8, 255.8)--(257.7, 255.8)--(255.9, 255.3)--(255.7, 255.3)--(255.6, 255.3)--(255.3, 255.3)--(254.5, 255.3)--(253.3, 255.4)--(253.2, 255.7)--(253.1, 255.7)--(253.1, 255.6)--(253.0, 255.5)--(252.7, 255.5)--(252.4, 255.4)--(252.3, 255.4)--(252.2, 255.4)--(252.1, 255.4)--(251.9, 255.4)--(251.7, 255.4)--(251.5, 255.4)--(251.4, 255.4)--(251.3, 255.4)--(251.2, 255.4)--(250.7, 255.5)--(250.3, 255.6)--(250.1, 255.6)--(250.0, 255.6)--(249.7, 255.7)--(248.9, 256.0)--(248.4, 256.1)--(248.0, 256.3)--(247.5, 256.5)--(247.3, 256.6)--(247.2, 256.7)--(247.1, 256.7)--(247.0, 256.8)--(246.0, 257.0)--(245.2, 257.3)--(245.2, 257.4)--(244.8, 257.5)--(244.7, 257.4)--(244.0, 257.6)--(243.8, 257.7)--(243.9, 257.8)--(243.9, 257.9)--(244.0, 258.2)--(243.9, 258.2)--(243.7, 258.0)--(243.8, 257.9)--(243.6, 257.8)--(242.4, 258.4)--(241.4, 259.0)--(240.5, 259.5)--(240.2, 259.7)--(239.9, 259.9)--(239.6, 260.2)--(239.5, 260.4)--(239.3, 260.5)--(238.8, 261.1)--(238.7, 261.2)--(238.0, 262.2)--(238.0, 262.3)--(237.9, 262.3)--(237.1, 263.3)--(235.9, 264.9)--(235.6, 265.3)--(235.6, 265.4)--(235.3, 266.0)--(235.2, 266.3)--(235.3, 266.4)--(235.2, 266.5)--(234.8, 267.8)--(234.8, 267.9)--(234.8, 268.1)--(234.7, 268.6)--(234.6, 269.0)--(234.5, 269.5)--(234.4, 271.6)--(234.2, 273.6)--(234.2, 273.7)--(234.3, 273.7)--(234.4, 273.8)--(234.4, 273.9)--(234.3, 274.0)--(234.1, 274.4)--(234.0, 275.0)--(233.9, 275.3)--(233.9, 275.5)--(233.4, 276.4)--(233.0, 277.3)--(232.2, 278.9)--(232.2, 279.0)--(231.9, 279.5)--(231.7, 279.7)--(231.6, 279.9)--(230.8, 280.9)--(230.8, 281.0)--(230.8, 281.1)--(230.8, 281.2)--(230.8, 281.4)--(230.7, 281.3)--(230.4, 281.5)--(230.3, 281.7)--(229.4, 282.0)--(229.3, 282.0)--(229.1, 282.1)--(227.6, 283.0)--(226.9, 283.1)--(226.8, 283.1)--(226.3, 283.0)--(226.3, 283.1)--(226.2, 283.1)--(226.1, 283.0)--(226.0, 283.0)--(226.0, 283.1)--(225.9, 283.1)--(225.7, 283.1)--(225.6, 283.0)--(225.5, 283.0)--(225.3, 283.1)--(224.6, 283.0)--(224.1, 282.9)--(223.5, 282.8)--(223.1, 282.7)--(223.0, 282.8)--(222.5, 282.6)--(222.3, 282.5)--(222.1, 282.5)--(221.8, 282.4)--(221.5, 282.2)--(220.8, 281.9)--(220.7, 281.7)--(220.6, 281.7)--(220.5, 281.6)--(220.4, 281.5)--(220.4, 281.4)--cycle; +Haringey = (319.3, 378.0)--(319.2, 378.0)--(319.4, 377.3)--(319.9, 376.1)--(319.9, 376.0)--(320.0, 375.7)--(320.0, 375.6)--(320.1, 375.5)--(320.2, 375.2)--(320.3, 375.1)--(320.4, 374.9)--(320.4, 374.8)--(320.5, 374.7)--(320.3, 374.5)--(318.7, 372.4)--(318.5, 372.1)--(317.4, 370.7)--(316.9, 370.2)--(315.8, 368.9)--(314.9, 368.1)--(314.9, 368.0)--(314.8, 368.1)--(314.7, 368.0)--(314.6, 367.9)--(313.6, 368.8)--(313.3, 369.2)--(313.1, 369.4)--(313.0, 369.5)--(312.8, 369.7)--(312.6, 369.9)--(312.5, 370.1)--(312.4, 370.2)--(312.1, 370.6)--(312.0, 370.7)--(311.9, 370.8)--(311.7, 371.0)--(311.6, 371.1)--(311.4, 371.3)--(310.7, 372.0)--(310.4, 372.2)--(309.7, 372.7)--(307.3, 374.3)--(307.3, 374.4)--(307.2, 374.4)--(307.2, 374.6)--(307.2, 375.1)--(307.2, 375.2)--(307.0, 375.4)--(306.9, 375.4)--(307.0, 375.7)--(306.8, 375.9)--(306.6, 376.0)--(306.5, 376.1)--(306.9, 376.5)--(306.7, 376.8)--(306.2, 377.4)--(305.8, 377.9)--(305.6, 378.1)--(305.5, 378.2)--(305.3, 378.2)--(305.0, 378.3)--(304.6, 378.4)--(304.4, 378.4)--(304.1, 378.4)--(304.1, 378.5)--(304.5, 378.8)--(304.4, 379.0)--(304.3, 379.1)--(304.2, 379.4)--(304.1, 379.7)--(304.0, 379.7)--(303.8, 379.6)--(302.5, 379.1)--(302.5, 379.2)--(302.5, 379.1)--(302.1, 379.0)--(301.5, 378.7)--(301.4, 378.7)--(301.3, 378.7)--(301.2, 378.7)--(301.1, 378.6)--(301.0, 378.5)--(300.9, 378.4)--(300.8, 378.3)--(300.7, 378.3)--(300.6, 378.3)--(300.6, 378.2)--(300.6, 378.1)--(300.5, 378.1)--(300.4, 378.0)--(300.3, 378.0)--(300.0, 378.0)--(299.5, 377.9)--(299.3, 378.0)--(299.2, 378.0)--(299.1, 378.0)--(298.9, 378.0)--(298.6, 378.0)--(297.7, 377.8)--(297.3, 377.7)--(297.0, 377.6)--(296.5, 377.5)--(296.2, 377.4)--(296.0, 377.4)--(295.9, 377.3)--(295.8, 377.2)--(295.7, 377.2)--(295.6, 377.1)--(295.3, 376.9)--(295.0, 376.8)--(294.8, 376.7)--(294.7, 376.7)--(294.5, 376.5)--(294.0, 376.0)--(293.3, 375.4)--(293.0, 375.2)--(292.8, 375.1)--(292.7, 375.0)--(292.4, 374.7)--(292.3, 374.7)--(292.2, 374.6)--(291.9, 374.4)--(291.7, 374.3)--(291.4, 374.0)--(291.2, 373.9)--(291.1, 373.9)--(291.1, 373.8)--(291.0, 373.7)--(290.8, 373.6)--(290.7, 373.4)--(290.4, 373.2)--(289.7, 372.6)--(289.6, 372.5)--(289.4, 372.5)--(289.0, 372.3)--(288.6, 372.2)--(288.4, 372.2)--(288.4, 372.4)--(287.4, 373.0)--(287.2, 373.1)--(287.0, 373.2)--(286.9, 373.3)--(286.5, 373.3)--(285.8, 373.6)--(285.1, 373.8)--(284.4, 373.9)--(283.7, 374.2)--(283.4, 374.4)--(283.2, 374.5)--(283.0, 374.7)--(282.8, 374.8)--(282.3, 374.8)--(281.2, 374.9)--(280.3, 375.0)--(279.3, 375.1)--(278.2, 375.2)--(276.9, 375.3)--(276.2, 375.7)--(276.0, 375.9)--(275.9, 375.9)--(275.8, 375.9)--(275.7, 375.9)--(275.6, 375.9)--(275.5, 375.9)--(275.4, 375.9)--(275.3, 375.9)--(275.2, 375.9)--(275.1, 375.8)--(275.0, 375.8)--(274.3, 375.7)--(273.8, 375.6)--(273.3, 375.6)--(273.2, 375.6)--(273.1, 375.6)--(273.0, 375.6)--(272.9, 375.6)--(272.8, 375.6)--(272.7, 375.6)--(272.5, 375.7)--(272.2, 375.8)--(272.1, 375.8)--(272.0, 375.8)--(271.8, 375.8)--(271.7, 375.9)--(271.5, 376.0)--(271.4, 376.0)--(271.2, 376.0)--(271.0, 376.0)--(270.3, 375.9)--(269.8, 375.9)--(269.2, 375.8)--(268.8, 375.6)--(268.5, 375.5)--(268.3, 375.4)--(268.3, 376.0)--(268.3, 376.7)--(268.5, 376.7)--(268.8, 376.8)--(269.2, 376.9)--(269.5, 377.1)--(269.5, 377.4)--(269.5, 377.7)--(269.5, 377.9)--(269.5, 378.1)--(269.4, 378.7)--(269.4, 379.1)--(269.4, 379.7)--(269.3, 379.8)--(269.3, 380.0)--(269.3, 380.2)--(269.4, 380.4)--(269.4, 380.6)--(269.5, 380.9)--(270.3, 380.5)--(270.4, 380.4)--(270.6, 380.9)--(270.7, 381.0)--(270.8, 381.4)--(270.9, 381.5)--(271.1, 381.9)--(271.0, 381.9)--(270.9, 381.9)--(271.0, 382.1)--(271.1, 382.2)--(271.2, 382.4)--(271.2, 382.5)--(271.1, 383.5)--(271.0, 383.5)--(271.0, 384.5)--(270.9, 384.5)--(270.9, 384.6)--(270.9, 385.1)--(270.9, 385.3)--(270.9, 385.6)--(271.0, 385.8)--(271.0, 385.9)--(271.0, 386.0)--(271.1, 386.0)--(271.5, 386.1)--(271.4, 386.3)--(271.6, 386.6)--(271.8, 387.1)--(271.8, 387.5)--(272.2, 387.7)--(272.4, 387.8)--(272.3, 387.9)--(272.4, 388.1)--(272.6, 388.3)--(272.7, 388.3)--(272.8, 388.3)--(273.2, 388.7)--(273.3, 388.7)--(273.3, 388.6)--(273.6, 388.8)--(273.9, 388.9)--(274.0, 388.9)--(274.2, 389.1)--(274.4, 389.2)--(274.4, 389.3)--(274.8, 389.8)--(274.9, 389.9)--(275.0, 389.9)--(275.2, 389.7)--(275.4, 389.5)--(275.6, 389.3)--(275.7, 389.2)--(275.9, 389.1)--(276.0, 388.9)--(276.1, 389.0)--(276.3, 389.3)--(277.2, 390.4)--(277.2, 390.9)--(277.6, 390.9)--(277.7, 390.9)--(277.6, 391.1)--(277.5, 391.3)--(277.3, 391.3)--(276.6, 391.4)--(276.6, 392.0)--(276.6, 392.2)--(276.6, 392.4)--(276.7, 392.4)--(276.6, 392.7)--(276.6, 392.9)--(275.5, 392.8)--(275.6, 393.0)--(275.6, 393.1)--(275.6, 393.4)--(275.6, 393.6)--(275.6, 394.0)--(275.6, 394.1)--(275.6, 394.2)--(275.5, 394.4)--(275.5, 394.7)--(275.8, 394.8)--(275.7, 395.2)--(275.7, 395.3)--(275.8, 395.5)--(275.8, 395.7)--(275.9, 396.2)--(275.9, 396.9)--(276.0, 396.9)--(276.2, 397.0)--(276.4, 397.2)--(276.5, 397.3)--(276.5, 397.4)--(276.4, 397.6)--(276.4, 397.8)--(275.8, 397.6)--(275.7, 397.9)--(275.7, 398.0)--(275.7, 398.2)--(275.4, 398.9)--(275.4, 399.1)--(275.4, 399.2)--(275.3, 399.4)--(275.2, 399.6)--(275.2, 399.8)--(275.0, 400.0)--(274.8, 400.4)--(274.8, 400.8)--(274.7, 401.0)--(274.4, 402.1)--(274.3, 402.7)--(274.2, 402.9)--(274.2, 403.0)--(274.2, 403.3)--(274.2, 403.4)--(274.2, 403.5)--(274.2, 403.6)--(275.4, 406.5)--(276.2, 408.5)--(276.2, 408.6)--(277.1, 410.9)--(277.4, 411.7)--(277.6, 412.0)--(277.7, 412.2)--(278.0, 412.3)--(277.9, 412.2)--(277.9, 412.1)--(277.9, 412.0)--(277.9, 411.9)--(278.4, 411.5)--(278.5, 411.4)--(278.6, 411.4)--(278.8, 411.0)--(278.9, 410.9)--(279.0, 410.8)--(279.1, 410.7)--(279.4, 410.1)--(279.7, 409.7)--(279.9, 409.3)--(279.9, 408.6)--(279.9, 408.2)--(279.9, 407.8)--(279.8, 407.4)--(279.9, 407.3)--(279.9, 407.1)--(280.1, 406.1)--(280.1, 405.8)--(280.2, 405.5)--(280.3, 405.3)--(280.9, 404.4)--(281.2, 403.8)--(281.3, 403.7)--(281.4, 403.5)--(283.2, 404.6)--(283.9, 405.0)--(284.1, 405.2)--(284.0, 405.3)--(284.4, 405.5)--(284.6, 405.7)--(285.7, 406.4)--(286.1, 406.6)--(286.1, 406.7)--(286.1, 406.9)--(286.1, 407.1)--(286.3, 407.7)--(286.4, 407.9)--(286.5, 408.0)--(286.5, 408.2)--(286.7, 408.5)--(286.8, 408.7)--(286.9, 409.0)--(286.9, 409.2)--(287.0, 409.3)--(287.4, 409.8)--(287.6, 410.1)--(287.6, 410.2)--(287.6, 410.4)--(287.7, 410.6)--(287.7, 410.7)--(287.7, 411.3)--(287.6, 411.6)--(287.5, 412.0)--(287.5, 412.1)--(287.4, 412.2)--(287.2, 412.6)--(287.1, 412.9)--(287.0, 413.0)--(287.0, 413.1)--(286.9, 413.6)--(286.8, 413.8)--(286.7, 414.7)--(286.6, 415.1)--(286.6, 415.2)--(286.6, 415.3)--(286.6, 415.7)--(286.6, 416.3)--(287.0, 416.6)--(288.1, 417.1)--(289.8, 417.9)--(290.5, 418.2)--(291.5, 418.6)--(291.7, 418.7)--(292.0, 419.0)--(292.2, 419.1)--(292.4, 419.1)--(293.5, 418.7)--(294.6, 418.3)--(294.9, 418.2)--(295.2, 418.1)--(296.0, 417.6)--(296.8, 417.4)--(297.3, 417.3)--(297.7, 417.2)--(298.3, 417.2)--(298.4, 417.2)--(298.4, 417.1)--(298.7, 417.5)--(298.6, 417.5)--(299.1, 418.0)--(299.4, 417.9)--(299.3, 417.8)--(299.9, 417.2)--(299.9, 417.1)--(300.0, 417.1)--(300.1, 417.0)--(300.0, 417.0)--(300.4, 416.5)--(300.5, 416.6)--(300.6, 416.6)--(301.1, 416.5)--(301.4, 416.5)--(301.6, 416.5)--(301.7, 416.5)--(301.9, 416.4)--(303.1, 416.3)--(303.4, 416.2)--(303.7, 416.6)--(304.1, 416.3)--(304.5, 416.1)--(304.7, 416.3)--(305.6, 416.2)--(305.6, 416.4)--(305.9, 416.4)--(306.0, 416.4)--(306.5, 416.4)--(306.6, 416.4)--(306.8, 416.3)--(306.9, 416.3)--(307.1, 416.3)--(307.1, 416.4)--(307.8, 416.4)--(308.7, 416.5)--(309.1, 416.5)--(309.2, 416.6)--(309.2, 416.7)--(309.3, 416.6)--(309.4, 416.6)--(309.4, 416.4)--(309.8, 416.3)--(310.2, 416.3)--(311.7, 416.3)--(311.8, 416.4)--(312.3, 416.5)--(312.6, 416.5)--(312.7, 416.5)--(313.0, 416.6)--(313.8, 416.6)--(313.9, 416.6)--(314.1, 416.6)--(314.2, 416.6)--(314.6, 416.4)--(314.9, 416.2)--(315.1, 416.6)--(315.3, 416.6)--(315.4, 416.7)--(315.6, 416.7)--(315.8, 416.7)--(315.9, 416.7)--(316.1, 416.7)--(316.4, 416.7)--(316.7, 416.7)--(317.3, 416.7)--(318.1, 416.8)--(318.4, 416.8)--(318.3, 417.2)--(318.4, 417.2)--(318.5, 417.2)--(318.7, 417.4)--(318.8, 417.5)--(319.1, 417.6)--(319.3, 417.6)--(319.5, 417.7)--(319.7, 417.7)--(319.9, 417.3)--(319.9, 417.2)--(320.0, 417.0)--(320.8, 417.2)--(321.1, 417.4)--(321.5, 417.3)--(321.8, 417.3)--(321.9, 417.2)--(321.9, 417.5)--(322.1, 417.5)--(322.1, 417.4)--(322.1, 417.3)--(322.3, 417.3)--(322.3, 417.2)--(322.3, 417.3)--(322.4, 417.3)--(322.6, 417.2)--(322.9, 417.2)--(323.0, 417.3)--(323.8, 417.3)--(324.5, 417.2)--(324.7, 417.2)--(325.0, 417.1)--(325.3, 417.1)--(325.6, 417.0)--(325.9, 417.0)--(326.5, 416.9)--(327.2, 417.0)--(327.4, 417.0)--(327.5, 417.0)--(328.2, 417.0)--(329.0, 417.0)--(329.1, 417.0)--(329.6, 417.0)--(330.0, 417.1)--(330.8, 417.1)--(331.0, 417.1)--(331.1, 417.1)--(331.2, 417.1)--(331.4, 417.1)--(331.8, 417.1)--(332.5, 417.1)--(332.8, 417.0)--(333.2, 417.1)--(333.5, 417.1)--(334.1, 417.2)--(334.8, 417.3)--(335.4, 417.4)--(335.9, 417.5)--(336.0, 417.5)--(336.0, 417.4)--(336.2, 417.5)--(336.4, 417.5)--(336.8, 417.6)--(336.8, 417.5)--(336.9, 417.5)--(337.2, 417.5)--(337.7, 417.5)--(337.9, 417.5)--(338.6, 417.5)--(338.8, 417.7)--(338.9, 417.5)--(339.0, 417.5)--(339.1, 417.5)--(339.2, 417.5)--(339.4, 417.8)--(340.0, 417.5)--(340.6, 417.5)--(340.7, 417.5)--(340.9, 417.5)--(342.3, 417.5)--(342.7, 417.5)--(343.5, 417.6)--(345.0, 417.7)--(345.7, 417.8)--(347.0, 417.9)--(347.4, 418.0)--(348.2, 418.0)--(348.5, 417.9)--(349.1, 417.7)--(349.2, 417.6)--(349.3, 417.6)--(349.2, 417.5)--(349.2, 417.4)--(349.3, 417.4)--(349.3, 417.1)--(349.5, 417.1)--(349.8, 417.0)--(350.1, 416.9)--(350.3, 416.8)--(350.2, 416.8)--(351.2, 416.4)--(351.4, 416.3)--(351.6, 416.2)--(351.8, 416.2)--(352.0, 416.1)--(352.1, 416.0)--(352.4, 415.9)--(352.7, 415.9)--(353.0, 415.8)--(354.6, 415.3)--(355.3, 415.1)--(356.3, 414.9)--(357.0, 414.7)--(357.3, 414.6)--(357.2, 414.5)--(357.2, 414.4)--(357.1, 414.3)--(357.1, 414.2)--(357.0, 414.1)--(357.0, 414.0)--(356.9, 413.9)--(356.9, 413.7)--(356.8, 413.6)--(356.8, 413.5)--(356.8, 413.4)--(356.5, 412.7)--(356.2, 412.0)--(355.9, 411.4)--(355.6, 410.8)--(355.1, 409.9)--(354.4, 408.8)--(354.2, 408.4)--(354.0, 408.0)--(353.7, 407.6)--(353.1, 406.8)--(352.4, 405.9)--(351.9, 405.3)--(351.8, 405.1)--(351.7, 405.0)--(351.6, 404.9)--(351.5, 404.8)--(351.4, 404.7)--(351.4, 404.6)--(351.3, 404.5)--(351.3, 404.4)--(351.2, 404.4)--(351.2, 404.3)--(351.2, 404.2)--(351.1, 404.1)--(351.1, 404.0)--(351.0, 403.9)--(351.0, 403.8)--(351.0, 403.7)--(350.9, 403.6)--(350.9, 403.4)--(350.9, 402.9)--(350.9, 402.8)--(350.9, 402.7)--(350.8, 402.7)--(350.8, 402.6)--(350.8, 402.5)--(350.7, 402.4)--(350.6, 402.3)--(350.5, 402.2)--(350.5, 402.1)--(350.4, 402.1)--(350.4, 402.0)--(350.3, 401.9)--(350.3, 401.8)--(350.2, 401.8)--(350.2, 401.7)--(350.2, 401.6)--(350.1, 401.5)--(350.1, 401.4)--(350.1, 401.3)--(350.1, 401.2)--(350.1, 400.6)--(350.0, 400.0)--(350.0, 399.7)--(349.7, 399.0)--(349.6, 398.5)--(349.5, 398.2)--(349.4, 397.9)--(349.4, 397.5)--(349.4, 397.2)--(349.4, 396.9)--(349.5, 396.6)--(349.6, 396.3)--(349.8, 395.9)--(350.0, 395.6)--(350.0, 395.5)--(350.1, 395.4)--(350.1, 395.2)--(350.2, 395.1)--(350.3, 394.9)--(350.3, 394.8)--(350.4, 394.8)--(350.4, 394.7)--(350.4, 394.6)--(350.4, 394.5)--(350.4, 394.4)--(350.4, 394.3)--(350.3, 394.3)--(350.3, 394.2)--(350.3, 394.1)--(350.2, 394.1)--(350.2, 394.0)--(350.1, 394.0)--(350.1, 393.9)--(350.0, 393.9)--(349.7, 393.6)--(349.6, 393.5)--(349.2, 393.1)--(348.9, 392.8)--(348.9, 392.7)--(348.8, 392.7)--(348.8, 392.6)--(348.7, 392.5)--(348.7, 392.4)--(348.6, 392.3)--(348.6, 392.2)--(348.5, 392.1)--(348.5, 392.0)--(348.4, 391.9)--(348.4, 391.8)--(348.4, 391.7)--(348.4, 391.6)--(348.3, 391.5)--(348.3, 391.4)--(348.3, 391.3)--(348.3, 391.2)--(348.3, 391.1)--(348.2, 391.1)--(348.2, 391.0)--(348.2, 390.9)--(348.1, 390.8)--(348.1, 390.7)--(348.0, 390.6)--(348.0, 390.5)--(347.9, 390.4)--(347.9, 390.3)--(347.8, 390.3)--(347.8, 390.2)--(347.7, 390.1)--(347.6, 390.0)--(347.5, 389.9)--(347.4, 389.8)--(347.3, 389.7)--(347.2, 389.6)--(347.1, 389.5)--(347.0, 389.5)--(347.0, 389.4)--(346.9, 389.3)--(346.9, 389.2)--(346.8, 389.2)--(346.8, 389.1)--(346.8, 389.0)--(346.7, 388.9)--(346.7, 388.7)--(346.6, 388.7)--(346.6, 388.6)--(346.6, 388.5)--(346.5, 388.5)--(346.5, 388.4)--(346.4, 388.4)--(346.3, 388.3)--(346.2, 388.2)--(345.6, 387.7)--(345.3, 387.4)--(345.1, 387.3)--(344.6, 386.8)--(344.5, 386.8)--(344.5, 386.7)--(344.4, 386.6)--(344.3, 386.5)--(344.2, 386.4)--(344.2, 386.3)--(344.1, 386.2)--(344.0, 386.1)--(344.0, 386.0)--(343.9, 385.9)--(343.9, 385.8)--(343.8, 385.7)--(343.8, 385.6)--(343.8, 385.5)--(343.7, 385.4)--(343.7, 385.3)--(343.7, 385.2)--(343.6, 385.2)--(343.6, 385.1)--(343.6, 385.0)--(343.6, 384.9)--(343.7, 384.9)--(343.7, 384.8)--(343.7, 384.7)--(343.7, 384.6)--(343.8, 384.5)--(343.8, 384.4)--(343.9, 384.4)--(343.9, 384.3)--(344.2, 383.8)--(344.4, 383.4)--(344.4, 383.3)--(343.4, 382.9)--(342.7, 382.6)--(342.3, 382.5)--(342.1, 382.4)--(341.5, 382.2)--(341.0, 382.0)--(340.6, 381.9)--(340.6, 381.6)--(340.4, 381.5)--(340.3, 381.5)--(340.2, 381.5)--(339.8, 381.4)--(339.5, 381.3)--(339.2, 381.3)--(338.8, 381.1)--(338.7, 381.1)--(338.6, 381.0)--(338.4, 381.0)--(338.1, 380.9)--(337.7, 380.8)--(337.1, 380.7)--(337.1, 380.8)--(336.8, 380.7)--(336.7, 380.7)--(336.5, 380.7)--(336.3, 380.7)--(335.9, 380.6)--(335.9, 380.7)--(335.8, 380.7)--(335.6, 380.7)--(335.5, 380.6)--(335.4, 380.6)--(335.4, 380.7)--(335.3, 380.7)--(335.3, 380.6)--(334.8, 380.5)--(334.8, 380.3)--(334.7, 380.3)--(334.6, 380.3)--(334.4, 380.4)--(334.4, 380.5)--(334.3, 380.3)--(334.3, 380.2)--(334.1, 379.8)--(333.5, 380.0)--(333.2, 380.1)--(332.8, 380.2)--(332.5, 380.3)--(332.2, 380.3)--(331.9, 380.4)--(331.6, 380.4)--(330.9, 380.5)--(330.2, 380.3)--(329.9, 380.2)--(329.5, 380.1)--(329.0, 380.0)--(328.8, 380.0)--(328.1, 379.9)--(327.5, 379.8)--(327.4, 379.6)--(327.3, 379.6)--(327.3, 379.5)--(326.9, 379.4)--(326.5, 379.4)--(326.5, 379.2)--(326.5, 379.1)--(326.6, 379.2)--(326.7, 379.1)--(326.7, 379.0)--(326.7, 378.9)--(326.4, 379.0)--(326.2, 379.0)--(326.1, 379.0)--(326.0, 379.0)--(325.9, 379.0)--(325.7, 378.9)--(325.5, 378.9)--(325.4, 378.9)--(325.3, 378.9)--(325.2, 379.0)--(325.1, 379.0)--(325.0, 379.0)--(324.9, 379.0)--(324.7, 379.0)--(324.6, 379.0)--(324.5, 379.0)--(324.5, 378.9)--(324.4, 378.9)--(324.3, 378.9)--(324.1, 378.8)--(323.9, 378.6)--(323.7, 378.5)--(323.6, 378.5)--(323.5, 378.5)--(323.4, 378.5)--(323.3, 378.5)--(323.2, 378.5)--(323.1, 378.5)--(323.0, 378.5)--(322.8, 378.5)--(322.7, 378.5)--(322.6, 378.5)--(322.5, 378.5)--(322.4, 378.5)--(322.3, 378.5)--(322.1, 378.5)--(322.1, 378.4)--(322.0, 378.4)--(321.9, 378.4)--(321.6, 378.2)--(321.4, 378.0)--(321.3, 378.0)--(321.2, 378.0)--(321.1, 378.0)--(321.0, 378.0)--(320.9, 378.0)--(320.8, 378.0)--(320.7, 378.0)--(320.3, 378.1)--(320.1, 378.2)--(320.0, 378.2)--(319.9, 378.2)--(319.8, 378.2)--(319.7, 378.2)--(319.6, 378.2)--(319.6, 378.1)--(319.5, 378.1)--(319.4, 378.0)--cycle; +Harrow = (106.0, 416.9)--(106.6, 416.9)--(106.9, 416.9)--(107.2, 416.9)--(107.7, 416.9)--(107.8, 416.9)--(107.9, 416.9)--(108.0, 417.0)--(108.3, 417.1)--(108.4, 417.1)--(108.5, 417.1)--(108.8, 417.1)--(109.0, 417.2)--(109.2, 417.2)--(109.9, 417.5)--(110.2, 417.8)--(110.7, 418.0)--(110.9, 418.1)--(111.2, 418.3)--(111.7, 418.5)--(112.4, 418.8)--(112.8, 418.9)--(113.4, 419.1)--(113.8, 419.3)--(114.6, 419.4)--(115.1, 419.5)--(115.8, 419.5)--(116.0, 419.6)--(116.2, 419.6)--(116.4, 419.7)--(116.8, 419.7)--(117.2, 419.7)--(117.5, 419.8)--(117.7, 419.8)--(117.8, 419.8)--(118.0, 419.9)--(118.2, 420.0)--(119.0, 420.3)--(119.4, 420.5)--(119.8, 420.7)--(120.1, 420.9)--(120.3, 421.1)--(121.1, 421.9)--(121.2, 422.0)--(121.3, 422.0)--(121.5, 422.0)--(121.9, 422.0)--(122.2, 422.0)--(122.6, 422.1)--(123.2, 422.3)--(123.6, 422.4)--(123.7, 422.4)--(124.2, 422.4)--(124.6, 422.6)--(124.9, 422.7)--(125.3, 422.9)--(125.4, 422.9)--(125.7, 423.0)--(126.1, 423.2)--(126.6, 423.6)--(127.2, 423.8)--(127.5, 423.9)--(127.7, 424.0)--(128.3, 424.3)--(128.5, 424.4)--(129.1, 424.8)--(129.5, 425.1)--(129.9, 425.4)--(130.2, 425.5)--(130.7, 425.7)--(131.3, 425.9)--(131.5, 425.9)--(131.6, 426.0)--(131.7, 426.0)--(132.0, 426.2)--(132.5, 426.5)--(132.7, 426.8)--(133.0, 427.1)--(133.9, 427.9)--(134.0, 428.0)--(134.4, 429.0)--(134.5, 429.1)--(134.6, 429.0)--(134.6, 429.1)--(135.0, 429.3)--(135.2, 429.6)--(135.3, 429.9)--(135.5, 430.1)--(135.6, 430.3)--(135.7, 430.4)--(136.1, 430.8)--(136.4, 431.0)--(136.6, 431.1)--(136.9, 431.1)--(137.2, 431.2)--(137.5, 431.2)--(137.7, 431.2)--(137.9, 431.3)--(138.3, 431.4)--(138.6, 431.5)--(138.8, 431.5)--(138.9, 431.6)--(139.1, 431.7)--(139.5, 431.9)--(139.6, 431.9)--(139.7, 431.9)--(139.8, 431.9)--(140.1, 431.9)--(140.2, 431.9)--(141.0, 432.2)--(141.3, 432.3)--(141.5, 432.3)--(142.0, 432.5)--(142.5, 432.6)--(142.8, 432.6)--(142.8, 432.7)--(143.2, 432.8)--(143.4, 432.9)--(143.6, 433.0)--(143.7, 433.1)--(143.8, 433.1)--(144.3, 433.5)--(144.8, 433.8)--(145.2, 434.0)--(145.5, 434.3)--(145.8, 434.4)--(146.1, 434.5)--(146.4, 434.6)--(146.7, 434.8)--(147.0, 435.0)--(147.1, 435.1)--(148.7, 436.4)--(149.6, 437.1)--(150.0, 437.4)--(150.0, 437.5)--(150.2, 437.2)--(150.4, 437.0)--(150.6, 436.7)--(150.7, 436.7)--(150.8, 436.7)--(150.7, 436.6)--(150.7, 436.5)--(150.9, 436.3)--(151.1, 436.0)--(151.7, 436.8)--(151.7, 436.9)--(151.8, 437.0)--(152.1, 437.4)--(152.4, 437.7)--(152.6, 438.0)--(152.9, 438.4)--(153.1, 438.6)--(153.4, 439.0)--(153.6, 439.2)--(153.6, 439.3)--(153.7, 439.4)--(153.9, 439.6)--(154.2, 440.0)--(154.3, 440.1)--(154.5, 440.3)--(154.6, 440.5)--(154.7, 440.5)--(154.6, 440.6)--(154.6, 440.7)--(154.6, 440.8)--(154.7, 441.0)--(154.8, 440.9)--(155.0, 440.9)--(155.0, 441.0)--(155.5, 441.5)--(156.1, 442.1)--(156.7, 442.7)--(157.2, 443.0)--(157.5, 443.2)--(157.8, 443.5)--(158.5, 443.9)--(158.7, 443.9)--(158.9, 444.1)--(159.1, 444.3)--(159.5, 444.5)--(159.7, 444.6)--(160.4, 444.8)--(161.4, 445.2)--(162.0, 445.4)--(162.5, 445.5)--(163.2, 445.8)--(163.7, 446.0)--(163.9, 446.2)--(164.2, 446.5)--(164.4, 446.9)--(164.5, 447.0)--(164.6, 447.3)--(164.6, 447.5)--(164.6, 447.6)--(164.7, 447.8)--(164.8, 448.0)--(165.0, 448.2)--(165.2, 448.3)--(165.5, 448.5)--(165.6, 448.6)--(165.8, 448.7)--(166.3, 448.3)--(167.0, 447.9)--(167.5, 447.7)--(167.7, 447.6)--(168.1, 447.4)--(168.2, 447.3)--(168.6, 447.1)--(168.8, 447.0)--(169.3, 446.8)--(169.6, 446.7)--(169.7, 446.7)--(169.9, 446.6)--(171.1, 446.1)--(171.2, 446.1)--(171.7, 445.9)--(172.1, 445.7)--(172.6, 445.5)--(173.0, 445.3)--(173.7, 445.0)--(173.9, 444.9)--(174.2, 444.6)--(174.3, 444.5)--(174.3, 444.4)--(174.3, 444.3)--(174.3, 444.2)--(174.4, 444.2)--(174.0, 443.1)--(173.6, 442.0)--(173.6, 441.9)--(173.6, 441.7)--(173.8, 440.9)--(174.1, 440.2)--(174.5, 439.4)--(174.8, 438.8)--(175.9, 437.7)--(176.1, 437.3)--(176.4, 437.0)--(176.8, 436.4)--(177.3, 435.7)--(177.6, 435.2)--(178.2, 434.4)--(178.6, 433.9)--(179.1, 433.4)--(179.3, 433.1)--(179.6, 432.7)--(180.6, 431.4)--(181.1, 430.7)--(181.3, 430.4)--(181.7, 429.9)--(182.0, 429.3)--(182.6, 428.7)--(182.9, 428.2)--(183.6, 427.2)--(185.1, 425.3)--(186.0, 424.1)--(186.2, 423.8)--(186.5, 423.3)--(186.6, 423.1)--(187.1, 422.5)--(187.7, 421.8)--(188.2, 421.2)--(188.8, 420.7)--(189.0, 420.6)--(189.1, 420.4)--(189.5, 420.0)--(190.4, 419.0)--(190.9, 418.3)--(191.8, 416.9)--(192.4, 416.1)--(192.8, 415.5)--(193.4, 414.7)--(193.9, 414.1)--(194.0, 413.9)--(194.3, 413.6)--(194.5, 413.5)--(194.8, 413.2)--(195.1, 412.7)--(195.3, 412.4)--(195.6, 412.0)--(196.4, 410.6)--(197.0, 409.9)--(198.9, 407.6)--(199.0, 407.4)--(200.0, 406.3)--(200.2, 406.0)--(200.8, 405.2)--(201.1, 404.8)--(200.6, 404.3)--(200.3, 404.1)--(200.1, 404.0)--(200.0, 403.9)--(199.8, 403.7)--(199.6, 403.5)--(199.3, 403.3)--(199.0, 403.0)--(198.8, 402.8)--(198.6, 402.6)--(198.5, 402.5)--(198.4, 402.5)--(198.4, 402.4)--(198.3, 402.4)--(198.2, 402.4)--(198.1, 402.4)--(198.1, 402.5)--(197.8, 402.5)--(197.7, 402.5)--(197.6, 402.5)--(197.5, 402.5)--(197.4, 402.5)--(197.3, 402.5)--(197.2, 402.5)--(197.1, 402.5)--(197.0, 402.4)--(196.9, 402.4)--(196.8, 402.3)--(196.7, 402.3)--(196.6, 402.2)--(196.5, 402.1)--(196.4, 402.1)--(196.4, 402.0)--(195.3, 401.4)--(194.4, 400.8)--(194.8, 400.4)--(192.8, 400.0)--(191.4, 399.7)--(191.1, 399.7)--(190.5, 399.5)--(190.0, 399.4)--(189.5, 399.2)--(189.2, 399.1)--(188.9, 399.0)--(188.6, 398.8)--(188.5, 398.8)--(188.4, 398.3)--(188.1, 398.4)--(188.0, 398.5)--(187.7, 398.2)--(187.5, 398.0)--(187.1, 397.7)--(186.9, 397.7)--(186.6, 397.6)--(186.1, 397.4)--(185.9, 397.3)--(185.7, 397.2)--(185.4, 397.1)--(185.2, 396.9)--(185.6, 396.5)--(185.7, 396.4)--(185.9, 396.3)--(186.0, 396.2)--(186.1, 396.2)--(186.4, 396.0)--(186.6, 396.0)--(187.2, 395.8)--(187.4, 395.7)--(187.6, 395.6)--(187.7, 395.6)--(187.9, 395.5)--(188.0, 395.4)--(188.2, 395.2)--(188.4, 395.1)--(188.5, 395.0)--(188.7, 394.8)--(188.8, 394.7)--(188.9, 394.6)--(189.1, 394.4)--(189.3, 394.1)--(189.3, 394.0)--(189.4, 393.8)--(189.5, 393.6)--(189.7, 393.3)--(189.8, 392.9)--(190.2, 391.8)--(190.3, 391.2)--(190.4, 390.8)--(190.4, 390.6)--(190.5, 390.2)--(190.6, 389.4)--(190.8, 388.9)--(190.9, 388.7)--(191.0, 388.6)--(191.0, 388.5)--(191.0, 388.4)--(191.0, 388.3)--(191.0, 387.7)--(191.0, 387.6)--(190.9, 387.6)--(190.9, 387.5)--(189.8, 387.8)--(186.4, 388.4)--(184.2, 388.8)--(182.7, 389.0)--(181.7, 389.1)--(180.2, 389.2)--(180.0, 389.2)--(179.9, 389.2)--(179.7, 389.2)--(179.2, 389.3)--(178.7, 389.5)--(178.6, 389.6)--(178.4, 389.6)--(178.2, 389.7)--(177.9, 389.7)--(177.3, 389.7)--(177.2, 389.7)--(176.9, 389.7)--(176.6, 389.6)--(176.2, 389.6)--(175.9, 389.5)--(175.4, 389.4)--(175.0, 389.3)--(174.7, 389.2)--(174.7, 389.1)--(174.5, 389.1)--(174.3, 388.9)--(174.0, 388.8)--(173.0, 388.2)--(171.4, 387.3)--(170.6, 386.8)--(169.7, 386.2)--(169.5, 386.0)--(169.4, 385.9)--(168.9, 385.5)--(167.0, 383.7)--(165.9, 382.5)--(165.5, 382.3)--(165.2, 382.0)--(164.9, 381.8)--(164.6, 381.6)--(164.3, 381.4)--(162.7, 380.6)--(161.4, 380.1)--(160.5, 379.8)--(160.4, 379.7)--(160.5, 379.5)--(160.5, 379.3)--(160.5, 379.2)--(160.6, 379.0)--(160.7, 378.6)--(161.0, 377.8)--(161.3, 377.1)--(161.4, 376.8)--(161.4, 376.6)--(161.7, 374.7)--(161.8, 374.4)--(161.8, 374.2)--(161.8, 374.0)--(161.9, 373.9)--(161.9, 373.6)--(162.4, 372.7)--(162.8, 371.8)--(163.3, 370.9)--(163.6, 370.3)--(163.8, 369.8)--(163.3, 369.4)--(162.7, 368.9)--(162.2, 368.6)--(161.8, 368.4)--(161.8, 368.2)--(161.3, 367.9)--(161.1, 367.8)--(160.7, 367.7)--(160.1, 367.6)--(160.2, 367.3)--(159.3, 367.0)--(158.9, 366.9)--(158.6, 366.8)--(158.7, 366.3)--(158.7, 365.8)--(159.1, 365.6)--(159.4, 365.5)--(159.5, 364.4)--(159.5, 363.5)--(159.7, 362.6)--(159.5, 362.3)--(159.7, 362.0)--(159.8, 361.7)--(159.4, 361.7)--(159.2, 361.7)--(159.1, 361.6)--(158.9, 361.6)--(158.8, 361.6)--(158.7, 361.5)--(158.6, 361.4)--(157.7, 360.6)--(157.6, 360.6)--(157.8, 360.5)--(157.2, 359.9)--(157.3, 359.8)--(156.8, 359.0)--(156.3, 358.2)--(155.9, 357.6)--(155.9, 357.0)--(155.9, 356.6)--(155.9, 356.3)--(155.3, 356.4)--(154.9, 355.1)--(154.8, 355.0)--(154.7, 355.0)--(154.6, 355.1)--(154.4, 355.1)--(154.3, 355.1)--(154.3, 355.2)--(153.7, 355.4)--(153.4, 355.5)--(153.3, 355.6)--(152.9, 355.7)--(152.8, 355.7)--(152.6, 355.8)--(152.4, 355.8)--(151.1, 355.8)--(150.8, 355.9)--(150.3, 355.9)--(150.0, 355.9)--(149.7, 356.0)--(149.0, 356.2)--(148.5, 356.5)--(148.0, 356.8)--(148.0, 356.9)--(147.9, 356.9)--(147.8, 357.0)--(147.6, 357.1)--(146.7, 357.9)--(146.7, 358.0)--(146.5, 358.3)--(145.6, 358.0)--(144.3, 357.6)--(143.7, 357.4)--(142.3, 357.1)--(141.1, 356.8)--(139.9, 356.4)--(138.4, 355.9)--(137.8, 355.8)--(137.7, 355.7)--(136.9, 355.5)--(136.3, 355.4)--(136.2, 355.4)--(136.3, 355.1)--(136.4, 354.8)--(136.4, 354.6)--(136.3, 354.5)--(136.2, 354.5)--(136.1, 354.5)--(136.2, 354.4)--(136.2, 354.3)--(136.1, 354.3)--(136.1, 354.2)--(136.2, 354.0)--(135.9, 353.9)--(135.8, 353.8)--(135.5, 353.7)--(135.2, 353.6)--(134.9, 353.5)--(134.8, 353.4)--(134.7, 353.4)--(134.5, 353.4)--(134.3, 353.4)--(134.3, 353.3)--(133.8, 353.2)--(133.7, 353.2)--(133.4, 353.1)--(133.5, 352.9)--(133.3, 352.8)--(133.1, 352.8)--(132.9, 352.7)--(132.7, 352.7)--(132.6, 352.7)--(132.5, 352.7)--(132.0, 352.5)--(131.8, 352.5)--(131.6, 352.4)--(131.4, 352.3)--(131.3, 352.3)--(131.1, 352.3)--(131.0, 352.2)--(130.8, 352.1)--(130.6, 352.0)--(130.5, 351.9)--(130.4, 351.8)--(130.1, 351.6)--(130.0, 351.6)--(129.9, 351.6)--(129.8, 351.5)--(129.7, 351.5)--(129.6, 351.5)--(129.3, 351.5)--(129.1, 351.2)--(128.7, 351.6)--(128.5, 351.3)--(128.3, 351.4)--(127.6, 351.0)--(127.0, 350.5)--(126.6, 351.0)--(126.5, 351.0)--(126.3, 351.3)--(126.0, 351.7)--(125.8, 352.1)--(125.7, 352.4)--(125.7, 352.6)--(125.6, 352.6)--(125.5, 352.8)--(125.5, 353.0)--(125.4, 353.1)--(125.3, 353.4)--(125.2, 353.6)--(125.0, 354.0)--(124.9, 354.2)--(124.8, 354.4)--(124.8, 354.7)--(124.7, 354.9)--(124.6, 355.1)--(124.5, 355.5)--(124.5, 355.7)--(124.3, 356.0)--(124.1, 356.4)--(123.9, 356.8)--(123.8, 357.1)--(123.9, 357.3)--(123.9, 357.4)--(124.0, 357.5)--(123.9, 357.6)--(123.9, 357.7)--(123.9, 357.8)--(123.7, 357.8)--(123.7, 358.2)--(123.8, 358.5)--(123.8, 358.8)--(123.7, 358.9)--(123.6, 359.2)--(123.5, 359.3)--(123.5, 359.5)--(123.3, 359.7)--(123.0, 360.2)--(122.7, 360.7)--(122.6, 360.8)--(122.5, 360.9)--(122.3, 361.3)--(122.4, 361.4)--(122.5, 361.5)--(122.5, 361.6)--(122.4, 361.7)--(122.2, 362.1)--(122.1, 362.2)--(122.1, 362.4)--(122.1, 362.5)--(122.2, 362.9)--(122.2, 363.0)--(122.2, 363.1)--(122.2, 363.3)--(122.1, 363.6)--(122.0, 364.2)--(121.8, 364.7)--(121.8, 365.0)--(121.4, 366.0)--(121.5, 366.1)--(120.8, 367.8)--(120.6, 368.1)--(120.6, 368.2)--(120.5, 368.4)--(120.3, 369.0)--(119.8, 369.9)--(119.6, 370.2)--(119.2, 370.9)--(119.5, 371.2)--(119.7, 371.5)--(119.5, 371.9)--(119.0, 372.8)--(118.9, 373.1)--(118.6, 373.6)--(118.5, 374.0)--(118.0, 374.6)--(118.4, 375.0)--(118.2, 375.3)--(118.2, 375.4)--(118.1, 375.4)--(117.8, 376.7)--(117.7, 377.2)--(117.6, 377.7)--(117.3, 378.1)--(116.8, 379.0)--(116.4, 379.8)--(116.0, 380.8)--(115.7, 381.4)--(115.8, 381.4)--(115.6, 381.6)--(115.6, 381.7)--(115.4, 381.9)--(115.5, 382.1)--(115.8, 382.1)--(115.8, 382.5)--(115.7, 383.4)--(115.7, 383.6)--(115.8, 383.6)--(115.7, 384.2)--(115.6, 384.8)--(115.5, 384.8)--(115.5, 385.2)--(115.4, 385.7)--(115.4, 386.2)--(115.3, 386.9)--(115.2, 387.9)--(115.2, 388.0)--(115.1, 388.2)--(115.1, 388.5)--(115.0, 388.8)--(114.9, 389.4)--(114.8, 389.6)--(114.6, 389.9)--(114.3, 390.0)--(114.2, 390.2)--(113.9, 390.6)--(113.8, 390.9)--(113.4, 391.5)--(113.2, 391.8)--(113.0, 391.7)--(113.1, 391.6)--(112.9, 391.5)--(112.7, 391.6)--(112.5, 391.5)--(112.5, 391.7)--(112.5, 391.8)--(112.4, 392.0)--(112.5, 392.2)--(112.5, 392.3)--(112.5, 392.7)--(112.5, 393.0)--(112.4, 393.4)--(112.4, 393.5)--(112.4, 393.6)--(112.3, 393.8)--(112.1, 394.3)--(112.0, 394.6)--(111.9, 394.9)--(111.9, 395.0)--(111.8, 395.2)--(111.8, 395.5)--(111.7, 395.8)--(111.7, 396.3)--(111.7, 396.5)--(111.7, 396.8)--(111.7, 396.9)--(111.6, 397.0)--(111.5, 397.2)--(111.4, 397.5)--(111.3, 397.7)--(111.2, 397.7)--(111.1, 398.0)--(110.9, 398.2)--(110.8, 398.5)--(110.8, 398.6)--(110.8, 398.7)--(110.8, 398.8)--(110.8, 398.9)--(110.8, 399.0)--(110.5, 399.1)--(110.0, 399.2)--(109.3, 399.3)--(109.0, 399.4)--(109.1, 400.0)--(109.1, 400.1)--(109.2, 400.3)--(109.0, 400.7)--(108.8, 401.0)--(108.5, 401.5)--(108.3, 401.8)--(108.3, 401.9)--(108.2, 402.2)--(108.0, 402.6)--(108.0, 403.0)--(107.9, 403.3)--(107.7, 403.7)--(107.6, 404.0)--(107.5, 404.4)--(107.3, 405.5)--(107.3, 405.9)--(107.4, 406.4)--(107.3, 406.6)--(107.3, 407.1)--(107.3, 407.6)--(107.3, 408.0)--(107.3, 408.4)--(107.3, 409.1)--(107.5, 409.2)--(107.6, 409.5)--(107.7, 409.6)--(107.6, 409.7)--(107.5, 409.9)--(107.3, 410.5)--(107.2, 411.0)--(107.2, 411.4)--(107.1, 411.6)--(107.0, 411.8)--(106.9, 412.0)--(106.8, 412.2)--(106.7, 412.4)--(106.6, 412.7)--(106.5, 413.1)--(106.5, 413.6)--(106.5, 414.1)--(106.4, 414.9)--(106.3, 415.4)--(106.2, 415.9)--cycle; +Havering = (498.9, 314.6)--(498.9, 314.7)--(499.0, 315.0)--(499.0, 315.3)--(499.1, 315.6)--(499.1, 315.7)--(499.1, 315.9)--(499.1, 316.0)--(499.0, 316.1)--(499.1, 316.2)--(499.1, 316.4)--(499.1, 316.7)--(499.2, 317.0)--(499.2, 317.1)--(499.2, 317.2)--(499.4, 318.3)--(499.5, 318.8)--(499.5, 318.9)--(499.6, 319.0)--(499.6, 319.1)--(499.6, 319.4)--(499.8, 319.9)--(499.8, 320.0)--(499.9, 320.1)--(499.9, 320.3)--(500.0, 320.5)--(500.0, 320.7)--(500.1, 321.0)--(500.2, 321.3)--(500.3, 321.6)--(500.3, 321.7)--(500.3, 321.8)--(500.4, 321.9)--(500.4, 322.1)--(500.5, 322.5)--(500.5, 322.6)--(500.6, 323.0)--(500.8, 323.5)--(500.8, 323.8)--(501.1, 324.8)--(501.1, 325.0)--(501.2, 325.2)--(501.2, 325.3)--(501.1, 325.4)--(501.1, 325.7)--(501.1, 325.8)--(501.1, 325.9)--(501.1, 326.0)--(501.3, 326.6)--(501.3, 326.8)--(501.4, 326.8)--(501.4, 327.3)--(501.5, 327.7)--(501.6, 328.0)--(501.8, 328.4)--(501.9, 328.7)--(502.0, 329.0)--(502.0, 329.1)--(502.0, 329.2)--(502.0, 329.3)--(502.0, 329.4)--(502.1, 329.4)--(502.2, 329.5)--(502.2, 329.6)--(502.2, 329.7)--(502.2, 329.8)--(502.2, 329.9)--(502.2, 330.0)--(502.2, 330.1)--(502.2, 330.2)--(502.2, 330.3)--(502.4, 330.7)--(502.5, 330.9)--(502.4, 331.1)--(502.4, 331.2)--(502.4, 331.3)--(502.6, 331.5)--(502.7, 331.7)--(502.8, 331.8)--(502.8, 331.9)--(502.9, 332.0)--(502.9, 332.2)--(503.0, 332.4)--(503.1, 332.6)--(503.1, 332.8)--(503.1, 332.9)--(503.2, 333.0)--(503.3, 333.0)--(503.4, 333.0)--(503.5, 333.2)--(503.5, 333.3)--(503.6, 333.3)--(503.6, 333.4)--(503.7, 333.5)--(503.8, 333.5)--(503.8, 333.8)--(503.8, 333.9)--(503.9, 334.0)--(503.9, 334.1)--(504.0, 334.2)--(504.1, 334.3)--(504.2, 334.4)--(504.3, 334.4)--(504.3, 334.5)--(504.4, 334.5)--(504.4, 334.6)--(504.5, 334.6)--(504.5, 334.7)--(504.5, 334.8)--(504.6, 334.9)--(504.7, 335.0)--(504.7, 335.2)--(504.7, 335.3)--(504.8, 335.4)--(504.8, 335.5)--(504.9, 335.5)--(505.0, 335.6)--(505.1, 335.7)--(505.2, 335.8)--(505.2, 335.9)--(505.3, 336.0)--(505.4, 336.1)--(505.6, 336.3)--(505.7, 336.5)--(505.8, 336.6)--(505.9, 336.7)--(506.0, 336.8)--(506.2, 337.1)--(506.3, 337.2)--(506.4, 337.3)--(506.4, 337.4)--(506.5, 337.4)--(506.5, 337.5)--(506.6, 337.6)--(506.7, 337.6)--(506.8, 338.0)--(506.9, 338.1)--(506.9, 338.3)--(507.0, 338.4)--(507.0, 338.6)--(507.1, 338.7)--(507.1, 338.8)--(507.2, 338.9)--(507.3, 339.0)--(507.3, 339.2)--(507.3, 339.3)--(507.4, 339.4)--(507.4, 339.5)--(507.4, 339.6)--(507.3, 339.7)--(507.3, 339.9)--(507.4, 340.0)--(507.4, 340.1)--(507.4, 340.3)--(507.5, 340.3)--(507.5, 340.4)--(507.6, 340.6)--(507.6, 340.7)--(507.6, 340.8)--(507.6, 340.9)--(507.7, 341.0)--(507.8, 341.3)--(508.1, 341.9)--(508.3, 342.3)--(508.6, 343.0)--(508.7, 343.2)--(509.1, 343.8)--(509.2, 343.9)--(509.3, 344.1)--(509.4, 344.2)--(509.7, 344.4)--(509.9, 344.6)--(510.2, 344.8)--(510.3, 344.9)--(510.4, 345.0)--(510.6, 345.1)--(510.7, 345.2)--(510.9, 345.3)--(511.0, 345.4)--(511.2, 345.4)--(511.3, 345.4)--(511.4, 345.4)--(511.5, 345.4)--(511.6, 345.5)--(511.7, 345.7)--(511.9, 345.9)--(511.9, 346.0)--(512.0, 346.0)--(512.0, 346.1)--(512.1, 346.2)--(512.2, 346.3)--(512.3, 346.3)--(512.3, 346.4)--(512.3, 346.5)--(512.3, 346.6)--(512.4, 346.7)--(512.4, 346.9)--(512.4, 347.2)--(512.5, 347.3)--(512.5, 347.5)--(512.5, 347.6)--(512.5, 347.7)--(512.5, 347.8)--(512.5, 347.9)--(512.6, 348.0)--(512.5, 348.0)--(512.5, 348.1)--(512.5, 348.2)--(512.4, 348.6)--(512.5, 348.8)--(512.5, 348.9)--(512.5, 349.1)--(512.6, 349.2)--(512.6, 349.3)--(512.6, 349.5)--(512.7, 349.7)--(512.7, 349.8)--(512.7, 350.1)--(512.8, 350.3)--(512.9, 350.5)--(513.0, 350.7)--(513.2, 350.9)--(513.4, 351.1)--(513.5, 351.2)--(513.6, 351.4)--(513.7, 351.6)--(513.8, 351.8)--(513.9, 351.9)--(514.3, 352.4)--(514.4, 352.5)--(514.5, 352.6)--(514.6, 352.7)--(514.8, 352.9)--(515.1, 353.1)--(515.3, 353.2)--(515.5, 353.4)--(515.7, 353.6)--(516.0, 353.8)--(516.1, 353.9)--(516.3, 354.0)--(516.4, 354.0)--(516.6, 354.1)--(516.6, 354.2)--(516.7, 354.5)--(516.8, 354.7)--(516.9, 354.9)--(517.0, 355.2)--(517.1, 355.4)--(517.1, 355.7)--(517.2, 355.8)--(517.2, 355.9)--(517.2, 356.0)--(517.3, 356.3)--(517.4, 356.5)--(517.5, 356.6)--(517.5, 356.7)--(517.5, 356.8)--(517.5, 356.9)--(517.6, 357.2)--(517.6, 357.3)--(517.6, 357.5)--(518.1, 358.0)--(518.3, 358.2)--(518.6, 358.5)--(518.8, 358.7)--(518.8, 358.8)--(518.9, 358.9)--(519.1, 358.9)--(519.1, 359.0)--(519.1, 359.1)--(519.1, 359.3)--(519.1, 359.5)--(519.2, 359.6)--(519.3, 359.8)--(519.3, 360.0)--(519.3, 360.1)--(519.4, 360.2)--(519.4, 360.3)--(519.4, 360.4)--(519.3, 360.4)--(519.1, 360.8)--(519.0, 360.8)--(518.8, 360.9)--(518.7, 361.0)--(518.6, 361.1)--(518.5, 361.1)--(518.4, 361.2)--(518.3, 361.3)--(518.3, 361.4)--(518.2, 361.5)--(518.0, 361.7)--(517.9, 361.7)--(517.8, 361.8)--(517.8, 361.9)--(517.9, 362.0)--(517.9, 362.1)--(517.8, 362.2)--(517.7, 362.2)--(517.6, 362.2)--(517.5, 362.3)--(517.5, 362.4)--(517.6, 362.5)--(517.6, 362.6)--(517.7, 362.6)--(517.6, 362.8)--(517.6, 362.9)--(517.5, 363.0)--(517.4, 363.2)--(517.3, 363.3)--(517.1, 363.4)--(517.1, 363.5)--(517.1, 363.6)--(517.1, 363.7)--(517.0, 363.7)--(516.7, 363.8)--(516.6, 364.0)--(516.4, 364.2)--(516.3, 364.3)--(516.2, 364.3)--(516.0, 364.3)--(515.7, 364.3)--(515.5, 364.3)--(515.5, 364.4)--(515.5, 364.6)--(515.6, 364.6)--(515.7, 364.6)--(515.7, 364.7)--(515.7, 364.8)--(515.6, 364.8)--(515.5, 365.0)--(515.5, 365.1)--(515.6, 365.2)--(515.5, 365.3)--(515.5, 365.4)--(515.3, 365.5)--(515.3, 365.7)--(515.3, 365.8)--(515.3, 365.9)--(515.3, 366.0)--(515.3, 366.2)--(515.3, 366.3)--(515.4, 366.4)--(515.3, 366.5)--(515.4, 366.6)--(515.4, 366.7)--(515.3, 366.8)--(515.4, 366.9)--(515.5, 367.0)--(515.5, 367.2)--(515.5, 367.4)--(515.5, 367.5)--(515.4, 367.6)--(515.4, 367.7)--(515.4, 367.8)--(515.4, 367.9)--(515.4, 368.1)--(515.4, 368.3)--(515.3, 368.4)--(515.3, 368.5)--(515.0, 368.7)--(514.6, 368.9)--(514.5, 369.1)--(514.3, 369.3)--(514.1, 369.4)--(514.1, 369.5)--(514.0, 369.6)--(514.0, 369.7)--(513.9, 369.7)--(514.0, 370.1)--(514.3, 370.8)--(514.4, 371.2)--(514.4, 371.3)--(514.5, 371.4)--(514.5, 371.5)--(514.6, 371.7)--(514.7, 372.2)--(514.7, 372.5)--(514.8, 372.6)--(514.8, 372.7)--(514.9, 372.8)--(515.1, 373.0)--(515.2, 373.1)--(515.3, 373.3)--(515.5, 373.5)--(515.5, 373.6)--(515.5, 373.7)--(515.5, 373.9)--(515.5, 374.1)--(515.5, 374.4)--(514.9, 373.9)--(514.6, 373.6)--(514.5, 373.5)--(514.4, 373.4)--(514.3, 373.4)--(514.1, 373.5)--(513.8, 373.5)--(513.3, 373.5)--(513.2, 373.6)--(513.1, 373.6)--(513.0, 373.5)--(512.9, 373.5)--(512.7, 373.5)--(512.3, 373.6)--(512.2, 373.6)--(512.1, 373.6)--(511.6, 373.6)--(511.3, 373.7)--(511.0, 373.7)--(510.6, 373.6)--(510.2, 373.5)--(509.9, 373.5)--(509.7, 373.5)--(509.4, 373.4)--(509.2, 373.4)--(508.9, 373.4)--(508.8, 373.5)--(508.2, 373.6)--(507.7, 373.7)--(507.4, 373.7)--(507.2, 373.6)--(507.0, 373.5)--(506.8, 373.4)--(506.5, 373.4)--(506.3, 373.3)--(506.0, 373.2)--(505.9, 373.2)--(505.5, 372.9)--(505.3, 372.8)--(505.2, 372.7)--(505.1, 372.6)--(505.0, 372.6)--(504.8, 372.5)--(504.7, 372.4)--(504.5, 372.3)--(504.4, 372.1)--(504.3, 372.1)--(504.1, 372.0)--(504.0, 371.9)--(503.9, 371.9)--(503.7, 371.8)--(503.6, 371.8)--(503.4, 371.8)--(503.1, 371.8)--(502.8, 371.7)--(502.7, 371.6)--(502.6, 371.6)--(502.4, 371.4)--(502.2, 371.3)--(502.1, 371.2)--(501.9, 371.1)--(501.6, 370.9)--(501.2, 370.7)--(500.8, 370.4)--(500.6, 370.2)--(500.3, 370.1)--(500.1, 370.0)--(499.9, 369.8)--(499.5, 369.6)--(499.5, 369.7)--(499.4, 369.8)--(499.2, 369.9)--(499.1, 369.9)--(498.9, 370.0)--(498.7, 370.1)--(498.6, 370.3)--(498.6, 370.4)--(498.5, 370.5)--(498.3, 370.6)--(498.2, 370.7)--(498.2, 370.9)--(498.1, 371.0)--(498.0, 371.2)--(497.8, 371.4)--(497.6, 371.6)--(497.4, 371.7)--(497.3, 371.8)--(497.1, 372.0)--(496.9, 372.2)--(496.7, 372.2)--(496.5, 372.4)--(496.1, 372.8)--(495.8, 373.0)--(495.7, 373.2)--(495.6, 373.3)--(495.5, 373.4)--(495.3, 373.5)--(495.2, 373.5)--(495.0, 373.6)--(494.8, 373.8)--(494.7, 373.9)--(494.5, 374.1)--(494.4, 374.2)--(494.1, 374.5)--(493.9, 374.7)--(493.6, 375.0)--(493.3, 375.4)--(492.9, 375.8)--(492.7, 376.0)--(492.3, 376.3)--(492.1, 376.5)--(492.0, 376.6)--(491.9, 376.5)--(491.8, 376.4)--(491.7, 376.3)--(491.6, 376.3)--(491.5, 376.3)--(491.3, 376.3)--(491.1, 376.4)--(491.1, 376.5)--(491.0, 376.5)--(491.0, 376.6)--(490.9, 376.6)--(490.8, 376.6)--(490.7, 376.6)--(490.6, 376.6)--(490.3, 377.0)--(490.2, 377.2)--(489.2, 377.1)--(489.2, 377.2)--(489.1, 377.2)--(489.1, 377.3)--(488.9, 377.3)--(488.8, 377.3)--(488.8, 377.4)--(488.8, 377.5)--(488.8, 377.8)--(488.7, 378.0)--(489.8, 378.2)--(490.9, 378.4)--(490.8, 378.6)--(490.8, 378.8)--(490.6, 378.9)--(490.5, 379.0)--(490.5, 379.2)--(490.4, 380.3)--(490.5, 380.3)--(490.4, 380.9)--(490.2, 382.3)--(489.5, 382.1)--(489.5, 382.2)--(489.5, 382.4)--(489.5, 382.8)--(489.5, 383.0)--(489.5, 383.5)--(489.5, 383.8)--(489.6, 384.3)--(489.6, 384.5)--(489.6, 384.6)--(489.5, 384.9)--(489.5, 385.1)--(488.7, 385.0)--(488.8, 385.7)--(488.8, 386.7)--(488.8, 387.0)--(488.8, 387.5)--(488.8, 389.2)--(488.9, 390.7)--(489.5, 390.6)--(489.6, 390.9)--(490.0, 391.6)--(490.4, 392.4)--(490.6, 392.7)--(490.9, 393.0)--(491.0, 393.2)--(491.1, 393.7)--(491.2, 394.0)--(491.2, 394.5)--(491.2, 395.7)--(491.2, 397.2)--(491.2, 398.4)--(491.2, 399.2)--(491.2, 400.0)--(491.2, 400.4)--(491.2, 400.7)--(491.1, 401.1)--(491.0, 401.5)--(490.8, 402.1)--(490.7, 402.4)--(490.8, 403.8)--(490.8, 404.7)--(490.8, 405.2)--(490.9, 406.2)--(491.0, 407.0)--(490.8, 407.4)--(490.5, 407.9)--(490.2, 408.4)--(490.0, 408.8)--(488.8, 408.0)--(488.9, 408.4)--(488.8, 408.4)--(488.5, 408.5)--(488.6, 408.9)--(488.7, 409.5)--(488.7, 410.0)--(488.8, 410.5)--(488.8, 410.6)--(488.8, 410.9)--(488.8, 411.0)--(488.9, 411.3)--(489.1, 412.3)--(489.2, 413.2)--(489.2, 413.3)--(489.3, 413.5)--(489.3, 413.7)--(489.3, 413.8)--(489.3, 413.9)--(489.3, 414.0)--(489.6, 415.3)--(489.4, 415.6)--(489.3, 415.8)--(489.2, 415.9)--(489.2, 416.0)--(489.1, 416.2)--(489.1, 416.3)--(489.0, 416.7)--(488.9, 416.9)--(488.9, 417.0)--(488.9, 417.4)--(488.9, 417.5)--(488.9, 417.8)--(488.8, 418.4)--(488.8, 418.6)--(488.8, 418.8)--(488.8, 419.0)--(488.9, 419.3)--(488.9, 419.9)--(488.9, 420.2)--(488.9, 420.4)--(488.9, 420.7)--(488.9, 420.9)--(488.9, 421.2)--(488.9, 421.3)--(488.9, 421.5)--(488.8, 421.7)--(488.8, 422.0)--(488.7, 422.2)--(488.6, 422.5)--(488.5, 422.9)--(488.4, 423.0)--(488.3, 423.3)--(488.3, 423.6)--(488.2, 423.9)--(488.1, 424.4)--(488.1, 424.8)--(488.0, 425.5)--(487.9, 425.8)--(487.8, 425.9)--(487.8, 426.0)--(487.7, 426.2)--(487.5, 426.6)--(487.4, 426.8)--(487.2, 427.1)--(487.1, 427.3)--(486.9, 427.6)--(486.8, 427.7)--(486.7, 427.8)--(486.6, 427.9)--(486.5, 428.1)--(486.4, 428.2)--(486.4, 428.3)--(486.3, 428.4)--(486.3, 428.6)--(486.3, 428.7)--(486.3, 428.8)--(486.2, 428.8)--(486.2, 428.9)--(486.1, 429.0)--(486.1, 429.3)--(486.0, 429.6)--(485.9, 429.8)--(485.8, 430.0)--(485.7, 430.5)--(485.6, 430.7)--(485.5, 430.8)--(485.3, 430.9)--(485.3, 431.1)--(485.1, 431.3)--(484.9, 431.8)--(484.8, 432.0)--(484.7, 432.1)--(484.7, 432.2)--(484.5, 432.5)--(484.3, 432.8)--(484.2, 433.0)--(484.0, 433.3)--(483.9, 433.4)--(483.8, 433.6)--(483.1, 434.8)--(483.0, 434.9)--(483.0, 435.0)--(482.9, 435.1)--(482.8, 435.2)--(482.6, 435.4)--(482.5, 435.6)--(481.8, 436.7)--(481.1, 438.0)--(482.2, 438.0)--(485.8, 437.9)--(488.4, 437.9)--(488.6, 437.9)--(489.2, 437.9)--(490.0, 437.9)--(490.9, 438.0)--(491.1, 438.0)--(491.2, 438.1)--(491.4, 438.1)--(491.6, 438.1)--(492.4, 438.1)--(492.7, 438.1)--(492.9, 438.1)--(493.1, 438.1)--(493.3, 438.1)--(493.8, 438.1)--(494.8, 437.9)--(496.7, 437.7)--(498.0, 437.4)--(498.1, 437.7)--(498.4, 437.6)--(498.6, 437.6)--(499.0, 437.5)--(499.3, 437.4)--(499.7, 437.4)--(500.0, 437.3)--(500.2, 437.3)--(500.5, 437.2)--(501.4, 436.8)--(501.6, 436.8)--(501.7, 436.7)--(501.8, 436.7)--(501.9, 436.6)--(502.0, 436.6)--(502.1, 436.5)--(502.3, 436.3)--(502.4, 436.3)--(502.9, 436.6)--(503.4, 436.8)--(504.4, 437.4)--(505.4, 438.0)--(506.1, 438.4)--(506.8, 438.8)--(508.1, 439.2)--(508.5, 439.3)--(508.5, 439.4)--(509.1, 439.6)--(509.6, 439.7)--(509.8, 439.8)--(510.0, 439.8)--(510.1, 439.8)--(510.3, 439.9)--(510.3, 440.5)--(510.3, 440.9)--(510.4, 441.2)--(510.4, 441.3)--(510.5, 441.2)--(510.6, 441.2)--(510.6, 441.3)--(510.6, 441.4)--(510.8, 441.4)--(511.1, 441.5)--(511.4, 441.5)--(511.7, 441.4)--(511.9, 441.3)--(512.1, 441.2)--(512.1, 441.1)--(512.3, 441.1)--(512.4, 441.0)--(512.5, 441.0)--(512.8, 440.8)--(513.2, 440.6)--(513.7, 440.2)--(514.1, 439.9)--(514.2, 440.0)--(514.3, 440.1)--(514.2, 440.4)--(514.2, 440.7)--(514.1, 441.0)--(514.1, 441.2)--(514.9, 441.2)--(515.7, 441.1)--(515.9, 440.8)--(516.1, 440.5)--(516.5, 440.1)--(516.6, 440.3)--(516.6, 440.7)--(516.8, 440.8)--(517.0, 440.8)--(517.2, 440.8)--(517.3, 440.9)--(517.4, 440.9)--(517.7, 441.0)--(518.4, 441.2)--(518.7, 441.3)--(519.2, 441.3)--(519.6, 441.4)--(520.2, 441.6)--(520.8, 441.5)--(521.7, 441.5)--(522.9, 441.2)--(523.4, 441.0)--(524.0, 440.8)--(524.3, 440.9)--(524.6, 440.9)--(525.2, 441.0)--(525.7, 441.0)--(525.9, 441.1)--(526.0, 441.1)--(526.2, 441.1)--(526.3, 441.2)--(526.5, 441.3)--(527.1, 441.5)--(527.6, 441.7)--(527.8, 441.8)--(527.9, 441.9)--(528.0, 441.9)--(528.0, 442.0)--(528.1, 442.1)--(528.3, 442.3)--(528.4, 442.4)--(528.5, 442.4)--(528.5, 442.5)--(528.7, 442.6)--(529.0, 442.7)--(529.5, 442.9)--(529.6, 442.9)--(529.7, 443.0)--(529.8, 443.0)--(530.3, 443.0)--(530.4, 443.0)--(530.7, 443.0)--(530.9, 443.0)--(531.3, 443.1)--(531.6, 443.2)--(532.2, 443.4)--(532.1, 443.6)--(532.2, 443.6)--(532.3, 443.6)--(532.4, 443.7)--(532.6, 443.8)--(532.9, 444.1)--(533.2, 444.0)--(533.4, 444.1)--(533.6, 444.3)--(534.0, 444.5)--(534.4, 444.8)--(534.6, 444.9)--(534.8, 445.1)--(535.3, 445.5)--(535.8, 445.8)--(536.2, 446.0)--(536.4, 446.0)--(536.9, 446.3)--(537.4, 446.5)--(537.8, 446.6)--(538.2, 446.8)--(538.9, 447.1)--(539.0, 447.2)--(539.4, 447.7)--(539.9, 448.4)--(540.2, 448.9)--(540.4, 448.8)--(540.7, 448.6)--(541.2, 448.0)--(541.7, 447.6)--(542.2, 447.1)--(542.5, 446.8)--(542.7, 446.6)--(543.2, 446.3)--(543.8, 445.9)--(544.3, 445.5)--(544.8, 445.1)--(545.3, 444.6)--(545.8, 444.2)--(546.0, 444.0)--(546.5, 443.5)--(546.7, 443.4)--(547.0, 443.0)--(547.1, 442.8)--(547.3, 442.6)--(547.4, 442.5)--(547.8, 442.3)--(548.3, 441.8)--(548.7, 441.5)--(549.3, 441.1)--(549.7, 440.8)--(549.7, 440.7)--(549.8, 440.7)--(549.9, 440.7)--(550.0, 440.6)--(550.1, 440.6)--(550.1, 440.5)--(550.2, 440.5)--(550.2, 440.3)--(550.3, 440.3)--(550.7, 440.0)--(551.2, 439.6)--(551.3, 439.5)--(551.6, 439.4)--(552.2, 439.1)--(552.6, 438.8)--(553.0, 438.6)--(553.3, 438.4)--(554.0, 437.9)--(554.6, 437.5)--(555.3, 437.0)--(555.7, 436.8)--(556.1, 436.6)--(556.3, 436.5)--(556.8, 436.2)--(556.9, 436.1)--(557.0, 436.1)--(557.1, 436.0)--(557.2, 435.9)--(557.3, 435.9)--(557.4, 435.8)--(557.6, 435.7)--(558.1, 435.4)--(558.4, 435.2)--(558.5, 435.2)--(558.8, 435.0)--(559.1, 434.8)--(559.4, 434.5)--(559.6, 434.4)--(559.8, 434.3)--(560.2, 434.0)--(560.5, 433.7)--(560.6, 433.6)--(561.0, 433.3)--(561.5, 432.7)--(561.7, 432.5)--(561.9, 432.3)--(562.4, 431.6)--(562.6, 431.4)--(563.1, 431.0)--(563.7, 430.5)--(564.1, 430.1)--(564.2, 430.0)--(564.5, 429.0)--(564.6, 428.8)--(564.8, 428.6)--(565.0, 428.2)--(565.1, 428.0)--(565.3, 427.8)--(565.7, 427.3)--(566.1, 426.8)--(566.5, 426.2)--(567.0, 425.7)--(567.4, 425.2)--(567.8, 424.8)--(568.1, 424.7)--(568.3, 424.6)--(568.4, 424.5)--(568.6, 424.4)--(568.7, 424.3)--(569.1, 423.7)--(569.0, 423.7)--(568.9, 423.6)--(568.9, 423.5)--(568.9, 423.4)--(568.9, 423.3)--(568.9, 423.2)--(568.1, 422.6)--(568.0, 422.6)--(567.8, 422.7)--(567.5, 422.7)--(567.4, 422.7)--(567.3, 422.7)--(567.2, 422.7)--(567.1, 422.7)--(567.0, 422.7)--(567.0, 422.6)--(566.8, 422.5)--(566.4, 422.3)--(565.9, 422.0)--(565.7, 421.9)--(565.6, 421.9)--(564.9, 421.6)--(564.8, 421.6)--(564.6, 421.6)--(564.7, 421.4)--(564.7, 421.2)--(564.8, 421.0)--(564.8, 420.7)--(564.8, 420.6)--(564.8, 420.3)--(564.7, 420.0)--(564.7, 419.9)--(564.6, 419.8)--(564.6, 419.7)--(564.4, 419.8)--(564.3, 419.8)--(564.2, 419.8)--(564.1, 419.8)--(564.1, 419.6)--(564.1, 419.4)--(564.1, 419.3)--(564.0, 419.0)--(563.9, 419.0)--(563.8, 419.0)--(563.8, 418.9)--(563.7, 418.8)--(563.6, 418.7)--(563.6, 418.6)--(563.6, 418.5)--(563.7, 418.4)--(563.7, 418.3)--(563.6, 418.2)--(563.5, 418.0)--(563.5, 417.9)--(563.4, 418.0)--(563.3, 418.0)--(563.2, 418.0)--(563.2, 417.9)--(563.2, 417.8)--(563.3, 417.7)--(563.1, 417.7)--(563.0, 417.7)--(562.9, 417.5)--(562.8, 417.3)--(562.8, 417.2)--(562.6, 417.2)--(562.5, 417.3)--(562.4, 417.3)--(562.4, 417.2)--(562.4, 417.1)--(562.4, 417.0)--(562.4, 416.9)--(562.2, 417.0)--(562.1, 416.9)--(562.1, 416.8)--(562.1, 416.7)--(562.1, 416.6)--(562.1, 416.5)--(561.9, 416.4)--(561.9, 416.3)--(562.1, 416.2)--(562.1, 416.1)--(562.0, 416.0)--(562.1, 415.9)--(562.3, 415.9)--(562.5, 415.9)--(562.6, 415.7)--(562.9, 415.6)--(563.1, 415.6)--(563.3, 415.6)--(563.7, 415.6)--(564.1, 415.7)--(564.7, 415.7)--(564.8, 415.7)--(564.9, 415.6)--(564.9, 415.5)--(565.0, 415.4)--(565.9, 415.1)--(566.2, 415.0)--(566.7, 414.8)--(566.8, 414.8)--(567.5, 414.6)--(567.5, 414.5)--(567.8, 414.4)--(568.1, 414.4)--(568.7, 414.3)--(569.0, 414.3)--(569.2, 414.2)--(569.3, 414.2)--(569.9, 414.1)--(570.8, 414.1)--(571.1, 414.1)--(571.4, 414.1)--(571.8, 414.1)--(572.5, 414.1)--(573.1, 414.1)--(573.2, 413.6)--(573.3, 413.2)--(573.4, 412.9)--(573.4, 412.8)--(573.4, 412.5)--(573.5, 412.1)--(573.5, 412.0)--(573.4, 411.6)--(573.4, 411.3)--(573.4, 411.0)--(573.3, 410.8)--(573.2, 410.6)--(573.1, 410.3)--(573.1, 410.1)--(573.0, 409.9)--(572.9, 409.7)--(572.8, 409.6)--(572.8, 409.4)--(572.8, 409.3)--(572.9, 409.1)--(573.0, 408.7)--(573.1, 408.4)--(573.1, 408.1)--(573.2, 407.8)--(573.2, 407.5)--(573.3, 407.2)--(573.3, 407.0)--(573.2, 406.9)--(573.2, 406.8)--(573.3, 406.0)--(573.5, 405.2)--(573.6, 404.7)--(573.8, 404.4)--(573.9, 404.1)--(574.0, 404.1)--(574.0, 403.9)--(574.1, 403.8)--(574.1, 403.7)--(574.2, 403.5)--(574.4, 403.2)--(574.4, 402.8)--(574.4, 402.6)--(574.4, 402.5)--(574.4, 402.4)--(574.4, 402.3)--(574.5, 402.3)--(574.5, 402.2)--(574.6, 402.0)--(574.7, 401.7)--(574.8, 401.5)--(574.9, 401.3)--(574.9, 401.2)--(575.0, 401.0)--(575.1, 400.9)--(575.3, 400.7)--(575.6, 400.5)--(575.8, 400.3)--(576.1, 400.2)--(576.2, 400.1)--(576.2, 400.0)--(576.5, 399.6)--(576.8, 399.1)--(576.9, 398.8)--(577.2, 398.4)--(577.4, 398.1)--(577.5, 397.9)--(577.8, 397.6)--(578.1, 397.2)--(578.2, 397.0)--(578.2, 396.9)--(578.9, 396.0)--(579.1, 395.6)--(579.4, 395.2)--(579.7, 394.8)--(580.1, 394.2)--(580.4, 393.8)--(580.6, 393.5)--(581.0, 392.9)--(581.3, 392.5)--(581.6, 392.0)--(581.8, 391.6)--(582.0, 391.3)--(582.2, 391.3)--(582.2, 391.0)--(582.5, 390.5)--(582.8, 390.0)--(583.1, 389.4)--(583.2, 388.9)--(583.6, 388.2)--(583.8, 387.6)--(584.1, 386.8)--(584.4, 386.2)--(584.5, 386.2)--(584.5, 386.1)--(584.5, 386.0)--(584.6, 386.0)--(584.7, 386.0)--(584.7, 385.9)--(584.8, 385.9)--(584.9, 385.8)--(585.0, 385.8)--(585.1, 385.8)--(585.2, 385.8)--(585.3, 385.6)--(585.4, 385.5)--(585.5, 385.5)--(585.6, 385.6)--(585.6, 385.4)--(585.8, 385.1)--(585.8, 385.0)--(585.9, 385.0)--(585.9, 384.9)--(585.9, 384.8)--(585.9, 384.7)--(585.9, 384.6)--(586.0, 384.6)--(586.0, 384.5)--(586.0, 384.4)--(586.0, 384.3)--(586.0, 384.2)--(586.0, 384.0)--(585.9, 383.8)--(585.8, 383.6)--(585.7, 383.5)--(585.7, 383.4)--(585.7, 383.3)--(585.7, 383.2)--(585.7, 383.1)--(585.8, 383.0)--(585.9, 382.8)--(586.0, 382.5)--(586.2, 382.1)--(586.3, 381.6)--(586.5, 381.2)--(586.7, 380.7)--(587.0, 380.0)--(587.1, 379.5)--(587.3, 378.9)--(587.5, 378.4)--(587.6, 377.7)--(587.8, 377.2)--(588.0, 376.6)--(588.2, 375.9)--(588.3, 375.5)--(588.4, 375.3)--(589.6, 375.6)--(590.6, 375.7)--(591.4, 375.8)--(592.1, 375.9)--(593.0, 376.0)--(593.8, 376.1)--(594.8, 376.3)--(595.3, 376.3)--(595.3, 376.4)--(595.5, 376.4)--(595.7, 376.4)--(596.7, 376.5)--(597.5, 376.6)--(598.3, 376.7)--(598.3, 376.9)--(599.4, 377.0)--(599.4, 376.9)--(600.0, 377.0)--(602.0, 377.2)--(604.1, 377.5)--(604.2, 377.3)--(604.2, 377.2)--(604.2, 377.1)--(604.3, 377.0)--(604.3, 376.7)--(604.4, 376.5)--(604.4, 376.1)--(604.5, 375.7)--(604.5, 375.4)--(604.6, 375.3)--(604.7, 375.2)--(605.0, 374.1)--(605.0, 374.0)--(605.0, 373.9)--(605.0, 373.8)--(605.1, 373.6)--(605.0, 373.6)--(605.0, 373.5)--(605.0, 373.4)--(605.1, 373.4)--(605.1, 373.2)--(605.2, 373.0)--(605.2, 372.8)--(605.3, 372.5)--(605.4, 371.9)--(605.4, 371.7)--(605.4, 371.6)--(605.5, 371.2)--(605.5, 370.9)--(605.5, 370.5)--(605.6, 370.2)--(605.6, 370.1)--(605.7, 370.1)--(605.7, 370.0)--(605.8, 370.0)--(605.8, 369.9)--(605.8, 369.4)--(605.9, 369.0)--(605.9, 368.9)--(605.9, 368.7)--(606.0, 368.7)--(606.0, 368.6)--(606.1, 368.6)--(606.2, 368.5)--(606.6, 368.5)--(606.8, 368.5)--(607.1, 368.4)--(607.7, 368.0)--(608.0, 367.7)--(608.2, 367.6)--(608.3, 367.3)--(608.3, 366.7)--(608.4, 366.0)--(608.5, 365.9)--(608.6, 365.8)--(608.7, 365.8)--(608.7, 365.7)--(609.0, 365.6)--(609.4, 365.4)--(609.8, 365.2)--(610.1, 365.1)--(610.4, 365.0)--(610.7, 364.9)--(610.7, 364.8)--(610.8, 364.8)--(610.8, 364.7)--(610.8, 364.6)--(610.8, 364.5)--(610.8, 364.2)--(610.8, 363.8)--(610.9, 363.3)--(611.0, 363.2)--(611.1, 363.2)--(611.2, 363.2)--(611.6, 363.3)--(612.3, 363.6)--(612.5, 363.6)--(612.8, 363.6)--(613.0, 363.6)--(613.1, 363.4)--(613.2, 363.2)--(613.2, 363.1)--(613.3, 363.0)--(613.4, 362.8)--(613.6, 362.6)--(613.8, 362.3)--(613.9, 362.2)--(614.1, 362.0)--(614.2, 362.0)--(614.4, 361.8)--(614.7, 361.5)--(614.9, 361.3)--(614.9, 361.2)--(615.0, 360.8)--(615.1, 359.6)--(615.1, 359.2)--(615.1, 359.1)--(615.1, 358.9)--(615.1, 358.8)--(615.1, 358.7)--(615.1, 358.6)--(615.1, 358.5)--(615.2, 358.5)--(615.3, 358.3)--(615.4, 358.2)--(615.5, 358.0)--(615.6, 357.9)--(615.6, 357.7)--(615.7, 357.4)--(615.7, 357.3)--(615.7, 357.2)--(615.8, 357.2)--(615.8, 357.1)--(615.9, 357.0)--(615.9, 356.9)--(616.2, 356.5)--(616.0, 356.0)--(615.8, 355.6)--(615.9, 355.6)--(616.2, 355.6)--(616.7, 355.7)--(617.1, 355.8)--(617.6, 355.8)--(617.9, 355.1)--(618.4, 354.2)--(618.7, 353.7)--(618.8, 353.5)--(619.1, 352.7)--(619.3, 352.3)--(619.4, 352.0)--(619.2, 351.1)--(619.1, 350.6)--(619.3, 350.6)--(619.4, 350.6)--(619.4, 350.5)--(619.4, 350.4)--(619.4, 350.3)--(619.6, 350.0)--(619.6, 349.8)--(618.7, 349.5)--(617.8, 349.3)--(617.8, 349.4)--(617.8, 349.6)--(617.8, 349.9)--(617.8, 350.0)--(617.9, 350.1)--(617.6, 350.0)--(617.2, 350.0)--(616.9, 350.0)--(616.5, 350.0)--(616.2, 350.0)--(615.3, 349.9)--(615.0, 349.9)--(614.7, 349.8)--(614.4, 349.8)--(614.1, 349.8)--(613.5, 349.8)--(613.1, 349.8)--(612.3, 349.6)--(611.5, 349.6)--(610.9, 349.5)--(610.3, 349.4)--(609.7, 349.3)--(608.1, 349.0)--(607.7, 349.0)--(607.7, 348.9)--(607.4, 348.8)--(607.0, 348.8)--(606.6, 348.7)--(606.6, 348.8)--(606.0, 348.7)--(605.6, 348.7)--(605.2, 348.6)--(605.0, 348.6)--(604.6, 348.5)--(604.3, 348.5)--(604.0, 348.4)--(603.3, 348.4)--(603.3, 348.0)--(603.0, 347.9)--(602.8, 347.9)--(602.5, 347.9)--(602.4, 347.9)--(601.2, 347.7)--(600.8, 347.7)--(600.6, 347.6)--(600.5, 347.6)--(600.4, 347.7)--(600.0, 347.6)--(599.2, 347.5)--(598.6, 347.4)--(597.9, 347.4)--(596.8, 347.2)--(596.5, 347.1)--(596.6, 346.9)--(596.7, 346.5)--(595.3, 346.2)--(594.3, 345.9)--(594.1, 345.9)--(594.3, 344.8)--(594.5, 344.0)--(594.6, 343.6)--(594.6, 343.3)--(593.1, 343.0)--(592.6, 342.9)--(592.0, 342.8)--(591.2, 342.7)--(590.6, 342.5)--(590.2, 342.5)--(589.9, 342.4)--(589.5, 342.4)--(589.6, 342.2)--(589.2, 342.2)--(588.5, 342.2)--(588.1, 342.2)--(587.9, 342.2)--(587.6, 342.2)--(587.5, 342.1)--(587.4, 342.1)--(587.2, 342.1)--(587.1, 342.0)--(586.9, 341.9)--(586.5, 341.8)--(586.2, 341.8)--(585.6, 341.7)--(585.1, 341.6)--(584.7, 341.6)--(584.1, 341.5)--(583.6, 341.4)--(582.9, 341.2)--(582.0, 340.9)--(581.2, 340.6)--(580.6, 340.4)--(579.8, 340.1)--(579.7, 340.4)--(579.4, 340.3)--(579.2, 340.2)--(579.0, 340.1)--(578.9, 340.1)--(578.7, 340.1)--(578.6, 340.1)--(578.4, 340.1)--(578.3, 340.2)--(578.2, 340.2)--(577.9, 340.3)--(577.8, 340.3)--(577.6, 340.3)--(577.5, 340.3)--(577.3, 340.4)--(577.1, 340.4)--(576.9, 340.3)--(575.9, 340.2)--(575.2, 340.0)--(575.0, 339.9)--(574.9, 339.9)--(574.7, 339.8)--(573.8, 339.4)--(573.5, 339.3)--(573.0, 339.2)--(572.8, 339.1)--(572.7, 339.1)--(572.2, 339.0)--(572.4, 336.2)--(572.4, 335.1)--(572.5, 334.2)--(572.5, 333.8)--(572.5, 331.9)--(572.5, 331.1)--(572.5, 331.0)--(572.5, 330.9)--(572.6, 330.8)--(572.6, 330.7)--(572.7, 330.7)--(572.8, 330.6)--(573.2, 330.6)--(573.5, 330.6)--(573.5, 329.8)--(573.5, 329.2)--(573.4, 328.8)--(572.8, 328.8)--(572.3, 328.7)--(571.9, 327.5)--(571.8, 327.3)--(571.8, 327.1)--(571.7, 326.8)--(571.7, 326.7)--(571.7, 326.4)--(571.7, 326.0)--(571.7, 325.8)--(571.7, 324.0)--(571.6, 323.5)--(571.6, 323.1)--(570.9, 323.2)--(570.6, 323.2)--(570.4, 323.1)--(570.3, 323.2)--(570.2, 323.2)--(570.1, 323.2)--(570.0, 323.3)--(569.6, 323.5)--(569.4, 323.6)--(569.3, 323.6)--(569.2, 323.6)--(569.1, 323.6)--(569.1, 323.5)--(569.0, 323.5)--(568.9, 323.5)--(568.7, 323.3)--(568.6, 323.3)--(568.6, 323.2)--(568.6, 323.1)--(568.7, 323.1)--(568.7, 323.0)--(568.6, 323.0)--(568.5, 323.0)--(568.4, 322.9)--(568.3, 322.9)--(568.2, 322.9)--(568.1, 323.0)--(567.9, 323.0)--(567.7, 323.0)--(567.6, 323.0)--(567.4, 323.0)--(567.3, 323.0)--(567.2, 323.0)--(567.1, 322.9)--(566.8, 322.9)--(566.7, 322.9)--(566.6, 322.9)--(566.5, 322.9)--(566.4, 322.8)--(566.3, 322.8)--(566.2, 322.8)--(566.2, 322.7)--(566.1, 322.7)--(566.0, 322.7)--(565.8, 322.8)--(565.6, 322.8)--(565.5, 322.8)--(565.4, 322.8)--(565.3, 322.8)--(565.2, 322.9)--(565.1, 322.9)--(564.9, 322.9)--(564.7, 322.9)--(564.7, 323.6)--(564.6, 324.3)--(564.6, 324.6)--(564.5, 324.9)--(564.4, 325.1)--(564.4, 325.3)--(564.4, 325.5)--(564.4, 325.7)--(564.3, 326.0)--(564.3, 326.4)--(564.1, 326.8)--(564.0, 327.2)--(563.9, 327.6)--(563.8, 327.9)--(563.7, 328.3)--(563.7, 328.7)--(563.6, 329.0)--(563.6, 329.2)--(563.6, 329.5)--(563.6, 329.7)--(563.5, 330.3)--(563.5, 330.6)--(563.4, 330.8)--(563.4, 330.9)--(563.3, 331.0)--(563.1, 331.3)--(563.0, 331.6)--(562.9, 331.9)--(562.8, 332.1)--(562.8, 332.3)--(562.8, 332.5)--(562.8, 332.8)--(562.8, 333.2)--(562.7, 333.6)--(562.6, 334.1)--(562.5, 334.4)--(562.4, 334.6)--(562.3, 334.8)--(562.3, 335.0)--(562.2, 335.0)--(561.6, 334.9)--(561.2, 334.9)--(561.0, 334.8)--(561.0, 334.0)--(561.0, 333.4)--(560.6, 333.6)--(560.0, 333.0)--(559.6, 332.8)--(559.3, 332.5)--(559.2, 332.4)--(559.2, 332.3)--(559.2, 332.2)--(559.2, 332.1)--(559.3, 332.0)--(559.6, 331.4)--(559.7, 331.2)--(559.8, 331.0)--(559.8, 330.9)--(559.8, 330.8)--(559.8, 330.7)--(559.6, 329.9)--(559.5, 329.8)--(559.5, 329.7)--(559.4, 329.6)--(559.3, 329.6)--(559.1, 329.2)--(559.0, 329.0)--(558.2, 329.4)--(556.9, 329.9)--(556.9, 329.7)--(556.9, 329.6)--(556.8, 329.5)--(556.6, 329.0)--(556.3, 328.7)--(556.0, 328.3)--(555.9, 328.1)--(555.8, 328.0)--(555.7, 328.0)--(555.7, 327.9)--(555.6, 327.6)--(555.6, 327.4)--(555.5, 327.3)--(555.5, 327.2)--(555.5, 327.0)--(555.5, 326.6)--(555.5, 326.3)--(555.8, 326.3)--(556.3, 326.2)--(556.6, 326.1)--(556.8, 326.0)--(557.0, 326.0)--(557.1, 326.0)--(557.2, 326.0)--(557.3, 325.9)--(557.5, 325.9)--(557.6, 325.9)--(557.7, 325.8)--(558.0, 325.6)--(558.1, 325.5)--(558.2, 325.4)--(558.3, 325.2)--(558.1, 325.1)--(558.0, 324.8)--(558.2, 324.5)--(558.5, 324.0)--(558.6, 323.9)--(558.6, 323.8)--(558.5, 323.7)--(558.4, 323.6)--(558.1, 323.3)--(557.9, 323.2)--(557.4, 323.4)--(555.8, 324.0)--(555.4, 324.2)--(555.3, 324.2)--(555.2, 324.3)--(555.0, 324.3)--(553.6, 324.2)--(553.1, 324.2)--(553.9, 322.5)--(554.2, 321.9)--(554.8, 320.5)--(554.9, 320.2)--(555.3, 319.3)--(555.6, 319.0)--(555.7, 318.7)--(556.0, 318.3)--(556.1, 318.0)--(555.9, 317.9)--(555.9, 317.7)--(555.6, 317.6)--(555.5, 317.6)--(555.4, 317.6)--(555.3, 317.5)--(555.3, 317.3)--(555.3, 317.0)--(555.4, 316.8)--(555.4, 316.7)--(555.5, 316.4)--(555.5, 316.2)--(555.5, 316.0)--(555.6, 315.4)--(555.6, 315.2)--(555.6, 314.9)--(555.6, 314.7)--(555.7, 314.7)--(555.7, 314.6)--(555.7, 314.5)--(555.8, 314.5)--(555.8, 314.4)--(555.9, 314.4)--(555.9, 314.5)--(556.0, 314.5)--(556.2, 314.5)--(556.4, 314.6)--(556.4, 314.4)--(556.6, 313.9)--(556.7, 313.4)--(556.8, 312.9)--(556.9, 312.4)--(556.9, 312.1)--(556.9, 311.8)--(556.8, 311.8)--(556.8, 311.6)--(556.7, 311.6)--(556.5, 311.5)--(556.3, 311.5)--(556.0, 311.4)--(555.9, 311.4)--(555.5, 311.3)--(555.5, 311.2)--(555.5, 311.1)--(555.5, 311.0)--(555.4, 310.9)--(555.4, 310.8)--(554.9, 310.8)--(553.6, 310.6)--(552.7, 310.4)--(552.4, 310.4)--(552.1, 310.3)--(552.0, 310.3)--(551.9, 310.4)--(551.8, 310.3)--(551.6, 310.3)--(551.4, 310.2)--(551.2, 310.1)--(551.0, 310.0)--(550.8, 310.0)--(550.3, 309.9)--(550.1, 309.9)--(550.0, 310.0)--(549.9, 310.0)--(549.7, 310.0)--(549.3, 310.0)--(549.1, 310.0)--(548.9, 310.1)--(548.6, 310.1)--(548.2, 310.1)--(547.9, 310.1)--(547.5, 310.0)--(546.7, 309.9)--(546.6, 309.9)--(546.5, 309.9)--(546.4, 309.9)--(546.4, 309.8)--(546.3, 309.8)--(546.2, 309.8)--(546.2, 309.7)--(546.1, 309.0)--(545.8, 309.0)--(545.9, 308.9)--(545.9, 308.8)--(546.0, 308.5)--(546.1, 308.3)--(546.2, 308.0)--(546.3, 307.7)--(546.3, 307.5)--(546.4, 307.2)--(546.6, 306.8)--(546.9, 306.3)--(546.9, 306.2)--(547.0, 306.1)--(547.1, 305.8)--(547.1, 305.6)--(547.2, 305.2)--(547.4, 304.7)--(547.6, 304.2)--(547.9, 303.6)--(548.2, 303.0)--(548.5, 302.4)--(548.8, 301.8)--(548.7, 301.8)--(548.5, 301.7)--(548.1, 301.6)--(547.9, 301.5)--(547.6, 301.4)--(547.4, 301.2)--(547.3, 301.1)--(547.2, 301.1)--(547.0, 300.8)--(546.7, 300.6)--(546.3, 300.2)--(546.0, 300.0)--(545.9, 299.9)--(545.7, 299.7)--(545.4, 299.6)--(545.2, 299.5)--(545.0, 299.4)--(544.9, 299.4)--(544.7, 299.7)--(544.6, 299.8)--(544.5, 300.0)--(544.4, 300.1)--(544.4, 300.0)--(544.3, 300.0)--(544.0, 299.9)--(543.8, 299.9)--(543.6, 299.9)--(543.3, 299.9)--(543.2, 299.9)--(543.1, 299.9)--(543.0, 299.9)--(542.7, 299.8)--(542.0, 299.6)--(541.7, 299.5)--(541.7, 299.4)--(541.7, 299.3)--(541.6, 299.3)--(541.2, 299.2)--(540.8, 299.1)--(540.7, 299.0)--(540.6, 298.8)--(540.4, 298.8)--(540.3, 298.7)--(540.1, 298.6)--(540.0, 298.5)--(539.9, 298.5)--(539.4, 298.4)--(539.2, 298.3)--(539.0, 298.4)--(538.9, 298.5)--(538.8, 298.4)--(538.7, 298.4)--(538.6, 298.4)--(538.5, 298.3)--(538.4, 298.1)--(538.1, 297.9)--(538.1, 297.8)--(538.0, 297.8)--(537.9, 297.8)--(537.9, 297.5)--(537.8, 297.2)--(537.7, 297.0)--(537.6, 296.6)--(537.5, 296.6)--(537.4, 296.6)--(537.3, 296.6)--(537.2, 296.6)--(537.1, 296.1)--(537.1, 296.0)--(537.1, 295.9)--(537.1, 295.8)--(537.1, 295.6)--(537.1, 295.5)--(537.1, 295.4)--(537.1, 295.3)--(537.1, 294.8)--(537.1, 294.7)--(537.1, 294.6)--(537.1, 294.5)--(536.9, 294.3)--(536.9, 294.2)--(536.8, 294.2)--(536.8, 294.1)--(536.8, 294.0)--(536.8, 293.9)--(536.8, 293.8)--(536.7, 293.7)--(536.6, 293.4)--(536.6, 292.9)--(536.6, 292.6)--(536.6, 292.4)--(536.6, 292.2)--(536.5, 292.1)--(536.3, 292.1)--(536.3, 292.0)--(536.2, 292.0)--(536.2, 291.8)--(536.2, 291.6)--(536.2, 291.5)--(536.1, 291.5)--(535.9, 291.4)--(535.6, 291.3)--(535.6, 291.2)--(535.5, 291.1)--(535.5, 291.0)--(535.4, 291.0)--(535.3, 291.0)--(535.3, 290.9)--(535.2, 290.9)--(535.2, 290.8)--(535.1, 290.8)--(535.0, 290.7)--(534.9, 290.8)--(534.8, 290.8)--(534.7, 290.8)--(534.6, 290.8)--(534.5, 290.8)--(534.5, 290.9)--(534.4, 291.0)--(534.3, 290.8)--(534.3, 290.7)--(534.2, 290.6)--(534.1, 290.6)--(533.7, 290.6)--(533.6, 290.6)--(533.5, 290.5)--(533.4, 290.5)--(533.4, 290.4)--(533.0, 290.4)--(532.8, 290.4)--(532.8, 290.3)--(532.7, 290.4)--(532.6, 290.4)--(532.5, 290.4)--(532.4, 290.4)--(532.1, 290.4)--(531.8, 290.3)--(531.5, 290.3)--(531.3, 290.2)--(530.9, 290.1)--(530.4, 290.0)--(530.3, 290.0)--(530.2, 290.0)--(530.0, 290.0)--(529.9, 290.0)--(529.3, 289.9)--(529.2, 289.9)--(529.1, 289.9)--(529.1, 289.8)--(528.5, 289.6)--(528.2, 289.5)--(527.5, 289.4)--(527.1, 289.1)--(526.7, 289.0)--(526.6, 288.9)--(526.5, 288.9)--(526.0, 288.8)--(525.9, 288.8)--(525.8, 288.7)--(525.9, 288.6)--(525.0, 288.5)--(525.0, 288.6)--(524.9, 288.6)--(524.8, 288.6)--(524.7, 288.6)--(524.3, 288.5)--(524.1, 288.5)--(523.6, 288.5)--(523.5, 288.4)--(523.3, 288.4)--(523.1, 288.5)--(523.0, 288.5)--(522.9, 288.5)--(522.7, 288.5)--(522.6, 288.5)--(522.4, 288.5)--(522.3, 288.4)--(522.0, 288.3)--(521.9, 288.2)--(521.4, 288.1)--(521.1, 288.0)--(520.9, 288.0)--(520.5, 288.0)--(520.4, 288.0)--(520.2, 288.0)--(520.1, 288.1)--(520.0, 288.1)--(519.8, 288.1)--(519.8, 288.2)--(519.8, 288.3)--(519.8, 288.4)--(519.8, 288.6)--(519.8, 288.7)--(519.7, 288.8)--(519.7, 288.9)--(519.6, 288.9)--(519.6, 289.0)--(519.5, 289.0)--(519.4, 289.0)--(519.4, 289.1)--(519.3, 289.1)--(519.3, 289.2)--(519.2, 289.3)--(519.1, 289.4)--(519.0, 289.7)--(518.8, 289.9)--(518.7, 290.1)--(518.6, 290.1)--(518.6, 290.2)--(518.4, 290.5)--(518.3, 290.7)--(518.1, 290.9)--(517.7, 291.2)--(517.7, 291.3)--(517.6, 291.6)--(517.3, 292.4)--(517.2, 292.7)--(517.2, 292.8)--(517.1, 292.9)--(517.0, 293.1)--(516.8, 294.2)--(516.8, 294.3)--(516.8, 294.4)--(516.8, 294.6)--(516.8, 294.8)--(516.8, 295.0)--(516.8, 295.2)--(516.7, 295.4)--(516.7, 295.5)--(516.7, 295.7)--(516.6, 296.0)--(516.5, 296.6)--(516.4, 296.7)--(516.4, 296.8)--(516.3, 296.8)--(516.1, 296.9)--(516.0, 297.0)--(516.0, 297.6)--(515.9, 297.6)--(515.9, 297.7)--(516.0, 297.8)--(516.2, 297.9)--(516.3, 298.0)--(516.4, 298.1)--(516.5, 298.2)--(516.7, 298.2)--(516.7, 298.3)--(516.4, 298.3)--(516.3, 298.4)--(516.3, 298.5)--(516.4, 298.5)--(516.3, 298.5)--(516.3, 298.6)--(516.3, 298.7)--(516.3, 298.8)--(516.3, 298.9)--(516.5, 299.0)--(516.5, 299.1)--(516.4, 299.1)--(516.3, 299.1)--(516.2, 299.1)--(516.2, 299.2)--(516.2, 299.7)--(516.2, 300.0)--(516.1, 300.1)--(515.9, 300.2)--(515.8, 300.2)--(515.8, 300.3)--(515.7, 300.3)--(515.7, 300.4)--(515.8, 300.4)--(515.8, 300.5)--(515.7, 300.5)--(515.7, 300.6)--(515.8, 300.7)--(515.8, 300.8)--(515.8, 300.9)--(515.6, 301.1)--(515.4, 301.4)--(515.3, 301.4)--(515.3, 301.5)--(515.0, 301.7)--(514.9, 301.8)--(514.8, 301.9)--(514.7, 302.0)--(514.5, 302.5)--(514.5, 302.6)--(514.2, 302.9)--(514.2, 303.0)--(514.2, 303.1)--(514.2, 303.2)--(514.2, 303.3)--(514.2, 303.4)--(514.3, 303.5)--(514.3, 303.6)--(514.3, 303.7)--(514.2, 303.8)--(514.2, 304.0)--(514.1, 304.0)--(514.0, 304.3)--(513.9, 304.6)--(513.6, 305.3)--(513.4, 305.9)--(513.3, 306.1)--(513.2, 306.3)--(513.0, 306.6)--(513.0, 306.9)--(513.0, 307.1)--(512.9, 307.3)--(512.9, 307.4)--(512.6, 307.6)--(512.5, 307.7)--(512.3, 307.8)--(512.2, 307.9)--(512.1, 308.0)--(512.0, 308.1)--(511.9, 308.3)--(511.7, 308.5)--(511.3, 309.0)--(511.0, 309.2)--(510.5, 309.7)--(510.0, 310.1)--(509.6, 310.4)--(509.5, 310.5)--(509.4, 310.5)--(509.3, 310.5)--(509.1, 310.5)--(508.7, 310.5)--(508.6, 310.6)--(508.5, 310.6)--(508.4, 310.6)--(508.2, 310.7)--(508.0, 310.9)--(507.9, 310.9)--(507.7, 311.1)--(507.4, 311.3)--(507.2, 311.4)--(506.3, 311.9)--(505.3, 312.4)--(504.2, 313.1)--(504.1, 313.2)--(503.9, 313.3)--(503.8, 313.4)--(503.5, 313.5)--(503.5, 313.6)--(503.4, 313.6)--(503.4, 313.7)--(503.4, 313.8)--(503.5, 313.9)--(503.5, 314.0)--(503.4, 314.0)--(503.4, 314.1)--(503.3, 314.1)--(503.2, 314.2)--(503.1, 314.2)--(503.0, 314.2)--(503.0, 314.1)--(502.9, 314.1)--(502.7, 314.1)--(502.5, 314.1)--(502.5, 314.3)--(502.4, 314.3)--(502.4, 314.4)--(502.3, 314.4)--(502.2, 314.4)--(502.2, 314.3)--(502.2, 314.2)--(502.1, 314.2)--(502.1, 314.3)--(501.9, 314.3)--(501.8, 314.3)--(501.7, 314.3)--(501.7, 314.2)--(501.6, 314.1)--(501.5, 314.1)--(501.5, 314.2)--(501.4, 314.2)--(501.1, 314.2)--(500.8, 314.1)--(500.6, 314.1)--(500.5, 314.1)--(500.4, 314.1)--(500.3, 314.1)--(500.2, 314.2)--(500.0, 314.2)--(499.9, 314.2)--(499.8, 314.2)--(499.7, 314.3)--(499.5, 314.3)--(499.5, 314.8)--(499.2, 314.8)--cycle; +Hillingdon = (106.0, 416.9)--(106.2, 415.9)--(106.3, 415.4)--(106.4, 414.9)--(106.5, 414.1)--(106.5, 413.6)--(106.5, 413.1)--(106.6, 412.7)--(106.7, 412.4)--(106.8, 412.2)--(106.9, 412.0)--(107.0, 411.8)--(107.1, 411.6)--(107.2, 411.4)--(107.2, 411.0)--(107.3, 410.5)--(107.5, 409.9)--(107.6, 409.7)--(107.7, 409.6)--(107.6, 409.5)--(107.5, 409.2)--(107.3, 409.1)--(107.3, 408.4)--(107.3, 408.0)--(107.3, 407.6)--(107.3, 407.1)--(107.3, 406.6)--(107.4, 406.4)--(107.3, 405.9)--(107.3, 405.5)--(107.5, 404.4)--(107.6, 404.0)--(107.7, 403.7)--(107.9, 403.3)--(108.0, 403.0)--(108.0, 402.6)--(108.2, 402.2)--(108.3, 401.9)--(108.3, 401.8)--(108.5, 401.5)--(108.8, 401.0)--(109.0, 400.7)--(109.2, 400.3)--(109.1, 400.1)--(109.1, 400.0)--(109.0, 399.4)--(109.3, 399.3)--(110.0, 399.2)--(110.5, 399.1)--(110.8, 399.0)--(110.8, 398.9)--(110.8, 398.8)--(110.8, 398.7)--(110.8, 398.6)--(110.8, 398.5)--(110.9, 398.2)--(111.1, 398.0)--(111.2, 397.7)--(111.3, 397.7)--(111.4, 397.5)--(111.5, 397.2)--(111.6, 397.0)--(111.7, 396.9)--(111.7, 396.8)--(111.7, 396.5)--(111.7, 396.3)--(111.7, 395.8)--(111.8, 395.5)--(111.8, 395.2)--(111.9, 395.0)--(111.9, 394.9)--(112.0, 394.6)--(112.1, 394.3)--(112.3, 393.8)--(112.4, 393.6)--(112.4, 393.5)--(112.4, 393.4)--(112.5, 393.0)--(112.5, 392.7)--(112.5, 392.3)--(112.5, 392.2)--(112.4, 392.0)--(112.5, 391.8)--(112.5, 391.7)--(112.5, 391.5)--(112.7, 391.6)--(112.9, 391.5)--(113.1, 391.6)--(113.0, 391.7)--(113.2, 391.8)--(113.4, 391.5)--(113.8, 390.9)--(113.9, 390.6)--(114.2, 390.2)--(114.3, 390.0)--(114.6, 389.9)--(114.8, 389.6)--(114.9, 389.4)--(115.0, 388.8)--(115.1, 388.5)--(115.1, 388.2)--(115.2, 388.0)--(115.2, 387.9)--(115.3, 386.9)--(115.4, 386.2)--(115.4, 385.7)--(115.5, 385.2)--(115.5, 384.8)--(115.6, 384.8)--(115.7, 384.2)--(115.8, 383.6)--(115.7, 383.6)--(115.7, 383.4)--(115.8, 382.5)--(115.8, 382.1)--(115.5, 382.1)--(115.4, 381.9)--(115.6, 381.7)--(115.6, 381.6)--(115.8, 381.4)--(115.7, 381.4)--(116.0, 380.8)--(116.4, 379.8)--(116.8, 379.0)--(117.3, 378.1)--(117.6, 377.7)--(117.7, 377.2)--(117.8, 376.7)--(118.1, 375.4)--(118.2, 375.4)--(118.2, 375.3)--(118.4, 375.0)--(118.0, 374.6)--(118.5, 374.0)--(118.6, 373.6)--(118.9, 373.1)--(119.0, 372.8)--(119.5, 371.9)--(119.7, 371.5)--(119.5, 371.2)--(119.2, 370.9)--(119.6, 370.2)--(119.8, 369.9)--(120.3, 369.0)--(120.5, 368.4)--(120.6, 368.2)--(120.6, 368.1)--(120.8, 367.8)--(121.5, 366.1)--(121.4, 366.0)--(121.8, 365.0)--(121.8, 364.7)--(122.0, 364.2)--(122.1, 363.6)--(122.2, 363.3)--(122.2, 363.1)--(122.2, 363.0)--(122.2, 362.9)--(122.1, 362.5)--(122.1, 362.4)--(122.1, 362.2)--(122.2, 362.1)--(122.4, 361.7)--(122.5, 361.6)--(122.5, 361.5)--(122.4, 361.4)--(122.3, 361.3)--(122.5, 360.9)--(122.6, 360.8)--(122.7, 360.7)--(123.0, 360.2)--(123.3, 359.7)--(123.5, 359.5)--(123.5, 359.3)--(123.6, 359.2)--(123.7, 358.9)--(123.8, 358.8)--(123.8, 358.5)--(123.7, 358.2)--(123.7, 357.8)--(123.9, 357.8)--(123.9, 357.7)--(123.9, 357.6)--(124.0, 357.5)--(123.9, 357.4)--(123.9, 357.3)--(123.8, 357.1)--(123.9, 356.8)--(124.1, 356.4)--(124.3, 356.0)--(124.5, 355.7)--(124.5, 355.5)--(124.6, 355.1)--(124.7, 354.9)--(124.8, 354.7)--(124.8, 354.4)--(124.9, 354.2)--(125.0, 354.0)--(125.2, 353.6)--(125.3, 353.4)--(125.4, 353.1)--(125.5, 353.0)--(125.5, 352.8)--(125.6, 352.6)--(125.6, 352.5)--(125.7, 352.2)--(125.2, 351.9)--(124.0, 351.1)--(123.7, 350.8)--(123.5, 350.7)--(123.1, 350.3)--(122.9, 350.1)--(122.8, 350.0)--(122.1, 349.4)--(121.5, 348.9)--(120.9, 348.5)--(120.5, 348.2)--(119.9, 347.9)--(119.4, 347.6)--(119.0, 347.5)--(118.6, 347.3)--(118.3, 347.0)--(118.0, 346.9)--(117.9, 347.0)--(117.2, 346.6)--(115.9, 346.0)--(115.4, 345.7)--(114.9, 345.5)--(114.6, 345.3)--(114.4, 345.3)--(113.9, 345.4)--(113.8, 345.1)--(113.9, 344.6)--(114.0, 344.1)--(113.4, 344.2)--(112.8, 344.2)--(112.5, 344.2)--(112.3, 344.3)--(112.1, 344.3)--(111.9, 344.3)--(111.5, 344.4)--(111.4, 344.4)--(111.3, 344.4)--(111.4, 344.1)--(111.4, 344.0)--(111.5, 344.0)--(111.6, 343.7)--(111.6, 343.6)--(111.5, 343.6)--(111.8, 342.4)--(111.9, 342.0)--(111.9, 341.9)--(112.5, 342.1)--(112.8, 342.3)--(113.0, 341.9)--(113.1, 341.8)--(113.1, 341.7)--(113.2, 341.4)--(113.3, 341.0)--(113.4, 340.8)--(113.4, 340.5)--(113.5, 340.2)--(113.6, 340.2)--(113.6, 340.1)--(113.6, 339.8)--(113.7, 339.0)--(113.8, 338.5)--(112.4, 338.2)--(112.2, 338.2)--(111.1, 338.2)--(110.5, 338.3)--(110.3, 338.3)--(109.6, 338.4)--(109.5, 338.4)--(109.0, 338.3)--(109.0, 338.4)--(108.3, 338.4)--(107.9, 338.3)--(107.5, 338.3)--(107.2, 338.3)--(106.8, 338.2)--(105.6, 337.8)--(105.0, 337.6)--(105.1, 337.5)--(104.5, 337.3)--(104.0, 337.1)--(103.1, 336.9)--(102.3, 336.6)--(101.8, 336.5)--(101.3, 336.3)--(100.9, 336.2)--(100.6, 336.1)--(100.3, 336.0)--(100.0, 335.9)--(99.9, 335.9)--(99.9, 335.8)--(99.6, 335.7)--(99.5, 335.6)--(99.4, 335.6)--(99.2, 335.5)--(99.0, 335.5)--(98.9, 335.5)--(98.6, 335.5)--(98.5, 335.4)--(98.4, 335.4)--(98.3, 335.4)--(98.1, 335.4)--(97.9, 335.4)--(97.8, 335.4)--(97.7, 335.5)--(97.7, 335.6)--(97.6, 335.6)--(97.5, 335.6)--(97.4, 335.7)--(97.3, 335.8)--(97.2, 335.8)--(97.1, 335.7)--(97.1, 335.6)--(97.1, 335.5)--(97.1, 335.4)--(97.1, 335.3)--(97.1, 335.2)--(97.3, 335.0)--(97.4, 334.9)--(97.5, 334.9)--(97.5, 334.8)--(97.6, 334.7)--(97.6, 334.6)--(97.7, 334.6)--(97.8, 334.5)--(97.9, 334.4)--(98.0, 334.4)--(98.0, 334.3)--(97.9, 334.3)--(97.9, 334.2)--(97.7, 334.1)--(97.4, 334.0)--(97.2, 334.0)--(97.1, 333.9)--(97.0, 333.8)--(97.0, 333.7)--(97.1, 333.5)--(97.2, 333.3)--(97.3, 333.3)--(97.4, 333.3)--(97.5, 333.2)--(97.6, 333.2)--(97.8, 333.1)--(98.1, 333.0)--(98.3, 333.0)--(98.4, 333.0)--(98.4, 332.9)--(98.5, 332.9)--(98.6, 332.8)--(98.6, 332.7)--(98.5, 332.6)--(98.5, 332.5)--(98.5, 332.4)--(98.5, 332.2)--(98.4, 332.0)--(98.4, 331.8)--(98.4, 331.7)--(98.5, 331.7)--(98.6, 331.6)--(98.6, 331.5)--(98.7, 331.5)--(98.8, 331.5)--(98.9, 331.4)--(99.0, 331.4)--(99.1, 331.4)--(99.2, 331.5)--(99.5, 331.5)--(99.6, 331.6)--(99.7, 331.6)--(99.8, 331.6)--(100.0, 331.6)--(100.0, 331.5)--(100.1, 331.5)--(100.2, 331.3)--(100.2, 331.2)--(100.3, 331.1)--(100.3, 331.0)--(100.4, 330.9)--(100.5, 330.8)--(100.6, 330.8)--(100.9, 330.8)--(101.0, 330.7)--(101.1, 330.7)--(101.1, 330.6)--(101.2, 330.4)--(101.2, 330.0)--(101.3, 329.8)--(101.3, 329.7)--(101.3, 329.5)--(101.4, 329.5)--(101.4, 329.4)--(101.5, 329.4)--(101.6, 329.4)--(101.7, 329.4)--(101.9, 329.3)--(102.0, 329.3)--(102.1, 329.3)--(102.2, 329.3)--(102.3, 329.2)--(102.4, 329.1)--(102.4, 329.0)--(102.5, 328.9)--(102.5, 328.8)--(103.0, 329.1)--(103.1, 329.0)--(103.2, 328.9)--(103.3, 328.9)--(103.6, 328.9)--(104.1, 328.8)--(104.2, 328.8)--(105.6, 328.3)--(105.9, 328.3)--(106.8, 328.0)--(106.9, 328.0)--(107.1, 327.9)--(107.3, 327.9)--(107.4, 327.9)--(107.5, 327.9)--(107.6, 327.8)--(107.7, 327.8)--(109.0, 327.6)--(109.8, 327.5)--(110.7, 327.3)--(111.8, 327.0)--(112.9, 326.8)--(113.0, 326.8)--(113.4, 326.7)--(113.7, 326.7)--(114.0, 326.6)--(114.6, 326.5)--(115.3, 326.3)--(116.1, 326.1)--(117.4, 325.7)--(117.9, 325.6)--(118.0, 325.6)--(118.3, 325.5)--(118.3, 325.3)--(118.5, 325.1)--(118.9, 324.9)--(119.3, 324.6)--(119.8, 324.2)--(119.9, 324.6)--(120.0, 324.8)--(120.1, 325.1)--(120.6, 325.1)--(120.8, 325.0)--(121.6, 324.7)--(121.9, 324.6)--(123.0, 324.3)--(123.6, 324.2)--(124.0, 324.1)--(125.0, 323.9)--(125.4, 323.8)--(126.4, 323.7)--(126.8, 323.7)--(127.2, 323.6)--(127.3, 323.6)--(127.3, 323.5)--(127.4, 323.5)--(127.4, 321.9)--(127.4, 321.4)--(127.5, 321.1)--(127.5, 320.8)--(127.6, 320.3)--(127.6, 320.1)--(127.6, 319.9)--(127.6, 319.6)--(127.5, 319.3)--(127.5, 319.2)--(127.4, 318.9)--(127.2, 318.8)--(127.2, 318.6)--(126.9, 318.4)--(126.8, 318.1)--(126.5, 317.4)--(126.0, 316.4)--(125.9, 316.2)--(125.7, 315.7)--(125.5, 315.4)--(125.4, 315.1)--(125.0, 314.3)--(124.8, 314.0)--(124.4, 313.4)--(124.3, 313.3)--(124.0, 312.7)--(123.8, 312.2)--(123.8, 312.1)--(123.7, 312.0)--(123.5, 311.8)--(123.3, 311.5)--(123.2, 311.4)--(123.2, 311.3)--(123.0, 311.3)--(122.7, 310.8)--(122.6, 310.8)--(122.4, 310.5)--(122.3, 310.3)--(122.1, 310.0)--(121.9, 309.8)--(121.8, 309.7)--(121.7, 309.6)--(121.6, 309.5)--(121.4, 309.4)--(120.8, 309.0)--(120.4, 308.7)--(119.1, 307.9)--(118.8, 307.6)--(118.6, 307.4)--(118.5, 307.2)--(118.2, 306.7)--(118.1, 306.5)--(117.9, 306.1)--(117.9, 305.9)--(117.8, 305.7)--(117.8, 305.5)--(117.7, 305.2)--(117.6, 304.8)--(117.5, 304.4)--(117.2, 303.2)--(116.7, 301.4)--(116.5, 300.4)--(116.4, 300.1)--(116.3, 299.9)--(116.3, 299.7)--(116.2, 299.6)--(116.2, 299.4)--(116.0, 299.2)--(116.0, 299.1)--(115.9, 298.9)--(115.8, 298.8)--(115.6, 298.8)--(115.6, 298.7)--(115.5, 298.7)--(115.5, 298.6)--(115.3, 298.5)--(114.9, 298.2)--(114.4, 297.9)--(113.9, 297.6)--(113.0, 297.0)--(112.1, 296.4)--(111.6, 296.0)--(111.1, 295.8)--(110.6, 295.6)--(110.6, 295.5)--(110.4, 295.5)--(110.3, 295.4)--(110.1, 295.4)--(110.0, 295.3)--(109.9, 295.3)--(109.8, 295.2)--(109.7, 295.2)--(109.6, 295.1)--(109.5, 295.1)--(109.4, 295.0)--(109.3, 294.9)--(109.2, 294.8)--(109.1, 294.7)--(109.0, 294.6)--(109.0, 294.5)--(108.9, 294.5)--(108.8, 294.3)--(108.5, 293.9)--(108.0, 292.8)--(107.9, 292.8)--(107.2, 291.4)--(106.8, 290.6)--(106.7, 290.6)--(106.5, 290.7)--(106.2, 290.9)--(105.8, 291.1)--(105.1, 291.3)--(104.9, 290.9)--(104.2, 288.9)--(104.1, 288.5)--(104.1, 288.4)--(104.1, 288.3)--(104.1, 288.2)--(104.1, 288.1)--(104.3, 287.2)--(104.3, 287.0)--(104.3, 286.8)--(104.3, 286.7)--(104.3, 286.6)--(104.3, 286.5)--(104.3, 286.4)--(104.1, 286.1)--(104.0, 286.0)--(103.9, 285.8)--(103.8, 285.6)--(103.8, 285.3)--(103.7, 284.3)--(103.6, 284.0)--(103.5, 282.5)--(103.5, 282.2)--(103.5, 282.1)--(103.2, 279.0)--(103.1, 278.3)--(103.1, 278.2)--(103.1, 278.1)--(103.0, 278.1)--(102.9, 278.0)--(102.9, 277.9)--(102.8, 277.9)--(102.8, 277.8)--(102.8, 277.7)--(102.8, 277.6)--(102.8, 277.4)--(102.7, 277.3)--(102.7, 277.2)--(102.6, 277.1)--(102.6, 277.0)--(102.6, 276.9)--(102.6, 276.8)--(102.6, 276.7)--(102.5, 276.7)--(102.4, 276.7)--(102.3, 276.7)--(102.2, 276.7)--(102.2, 276.6)--(102.0, 276.2)--(101.8, 275.9)--(101.8, 275.8)--(101.7, 275.6)--(101.8, 275.5)--(101.9, 275.5)--(102.1, 275.5)--(102.2, 275.5)--(102.2, 275.4)--(101.7, 274.9)--(101.4, 274.0)--(101.1, 273.2)--(100.9, 272.9)--(100.9, 272.7)--(100.8, 272.6)--(100.8, 272.1)--(100.7, 272.0)--(100.7, 271.9)--(100.6, 271.8)--(100.4, 271.6)--(100.3, 271.5)--(100.3, 271.4)--(100.3, 271.3)--(100.3, 271.2)--(100.4, 271.2)--(100.4, 271.1)--(100.5, 271.1)--(100.5, 271.0)--(100.6, 271.0)--(100.6, 270.9)--(100.5, 270.8)--(100.5, 270.3)--(100.4, 269.9)--(100.4, 269.6)--(100.4, 269.3)--(100.4, 269.1)--(100.5, 268.9)--(100.6, 268.7)--(100.7, 268.6)--(100.7, 268.5)--(100.9, 267.9)--(100.9, 267.8)--(101.0, 267.5)--(101.1, 267.3)--(101.3, 267.0)--(101.5, 266.1)--(101.5, 266.0)--(101.5, 265.9)--(101.7, 265.5)--(101.7, 265.0)--(101.8, 264.2)--(101.4, 263.3)--(101.3, 262.9)--(101.3, 262.7)--(101.2, 262.4)--(101.2, 262.0)--(101.2, 261.9)--(101.2, 261.8)--(101.3, 261.7)--(101.4, 261.6)--(101.5, 261.5)--(101.8, 261.4)--(101.9, 261.4)--(101.9, 261.3)--(102.0, 261.3)--(102.1, 261.1)--(102.2, 260.8)--(102.2, 260.7)--(102.3, 260.5)--(102.5, 260.3)--(102.6, 260.3)--(102.7, 260.2)--(102.8, 260.1)--(102.9, 260.0)--(103.0, 259.7)--(103.1, 259.4)--(103.2, 259.3)--(103.3, 259.1)--(103.3, 259.0)--(103.9, 258.6)--(104.2, 258.3)--(104.4, 258.1)--(104.5, 257.8)--(104.6, 257.4)--(104.5, 257.4)--(103.4, 256.8)--(102.3, 256.3)--(101.1, 255.7)--(100.2, 255.2)--(100.0, 255.1)--(99.3, 254.7)--(98.7, 254.4)--(98.4, 254.2)--(98.3, 254.1)--(98.3, 253.9)--(98.3, 253.8)--(98.1, 253.8)--(97.9, 253.9)--(97.8, 253.9)--(97.5, 253.8)--(97.3, 253.7)--(97.1, 253.6)--(97.0, 253.6)--(96.8, 253.5)--(96.1, 252.9)--(95.5, 252.5)--(94.5, 251.8)--(93.6, 251.2)--(92.7, 250.6)--(91.9, 250.0)--(91.7, 249.8)--(91.2, 249.5)--(90.5, 249.0)--(89.8, 248.5)--(89.2, 248.0)--(89.0, 247.7)--(88.9, 247.5)--(88.7, 247.2)--(88.5, 246.9)--(88.3, 246.4)--(88.2, 246.1)--(87.9, 245.7)--(87.8, 245.4)--(87.8, 245.2)--(87.6, 244.9)--(87.4, 244.5)--(87.3, 244.3)--(87.3, 244.0)--(87.1, 243.5)--(87.8, 243.2)--(88.5, 242.9)--(88.3, 242.6)--(88.1, 242.6)--(87.9, 242.6)--(87.5, 242.6)--(87.1, 242.6)--(86.7, 242.5)--(85.9, 242.4)--(85.6, 242.3)--(85.1, 242.3)--(85.0, 242.3)--(84.6, 242.3)--(84.3, 242.3)--(83.8, 242.4)--(83.7, 242.2)--(83.5, 241.7)--(83.1, 240.6)--(82.7, 239.8)--(82.1, 238.5)--(81.6, 238.5)--(80.5, 238.6)--(79.8, 238.7)--(79.2, 238.8)--(78.8, 238.9)--(78.4, 239.0)--(77.8, 239.2)--(77.1, 239.5)--(76.3, 239.7)--(75.9, 239.9)--(75.3, 240.1)--(75.2, 240.2)--(75.1, 240.3)--(75.1, 240.5)--(75.1, 240.6)--(75.2, 240.7)--(75.1, 240.8)--(75.0, 240.8)--(74.8, 240.8)--(74.6, 240.9)--(74.3, 240.9)--(74.1, 240.9)--(74.1, 240.8)--(74.2, 240.6)--(74.2, 240.5)--(74.1, 240.5)--(74.0, 240.5)--(73.9, 240.5)--(73.8, 240.5)--(73.5, 240.6)--(73.2, 240.8)--(72.8, 241.0)--(72.4, 241.2)--(71.9, 241.6)--(71.6, 241.8)--(71.6, 241.9)--(71.5, 241.9)--(71.4, 242.0)--(71.3, 242.0)--(71.2, 242.1)--(71.1, 242.2)--(71.0, 242.2)--(70.9, 242.3)--(70.8, 242.3)--(70.7, 242.4)--(70.6, 242.4)--(70.5, 242.4)--(70.4, 242.5)--(70.3, 242.5)--(70.2, 242.6)--(70.1, 242.6)--(70.0, 242.6)--(69.9, 242.6)--(69.8, 242.6)--(69.7, 242.7)--(69.2, 242.7)--(68.4, 242.8)--(68.3, 242.8)--(67.8, 242.9)--(67.3, 242.9)--(66.8, 243.1)--(66.7, 243.1)--(66.6, 243.2)--(66.5, 243.2)--(66.4, 243.2)--(66.3, 243.2)--(66.2, 243.2)--(66.1, 243.2)--(66.0, 243.2)--(65.9, 243.3)--(65.8, 243.3)--(65.5, 243.2)--(65.1, 243.2)--(65.0, 243.2)--(64.9, 243.2)--(64.8, 243.2)--(64.7, 243.3)--(64.2, 243.3)--(63.5, 243.5)--(62.9, 243.6)--(62.2, 243.8)--(62.1, 243.8)--(62.0, 243.8)--(61.8, 243.9)--(61.6, 243.9)--(61.6, 244.0)--(61.5, 244.0)--(61.4, 244.0)--(61.3, 244.1)--(61.2, 244.1)--(61.2, 244.2)--(60.8, 244.5)--(60.3, 245.1)--(59.8, 245.6)--(59.5, 246.2)--(59.6, 246.2)--(59.8, 246.3)--(59.7, 246.4)--(59.7, 246.5)--(59.6, 246.5)--(59.6, 246.6)--(59.5, 246.6)--(59.5, 246.7)--(59.4, 246.7)--(59.4, 246.8)--(59.3, 246.8)--(59.2, 246.8)--(59.2, 246.9)--(59.1, 246.9)--(59.0, 246.9)--(58.9, 247.0)--(58.8, 247.0)--(58.7, 247.0)--(58.6, 247.0)--(58.5, 247.0)--(58.4, 247.0)--(58.3, 247.0)--(57.7, 247.0)--(57.2, 247.0)--(56.7, 247.0)--(56.2, 246.9)--(56.0, 246.9)--(55.5, 246.9)--(55.4, 246.8)--(54.3, 246.8)--(53.6, 246.8)--(53.5, 246.8)--(53.3, 246.8)--(53.2, 246.8)--(53.1, 246.8)--(53.0, 246.8)--(52.9, 246.8)--(52.7, 246.8)--(52.6, 246.8)--(52.4, 246.9)--(52.3, 246.9)--(52.2, 246.9)--(52.0, 246.9)--(51.7, 247.0)--(51.2, 247.2)--(50.9, 247.3)--(50.8, 247.3)--(50.7, 247.3)--(50.6, 247.3)--(50.6, 247.2)--(50.5, 247.2)--(50.4, 247.2)--(50.3, 247.2)--(50.3, 247.3)--(50.2, 247.3)--(50.1, 247.3)--(50.1, 247.4)--(50.0, 247.4)--(50.0, 247.5)--(49.9, 247.7)--(49.8, 247.7)--(49.8, 247.8)--(49.7, 247.9)--(49.6, 247.9)--(49.6, 248.0)--(49.5, 248.0)--(48.9, 248.3)--(48.6, 248.4)--(48.4, 248.6)--(48.1, 248.6)--(48.0, 248.6)--(47.8, 248.5)--(47.7, 248.4)--(47.6, 248.4)--(47.6, 248.3)--(47.6, 248.2)--(47.4, 248.2)--(47.3, 248.3)--(47.1, 248.6)--(46.9, 249.0)--(46.8, 249.3)--(46.5, 249.6)--(46.3, 249.9)--(46.2, 250.0)--(46.2, 250.1)--(46.0, 250.3)--(45.8, 250.6)--(45.6, 250.9)--(45.3, 251.3)--(45.0, 251.6)--(45.0, 251.7)--(45.0, 251.8)--(44.8, 251.9)--(44.6, 252.0)--(44.2, 252.3)--(44.1, 252.3)--(43.9, 252.4)--(43.7, 252.6)--(43.3, 252.8)--(43.0, 252.9)--(42.7, 253.1)--(42.3, 253.2)--(41.9, 253.3)--(41.4, 253.4)--(41.0, 253.5)--(40.9, 253.5)--(40.8, 253.6)--(40.7, 253.6)--(40.6, 253.6)--(40.5, 253.6)--(40.4, 253.6)--(40.3, 253.7)--(40.1, 253.7)--(39.9, 253.7)--(39.8, 253.7)--(39.6, 253.7)--(39.4, 253.7)--(39.3, 253.7)--(39.2, 253.7)--(39.1, 253.7)--(39.0, 253.7)--(38.9, 253.7)--(38.8, 253.7)--(38.7, 253.7)--(38.6, 253.7)--(38.6, 253.6)--(38.5, 253.6)--(38.4, 253.6)--(38.4, 253.5)--(38.3, 253.5)--(38.2, 253.4)--(38.2, 253.3)--(38.1, 253.3)--(38.1, 253.2)--(38.0, 253.0)--(37.9, 252.9)--(37.8, 252.7)--(37.8, 252.8)--(37.6, 252.8)--(37.5, 252.8)--(37.5, 252.9)--(37.4, 252.9)--(37.2, 252.9)--(37.1, 252.9)--(37.0, 252.9)--(36.8, 252.9)--(36.6, 253.0)--(36.4, 253.2)--(36.3, 253.2)--(35.8, 253.3)--(35.7, 253.6)--(35.7, 253.7)--(35.7, 253.8)--(35.7, 254.0)--(35.7, 254.1)--(35.7, 254.3)--(35.8, 254.5)--(35.8, 254.7)--(36.1, 255.2)--(36.2, 255.2)--(36.3, 255.2)--(36.4, 255.2)--(36.4, 255.3)--(36.5, 255.3)--(36.6, 255.3)--(36.7, 255.3)--(36.7, 255.4)--(36.8, 255.4)--(36.9, 255.5)--(37.0, 255.6)--(37.0, 255.7)--(37.1, 255.8)--(37.2, 255.9)--(37.3, 256.0)--(37.4, 256.1)--(37.4, 256.2)--(37.5, 256.3)--(37.6, 256.4)--(37.7, 256.5)--(37.7, 256.7)--(37.8, 256.8)--(37.9, 257.0)--(37.9, 257.1)--(38.0, 257.2)--(38.1, 257.3)--(38.1, 257.5)--(38.3, 257.9)--(38.4, 258.1)--(38.5, 258.5)--(38.6, 258.7)--(38.6, 258.9)--(38.7, 259.2)--(38.8, 259.3)--(38.9, 260.0)--(38.9, 260.1)--(39.0, 260.3)--(39.1, 260.5)--(39.1, 260.8)--(39.1, 260.9)--(39.2, 261.1)--(39.2, 261.4)--(39.2, 261.6)--(39.3, 261.9)--(39.3, 262.1)--(39.3, 262.6)--(39.4, 263.3)--(39.5, 264.2)--(39.5, 264.5)--(39.6, 264.6)--(39.7, 264.8)--(39.7, 265.0)--(39.7, 265.4)--(39.7, 265.5)--(39.7, 265.7)--(39.7, 265.9)--(39.7, 266.2)--(39.8, 266.4)--(39.8, 266.6)--(39.9, 266.9)--(40.0, 267.3)--(40.2, 267.9)--(40.4, 268.5)--(40.5, 268.7)--(40.5, 268.8)--(40.7, 269.4)--(40.8, 269.7)--(41.0, 270.1)--(41.2, 270.5)--(41.3, 270.8)--(41.6, 271.2)--(41.8, 271.6)--(41.9, 271.9)--(42.2, 272.3)--(42.6, 272.9)--(43.0, 273.5)--(43.1, 273.7)--(43.2, 273.7)--(43.3, 273.7)--(43.3, 273.8)--(43.2, 273.9)--(43.2, 274.0)--(43.3, 274.0)--(43.3, 274.1)--(43.4, 274.1)--(43.4, 274.2)--(43.3, 274.3)--(43.2, 274.3)--(43.1, 274.3)--(43.1, 274.4)--(43.1, 274.6)--(43.2, 274.8)--(43.1, 274.9)--(43.0, 274.9)--(42.9, 274.9)--(42.8, 274.9)--(42.7, 274.9)--(42.7, 275.0)--(42.8, 275.1)--(42.8, 275.2)--(42.7, 275.2)--(42.7, 275.3)--(42.7, 275.4)--(42.8, 275.6)--(42.9, 275.7)--(42.9, 275.8)--(42.9, 275.9)--(43.1, 276.1)--(43.1, 276.2)--(43.0, 276.3)--(43.0, 276.5)--(43.0, 276.7)--(43.0, 276.9)--(43.0, 277.0)--(43.1, 276.9)--(43.2, 276.8)--(43.3, 276.8)--(43.4, 277.0)--(43.5, 277.0)--(43.5, 276.9)--(43.5, 276.8)--(43.6, 276.8)--(43.7, 277.0)--(43.8, 277.2)--(43.8, 277.3)--(43.8, 277.4)--(43.7, 277.4)--(43.6, 277.4)--(43.5, 277.4)--(43.4, 277.6)--(43.3, 277.7)--(43.5, 277.9)--(43.6, 277.9)--(43.7, 277.9)--(43.7, 278.0)--(43.8, 278.1)--(43.8, 278.2)--(44.0, 278.2)--(44.0, 278.3)--(44.1, 278.3)--(44.2, 278.4)--(44.4, 278.2)--(44.6, 278.3)--(44.7, 278.3)--(44.7, 278.4)--(44.8, 278.4)--(44.8, 278.5)--(44.9, 278.6)--(44.8, 278.6)--(44.8, 278.7)--(44.7, 278.7)--(44.6, 278.7)--(44.5, 278.7)--(44.5, 278.8)--(44.5, 278.9)--(44.6, 279.0)--(44.6, 279.1)--(44.7, 279.1)--(44.7, 279.2)--(44.8, 279.2)--(45.0, 279.2)--(45.1, 279.1)--(45.1, 279.2)--(45.2, 279.2)--(45.2, 279.3)--(45.2, 279.4)--(45.2, 279.5)--(45.3, 279.6)--(45.4, 279.8)--(45.5, 279.9)--(45.6, 279.9)--(45.7, 279.9)--(45.8, 279.9)--(45.8, 280.0)--(45.9, 280.0)--(45.9, 280.1)--(45.9, 280.3)--(45.9, 280.4)--(45.8, 280.5)--(45.7, 280.6)--(45.7, 280.7)--(45.6, 280.7)--(45.6, 280.8)--(45.6, 280.9)--(45.7, 281.0)--(45.7, 281.1)--(45.8, 281.2)--(45.9, 281.3)--(45.9, 281.5)--(45.9, 281.6)--(46.0, 281.6)--(46.1, 281.6)--(46.6, 281.6)--(46.7, 281.6)--(46.8, 281.6)--(46.9, 281.7)--(47.0, 281.7)--(47.1, 281.7)--(47.2, 281.7)--(47.3, 281.7)--(47.4, 281.7)--(47.5, 281.8)--(47.6, 281.9)--(47.7, 281.9)--(48.1, 282.0)--(48.2, 282.0)--(48.3, 282.0)--(48.5, 282.5)--(48.6, 282.7)--(48.7, 282.8)--(48.9, 282.9)--(48.9, 283.0)--(48.9, 283.1)--(48.9, 283.2)--(48.9, 283.3)--(49.0, 283.3)--(49.0, 283.4)--(49.1, 283.4)--(49.1, 283.6)--(49.1, 283.7)--(49.2, 283.9)--(49.2, 284.0)--(49.3, 284.1)--(49.3, 284.2)--(49.5, 284.3)--(49.5, 284.4)--(49.5, 284.5)--(49.4, 284.6)--(49.4, 284.7)--(49.5, 284.8)--(49.6, 284.9)--(49.7, 284.9)--(49.8, 285.0)--(49.8, 285.1)--(49.9, 285.2)--(50.0, 285.2)--(50.1, 285.2)--(50.1, 285.3)--(50.0, 285.7)--(50.0, 285.8)--(50.0, 285.9)--(50.1, 286.0)--(50.1, 286.1)--(50.1, 286.2)--(50.1, 286.3)--(50.0, 286.4)--(50.0, 286.5)--(49.9, 286.6)--(49.8, 286.8)--(49.8, 286.9)--(49.7, 286.9)--(49.7, 287.0)--(49.6, 287.0)--(49.5, 287.0)--(49.5, 287.1)--(49.6, 287.2)--(49.6, 287.3)--(49.6, 287.5)--(49.7, 287.5)--(49.7, 287.6)--(49.8, 287.7)--(49.8, 287.8)--(49.9, 287.9)--(49.9, 288.0)--(49.9, 288.1)--(49.9, 288.2)--(49.8, 288.2)--(49.7, 288.2)--(49.6, 288.2)--(49.4, 288.2)--(49.4, 288.3)--(49.3, 288.3)--(49.3, 288.5)--(49.3, 288.6)--(49.3, 288.7)--(49.4, 288.9)--(49.6, 289.2)--(49.8, 289.4)--(49.9, 289.5)--(49.9, 289.7)--(49.9, 289.8)--(49.9, 289.9)--(49.9, 290.0)--(50.0, 290.0)--(50.2, 290.2)--(50.3, 290.3)--(50.4, 290.2)--(50.5, 290.1)--(50.6, 290.1)--(50.6, 290.2)--(50.8, 290.2)--(50.9, 290.2)--(50.9, 290.3)--(51.0, 290.4)--(50.9, 290.7)--(50.9, 290.8)--(50.9, 290.9)--(51.0, 290.9)--(51.1, 290.9)--(51.2, 290.9)--(51.3, 290.9)--(51.3, 290.8)--(51.4, 290.8)--(51.5, 290.7)--(51.6, 290.7)--(51.7, 290.8)--(51.7, 290.9)--(51.7, 291.0)--(51.7, 291.1)--(51.7, 291.2)--(51.7, 291.3)--(51.7, 291.6)--(51.7, 291.8)--(51.7, 291.9)--(51.8, 292.0)--(51.9, 292.1)--(51.9, 292.3)--(52.0, 292.3)--(52.0, 292.4)--(52.1, 292.5)--(52.2, 292.6)--(52.3, 292.7)--(52.4, 292.7)--(52.4, 292.8)--(52.4, 293.0)--(52.4, 293.1)--(52.5, 293.2)--(52.6, 293.3)--(52.6, 293.4)--(52.5, 293.5)--(52.5, 293.6)--(52.6, 293.6)--(52.7, 293.8)--(52.7, 293.9)--(52.7, 294.0)--(52.6, 294.0)--(52.5, 294.0)--(52.4, 294.1)--(52.4, 294.2)--(52.4, 294.3)--(52.3, 294.3)--(52.4, 294.4)--(52.4, 294.5)--(52.5, 294.6)--(52.6, 294.7)--(52.6, 294.8)--(52.5, 294.8)--(52.3, 295.0)--(52.4, 295.5)--(52.5, 295.5)--(52.6, 295.6)--(52.6, 295.7)--(52.6, 295.9)--(52.6, 296.0)--(52.6, 296.1)--(52.7, 296.1)--(52.8, 296.1)--(52.9, 296.1)--(53.0, 296.1)--(53.1, 296.1)--(53.2, 296.1)--(53.2, 296.2)--(53.2, 296.3)--(53.2, 296.5)--(53.3, 296.8)--(53.3, 297.0)--(53.4, 297.1)--(53.5, 297.2)--(53.6, 297.2)--(53.7, 297.2)--(53.7, 297.3)--(53.7, 297.4)--(53.7, 297.7)--(53.7, 297.8)--(53.7, 297.9)--(53.6, 297.9)--(53.6, 298.0)--(53.5, 298.1)--(53.4, 298.1)--(53.3, 298.2)--(53.2, 298.2)--(53.1, 298.2)--(53.1, 298.3)--(53.1, 298.4)--(53.1, 298.5)--(53.1, 298.6)--(53.2, 298.6)--(53.4, 298.6)--(53.4, 298.7)--(53.4, 298.8)--(53.4, 298.9)--(53.3, 298.9)--(53.2, 298.9)--(53.2, 299.0)--(53.1, 299.0)--(53.0, 299.1)--(52.9, 299.2)--(52.9, 299.4)--(52.9, 299.5)--(52.8, 299.5)--(52.8, 299.6)--(52.7, 299.6)--(52.6, 299.7)--(52.5, 299.8)--(52.5, 299.9)--(52.4, 300.0)--(52.4, 300.2)--(52.2, 300.3)--(52.0, 300.5)--(51.8, 300.7)--(52.0, 300.7)--(52.0, 301.0)--(51.9, 301.0)--(51.8, 301.2)--(51.6, 301.1)--(51.4, 301.1)--(51.4, 301.5)--(51.1, 301.5)--(50.7, 301.9)--(50.6, 301.8)--(50.3, 302.0)--(50.0, 302.1)--(49.9, 302.2)--(49.8, 302.4)--(49.7, 302.4)--(49.6, 302.4)--(49.6, 302.5)--(49.5, 302.5)--(49.4, 302.5)--(49.3, 302.4)--(49.2, 302.4)--(49.1, 302.5)--(49.0, 302.5)--(49.0, 302.6)--(48.9, 302.8)--(48.9, 303.0)--(48.8, 303.1)--(48.8, 303.2)--(48.8, 303.3)--(48.9, 303.3)--(49.0, 303.4)--(49.0, 303.5)--(49.0, 303.6)--(49.0, 303.8)--(49.0, 304.0)--(48.9, 304.4)--(48.8, 304.6)--(48.8, 304.7)--(48.9, 304.8)--(49.0, 305.1)--(49.1, 305.2)--(49.1, 305.3)--(49.1, 305.4)--(49.0, 305.5)--(48.9, 305.7)--(48.8, 305.8)--(48.4, 306.3)--(48.3, 306.4)--(48.2, 306.5)--(48.2, 306.6)--(48.1, 306.6)--(48.0, 306.6)--(47.9, 306.7)--(47.8, 306.9)--(47.6, 307.3)--(47.5, 307.4)--(47.5, 307.5)--(47.4, 307.6)--(47.4, 307.7)--(47.4, 307.9)--(47.4, 308.0)--(47.3, 308.2)--(47.3, 308.3)--(47.2, 308.4)--(47.2, 308.5)--(47.1, 308.7)--(47.1, 308.8)--(47.1, 309.0)--(47.2, 309.7)--(47.4, 310.2)--(47.4, 310.4)--(47.5, 310.7)--(47.5, 310.8)--(47.5, 310.9)--(47.6, 310.9)--(47.7, 311.1)--(47.8, 311.3)--(47.9, 311.3)--(47.9, 311.4)--(48.1, 311.5)--(48.2, 311.6)--(48.2, 311.7)--(48.3, 311.7)--(48.3, 311.8)--(48.3, 311.9)--(48.4, 312.0)--(48.4, 312.2)--(48.4, 312.5)--(48.4, 312.6)--(48.3, 312.7)--(48.3, 312.8)--(48.2, 312.9)--(48.1, 312.9)--(48.1, 313.0)--(48.0, 313.0)--(47.9, 313.1)--(47.8, 313.2)--(47.8, 313.3)--(47.8, 313.4)--(47.8, 313.5)--(47.8, 313.6)--(47.8, 313.7)--(47.9, 313.9)--(48.1, 314.4)--(48.2, 314.6)--(48.2, 314.8)--(48.2, 314.9)--(48.1, 315.6)--(48.1, 315.7)--(48.3, 316.7)--(48.3, 317.0)--(48.3, 317.1)--(48.3, 317.2)--(48.3, 317.3)--(48.3, 317.4)--(48.3, 317.5)--(48.3, 317.6)--(48.1, 317.9)--(48.0, 318.1)--(48.0, 318.3)--(47.9, 318.4)--(47.9, 318.6)--(47.9, 318.8)--(47.9, 318.9)--(47.9, 319.2)--(48.0, 319.5)--(48.0, 319.6)--(48.1, 319.6)--(48.1, 319.7)--(48.3, 319.8)--(48.4, 319.8)--(48.5, 319.9)--(48.6, 320.0)--(48.7, 320.2)--(48.8, 320.4)--(48.8, 320.5)--(48.9, 320.7)--(49.1, 321.3)--(49.1, 321.6)--(49.1, 321.7)--(49.2, 321.8)--(49.1, 322.1)--(49.1, 322.2)--(49.1, 322.4)--(48.8, 322.7)--(48.6, 323.2)--(48.6, 323.3)--(48.5, 323.5)--(48.5, 323.6)--(48.5, 323.7)--(48.5, 323.8)--(48.5, 323.9)--(48.5, 324.1)--(48.5, 324.2)--(48.4, 324.4)--(48.4, 324.6)--(48.4, 324.7)--(48.3, 324.9)--(48.3, 325.0)--(48.2, 325.1)--(48.2, 325.2)--(48.3, 325.4)--(48.2, 325.5)--(48.1, 325.5)--(48.1, 325.6)--(48.0, 325.6)--(48.0, 325.7)--(48.1, 325.8)--(48.0, 325.8)--(48.0, 325.9)--(47.9, 325.9)--(47.8, 325.9)--(47.8, 326.1)--(47.7, 326.2)--(47.7, 326.3)--(47.6, 326.3)--(47.5, 326.6)--(47.5, 326.7)--(47.5, 326.9)--(47.5, 327.0)--(47.5, 327.1)--(47.6, 327.2)--(47.6, 327.3)--(47.7, 327.4)--(47.8, 327.5)--(47.8, 327.6)--(47.9, 327.7)--(48.0, 327.7)--(48.0, 327.8)--(47.9, 327.8)--(47.6, 327.9)--(47.5, 327.9)--(47.4, 328.0)--(47.3, 328.1)--(47.3, 328.2)--(47.3, 328.4)--(47.2, 328.5)--(47.2, 328.6)--(47.1, 328.7)--(46.6, 329.1)--(46.3, 329.3)--(46.1, 329.4)--(46.0, 329.5)--(46.0, 329.6)--(45.8, 329.8)--(45.7, 330.0)--(45.6, 330.0)--(45.5, 330.2)--(45.5, 330.3)--(45.4, 330.4)--(45.4, 330.7)--(45.3, 331.0)--(45.2, 331.2)--(45.1, 331.3)--(45.0, 331.5)--(45.0, 331.6)--(44.8, 331.8)--(44.7, 331.9)--(44.6, 332.0)--(44.6, 332.1)--(44.5, 332.2)--(44.4, 332.3)--(44.4, 332.4)--(44.4, 332.5)--(44.4, 332.6)--(44.6, 332.8)--(44.6, 332.9)--(44.7, 333.0)--(44.7, 333.1)--(44.8, 333.1)--(44.8, 333.2)--(44.9, 333.2)--(45.0, 333.4)--(45.2, 333.9)--(45.5, 334.5)--(45.5, 334.6)--(45.6, 334.8)--(45.6, 334.9)--(45.6, 335.1)--(45.6, 335.2)--(45.6, 335.3)--(45.7, 335.3)--(45.7, 335.4)--(45.8, 335.4)--(46.0, 335.5)--(46.2, 335.6)--(46.4, 335.7)--(46.5, 335.7)--(46.6, 335.7)--(46.7, 335.8)--(46.8, 335.9)--(46.9, 336.0)--(46.9, 336.1)--(46.8, 336.5)--(46.8, 336.6)--(46.7, 336.8)--(46.7, 336.9)--(46.7, 337.2)--(46.8, 337.6)--(46.8, 337.7)--(46.9, 337.9)--(47.0, 338.0)--(47.0, 338.2)--(47.0, 338.3)--(47.0, 338.6)--(47.0, 338.7)--(47.2, 339.0)--(47.2, 339.1)--(47.2, 339.2)--(47.3, 339.2)--(47.4, 339.3)--(47.5, 339.6)--(47.5, 339.8)--(47.5, 339.9)--(47.4, 340.0)--(47.3, 340.0)--(47.2, 340.0)--(47.1, 340.1)--(47.0, 340.1)--(47.0, 340.2)--(47.0, 340.4)--(47.0, 340.6)--(47.0, 340.8)--(47.1, 340.9)--(47.1, 341.0)--(47.1, 341.1)--(47.2, 341.1)--(47.2, 341.2)--(47.7, 341.1)--(47.8, 341.0)--(47.9, 341.0)--(48.0, 341.0)--(48.0, 341.1)--(48.1, 341.1)--(48.2, 341.1)--(48.3, 341.2)--(48.4, 341.2)--(48.5, 341.3)--(48.5, 341.4)--(48.5, 341.5)--(48.6, 341.5)--(48.5, 341.6)--(48.5, 341.7)--(48.4, 341.8)--(48.4, 341.9)--(48.4, 342.0)--(48.3, 342.2)--(48.4, 342.3)--(48.5, 342.3)--(48.6, 342.4)--(48.8, 342.4)--(49.0, 342.4)--(49.1, 342.4)--(49.2, 342.4)--(49.2, 342.5)--(49.3, 342.5)--(49.3, 342.6)--(49.5, 343.0)--(49.6, 343.3)--(49.6, 343.4)--(49.6, 343.5)--(49.6, 343.6)--(49.7, 344.1)--(49.7, 344.3)--(49.8, 344.5)--(49.8, 344.7)--(49.9, 344.9)--(50.0, 345.0)--(50.2, 345.3)--(50.3, 345.5)--(50.5, 345.7)--(50.6, 345.8)--(50.7, 345.9)--(50.8, 345.9)--(50.9, 346.1)--(51.0, 346.2)--(51.1, 346.2)--(51.1, 346.3)--(51.3, 346.3)--(51.5, 346.4)--(51.5, 346.5)--(51.6, 346.5)--(51.7, 346.8)--(51.8, 347.0)--(51.9, 347.0)--(51.9, 347.1)--(52.0, 347.1)--(52.1, 347.1)--(52.2, 347.2)--(52.3, 347.2)--(52.5, 347.2)--(52.6, 347.1)--(52.7, 347.1)--(52.8, 347.1)--(52.9, 347.1)--(53.0, 347.2)--(53.4, 347.7)--(53.6, 348.1)--(53.8, 348.5)--(55.0, 350.0)--(55.5, 350.9)--(55.8, 350.7)--(56.1, 351.0)--(56.2, 350.9)--(56.3, 350.9)--(56.3, 351.0)--(56.4, 351.2)--(56.5, 351.3)--(56.6, 351.4)--(56.6, 351.5)--(56.6, 351.6)--(56.7, 351.7)--(56.7, 351.8)--(56.7, 351.9)--(56.7, 352.0)--(56.6, 352.2)--(56.6, 352.3)--(56.7, 352.8)--(56.7, 352.9)--(56.8, 353.3)--(56.9, 353.4)--(56.9, 353.5)--(56.9, 353.6)--(56.9, 353.9)--(56.9, 354.0)--(56.9, 354.1)--(56.9, 354.2)--(56.9, 354.3)--(57.0, 354.4)--(57.0, 354.5)--(57.0, 354.6)--(57.0, 354.7)--(56.8, 355.1)--(56.8, 355.2)--(56.8, 355.3)--(56.8, 355.4)--(56.9, 355.5)--(57.0, 355.5)--(57.0, 355.6)--(57.0, 355.7)--(57.0, 355.8)--(57.0, 355.9)--(56.9, 356.1)--(56.8, 356.2)--(56.7, 356.3)--(56.5, 356.6)--(56.4, 357.0)--(56.1, 357.1)--(56.0, 357.1)--(55.8, 357.2)--(55.7, 357.2)--(55.4, 357.1)--(55.3, 357.1)--(55.2, 357.1)--(55.1, 357.2)--(55.0, 357.2)--(54.8, 357.3)--(54.4, 357.5)--(54.3, 357.5)--(54.2, 357.5)--(54.1, 357.4)--(54.0, 357.4)--(53.9, 357.4)--(53.8, 357.5)--(53.8, 357.6)--(53.8, 357.7)--(53.8, 357.8)--(53.9, 357.9)--(54.0, 358.0)--(53.9, 358.1)--(53.9, 358.2)--(54.0, 358.2)--(54.0, 358.3)--(54.1, 358.3)--(54.1, 358.4)--(54.1, 358.5)--(54.1, 358.6)--(53.8, 358.9)--(53.7, 359.1)--(53.7, 359.2)--(53.6, 359.2)--(53.5, 359.3)--(52.6, 359.7)--(52.7, 360.0)--(52.7, 360.1)--(52.8, 360.6)--(52.8, 360.7)--(52.9, 360.8)--(53.0, 360.9)--(53.0, 361.0)--(53.0, 361.1)--(52.9, 361.2)--(52.8, 361.3)--(52.7, 361.5)--(52.5, 361.7)--(52.4, 361.9)--(52.3, 362.0)--(52.3, 362.1)--(52.3, 362.3)--(52.4, 362.3)--(52.5, 362.5)--(52.6, 362.7)--(52.7, 363.0)--(52.5, 363.2)--(52.5, 363.3)--(52.3, 363.5)--(52.1, 363.7)--(52.0, 363.8)--(51.8, 363.8)--(51.6, 363.8)--(51.5, 363.9)--(51.3, 364.0)--(51.2, 364.1)--(51.2, 364.2)--(51.3, 364.7)--(51.3, 365.0)--(51.4, 365.6)--(51.5, 365.8)--(51.5, 365.9)--(51.5, 366.0)--(51.4, 366.2)--(51.3, 366.3)--(51.3, 366.4)--(51.3, 366.6)--(51.3, 366.8)--(51.3, 366.9)--(51.4, 367.2)--(51.5, 367.6)--(51.6, 367.9)--(51.6, 368.0)--(51.6, 368.3)--(51.6, 368.7)--(51.6, 368.9)--(51.6, 369.0)--(51.6, 369.1)--(51.6, 369.2)--(51.5, 369.3)--(51.5, 369.4)--(51.4, 369.4)--(51.2, 369.7)--(51.0, 369.9)--(50.9, 370.1)--(50.9, 370.2)--(50.8, 370.3)--(50.8, 370.5)--(50.7, 370.7)--(50.6, 371.0)--(50.6, 371.7)--(50.5, 371.8)--(50.5, 371.9)--(50.5, 372.0)--(50.6, 372.0)--(50.9, 372.2)--(51.0, 372.3)--(51.1, 372.4)--(51.2, 372.5)--(51.3, 372.7)--(51.4, 372.9)--(51.5, 373.1)--(51.5, 373.2)--(51.5, 373.3)--(51.5, 373.4)--(51.4, 373.5)--(51.4, 373.6)--(51.3, 373.6)--(51.3, 373.7)--(51.0, 373.6)--(50.9, 373.6)--(50.8, 373.6)--(50.7, 373.6)--(50.6, 373.7)--(50.5, 373.7)--(50.5, 373.8)--(50.4, 373.9)--(50.3, 374.0)--(50.2, 374.1)--(50.1, 374.1)--(50.0, 374.2)--(49.8, 374.2)--(49.7, 374.2)--(49.5, 374.3)--(49.4, 374.3)--(49.2, 374.4)--(49.0, 374.5)--(48.9, 374.6)--(48.8, 374.7)--(48.7, 374.8)--(48.6, 374.9)--(48.6, 375.0)--(48.6, 375.1)--(48.6, 375.2)--(48.6, 375.3)--(48.6, 375.4)--(48.5, 375.4)--(48.5, 375.5)--(48.4, 375.5)--(48.2, 375.6)--(48.1, 375.7)--(48.0, 375.8)--(47.9, 376.2)--(47.7, 376.6)--(47.7, 376.7)--(47.7, 376.8)--(47.7, 376.9)--(47.7, 377.0)--(47.8, 377.3)--(47.9, 377.4)--(47.9, 377.5)--(47.9, 377.6)--(47.9, 377.7)--(48.0, 377.8)--(48.1, 377.9)--(48.2, 378.0)--(48.2, 378.1)--(48.3, 378.2)--(48.3, 378.3)--(48.2, 378.5)--(48.2, 378.7)--(48.1, 379.0)--(48.0, 379.5)--(47.9, 379.7)--(47.8, 380.0)--(47.7, 380.1)--(47.6, 380.4)--(47.5, 380.7)--(47.4, 380.8)--(47.4, 380.9)--(47.3, 381.0)--(47.2, 381.1)--(46.8, 381.5)--(46.6, 381.7)--(46.5, 381.9)--(46.4, 381.9)--(46.2, 382.0)--(46.1, 382.1)--(46.0, 382.2)--(45.4, 382.5)--(45.2, 382.7)--(45.0, 382.8)--(44.5, 383.2)--(44.2, 383.4)--(44.1, 383.5)--(44.0, 383.6)--(43.9, 383.7)--(43.9, 383.8)--(43.8, 384.0)--(43.7, 384.3)--(43.6, 384.5)--(43.6, 384.6)--(43.6, 384.7)--(43.6, 384.8)--(43.6, 384.9)--(43.6, 385.1)--(43.7, 385.5)--(43.7, 385.8)--(43.7, 385.9)--(43.6, 386.1)--(43.4, 386.4)--(43.4, 386.6)--(43.3, 387.0)--(43.2, 387.3)--(43.2, 387.4)--(43.1, 387.7)--(43.0, 387.8)--(43.0, 387.9)--(42.9, 388.0)--(42.8, 388.0)--(42.8, 388.1)--(42.6, 388.1)--(42.6, 388.2)--(42.5, 388.2)--(42.5, 388.3)--(42.5, 388.4)--(42.4, 388.5)--(42.2, 388.7)--(42.1, 388.9)--(42.0, 389.0)--(42.0, 389.2)--(41.8, 389.6)--(41.7, 389.9)--(41.6, 390.2)--(41.6, 390.6)--(41.5, 390.8)--(41.4, 390.9)--(41.3, 390.9)--(41.2, 390.8)--(41.1, 390.8)--(41.0, 390.9)--(41.0, 391.0)--(40.9, 391.0)--(40.9, 391.1)--(40.9, 391.2)--(40.9, 391.3)--(41.0, 391.5)--(41.0, 391.7)--(41.0, 391.8)--(41.0, 391.9)--(40.9, 391.9)--(40.8, 391.9)--(40.7, 391.9)--(40.6, 391.9)--(40.5, 391.9)--(40.4, 392.0)--(40.4, 392.1)--(40.4, 392.2)--(40.4, 392.3)--(40.4, 392.5)--(40.4, 392.6)--(40.5, 392.6)--(40.5, 392.7)--(40.7, 392.8)--(40.7, 392.9)--(40.8, 392.9)--(40.8, 393.0)--(40.8, 393.1)--(40.9, 393.1)--(40.9, 393.2)--(40.9, 393.3)--(40.9, 393.4)--(40.9, 393.5)--(40.9, 393.8)--(41.0, 394.0)--(41.0, 394.1)--(41.0, 394.3)--(41.0, 394.7)--(41.0, 394.8)--(40.9, 394.8)--(40.9, 394.9)--(40.6, 395.3)--(40.5, 395.3)--(40.5, 395.4)--(40.4, 395.5)--(40.4, 395.6)--(40.4, 395.7)--(40.4, 395.8)--(40.3, 396.1)--(40.3, 396.3)--(40.3, 396.8)--(40.2, 397.1)--(40.1, 397.4)--(39.9, 398.2)--(39.6, 399.1)--(39.5, 399.2)--(39.5, 399.3)--(39.5, 399.4)--(39.5, 399.5)--(39.5, 400.0)--(39.5, 400.2)--(39.5, 400.3)--(39.5, 400.5)--(39.4, 400.6)--(39.3, 400.8)--(39.3, 400.9)--(39.3, 401.0)--(39.3, 401.2)--(39.4, 401.5)--(39.5, 401.9)--(39.5, 402.0)--(39.6, 402.1)--(39.6, 402.2)--(39.7, 402.3)--(39.8, 402.3)--(39.9, 402.3)--(40.2, 402.4)--(40.3, 402.4)--(40.4, 402.4)--(40.5, 402.4)--(40.6, 402.3)--(40.7, 402.2)--(40.9, 402.0)--(41.0, 401.9)--(41.1, 401.9)--(41.3, 401.8)--(41.4, 401.8)--(41.5, 401.8)--(41.6, 401.9)--(41.7, 402.0)--(41.9, 402.1)--(41.9, 402.2)--(42.1, 402.3)--(42.1, 402.4)--(42.2, 402.5)--(42.1, 402.6)--(42.1, 402.7)--(42.1, 402.8)--(42.2, 403.1)--(42.2, 403.3)--(42.3, 403.4)--(42.3, 403.5)--(42.4, 403.5)--(42.4, 403.6)--(42.4, 403.7)--(42.3, 403.7)--(42.3, 403.8)--(42.1, 403.9)--(42.0, 404.1)--(41.9, 404.2)--(41.8, 404.3)--(41.8, 404.4)--(41.8, 404.5)--(41.7, 404.6)--(41.7, 404.7)--(41.6, 405.4)--(41.5, 405.6)--(41.5, 405.8)--(41.6, 405.9)--(41.6, 406.0)--(41.6, 406.1)--(41.7, 406.2)--(41.7, 406.3)--(41.6, 406.3)--(41.5, 406.7)--(41.3, 407.3)--(41.2, 407.6)--(41.1, 407.8)--(41.1, 408.0)--(41.1, 408.4)--(41.1, 408.5)--(41.0, 408.8)--(40.8, 409.3)--(40.7, 409.5)--(40.7, 409.6)--(40.7, 409.8)--(40.7, 410.0)--(40.7, 410.1)--(40.6, 410.2)--(40.4, 410.3)--(40.3, 410.4)--(40.3, 410.5)--(40.2, 410.6)--(40.2, 410.7)--(40.2, 410.8)--(40.2, 410.9)--(40.3, 410.9)--(40.3, 411.0)--(40.4, 411.1)--(40.7, 411.3)--(40.8, 411.3)--(40.8, 411.4)--(40.8, 411.5)--(40.8, 411.6)--(40.6, 411.9)--(40.4, 412.0)--(40.4, 412.1)--(40.3, 412.1)--(40.4, 412.3)--(40.4, 412.6)--(40.4, 412.7)--(40.4, 413.0)--(40.4, 413.1)--(40.3, 413.2)--(40.4, 413.3)--(40.4, 413.4)--(40.4, 413.5)--(40.5, 413.5)--(40.6, 413.6)--(40.6, 413.7)--(40.7, 413.7)--(40.7, 413.8)--(40.7, 413.9)--(40.6, 414.1)--(40.6, 414.3)--(40.6, 414.4)--(40.6, 414.5)--(40.8, 414.9)--(40.8, 415.1)--(40.9, 415.3)--(41.0, 415.5)--(41.0, 415.6)--(41.0, 415.7)--(41.0, 415.8)--(41.0, 415.9)--(41.0, 416.1)--(41.0, 416.2)--(41.0, 416.4)--(41.0, 416.5)--(41.0, 416.6)--(41.0, 416.7)--(41.1, 417.0)--(41.1, 417.1)--(41.1, 417.2)--(41.2, 417.2)--(41.3, 417.3)--(41.5, 417.3)--(41.5, 417.4)--(41.6, 417.4)--(41.6, 417.5)--(41.6, 417.7)--(41.7, 417.9)--(41.7, 418.0)--(41.8, 418.5)--(41.8, 418.7)--(41.9, 418.9)--(42.2, 419.5)--(42.2, 419.6)--(42.2, 419.7)--(42.2, 419.8)--(42.2, 420.0)--(42.2, 420.1)--(42.3, 420.4)--(42.3, 420.6)--(42.3, 420.7)--(42.4, 420.7)--(42.5, 420.9)--(42.5, 421.0)--(42.6, 421.5)--(42.6, 421.7)--(42.6, 421.8)--(42.6, 421.9)--(42.6, 422.0)--(42.6, 422.1)--(42.5, 422.2)--(42.4, 422.4)--(42.2, 422.7)--(42.1, 422.8)--(42.0, 422.9)--(42.0, 423.0)--(41.9, 423.0)--(41.8, 423.1)--(41.7, 423.1)--(41.7, 423.2)--(41.6, 423.4)--(41.6, 423.5)--(41.6, 423.6)--(41.6, 423.7)--(41.5, 423.8)--(41.4, 423.8)--(41.2, 423.9)--(41.1, 423.9)--(40.9, 424.0)--(40.7, 424.1)--(40.3, 424.1)--(40.1, 424.2)--(40.0, 424.2)--(39.9, 424.3)--(39.8, 424.4)--(39.8, 424.5)--(39.7, 424.7)--(39.5, 424.9)--(39.5, 425.0)--(39.3, 425.2)--(39.3, 425.4)--(39.2, 425.4)--(39.2, 425.5)--(39.3, 425.6)--(39.3, 425.7)--(39.3, 426.0)--(39.3, 426.1)--(39.3, 426.3)--(39.2, 426.5)--(39.2, 426.7)--(39.2, 426.8)--(39.2, 426.9)--(39.3, 427.0)--(39.3, 427.2)--(39.4, 427.4)--(39.5, 427.5)--(39.5, 427.6)--(39.6, 427.7)--(39.7, 427.8)--(39.9, 428.0)--(40.2, 428.2)--(40.3, 428.2)--(40.4, 428.3)--(40.4, 428.4)--(40.5, 428.5)--(40.5, 428.7)--(40.4, 428.9)--(40.5, 429.0)--(40.6, 429.1)--(40.8, 429.5)--(40.8, 429.6)--(40.8, 429.7)--(40.8, 430.0)--(40.9, 430.2)--(40.9, 430.5)--(40.9, 430.6)--(40.9, 430.7)--(40.8, 430.8)--(40.5, 431.0)--(40.4, 431.1)--(40.2, 431.3)--(39.9, 431.5)--(39.9, 431.6)--(39.8, 431.7)--(39.6, 432.0)--(39.4, 432.2)--(39.2, 432.5)--(39.1, 432.6)--(39.1, 432.7)--(39.0, 432.7)--(39.0, 432.9)--(39.0, 433.0)--(39.0, 433.1)--(39.1, 433.1)--(39.1, 433.2)--(39.3, 433.3)--(39.4, 433.4)--(39.4, 433.5)--(39.4, 433.7)--(39.4, 433.8)--(39.4, 434.0)--(39.4, 434.1)--(39.5, 434.3)--(39.5, 434.4)--(39.6, 434.5)--(39.6, 434.6)--(39.7, 434.7)--(39.8, 434.9)--(40.2, 435.2)--(40.2, 435.3)--(40.4, 435.4)--(40.5, 435.4)--(40.6, 435.7)--(40.8, 435.8)--(40.9, 436.0)--(41.1, 436.1)--(41.2, 436.1)--(41.3, 436.2)--(41.4, 436.2)--(41.5, 436.2)--(41.6, 436.2)--(41.7, 436.2)--(41.8, 436.2)--(41.8, 436.1)--(41.9, 436.1)--(41.9, 436.0)--(42.0, 435.9)--(42.1, 435.8)--(42.2, 435.6)--(42.2, 435.5)--(42.4, 435.5)--(42.6, 435.5)--(42.8, 435.4)--(42.9, 435.4)--(43.1, 435.5)--(43.2, 435.5)--(43.2, 435.4)--(43.3, 435.4)--(43.5, 435.2)--(43.5, 435.0)--(43.6, 434.9)--(43.7, 434.9)--(43.8, 435.0)--(43.9, 435.0)--(44.0, 435.0)--(44.2, 434.9)--(44.3, 434.9)--(44.4, 434.9)--(44.5, 434.9)--(44.7, 434.9)--(44.7, 435.0)--(44.8, 435.0)--(45.0, 435.2)--(45.3, 434.6)--(45.7, 433.8)--(46.3, 432.8)--(46.5, 432.4)--(46.7, 432.1)--(46.7, 432.0)--(46.8, 431.8)--(46.8, 431.7)--(46.9, 431.5)--(47.0, 431.5)--(47.1, 431.3)--(47.2, 431.2)--(47.5, 430.9)--(47.7, 430.8)--(47.9, 430.6)--(48.2, 430.4)--(48.4, 430.2)--(48.6, 430.1)--(48.9, 429.9)--(49.2, 429.6)--(49.4, 429.5)--(49.7, 429.3)--(50.0, 429.0)--(50.1, 429.0)--(50.2, 428.9)--(50.4, 428.7)--(50.6, 428.6)--(50.7, 428.5)--(50.8, 428.5)--(51.0, 428.4)--(51.3, 428.3)--(51.5, 428.2)--(51.5, 428.1)--(51.7, 427.9)--(51.8, 427.9)--(52.0, 427.8)--(52.0, 427.7)--(52.2, 427.6)--(52.6, 427.3)--(52.7, 427.4)--(53.1, 427.0)--(53.6, 426.6)--(54.0, 426.3)--(54.4, 426.0)--(54.4, 426.1)--(54.5, 426.0)--(54.8, 425.9)--(55.0, 425.8)--(55.3, 425.7)--(55.4, 425.6)--(55.5, 425.5)--(55.7, 425.4)--(55.8, 425.2)--(55.9, 425.1)--(56.2, 424.7)--(56.3, 424.5)--(56.4, 424.5)--(56.8, 424.0)--(57.2, 423.6)--(57.5, 423.3)--(57.8, 423.0)--(58.2, 422.6)--(58.4, 422.3)--(59.2, 421.7)--(59.5, 421.5)--(59.7, 421.3)--(60.8, 420.0)--(61.0, 419.9)--(61.2, 419.7)--(61.7, 419.4)--(62.3, 419.0)--(62.8, 418.6)--(63.7, 418.1)--(64.1, 417.8)--(64.5, 417.6)--(65.0, 417.3)--(65.4, 417.0)--(65.6, 417.1)--(65.7, 417.0)--(65.8, 416.9)--(65.9, 416.8)--(66.8, 416.4)--(67.0, 416.3)--(67.4, 416.0)--(68.1, 415.7)--(68.8, 415.4)--(69.1, 415.2)--(69.3, 415.1)--(69.5, 415.2)--(69.7, 415.3)--(70.0, 415.4)--(70.1, 415.4)--(70.3, 415.5)--(70.4, 415.5)--(70.5, 415.6)--(70.8, 415.8)--(71.0, 416.0)--(71.6, 416.3)--(72.5, 417.0)--(72.9, 417.3)--(73.8, 417.8)--(74.1, 418.0)--(74.3, 418.2)--(74.4, 418.2)--(74.6, 418.3)--(74.7, 418.4)--(74.9, 418.6)--(75.0, 418.7)--(75.3, 419.1)--(75.4, 419.2)--(75.4, 419.3)--(75.5, 419.4)--(75.5, 419.5)--(75.6, 419.6)--(75.6, 420.0)--(75.7, 420.3)--(75.8, 420.5)--(75.9, 420.7)--(75.9, 420.8)--(76.0, 421.2)--(76.2, 421.6)--(76.5, 422.4)--(76.6, 422.7)--(76.7, 422.9)--(76.9, 423.1)--(77.0, 423.3)--(77.1, 423.4)--(77.2, 423.5)--(77.3, 423.5)--(77.4, 423.5)--(77.6, 423.5)--(77.9, 423.5)--(78.0, 423.5)--(78.1, 423.4)--(78.5, 423.3)--(78.6, 423.3)--(78.7, 423.3)--(78.9, 423.4)--(79.0, 423.4)--(79.2, 423.4)--(79.5, 423.5)--(79.7, 423.6)--(80.0, 423.8)--(80.2, 423.8)--(80.3, 423.9)--(80.5, 424.0)--(80.7, 424.0)--(81.0, 424.0)--(81.4, 423.9)--(81.5, 423.9)--(82.0, 423.9)--(82.1, 423.9)--(82.2, 423.8)--(82.3, 423.8)--(82.4, 423.7)--(82.5, 423.6)--(82.7, 423.5)--(83.0, 423.5)--(83.1, 423.5)--(83.2, 423.4)--(83.5, 423.3)--(83.6, 423.3)--(83.6, 423.2)--(83.7, 423.1)--(83.8, 423.1)--(83.9, 423.0)--(84.0, 423.0)--(84.2, 423.0)--(84.4, 422.9)--(84.6, 422.8)--(84.8, 422.7)--(85.0, 422.6)--(85.2, 422.5)--(85.3, 422.5)--(85.5, 422.4)--(85.6, 422.4)--(85.7, 422.3)--(85.8, 422.3)--(85.9, 422.3)--(86.0, 422.2)--(86.6, 422.1)--(86.9, 422.0)--(87.0, 422.1)--(87.1, 422.1)--(87.3, 422.1)--(87.7, 422.0)--(87.9, 421.9)--(88.3, 421.8)--(88.5, 421.7)--(88.6, 421.7)--(88.9, 421.6)--(89.0, 421.6)--(89.1, 421.6)--(89.3, 421.5)--(89.9, 421.1)--(90.0, 421.0)--(90.1, 420.9)--(90.2, 420.9)--(90.3, 420.8)--(90.4, 420.8)--(90.5, 420.8)--(90.6, 420.8)--(90.8, 420.8)--(90.9, 420.8)--(91.2, 420.8)--(91.8, 420.7)--(92.0, 420.7)--(92.2, 420.7)--(92.5, 420.8)--(92.6, 420.8)--(92.9, 420.8)--(93.3, 420.8)--(93.7, 420.8)--(94.1, 420.8)--(94.2, 420.8)--(94.5, 420.8)--(95.0, 420.7)--(95.1, 420.7)--(95.4, 420.7)--(95.7, 420.6)--(96.0, 420.5)--(96.1, 420.5)--(96.2, 420.5)--(96.5, 420.5)--(96.7, 420.4)--(97.0, 420.4)--(97.2, 420.3)--(97.4, 420.2)--(97.6, 420.1)--(97.7, 420.0)--(97.8, 420.0)--(97.9, 419.9)--(98.0, 419.8)--(98.1, 419.7)--(98.6, 419.4)--(99.5, 418.8)--(99.6, 418.7)--(99.9, 418.4)--(100.0, 418.3)--(100.5, 417.9)--(100.6, 417.8)--(100.7, 417.7)--(101.0, 417.5)--(101.1, 417.5)--(101.2, 417.5)--(101.6, 417.5)--(101.9, 417.5)--(102.6, 417.4)--(103.0, 417.3)--(103.2, 417.3)--(103.5, 417.3)--(103.8, 417.3)--(105.1, 417.1)--(105.3, 417.1)--cycle; +Hounslow = (219.8, 281.0)--(219.7, 281.0)--(219.6, 281.0)--(219.0, 280.6)--(217.9, 279.6)--(217.9, 279.5)--(217.8, 279.4)--(217.6, 279.4)--(217.6, 279.3)--(217.4, 279.1)--(217.2, 278.9)--(216.6, 278.0)--(216.5, 277.9)--(216.5, 277.8)--(216.4, 277.6)--(216.3, 277.6)--(216.2, 277.6)--(216.4, 277.4)--(216.1, 276.9)--(216.0, 276.4)--(215.6, 275.4)--(215.5, 275.1)--(215.3, 274.1)--(215.1, 273.3)--(215.1, 272.8)--(215.1, 272.3)--(215.2, 272.3)--(215.2, 272.2)--(215.1, 272.2)--(215.3, 271.1)--(215.4, 270.0)--(215.4, 269.6)--(215.4, 269.3)--(215.3, 269.1)--(215.3, 269.0)--(215.2, 268.3)--(215.0, 267.4)--(214.7, 266.5)--(214.6, 266.1)--(214.2, 265.2)--(213.9, 264.5)--(213.8, 264.4)--(213.4, 263.6)--(213.4, 263.5)--(213.1, 263.2)--(213.0, 263.3)--(212.8, 263.1)--(212.8, 263.0)--(212.8, 262.9)--(211.8, 262.2)--(211.4, 262.0)--(210.9, 261.8)--(210.7, 261.8)--(210.3, 261.6)--(210.0, 261.5)--(209.7, 261.5)--(209.5, 261.4)--(209.4, 261.4)--(209.1, 261.4)--(208.3, 261.4)--(207.8, 261.4)--(206.9, 261.5)--(206.3, 261.7)--(206.0, 261.7)--(205.9, 261.8)--(205.8, 261.8)--(205.6, 261.9)--(204.9, 262.3)--(204.3, 262.7)--(203.8, 263.1)--(203.5, 263.4)--(203.4, 263.5)--(203.3, 263.6)--(203.2, 263.6)--(203.1, 263.8)--(203.0, 263.8)--(202.9, 264.0)--(202.5, 264.4)--(202.0, 264.9)--(202.0, 265.0)--(201.7, 265.5)--(201.6, 265.4)--(201.6, 265.5)--(201.5, 265.6)--(201.6, 265.7)--(201.5, 265.8)--(201.4, 265.7)--(201.2, 265.9)--(201.0, 266.4)--(200.4, 267.2)--(200.0, 268.1)--(199.8, 268.4)--(199.8, 268.7)--(199.7, 268.7)--(199.5, 269.4)--(199.4, 269.8)--(199.3, 270.3)--(198.8, 271.4)--(198.4, 272.4)--(198.5, 272.5)--(198.3, 273.0)--(198.2, 273.0)--(198.0, 273.4)--(197.4, 274.4)--(197.4, 274.5)--(197.3, 274.7)--(197.2, 274.8)--(197.1, 274.8)--(197.0, 275.0)--(196.6, 275.5)--(196.1, 275.9)--(195.7, 276.4)--(195.0, 276.9)--(194.4, 277.5)--(194.2, 277.6)--(194.1, 277.7)--(194.0, 277.7)--(193.9, 277.8)--(193.8, 277.8)--(192.7, 278.4)--(192.6, 278.4)--(192.2, 278.6)--(191.9, 278.7)--(191.3, 278.8)--(190.7, 279.0)--(190.7, 279.1)--(190.3, 279.2)--(190.2, 279.3)--(190.2, 279.1)--(190.1, 279.1)--(190.0, 279.2)--(189.9, 279.2)--(189.4, 279.2)--(189.1, 279.2)--(188.9, 279.2)--(188.4, 279.1)--(188.0, 279.0)--(187.3, 279.0)--(187.1, 279.0)--(186.9, 278.9)--(186.5, 278.8)--(186.3, 278.8)--(185.5, 278.4)--(185.2, 278.2)--(184.4, 277.9)--(183.9, 277.5)--(182.5, 276.6)--(182.1, 276.3)--(181.8, 276.0)--(181.5, 275.5)--(181.2, 275.1)--(181.1, 274.8)--(181.1, 274.7)--(181.3, 275.0)--(181.4, 275.0)--(181.7, 274.4)--(181.6, 274.3)--(181.6, 274.1)--(181.0, 274.6)--(180.7, 274.4)--(180.6, 274.3)--(180.7, 274.2)--(180.9, 274.4)--(181.0, 274.4)--(181.3, 274.1)--(181.3, 274.0)--(180.5, 273.7)--(179.0, 273.3)--(178.7, 273.1)--(178.5, 273.0)--(178.5, 272.8)--(178.6, 272.8)--(178.7, 272.8)--(179.1, 272.9)--(179.9, 273.2)--(181.0, 273.6)--(181.1, 273.6)--(181.2, 273.6)--(181.2, 273.5)--(181.3, 273.5)--(181.4, 273.4)--(181.2, 273.0)--(181.1, 272.8)--(181.1, 272.7)--(181.0, 272.7)--(180.8, 272.6)--(180.8, 272.5)--(180.9, 272.5)--(180.9, 272.4)--(180.5, 271.9)--(180.3, 271.7)--(179.6, 270.9)--(179.0, 270.3)--(178.9, 270.3)--(178.9, 270.2)--(178.8, 270.2)--(178.7, 270.2)--(178.7, 270.1)--(178.7, 270.0)--(178.7, 269.9)--(178.6, 269.9)--(178.5, 270.1)--(178.4, 270.1)--(178.5, 269.9)--(178.4, 269.8)--(178.4, 269.7)--(178.4, 269.6)--(178.3, 269.5)--(178.4, 269.5)--(178.4, 269.4)--(178.2, 269.1)--(178.1, 268.8)--(178.0, 268.7)--(178.0, 268.6)--(177.9, 268.6)--(177.9, 268.5)--(177.8, 268.4)--(177.7, 268.5)--(177.6, 268.5)--(177.7, 268.4)--(177.8, 268.3)--(177.7, 268.1)--(177.7, 268.0)--(177.6, 267.8)--(177.5, 267.8)--(177.5, 267.7)--(177.4, 267.2)--(177.4, 267.1)--(177.2, 267.0)--(177.2, 266.9)--(177.1, 266.8)--(177.1, 266.7)--(177.1, 266.6)--(176.7, 266.1)--(176.7, 266.0)--(176.6, 266.0)--(176.5, 265.9)--(176.4, 265.9)--(176.3, 265.8)--(176.3, 265.7)--(176.2, 265.7)--(176.1, 265.6)--(176.1, 265.5)--(176.0, 265.5)--(175.9, 265.5)--(175.9, 265.4)--(175.7, 265.2)--(175.6, 265.2)--(175.6, 265.1)--(175.5, 265.1)--(175.5, 265.0)--(175.4, 265.0)--(175.3, 264.9)--(175.2, 264.9)--(175.1, 264.7)--(175.0, 264.7)--(175.0, 264.6)--(174.9, 264.6)--(174.9, 264.5)--(174.8, 264.5)--(174.7, 264.4)--(174.6, 264.4)--(174.6, 264.3)--(174.5, 264.3)--(174.4, 264.2)--(174.3, 264.1)--(174.3, 264.0)--(174.2, 264.1)--(174.1, 264.0)--(174.1, 263.9)--(174.0, 263.9)--(173.8, 263.7)--(173.7, 263.7)--(173.7, 263.6)--(173.6, 263.6)--(173.5, 263.6)--(173.5, 263.5)--(173.4, 263.4)--(173.3, 263.4)--(173.3, 263.3)--(173.1, 263.2)--(173.0, 263.2)--(172.9, 263.2)--(172.9, 263.1)--(172.8, 263.1)--(172.7, 263.0)--(172.3, 262.8)--(172.2, 262.8)--(172.1, 262.8)--(172.1, 262.7)--(172.0, 262.7)--(172.0, 262.6)--(171.9, 262.6)--(171.8, 262.6)--(171.8, 262.5)--(171.7, 262.5)--(171.6, 262.4)--(170.9, 262.0)--(170.8, 262.0)--(170.6, 261.8)--(170.5, 261.8)--(170.4, 261.7)--(170.0, 261.5)--(169.9, 261.5)--(169.8, 261.4)--(169.7, 261.3)--(169.4, 261.2)--(168.7, 260.8)--(168.6, 260.7)--(168.4, 260.7)--(168.0, 260.5)--(167.8, 260.5)--(167.7, 260.4)--(167.6, 260.3)--(167.3, 260.2)--(167.3, 260.1)--(167.0, 259.7)--(166.9, 259.7)--(166.8, 259.5)--(166.4, 259.6)--(166.4, 259.5)--(166.8, 259.4)--(166.5, 258.2)--(166.4, 258.2)--(166.4, 258.0)--(166.3, 257.9)--(166.2, 257.8)--(166.3, 257.8)--(166.4, 257.2)--(166.6, 256.7)--(166.6, 256.2)--(166.6, 254.8)--(166.6, 254.4)--(166.8, 253.8)--(166.7, 253.8)--(166.2, 253.8)--(166.1, 253.8)--(166.0, 253.8)--(165.9, 253.8)--(165.8, 253.8)--(165.7, 253.8)--(165.6, 253.8)--(165.6, 253.7)--(165.5, 253.7)--(165.4, 253.6)--(165.3, 253.5)--(165.2, 253.3)--(165.0, 253.1)--(164.8, 252.8)--(164.6, 252.6)--(164.4, 252.2)--(164.3, 251.8)--(164.2, 251.5)--(164.1, 251.5)--(164.1, 251.2)--(164.1, 251.1)--(164.0, 251.0)--(164.0, 250.9)--(163.9, 250.8)--(163.9, 250.7)--(163.9, 250.5)--(163.8, 250.5)--(163.7, 250.4)--(163.7, 250.3)--(163.7, 250.0)--(163.4, 249.7)--(163.4, 249.6)--(163.4, 249.5)--(163.4, 249.4)--(163.3, 249.4)--(163.3, 249.3)--(163.3, 249.1)--(163.3, 249.0)--(163.4, 249.0)--(163.4, 248.9)--(163.5, 248.9)--(163.6, 248.9)--(163.6, 248.8)--(163.7, 248.8)--(163.7, 248.7)--(163.7, 248.6)--(163.7, 248.5)--(163.6, 248.5)--(163.6, 248.4)--(163.6, 248.2)--(163.5, 248.0)--(163.5, 247.9)--(163.5, 247.8)--(163.4, 247.8)--(163.4, 247.7)--(163.5, 247.7)--(163.5, 247.6)--(163.6, 247.6)--(163.7, 247.6)--(163.8, 247.6)--(163.8, 247.5)--(163.8, 247.4)--(163.8, 247.3)--(163.7, 247.3)--(163.7, 247.2)--(163.7, 247.1)--(163.6, 247.1)--(163.6, 247.0)--(163.7, 247.0)--(163.7, 246.9)--(163.7, 246.8)--(163.8, 246.8)--(163.8, 246.7)--(164.0, 246.5)--(164.0, 246.4)--(163.9, 246.4)--(163.9, 246.3)--(163.9, 246.2)--(164.0, 246.2)--(164.1, 246.0)--(164.2, 245.9)--(164.3, 245.8)--(164.3, 245.7)--(164.3, 245.5)--(164.2, 245.4)--(164.0, 245.3)--(163.9, 245.3)--(163.8, 245.1)--(163.6, 244.8)--(163.6, 244.7)--(163.4, 244.5)--(163.3, 244.4)--(163.2, 244.4)--(163.1, 244.4)--(162.9, 244.8)--(162.5, 245.3)--(162.3, 245.4)--(162.1, 245.5)--(161.9, 245.5)--(161.5, 245.5)--(161.0, 245.3)--(160.7, 245.2)--(160.5, 244.9)--(160.3, 244.7)--(160.0, 244.1)--(159.8, 243.8)--(159.6, 243.6)--(159.6, 243.1)--(159.5, 243.0)--(159.4, 242.9)--(159.3, 242.7)--(159.2, 242.6)--(159.2, 242.5)--(159.0, 242.4)--(158.9, 242.4)--(158.8, 242.3)--(158.7, 242.6)--(158.3, 242.7)--(158.0, 242.7)--(157.1, 242.8)--(156.9, 242.8)--(156.7, 242.6)--(156.7, 242.4)--(156.5, 241.6)--(156.3, 241.7)--(156.1, 241.7)--(156.0, 241.8)--(156.0, 242.0)--(155.8, 242.5)--(155.9, 242.5)--(155.3, 243.2)--(155.0, 243.0)--(154.7, 243.3)--(154.4, 243.8)--(154.0, 244.3)--(153.9, 244.5)--(153.8, 244.7)--(153.8, 245.0)--(153.8, 245.1)--(153.8, 245.2)--(153.8, 245.5)--(153.9, 245.9)--(154.0, 246.2)--(154.1, 246.5)--(154.1, 246.7)--(153.9, 246.7)--(153.8, 246.7)--(153.5, 246.6)--(153.2, 246.5)--(153.1, 246.4)--(153.0, 246.3)--(152.9, 246.1)--(152.8, 246.0)--(152.6, 245.7)--(152.4, 245.4)--(152.2, 245.3)--(151.8, 245.3)--(151.7, 245.3)--(151.6, 245.3)--(151.4, 245.2)--(151.3, 245.2)--(151.1, 245.2)--(150.9, 245.2)--(150.8, 245.1)--(150.6, 245.1)--(150.4, 244.9)--(150.4, 244.6)--(150.3, 244.5)--(150.1, 244.4)--(150.0, 244.4)--(149.8, 244.3)--(149.7, 244.3)--(149.4, 244.2)--(149.2, 244.0)--(149.0, 244.0)--(148.9, 243.9)--(148.7, 243.9)--(148.3, 243.8)--(147.9, 243.8)--(147.3, 243.8)--(147.0, 243.8)--(146.8, 243.8)--(146.2, 243.8)--(145.7, 243.8)--(145.5, 243.8)--(145.4, 243.8)--(145.4, 243.9)--(145.4, 244.4)--(145.2, 244.7)--(145.1, 244.9)--(144.9, 245.3)--(143.9, 245.5)--(143.7, 245.5)--(142.8, 245.5)--(142.6, 245.5)--(142.3, 245.5)--(142.1, 245.5)--(141.8, 245.4)--(141.3, 245.3)--(140.5, 245.2)--(139.4, 245.0)--(139.0, 244.8)--(138.7, 244.6)--(138.4, 244.6)--(137.5, 244.5)--(137.3, 244.5)--(137.3, 244.6)--(136.9, 244.7)--(135.5, 244.4)--(135.3, 244.3)--(135.1, 244.3)--(135.0, 244.2)--(134.8, 244.0)--(134.5, 243.7)--(134.5, 243.6)--(133.7, 243.7)--(133.6, 243.7)--(133.0, 243.8)--(132.1, 243.9)--(131.7, 244.0)--(131.7, 243.8)--(131.6, 243.7)--(131.5, 243.9)--(131.3, 244.2)--(131.1, 244.0)--(130.5, 243.5)--(130.2, 243.2)--(129.8, 242.9)--(129.8, 242.8)--(129.4, 242.2)--(129.2, 242.0)--(129.0, 241.7)--(128.8, 241.5)--(128.5, 241.0)--(128.3, 240.8)--(128.1, 240.5)--(127.4, 239.6)--(126.8, 238.8)--(126.2, 238.0)--(125.2, 236.7)--(124.7, 236.0)--(124.3, 235.5)--(124.1, 235.2)--(123.5, 235.6)--(121.3, 235.0)--(121.4, 235.0)--(121.4, 234.9)--(121.5, 234.7)--(121.9, 234.3)--(122.0, 234.1)--(122.1, 233.9)--(122.3, 233.8)--(122.3, 233.7)--(122.4, 233.6)--(122.3, 233.3)--(122.3, 233.2)--(122.3, 233.0)--(122.3, 232.7)--(122.3, 232.6)--(122.3, 232.5)--(122.4, 232.4)--(122.4, 232.2)--(122.4, 232.1)--(122.6, 231.9)--(122.8, 231.8)--(123.7, 231.2)--(123.9, 231.0)--(124.1, 230.9)--(124.5, 230.4)--(124.8, 230.2)--(125.5, 230.1)--(125.8, 230.0)--(126.4, 229.8)--(127.0, 229.6)--(127.0, 229.5)--(127.1, 229.4)--(127.0, 229.2)--(127.0, 229.0)--(127.1, 228.9)--(127.2, 228.8)--(127.2, 228.7)--(127.3, 228.7)--(127.2, 228.5)--(127.1, 228.4)--(127.1, 228.3)--(127.2, 228.1)--(127.3, 228.0)--(127.5, 227.8)--(127.9, 227.6)--(128.1, 227.5)--(128.3, 227.4)--(128.5, 227.4)--(128.7, 227.4)--(128.9, 227.5)--(129.0, 227.6)--(129.1, 227.9)--(129.2, 228.0)--(129.3, 228.1)--(129.6, 228.2)--(129.7, 228.2)--(129.8, 228.2)--(129.9, 228.1)--(130.4, 228.0)--(130.5, 228.1)--(130.6, 228.1)--(131.1, 228.1)--(131.2, 228.2)--(131.3, 228.4)--(131.3, 228.5)--(131.3, 228.6)--(131.4, 228.7)--(131.4, 228.8)--(131.5, 228.8)--(131.6, 228.8)--(131.8, 228.8)--(132.0, 228.8)--(132.1, 228.6)--(132.3, 228.5)--(132.4, 228.5)--(132.8, 228.5)--(132.9, 228.4)--(133.1, 228.3)--(133.2, 228.3)--(133.3, 228.2)--(133.4, 228.1)--(134.0, 227.6)--(134.2, 227.5)--(134.4, 227.4)--(134.5, 227.4)--(135.0, 227.2)--(135.4, 227.0)--(135.6, 226.9)--(135.9, 226.8)--(136.0, 226.7)--(133.6, 224.9)--(130.5, 222.7)--(128.5, 221.1)--(128.5, 220.6)--(129.7, 219.8)--(129.7, 219.7)--(129.6, 219.7)--(129.5, 219.5)--(129.1, 219.3)--(128.8, 219.2)--(128.5, 219.0)--(128.3, 218.8)--(127.8, 218.4)--(127.5, 218.1)--(126.0, 216.9)--(125.3, 216.3)--(125.2, 216.2)--(125.1, 216.1)--(124.8, 215.9)--(124.6, 215.5)--(124.3, 215.2)--(124.0, 215.0)--(123.7, 214.6)--(123.2, 214.1)--(123.0, 213.8)--(122.4, 213.1)--(122.2, 212.9)--(122.1, 212.7)--(121.7, 212.0)--(121.7, 211.9)--(122.0, 211.8)--(122.2, 211.4)--(121.6, 211.1)--(121.5, 211.2)--(121.4, 211.3)--(121.4, 211.2)--(121.6, 210.9)--(121.9, 210.5)--(121.9, 210.3)--(122.1, 209.9)--(122.6, 209.0)--(122.8, 208.7)--(122.9, 208.3)--(123.2, 207.6)--(123.4, 207.2)--(123.7, 206.7)--(123.9, 206.4)--(124.1, 206.0)--(124.4, 205.5)--(124.5, 205.3)--(124.5, 205.2)--(124.4, 204.9)--(124.3, 204.6)--(124.2, 204.3)--(124.0, 203.9)--(124.0, 203.8)--(123.8, 203.6)--(123.8, 203.5)--(123.7, 203.3)--(123.7, 203.2)--(123.6, 203.2)--(123.4, 203.3)--(123.0, 203.5)--(122.5, 203.9)--(121.7, 204.4)--(120.9, 204.9)--(120.3, 205.3)--(120.1, 205.4)--(119.9, 205.6)--(119.6, 205.8)--(119.1, 205.9)--(118.8, 206.0)--(118.5, 206.1)--(118.4, 205.9)--(118.7, 205.7)--(118.9, 205.5)--(119.0, 205.5)--(119.2, 205.3)--(119.3, 205.1)--(119.4, 204.9)--(119.5, 204.8)--(119.4, 204.9)--(119.3, 204.9)--(119.2, 205.0)--(119.0, 205.1)--(118.9, 205.2)--(118.7, 205.3)--(118.6, 205.3)--(118.4, 205.4)--(118.3, 205.5)--(118.1, 205.5)--(117.9, 205.6)--(117.8, 205.7)--(117.6, 205.7)--(117.4, 205.8)--(117.2, 205.8)--(117.1, 205.9)--(117.0, 205.9)--(116.9, 205.9)--(116.8, 205.9)--(116.6, 205.9)--(116.5, 206.0)--(116.3, 206.0)--(116.1, 206.0)--(115.9, 206.0)--(115.7, 206.1)--(115.6, 206.1)--(115.4, 206.1)--(115.2, 206.1)--(115.0, 206.1)--(114.7, 206.1)--(114.5, 206.1)--(114.3, 206.1)--(114.0, 206.1)--(113.8, 206.1)--(113.7, 206.1)--(113.5, 206.0)--(113.2, 206.0)--(113.0, 206.0)--(112.8, 205.9)--(112.6, 205.9)--(112.4, 205.8)--(112.2, 205.8)--(112.0, 205.7)--(111.8, 205.7)--(111.6, 205.6)--(111.5, 205.5)--(111.3, 205.5)--(111.1, 205.4)--(110.9, 205.3)--(110.7, 205.2)--(110.6, 205.2)--(110.4, 205.1)--(110.0, 204.9)--(109.7, 204.8)--(109.3, 205.0)--(109.0, 205.2)--(108.9, 205.3)--(108.6, 205.5)--(108.0, 206.0)--(107.7, 206.2)--(107.5, 206.3)--(107.5, 206.4)--(107.5, 206.6)--(107.4, 206.7)--(107.3, 206.9)--(107.3, 207.1)--(107.3, 207.5)--(107.2, 207.7)--(107.1, 207.8)--(107.1, 208.1)--(106.9, 208.4)--(106.7, 208.5)--(106.6, 208.7)--(106.4, 208.9)--(106.3, 209.0)--(106.2, 209.2)--(106.1, 209.3)--(106.1, 209.4)--(106.0, 209.6)--(105.8, 210.0)--(105.8, 210.1)--(105.5, 210.3)--(105.5, 210.4)--(105.3, 210.5)--(105.2, 210.5)--(104.9, 210.5)--(104.8, 210.6)--(104.5, 210.6)--(104.4, 210.6)--(104.2, 210.7)--(104.6, 211.7)--(103.3, 212.2)--(103.7, 213.1)--(102.1, 213.8)--(102.0, 213.6)--(101.9, 213.7)--(100.8, 214.1)--(100.9, 214.3)--(101.2, 215.1)--(100.9, 215.2)--(100.5, 215.0)--(100.4, 215.2)--(100.3, 215.3)--(100.3, 215.4)--(100.1, 215.5)--(100.0, 215.5)--(99.9, 215.6)--(99.8, 215.6)--(99.3, 215.5)--(99.2, 215.4)--(99.1, 215.4)--(98.9, 215.4)--(98.7, 215.4)--(98.5, 215.3)--(98.3, 215.2)--(98.1, 215.1)--(97.9, 215.0)--(97.6, 214.9)--(97.4, 214.6)--(97.3, 214.5)--(96.9, 214.2)--(96.8, 214.2)--(96.8, 214.1)--(96.9, 213.9)--(96.4, 214.0)--(96.3, 214.0)--(95.9, 213.9)--(95.4, 213.8)--(95.3, 213.7)--(94.9, 213.7)--(94.7, 213.8)--(94.4, 213.8)--(94.2, 213.8)--(94.1, 213.7)--(94.1, 213.6)--(94.0, 213.2)--(93.9, 212.3)--(93.9, 212.2)--(93.9, 212.0)--(92.8, 212.1)--(92.8, 211.5)--(92.6, 211.5)--(92.4, 211.5)--(92.0, 211.5)--(91.7, 211.6)--(91.4, 211.6)--(91.2, 211.6)--(90.9, 211.6)--(90.7, 211.6)--(90.6, 211.7)--(90.4, 211.7)--(90.0, 211.8)--(89.8, 211.8)--(89.1, 212.0)--(88.1, 212.4)--(86.7, 212.9)--(86.1, 213.1)--(85.4, 213.3)--(85.4, 213.4)--(85.4, 213.7)--(85.4, 214.3)--(85.4, 214.7)--(85.4, 214.9)--(85.4, 215.1)--(85.3, 215.4)--(85.3, 215.8)--(85.4, 216.6)--(85.4, 217.3)--(85.5, 217.8)--(84.5, 217.9)--(83.6, 217.9)--(82.9, 217.9)--(82.3, 218.0)--(81.7, 218.0)--(81.2, 218.0)--(80.5, 218.1)--(80.0, 218.1)--(80.1, 218.7)--(80.1, 219.1)--(80.2, 219.6)--(80.3, 220.4)--(80.4, 220.9)--(80.4, 221.2)--(80.6, 222.1)--(80.7, 223.1)--(80.8, 223.7)--(79.5, 223.2)--(78.6, 222.8)--(77.6, 222.5)--(76.8, 222.2)--(75.8, 221.9)--(75.7, 221.9)--(75.4, 221.8)--(75.3, 221.8)--(74.1, 221.5)--(73.8, 221.4)--(73.8, 221.6)--(73.8, 221.7)--(73.9, 221.8)--(73.9, 222.0)--(73.9, 222.3)--(74.0, 222.6)--(74.1, 223.1)--(74.1, 223.3)--(74.1, 223.5)--(74.2, 223.7)--(74.2, 223.9)--(74.2, 224.0)--(74.2, 224.3)--(74.2, 224.5)--(74.3, 224.8)--(74.3, 224.9)--(74.3, 225.1)--(74.5, 225.7)--(74.5, 225.9)--(74.4, 226.0)--(74.3, 226.1)--(74.1, 226.2)--(73.8, 226.3)--(73.0, 226.8)--(73.0, 227.0)--(73.1, 228.2)--(73.1, 228.5)--(73.1, 228.7)--(73.1, 229.4)--(73.0, 229.8)--(73.0, 230.2)--(72.9, 231.0)--(72.9, 231.2)--(72.8, 231.5)--(72.8, 231.6)--(72.8, 231.9)--(72.8, 232.1)--(72.8, 232.2)--(72.8, 232.7)--(72.9, 233.4)--(72.9, 233.6)--(72.8, 233.7)--(72.7, 233.8)--(72.6, 233.8)--(71.9, 233.7)--(71.0, 233.6)--(70.5, 233.5)--(70.1, 233.5)--(70.1, 234.9)--(70.1, 236.2)--(70.1, 237.2)--(71.1, 237.1)--(71.3, 237.6)--(71.5, 237.6)--(71.6, 238.4)--(71.7, 238.9)--(71.7, 239.8)--(71.7, 240.6)--(71.7, 241.1)--(71.7, 241.3)--(71.9, 241.6)--(72.4, 241.2)--(72.8, 241.0)--(73.2, 240.8)--(73.5, 240.6)--(73.8, 240.5)--(73.9, 240.5)--(74.0, 240.5)--(74.1, 240.5)--(74.2, 240.5)--(74.2, 240.6)--(74.1, 240.8)--(74.1, 240.9)--(74.3, 240.9)--(74.6, 240.9)--(74.8, 240.8)--(75.0, 240.8)--(75.1, 240.8)--(75.2, 240.7)--(75.1, 240.6)--(75.1, 240.5)--(75.1, 240.3)--(75.2, 240.2)--(75.3, 240.1)--(75.9, 239.9)--(76.3, 239.7)--(77.1, 239.5)--(77.8, 239.2)--(78.4, 239.0)--(78.8, 238.9)--(79.2, 238.8)--(79.8, 238.7)--(80.5, 238.6)--(81.6, 238.5)--(82.1, 238.5)--(82.7, 239.8)--(83.1, 240.6)--(83.5, 241.7)--(83.7, 242.2)--(83.8, 242.4)--(84.3, 242.3)--(84.6, 242.3)--(85.0, 242.3)--(85.1, 242.3)--(85.6, 242.3)--(85.9, 242.4)--(86.7, 242.5)--(87.1, 242.6)--(87.5, 242.6)--(87.9, 242.6)--(88.1, 242.6)--(88.3, 242.6)--(88.5, 242.9)--(87.8, 243.2)--(87.1, 243.5)--(87.3, 244.0)--(87.3, 244.3)--(87.4, 244.5)--(87.6, 244.9)--(87.8, 245.2)--(87.8, 245.4)--(87.9, 245.7)--(88.2, 246.1)--(88.3, 246.4)--(88.5, 246.9)--(88.7, 247.2)--(88.9, 247.5)--(89.0, 247.7)--(89.2, 248.0)--(89.8, 248.5)--(90.5, 249.0)--(91.2, 249.5)--(91.7, 249.8)--(91.9, 250.0)--(92.7, 250.6)--(93.6, 251.2)--(94.5, 251.8)--(95.5, 252.5)--(96.1, 252.9)--(96.8, 253.5)--(97.0, 253.6)--(97.1, 253.6)--(97.3, 253.7)--(97.5, 253.8)--(97.8, 253.9)--(97.9, 253.9)--(98.1, 253.8)--(98.3, 253.8)--(98.3, 253.9)--(98.3, 254.1)--(98.4, 254.2)--(98.7, 254.4)--(99.3, 254.7)--(100.0, 255.1)--(100.2, 255.2)--(101.1, 255.7)--(102.3, 256.3)--(103.4, 256.8)--(104.5, 257.4)--(104.6, 257.4)--(104.5, 257.8)--(104.4, 258.1)--(104.2, 258.3)--(103.9, 258.6)--(103.3, 259.0)--(103.3, 259.1)--(103.2, 259.3)--(103.1, 259.4)--(103.0, 259.7)--(102.9, 260.0)--(102.8, 260.1)--(102.7, 260.2)--(102.6, 260.3)--(102.5, 260.3)--(102.3, 260.5)--(102.2, 260.7)--(102.2, 260.8)--(102.1, 261.1)--(102.0, 261.3)--(101.9, 261.3)--(101.9, 261.4)--(101.8, 261.4)--(101.5, 261.5)--(101.4, 261.6)--(101.3, 261.7)--(101.2, 261.8)--(101.2, 261.9)--(101.2, 262.0)--(101.2, 262.4)--(101.3, 262.7)--(101.3, 262.9)--(101.4, 263.3)--(101.8, 264.2)--(101.7, 265.0)--(101.7, 265.5)--(101.5, 265.9)--(101.5, 266.0)--(101.5, 266.1)--(101.3, 267.0)--(101.1, 267.3)--(101.0, 267.5)--(100.9, 267.8)--(100.9, 267.9)--(100.7, 268.5)--(100.7, 268.6)--(100.6, 268.7)--(100.5, 268.9)--(100.4, 269.1)--(100.4, 269.3)--(100.4, 269.6)--(100.4, 269.9)--(100.5, 270.3)--(100.5, 270.8)--(100.6, 270.9)--(100.6, 271.0)--(100.5, 271.0)--(100.5, 271.1)--(100.4, 271.1)--(100.4, 271.2)--(100.3, 271.2)--(100.3, 271.3)--(100.3, 271.4)--(100.3, 271.5)--(100.4, 271.6)--(100.6, 271.8)--(100.7, 271.9)--(100.7, 272.0)--(100.8, 272.1)--(100.8, 272.6)--(100.9, 272.7)--(100.9, 272.9)--(101.1, 273.2)--(101.4, 274.0)--(101.7, 274.9)--(102.2, 275.4)--(102.2, 275.5)--(102.1, 275.5)--(101.9, 275.5)--(101.8, 275.5)--(101.7, 275.6)--(101.8, 275.8)--(101.8, 275.9)--(102.0, 276.2)--(102.2, 276.6)--(102.2, 276.7)--(102.3, 276.7)--(102.4, 276.7)--(102.5, 276.7)--(102.6, 276.7)--(102.6, 276.8)--(102.6, 276.9)--(102.6, 277.0)--(102.6, 277.1)--(102.7, 277.2)--(102.7, 277.3)--(102.8, 277.4)--(102.8, 277.6)--(102.8, 277.7)--(102.8, 277.8)--(102.8, 277.9)--(102.9, 277.9)--(102.9, 278.0)--(103.0, 278.1)--(103.1, 278.1)--(103.1, 278.2)--(103.1, 278.3)--(103.2, 279.0)--(103.5, 282.1)--(103.5, 282.2)--(103.5, 282.5)--(103.6, 284.0)--(103.7, 284.3)--(103.8, 285.3)--(103.8, 285.6)--(103.9, 285.8)--(104.0, 286.0)--(104.1, 286.1)--(104.3, 286.4)--(104.3, 286.5)--(104.3, 286.6)--(104.3, 286.7)--(104.3, 286.8)--(104.3, 287.0)--(104.3, 287.2)--(104.1, 288.1)--(104.1, 288.2)--(104.1, 288.3)--(104.1, 288.4)--(104.1, 288.5)--(104.2, 288.9)--(104.9, 290.9)--(105.1, 291.3)--(105.8, 291.1)--(106.2, 290.9)--(106.5, 290.7)--(106.7, 290.6)--(106.8, 290.6)--(107.0, 290.6)--(108.2, 290.1)--(109.2, 289.7)--(109.7, 289.5)--(110.5, 289.2)--(111.5, 288.8)--(111.5, 288.9)--(111.6, 288.8)--(112.6, 288.4)--(113.1, 288.2)--(114.6, 287.6)--(115.8, 287.1)--(117.0, 286.6)--(118.1, 286.2)--(119.1, 285.9)--(119.9, 285.6)--(120.3, 285.6)--(120.7, 285.4)--(121.4, 285.3)--(121.6, 285.3)--(121.8, 285.4)--(122.0, 285.4)--(122.3, 285.4)--(122.5, 285.4)--(122.9, 285.5)--(123.0, 285.5)--(123.1, 285.6)--(123.3, 285.6)--(123.5, 285.7)--(123.7, 285.8)--(123.9, 285.9)--(124.1, 286.0)--(124.3, 286.1)--(124.7, 286.3)--(125.5, 286.8)--(125.8, 286.9)--(126.1, 287.1)--(126.1, 287.2)--(126.3, 287.3)--(126.6, 287.4)--(127.0, 287.7)--(127.0, 287.6)--(127.2, 287.6)--(127.1, 287.5)--(127.1, 287.4)--(127.1, 287.2)--(127.1, 287.0)--(127.0, 286.4)--(127.5, 286.2)--(127.6, 286.2)--(127.8, 286.2)--(128.0, 286.3)--(128.5, 286.3)--(128.6, 285.8)--(128.7, 285.4)--(128.9, 285.1)--(129.0, 284.9)--(129.1, 284.7)--(129.2, 284.3)--(129.3, 284.0)--(129.8, 282.9)--(129.9, 282.5)--(130.0, 282.5)--(130.1, 282.4)--(130.2, 282.4)--(130.3, 282.2)--(130.4, 282.1)--(130.5, 282.0)--(130.7, 281.8)--(130.8, 281.6)--(130.9, 281.5)--(131.0, 281.5)--(131.1, 281.5)--(131.3, 281.5)--(131.3, 281.4)--(131.4, 281.3)--(131.4, 281.1)--(131.3, 281.0)--(131.3, 280.9)--(131.8, 281.2)--(132.7, 281.7)--(133.0, 281.9)--(133.5, 282.2)--(134.0, 282.5)--(133.8, 282.8)--(133.7, 283.0)--(133.8, 283.0)--(133.9, 283.1)--(134.1, 283.2)--(134.4, 283.4)--(134.6, 283.5)--(134.7, 283.6)--(134.7, 283.7)--(134.8, 283.7)--(134.8, 283.8)--(134.9, 283.9)--(135.0, 284.1)--(135.3, 284.4)--(135.5, 284.6)--(135.8, 284.2)--(136.0, 284.6)--(136.2, 284.9)--(136.3, 285.1)--(136.4, 285.3)--(136.6, 285.5)--(136.8, 285.6)--(136.9, 285.8)--(136.9, 286.1)--(136.9, 286.6)--(137.0, 286.6)--(137.0, 286.7)--(137.2, 286.8)--(137.2, 286.9)--(137.2, 287.0)--(137.4, 287.1)--(137.4, 287.2)--(137.5, 287.1)--(137.6, 287.2)--(137.7, 287.2)--(137.8, 287.2)--(137.9, 287.3)--(138.1, 287.3)--(138.2, 287.4)--(138.2, 287.5)--(138.3, 287.5)--(138.3, 287.6)--(138.4, 287.6)--(138.6, 287.8)--(138.8, 287.8)--(138.9, 287.9)--(139.0, 288.0)--(139.3, 288.1)--(139.7, 288.4)--(140.0, 288.6)--(140.3, 288.9)--(140.4, 289.1)--(140.5, 289.1)--(140.7, 289.2)--(140.8, 289.3)--(141.1, 289.3)--(141.3, 289.3)--(141.5, 289.4)--(141.7, 289.5)--(141.9, 289.5)--(142.0, 289.6)--(142.1, 289.6)--(142.1, 289.7)--(142.3, 289.7)--(142.4, 289.7)--(142.5, 289.7)--(142.7, 289.8)--(142.9, 289.9)--(143.0, 289.9)--(143.1, 289.8)--(143.1, 289.9)--(143.2, 289.9)--(144.0, 290.2)--(144.7, 290.5)--(145.6, 290.8)--(145.8, 290.9)--(145.9, 290.9)--(146.0, 290.9)--(146.2, 290.9)--(146.3, 290.9)--(146.3, 290.8)--(146.4, 290.8)--(146.5, 290.7)--(146.7, 290.6)--(147.5, 290.0)--(148.2, 289.6)--(149.0, 289.2)--(150.0, 288.6)--(150.9, 288.1)--(151.8, 287.6)--(152.3, 287.7)--(152.4, 287.6)--(153.1, 287.7)--(153.8, 287.8)--(154.3, 287.9)--(155.0, 287.9)--(155.5, 287.9)--(156.1, 287.9)--(156.5, 287.9)--(156.6, 287.9)--(157.0, 287.9)--(157.0, 287.8)--(157.4, 287.8)--(158.0, 287.6)--(158.4, 287.5)--(158.8, 287.4)--(159.0, 287.3)--(159.0, 287.4)--(159.4, 287.2)--(159.5, 287.2)--(159.6, 287.1)--(159.9, 287.0)--(160.3, 286.7)--(162.0, 287.8)--(162.4, 287.4)--(162.9, 286.7)--(163.3, 287.1)--(163.8, 287.7)--(163.9, 287.8)--(164.4, 287.6)--(164.8, 287.7)--(165.5, 287.3)--(166.2, 287.0)--(166.6, 286.8)--(166.9, 286.6)--(167.3, 286.3)--(167.8, 285.9)--(168.2, 286.2)--(168.5, 286.5)--(169.1, 287.1)--(170.1, 287.8)--(170.4, 287.6)--(170.4, 287.5)--(170.5, 287.5)--(170.2, 287.3)--(170.2, 287.2)--(170.9, 286.4)--(171.0, 286.2)--(171.1, 286.2)--(170.8, 285.8)--(170.7, 285.7)--(170.6, 285.7)--(170.8, 285.5)--(170.9, 285.4)--(171.1, 285.1)--(171.3, 285.3)--(171.4, 285.3)--(171.4, 285.2)--(171.5, 285.3)--(171.7, 285.1)--(171.9, 284.8)--(172.3, 284.3)--(172.4, 284.2)--(172.5, 284.1)--(172.9, 283.6)--(172.9, 283.5)--(173.6, 284.1)--(174.4, 284.7)--(175.0, 285.2)--(175.3, 285.4)--(175.6, 285.5)--(175.9, 285.7)--(176.6, 286.1)--(177.3, 286.5)--(177.2, 287.0)--(177.1, 287.4)--(177.0, 287.7)--(177.0, 288.0)--(177.0, 288.2)--(177.0, 288.3)--(177.2, 288.3)--(177.3, 288.2)--(177.4, 288.1)--(177.9, 288.0)--(178.4, 287.8)--(178.8, 287.7)--(179.2, 287.6)--(179.5, 287.5)--(180.2, 287.3)--(180.2, 287.2)--(180.2, 287.0)--(180.2, 286.8)--(180.4, 286.4)--(181.5, 286.7)--(182.3, 286.9)--(182.8, 287.0)--(182.4, 287.7)--(182.5, 287.7)--(182.3, 288.0)--(182.2, 288.2)--(181.9, 288.7)--(181.8, 288.9)--(181.7, 289.1)--(181.5, 289.5)--(181.4, 289.8)--(181.3, 289.9)--(181.2, 290.1)--(181.1, 290.2)--(181.0, 290.3)--(181.0, 290.6)--(181.0, 290.8)--(180.9, 290.9)--(180.8, 291.0)--(180.8, 291.1)--(180.7, 291.1)--(180.6, 291.3)--(180.5, 291.8)--(180.5, 291.9)--(180.9, 292.2)--(181.1, 292.3)--(182.0, 292.7)--(183.2, 293.4)--(183.6, 293.7)--(184.0, 293.9)--(184.4, 294.1)--(184.9, 294.4)--(185.0, 294.5)--(185.1, 294.5)--(185.2, 294.5)--(185.4, 294.5)--(185.5, 294.5)--(185.8, 294.5)--(186.5, 294.4)--(186.9, 294.3)--(187.4, 294.2)--(187.9, 294.0)--(188.4, 293.9)--(188.8, 293.8)--(189.2, 293.8)--(189.4, 293.7)--(190.1, 293.6)--(190.6, 293.7)--(190.9, 293.8)--(191.2, 294.0)--(191.3, 294.0)--(191.5, 294.1)--(192.1, 294.4)--(192.6, 294.8)--(193.1, 295.1)--(193.2, 295.3)--(194.1, 296.0)--(194.2, 296.1)--(194.3, 296.1)--(194.6, 295.7)--(194.9, 295.3)--(195.0, 295.1)--(195.1, 295.0)--(195.2, 294.8)--(195.4, 294.4)--(195.6, 293.9)--(195.7, 293.7)--(195.8, 293.5)--(195.9, 293.2)--(196.0, 293.0)--(196.1, 292.8)--(196.2, 292.6)--(196.3, 292.4)--(196.8, 291.9)--(197.2, 291.4)--(197.5, 291.1)--(197.9, 290.8)--(198.9, 290.1)--(199.3, 289.7)--(199.6, 289.5)--(199.8, 289.2)--(200.0, 289.0)--(200.2, 288.8)--(200.3, 288.3)--(200.4, 288.0)--(200.5, 287.8)--(200.7, 287.6)--(200.9, 287.4)--(200.9, 287.3)--(201.0, 287.3)--(201.2, 287.1)--(201.4, 287.0)--(201.9, 286.7)--(202.4, 286.6)--(202.7, 286.5)--(203.1, 286.5)--(203.3, 286.5)--(203.5, 286.5)--(203.6, 286.4)--(204.3, 286.6)--(205.0, 286.7)--(205.8, 286.9)--(206.3, 287.0)--(207.0, 287.1)--(207.3, 287.2)--(207.6, 287.2)--(207.6, 287.3)--(207.7, 287.3)--(207.9, 287.3)--(208.0, 287.3)--(208.6, 287.4)--(208.8, 287.4)--(209.0, 287.5)--(209.9, 287.6)--(210.6, 287.7)--(211.4, 287.7)--(211.7, 287.7)--(211.9, 287.7)--(212.0, 287.7)--(212.0, 288.4)--(212.1, 288.6)--(212.0, 288.7)--(212.0, 288.9)--(211.9, 288.9)--(211.9, 289.0)--(212.0, 289.0)--(212.0, 289.2)--(212.1, 289.3)--(212.2, 289.3)--(212.2, 289.5)--(212.2, 289.6)--(212.3, 289.8)--(212.3, 289.9)--(212.3, 290.0)--(212.5, 290.5)--(212.5, 290.6)--(212.8, 291.1)--(213.0, 291.6)--(213.2, 292.1)--(213.4, 292.3)--(213.5, 292.8)--(213.7, 293.1)--(213.8, 293.3)--(213.8, 293.5)--(213.8, 293.7)--(213.7, 293.8)--(213.7, 294.0)--(213.6, 294.1)--(213.6, 294.3)--(213.6, 294.6)--(213.5, 294.9)--(213.5, 295.0)--(213.7, 294.8)--(213.7, 294.7)--(214.0, 294.4)--(214.2, 294.2)--(214.4, 293.9)--(214.5, 293.7)--(214.7, 293.3)--(214.8, 293.3)--(214.8, 293.2)--(215.0, 292.9)--(214.9, 292.8)--(215.0, 292.7)--(215.2, 292.4)--(215.7, 291.2)--(216.2, 290.4)--(216.3, 290.1)--(216.5, 290.2)--(216.7, 290.3)--(217.2, 290.6)--(217.3, 290.7)--(217.5, 290.9)--(217.6, 291.0)--(217.9, 291.1)--(218.3, 291.3)--(218.5, 291.5)--(218.9, 291.7)--(219.0, 291.8)--(219.1, 291.5)--(219.2, 291.2)--(219.5, 291.3)--(219.6, 291.3)--(219.5, 290.9)--(219.4, 290.6)--(219.5, 290.0)--(219.5, 289.8)--(219.4, 289.7)--(219.4, 289.5)--(219.4, 289.2)--(219.6, 289.2)--(219.5, 288.9)--(219.5, 288.7)--(219.4, 288.6)--(219.4, 288.4)--(219.4, 288.0)--(219.3, 287.6)--(219.3, 287.2)--(219.1, 285.8)--(219.1, 285.5)--(219.1, 284.7)--(219.1, 284.3)--(219.1, 284.2)--(219.0, 283.3)--(219.0, 282.7)--(219.0, 282.6)--(219.0, 282.4)--(219.1, 282.3)--(219.2, 281.9)--(219.1, 281.8)--(219.2, 281.6)--(219.4, 281.4)--(219.6, 281.4)--(219.7, 281.1)--cycle; +Islington = (291.5, 358.6)--(291.4, 358.8)--(290.9, 359.9)--(290.8, 360.1)--(290.6, 360.5)--(290.0, 361.8)--(289.8, 362.0)--(289.8, 362.1)--(289.7, 362.2)--(289.7, 362.3)--(289.6, 362.5)--(289.6, 362.6)--(289.6, 362.8)--(289.6, 363.2)--(289.6, 363.4)--(289.6, 363.6)--(289.6, 363.7)--(289.7, 364.2)--(289.8, 364.4)--(289.8, 364.5)--(289.8, 364.6)--(289.8, 364.9)--(289.8, 365.2)--(289.8, 365.5)--(289.7, 365.7)--(289.7, 365.8)--(289.7, 366.0)--(289.7, 366.1)--(289.7, 366.3)--(289.7, 366.8)--(289.7, 366.9)--(289.7, 367.0)--(289.7, 367.1)--(289.7, 367.2)--(289.5, 367.8)--(289.4, 368.0)--(289.4, 368.1)--(289.3, 368.4)--(289.3, 368.9)--(289.1, 370.1)--(289.0, 370.6)--(288.8, 371.3)--(288.5, 371.7)--(288.3, 372.0)--(288.3, 372.1)--(288.4, 372.2)--(288.6, 372.2)--(289.0, 372.3)--(289.4, 372.5)--(289.6, 372.5)--(289.7, 372.6)--(290.4, 373.2)--(290.7, 373.4)--(290.8, 373.6)--(291.0, 373.7)--(291.1, 373.8)--(291.1, 373.9)--(291.2, 373.9)--(291.4, 374.0)--(291.7, 374.3)--(291.9, 374.4)--(292.2, 374.6)--(292.3, 374.7)--(292.4, 374.7)--(292.7, 375.0)--(292.8, 375.1)--(293.0, 375.2)--(293.3, 375.4)--(294.0, 376.0)--(294.5, 376.5)--(294.7, 376.7)--(294.8, 376.7)--(295.0, 376.8)--(295.3, 376.9)--(295.6, 377.1)--(295.7, 377.2)--(295.8, 377.2)--(295.9, 377.3)--(296.0, 377.4)--(296.2, 377.4)--(296.5, 377.5)--(297.0, 377.6)--(297.3, 377.7)--(297.7, 377.8)--(298.6, 378.0)--(298.9, 378.0)--(299.1, 378.0)--(299.2, 378.0)--(299.3, 378.0)--(299.5, 377.9)--(300.0, 378.0)--(300.3, 378.0)--(300.4, 378.0)--(300.5, 378.1)--(300.6, 378.1)--(300.6, 378.2)--(300.6, 378.3)--(300.7, 378.3)--(300.8, 378.3)--(300.9, 378.4)--(301.0, 378.5)--(301.1, 378.6)--(301.2, 378.7)--(301.3, 378.7)--(301.4, 378.7)--(301.5, 378.7)--(302.1, 379.0)--(302.5, 379.1)--(302.5, 379.2)--(302.5, 379.1)--(303.8, 379.6)--(304.0, 379.7)--(304.1, 379.7)--(304.2, 379.4)--(304.3, 379.1)--(304.4, 379.0)--(304.5, 378.8)--(304.1, 378.5)--(304.1, 378.4)--(304.4, 378.4)--(304.6, 378.4)--(305.0, 378.3)--(305.3, 378.2)--(305.5, 378.2)--(305.6, 378.1)--(305.8, 377.9)--(306.2, 377.4)--(306.7, 376.8)--(306.9, 376.5)--(306.5, 376.1)--(306.6, 376.0)--(306.8, 375.9)--(307.0, 375.7)--(306.9, 375.4)--(307.0, 375.4)--(307.2, 375.2)--(307.2, 375.1)--(307.2, 374.6)--(307.2, 374.4)--(307.3, 374.4)--(307.3, 374.3)--(309.7, 372.7)--(310.4, 372.2)--(310.7, 372.0)--(311.4, 371.3)--(311.6, 371.1)--(311.7, 371.0)--(311.9, 370.8)--(312.0, 370.7)--(312.1, 370.6)--(312.4, 370.2)--(312.5, 370.1)--(312.6, 369.9)--(312.8, 369.7)--(313.0, 369.5)--(313.1, 369.4)--(313.3, 369.2)--(313.6, 368.8)--(314.6, 367.9)--(314.7, 368.0)--(314.8, 368.1)--(314.9, 368.0)--(314.8, 367.9)--(315.3, 367.5)--(316.5, 366.4)--(316.6, 366.2)--(316.9, 365.9)--(317.0, 365.8)--(317.1, 365.7)--(317.2, 365.6)--(317.3, 365.6)--(317.3, 365.5)--(317.4, 365.5)--(318.4, 364.5)--(319.0, 363.7)--(320.8, 364.2)--(321.0, 364.2)--(321.6, 364.0)--(321.8, 363.9)--(322.0, 363.8)--(322.4, 363.5)--(322.5, 363.5)--(322.7, 363.5)--(322.8, 363.4)--(322.9, 363.4)--(323.1, 363.4)--(323.4, 363.3)--(323.5, 363.2)--(323.8, 363.2)--(323.9, 363.1)--(323.9, 363.0)--(323.9, 362.9)--(324.1, 362.5)--(324.3, 362.1)--(324.4, 361.8)--(324.5, 361.6)--(324.7, 361.1)--(324.8, 360.7)--(324.8, 360.5)--(324.9, 360.5)--(324.8, 360.4)--(324.9, 359.3)--(324.9, 358.3)--(324.9, 357.8)--(324.9, 357.3)--(324.9, 356.8)--(324.9, 356.5)--(325.0, 356.5)--(325.1, 356.5)--(325.3, 356.4)--(325.3, 356.3)--(325.4, 356.3)--(325.5, 356.2)--(325.7, 356.0)--(325.8, 356.1)--(326.1, 356.3)--(326.8, 355.2)--(326.8, 355.1)--(326.9, 355.0)--(327.0, 355.0)--(327.3, 354.9)--(327.4, 354.8)--(327.6, 354.8)--(327.7, 354.7)--(327.8, 354.7)--(327.9, 354.6)--(328.2, 354.4)--(328.3, 354.3)--(328.4, 354.3)--(328.5, 354.3)--(328.6, 354.3)--(328.9, 354.2)--(329.0, 354.2)--(329.1, 354.3)--(329.6, 354.3)--(329.9, 354.4)--(331.4, 354.2)--(332.0, 354.2)--(332.2, 354.1)--(332.4, 354.1)--(332.5, 354.0)--(332.5, 353.9)--(332.6, 353.8)--(332.8, 353.5)--(333.0, 353.3)--(333.0, 353.2)--(333.1, 353.1)--(333.7, 351.7)--(333.8, 351.4)--(334.3, 350.6)--(334.4, 350.3)--(334.5, 350.0)--(334.6, 349.8)--(334.8, 349.1)--(334.8, 348.7)--(334.8, 348.4)--(334.8, 348.1)--(334.8, 348.0)--(334.5, 347.7)--(333.5, 347.9)--(332.5, 348.0)--(330.1, 348.2)--(329.7, 348.2)--(329.8, 346.7)--(329.8, 346.5)--(329.6, 345.2)--(329.2, 343.5)--(328.7, 341.2)--(328.6, 340.6)--(328.4, 339.4)--(328.1, 338.3)--(328.1, 338.1)--(328.0, 337.9)--(328.0, 337.7)--(327.9, 337.8)--(327.7, 337.7)--(327.5, 337.6)--(327.3, 337.5)--(326.9, 337.2)--(326.6, 336.9)--(326.3, 336.6)--(325.9, 336.3)--(325.5, 336.0)--(325.2, 335.7)--(324.8, 335.4)--(324.6, 335.3)--(324.3, 335.1)--(324.0, 334.8)--(323.5, 334.4)--(323.1, 334.1)--(323.0, 334.0)--(322.6, 333.8)--(322.6, 333.9)--(322.3, 333.6)--(321.6, 333.2)--(321.5, 333.1)--(321.2, 333.0)--(320.9, 332.8)--(321.5, 331.6)--(321.7, 331.0)--(322.0, 330.4)--(322.2, 330.0)--(322.3, 329.6)--(322.3, 329.4)--(322.3, 329.3)--(322.3, 329.1)--(322.1, 328.6)--(326.2, 327.1)--(326.6, 326.9)--(326.8, 326.8)--(326.9, 326.7)--(327.0, 326.6)--(327.1, 326.4)--(327.3, 326.1)--(327.5, 325.5)--(327.5, 325.3)--(327.8, 325.2)--(327.9, 325.1)--(328.0, 325.0)--(328.2, 325.0)--(328.4, 325.1)--(328.5, 325.1)--(329.4, 325.5)--(329.5, 325.1)--(329.6, 324.6)--(329.4, 324.4)--(329.3, 324.0)--(329.2, 323.7)--(329.2, 323.6)--(329.4, 323.5)--(329.4, 322.9)--(329.8, 322.9)--(330.0, 322.9)--(330.0, 322.6)--(330.0, 322.4)--(329.9, 321.4)--(329.9, 320.9)--(329.8, 320.4)--(329.7, 319.7)--(329.6, 319.3)--(329.5, 318.9)--(329.4, 318.7)--(329.2, 318.4)--(329.1, 317.9)--(329.0, 317.8)--(328.8, 317.2)--(328.7, 317.3)--(327.9, 317.6)--(327.5, 317.9)--(326.6, 318.3)--(326.3, 318.4)--(326.2, 318.5)--(326.3, 319.3)--(325.9, 319.4)--(325.5, 319.5)--(325.2, 319.5)--(324.9, 319.5)--(324.6, 319.6)--(324.5, 319.6)--(324.4, 320.1)--(323.8, 319.9)--(323.7, 320.1)--(323.6, 320.1)--(323.6, 320.2)--(323.4, 320.1)--(323.1, 320.1)--(323.0, 320.4)--(322.9, 321.0)--(322.5, 321.9)--(321.9, 321.6)--(321.9, 321.7)--(321.6, 321.5)--(321.5, 321.9)--(321.4, 321.9)--(321.3, 322.1)--(320.5, 321.5)--(320.6, 321.5)--(320.7, 321.3)--(320.7, 321.2)--(320.8, 321.1)--(320.9, 320.8)--(321.0, 320.4)--(321.0, 320.3)--(321.0, 320.2)--(321.0, 320.1)--(320.9, 320.1)--(320.9, 319.8)--(320.8, 319.5)--(320.8, 319.2)--(320.3, 319.0)--(320.0, 318.9)--(319.7, 318.7)--(319.4, 318.6)--(319.1, 318.5)--(319.0, 318.5)--(319.0, 318.4)--(318.9, 318.4)--(318.7, 318.3)--(318.5, 318.2)--(318.1, 318.0)--(318.0, 317.9)--(317.8, 317.8)--(317.0, 317.4)--(316.0, 316.8)--(315.6, 316.6)--(315.5, 316.6)--(315.4, 317.3)--(315.1, 318.5)--(315.0, 319.0)--(314.9, 319.2)--(314.8, 319.6)--(314.7, 319.9)--(314.6, 320.1)--(314.3, 320.6)--(313.4, 320.5)--(313.2, 320.9)--(313.1, 321.1)--(312.9, 321.5)--(312.7, 321.4)--(312.6, 321.5)--(312.5, 321.6)--(312.3, 321.6)--(312.2, 321.6)--(311.8, 321.8)--(311.3, 321.9)--(310.9, 322.1)--(310.7, 322.1)--(310.5, 322.2)--(310.4, 322.3)--(309.9, 322.8)--(309.7, 323.0)--(309.6, 323.1)--(309.6, 323.2)--(309.4, 323.5)--(309.3, 323.9)--(309.2, 324.1)--(309.2, 324.2)--(309.5, 324.6)--(309.9, 325.0)--(310.0, 325.2)--(309.7, 325.3)--(309.6, 325.4)--(309.5, 325.4)--(309.4, 325.5)--(309.0, 325.9)--(308.8, 326.1)--(308.4, 326.5)--(308.3, 326.6)--(308.3, 326.7)--(308.2, 326.8)--(308.2, 326.9)--(308.1, 327.3)--(308.1, 327.7)--(308.0, 328.5)--(308.0, 328.6)--(307.9, 328.7)--(307.9, 328.8)--(307.9, 328.9)--(307.8, 329.0)--(307.5, 329.2)--(307.1, 329.4)--(306.7, 329.6)--(306.3, 329.7)--(305.7, 329.9)--(305.1, 330.1)--(304.2, 330.0)--(303.6, 329.9)--(303.3, 329.8)--(303.3, 329.9)--(303.2, 330.3)--(303.3, 332.1)--(303.3, 333.5)--(303.3, 334.1)--(303.3, 335.2)--(303.3, 335.5)--(303.3, 335.8)--(303.2, 336.0)--(303.2, 336.7)--(303.1, 337.2)--(303.0, 337.5)--(302.9, 337.8)--(302.7, 338.5)--(302.6, 338.6)--(302.5, 338.9)--(302.2, 339.3)--(302.0, 339.6)--(301.8, 339.9)--(301.4, 340.8)--(301.3, 341.1)--(301.2, 341.3)--(301.2, 341.4)--(301.1, 341.7)--(300.9, 342.0)--(300.8, 342.4)--(300.7, 342.8)--(300.6, 343.1)--(300.6, 343.3)--(300.6, 343.5)--(300.6, 343.6)--(300.5, 344.0)--(300.4, 344.7)--(300.2, 345.7)--(300.2, 345.8)--(300.1, 346.3)--(300.0, 346.9)--(299.8, 347.8)--(299.6, 348.4)--(299.6, 348.5)--(299.6, 348.6)--(299.5, 348.7)--(299.3, 349.0)--(299.2, 349.1)--(299.1, 349.1)--(299.0, 349.3)--(298.8, 349.4)--(298.2, 349.9)--(298.0, 350.0)--(297.7, 350.4)--(297.5, 350.6)--(297.4, 350.7)--(297.3, 351.0)--(297.0, 351.9)--(297.0, 352.1)--(297.0, 352.5)--(296.9, 352.5)--(296.9, 352.6)--(296.9, 352.7)--(296.8, 352.8)--(296.6, 352.9)--(296.6, 353.0)--(296.2, 353.3)--(296.0, 353.5)--(295.2, 354.2)--(294.7, 354.8)--(294.4, 355.1)--(294.2, 355.3)--(294.2, 355.4)--(294.0, 355.7)--(293.9, 356.0)--(293.8, 356.1)--(293.7, 356.2)--(293.6, 356.3)--(293.3, 356.4)--(292.9, 356.6)--(292.5, 356.9)--(292.4, 357.0)--(292.4, 357.1)--(292.3, 357.2)--(292.2, 357.3)--cycle; +Kensington_and_Chelsea = (262.2, 269.5)--(262.1, 269.6)--(261.9, 269.9)--(261.7, 270.1)--(261.6, 270.2)--(261.1, 270.8)--(260.9, 271.0)--(260.8, 271.1)--(260.6, 271.6)--(260.6, 271.8)--(260.5, 271.9)--(260.4, 272.0)--(260.3, 272.2)--(260.2, 272.0)--(260.0, 272.2)--(259.9, 272.3)--(259.8, 272.5)--(259.7, 272.6)--(259.5, 272.8)--(259.1, 273.3)--(259.0, 273.3)--(259.0, 273.4)--(258.5, 274.1)--(258.2, 274.6)--(257.7, 275.2)--(257.6, 275.2)--(257.5, 275.4)--(257.3, 275.6)--(257.2, 275.8)--(257.1, 276.0)--(256.9, 276.2)--(256.8, 276.4)--(256.6, 276.7)--(256.5, 276.7)--(256.4, 277.0)--(256.0, 277.6)--(255.8, 277.7)--(255.7, 278.0)--(255.5, 278.2)--(255.5, 278.3)--(255.2, 278.6)--(254.9, 279.0)--(254.8, 279.1)--(254.7, 279.2)--(254.6, 279.4)--(254.4, 279.5)--(254.4, 279.6)--(254.3, 279.7)--(254.1, 279.8)--(254.0, 279.9)--(253.5, 280.3)--(253.2, 280.1)--(252.7, 280.4)--(252.4, 280.6)--(252.3, 280.7)--(252.2, 280.8)--(252.1, 281.0)--(251.9, 281.1)--(251.4, 281.8)--(251.4, 281.9)--(251.1, 282.2)--(251.0, 282.4)--(250.4, 283.2)--(250.2, 283.3)--(250.0, 283.6)--(249.4, 284.4)--(249.0, 285.0)--(249.3, 285.2)--(249.3, 285.3)--(249.0, 285.7)--(248.9, 285.9)--(248.8, 286.1)--(248.6, 286.4)--(248.5, 286.7)--(248.4, 286.8)--(248.5, 286.8)--(248.4, 286.9)--(248.2, 287.2)--(248.0, 287.3)--(247.9, 287.4)--(247.7, 287.6)--(247.5, 287.9)--(247.2, 288.2)--(246.9, 288.5)--(246.6, 288.7)--(246.3, 288.9)--(246.1, 289.0)--(245.9, 289.2)--(245.8, 289.2)--(245.8, 289.3)--(245.6, 289.5)--(245.5, 289.6)--(245.5, 289.7)--(245.4, 289.7)--(245.4, 289.8)--(245.4, 289.9)--(244.9, 289.8)--(244.8, 289.9)--(244.2, 290.6)--(243.8, 291.3)--(243.6, 291.7)--(243.5, 291.8)--(243.3, 292.1)--(242.9, 292.5)--(242.4, 292.9)--(242.3, 293.0)--(242.1, 293.2)--(241.7, 293.6)--(241.3, 293.9)--(240.6, 294.9)--(240.4, 295.3)--(240.1, 295.9)--(239.9, 296.6)--(239.6, 297.1)--(239.2, 297.8)--(239.0, 298.2)--(238.9, 298.1)--(238.9, 298.2)--(238.8, 298.4)--(238.5, 299.0)--(238.4, 299.0)--(238.2, 299.7)--(238.0, 300.0)--(238.0, 300.1)--(237.9, 300.4)--(237.7, 300.8)--(238.3, 301.0)--(238.8, 301.2)--(238.9, 301.2)--(238.9, 301.1)--(239.1, 301.2)--(239.1, 301.4)--(238.9, 301.8)--(239.0, 302.1)--(239.0, 302.3)--(239.0, 302.4)--(239.2, 302.4)--(239.5, 302.5)--(239.6, 302.6)--(239.5, 303.0)--(239.3, 303.5)--(239.2, 304.2)--(239.0, 304.2)--(238.7, 304.2)--(238.7, 304.3)--(238.6, 304.4)--(238.4, 304.5)--(238.5, 304.7)--(238.4, 304.8)--(238.4, 304.9)--(238.3, 305.1)--(238.3, 305.2)--(238.3, 305.3)--(238.2, 305.6)--(238.1, 305.6)--(238.0, 305.5)--(237.9, 305.5)--(237.9, 305.4)--(237.8, 305.4)--(237.7, 305.4)--(237.6, 305.4)--(237.7, 304.9)--(237.0, 304.7)--(236.7, 304.6)--(236.7, 304.7)--(236.6, 305.3)--(236.5, 305.5)--(236.4, 306.0)--(236.4, 306.1)--(236.3, 306.2)--(236.3, 306.3)--(236.2, 306.4)--(236.2, 306.6)--(236.1, 306.8)--(236.0, 307.0)--(236.0, 307.1)--(235.9, 307.2)--(235.9, 307.4)--(235.8, 307.6)--(235.4, 308.5)--(235.2, 308.9)--(235.1, 309.1)--(235.1, 309.3)--(235.1, 309.4)--(234.9, 309.9)--(234.7, 310.3)--(234.5, 310.7)--(234.4, 310.9)--(234.3, 311.3)--(234.2, 311.4)--(234.0, 311.6)--(233.5, 312.5)--(233.0, 313.3)--(233.1, 313.4)--(232.9, 313.5)--(232.7, 313.9)--(232.6, 314.0)--(232.5, 314.2)--(232.3, 314.5)--(232.1, 314.9)--(231.9, 315.1)--(231.6, 315.6)--(231.5, 315.5)--(231.5, 315.6)--(231.4, 315.6)--(231.4, 315.7)--(231.3, 315.8)--(230.2, 317.3)--(230.3, 317.4)--(230.3, 317.6)--(231.2, 318.3)--(231.2, 318.7)--(231.2, 321.4)--(230.8, 321.4)--(230.8, 321.8)--(230.8, 322.0)--(230.7, 322.6)--(230.7, 322.7)--(230.6, 323.0)--(230.7, 323.1)--(230.7, 324.0)--(230.7, 324.2)--(230.7, 324.4)--(230.6, 324.7)--(230.6, 324.9)--(230.6, 325.0)--(230.5, 325.2)--(230.5, 325.4)--(230.4, 325.6)--(230.3, 325.7)--(230.2, 325.9)--(230.0, 326.1)--(230.0, 326.2)--(229.9, 326.3)--(229.6, 327.1)--(229.8, 327.6)--(229.9, 327.5)--(230.0, 327.5)--(230.1, 327.4)--(230.2, 327.4)--(230.3, 327.4)--(230.4, 327.4)--(230.4, 327.1)--(231.0, 327.2)--(231.4, 327.2)--(231.9, 327.3)--(231.9, 327.4)--(232.2, 327.4)--(232.5, 327.4)--(232.7, 327.3)--(233.1, 327.2)--(233.2, 327.2)--(233.3, 327.1)--(233.6, 327.0)--(233.7, 326.9)--(233.9, 326.9)--(234.1, 326.7)--(234.4, 326.6)--(234.7, 326.5)--(235.0, 326.4)--(235.2, 326.4)--(236.1, 326.2)--(236.4, 326.1)--(236.6, 326.0)--(236.9, 325.9)--(237.1, 325.9)--(237.6, 325.7)--(237.8, 325.6)--(238.1, 325.4)--(238.2, 325.3)--(238.5, 325.1)--(238.7, 325.0)--(238.6, 324.8)--(238.6, 324.7)--(238.6, 324.6)--(238.6, 324.5)--(238.7, 324.4)--(238.8, 324.0)--(238.9, 323.8)--(239.2, 323.8)--(239.5, 323.9)--(240.1, 324.0)--(240.4, 324.0)--(240.8, 324.0)--(241.4, 323.9)--(241.8, 323.9)--(242.5, 323.8)--(242.7, 323.8)--(243.0, 323.7)--(243.3, 323.6)--(243.5, 323.6)--(244.0, 323.4)--(244.1, 323.4)--(244.2, 323.4)--(244.4, 323.4)--(244.6, 323.4)--(244.8, 323.3)--(245.0, 323.3)--(245.2, 323.2)--(245.4, 323.1)--(245.6, 322.8)--(245.7, 322.6)--(245.9, 322.4)--(246.1, 321.9)--(246.2, 321.7)--(246.6, 321.0)--(246.7, 320.8)--(246.9, 320.5)--(247.1, 320.3)--(247.3, 320.2)--(247.7, 320.0)--(247.8, 319.9)--(247.9, 319.9)--(248.0, 319.9)--(248.6, 319.6)--(248.6, 319.4)--(248.7, 319.1)--(248.7, 318.8)--(248.7, 318.7)--(248.8, 318.7)--(249.0, 318.2)--(249.4, 317.4)--(249.4, 317.3)--(249.3, 317.3)--(249.3, 317.5)--(249.0, 317.5)--(248.7, 317.5)--(248.6, 317.5)--(248.3, 317.5)--(248.0, 317.5)--(247.7, 317.4)--(247.4, 317.3)--(247.2, 317.2)--(247.2, 317.1)--(247.3, 317.0)--(247.4, 316.8)--(247.5, 316.8)--(247.5, 316.6)--(247.5, 316.4)--(247.6, 316.4)--(247.6, 316.2)--(247.8, 315.9)--(248.2, 315.2)--(248.9, 314.1)--(249.4, 314.3)--(250.0, 313.0)--(250.5, 310.5)--(252.9, 311.0)--(253.4, 311.1)--(253.9, 308.5)--(254.2, 307.5)--(254.5, 307.4)--(254.9, 307.6)--(255.6, 305.4)--(255.9, 305.5)--(256.4, 305.6)--(257.2, 305.7)--(258.0, 305.8)--(258.5, 305.8)--(259.3, 303.2)--(260.2, 300.0)--(261.1, 296.9)--(261.3, 296.6)--(262.1, 296.3)--(262.4, 296.3)--(262.6, 296.3)--(262.8, 296.2)--(263.1, 296.2)--(263.3, 296.2)--(263.6, 296.2)--(264.0, 296.3)--(264.5, 293.2)--(264.6, 292.2)--(268.8, 292.8)--(268.8, 292.9)--(269.5, 293.0)--(269.5, 293.1)--(270.0, 293.2)--(270.0, 293.3)--(270.2, 293.3)--(271.5, 293.6)--(272.3, 293.8)--(272.5, 293.7)--(272.6, 293.6)--(272.7, 293.2)--(272.9, 293.0)--(274.1, 294.1)--(274.4, 293.5)--(276.2, 295.1)--(276.3, 295.3)--(276.5, 295.5)--(277.0, 296.3)--(277.2, 296.5)--(277.3, 296.6)--(277.4, 296.8)--(277.5, 296.8)--(277.6, 296.9)--(277.7, 297.0)--(278.7, 297.4)--(279.1, 297.5)--(279.1, 296.7)--(279.1, 296.6)--(279.1, 296.5)--(279.1, 296.4)--(279.2, 296.4)--(279.2, 296.2)--(279.7, 294.0)--(280.1, 293.5)--(280.9, 292.6)--(281.0, 292.3)--(281.3, 290.2)--(281.3, 290.1)--(281.4, 289.9)--(281.5, 289.6)--(281.3, 289.4)--(281.2, 289.3)--(281.2, 289.2)--(281.1, 289.1)--(281.1, 289.0)--(281.8, 288.3)--(281.1, 287.5)--(282.0, 286.2)--(281.3, 285.6)--(281.4, 285.1)--(281.4, 285.0)--(281.5, 284.7)--(281.6, 284.5)--(281.8, 284.0)--(281.3, 283.5)--(282.0, 282.9)--(283.0, 282.0)--(284.3, 280.8)--(284.5, 280.6)--(285.2, 279.9)--(285.3, 279.7)--(285.4, 279.6)--(285.4, 279.5)--(285.5, 279.0)--(285.1, 279.0)--(284.9, 278.9)--(284.2, 278.8)--(283.9, 278.7)--(283.7, 278.7)--(283.5, 278.6)--(282.5, 278.4)--(282.0, 278.2)--(281.6, 278.1)--(281.3, 278.0)--(280.9, 277.9)--(279.0, 277.5)--(277.3, 277.1)--(274.1, 276.3)--(273.6, 276.2)--(272.8, 276.0)--(272.3, 275.9)--(271.6, 275.7)--(271.2, 275.5)--(270.9, 275.4)--(270.8, 275.4)--(270.6, 275.3)--(270.4, 275.2)--(270.1, 275.1)--(269.8, 274.9)--(269.5, 274.8)--(269.3, 274.7)--(269.0, 274.5)--(268.9, 274.7)--(268.8, 274.6)--(268.7, 274.6)--(268.6, 274.5)--(267.9, 274.4)--(267.8, 274.3)--(267.7, 274.3)--(267.6, 274.2)--(267.5, 274.1)--(267.4, 274.0)--(267.4, 273.9)--(267.3, 273.9)--(267.2, 273.8)--(266.7, 273.2)--(266.6, 273.1)--(266.4, 272.8)--(266.3, 272.8)--(266.3, 272.7)--(266.5, 272.5)--(266.3, 272.3)--(266.2, 272.1)--(265.7, 271.2)--(265.6, 271.0)--(265.4, 270.2)--(265.3, 270.2)--(265.0, 270.2)--(264.6, 270.1)--(264.4, 270.1)--(264.3, 270.1)--(263.4, 269.5)--(263.0, 269.4)--(262.9, 269.5)--(262.6, 269.4)--(262.5, 269.4)--(262.4, 269.5)--cycle; +Kingston_upon_Thames = (164.0, 102.0)--(164.1, 102.1)--(164.1, 102.2)--(164.2, 102.2)--(164.3, 102.3)--(164.5, 102.5)--(164.7, 102.8)--(164.9, 103.0)--(164.9, 103.1)--(165.0, 103.2)--(165.1, 103.4)--(165.1, 103.6)--(165.0, 104.0)--(165.0, 104.2)--(164.9, 104.8)--(164.9, 104.9)--(164.7, 105.2)--(164.7, 105.6)--(164.7, 105.7)--(164.6, 105.9)--(164.6, 106.1)--(164.6, 106.2)--(164.6, 106.3)--(164.6, 107.0)--(164.6, 107.4)--(164.7, 107.8)--(164.7, 108.0)--(164.7, 108.1)--(164.7, 108.5)--(164.7, 108.8)--(164.8, 109.0)--(164.9, 109.4)--(164.9, 109.7)--(164.9, 110.2)--(164.9, 110.6)--(164.9, 111.6)--(165.0, 112.2)--(165.0, 112.8)--(165.0, 113.2)--(165.0, 113.6)--(165.0, 113.8)--(165.0, 114.0)--(164.9, 114.4)--(164.9, 114.5)--(165.0, 115.1)--(165.0, 115.5)--(165.2, 116.2)--(165.3, 116.6)--(165.4, 116.9)--(165.5, 117.6)--(165.6, 118.0)--(165.6, 118.4)--(165.6, 118.6)--(165.9, 118.7)--(165.4, 118.8)--(165.2, 119.3)--(165.0, 119.7)--(164.8, 120.2)--(164.6, 120.8)--(164.5, 121.1)--(164.0, 122.3)--(163.8, 123.0)--(163.6, 123.6)--(163.7, 123.8)--(163.8, 124.0)--(163.9, 124.2)--(164.0, 124.5)--(164.1, 124.9)--(164.3, 125.3)--(164.3, 125.5)--(164.4, 125.8)--(164.6, 126.2)--(164.8, 126.6)--(165.1, 127.3)--(165.3, 127.8)--(165.5, 127.9)--(165.8, 128.2)--(166.1, 128.5)--(166.3, 128.8)--(166.8, 129.2)--(167.5, 129.6)--(167.7, 129.8)--(167.9, 130.0)--(168.2, 130.4)--(168.3, 130.7)--(168.6, 131.2)--(168.8, 131.6)--(169.0, 132.0)--(169.2, 132.4)--(169.4, 132.9)--(169.7, 133.5)--(169.9, 134.1)--(170.1, 134.5)--(170.2, 134.8)--(170.5, 135.6)--(170.6, 136.0)--(170.6, 136.1)--(170.6, 136.2)--(170.7, 136.2)--(170.8, 136.6)--(171.0, 137.2)--(171.1, 137.7)--(171.2, 138.5)--(171.3, 139.2)--(171.8, 140.6)--(171.8, 140.8)--(171.7, 141.9)--(171.6, 142.6)--(171.6, 142.7)--(171.5, 143.2)--(171.5, 143.6)--(171.6, 144.4)--(171.7, 145.5)--(171.7, 146.6)--(171.8, 147.3)--(171.9, 147.6)--(171.9, 147.7)--(171.8, 148.1)--(171.8, 148.5)--(171.9, 149.2)--(172.1, 150.0)--(172.1, 150.1)--(172.2, 150.3)--(172.2, 150.5)--(172.4, 150.8)--(172.5, 151.1)--(172.6, 151.3)--(172.8, 151.6)--(172.9, 151.8)--(173.1, 152.0)--(173.3, 152.2)--(173.6, 152.6)--(173.9, 152.8)--(174.2, 153.0)--(174.5, 153.1)--(174.9, 153.1)--(175.2, 153.1)--(175.4, 153.2)--(175.5, 153.2)--(175.7, 153.3)--(176.2, 153.4)--(176.5, 153.5)--(176.9, 153.6)--(177.5, 153.8)--(177.9, 153.9)--(178.1, 154.0)--(178.3, 154.5)--(178.4, 154.7)--(178.6, 155.4)--(178.6, 155.8)--(178.7, 156.3)--(178.6, 157.3)--(179.0, 157.3)--(178.9, 158.0)--(178.3, 159.1)--(178.3, 159.2)--(178.1, 159.6)--(177.6, 159.6)--(177.6, 160.3)--(177.6, 160.5)--(177.6, 160.6)--(177.6, 160.7)--(177.6, 160.9)--(177.6, 161.0)--(177.5, 161.1)--(177.4, 161.1)--(177.4, 161.8)--(177.3, 161.9)--(177.2, 162.0)--(177.2, 162.2)--(177.1, 162.2)--(177.1, 162.3)--(176.8, 163.1)--(176.8, 163.3)--(176.8, 163.4)--(176.7, 163.7)--(176.7, 163.8)--(176.6, 163.9)--(176.5, 164.1)--(176.6, 164.2)--(176.6, 164.3)--(176.5, 164.4)--(176.5, 164.5)--(176.3, 164.6)--(176.2, 164.8)--(175.7, 165.5)--(176.4, 165.9)--(176.0, 166.5)--(175.9, 166.6)--(176.0, 166.7)--(175.8, 166.9)--(175.7, 167.0)--(175.7, 167.1)--(175.6, 167.2)--(175.7, 167.3)--(174.9, 168.4)--(174.7, 168.8)--(174.6, 168.7)--(172.8, 167.4)--(172.4, 168.1)--(172.3, 168.3)--(172.3, 168.5)--(172.2, 168.5)--(172.2, 168.6)--(172.2, 168.7)--(172.3, 168.8)--(172.3, 168.9)--(172.4, 168.9)--(172.4, 169.0)--(172.5, 169.0)--(172.8, 169.3)--(173.1, 169.5)--(173.4, 169.8)--(174.0, 170.3)--(173.9, 170.5)--(173.6, 170.9)--(173.5, 171.1)--(173.4, 171.3)--(173.2, 171.6)--(173.2, 171.7)--(172.8, 172.3)--(172.4, 172.9)--(172.1, 173.3)--(171.9, 173.5)--(171.8, 173.6)--(171.7, 173.8)--(171.4, 174.1)--(171.5, 174.2)--(171.6, 174.4)--(172.1, 175.0)--(173.8, 177.0)--(174.6, 178.0)--(174.9, 178.4)--(175.1, 179.1)--(175.2, 179.2)--(175.2, 179.4)--(175.3, 179.5)--(175.3, 179.6)--(175.6, 179.9)--(176.1, 180.5)--(176.3, 180.7)--(176.5, 180.9)--(176.6, 181.1)--(176.8, 181.2)--(176.8, 181.3)--(177.0, 181.7)--(177.0, 181.8)--(177.1, 182.0)--(177.2, 182.5)--(177.3, 182.6)--(177.3, 183.1)--(177.4, 183.8)--(177.4, 184.6)--(177.4, 185.2)--(177.4, 185.8)--(177.3, 186.6)--(177.2, 187.5)--(177.2, 187.6)--(177.1, 188.0)--(177.1, 188.3)--(177.1, 188.5)--(177.1, 188.7)--(177.0, 190.4)--(177.0, 191.6)--(177.0, 191.7)--(177.0, 191.9)--(177.1, 193.6)--(177.2, 194.2)--(177.3, 195.0)--(177.4, 195.2)--(177.4, 195.6)--(177.4, 195.9)--(177.3, 196.3)--(177.3, 196.5)--(177.3, 196.6)--(177.3, 196.8)--(177.3, 197.2)--(177.3, 197.4)--(177.3, 197.6)--(177.3, 197.8)--(177.4, 198.0)--(177.4, 198.3)--(177.7, 199.7)--(177.8, 200.0)--(177.8, 200.1)--(177.8, 200.3)--(177.9, 200.4)--(177.9, 200.6)--(177.9, 200.7)--(178.1, 201.0)--(178.1, 201.2)--(178.3, 201.8)--(178.4, 202.2)--(178.4, 202.5)--(178.4, 202.9)--(178.4, 203.2)--(178.4, 203.6)--(178.5, 203.8)--(178.5, 204.0)--(178.6, 204.3)--(178.8, 204.8)--(178.8, 205.0)--(178.8, 205.2)--(178.8, 205.6)--(178.7, 205.9)--(178.6, 206.1)--(178.6, 206.2)--(178.4, 206.6)--(178.3, 206.9)--(178.2, 207.2)--(178.1, 207.4)--(177.7, 208.0)--(177.5, 208.4)--(177.4, 208.7)--(176.9, 209.3)--(176.5, 209.9)--(176.2, 210.2)--(175.9, 210.4)--(175.7, 210.6)--(175.1, 211.0)--(174.6, 211.4)--(174.3, 211.7)--(173.9, 211.9)--(173.5, 212.2)--(172.8, 212.6)--(172.9, 213.0)--(173.1, 213.3)--(173.2, 213.7)--(173.9, 215.0)--(174.2, 215.6)--(174.4, 215.9)--(175.1, 216.9)--(175.3, 217.1)--(175.5, 216.9)--(175.7, 217.1)--(175.8, 217.1)--(175.9, 217.0)--(176.0, 216.9)--(176.2, 216.7)--(177.1, 215.9)--(176.8, 215.6)--(176.8, 215.5)--(177.1, 215.3)--(177.4, 215.2)--(177.6, 215.0)--(177.7, 215.0)--(177.9, 215.0)--(177.9, 214.9)--(178.3, 214.9)--(178.3, 215.3)--(178.4, 215.3)--(178.4, 216.0)--(178.5, 216.1)--(178.6, 216.2)--(178.7, 216.2)--(179.8, 215.9)--(181.3, 215.5)--(181.5, 215.2)--(181.6, 215.2)--(181.7, 215.4)--(181.5, 215.8)--(181.3, 216.1)--(181.6, 216.4)--(181.9, 216.0)--(182.1, 215.8)--(182.3, 215.7)--(182.5, 215.5)--(182.7, 215.2)--(183.6, 214.4)--(184.0, 214.0)--(184.0, 213.9)--(184.2, 213.7)--(184.4, 213.4)--(184.5, 213.4)--(184.6, 213.3)--(184.7, 213.2)--(184.8, 213.0)--(185.2, 212.8)--(185.5, 212.5)--(185.6, 212.4)--(185.7, 212.4)--(185.7, 212.5)--(186.0, 212.3)--(186.1, 211.9)--(186.0, 211.6)--(186.4, 211.6)--(186.5, 211.6)--(186.5, 211.3)--(186.5, 211.2)--(186.5, 211.0)--(187.4, 211.0)--(187.5, 211.0)--(187.5, 211.3)--(187.5, 211.7)--(187.5, 211.8)--(187.5, 213.3)--(187.8, 213.4)--(187.7, 213.7)--(189.3, 213.8)--(189.8, 212.4)--(189.8, 212.2)--(189.9, 212.0)--(190.1, 211.2)--(190.2, 211.1)--(190.2, 210.8)--(191.7, 206.1)--(192.3, 204.1)--(192.6, 204.2)--(193.0, 204.4)--(193.5, 204.6)--(195.0, 205.3)--(195.0, 205.4)--(196.6, 206.1)--(199.0, 209.4)--(199.3, 209.7)--(199.7, 210.3)--(200.0, 210.6)--(200.8, 211.8)--(201.2, 212.4)--(201.6, 212.9)--(202.2, 213.7)--(202.7, 214.4)--(202.8, 214.6)--(202.9, 214.6)--(203.0, 214.8)--(203.2, 215.0)--(203.4, 215.2)--(204.1, 215.8)--(204.4, 216.0)--(204.5, 216.2)--(204.7, 216.4)--(205.0, 216.5)--(205.2, 216.7)--(205.5, 216.9)--(205.9, 217.3)--(206.2, 217.7)--(206.5, 218.0)--(206.8, 218.2)--(207.3, 218.6)--(207.6, 218.8)--(208.4, 219.4)--(208.6, 219.5)--(209.0, 219.8)--(209.2, 219.9)--(209.8, 220.4)--(210.2, 220.6)--(210.5, 220.8)--(211.3, 221.4)--(211.8, 221.7)--(212.4, 222.2)--(212.6, 222.4)--(212.9, 222.6)--(213.0, 222.6)--(212.9, 222.8)--(213.0, 222.8)--(212.9, 222.8)--(213.1, 222.9)--(213.4, 222.9)--(213.7, 223.1)--(213.8, 223.2)--(213.9, 223.2)--(214.2, 223.5)--(214.5, 223.7)--(214.5, 223.6)--(214.7, 223.4)--(214.8, 223.3)--(214.9, 223.1)--(214.9, 223.0)--(215.0, 222.9)--(215.0, 222.6)--(215.0, 222.3)--(215.0, 222.1)--(215.0, 221.9)--(215.1, 221.8)--(215.1, 221.6)--(215.2, 221.5)--(215.3, 221.4)--(215.4, 221.3)--(215.4, 221.2)--(215.5, 221.2)--(215.6, 221.1)--(216.0, 220.8)--(216.2, 220.7)--(216.3, 220.6)--(216.4, 220.5)--(216.4, 220.4)--(216.5, 220.3)--(216.6, 220.2)--(216.7, 219.8)--(216.7, 219.5)--(216.7, 219.4)--(216.7, 219.2)--(216.7, 218.8)--(216.7, 218.5)--(216.6, 218.2)--(216.4, 217.8)--(216.3, 217.7)--(216.2, 217.6)--(216.0, 217.3)--(216.0, 217.2)--(215.8, 217.0)--(215.7, 216.9)--(215.7, 216.8)--(215.5, 216.7)--(215.4, 216.7)--(215.3, 216.6)--(215.2, 216.5)--(215.1, 216.3)--(215.0, 216.1)--(214.9, 215.9)--(214.8, 215.7)--(214.7, 215.4)--(214.7, 215.3)--(214.6, 215.1)--(214.6, 215.0)--(214.6, 214.9)--(214.6, 214.8)--(214.6, 214.7)--(214.7, 214.5)--(214.8, 214.2)--(214.9, 214.0)--(215.0, 213.6)--(215.1, 213.4)--(215.2, 213.1)--(215.3, 212.9)--(215.4, 212.7)--(215.5, 212.4)--(215.5, 212.2)--(215.7, 212.0)--(215.9, 211.7)--(216.0, 211.5)--(216.0, 211.2)--(216.0, 211.1)--(216.1, 211.0)--(216.1, 210.9)--(216.1, 210.7)--(216.0, 210.4)--(216.0, 210.0)--(215.9, 209.9)--(215.9, 209.7)--(215.8, 209.4)--(215.7, 209.2)--(215.7, 209.1)--(215.7, 209.0)--(215.7, 208.6)--(215.7, 208.3)--(215.7, 208.2)--(215.7, 208.0)--(215.8, 207.9)--(216.0, 207.8)--(216.3, 207.8)--(216.5, 207.7)--(216.5, 207.6)--(216.7, 207.4)--(216.9, 207.2)--(216.9, 207.1)--(217.0, 207.1)--(217.1, 206.6)--(217.2, 206.2)--(217.3, 205.9)--(217.3, 205.7)--(217.4, 205.6)--(217.4, 205.4)--(217.4, 205.1)--(217.4, 204.9)--(217.4, 204.7)--(217.5, 204.5)--(217.5, 204.3)--(217.6, 204.1)--(217.7, 203.9)--(217.9, 203.5)--(217.9, 203.4)--(218.0, 203.2)--(218.1, 202.9)--(218.1, 202.7)--(218.1, 202.6)--(218.2, 202.4)--(218.1, 202.2)--(218.1, 202.1)--(218.1, 201.9)--(218.0, 201.7)--(218.0, 201.3)--(218.0, 201.2)--(218.0, 200.7)--(218.0, 200.6)--(218.1, 200.2)--(218.1, 200.0)--(218.2, 199.4)--(218.3, 199.1)--(218.3, 199.0)--(218.2, 198.9)--(218.2, 198.8)--(218.3, 198.7)--(218.4, 198.4)--(218.6, 197.7)--(218.7, 197.3)--(219.2, 195.8)--(219.8, 194.0)--(219.9, 193.9)--(220.0, 193.1)--(220.1, 193.0)--(220.1, 192.9)--(220.1, 192.8)--(220.0, 192.8)--(220.0, 192.7)--(219.9, 192.5)--(219.8, 192.4)--(219.8, 192.2)--(219.8, 192.0)--(219.8, 191.8)--(219.9, 191.7)--(219.9, 191.6)--(220.0, 191.6)--(220.0, 191.5)--(220.0, 191.4)--(220.0, 191.3)--(220.0, 191.2)--(220.1, 191.2)--(220.1, 191.1)--(220.2, 191.0)--(220.3, 191.0)--(220.4, 191.0)--(220.5, 190.9)--(220.7, 190.9)--(220.8, 190.8)--(220.9, 190.8)--(221.0, 190.8)--(221.1, 190.8)--(221.1, 190.7)--(221.1, 190.6)--(221.3, 190.4)--(221.3, 190.3)--(221.4, 190.2)--(221.4, 190.1)--(221.3, 189.9)--(221.3, 189.7)--(221.3, 189.6)--(221.4, 189.4)--(221.5, 189.2)--(221.5, 189.0)--(221.5, 188.9)--(221.5, 188.7)--(221.6, 188.4)--(221.7, 188.3)--(221.7, 188.0)--(221.8, 187.7)--(221.8, 187.6)--(221.8, 187.5)--(221.8, 187.3)--(221.9, 187.2)--(221.9, 187.1)--(221.9, 186.6)--(221.9, 186.5)--(221.9, 186.1)--(221.9, 185.9)--(221.8, 185.6)--(221.8, 185.5)--(221.8, 185.4)--(221.7, 184.9)--(221.7, 184.8)--(221.6, 184.2)--(221.6, 184.3)--(221.5, 184.2)--(221.4, 184.1)--(221.3, 183.9)--(221.0, 183.6)--(221.0, 183.5)--(220.8, 183.2)--(220.6, 183.1)--(220.6, 183.0)--(220.5, 182.9)--(220.5, 182.8)--(220.6, 182.5)--(220.7, 182.3)--(220.7, 182.0)--(220.7, 181.7)--(220.7, 181.5)--(220.7, 181.4)--(220.7, 181.3)--(220.6, 181.2)--(220.6, 181.0)--(220.6, 180.9)--(220.6, 180.8)--(220.6, 180.7)--(220.5, 180.4)--(220.5, 180.3)--(220.4, 180.1)--(220.3, 179.9)--(220.2, 179.7)--(220.2, 179.6)--(220.5, 179.1)--(220.7, 178.9)--(220.9, 178.7)--(220.9, 178.6)--(221.0, 178.5)--(221.1, 178.2)--(221.2, 178.1)--(221.3, 178.0)--(221.4, 177.8)--(221.4, 177.7)--(221.5, 177.6)--(221.6, 177.5)--(221.6, 177.4)--(221.9, 177.1)--(222.0, 177.0)--(222.1, 176.8)--(222.2, 176.6)--(222.2, 176.4)--(222.5, 176.3)--(222.6, 176.2)--(222.7, 176.2)--(222.8, 176.1)--(223.0, 176.1)--(223.2, 176.1)--(223.5, 176.0)--(223.7, 176.0)--(223.9, 175.9)--(224.0, 175.8)--(224.2, 175.7)--(224.2, 175.6)--(224.3, 175.6)--(224.5, 175.1)--(224.5, 175.0)--(224.6, 174.9)--(224.7, 174.8)--(224.8, 174.3)--(224.9, 174.1)--(224.9, 174.0)--(224.9, 173.9)--(224.8, 173.7)--(224.9, 173.7)--(225.0, 173.7)--(225.0, 173.6)--(225.1, 173.6)--(225.1, 173.5)--(225.2, 173.3)--(225.2, 173.2)--(225.4, 172.9)--(225.5, 172.6)--(225.5, 172.5)--(225.4, 172.3)--(225.5, 172.2)--(225.5, 172.0)--(225.5, 171.8)--(225.5, 171.7)--(225.6, 171.4)--(225.6, 171.0)--(225.7, 170.8)--(225.7, 170.7)--(225.8, 170.6)--(225.8, 170.5)--(225.8, 170.4)--(225.9, 170.2)--(225.9, 170.1)--(225.9, 169.9)--(225.9, 169.8)--(225.9, 169.7)--(226.0, 169.5)--(226.0, 169.4)--(226.0, 169.3)--(226.0, 169.0)--(226.1, 168.8)--(226.2, 168.5)--(226.3, 168.3)--(226.3, 168.1)--(226.3, 167.8)--(226.4, 167.7)--(226.4, 167.6)--(226.5, 167.0)--(226.5, 166.9)--(226.4, 166.9)--(226.3, 166.8)--(226.2, 166.8)--(226.1, 166.6)--(225.9, 166.4)--(225.7, 166.3)--(225.6, 166.2)--(225.2, 165.8)--(225.0, 165.6)--(224.7, 165.4)--(224.6, 165.2)--(224.4, 165.0)--(224.4, 164.8)--(224.3, 164.6)--(224.0, 163.9)--(223.8, 163.6)--(223.7, 163.4)--(222.8, 164.0)--(222.7, 163.4)--(222.6, 162.8)--(222.5, 161.9)--(222.5, 161.2)--(222.4, 161.1)--(222.3, 160.8)--(222.3, 160.2)--(222.0, 160.2)--(221.9, 160.1)--(221.7, 160.3)--(221.6, 160.3)--(221.3, 160.3)--(221.2, 160.3)--(221.1, 160.2)--(220.8, 160.1)--(220.5, 160.2)--(220.5, 160.3)--(220.4, 160.3)--(220.4, 160.2)--(220.3, 160.3)--(220.0, 160.1)--(219.8, 160.1)--(219.7, 160.0)--(219.5, 160.0)--(218.9, 159.6)--(218.5, 159.4)--(218.3, 159.2)--(218.2, 159.2)--(217.9, 159.0)--(217.7, 158.9)--(217.2, 158.8)--(217.0, 158.7)--(216.5, 158.6)--(216.4, 158.6)--(216.1, 158.6)--(215.7, 158.6)--(215.4, 158.6)--(215.0, 158.6)--(214.9, 158.6)--(214.5, 158.6)--(213.9, 158.6)--(213.8, 158.6)--(213.7, 158.7)--(213.0, 158.7)--(212.4, 159.0)--(212.1, 159.0)--(212.0, 159.1)--(211.9, 159.1)--(211.8, 159.1)--(211.3, 159.4)--(211.2, 159.4)--(211.1, 159.4)--(211.1, 159.3)--(211.0, 158.9)--(210.9, 158.8)--(210.9, 158.2)--(210.8, 158.1)--(210.6, 157.9)--(210.6, 157.8)--(210.6, 157.7)--(210.3, 156.9)--(210.2, 156.8)--(210.0, 156.5)--(209.7, 156.3)--(209.3, 155.8)--(209.1, 155.4)--(208.8, 154.9)--(208.2, 154.5)--(207.3, 153.8)--(206.5, 153.1)--(205.9, 152.6)--(205.6, 152.5)--(205.3, 152.3)--(204.8, 152.0)--(204.4, 151.8)--(204.3, 151.7)--(203.8, 151.4)--(203.6, 151.3)--(203.4, 151.2)--(203.4, 151.1)--(203.3, 151.0)--(203.2, 150.9)--(203.1, 150.7)--(202.9, 150.6)--(202.8, 150.5)--(202.8, 150.4)--(202.7, 150.2)--(202.6, 150.0)--(202.5, 149.8)--(202.4, 149.6)--(202.4, 149.4)--(202.4, 149.2)--(202.2, 149.2)--(202.1, 149.1)--(202.0, 149.1)--(201.7, 148.9)--(201.5, 148.8)--(201.4, 148.8)--(201.3, 148.6)--(201.1, 148.5)--(201.1, 148.4)--(201.0, 148.4)--(201.0, 148.2)--(200.9, 148.1)--(200.9, 147.9)--(200.8, 147.7)--(200.9, 147.6)--(200.9, 147.4)--(200.8, 147.3)--(200.7, 147.2)--(200.7, 147.1)--(200.6, 147.1)--(200.5, 147.1)--(200.4, 146.9)--(200.3, 146.9)--(200.2, 146.8)--(200.1, 146.7)--(200.0, 146.7)--(199.7, 146.6)--(199.6, 146.6)--(199.4, 146.5)--(199.2, 146.5)--(199.0, 146.4)--(198.9, 146.3)--(198.7, 146.2)--(198.4, 146.0)--(198.3, 145.9)--(198.2, 145.8)--(198.0, 145.6)--(197.9, 145.5)--(197.8, 145.4)--(197.7, 145.3)--(197.6, 145.2)--(197.5, 145.0)--(197.4, 144.9)--(197.4, 144.8)--(197.3, 144.6)--(197.2, 144.5)--(197.1, 144.3)--(197.0, 144.2)--(197.0, 144.1)--(196.8, 143.9)--(196.7, 143.8)--(196.5, 143.6)--(196.4, 143.5)--(196.2, 143.4)--(196.1, 143.3)--(196.0, 143.3)--(195.8, 143.2)--(195.7, 143.1)--(195.6, 143.1)--(195.6, 143.0)--(195.5, 143.0)--(195.5, 142.9)--(195.3, 142.7)--(195.2, 142.6)--(195.1, 142.4)--(195.0, 142.3)--(194.9, 142.2)--(194.8, 142.1)--(194.6, 141.9)--(194.5, 141.8)--(194.4, 141.7)--(194.3, 141.5)--(194.2, 141.4)--(194.0, 141.1)--(193.9, 140.8)--(193.8, 140.7)--(193.7, 140.5)--(193.7, 140.4)--(193.6, 140.3)--(193.5, 140.1)--(193.4, 140.0)--(193.3, 139.9)--(193.2, 139.9)--(193.1, 139.8)--(192.9, 139.7)--(192.8, 139.7)--(192.8, 139.6)--(192.7, 139.5)--(192.9, 139.3)--(193.2, 139.2)--(193.4, 139.1)--(193.6, 139.0)--(193.9, 138.9)--(194.2, 138.8)--(194.4, 138.7)--(194.7, 138.6)--(194.9, 138.6)--(194.8, 138.4)--(194.3, 137.5)--(194.1, 137.2)--(193.9, 137.0)--(193.9, 136.9)--(193.8, 136.7)--(193.7, 136.5)--(192.9, 136.1)--(192.3, 135.7)--(192.1, 135.4)--(192.0, 135.2)--(192.0, 135.0)--(191.9, 134.8)--(191.8, 134.6)--(191.7, 134.5)--(191.5, 134.1)--(191.2, 133.7)--(191.0, 133.4)--(190.9, 133.3)--(190.9, 133.2)--(190.8, 132.8)--(190.8, 132.7)--(190.8, 132.5)--(190.8, 132.3)--(190.8, 131.9)--(190.8, 131.8)--(190.7, 131.5)--(190.6, 131.2)--(190.5, 130.9)--(190.3, 130.6)--(190.1, 130.4)--(190.0, 130.3)--(190.0, 130.2)--(189.8, 130.0)--(189.8, 129.8)--(189.8, 129.2)--(189.8, 129.0)--(189.8, 128.9)--(189.8, 128.8)--(189.7, 128.6)--(189.5, 128.4)--(189.4, 128.3)--(189.3, 128.2)--(188.9, 127.8)--(188.7, 127.7)--(188.6, 127.5)--(188.4, 127.3)--(188.3, 127.2)--(188.1, 126.9)--(187.9, 126.5)--(187.6, 126.2)--(187.3, 125.9)--(186.8, 125.4)--(186.6, 125.2)--(186.4, 125.1)--(186.4, 125.0)--(186.2, 124.8)--(186.0, 124.6)--(185.8, 124.4)--(185.6, 124.2)--(185.4, 124.0)--(185.3, 123.8)--(184.9, 123.3)--(184.8, 123.1)--(184.8, 122.9)--(184.7, 122.8)--(184.6, 122.3)--(184.5, 122.0)--(184.4, 121.7)--(184.2, 121.1)--(184.1, 120.8)--(184.0, 120.6)--(183.9, 120.4)--(183.7, 120.1)--(183.6, 120.0)--(183.4, 119.8)--(183.2, 119.6)--(182.7, 118.9)--(182.6, 118.7)--(182.4, 118.5)--(182.4, 118.4)--(182.3, 118.3)--(182.2, 118.1)--(182.1, 117.8)--(182.1, 117.6)--(182.0, 117.3)--(182.0, 117.1)--(181.9, 116.9)--(181.9, 116.7)--(181.9, 116.5)--(181.9, 116.2)--(181.8, 115.9)--(181.8, 115.6)--(181.7, 115.4)--(181.7, 115.1)--(181.6, 115.0)--(181.6, 114.8)--(181.4, 114.3)--(181.3, 114.1)--(181.3, 113.8)--(181.4, 113.4)--(181.4, 113.2)--(181.4, 112.9)--(181.5, 112.7)--(181.5, 112.6)--(181.6, 112.3)--(181.7, 112.1)--(181.8, 111.9)--(181.7, 111.7)--(181.7, 111.4)--(181.7, 111.0)--(181.7, 110.7)--(181.6, 110.4)--(181.5, 110.2)--(181.2, 109.5)--(181.1, 109.4)--(181.0, 109.3)--(180.9, 109.2)--(180.6, 109.0)--(180.4, 108.8)--(180.0, 108.6)--(179.9, 108.6)--(179.9, 108.5)--(179.4, 108.0)--(179.2, 107.6)--(178.9, 107.3)--(178.6, 106.9)--(178.4, 106.7)--(178.0, 106.4)--(177.7, 106.1)--(177.2, 105.8)--(176.9, 105.7)--(176.7, 105.6)--(176.5, 105.5)--(176.4, 105.5)--(176.2, 105.3)--(175.8, 105.0)--(175.6, 104.8)--(175.4, 104.5)--(174.9, 103.9)--(174.8, 103.8)--(174.2, 103.0)--(174.1, 102.9)--(173.7, 102.4)--(173.6, 102.3)--(173.4, 102.1)--(173.0, 101.7)--(172.6, 101.4)--(172.2, 101.0)--(172.0, 100.9)--(171.8, 100.8)--(171.4, 100.7)--(170.6, 100.5)--(170.4, 100.4)--(170.3, 100.4)--(170.0, 100.3)--(169.7, 100.1)--(169.3, 100.0)--(169.0, 99.8)--(168.8, 99.6)--(168.7, 99.6)--(168.7, 99.5)--(168.5, 99.5)--(168.4, 99.5)--(168.3, 99.4)--(168.0, 99.4)--(167.6, 99.4)--(167.3, 99.4)--(166.8, 99.4)--(166.7, 99.4)--(166.5, 99.5)--(166.4, 99.5)--(166.2, 99.1)--(165.7, 99.2)--(165.3, 99.6)--(165.1, 99.8)--(164.8, 100.0)--(164.4, 100.4)--(164.3, 100.8)--(164.2, 100.9)--(164.2, 101.1)--(164.1, 101.3)--(164.0, 101.6)--(164.0, 101.8)--(164.0, 101.9)--cycle; +Lambeth = (300.5, 278.9)--(300.6, 279.0)--(300.7, 279.1)--(300.8, 279.2)--(301.2, 279.5)--(301.3, 279.7)--(301.5, 279.9)--(301.6, 280.0)--(301.9, 280.3)--(302.2, 280.7)--(302.4, 280.9)--(302.4, 281.1)--(302.5, 281.2)--(302.7, 281.4)--(302.8, 281.7)--(302.9, 281.9)--(303.0, 282.1)--(303.3, 282.0)--(303.3, 282.1)--(303.2, 282.2)--(303.4, 282.6)--(303.4, 282.7)--(303.5, 282.9)--(303.6, 283.6)--(303.7, 283.9)--(303.8, 284.1)--(304.1, 284.8)--(304.3, 285.4)--(304.5, 286.0)--(304.7, 286.7)--(304.8, 287.3)--(304.9, 287.9)--(305.1, 289.4)--(305.2, 289.5)--(305.2, 290.0)--(305.3, 291.0)--(305.4, 291.4)--(305.5, 292.8)--(305.7, 294.2)--(305.9, 296.7)--(306.0, 297.6)--(305.9, 297.7)--(306.0, 298.4)--(306.2, 300.0)--(306.3, 300.1)--(306.3, 300.2)--(306.3, 300.5)--(306.4, 300.7)--(306.4, 300.9)--(306.5, 301.1)--(306.6, 301.3)--(306.9, 302.1)--(307.0, 302.3)--(307.2, 302.7)--(307.5, 303.0)--(307.8, 303.3)--(307.8, 303.4)--(307.9, 303.5)--(308.4, 303.9)--(308.5, 304.0)--(308.7, 304.1)--(308.9, 304.2)--(309.2, 304.3)--(309.5, 304.5)--(309.9, 304.6)--(310.1, 304.7)--(310.5, 304.8)--(310.8, 304.9)--(311.6, 305.2)--(311.7, 305.2)--(311.8, 305.1)--(312.1, 304.9)--(312.4, 304.9)--(312.4, 305.0)--(312.7, 305.1)--(312.8, 305.1)--(312.9, 305.2)--(313.2, 305.2)--(313.4, 305.3)--(313.4, 304.9)--(313.5, 304.5)--(313.6, 304.5)--(313.7, 304.5)--(313.7, 304.2)--(313.8, 303.8)--(313.9, 303.7)--(313.9, 303.6)--(314.5, 303.8)--(315.1, 301.8)--(315.2, 301.5)--(315.2, 301.3)--(315.2, 301.2)--(315.2, 301.0)--(315.1, 300.7)--(315.1, 300.5)--(315.2, 300.0)--(315.3, 299.7)--(314.5, 299.3)--(315.0, 298.4)--(315.5, 298.8)--(315.5, 298.6)--(315.5, 298.5)--(315.5, 298.4)--(315.5, 298.3)--(315.6, 298.2)--(315.2, 297.7)--(315.1, 297.8)--(315.0, 297.7)--(314.3, 296.8)--(314.1, 296.5)--(314.0, 296.3)--(313.5, 294.9)--(313.3, 294.2)--(313.2, 294.1)--(312.7, 292.4)--(312.7, 292.3)--(312.0, 291.9)--(312.3, 291.0)--(312.3, 290.9)--(312.4, 290.8)--(312.5, 290.8)--(312.6, 290.8)--(312.6, 290.7)--(313.4, 290.3)--(315.0, 289.4)--(316.0, 289.0)--(316.3, 288.9)--(316.6, 288.8)--(316.7, 288.6)--(316.7, 288.3)--(316.9, 288.1)--(316.9, 287.9)--(317.1, 287.7)--(317.2, 287.4)--(317.3, 287.0)--(317.3, 287.1)--(317.4, 287.1)--(317.5, 287.0)--(317.7, 286.9)--(317.6, 286.8)--(317.8, 286.5)--(317.7, 286.4)--(317.9, 286.2)--(317.8, 286.1)--(317.7, 285.9)--(317.4, 285.4)--(317.2, 284.9)--(316.8, 284.4)--(316.3, 283.5)--(314.6, 280.5)--(314.3, 280.2)--(314.5, 280.1)--(314.6, 280.0)--(314.7, 279.9)--(314.8, 279.8)--(315.8, 279.2)--(315.7, 278.9)--(315.6, 278.7)--(315.4, 278.2)--(315.2, 277.8)--(315.5, 277.6)--(315.9, 277.4)--(316.4, 277.0)--(316.2, 276.8)--(316.1, 276.7)--(316.4, 276.4)--(316.5, 276.2)--(316.6, 276.1)--(316.7, 276.1)--(316.9, 275.8)--(317.1, 275.5)--(317.1, 275.4)--(317.1, 275.3)--(317.5, 274.8)--(316.9, 274.6)--(316.5, 274.5)--(314.7, 274.1)--(314.6, 274.1)--(314.6, 274.0)--(314.7, 274.0)--(314.8, 273.9)--(314.9, 273.8)--(315.4, 273.5)--(316.5, 272.8)--(317.9, 271.9)--(319.4, 271.1)--(320.5, 270.4)--(320.4, 270.2)--(320.3, 270.1)--(320.2, 269.7)--(320.1, 268.0)--(320.1, 267.7)--(320.1, 267.5)--(320.1, 267.4)--(320.3, 267.1)--(320.7, 266.5)--(320.9, 266.1)--(321.0, 265.6)--(321.1, 265.2)--(321.2, 265.2)--(321.4, 264.9)--(322.6, 263.5)--(323.4, 262.6)--(324.1, 263.0)--(324.3, 263.2)--(324.5, 263.4)--(324.6, 263.5)--(324.7, 263.6)--(324.8, 263.7)--(324.8, 263.8)--(325.0, 264.6)--(325.0, 264.7)--(325.0, 264.8)--(325.1, 264.9)--(325.4, 265.2)--(325.4, 265.1)--(325.5, 263.9)--(325.5, 263.7)--(325.6, 263.0)--(325.7, 262.8)--(325.7, 262.6)--(326.1, 261.8)--(326.9, 260.2)--(327.6, 258.8)--(327.6, 258.7)--(327.7, 258.6)--(327.7, 258.5)--(327.7, 258.4)--(327.7, 258.1)--(327.3, 255.4)--(327.2, 254.9)--(327.0, 254.6)--(326.8, 254.0)--(326.3, 253.0)--(326.2, 252.9)--(326.1, 252.7)--(326.0, 252.5)--(325.9, 252.5)--(325.8, 252.4)--(325.7, 252.2)--(325.4, 251.7)--(325.0, 251.2)--(324.7, 250.8)--(324.6, 250.6)--(324.5, 250.4)--(324.4, 250.2)--(324.4, 250.0)--(324.3, 249.9)--(324.1, 249.3)--(324.0, 249.0)--(323.9, 248.8)--(323.7, 248.5)--(323.4, 248.2)--(323.0, 247.7)--(322.7, 247.4)--(322.6, 247.2)--(322.1, 246.8)--(321.7, 246.5)--(321.1, 245.8)--(320.7, 245.3)--(320.5, 245.1)--(320.4, 245.0)--(320.3, 244.7)--(320.3, 244.6)--(320.4, 244.0)--(320.4, 243.9)--(320.4, 243.8)--(320.4, 243.7)--(320.2, 243.3)--(320.2, 243.2)--(320.1, 243.1)--(320.1, 243.0)--(320.1, 242.8)--(320.2, 242.7)--(320.2, 242.6)--(320.2, 242.5)--(320.3, 242.4)--(320.4, 242.2)--(320.5, 242.0)--(320.6, 241.8)--(320.6, 241.7)--(320.7, 241.6)--(320.7, 241.2)--(320.7, 240.9)--(320.7, 240.8)--(321.0, 240.8)--(321.1, 240.8)--(321.2, 240.8)--(321.3, 240.8)--(321.3, 240.7)--(321.4, 240.7)--(321.4, 240.6)--(321.5, 240.5)--(321.5, 240.3)--(321.6, 240.0)--(321.7, 239.8)--(321.7, 239.6)--(321.7, 239.5)--(321.8, 239.5)--(322.0, 239.1)--(322.4, 238.8)--(322.7, 238.4)--(323.1, 238.0)--(324.0, 236.9)--(324.2, 236.7)--(324.3, 236.4)--(324.7, 235.8)--(324.7, 235.6)--(324.8, 235.5)--(324.8, 235.3)--(324.8, 235.2)--(324.8, 235.1)--(324.8, 234.9)--(324.8, 234.7)--(324.8, 234.6)--(324.9, 234.5)--(324.9, 234.3)--(325.2, 233.2)--(325.5, 232.6)--(325.6, 232.4)--(325.8, 232.2)--(325.9, 232.0)--(326.1, 231.7)--(326.2, 231.4)--(326.3, 231.1)--(326.4, 230.7)--(326.5, 230.4)--(326.7, 229.8)--(326.9, 229.0)--(327.1, 228.5)--(327.1, 228.4)--(327.2, 228.2)--(327.2, 228.1)--(327.3, 228.0)--(327.5, 227.6)--(327.7, 227.1)--(327.9, 226.6)--(328.1, 225.8)--(328.2, 225.6)--(328.3, 225.2)--(328.5, 224.1)--(328.6, 223.3)--(329.0, 221.5)--(329.2, 220.4)--(329.5, 219.0)--(329.8, 218.1)--(329.9, 217.8)--(330.0, 217.7)--(330.1, 217.6)--(330.3, 217.4)--(330.4, 217.3)--(330.7, 217.2)--(331.2, 217.1)--(331.5, 216.9)--(331.6, 216.9)--(331.6, 216.8)--(331.7, 216.8)--(331.7, 216.7)--(331.7, 216.6)--(331.6, 216.5)--(331.6, 216.3)--(331.5, 216.2)--(331.5, 216.1)--(331.6, 216.1)--(331.6, 216.0)--(331.7, 215.9)--(331.8, 215.9)--(332.0, 215.7)--(332.1, 215.6)--(332.2, 215.5)--(332.4, 215.1)--(332.6, 214.6)--(332.8, 214.2)--(333.0, 213.8)--(333.2, 213.4)--(333.3, 213.0)--(333.3, 212.7)--(333.4, 212.4)--(333.4, 212.0)--(333.4, 211.5)--(333.5, 211.2)--(333.5, 210.9)--(333.5, 210.7)--(333.5, 210.8)--(333.9, 210.9)--(334.5, 211.1)--(334.7, 211.2)--(334.7, 211.1)--(335.1, 210.0)--(335.3, 209.5)--(335.4, 209.5)--(335.7, 209.7)--(335.9, 209.7)--(336.0, 209.9)--(336.1, 209.8)--(336.2, 209.6)--(336.3, 209.4)--(336.7, 209.2)--(336.6, 208.8)--(336.5, 208.6)--(336.5, 208.5)--(336.5, 208.4)--(336.6, 208.4)--(337.2, 208.2)--(337.2, 208.1)--(337.1, 208.1)--(337.1, 208.0)--(337.1, 207.8)--(337.1, 207.6)--(337.0, 207.5)--(337.0, 207.3)--(336.9, 207.3)--(336.6, 207.2)--(336.5, 207.2)--(336.2, 207.1)--(336.0, 207.1)--(335.8, 207.1)--(335.6, 207.1)--(334.8, 207.2)--(334.4, 207.2)--(334.0, 207.1)--(333.7, 207.0)--(333.3, 206.9)--(332.5, 206.7)--(332.2, 206.6)--(332.0, 206.5)--(331.8, 206.5)--(331.7, 206.6)--(331.6, 206.6)--(331.4, 206.6)--(331.3, 206.7)--(331.2, 206.8)--(330.6, 207.1)--(330.4, 207.2)--(330.3, 207.2)--(330.1, 207.4)--(329.7, 207.9)--(329.5, 208.2)--(329.3, 208.4)--(329.2, 208.4)--(329.2, 208.5)--(329.1, 208.5)--(329.0, 208.6)--(328.9, 208.6)--(328.4, 208.9)--(328.2, 209.0)--(328.0, 209.2)--(327.8, 209.4)--(327.5, 209.7)--(327.4, 209.9)--(327.1, 210.1)--(326.9, 210.1)--(326.7, 210.2)--(326.6, 210.3)--(326.4, 210.3)--(326.2, 210.3)--(326.1, 210.3)--(325.9, 210.3)--(325.8, 210.3)--(325.6, 210.3)--(324.7, 210.2)--(324.2, 210.1)--(323.9, 210.1)--(323.8, 210.0)--(323.5, 210.0)--(323.3, 210.0)--(323.1, 210.0)--(322.9, 210.0)--(321.9, 210.0)--(321.5, 210.0)--(319.1, 210.0)--(318.8, 210.0)--(318.5, 209.9)--(318.0, 209.9)--(317.9, 209.9)--(317.8, 209.9)--(317.7, 209.9)--(317.5, 209.9)--(317.1, 210.0)--(316.5, 210.2)--(316.0, 210.3)--(315.6, 210.4)--(315.5, 210.5)--(315.3, 210.5)--(315.2, 210.4)--(315.1, 210.4)--(315.0, 210.4)--(314.7, 210.4)--(314.4, 210.4)--(314.0, 210.4)--(313.6, 210.5)--(313.2, 210.5)--(313.1, 210.4)--(313.0, 210.1)--(312.8, 209.9)--(312.4, 209.6)--(312.3, 209.4)--(312.2, 209.2)--(312.2, 209.1)--(312.2, 209.0)--(312.0, 208.7)--(311.9, 208.6)--(311.9, 208.5)--(311.7, 208.2)--(311.4, 207.9)--(311.4, 207.8)--(311.3, 207.7)--(311.2, 207.6)--(311.2, 207.5)--(311.0, 207.3)--(310.9, 207.2)--(310.6, 207.1)--(310.3, 207.0)--(310.2, 206.9)--(309.8, 206.6)--(309.7, 206.6)--(309.5, 206.4)--(309.4, 206.3)--(309.3, 206.2)--(309.0, 206.0)--(308.8, 205.8)--(308.6, 205.6)--(308.3, 205.4)--(308.2, 205.2)--(308.2, 204.9)--(308.2, 204.7)--(308.1, 204.5)--(308.0, 204.3)--(307.9, 204.0)--(307.8, 203.7)--(307.7, 203.6)--(307.7, 203.5)--(307.7, 203.4)--(307.6, 203.4)--(307.6, 203.3)--(307.5, 203.1)--(307.4, 203.0)--(307.4, 202.9)--(307.3, 202.7)--(307.2, 202.5)--(307.1, 202.3)--(307.0, 202.0)--(306.8, 201.8)--(306.7, 201.7)--(306.6, 201.5)--(306.6, 201.4)--(306.6, 201.2)--(306.5, 201.2)--(306.3, 201.2)--(306.2, 201.2)--(306.2, 201.0)--(306.0, 200.8)--(305.8, 200.7)--(305.6, 200.7)--(305.5, 200.7)--(305.4, 200.4)--(305.4, 200.2)--(305.3, 200.0)--(305.2, 199.8)--(305.2, 199.6)--(305.2, 199.5)--(305.2, 199.4)--(305.3, 199.3)--(305.0, 199.2)--(304.5, 198.8)--(304.5, 198.6)--(304.4, 198.5)--(304.2, 198.6)--(304.1, 198.8)--(304.0, 198.8)--(303.8, 198.6)--(303.3, 198.3)--(303.2, 198.3)--(303.0, 198.1)--(303.0, 198.0)--(302.9, 197.7)--(300.0, 198.0)--(299.6, 198.0)--(299.2, 198.2)--(299.0, 198.3)--(299.0, 198.4)--(299.1, 198.6)--(299.0, 198.7)--(298.9, 198.4)--(298.8, 198.3)--(298.8, 198.2)--(298.8, 198.1)--(298.8, 197.8)--(298.8, 197.7)--(298.7, 197.4)--(298.6, 196.5)--(298.4, 196.6)--(298.2, 196.7)--(298.0, 196.7)--(297.9, 196.7)--(297.7, 196.7)--(297.4, 196.8)--(296.9, 197.0)--(296.2, 197.2)--(295.8, 197.3)--(295.7, 197.4)--(295.5, 197.5)--(295.4, 197.5)--(294.9, 197.7)--(294.8, 197.8)--(294.5, 197.9)--(293.7, 198.3)--(293.1, 198.7)--(292.7, 198.9)--(292.6, 199.0)--(292.4, 198.7)--(291.6, 198.1)--(291.4, 198.0)--(291.4, 197.9)--(291.3, 197.9)--(291.2, 197.9)--(291.1, 197.8)--(290.9, 198.0)--(290.7, 198.0)--(290.4, 198.0)--(289.8, 198.0)--(289.3, 198.2)--(288.9, 198.3)--(289.0, 198.5)--(289.2, 198.8)--(289.2, 198.9)--(289.4, 199.1)--(289.5, 199.4)--(289.7, 199.5)--(289.8, 199.6)--(290.0, 199.8)--(290.2, 200.0)--(290.5, 200.3)--(290.8, 200.6)--(291.4, 201.1)--(291.2, 201.4)--(290.9, 201.6)--(291.0, 201.7)--(291.8, 202.6)--(292.3, 203.1)--(292.1, 203.3)--(293.2, 204.6)--(294.0, 205.6)--(294.6, 206.3)--(294.9, 206.6)--(295.3, 207.1)--(295.5, 207.4)--(295.8, 207.7)--(295.4, 208.7)--(295.2, 209.3)--(295.2, 209.4)--(295.0, 210.5)--(295.0, 210.7)--(294.9, 211.5)--(294.9, 211.7)--(294.9, 212.3)--(294.9, 213.2)--(295.0, 214.0)--(295.1, 215.3)--(295.1, 215.7)--(295.1, 216.2)--(295.1, 216.5)--(295.1, 217.1)--(295.1, 217.5)--(295.1, 217.9)--(295.1, 218.0)--(295.1, 218.1)--(295.1, 218.2)--(295.6, 218.1)--(295.9, 218.1)--(296.3, 218.0)--(296.8, 217.9)--(297.1, 217.9)--(297.2, 217.9)--(297.3, 218.0)--(297.2, 218.3)--(297.0, 218.9)--(296.8, 219.8)--(296.6, 220.7)--(296.4, 221.8)--(296.3, 221.9)--(296.2, 221.9)--(296.0, 221.9)--(295.6, 221.8)--(295.4, 221.8)--(295.1, 222.1)--(294.5, 222.9)--(294.2, 223.3)--(294.1, 223.4)--(294.1, 223.6)--(294.0, 223.8)--(294.0, 224.1)--(293.9, 224.5)--(293.8, 225.2)--(293.9, 225.3)--(294.0, 225.6)--(294.2, 225.9)--(294.3, 226.0)--(294.4, 226.1)--(294.5, 226.2)--(294.8, 226.4)--(295.0, 226.5)--(295.2, 226.7)--(295.3, 226.9)--(295.4, 227.1)--(295.5, 227.4)--(295.6, 227.7)--(295.6, 228.0)--(295.6, 228.3)--(295.6, 228.4)--(295.6, 228.5)--(295.5, 228.7)--(295.4, 228.8)--(295.5, 228.8)--(295.5, 228.9)--(295.5, 229.1)--(295.8, 229.0)--(295.9, 229.4)--(296.0, 229.5)--(296.2, 230.0)--(296.4, 230.4)--(296.5, 230.7)--(296.5, 230.9)--(296.4, 230.9)--(296.2, 230.8)--(295.9, 230.7)--(295.5, 230.6)--(295.1, 230.6)--(294.3, 230.5)--(293.1, 230.6)--(292.6, 230.6)--(292.0, 230.6)--(291.8, 230.6)--(291.4, 230.6)--(291.2, 230.6)--(291.0, 231.1)--(290.9, 231.5)--(290.6, 232.2)--(290.5, 232.4)--(290.4, 232.7)--(290.3, 232.9)--(290.2, 233.1)--(290.0, 233.5)--(289.8, 234.0)--(289.7, 234.5)--(289.6, 235.0)--(289.6, 235.1)--(289.7, 235.2)--(289.7, 235.6)--(289.8, 236.2)--(289.8, 236.7)--(289.9, 237.1)--(290.1, 237.7)--(290.2, 238.0)--(290.2, 238.2)--(290.6, 238.6)--(290.9, 238.9)--(291.1, 239.1)--(291.3, 239.5)--(291.4, 239.6)--(291.5, 239.8)--(291.6, 240.1)--(291.7, 240.3)--(291.8, 240.5)--(291.8, 240.8)--(291.2, 240.9)--(290.9, 241.0)--(290.8, 241.0)--(290.2, 241.3)--(288.8, 241.9)--(288.3, 242.1)--(288.0, 242.2)--(288.2, 242.9)--(288.1, 242.9)--(288.0, 242.9)--(287.9, 243.9)--(287.8, 244.9)--(287.7, 245.0)--(287.8, 245.1)--(287.8, 245.3)--(287.7, 246.2)--(287.6, 246.7)--(287.4, 247.6)--(287.4, 247.7)--(287.4, 247.8)--(287.2, 248.4)--(287.0, 249.0)--(286.8, 249.5)--(286.7, 249.7)--(286.7, 250.0)--(286.4, 252.1)--(286.4, 252.2)--(286.3, 252.4)--(286.2, 252.6)--(286.1, 252.8)--(285.9, 253.2)--(285.8, 253.3)--(285.8, 253.4)--(285.7, 253.7)--(285.6, 253.9)--(285.6, 254.1)--(285.4, 254.9)--(285.4, 255.1)--(285.4, 255.4)--(285.2, 257.2)--(285.7, 257.3)--(285.6, 257.7)--(285.6, 258.8)--(285.6, 258.9)--(285.6, 259.2)--(285.8, 259.2)--(286.4, 259.6)--(287.8, 260.6)--(288.6, 261.1)--(290.6, 262.5)--(290.7, 262.5)--(291.0, 262.0)--(291.8, 262.7)--(291.6, 263.0)--(292.2, 263.4)--(292.6, 263.8)--(292.9, 263.5)--(293.0, 263.5)--(293.3, 263.7)--(293.2, 263.8)--(293.1, 263.9)--(293.2, 264.0)--(293.3, 264.1)--(293.4, 264.1)--(293.5, 264.1)--(293.7, 264.2)--(293.7, 264.1)--(293.9, 264.1)--(294.0, 264.2)--(294.2, 264.4)--(294.3, 264.6)--(294.5, 264.9)--(294.9, 265.5)--(295.1, 265.3)--(295.2, 265.2)--(295.3, 265.1)--(295.4, 265.1)--(295.5, 265.1)--(295.6, 265.1)--(295.7, 265.1)--(295.8, 265.1)--(295.9, 265.1)--(296.0, 265.3)--(296.1, 265.4)--(296.2, 265.5)--(296.4, 265.8)--(296.6, 265.9)--(296.6, 266.1)--(296.6, 266.3)--(296.6, 266.4)--(296.6, 266.5)--(296.4, 266.6)--(296.1, 266.8)--(296.3, 267.3)--(296.2, 267.3)--(296.4, 267.6)--(296.5, 267.5)--(296.7, 267.8)--(296.8, 268.0)--(296.8, 268.3)--(296.9, 268.4)--(297.0, 268.4)--(297.0, 268.6)--(297.0, 268.7)--(297.1, 269.0)--(297.3, 269.6)--(297.5, 269.9)--(297.8, 270.6)--(298.0, 271.2)--(298.1, 271.5)--(298.2, 271.5)--(298.2, 271.6)--(298.3, 271.7)--(298.3, 271.8)--(298.4, 272.1)--(298.4, 272.3)--(298.5, 272.4)--(298.6, 272.6)--(298.6, 272.7)--(298.7, 272.8)--(298.9, 273.0)--(298.9, 273.2)--(299.1, 273.5)--(299.2, 273.8)--(299.3, 273.9)--(299.3, 274.0)--(299.4, 274.0)--(299.5, 274.6)--(299.9, 274.8)--(300.1, 274.9)--(300.4, 275.1)--(300.9, 275.4)--(301.2, 275.6)--(301.3, 276.0)--(301.3, 276.5)--(301.4, 277.1)--(301.5, 277.4)--(301.6, 277.7)--(301.9, 278.3)--(301.8, 278.4)--(301.5, 278.5)--(301.0, 278.6)--(300.8, 278.6)--(300.7, 278.6)--(300.5, 278.8)--cycle; +Lewisham = (366.9, 289.6)--(367.0, 289.4)--(367.1, 289.4)--(367.0, 289.3)--(367.0, 289.2)--(367.1, 289.1)--(367.2, 288.9)--(367.3, 288.5)--(367.5, 288.2)--(367.6, 288.0)--(367.9, 287.2)--(368.2, 286.7)--(368.4, 286.3)--(368.4, 286.2)--(368.6, 285.9)--(368.9, 285.5)--(369.1, 285.1)--(369.2, 284.9)--(369.2, 284.8)--(369.3, 284.8)--(369.6, 284.4)--(369.5, 284.3)--(370.0, 283.7)--(370.1, 283.5)--(370.6, 283.1)--(371.0, 282.7)--(371.2, 282.5)--(371.3, 282.4)--(371.6, 282.2)--(371.8, 282.0)--(372.4, 281.5)--(372.3, 281.4)--(372.4, 281.4)--(372.3, 281.1)--(372.2, 280.8)--(372.2, 280.7)--(372.2, 280.4)--(372.1, 280.0)--(372.1, 279.9)--(371.9, 279.0)--(371.9, 278.1)--(371.8, 277.6)--(371.8, 277.5)--(371.7, 277.3)--(371.7, 277.2)--(371.4, 276.9)--(372.6, 276.5)--(373.7, 276.1)--(373.7, 275.5)--(373.8, 274.8)--(374.2, 274.9)--(375.7, 275.2)--(375.6, 275.5)--(375.9, 275.7)--(376.6, 276.1)--(376.8, 276.2)--(376.9, 276.2)--(377.0, 276.3)--(377.2, 276.3)--(377.4, 276.3)--(377.5, 276.1)--(377.9, 275.8)--(377.9, 275.7)--(377.7, 275.6)--(377.7, 275.5)--(376.6, 275.1)--(376.5, 275.1)--(376.5, 275.0)--(376.5, 274.9)--(376.5, 274.7)--(376.4, 274.4)--(376.5, 274.4)--(376.4, 273.4)--(376.4, 273.3)--(376.4, 273.1)--(376.2, 273.1)--(376.1, 273.1)--(376.1, 273.0)--(376.3, 273.0)--(376.4, 273.0)--(376.4, 272.7)--(376.5, 272.7)--(376.5, 272.3)--(376.5, 272.2)--(376.4, 272.2)--(376.1, 272.1)--(376.0, 272.1)--(375.6, 271.7)--(375.5, 271.6)--(375.4, 271.5)--(375.3, 271.3)--(375.4, 271.3)--(375.4, 271.2)--(375.3, 271.2)--(375.3, 271.1)--(375.2, 271.1)--(375.1, 271.1)--(375.0, 271.1)--(374.9, 271.1)--(374.2, 270.7)--(374.2, 270.8)--(374.1, 270.7)--(374.4, 270.6)--(374.5, 270.7)--(374.7, 270.7)--(374.8, 270.8)--(375.0, 270.8)--(375.1, 270.9)--(375.4, 270.9)--(375.5, 270.7)--(375.4, 270.6)--(375.4, 270.5)--(375.3, 270.4)--(375.2, 270.4)--(374.5, 270.3)--(374.4, 270.2)--(374.3, 270.2)--(374.3, 270.1)--(374.1, 270.1)--(374.1, 270.0)--(374.0, 270.0)--(374.0, 269.9)--(374.0, 269.8)--(374.1, 269.4)--(374.1, 269.2)--(374.1, 269.1)--(374.1, 268.9)--(374.3, 268.9)--(374.3, 268.7)--(374.2, 268.6)--(374.4, 268.5)--(374.4, 268.7)--(374.5, 268.7)--(374.6, 268.7)--(374.6, 268.6)--(374.7, 268.6)--(374.8, 268.5)--(374.9, 268.6)--(375.0, 268.5)--(375.1, 268.4)--(375.2, 268.3)--(375.3, 268.3)--(375.4, 268.2)--(375.5, 268.2)--(375.5, 268.1)--(375.6, 268.0)--(375.6, 267.9)--(375.7, 267.7)--(375.9, 267.7)--(376.0, 267.7)--(376.1, 267.6)--(376.1, 267.5)--(376.1, 267.4)--(376.1, 267.3)--(376.1, 267.2)--(376.0, 267.1)--(375.9, 266.9)--(375.9, 266.8)--(375.9, 266.7)--(376.0, 266.6)--(376.1, 266.5)--(376.2, 266.5)--(376.2, 266.4)--(376.6, 266.5)--(376.6, 266.4)--(376.7, 266.3)--(376.8, 265.8)--(376.8, 265.6)--(376.9, 265.5)--(377.0, 265.5)--(377.0, 265.4)--(376.9, 265.4)--(376.9, 265.2)--(377.0, 265.0)--(377.1, 264.9)--(376.9, 264.8)--(376.9, 264.9)--(376.8, 264.8)--(376.7, 264.8)--(376.8, 264.5)--(376.9, 264.3)--(376.8, 264.1)--(377.1, 263.9)--(377.3, 263.8)--(377.5, 263.7)--(377.7, 263.6)--(377.8, 263.6)--(378.0, 263.6)--(378.1, 263.6)--(378.2, 263.5)--(378.2, 263.4)--(378.4, 263.2)--(378.6, 263.4)--(378.7, 263.2)--(378.7, 263.1)--(378.8, 263.0)--(379.1, 262.6)--(379.2, 262.6)--(379.4, 262.4)--(379.4, 262.3)--(379.5, 262.2)--(379.7, 262.1)--(380.0, 262.3)--(380.1, 262.4)--(380.4, 262.6)--(380.8, 262.9)--(381.0, 263.1)--(380.8, 263.6)--(380.6, 263.9)--(380.5, 264.1)--(380.4, 264.3)--(380.3, 264.4)--(380.1, 265.0)--(379.7, 265.8)--(379.5, 266.2)--(379.8, 266.4)--(380.0, 266.4)--(379.9, 266.7)--(380.1, 267.1)--(380.3, 267.3)--(380.5, 267.1)--(380.8, 267.0)--(380.9, 266.9)--(381.1, 266.9)--(381.3, 266.9)--(381.9, 267.0)--(382.9, 267.2)--(383.0, 267.3)--(383.7, 267.4)--(383.8, 267.4)--(384.0, 267.5)--(384.4, 267.5)--(384.9, 267.3)--(385.2, 267.3)--(385.4, 267.3)--(386.1, 267.1)--(387.5, 266.8)--(388.4, 266.7)--(389.0, 266.6)--(389.1, 266.6)--(389.2, 266.6)--(389.4, 266.6)--(389.8, 266.6)--(390.1, 266.6)--(390.3, 266.7)--(390.7, 266.7)--(391.2, 266.8)--(392.0, 267.0)--(392.7, 267.1)--(393.2, 267.3)--(393.8, 267.4)--(395.2, 267.7)--(396.4, 267.9)--(397.1, 268.0)--(398.4, 268.3)--(399.4, 268.5)--(400.0, 268.6)--(400.6, 268.8)--(401.8, 269.0)--(402.5, 269.2)--(402.6, 269.2)--(402.3, 269.0)--(401.5, 268.7)--(401.3, 268.6)--(401.1, 268.5)--(400.4, 268.3)--(400.4, 268.0)--(400.4, 267.7)--(400.5, 267.4)--(400.6, 267.0)--(400.7, 266.6)--(400.8, 266.3)--(401.1, 265.5)--(401.3, 265.1)--(401.4, 265.0)--(401.4, 264.9)--(401.4, 264.8)--(401.5, 264.8)--(401.5, 264.7)--(401.7, 264.5)--(401.7, 264.3)--(401.7, 264.1)--(401.6, 263.9)--(401.5, 263.7)--(401.3, 263.9)--(401.2, 263.9)--(401.1, 264.0)--(400.9, 264.1)--(400.7, 264.2)--(400.5, 264.4)--(400.2, 264.5)--(400.1, 264.5)--(399.9, 264.6)--(399.7, 264.6)--(399.6, 264.6)--(399.5, 264.6)--(399.5, 264.7)--(399.1, 264.6)--(398.9, 264.6)--(399.1, 263.5)--(399.2, 263.1)--(399.2, 262.9)--(399.2, 262.7)--(399.2, 262.6)--(399.2, 262.5)--(399.1, 262.3)--(399.0, 262.2)--(399.0, 262.0)--(399.0, 261.9)--(399.1, 261.8)--(399.2, 261.5)--(399.3, 261.4)--(399.4, 261.3)--(399.3, 261.3)--(399.2, 261.2)--(399.1, 261.2)--(399.1, 261.1)--(398.9, 261.1)--(398.6, 260.9)--(398.4, 260.7)--(398.3, 260.6)--(398.2, 260.6)--(398.1, 260.5)--(397.8, 260.5)--(397.7, 260.4)--(397.5, 260.4)--(397.1, 260.3)--(396.6, 260.1)--(396.6, 259.8)--(396.6, 259.5)--(396.6, 259.3)--(396.5, 259.0)--(396.5, 258.9)--(396.5, 258.8)--(396.6, 258.7)--(396.6, 258.6)--(396.7, 258.2)--(396.7, 258.1)--(396.8, 257.9)--(396.8, 257.7)--(396.9, 257.3)--(397.0, 257.0)--(397.1, 256.7)--(397.1, 256.4)--(397.2, 256.2)--(397.2, 255.9)--(397.2, 255.5)--(397.2, 255.2)--(397.2, 254.9)--(397.2, 254.6)--(397.2, 254.0)--(397.3, 253.4)--(397.3, 253.1)--(397.3, 252.9)--(397.5, 252.6)--(397.6, 252.2)--(397.7, 251.9)--(397.9, 251.5)--(398.0, 251.3)--(398.1, 250.9)--(398.3, 250.5)--(398.4, 250.3)--(398.5, 250.2)--(398.5, 250.1)--(398.5, 250.0)--(398.5, 249.9)--(398.6, 249.8)--(398.8, 249.7)--(399.1, 249.6)--(399.3, 249.4)--(399.6, 249.3)--(399.7, 249.2)--(399.9, 249.1)--(400.3, 249.0)--(400.4, 248.9)--(400.5, 248.9)--(400.8, 248.8)--(401.2, 248.7)--(401.7, 248.6)--(402.7, 248.3)--(402.7, 248.0)--(402.7, 247.9)--(402.7, 247.8)--(402.7, 247.7)--(402.7, 247.6)--(402.7, 247.5)--(402.7, 247.4)--(402.8, 247.3)--(402.8, 247.2)--(402.8, 246.9)--(402.9, 246.7)--(403.0, 246.3)--(403.1, 246.1)--(403.1, 246.0)--(403.2, 246.0)--(403.4, 244.4)--(404.1, 244.6)--(404.2, 244.6)--(404.3, 244.2)--(404.4, 244.0)--(404.4, 243.9)--(404.5, 243.5)--(401.2, 242.9)--(401.1, 243.3)--(401.0, 243.3)--(401.2, 242.6)--(402.7, 242.1)--(403.2, 242.0)--(404.1, 241.9)--(405.0, 241.7)--(405.7, 241.6)--(406.0, 241.6)--(406.1, 241.3)--(406.2, 241.1)--(406.2, 241.0)--(406.3, 240.8)--(406.3, 240.7)--(406.4, 240.6)--(406.5, 240.1)--(406.7, 239.9)--(406.7, 239.6)--(406.6, 239.6)--(405.8, 239.1)--(405.6, 239.0)--(405.6, 237.9)--(405.6, 237.4)--(405.6, 237.2)--(405.8, 236.8)--(405.8, 236.5)--(405.2, 236.3)--(405.6, 235.4)--(405.9, 234.6)--(406.3, 234.5)--(406.8, 234.3)--(407.1, 234.1)--(407.4, 234.0)--(407.8, 233.8)--(407.9, 233.8)--(408.1, 233.7)--(408.3, 233.7)--(408.6, 233.6)--(409.2, 233.5)--(409.5, 233.5)--(409.6, 233.5)--(409.9, 233.4)--(410.3, 233.4)--(410.6, 233.4)--(410.8, 233.5)--(410.9, 233.5)--(411.0, 233.6)--(411.1, 233.6)--(411.4, 233.7)--(411.4, 233.6)--(411.2, 233.4)--(411.2, 233.3)--(411.1, 233.2)--(411.1, 233.0)--(411.0, 232.8)--(410.9, 232.5)--(410.9, 232.2)--(410.9, 232.0)--(411.0, 231.5)--(411.1, 231.1)--(411.1, 230.9)--(411.1, 230.7)--(411.1, 230.4)--(411.0, 230.4)--(409.1, 229.9)--(409.1, 230.0)--(408.3, 229.7)--(408.3, 229.6)--(408.3, 229.4)--(408.4, 229.0)--(408.4, 228.6)--(408.4, 228.4)--(408.5, 228.1)--(408.6, 228.1)--(408.7, 227.3)--(408.7, 227.2)--(408.8, 226.9)--(408.9, 226.9)--(409.0, 227.2)--(409.4, 227.5)--(410.1, 227.9)--(410.3, 227.9)--(410.4, 227.9)--(410.4, 227.8)--(410.6, 227.8)--(411.0, 227.8)--(411.1, 227.8)--(411.1, 227.7)--(411.2, 227.2)--(411.3, 226.7)--(411.3, 226.3)--(411.4, 225.8)--(411.4, 225.5)--(411.3, 225.3)--(411.1, 225.1)--(411.4, 224.8)--(411.8, 224.6)--(412.0, 224.4)--(412.1, 224.2)--(412.2, 224.1)--(412.3, 224.1)--(412.4, 224.0)--(412.9, 223.7)--(413.0, 223.6)--(413.1, 223.5)--(412.8, 223.1)--(412.9, 223.0)--(413.0, 223.2)--(413.1, 223.3)--(413.2, 223.5)--(413.6, 223.3)--(413.7, 223.0)--(413.8, 222.8)--(414.4, 223.2)--(414.7, 222.6)--(415.3, 223.1)--(417.1, 224.3)--(417.4, 224.5)--(417.4, 224.0)--(417.4, 223.9)--(417.4, 223.5)--(417.3, 223.4)--(417.3, 223.3)--(417.3, 223.1)--(417.3, 222.8)--(417.3, 222.6)--(417.4, 222.4)--(417.4, 222.3)--(417.4, 222.1)--(417.5, 222.0)--(417.5, 221.9)--(417.6, 221.5)--(417.6, 221.4)--(417.6, 221.3)--(417.7, 221.1)--(417.7, 220.8)--(417.9, 220.3)--(417.8, 220.2)--(417.9, 219.9)--(418.0, 219.7)--(418.0, 219.5)--(418.0, 218.6)--(417.9, 218.5)--(417.7, 218.3)--(417.7, 218.1)--(418.1, 218.1)--(418.1, 217.7)--(418.2, 217.1)--(418.3, 216.9)--(418.4, 216.9)--(418.4, 216.6)--(418.4, 216.5)--(418.5, 216.5)--(418.6, 216.0)--(418.6, 215.9)--(418.6, 215.8)--(418.6, 215.7)--(418.6, 215.4)--(418.6, 215.0)--(418.6, 214.9)--(418.5, 214.9)--(418.4, 214.9)--(417.6, 213.6)--(416.7, 212.3)--(415.8, 213.1)--(415.6, 213.4)--(415.4, 213.6)--(415.1, 213.9)--(415.0, 214.2)--(414.8, 214.3)--(414.6, 214.5)--(414.4, 214.7)--(414.1, 214.9)--(414.0, 215.0)--(413.8, 215.1)--(413.3, 215.5)--(413.2, 215.7)--(412.9, 215.9)--(412.5, 216.1)--(412.4, 216.2)--(412.3, 216.3)--(412.0, 216.7)--(411.7, 217.0)--(411.2, 217.5)--(410.3, 218.5)--(410.1, 218.6)--(409.5, 219.2)--(409.0, 219.4)--(408.8, 219.2)--(408.4, 218.9)--(408.2, 218.8)--(408.1, 218.7)--(407.9, 218.6)--(407.9, 218.5)--(407.7, 218.4)--(407.5, 218.2)--(407.3, 218.0)--(407.1, 217.8)--(406.9, 217.7)--(406.6, 217.5)--(406.5, 217.4)--(406.4, 217.3)--(406.4, 217.2)--(406.3, 217.2)--(406.1, 217.0)--(406.0, 216.9)--(405.5, 217.0)--(405.3, 217.1)--(405.1, 217.2)--(405.0, 217.1)--(404.5, 217.2)--(404.3, 217.1)--(404.2, 217.0)--(404.0, 217.0)--(403.9, 217.0)--(403.7, 217.0)--(403.5, 216.9)--(403.4, 216.8)--(403.2, 216.6)--(402.6, 216.2)--(402.3, 216.1)--(401.9, 216.1)--(401.6, 216.1)--(401.5, 216.1)--(401.2, 216.1)--(401.4, 215.5)--(401.5, 215.0)--(400.9, 214.9)--(400.8, 214.4)--(400.0, 213.8)--(399.7, 213.7)--(399.6, 213.3)--(399.3, 213.2)--(399.2, 213.0)--(399.0, 212.8)--(398.6, 212.1)--(398.5, 211.9)--(397.7, 212.3)--(397.6, 212.4)--(397.2, 212.5)--(397.0, 211.9)--(396.8, 211.1)--(396.7, 210.6)--(396.4, 210.7)--(396.3, 210.8)--(396.3, 210.6)--(396.3, 210.4)--(396.4, 210.4)--(396.3, 210.1)--(396.0, 210.2)--(395.9, 209.9)--(395.8, 209.8)--(395.8, 209.7)--(395.8, 209.6)--(395.8, 209.4)--(395.7, 209.3)--(395.7, 209.2)--(395.6, 209.0)--(395.5, 208.9)--(395.5, 208.7)--(395.3, 208.3)--(395.5, 208.1)--(395.4, 208.0)--(395.4, 207.9)--(395.5, 207.6)--(395.6, 207.4)--(395.5, 207.3)--(395.3, 207.1)--(394.1, 206.1)--(393.9, 206.3)--(392.9, 207.4)--(392.4, 207.1)--(392.3, 206.9)--(392.1, 206.8)--(392.1, 206.7)--(391.8, 206.5)--(391.6, 206.3)--(391.6, 206.2)--(391.6, 206.1)--(391.6, 206.0)--(391.5, 205.7)--(391.5, 205.1)--(391.5, 205.0)--(391.5, 204.9)--(391.4, 204.8)--(391.1, 204.6)--(391.2, 204.6)--(391.2, 204.4)--(389.4, 204.1)--(389.4, 204.0)--(389.3, 204.0)--(389.3, 203.7)--(389.5, 203.4)--(388.3, 202.8)--(388.3, 202.9)--(388.3, 203.0)--(388.2, 203.0)--(388.2, 203.1)--(388.2, 203.2)--(388.1, 203.3)--(388.0, 203.6)--(387.9, 203.8)--(387.9, 204.2)--(387.6, 204.4)--(387.5, 204.4)--(387.4, 204.4)--(387.2, 204.4)--(387.1, 203.8)--(387.1, 203.5)--(387.1, 203.2)--(387.2, 202.9)--(386.5, 202.7)--(386.4, 202.7)--(386.3, 202.6)--(386.1, 202.6)--(385.9, 202.5)--(385.7, 202.4)--(385.6, 202.3)--(385.5, 202.2)--(385.4, 202.1)--(385.4, 202.0)--(384.5, 201.6)--(383.6, 201.6)--(382.9, 201.6)--(382.4, 201.6)--(381.9, 201.6)--(381.9, 201.8)--(381.8, 201.8)--(381.8, 201.9)--(381.7, 201.9)--(381.8, 203.0)--(381.8, 203.1)--(381.9, 203.1)--(381.9, 203.2)--(381.7, 203.2)--(381.2, 203.2)--(380.8, 203.1)--(380.3, 203.1)--(380.0, 203.1)--(379.7, 203.1)--(379.3, 203.1)--(379.3, 203.9)--(377.7, 204.1)--(377.6, 204.1)--(377.6, 204.2)--(377.5, 204.2)--(377.4, 204.1)--(377.1, 204.1)--(377.1, 204.2)--(377.1, 204.3)--(376.8, 204.5)--(376.6, 204.6)--(376.5, 204.8)--(376.3, 204.9)--(376.6, 205.5)--(376.0, 205.8)--(376.4, 206.2)--(376.6, 206.4)--(376.7, 206.6)--(376.8, 206.8)--(376.9, 207.0)--(376.9, 207.3)--(376.9, 207.8)--(376.9, 207.9)--(376.9, 208.0)--(377.0, 208.1)--(377.0, 208.2)--(377.0, 208.3)--(377.1, 208.4)--(377.2, 208.5)--(377.0, 208.7)--(376.8, 208.8)--(376.6, 209.0)--(376.5, 209.0)--(376.6, 209.1)--(377.0, 209.6)--(376.8, 209.9)--(376.2, 210.4)--(376.1, 210.5)--(376.0, 210.4)--(375.9, 210.3)--(375.8, 210.4)--(375.6, 210.7)--(375.5, 210.9)--(375.5, 211.0)--(375.2, 211.3)--(375.1, 211.5)--(374.9, 211.7)--(374.7, 211.9)--(374.6, 212.0)--(374.3, 212.1)--(374.1, 212.2)--(373.8, 212.3)--(373.7, 212.4)--(373.7, 212.5)--(373.6, 212.5)--(373.6, 212.6)--(373.4, 212.5)--(373.3, 212.6)--(372.9, 212.9)--(372.7, 213.0)--(372.6, 213.1)--(372.4, 213.2)--(372.2, 213.4)--(372.2, 213.5)--(372.1, 213.6)--(372.1, 213.7)--(371.7, 213.9)--(371.0, 214.4)--(370.9, 214.5)--(370.7, 214.5)--(370.5, 214.7)--(370.4, 214.7)--(370.3, 214.7)--(370.2, 214.7)--(369.9, 214.7)--(369.2, 214.5)--(369.3, 214.2)--(369.4, 213.6)--(369.0, 213.6)--(368.5, 213.5)--(368.3, 213.5)--(368.1, 213.5)--(368.1, 213.6)--(367.7, 213.6)--(367.7, 214.0)--(367.5, 213.9)--(367.2, 213.9)--(366.7, 213.9)--(366.5, 213.8)--(366.3, 213.8)--(366.1, 213.8)--(365.4, 213.8)--(365.2, 213.5)--(365.0, 213.1)--(364.9, 212.8)--(364.8, 212.6)--(364.7, 212.7)--(364.4, 212.8)--(364.0, 212.9)--(363.8, 212.9)--(363.7, 212.9)--(363.5, 213.0)--(363.2, 213.0)--(362.9, 212.9)--(362.9, 212.8)--(362.8, 212.7)--(362.5, 212.5)--(362.5, 212.4)--(362.6, 212.2)--(361.7, 211.8)--(361.7, 211.7)--(361.7, 211.9)--(361.6, 211.9)--(361.4, 211.8)--(361.3, 211.7)--(361.1, 211.7)--(361.1, 211.6)--(361.2, 211.4)--(360.7, 211.2)--(359.4, 210.7)--(359.4, 211.0)--(359.6, 211.0)--(359.6, 211.2)--(358.9, 211.2)--(358.7, 211.2)--(358.7, 211.3)--(357.8, 211.2)--(357.7, 211.2)--(357.4, 211.1)--(357.2, 211.1)--(356.9, 211.1)--(356.8, 211.0)--(356.5, 211.0)--(356.4, 210.9)--(356.3, 210.9)--(355.9, 210.8)--(355.6, 210.8)--(355.6, 211.0)--(355.6, 211.3)--(355.5, 212.0)--(355.0, 212.0)--(353.4, 212.1)--(353.4, 211.8)--(353.2, 211.2)--(352.7, 211.3)--(352.7, 211.2)--(352.4, 211.2)--(352.3, 211.2)--(352.2, 211.2)--(352.1, 211.2)--(351.9, 211.2)--(351.4, 211.3)--(351.1, 211.4)--(351.1, 211.5)--(350.9, 211.7)--(350.3, 212.0)--(350.1, 212.1)--(349.9, 212.2)--(349.8, 212.2)--(348.8, 212.8)--(348.7, 212.8)--(348.7, 212.9)--(348.7, 213.0)--(348.8, 213.1)--(348.6, 213.2)--(348.4, 213.4)--(348.3, 213.4)--(348.1, 213.5)--(347.9, 213.6)--(347.9, 213.5)--(347.8, 213.6)--(347.7, 213.6)--(347.4, 213.6)--(347.4, 213.7)--(347.3, 213.7)--(346.7, 213.7)--(346.6, 213.4)--(346.5, 213.4)--(346.4, 213.5)--(346.4, 213.6)--(346.2, 213.6)--(346.1, 213.6)--(345.9, 213.6)--(345.7, 213.7)--(345.5, 213.4)--(345.1, 213.7)--(344.9, 213.7)--(344.6, 213.9)--(344.2, 214.2)--(344.2, 214.3)--(344.0, 214.3)--(343.7, 214.3)--(343.6, 214.2)--(343.6, 213.9)--(343.3, 214.1)--(343.1, 214.2)--(342.6, 214.4)--(342.5, 214.4)--(342.5, 214.5)--(342.4, 214.5)--(342.3, 214.5)--(342.2, 214.6)--(342.1, 214.6)--(342.0, 214.6)--(341.9, 214.6)--(341.8, 214.6)--(341.7, 214.6)--(341.4, 214.6)--(341.2, 214.6)--(341.1, 214.6)--(340.8, 214.6)--(340.6, 214.5)--(340.4, 214.5)--(340.2, 214.5)--(340.1, 214.4)--(340.0, 214.4)--(340.0, 214.5)--(340.0, 214.8)--(339.9, 215.4)--(339.7, 215.9)--(339.6, 216.1)--(339.4, 216.6)--(339.3, 216.9)--(339.2, 217.1)--(339.2, 217.3)--(339.2, 217.8)--(339.2, 218.2)--(339.3, 218.3)--(339.3, 218.4)--(340.1, 220.2)--(340.6, 221.0)--(340.7, 221.2)--(340.8, 221.3)--(340.9, 221.4)--(341.1, 221.5)--(341.5, 221.5)--(341.7, 221.5)--(341.8, 221.5)--(341.9, 221.5)--(342.1, 221.5)--(342.3, 221.5)--(342.5, 221.6)--(342.6, 221.6)--(342.9, 221.7)--(342.9, 221.8)--(343.3, 222.0)--(343.6, 222.1)--(344.1, 222.6)--(344.5, 222.9)--(344.8, 223.2)--(345.2, 223.6)--(345.3, 223.7)--(345.3, 223.8)--(345.4, 223.9)--(345.4, 224.0)--(345.5, 224.1)--(345.6, 224.5)--(345.7, 224.9)--(345.9, 225.4)--(346.1, 225.9)--(346.2, 226.3)--(346.2, 226.4)--(346.3, 226.5)--(346.3, 226.6)--(346.3, 226.7)--(346.4, 226.8)--(346.5, 226.9)--(346.6, 227.0)--(346.9, 227.2)--(347.0, 227.3)--(347.0, 227.4)--(346.9, 227.5)--(346.8, 227.7)--(346.8, 227.8)--(346.8, 228.0)--(346.7, 228.9)--(346.7, 229.5)--(346.5, 230.9)--(346.3, 231.0)--(346.0, 231.1)--(345.8, 231.3)--(346.1, 231.7)--(346.3, 232.1)--(346.4, 232.2)--(346.4, 232.3)--(346.6, 232.8)--(346.6, 233.2)--(346.7, 233.7)--(346.6, 234.6)--(346.6, 235.1)--(346.7, 235.4)--(346.7, 235.9)--(346.8, 236.2)--(346.9, 236.5)--(347.0, 236.9)--(347.1, 237.2)--(347.3, 237.8)--(347.5, 238.0)--(347.6, 238.2)--(347.7, 238.4)--(347.8, 238.7)--(348.1, 239.1)--(348.4, 239.4)--(349.3, 240.1)--(349.7, 240.4)--(350.0, 240.7)--(350.4, 241.2)--(350.7, 241.6)--(351.4, 241.2)--(352.2, 240.7)--(352.7, 240.4)--(353.0, 240.2)--(353.2, 240.0)--(353.2, 239.9)--(353.3, 239.9)--(353.4, 239.9)--(353.5, 239.9)--(353.6, 239.9)--(353.9, 240.0)--(355.3, 240.8)--(356.0, 241.2)--(356.4, 241.4)--(356.6, 241.5)--(356.9, 241.5)--(357.2, 241.5)--(357.5, 241.5)--(358.1, 241.4)--(358.4, 241.4)--(358.7, 241.3)--(358.8, 241.7)--(359.1, 242.2)--(359.3, 242.5)--(359.3, 242.6)--(359.3, 242.8)--(359.4, 242.9)--(359.5, 242.9)--(359.7, 243.4)--(360.2, 244.2)--(360.3, 244.5)--(360.6, 245.0)--(360.8, 245.1)--(361.1, 245.8)--(361.6, 247.1)--(361.5, 247.1)--(361.4, 247.2)--(361.3, 247.3)--(360.9, 247.6)--(360.4, 248.1)--(359.5, 248.8)--(359.3, 248.9)--(358.4, 249.2)--(358.5, 249.4)--(358.7, 250.0)--(358.7, 250.1)--(358.7, 250.2)--(358.8, 250.5)--(359.0, 251.5)--(359.0, 251.6)--(359.0, 251.9)--(359.0, 252.4)--(359.1, 252.9)--(359.1, 253.3)--(359.1, 253.6)--(359.0, 254.1)--(359.0, 254.6)--(358.9, 255.0)--(358.8, 255.5)--(358.7, 255.9)--(358.5, 256.5)--(358.3, 257.0)--(358.2, 257.3)--(358.1, 257.5)--(357.9, 257.7)--(357.8, 257.8)--(357.6, 258.0)--(357.4, 258.1)--(357.2, 258.3)--(357.1, 258.4)--(356.5, 258.8)--(356.8, 259.1)--(356.5, 259.3)--(356.2, 259.4)--(355.9, 259.6)--(355.8, 259.6)--(355.7, 259.6)--(355.6, 259.7)--(355.3, 259.8)--(355.1, 259.8)--(354.9, 259.9)--(355.0, 260.0)--(355.1, 260.0)--(354.8, 260.4)--(354.5, 260.7)--(354.7, 260.8)--(354.8, 260.9)--(354.8, 261.1)--(354.4, 261.8)--(354.3, 262.0)--(354.0, 262.4)--(353.8, 262.7)--(353.9, 262.8)--(354.2, 263.2)--(354.2, 263.3)--(354.1, 263.7)--(354.0, 264.3)--(353.8, 264.9)--(353.4, 266.8)--(353.4, 267.8)--(353.3, 270.6)--(353.3, 272.5)--(352.1, 273.1)--(352.4, 273.8)--(352.3, 273.8)--(352.5, 274.4)--(352.5, 274.5)--(352.6, 274.5)--(352.6, 274.4)--(352.6, 274.6)--(352.7, 274.8)--(352.7, 274.9)--(352.6, 274.9)--(352.6, 275.0)--(352.6, 275.1)--(352.7, 275.0)--(352.7, 275.1)--(352.6, 275.1)--(352.6, 275.2)--(352.7, 275.2)--(352.7, 275.3)--(352.8, 275.5)--(352.8, 275.6)--(352.8, 275.7)--(352.8, 275.8)--(352.9, 275.8)--(352.8, 275.8)--(352.8, 275.9)--(352.9, 276.3)--(352.9, 276.6)--(352.9, 276.9)--(353.0, 277.4)--(353.0, 277.6)--(353.1, 277.6)--(353.1, 277.7)--(353.0, 277.7)--(353.0, 277.8)--(353.0, 277.9)--(352.9, 278.5)--(353.0, 278.5)--(353.0, 278.7)--(352.9, 278.7)--(352.8, 279.5)--(352.9, 279.6)--(352.9, 279.8)--(352.8, 280.1)--(352.8, 280.4)--(352.7, 280.4)--(352.7, 280.5)--(352.6, 280.5)--(352.6, 280.6)--(352.5, 280.8)--(352.4, 281.1)--(352.7, 281.2)--(352.7, 281.3)--(352.8, 281.3)--(352.9, 281.4)--(352.9, 281.5)--(352.9, 281.7)--(352.9, 281.8)--(352.9, 281.9)--(352.9, 282.0)--(352.9, 282.1)--(352.9, 282.2)--(352.8, 282.3)--(352.7, 282.4)--(352.6, 282.4)--(352.6, 282.5)--(352.5, 282.5)--(352.4, 282.7)--(352.4, 282.8)--(352.3, 283.0)--(352.1, 283.5)--(352.9, 283.2)--(353.0, 283.1)--(353.1, 283.3)--(353.2, 283.3)--(353.3, 283.4)--(353.4, 283.4)--(353.6, 283.4)--(353.9, 283.4)--(354.1, 283.4)--(354.3, 283.5)--(354.4, 283.5)--(354.5, 283.6)--(354.6, 283.6)--(354.6, 283.7)--(354.6, 283.8)--(354.8, 284.0)--(354.7, 284.0)--(353.5, 284.9)--(353.8, 285.2)--(354.0, 285.3)--(354.2, 285.4)--(354.6, 285.6)--(355.0, 285.7)--(355.0, 285.8)--(355.2, 285.9)--(355.3, 285.9)--(356.5, 286.3)--(356.4, 286.4)--(357.2, 286.8)--(357.2, 286.5)--(357.2, 286.3)--(357.4, 286.3)--(357.6, 286.2)--(357.7, 286.1)--(357.9, 286.2)--(358.2, 286.3)--(358.2, 286.4)--(358.4, 286.5)--(358.4, 286.4)--(358.6, 286.1)--(359.8, 286.0)--(360.1, 286.0)--(360.2, 286.0)--(360.0, 286.3)--(361.5, 287.2)--(360.9, 288.1)--(361.6, 288.5)--(361.3, 289.1)--(361.3, 289.2)--(361.4, 289.2)--(361.7, 289.3)--(361.8, 289.4)--(361.9, 289.4)--(362.0, 289.4)--(362.1, 289.4)--(362.1, 289.3)--(362.2, 289.3)--(362.3, 289.3)--(362.4, 289.3)--(362.4, 289.2)--(362.5, 289.2)--(362.5, 289.1)--(362.6, 289.1)--(362.7, 289.0)--(362.8, 288.9)--(362.9, 288.8)--(363.0, 288.8)--(363.0, 288.7)--(363.1, 288.7)--(363.1, 288.6)--(363.2, 288.6)--(363.3, 288.6)--(363.4, 288.6)--(363.5, 288.6)--(365.0, 289.1)--(366.3, 289.5)--(366.3, 289.4)--(366.6, 289.4)--(366.8, 289.5)--(366.8, 289.6)--cycle; +Merton = (299.1, 174.2)--(299.0, 174.1)--(298.8, 174.2)--(298.7, 174.2)--(298.6, 174.1)--(298.5, 174.1)--(298.2, 173.9)--(298.0, 173.8)--(297.8, 173.7)--(297.6, 173.6)--(297.4, 173.5)--(297.3, 173.4)--(297.0, 173.4)--(296.9, 173.4)--(296.8, 173.4)--(296.6, 173.3)--(296.5, 173.3)--(295.8, 172.9)--(295.6, 172.9)--(295.4, 172.8)--(295.3, 172.8)--(295.2, 172.8)--(295.0, 172.8)--(294.8, 172.7)--(294.7, 172.7)--(294.4, 172.6)--(293.9, 172.3)--(293.8, 172.3)--(293.7, 172.5)--(293.6, 172.6)--(292.9, 173.4)--(292.1, 173.7)--(290.4, 173.4)--(290.3, 173.3)--(290.2, 173.2)--(290.1, 173.2)--(289.5, 173.1)--(288.0, 172.8)--(287.0, 172.6)--(286.5, 172.5)--(286.5, 172.6)--(286.3, 172.6)--(286.2, 172.5)--(285.3, 172.3)--(284.2, 172.1)--(284.0, 172.1)--(282.9, 171.8)--(282.8, 171.9)--(282.7, 171.9)--(282.6, 171.9)--(282.5, 171.8)--(282.5, 171.7)--(282.4, 171.7)--(282.4, 171.6)--(282.4, 171.4)--(282.3, 171.4)--(282.2, 171.4)--(282.2, 171.5)--(282.1, 171.5)--(281.9, 171.4)--(281.5, 171.1)--(281.2, 171.0)--(281.0, 170.8)--(280.8, 170.5)--(280.6, 170.2)--(280.4, 170.4)--(280.2, 170.5)--(280.0, 170.6)--(279.9, 170.6)--(279.3, 170.6)--(279.3, 170.5)--(279.2, 170.5)--(279.1, 170.5)--(279.0, 170.5)--(278.9, 170.4)--(278.9, 170.5)--(278.8, 170.5)--(278.7, 170.5)--(278.6, 170.5)--(278.5, 170.5)--(278.4, 170.5)--(278.3, 170.5)--(278.2, 170.5)--(278.1, 170.4)--(277.7, 170.4)--(277.6, 170.3)--(277.5, 170.4)--(277.4, 170.7)--(277.3, 170.9)--(277.2, 171.1)--(277.0, 171.3)--(277.0, 171.6)--(276.9, 171.9)--(276.8, 172.0)--(276.8, 172.1)--(276.7, 172.2)--(276.7, 172.3)--(276.6, 172.3)--(276.4, 172.3)--(276.3, 172.4)--(276.1, 172.5)--(275.9, 172.6)--(275.8, 172.8)--(275.6, 173.1)--(275.5, 173.2)--(275.4, 173.4)--(275.1, 173.6)--(275.0, 173.6)--(274.8, 173.7)--(274.3, 174.1)--(274.3, 174.2)--(274.2, 174.4)--(274.1, 174.5)--(274.1, 174.6)--(273.7, 174.9)--(273.5, 175.1)--(273.4, 175.2)--(273.3, 175.3)--(273.2, 175.2)--(273.1, 175.3)--(272.9, 175.3)--(272.7, 175.3)--(272.5, 175.4)--(272.2, 175.4)--(272.1, 175.5)--(271.8, 175.6)--(271.4, 175.8)--(271.2, 176.0)--(270.8, 176.2)--(270.3, 175.6)--(269.7, 174.7)--(268.9, 173.6)--(268.1, 172.5)--(267.9, 172.3)--(267.8, 172.2)--(267.7, 172.0)--(267.4, 171.8)--(267.3, 171.9)--(267.0, 171.6)--(266.4, 171.0)--(265.8, 170.4)--(265.6, 170.2)--(265.5, 170.1)--(265.4, 170.1)--(265.4, 170.0)--(265.2, 170.0)--(264.5, 169.7)--(264.4, 169.6)--(264.2, 169.5)--(263.6, 168.9)--(263.2, 168.6)--(262.5, 168.0)--(261.6, 167.1)--(261.2, 167.5)--(260.8, 167.6)--(260.8, 167.7)--(260.7, 167.8)--(260.6, 167.9)--(260.4, 167.8)--(260.1, 167.9)--(260.2, 168.1)--(260.1, 168.2)--(259.9, 168.4)--(259.8, 168.5)--(259.7, 168.6)--(259.3, 168.9)--(259.1, 168.7)--(258.3, 169.7)--(258.2, 169.7)--(257.9, 169.5)--(257.7, 169.7)--(256.8, 168.9)--(256.7, 168.8)--(256.6, 168.8)--(256.0, 168.5)--(255.9, 168.4)--(255.0, 167.7)--(253.8, 166.8)--(253.3, 166.4)--(253.2, 166.3)--(252.0, 167.7)--(251.0, 168.8)--(250.0, 167.6)--(249.3, 168.0)--(248.9, 168.3)--(248.4, 168.6)--(248.2, 168.8)--(248.1, 168.9)--(248.0, 169.0)--(247.4, 169.4)--(247.3, 169.4)--(247.3, 169.5)--(247.1, 169.5)--(247.0, 169.6)--(246.9, 169.6)--(246.8, 169.7)--(246.6, 169.9)--(246.6, 169.7)--(246.5, 169.7)--(246.4, 169.6)--(246.4, 169.5)--(246.4, 169.4)--(246.3, 169.2)--(246.2, 169.2)--(246.1, 169.1)--(245.9, 168.7)--(245.8, 168.5)--(245.6, 168.2)--(245.4, 167.9)--(245.3, 167.7)--(245.2, 167.5)--(245.1, 167.4)--(245.0, 167.2)--(244.9, 167.0)--(244.7, 166.8)--(244.6, 166.6)--(244.5, 166.5)--(244.4, 166.4)--(244.2, 166.2)--(244.4, 166.1)--(244.5, 166.0)--(244.2, 165.6)--(244.2, 165.7)--(244.1, 165.7)--(243.8, 165.2)--(243.9, 165.2)--(244.0, 165.1)--(243.3, 164.2)--(242.8, 163.5)--(242.5, 163.0)--(242.3, 162.6)--(242.1, 162.4)--(242.0, 162.2)--(241.7, 161.8)--(241.5, 161.5)--(241.4, 161.3)--(241.2, 161.0)--(241.1, 160.9)--(241.0, 160.7)--(240.9, 160.8)--(240.8, 160.8)--(240.6, 161.0)--(240.3, 161.2)--(240.2, 161.3)--(239.9, 161.3)--(239.8, 161.3)--(239.7, 161.4)--(239.6, 161.4)--(239.5, 161.5)--(239.3, 161.5)--(239.0, 161.7)--(238.3, 162.2)--(236.5, 163.4)--(234.3, 164.8)--(233.4, 165.5)--(232.3, 166.6)--(231.9, 167.0)--(231.2, 167.7)--(230.0, 168.7)--(229.8, 168.9)--(230.0, 169.0)--(229.8, 169.4)--(229.8, 169.6)--(229.7, 169.8)--(229.6, 170.0)--(229.6, 170.3)--(229.5, 170.7)--(229.4, 171.2)--(229.4, 171.3)--(229.4, 171.5)--(229.3, 172.0)--(228.1, 171.6)--(227.9, 171.5)--(227.8, 171.5)--(227.2, 171.3)--(226.8, 171.1)--(226.6, 171.0)--(226.5, 171.0)--(226.4, 170.9)--(226.3, 170.8)--(226.1, 170.7)--(225.8, 170.6)--(225.8, 170.5)--(225.8, 170.6)--(225.7, 170.7)--(225.7, 170.8)--(225.6, 171.0)--(225.6, 171.4)--(225.5, 171.7)--(225.5, 171.8)--(225.5, 172.0)--(225.5, 172.2)--(225.4, 172.3)--(225.5, 172.5)--(225.5, 172.6)--(225.4, 172.9)--(225.2, 173.2)--(225.2, 173.3)--(225.1, 173.5)--(225.1, 173.6)--(225.0, 173.6)--(225.0, 173.7)--(224.9, 173.7)--(224.8, 173.7)--(224.9, 173.9)--(224.9, 174.0)--(224.9, 174.1)--(224.8, 174.3)--(224.7, 174.8)--(224.6, 174.9)--(224.5, 175.0)--(224.5, 175.1)--(224.3, 175.6)--(224.2, 175.6)--(224.2, 175.7)--(224.0, 175.8)--(223.9, 175.9)--(223.7, 176.0)--(223.5, 176.0)--(223.2, 176.1)--(223.0, 176.1)--(222.8, 176.1)--(222.7, 176.2)--(222.6, 176.2)--(222.5, 176.3)--(222.2, 176.4)--(222.2, 176.6)--(222.1, 176.8)--(222.0, 177.0)--(221.9, 177.1)--(221.6, 177.4)--(221.6, 177.5)--(221.5, 177.6)--(221.4, 177.7)--(221.4, 177.8)--(221.3, 178.0)--(221.2, 178.1)--(221.1, 178.2)--(221.0, 178.5)--(220.9, 178.6)--(220.9, 178.7)--(220.7, 178.9)--(220.5, 179.1)--(220.2, 179.6)--(220.2, 179.7)--(220.3, 179.9)--(220.4, 180.1)--(220.5, 180.3)--(220.5, 180.4)--(220.6, 180.7)--(220.6, 180.8)--(220.6, 180.9)--(220.6, 181.0)--(220.6, 181.2)--(220.7, 181.3)--(220.7, 181.4)--(220.7, 181.5)--(220.7, 181.7)--(220.7, 182.0)--(220.7, 182.3)--(220.6, 182.5)--(220.5, 182.8)--(220.5, 182.9)--(220.6, 183.0)--(220.6, 183.1)--(220.8, 183.2)--(221.0, 183.5)--(221.0, 183.6)--(221.3, 183.9)--(221.4, 184.1)--(221.5, 184.2)--(221.6, 184.3)--(221.6, 184.2)--(221.7, 184.8)--(221.7, 184.9)--(221.8, 185.4)--(221.8, 185.5)--(221.8, 185.6)--(221.9, 185.9)--(221.9, 186.1)--(221.9, 186.5)--(221.9, 186.6)--(221.9, 187.1)--(221.9, 187.2)--(221.8, 187.3)--(221.8, 187.5)--(221.8, 187.6)--(221.8, 187.7)--(221.7, 188.0)--(221.7, 188.3)--(221.6, 188.4)--(221.5, 188.7)--(221.5, 188.9)--(221.5, 189.0)--(221.5, 189.2)--(221.4, 189.4)--(221.3, 189.6)--(221.3, 189.7)--(221.3, 189.9)--(221.4, 190.1)--(221.4, 190.2)--(221.3, 190.3)--(221.3, 190.4)--(221.1, 190.6)--(221.1, 190.7)--(221.1, 190.8)--(221.0, 190.8)--(220.9, 190.8)--(220.8, 190.8)--(220.7, 190.9)--(220.5, 190.9)--(220.4, 191.0)--(220.3, 191.0)--(220.2, 191.0)--(220.1, 191.1)--(220.1, 191.2)--(220.0, 191.2)--(220.0, 191.3)--(220.0, 191.4)--(220.0, 191.5)--(220.0, 191.6)--(219.9, 191.6)--(219.9, 191.7)--(219.8, 191.8)--(219.8, 192.0)--(219.8, 192.2)--(219.8, 192.4)--(219.9, 192.5)--(220.0, 192.7)--(220.0, 192.8)--(220.1, 192.8)--(220.1, 192.9)--(220.1, 193.0)--(220.0, 193.1)--(219.9, 193.9)--(219.8, 194.0)--(219.2, 195.8)--(218.7, 197.3)--(218.6, 197.7)--(218.4, 198.4)--(218.3, 198.7)--(218.2, 198.8)--(218.2, 198.9)--(218.3, 199.0)--(218.3, 199.1)--(218.2, 199.4)--(218.1, 200.0)--(218.1, 200.2)--(218.0, 200.6)--(218.0, 200.7)--(218.0, 201.2)--(218.0, 201.3)--(218.0, 201.7)--(218.1, 201.9)--(218.1, 202.1)--(218.1, 202.2)--(218.2, 202.4)--(218.1, 202.6)--(218.1, 202.7)--(218.1, 202.9)--(218.0, 203.2)--(217.9, 203.4)--(217.9, 203.5)--(217.7, 203.9)--(217.6, 204.1)--(217.5, 204.3)--(217.5, 204.5)--(217.4, 204.7)--(217.4, 204.9)--(217.4, 205.1)--(217.4, 205.4)--(217.4, 205.6)--(217.3, 205.7)--(217.3, 205.9)--(217.2, 206.2)--(217.1, 206.6)--(217.0, 207.1)--(216.9, 207.1)--(216.9, 207.2)--(216.7, 207.4)--(216.5, 207.6)--(216.5, 207.7)--(216.3, 207.8)--(216.0, 207.8)--(215.8, 207.9)--(215.7, 208.0)--(215.7, 208.2)--(215.7, 208.3)--(215.7, 208.6)--(215.7, 209.0)--(215.7, 209.1)--(215.7, 209.2)--(215.8, 209.4)--(215.9, 209.7)--(215.9, 209.9)--(216.0, 210.0)--(216.0, 210.4)--(216.1, 210.7)--(216.1, 210.9)--(216.1, 211.0)--(216.0, 211.1)--(216.0, 211.2)--(216.0, 211.5)--(215.9, 211.7)--(215.7, 212.0)--(215.5, 212.2)--(215.5, 212.4)--(215.4, 212.7)--(215.3, 212.9)--(215.2, 213.1)--(215.1, 213.4)--(215.0, 213.6)--(214.9, 214.0)--(214.8, 214.2)--(214.7, 214.5)--(214.6, 214.7)--(214.6, 214.8)--(214.6, 214.9)--(214.6, 215.0)--(214.6, 215.1)--(214.7, 215.3)--(214.7, 215.4)--(214.8, 215.7)--(214.9, 215.9)--(215.0, 216.1)--(215.1, 216.3)--(215.2, 216.5)--(215.3, 216.6)--(215.4, 216.7)--(215.5, 216.7)--(215.7, 216.8)--(215.7, 216.9)--(215.8, 217.0)--(216.0, 217.2)--(216.0, 217.3)--(216.2, 217.6)--(216.3, 217.7)--(216.4, 217.8)--(216.6, 218.2)--(216.7, 218.5)--(216.8, 218.5)--(216.9, 218.5)--(217.0, 218.6)--(217.3, 218.7)--(217.7, 218.9)--(218.3, 219.2)--(218.7, 219.3)--(219.2, 219.5)--(219.9, 219.8)--(220.2, 220.0)--(220.9, 220.3)--(221.5, 220.6)--(221.8, 220.7)--(222.1, 220.8)--(222.4, 220.9)--(222.8, 221.1)--(223.2, 221.3)--(223.5, 221.4)--(223.9, 221.6)--(224.0, 221.7)--(224.5, 221.9)--(224.9, 222.1)--(225.4, 222.4)--(226.0, 222.7)--(226.5, 223.0)--(227.0, 223.3)--(227.7, 223.6)--(229.0, 224.3)--(229.7, 224.7)--(230.1, 224.9)--(230.3, 225.0)--(230.5, 225.0)--(230.6, 225.1)--(230.9, 225.1)--(231.2, 225.1)--(231.7, 225.3)--(232.0, 225.3)--(232.9, 225.5)--(233.3, 225.6)--(234.1, 225.7)--(234.3, 225.8)--(234.6, 225.8)--(234.8, 225.7)--(235.0, 225.6)--(235.2, 225.9)--(235.9, 225.8)--(237.4, 225.6)--(237.9, 225.5)--(238.4, 225.6)--(238.7, 225.7)--(239.0, 225.8)--(239.1, 225.8)--(239.2, 225.8)--(239.3, 225.8)--(239.4, 225.8)--(239.5, 225.8)--(239.6, 225.8)--(239.7, 225.8)--(239.8, 225.8)--(239.9, 225.8)--(240.0, 225.8)--(240.0, 225.7)--(240.2, 225.7)--(240.3, 225.6)--(240.6, 225.5)--(240.8, 225.3)--(240.8, 225.2)--(240.9, 225.2)--(240.9, 225.1)--(241.0, 225.1)--(241.0, 225.0)--(241.2, 224.8)--(241.3, 224.8)--(241.6, 224.9)--(242.2, 224.9)--(242.5, 225.0)--(242.9, 225.0)--(243.1, 225.0)--(243.2, 225.0)--(243.4, 225.0)--(243.6, 225.0)--(243.7, 225.0)--(244.0, 225.1)--(244.4, 225.3)--(244.9, 225.4)--(245.2, 225.4)--(245.7, 225.6)--(246.0, 225.6)--(246.3, 225.7)--(246.5, 225.7)--(246.6, 225.7)--(246.9, 225.8)--(247.0, 225.8)--(247.4, 226.0)--(248.0, 226.1)--(248.3, 226.2)--(248.9, 226.4)--(249.1, 226.4)--(249.5, 226.5)--(250.0, 226.6)--(250.1, 226.7)--(250.9, 227.0)--(253.1, 227.6)--(254.0, 228.0)--(254.3, 228.0)--(254.5, 228.2)--(255.7, 228.6)--(255.8, 228.5)--(255.9, 228.5)--(256.6, 228.8)--(257.0, 228.9)--(257.2, 228.9)--(258.7, 229.3)--(258.9, 229.4)--(258.9, 229.3)--(258.9, 229.2)--(258.9, 229.1)--(258.9, 228.9)--(258.9, 228.6)--(259.0, 228.2)--(259.1, 227.8)--(259.0, 227.6)--(259.0, 227.5)--(258.8, 227.1)--(258.8, 227.0)--(258.7, 227.0)--(258.6, 226.8)--(258.6, 226.6)--(258.5, 226.6)--(258.6, 226.5)--(258.8, 226.5)--(259.1, 226.4)--(259.2, 226.2)--(259.3, 226.2)--(259.6, 226.2)--(259.5, 225.7)--(259.5, 225.1)--(259.4, 224.8)--(259.3, 224.0)--(259.2, 223.5)--(259.2, 223.1)--(259.1, 222.5)--(259.0, 222.2)--(258.9, 222.0)--(258.9, 221.8)--(258.7, 221.2)--(258.6, 221.0)--(258.5, 220.9)--(258.5, 220.8)--(258.4, 220.8)--(258.4, 220.7)--(258.3, 220.5)--(258.3, 220.4)--(258.4, 220.3)--(258.4, 220.0)--(258.6, 219.7)--(258.7, 219.5)--(258.8, 219.3)--(258.9, 219.1)--(258.9, 219.0)--(258.9, 218.8)--(259.0, 218.7)--(259.0, 218.6)--(259.2, 218.4)--(259.4, 218.2)--(259.8, 218.4)--(259.7, 218.7)--(260.3, 219.0)--(260.4, 219.0)--(261.0, 219.0)--(261.0, 219.9)--(261.1, 220.0)--(261.6, 220.0)--(261.7, 220.0)--(262.1, 220.2)--(262.4, 219.7)--(262.5, 219.5)--(262.7, 219.2)--(262.9, 219.1)--(263.0, 218.9)--(263.1, 218.7)--(263.1, 218.5)--(263.1, 218.4)--(263.1, 218.3)--(263.1, 218.2)--(263.2, 218.2)--(263.3, 218.1)--(263.3, 217.8)--(263.2, 217.3)--(263.1, 216.2)--(263.1, 215.8)--(263.1, 215.2)--(263.1, 214.1)--(263.3, 213.4)--(263.5, 212.7)--(263.6, 212.5)--(264.1, 211.8)--(265.0, 210.9)--(265.8, 210.7)--(267.0, 210.6)--(267.2, 210.5)--(267.8, 210.4)--(268.1, 210.3)--(268.8, 210.1)--(269.3, 209.9)--(269.4, 209.9)--(269.8, 209.7)--(270.0, 209.6)--(270.1, 209.6)--(270.1, 209.5)--(270.7, 209.2)--(270.8, 209.2)--(270.8, 209.3)--(271.0, 209.2)--(271.4, 209.0)--(271.7, 208.8)--(271.8, 208.7)--(271.9, 208.6)--(272.3, 208.3)--(272.4, 208.2)--(272.6, 208.0)--(272.7, 207.9)--(272.9, 207.8)--(273.6, 207.4)--(274.0, 207.2)--(274.5, 207.0)--(274.5, 206.9)--(275.1, 206.7)--(275.4, 206.6)--(275.5, 206.6)--(275.7, 206.6)--(275.8, 206.5)--(276.1, 206.5)--(276.8, 206.4)--(277.0, 206.3)--(277.0, 206.1)--(276.9, 206.2)--(276.8, 206.1)--(277.2, 206.0)--(277.5, 206.0)--(277.9, 205.9)--(278.5, 205.9)--(279.2, 205.9)--(279.3, 205.9)--(279.5, 206.7)--(279.7, 207.1)--(280.1, 208.1)--(280.1, 208.2)--(280.3, 208.1)--(280.3, 208.2)--(280.4, 208.2)--(280.3, 208.2)--(280.4, 208.5)--(280.3, 208.5)--(280.3, 208.6)--(280.4, 208.6)--(280.4, 209.0)--(280.5, 208.9)--(280.5, 208.8)--(280.5, 208.7)--(280.6, 208.9)--(280.8, 208.8)--(281.2, 208.6)--(281.6, 208.3)--(282.0, 208.0)--(282.5, 207.8)--(283.0, 207.6)--(283.3, 207.5)--(283.6, 207.4)--(285.0, 206.7)--(286.0, 206.2)--(286.4, 206.0)--(286.5, 206.0)--(286.6, 206.1)--(286.8, 206.2)--(287.0, 206.3)--(287.1, 206.3)--(287.2, 206.3)--(287.4, 206.2)--(287.5, 206.2)--(287.7, 206.1)--(287.8, 206.1)--(287.9, 206.0)--(288.3, 205.8)--(288.6, 205.5)--(288.8, 205.3)--(289.0, 205.1)--(289.1, 205.1)--(289.4, 205.1)--(289.5, 205.1)--(289.6, 205.1)--(289.8, 204.9)--(290.0, 204.7)--(290.1, 204.5)--(290.2, 204.5)--(290.2, 204.4)--(290.3, 204.4)--(290.3, 204.3)--(290.4, 204.2)--(290.7, 204.1)--(290.9, 204.0)--(291.1, 203.9)--(291.2, 203.8)--(291.6, 203.9)--(291.7, 204.0)--(291.9, 204.1)--(292.2, 204.2)--(292.4, 204.3)--(292.5, 204.4)--(292.9, 204.7)--(293.1, 204.8)--(293.2, 204.9)--(293.4, 205.0)--(293.5, 205.1)--(293.6, 205.2)--(293.7, 205.3)--(293.8, 205.4)--(294.0, 205.6)--(293.2, 204.6)--(292.1, 203.3)--(292.3, 203.1)--(291.8, 202.6)--(291.0, 201.7)--(290.9, 201.6)--(291.2, 201.4)--(291.4, 201.1)--(290.8, 200.6)--(290.5, 200.3)--(290.2, 200.0)--(290.0, 199.8)--(289.8, 199.6)--(289.7, 199.5)--(289.5, 199.4)--(289.4, 199.1)--(289.2, 198.9)--(289.2, 198.8)--(289.0, 198.5)--(288.9, 198.3)--(289.3, 198.2)--(289.8, 198.0)--(290.4, 198.0)--(290.7, 198.0)--(290.9, 198.0)--(291.1, 197.8)--(291.2, 197.9)--(291.3, 197.9)--(291.4, 197.9)--(291.4, 198.0)--(291.6, 198.1)--(292.4, 198.7)--(292.6, 199.0)--(292.7, 198.9)--(293.1, 198.7)--(293.7, 198.3)--(294.5, 197.9)--(294.8, 197.8)--(294.9, 197.7)--(295.4, 197.5)--(295.5, 197.5)--(295.7, 197.4)--(295.8, 197.3)--(296.2, 197.2)--(296.9, 197.0)--(297.4, 196.8)--(297.7, 196.7)--(297.9, 196.7)--(298.0, 196.7)--(298.2, 196.7)--(298.4, 196.6)--(298.6, 196.5)--(298.7, 197.4)--(298.8, 197.7)--(298.8, 197.8)--(298.8, 198.1)--(298.8, 198.2)--(298.8, 198.3)--(298.9, 198.4)--(299.0, 198.7)--(299.1, 198.6)--(299.0, 198.4)--(299.0, 198.3)--(299.2, 198.2)--(299.6, 198.0)--(300.0, 198.0)--(302.9, 197.7)--(303.0, 198.0)--(303.0, 198.1)--(303.2, 198.1)--(303.1, 197.9)--(303.1, 197.7)--(303.0, 197.5)--(302.9, 196.8)--(302.8, 196.5)--(302.7, 196.5)--(302.7, 196.6)--(302.6, 196.6)--(302.5, 196.5)--(302.4, 196.4)--(302.5, 196.3)--(302.4, 196.2)--(302.3, 195.9)--(302.1, 195.5)--(302.0, 195.3)--(301.9, 195.3)--(301.9, 195.0)--(301.2, 194.9)--(300.9, 194.9)--(300.6, 194.9)--(300.6, 194.6)--(300.1, 194.5)--(300.1, 194.3)--(300.1, 194.2)--(300.2, 194.1)--(300.2, 193.7)--(300.0, 193.7)--(299.8, 193.6)--(300.0, 192.0)--(300.5, 190.3)--(300.6, 190.2)--(300.6, 190.1)--(300.7, 190.1)--(300.7, 189.9)--(300.6, 189.8)--(300.8, 189.0)--(300.8, 188.9)--(300.9, 188.8)--(301.1, 188.5)--(301.2, 188.3)--(301.3, 188.3)--(301.3, 188.2)--(301.4, 188.0)--(301.4, 187.9)--(302.1, 187.3)--(302.3, 187.2)--(302.5, 187.0)--(302.7, 186.8)--(302.8, 186.7)--(302.9, 186.5)--(303.0, 186.4)--(303.1, 186.3)--(303.2, 186.3)--(303.3, 186.0)--(303.4, 185.9)--(303.5, 185.7)--(303.7, 185.3)--(303.9, 185.1)--(304.1, 184.8)--(304.1, 184.7)--(304.2, 184.6)--(304.4, 184.4)--(304.4, 184.3)--(304.5, 184.2)--(304.7, 183.9)--(304.9, 183.6)--(305.0, 183.3)--(305.1, 183.3)--(305.1, 183.2)--(305.0, 183.1)--(305.0, 183.0)--(304.9, 182.6)--(304.8, 182.5)--(305.1, 182.5)--(305.3, 182.4)--(305.5, 182.4)--(305.6, 182.3)--(305.7, 182.2)--(305.8, 182.1)--(305.7, 182.0)--(305.9, 181.8)--(305.8, 181.6)--(305.7, 181.5)--(305.2, 180.9)--(304.4, 179.8)--(304.0, 179.2)--(303.4, 178.5)--(302.9, 178.0)--(302.4, 177.5)--(302.2, 177.3)--(302.3, 177.2)--(302.6, 177.1)--(302.8, 177.1)--(302.9, 177.1)--(302.3, 176.6)--(301.8, 176.3)--(300.6, 175.4)--(299.7, 174.8)--(299.6, 174.7)--(299.4, 174.6)--(299.3, 174.5)--(299.2, 174.4)--cycle; +Newham = (383.0, 323.4)--(382.9, 323.7)--(382.8, 323.8)--(382.8, 324.0)--(382.8, 324.3)--(382.9, 324.6)--(382.9, 325.5)--(383.0, 325.8)--(383.0, 326.0)--(383.1, 326.1)--(383.2, 326.3)--(383.2, 326.4)--(383.2, 326.7)--(383.2, 326.9)--(383.1, 327.1)--(383.0, 327.2)--(382.8, 327.4)--(382.7, 327.6)--(382.6, 327.8)--(382.5, 328.0)--(382.4, 328.3)--(382.3, 328.4)--(382.2, 328.6)--(381.8, 328.8)--(381.4, 329.2)--(381.3, 329.3)--(381.1, 329.5)--(381.1, 329.6)--(381.0, 329.8)--(381.0, 330.0)--(380.9, 330.2)--(380.8, 330.3)--(380.7, 330.4)--(380.6, 330.5)--(380.1, 330.6)--(379.5, 330.6)--(379.2, 330.7)--(378.8, 330.8)--(378.6, 330.9)--(378.5, 331.0)--(378.5, 331.1)--(378.4, 331.2)--(378.4, 331.3)--(378.2, 331.4)--(377.9, 331.6)--(377.5, 331.7)--(376.8, 332.1)--(376.6, 332.2)--(376.3, 332.4)--(376.1, 332.6)--(376.1, 332.7)--(375.9, 333.1)--(375.7, 333.4)--(375.6, 333.6)--(375.6, 333.7)--(375.6, 333.8)--(375.6, 334.0)--(375.7, 334.2)--(375.7, 334.3)--(375.7, 334.4)--(375.7, 334.6)--(375.6, 334.8)--(375.6, 334.9)--(375.4, 335.0)--(375.2, 335.2)--(375.1, 335.4)--(375.0, 335.5)--(375.0, 335.6)--(375.0, 335.8)--(374.9, 336.0)--(374.9, 336.2)--(374.8, 336.4)--(374.7, 336.7)--(374.6, 337.0)--(374.4, 337.2)--(374.3, 337.4)--(374.1, 337.6)--(373.9, 337.7)--(373.8, 337.7)--(373.6, 337.8)--(373.5, 337.9)--(373.4, 338.1)--(373.4, 338.3)--(373.4, 338.5)--(373.3, 338.6)--(373.3, 338.7)--(373.3, 338.8)--(373.4, 339.0)--(373.6, 339.3)--(373.8, 339.5)--(374.0, 339.7)--(374.2, 339.8)--(374.3, 339.9)--(374.4, 339.9)--(374.5, 340.1)--(374.6, 340.1)--(374.7, 340.4)--(374.7, 340.7)--(374.8, 341.1)--(374.9, 341.3)--(375.0, 341.4)--(375.1, 341.6)--(375.3, 341.8)--(375.4, 342.0)--(375.5, 342.1)--(375.6, 342.3)--(375.6, 342.4)--(375.6, 342.6)--(375.6, 343.0)--(375.6, 343.1)--(375.7, 343.2)--(375.8, 343.3)--(376.0, 343.3)--(376.2, 343.4)--(376.3, 343.5)--(376.4, 343.6)--(376.5, 343.8)--(376.5, 344.0)--(376.6, 344.5)--(376.7, 344.7)--(376.7, 344.8)--(376.7, 344.9)--(376.6, 345.2)--(376.5, 345.4)--(376.4, 345.5)--(376.4, 345.6)--(376.4, 345.8)--(376.4, 346.1)--(376.4, 346.4)--(376.3, 346.9)--(376.2, 347.1)--(376.2, 347.5)--(376.2, 347.6)--(376.1, 347.7)--(376.1, 347.9)--(376.1, 348.2)--(376.0, 348.7)--(376.0, 349.0)--(375.8, 349.6)--(375.7, 350.0)--(375.6, 350.5)--(375.6, 350.6)--(375.5, 350.9)--(375.3, 351.4)--(375.1, 352.0)--(375.0, 352.5)--(374.7, 353.2)--(374.6, 353.5)--(374.5, 353.7)--(374.5, 353.9)--(374.5, 354.1)--(374.5, 354.3)--(374.6, 354.4)--(374.6, 354.6)--(374.5, 354.7)--(374.5, 354.9)--(375.1, 354.9)--(375.7, 354.9)--(375.7, 354.8)--(375.8, 354.7)--(375.9, 354.8)--(375.9, 355.0)--(376.7, 355.1)--(377.6, 355.3)--(378.2, 355.5)--(378.4, 355.5)--(378.5, 355.6)--(378.6, 355.6)--(379.4, 355.9)--(379.9, 356.1)--(380.1, 356.2)--(380.2, 356.2)--(380.3, 356.2)--(380.4, 356.2)--(380.5, 356.1)--(380.7, 356.0)--(380.8, 355.9)--(381.0, 355.8)--(381.2, 355.3)--(381.3, 355.2)--(381.3, 355.0)--(381.3, 354.8)--(381.3, 354.6)--(381.3, 354.3)--(381.4, 354.0)--(381.5, 353.7)--(381.6, 353.3)--(381.7, 353.3)--(381.8, 353.3)--(381.9, 353.3)--(382.1, 353.4)--(382.8, 353.7)--(383.3, 353.8)--(383.5, 353.9)--(383.7, 354.0)--(384.1, 354.3)--(385.0, 354.7)--(385.1, 354.5)--(385.8, 354.8)--(386.5, 355.1)--(386.9, 355.3)--(387.0, 355.3)--(387.4, 355.4)--(387.9, 355.5)--(388.5, 355.6)--(389.1, 355.7)--(389.3, 355.8)--(389.8, 355.9)--(389.8, 355.8)--(389.9, 355.7)--(390.1, 355.8)--(390.3, 355.8)--(390.3, 355.7)--(390.3, 355.6)--(391.1, 355.7)--(391.0, 356.0)--(391.2, 356.0)--(391.2, 355.6)--(391.3, 355.7)--(391.6, 355.7)--(391.7, 355.5)--(391.6, 355.3)--(391.6, 355.0)--(391.6, 354.8)--(391.5, 354.6)--(391.5, 354.4)--(391.7, 354.3)--(392.4, 354.6)--(392.9, 354.8)--(393.0, 354.8)--(393.3, 354.9)--(394.2, 355.1)--(394.2, 355.2)--(394.2, 355.3)--(394.3, 355.5)--(394.6, 355.7)--(394.8, 355.9)--(395.1, 356.2)--(394.2, 357.5)--(395.2, 358.6)--(395.6, 358.1)--(397.2, 359.0)--(397.6, 359.3)--(398.4, 358.2)--(398.4, 358.1)--(398.6, 357.8)--(398.8, 357.4)--(399.2, 357.6)--(399.3, 357.4)--(400.0, 357.9)--(400.4, 358.2)--(401.0, 358.4)--(401.0, 358.5)--(401.5, 358.8)--(402.5, 359.4)--(402.2, 359.6)--(402.3, 359.7)--(401.6, 360.9)--(401.7, 360.8)--(402.0, 360.9)--(402.3, 360.9)--(402.6, 360.9)--(402.9, 360.8)--(403.1, 360.8)--(403.1, 361.3)--(403.1, 361.4)--(403.3, 361.5)--(403.5, 361.6)--(403.6, 361.6)--(403.7, 361.5)--(403.8, 361.4)--(403.8, 361.3)--(403.8, 361.2)--(403.8, 360.5)--(403.9, 360.2)--(404.0, 360.1)--(404.6, 360.2)--(405.0, 360.2)--(405.1, 359.3)--(405.1, 358.5)--(406.1, 358.8)--(406.6, 358.9)--(407.1, 358.9)--(407.5, 359.0)--(407.6, 359.0)--(407.8, 358.9)--(408.0, 358.9)--(409.0, 359.1)--(409.6, 359.2)--(409.8, 359.2)--(409.9, 359.2)--(410.4, 359.4)--(410.7, 359.6)--(411.0, 359.7)--(411.1, 359.8)--(411.7, 360.0)--(411.8, 360.0)--(412.0, 360.0)--(412.1, 360.0)--(412.5, 360.0)--(413.3, 360.0)--(413.9, 360.0)--(414.7, 359.9)--(415.3, 359.9)--(416.0, 359.8)--(416.3, 359.8)--(416.5, 359.9)--(416.6, 359.9)--(417.8, 359.9)--(418.9, 359.8)--(419.5, 359.8)--(419.6, 359.8)--(419.6, 359.9)--(419.6, 360.1)--(419.5, 360.3)--(419.3, 360.6)--(419.0, 361.1)--(418.7, 361.5)--(418.6, 361.8)--(418.4, 362.0)--(418.3, 362.3)--(418.3, 362.6)--(418.2, 362.8)--(418.1, 362.9)--(418.0, 363.0)--(417.6, 363.3)--(417.1, 363.7)--(417.2, 363.7)--(417.1, 364.4)--(416.9, 365.2)--(416.6, 366.2)--(416.5, 366.7)--(416.4, 367.1)--(416.6, 367.2)--(416.9, 367.3)--(417.6, 367.7)--(417.7, 367.8)--(418.2, 368.0)--(418.9, 368.4)--(419.4, 368.6)--(419.8, 368.9)--(420.2, 369.0)--(420.6, 369.2)--(421.0, 369.5)--(422.1, 370.0)--(422.2, 369.9)--(422.4, 369.3)--(422.4, 369.2)--(422.6, 368.8)--(422.9, 368.2)--(423.0, 368.1)--(423.2, 368.0)--(423.4, 367.8)--(423.6, 367.7)--(423.7, 367.6)--(423.8, 367.5)--(423.9, 367.5)--(423.9, 367.4)--(424.0, 367.4)--(424.1, 367.4)--(424.2, 367.3)--(424.3, 367.0)--(424.4, 366.9)--(424.4, 366.8)--(424.5, 366.8)--(424.6, 366.7)--(424.7, 366.7)--(424.8, 366.6)--(424.9, 366.5)--(424.9, 366.4)--(424.9, 366.3)--(424.9, 366.2)--(425.0, 366.2)--(425.0, 366.1)--(425.1, 366.0)--(425.1, 365.8)--(425.0, 365.7)--(425.0, 365.6)--(425.0, 365.5)--(425.1, 365.5)--(425.1, 365.4)--(425.1, 365.3)--(425.2, 365.3)--(425.2, 365.2)--(425.3, 365.2)--(425.5, 365.2)--(425.7, 365.1)--(425.8, 365.1)--(425.9, 365.1)--(425.9, 365.0)--(426.0, 365.0)--(426.1, 364.9)--(426.3, 364.7)--(426.5, 364.5)--(426.5, 364.4)--(426.4, 364.4)--(426.4, 364.3)--(426.4, 364.2)--(426.5, 364.1)--(426.6, 364.2)--(426.7, 364.2)--(426.7, 364.3)--(426.8, 364.3)--(426.9, 364.3)--(426.9, 364.2)--(426.9, 364.1)--(426.9, 363.8)--(427.0, 363.6)--(427.1, 363.5)--(427.3, 363.5)--(427.5, 363.4)--(427.6, 363.4)--(427.7, 363.4)--(427.8, 363.4)--(427.9, 363.1)--(427.9, 363.0)--(428.0, 362.9)--(428.1, 362.9)--(428.1, 362.8)--(428.1, 362.7)--(428.2, 362.7)--(428.3, 362.7)--(428.4, 362.6)--(428.4, 362.5)--(428.4, 362.4)--(428.5, 362.3)--(428.6, 362.4)--(428.7, 362.4)--(428.8, 362.4)--(428.8, 362.3)--(428.8, 362.2)--(428.9, 362.1)--(429.1, 361.9)--(429.2, 361.8)--(429.4, 361.9)--(429.7, 362.0)--(429.8, 362.0)--(430.1, 362.1)--(430.7, 362.5)--(431.5, 362.9)--(431.6, 362.7)--(431.9, 362.5)--(432.0, 362.3)--(432.3, 361.9)--(432.4, 361.8)--(432.5, 361.9)--(432.8, 361.5)--(433.0, 361.2)--(433.1, 361.1)--(433.0, 361.0)--(433.3, 360.6)--(433.5, 360.4)--(433.6, 360.2)--(433.7, 360.1)--(433.8, 359.6)--(433.9, 359.0)--(434.0, 358.2)--(434.6, 358.2)--(434.7, 356.9)--(434.8, 356.1)--(434.9, 355.2)--(435.0, 354.8)--(435.1, 354.1)--(435.1, 354.0)--(435.2, 353.5)--(435.2, 353.1)--(435.3, 352.9)--(435.4, 352.4)--(435.4, 352.1)--(435.4, 351.9)--(435.3, 351.8)--(435.4, 351.2)--(435.4, 350.8)--(435.4, 350.4)--(435.4, 350.2)--(435.4, 350.0)--(435.4, 349.4)--(435.3, 349.0)--(435.2, 348.7)--(435.2, 348.6)--(435.2, 348.5)--(435.2, 348.4)--(435.1, 348.1)--(435.0, 347.7)--(434.8, 347.3)--(434.6, 346.7)--(434.5, 346.5)--(434.4, 346.1)--(434.3, 345.6)--(434.3, 345.5)--(434.2, 345.4)--(434.2, 345.3)--(434.2, 345.2)--(434.2, 345.1)--(434.2, 345.0)--(434.2, 344.8)--(434.2, 344.6)--(434.2, 344.3)--(434.2, 344.0)--(434.3, 343.9)--(434.3, 343.8)--(434.3, 343.5)--(434.4, 343.3)--(434.6, 342.9)--(434.7, 342.7)--(434.8, 342.6)--(434.9, 342.3)--(435.1, 341.9)--(435.4, 341.4)--(435.5, 341.1)--(435.6, 341.0)--(435.8, 340.7)--(435.8, 340.6)--(435.4, 340.4)--(435.4, 340.2)--(435.4, 340.0)--(435.4, 339.8)--(435.3, 339.6)--(435.3, 339.5)--(435.2, 339.5)--(435.3, 339.4)--(435.3, 339.5)--(435.4, 339.5)--(435.5, 339.5)--(435.6, 339.5)--(435.7, 339.5)--(435.8, 339.5)--(435.9, 339.5)--(436.1, 339.7)--(436.2, 339.7)--(436.3, 339.6)--(436.3, 339.4)--(436.4, 339.3)--(436.5, 339.1)--(436.8, 338.5)--(436.8, 338.4)--(437.0, 338.1)--(437.6, 336.8)--(437.7, 336.5)--(437.7, 336.4)--(437.9, 336.0)--(437.9, 335.9)--(438.1, 335.9)--(438.1, 335.8)--(438.3, 335.2)--(438.4, 334.6)--(438.5, 334.0)--(438.6, 333.6)--(438.6, 333.2)--(438.7, 332.7)--(438.7, 332.2)--(438.7, 331.9)--(438.8, 331.9)--(438.9, 331.9)--(439.0, 331.9)--(439.1, 332.0)--(439.1, 331.9)--(439.3, 331.9)--(439.6, 331.9)--(439.8, 332.1)--(440.1, 332.1)--(440.4, 332.2)--(440.6, 332.2)--(440.6, 332.1)--(441.2, 332.0)--(441.3, 331.9)--(441.5, 331.9)--(441.9, 331.9)--(442.2, 331.9)--(442.5, 331.7)--(442.8, 331.5)--(442.6, 331.4)--(442.5, 331.3)--(442.4, 331.3)--(442.1, 331.5)--(442.2, 331.4)--(442.4, 331.2)--(442.4, 331.1)--(442.8, 331.0)--(443.0, 331.1)--(443.2, 330.8)--(443.5, 330.6)--(443.6, 330.4)--(443.9, 330.1)--(444.1, 330.0)--(444.2, 330.0)--(444.5, 329.8)--(444.8, 329.8)--(445.1, 329.6)--(445.3, 329.4)--(445.4, 329.4)--(445.7, 329.3)--(446.1, 329.1)--(446.7, 328.6)--(447.1, 328.3)--(447.5, 328.0)--(448.1, 328.0)--(448.3, 328.1)--(448.6, 328.2)--(448.7, 328.3)--(448.9, 328.4)--(449.1, 328.4)--(449.2, 328.4)--(449.2, 328.5)--(449.4, 328.6)--(449.5, 328.7)--(449.6, 328.7)--(449.7, 328.8)--(449.8, 328.8)--(450.0, 328.8)--(450.1, 328.8)--(450.2, 328.8)--(450.3, 328.8)--(450.3, 328.7)--(450.4, 328.7)--(450.4, 328.6)--(450.5, 328.5)--(450.6, 328.3)--(450.7, 328.2)--(450.8, 328.1)--(451.2, 328.0)--(451.3, 328.1)--(451.5, 328.1)--(451.6, 328.2)--(451.7, 328.2)--(451.9, 328.2)--(452.1, 328.2)--(452.2, 328.2)--(452.3, 328.2)--(452.3, 328.1)--(452.4, 328.0)--(452.4, 327.8)--(452.4, 327.6)--(452.4, 327.4)--(452.5, 327.3)--(452.5, 327.0)--(452.4, 326.6)--(452.4, 326.5)--(452.4, 326.4)--(452.3, 326.3)--(452.1, 326.4)--(452.0, 326.3)--(451.7, 326.4)--(451.5, 326.4)--(451.4, 326.4)--(451.5, 326.3)--(451.7, 326.2)--(451.8, 326.2)--(451.9, 326.2)--(451.9, 326.1)--(452.0, 326.0)--(452.1, 326.0)--(452.1, 325.9)--(452.2, 325.8)--(452.3, 325.5)--(452.2, 325.2)--(452.1, 324.9)--(452.2, 324.8)--(453.1, 323.7)--(453.1, 323.5)--(453.2, 323.4)--(453.3, 323.1)--(453.5, 323.0)--(453.7, 322.8)--(453.7, 322.7)--(453.8, 322.7)--(454.0, 322.5)--(454.1, 322.4)--(454.1, 322.3)--(454.1, 322.0)--(453.9, 321.4)--(453.9, 321.2)--(453.9, 321.1)--(453.9, 321.0)--(453.9, 320.9)--(453.9, 320.7)--(453.9, 320.6)--(453.9, 320.0)--(453.9, 319.8)--(453.9, 319.7)--(454.0, 319.4)--(454.1, 319.0)--(454.4, 318.2)--(454.5, 317.9)--(454.6, 317.9)--(454.7, 317.7)--(454.8, 317.6)--(454.8, 317.5)--(454.9, 317.5)--(454.9, 317.4)--(454.9, 317.3)--(455.0, 317.2)--(455.1, 317.1)--(455.2, 317.1)--(455.4, 317.0)--(455.5, 317.0)--(455.7, 316.9)--(455.8, 316.7)--(455.9, 316.6)--(455.8, 316.5)--(455.7, 316.6)--(455.6, 316.7)--(455.5, 316.7)--(455.3, 316.9)--(455.2, 316.9)--(455.2, 317.0)--(455.1, 317.0)--(455.1, 316.9)--(455.0, 316.9)--(454.9, 316.8)--(454.7, 316.6)--(454.6, 316.6)--(454.5, 316.5)--(454.4, 316.5)--(454.3, 316.4)--(454.2, 316.4)--(454.0, 316.4)--(453.2, 316.2)--(452.3, 316.1)--(451.8, 316.0)--(451.7, 316.0)--(451.6, 316.0)--(451.4, 316.0)--(451.6, 315.6)--(451.2, 315.4)--(450.2, 315.0)--(450.0, 314.9)--(449.7, 314.7)--(449.2, 314.4)--(448.8, 314.2)--(448.2, 313.7)--(448.0, 313.6)--(447.6, 313.2)--(447.5, 313.1)--(447.0, 312.6)--(446.7, 312.4)--(446.7, 312.0)--(446.8, 311.8)--(447.0, 311.8)--(446.6, 311.2)--(446.2, 310.6)--(445.8, 310.0)--(445.2, 309.1)--(445.0, 308.9)--(444.7, 308.8)--(444.6, 308.7)--(444.3, 308.1)--(444.0, 307.4)--(443.8, 306.8)--(443.7, 306.6)--(443.6, 306.3)--(443.2, 305.2)--(443.0, 305.1)--(442.9, 305.0)--(442.8, 305.0)--(442.5, 305.0)--(442.5, 304.9)--(442.5, 304.8)--(442.7, 304.7)--(442.8, 304.7)--(443.0, 304.6)--(443.0, 304.5)--(443.0, 304.4)--(442.7, 304.1)--(442.5, 303.6)--(442.3, 303.7)--(442.1, 303.7)--(442.0, 303.6)--(442.1, 303.5)--(442.2, 303.4)--(442.4, 303.3)--(442.2, 303.2)--(442.1, 303.1)--(442.0, 303.1)--(442.0, 303.0)--(441.9, 302.9)--(441.8, 302.8)--(441.8, 302.6)--(441.6, 302.3)--(441.5, 302.1)--(441.4, 301.9)--(441.2, 301.8)--(440.9, 301.8)--(440.8, 301.8)--(440.6, 301.8)--(440.5, 301.7)--(440.5, 301.6)--(440.7, 301.5)--(440.8, 301.4)--(441.0, 301.2)--(441.0, 301.1)--(441.0, 301.0)--(440.9, 300.9)--(440.7, 300.4)--(440.5, 300.0)--(440.4, 299.8)--(440.3, 299.8)--(439.7, 299.5)--(438.6, 298.9)--(438.5, 298.8)--(438.4, 298.8)--(438.4, 298.7)--(438.3, 298.7)--(438.2, 299.0)--(438.1, 298.9)--(438.2, 298.7)--(437.9, 298.6)--(437.9, 298.7)--(437.8, 298.7)--(437.7, 298.7)--(437.8, 298.5)--(437.1, 298.3)--(437.0, 298.5)--(436.8, 298.5)--(436.9, 298.2)--(435.4, 298.0)--(434.3, 297.8)--(433.4, 297.7)--(433.3, 297.7)--(431.8, 297.5)--(431.4, 297.3)--(431.3, 297.3)--(431.1, 297.3)--(431.0, 297.3)--(430.8, 297.3)--(430.6, 297.3)--(430.1, 297.3)--(429.9, 297.3)--(429.7, 297.3)--(429.3, 297.3)--(427.0, 297.8)--(426.2, 298.0)--(425.0, 298.2)--(424.4, 298.3)--(423.5, 298.4)--(422.8, 298.5)--(421.8, 298.6)--(421.4, 298.6)--(421.0, 298.6)--(420.3, 298.7)--(419.8, 298.7)--(419.3, 298.7)--(418.3, 298.7)--(416.3, 298.6)--(415.7, 298.5)--(415.4, 298.5)--(415.2, 298.4)--(414.9, 298.4)--(414.8, 298.3)--(414.7, 298.3)--(414.6, 298.3)--(414.4, 298.3)--(414.1, 298.2)--(413.9, 298.2)--(413.5, 298.1)--(413.5, 298.2)--(413.0, 298.1)--(413.0, 298.0)--(412.4, 297.9)--(411.6, 297.7)--(411.1, 297.6)--(411.2, 297.5)--(411.1, 297.5)--(411.0, 297.5)--(411.0, 297.6)--(410.1, 297.3)--(409.7, 297.2)--(409.2, 297.1)--(408.6, 297.0)--(407.5, 296.9)--(406.6, 296.9)--(406.3, 297.0)--(406.2, 296.5)--(405.7, 296.6)--(405.7, 296.9)--(405.6, 296.9)--(405.6, 297.2)--(404.8, 297.4)--(404.7, 297.2)--(404.6, 297.2)--(404.5, 297.2)--(404.0, 297.4)--(403.5, 297.5)--(403.3, 297.7)--(403.1, 297.7)--(403.0, 297.8)--(403.0, 297.9)--(403.0, 298.0)--(402.9, 297.9)--(402.3, 298.2)--(402.2, 298.4)--(401.9, 298.6)--(401.6, 298.8)--(401.5, 298.9)--(401.1, 299.4)--(400.6, 299.9)--(400.5, 300.0)--(400.3, 300.2)--(400.1, 300.5)--(400.0, 300.7)--(400.0, 301.0)--(399.9, 301.1)--(399.7, 301.0)--(399.2, 301.5)--(399.5, 301.7)--(399.4, 301.8)--(399.2, 301.6)--(399.2, 301.7)--(399.1, 301.8)--(398.7, 302.3)--(398.6, 302.5)--(398.2, 303.1)--(398.3, 303.5)--(398.4, 303.5)--(398.4, 303.6)--(398.3, 303.7)--(398.2, 303.7)--(397.5, 303.9)--(397.4, 304.0)--(396.6, 304.8)--(396.3, 305.1)--(395.9, 305.4)--(396.0, 305.5)--(395.9, 305.7)--(395.8, 305.6)--(395.7, 305.6)--(395.7, 305.7)--(395.6, 305.9)--(395.7, 306.0)--(395.8, 306.4)--(395.9, 306.9)--(396.0, 307.1)--(396.0, 307.2)--(396.2, 307.6)--(396.1, 307.7)--(396.0, 307.9)--(395.9, 308.1)--(395.8, 308.3)--(395.7, 308.4)--(395.6, 308.4)--(395.5, 308.5)--(395.4, 308.6)--(395.3, 308.6)--(394.4, 308.8)--(393.9, 309.0)--(393.8, 309.0)--(393.6, 309.1)--(393.5, 309.1)--(393.5, 309.2)--(393.4, 309.2)--(393.4, 309.3)--(393.4, 309.4)--(393.6, 309.7)--(393.9, 310.3)--(394.0, 310.5)--(394.0, 310.6)--(394.1, 310.7)--(394.2, 311.0)--(394.3, 311.2)--(394.4, 311.3)--(394.4, 311.4)--(394.4, 311.7)--(394.5, 312.1)--(394.5, 312.3)--(394.5, 312.5)--(394.5, 312.6)--(394.5, 312.8)--(394.4, 313.0)--(394.2, 313.5)--(394.0, 313.8)--(393.9, 313.9)--(393.8, 314.0)--(393.7, 314.0)--(393.7, 314.1)--(393.6, 314.1)--(393.4, 314.2)--(393.3, 314.2)--(393.2, 314.3)--(393.2, 314.2)--(392.9, 314.2)--(392.8, 314.1)--(392.7, 314.1)--(392.6, 314.0)--(392.4, 313.8)--(392.0, 313.3)--(391.9, 313.2)--(391.8, 312.9)--(391.7, 312.8)--(391.7, 312.7)--(391.7, 312.3)--(391.7, 311.4)--(391.7, 311.0)--(391.6, 310.9)--(391.6, 310.5)--(391.4, 310.2)--(391.3, 310.2)--(391.3, 310.1)--(390.8, 310.0)--(390.7, 310.1)--(390.7, 310.2)--(390.6, 310.4)--(390.7, 310.5)--(390.7, 310.7)--(390.7, 310.8)--(390.8, 310.9)--(390.9, 311.2)--(391.3, 312.1)--(391.3, 312.3)--(391.4, 312.5)--(391.5, 313.0)--(391.6, 313.5)--(391.7, 313.6)--(391.7, 313.7)--(391.8, 314.1)--(391.9, 314.2)--(391.9, 314.4)--(391.8, 314.5)--(391.8, 314.7)--(391.5, 315.0)--(391.4, 315.2)--(391.2, 315.3)--(390.7, 315.7)--(389.7, 316.3)--(388.8, 316.9)--(388.3, 317.2)--(387.9, 317.6)--(387.5, 317.8)--(387.0, 318.3)--(386.8, 318.5)--(386.7, 318.4)--(386.8, 318.4)--(386.9, 318.3)--(386.9, 318.2)--(387.0, 318.2)--(387.0, 318.1)--(386.9, 318.1)--(386.7, 318.1)--(386.6, 318.1)--(386.5, 318.1)--(386.4, 318.1)--(386.3, 318.0)--(386.0, 317.9)--(385.9, 317.9)--(385.9, 317.8)--(385.8, 317.8)--(385.7, 317.7)--(385.7, 317.6)--(385.6, 317.5)--(385.6, 317.4)--(385.5, 317.1)--(385.4, 316.9)--(385.3, 316.7)--(385.3, 316.6)--(385.2, 316.6)--(385.1, 316.6)--(385.0, 316.7)--(385.0, 316.8)--(384.9, 317.3)--(384.9, 317.4)--(384.8, 317.5)--(384.7, 317.7)--(384.6, 318.0)--(384.5, 318.2)--(384.4, 318.4)--(384.2, 318.7)--(384.0, 318.9)--(383.8, 319.1)--(383.6, 319.3)--(383.2, 319.5)--(382.9, 319.8)--(382.7, 320.0)--(382.6, 320.1)--(382.6, 320.2)--(382.6, 320.5)--(382.6, 320.8)--(382.6, 320.9)--(382.6, 321.1)--(382.7, 321.2)--(382.8, 321.4)--(383.0, 321.9)--(383.2, 322.3)--(383.3, 322.6)--(383.5, 323.2)--(383.5, 323.4)--(383.5, 323.8)--(383.5, 324.2)--(383.5, 324.4)--(383.5, 324.6)--(383.5, 325.0)--(383.6, 325.1)--(383.6, 325.3)--(383.8, 325.6)--(383.9, 326.0)--(383.9, 326.4)--(384.0, 326.5)--(384.0, 326.6)--(385.3, 327.1)--(385.4, 327.2)--(385.5, 327.3)--(385.7, 327.4)--(386.4, 327.7)--(386.8, 327.9)--(386.9, 327.9)--(387.1, 328.0)--(387.1, 328.1)--(387.2, 328.2)--(387.3, 328.4)--(387.5, 328.5)--(387.7, 328.6)--(387.9, 328.7)--(388.5, 329.1)--(388.6, 329.2)--(388.8, 329.4)--(388.8, 329.5)--(388.8, 329.9)--(388.8, 330.0)--(388.9, 330.2)--(388.9, 330.4)--(389.0, 330.6)--(389.0, 330.7)--(389.2, 331.0)--(389.3, 331.1)--(389.4, 331.4)--(389.4, 331.6)--(389.5, 331.7)--(389.3, 331.8)--(389.3, 331.9)--(389.2, 332.1)--(389.1, 332.2)--(389.1, 332.4)--(389.0, 332.5)--(389.0, 332.3)--(388.9, 332.2)--(388.8, 332.1)--(388.8, 332.0)--(388.6, 331.6)--(388.5, 331.2)--(388.3, 330.7)--(388.3, 330.6)--(388.2, 330.5)--(388.2, 330.4)--(388.1, 330.1)--(388.0, 330.0)--(388.0, 329.8)--(387.9, 329.7)--(387.9, 329.4)--(387.8, 329.3)--(387.8, 329.2)--(387.7, 329.1)--(387.7, 329.0)--(387.6, 329.0)--(387.4, 329.0)--(387.4, 328.9)--(387.1, 328.6)--(387.0, 328.4)--(386.9, 328.2)--(386.8, 328.1)--(386.4, 327.9)--(386.3, 327.9)--(386.2, 327.8)--(386.0, 327.8)--(385.9, 327.8)--(385.8, 327.8)--(385.7, 327.8)--(385.7, 328.0)--(385.6, 328.0)--(385.5, 327.8)--(385.5, 327.6)--(385.4, 327.5)--(385.2, 327.4)--(385.2, 327.3)--(385.0, 327.2)--(384.9, 327.2)--(384.7, 327.1)--(384.4, 327.0)--(384.3, 327.0)--(384.2, 327.0)--(384.1, 327.0)--(383.9, 327.1)--(383.8, 327.1)--(383.8, 327.2)--(383.7, 327.4)--(383.7, 327.5)--(383.5, 327.9)--(383.3, 327.9)--(383.2, 328.0)--(383.0, 328.1)--(382.9, 328.0)--(383.0, 327.9)--(383.1, 327.6)--(383.2, 327.5)--(383.3, 327.4)--(383.3, 327.2)--(383.4, 327.2)--(383.6, 326.8)--(383.6, 326.7)--(383.6, 326.6)--(383.6, 326.4)--(383.5, 326.2)--(383.4, 326.0)--(383.2, 325.4)--(383.2, 325.1)--(383.1, 325.1)--(383.1, 324.9)--(383.2, 324.3)--(383.2, 324.0)--(383.2, 323.6)--(383.1, 323.6)--(383.1, 323.7)--(383.0, 323.7)--(383.0, 323.5)--cycle; +Redbridge = (436.0, 348.3)--(435.8, 348.4)--(435.8, 348.5)--(435.2, 348.6)--(435.2, 348.7)--(435.3, 349.0)--(435.4, 349.4)--(435.4, 350.0)--(435.4, 350.2)--(435.4, 350.4)--(435.4, 350.8)--(435.4, 351.2)--(435.3, 351.8)--(435.4, 351.9)--(435.4, 352.1)--(435.4, 352.4)--(435.3, 352.9)--(435.2, 353.1)--(435.2, 353.5)--(435.1, 354.0)--(435.1, 354.1)--(435.0, 354.8)--(434.9, 355.2)--(434.8, 356.1)--(434.7, 356.9)--(434.6, 358.2)--(434.0, 358.2)--(433.9, 359.0)--(433.8, 359.6)--(433.7, 360.1)--(433.6, 360.2)--(433.5, 360.4)--(433.3, 360.6)--(433.0, 361.0)--(433.1, 361.1)--(433.0, 361.2)--(432.8, 361.5)--(432.5, 361.9)--(432.4, 361.8)--(432.3, 361.9)--(432.0, 362.3)--(431.9, 362.5)--(431.6, 362.7)--(431.5, 362.9)--(430.7, 362.5)--(430.1, 362.1)--(429.8, 362.0)--(429.7, 362.0)--(429.4, 361.9)--(429.2, 361.8)--(429.1, 361.9)--(428.9, 362.1)--(428.8, 362.2)--(428.8, 362.3)--(428.8, 362.4)--(428.7, 362.4)--(428.6, 362.4)--(428.5, 362.3)--(428.4, 362.4)--(428.4, 362.5)--(428.4, 362.6)--(428.3, 362.7)--(428.2, 362.7)--(428.1, 362.7)--(428.1, 362.8)--(428.1, 362.9)--(428.0, 362.9)--(427.9, 363.0)--(427.9, 363.1)--(427.8, 363.4)--(427.7, 363.4)--(427.6, 363.4)--(427.5, 363.4)--(427.3, 363.5)--(427.1, 363.5)--(427.0, 363.6)--(426.9, 363.8)--(426.9, 364.1)--(426.9, 364.2)--(426.9, 364.3)--(426.8, 364.3)--(426.7, 364.3)--(426.7, 364.2)--(426.6, 364.2)--(426.5, 364.1)--(426.4, 364.2)--(426.4, 364.3)--(426.4, 364.4)--(426.5, 364.4)--(426.5, 364.5)--(426.3, 364.7)--(426.1, 364.9)--(426.0, 365.0)--(425.9, 365.0)--(425.9, 365.1)--(425.8, 365.1)--(425.7, 365.1)--(425.5, 365.2)--(425.3, 365.2)--(425.2, 365.2)--(425.2, 365.3)--(425.1, 365.3)--(425.1, 365.4)--(425.1, 365.5)--(425.0, 365.5)--(425.0, 365.6)--(425.0, 365.7)--(425.1, 365.8)--(425.1, 366.0)--(425.0, 366.1)--(425.0, 366.2)--(424.9, 366.2)--(424.9, 366.3)--(424.9, 366.4)--(424.9, 366.5)--(424.8, 366.6)--(424.7, 366.7)--(424.6, 366.7)--(424.5, 366.8)--(424.4, 366.8)--(424.4, 366.9)--(424.3, 367.0)--(424.2, 367.3)--(424.1, 367.4)--(424.0, 367.4)--(423.9, 367.4)--(423.9, 367.5)--(423.8, 367.5)--(423.7, 367.6)--(423.6, 367.7)--(423.4, 367.8)--(423.2, 368.0)--(423.0, 368.1)--(422.9, 368.2)--(422.6, 368.8)--(422.4, 369.2)--(422.4, 369.3)--(422.2, 369.9)--(422.1, 370.0)--(421.0, 369.5)--(420.6, 369.2)--(420.2, 369.0)--(419.8, 368.9)--(419.4, 368.6)--(418.9, 368.4)--(418.2, 368.0)--(417.7, 367.8)--(417.6, 367.7)--(416.9, 367.3)--(416.6, 367.2)--(416.4, 367.1)--(416.5, 366.7)--(416.6, 366.2)--(416.9, 365.2)--(417.1, 364.4)--(417.2, 363.7)--(417.1, 363.7)--(417.6, 363.3)--(418.0, 363.0)--(418.1, 362.9)--(418.2, 362.8)--(418.3, 362.6)--(418.3, 362.3)--(418.4, 362.0)--(418.6, 361.8)--(418.7, 361.5)--(419.0, 361.1)--(419.3, 360.6)--(419.5, 360.3)--(419.6, 360.1)--(419.6, 359.9)--(419.6, 359.8)--(419.5, 359.8)--(418.9, 359.8)--(417.8, 359.9)--(416.6, 359.9)--(416.5, 359.9)--(416.3, 359.8)--(416.0, 359.8)--(415.3, 359.9)--(414.7, 359.9)--(413.9, 360.0)--(413.3, 360.0)--(412.5, 360.0)--(412.1, 360.0)--(412.0, 360.0)--(411.8, 360.0)--(411.7, 360.0)--(411.1, 359.8)--(411.0, 359.7)--(410.7, 359.6)--(410.4, 359.4)--(409.9, 359.2)--(409.8, 359.2)--(409.6, 359.2)--(409.0, 359.1)--(408.0, 358.9)--(407.8, 358.9)--(407.6, 359.0)--(407.5, 359.0)--(407.1, 358.9)--(406.6, 358.9)--(406.1, 358.8)--(405.1, 358.5)--(405.1, 359.3)--(405.0, 360.2)--(404.6, 360.2)--(404.0, 360.1)--(403.9, 360.2)--(403.8, 360.5)--(403.8, 361.2)--(403.8, 361.3)--(403.8, 361.4)--(403.7, 361.5)--(403.6, 361.6)--(403.5, 361.6)--(403.3, 361.5)--(403.1, 361.4)--(403.1, 361.3)--(403.1, 360.8)--(402.9, 360.8)--(402.6, 360.9)--(402.3, 360.9)--(402.0, 360.9)--(401.7, 360.8)--(401.6, 360.9)--(401.4, 361.1)--(401.2, 361.4)--(400.6, 362.1)--(400.4, 362.5)--(400.1, 362.8)--(400.0, 362.9)--(399.9, 363.0)--(399.8, 363.1)--(399.7, 363.2)--(399.3, 363.6)--(399.0, 363.8)--(398.9, 363.9)--(398.7, 364.1)--(398.5, 364.2)--(398.3, 364.2)--(398.2, 364.3)--(398.1, 364.3)--(397.8, 364.3)--(397.6, 364.3)--(397.4, 365.3)--(397.2, 366.4)--(397.1, 366.9)--(397.1, 367.4)--(397.1, 368.2)--(397.1, 368.7)--(397.2, 369.1)--(397.2, 369.2)--(397.2, 369.8)--(397.2, 370.1)--(397.2, 370.7)--(397.2, 371.1)--(398.0, 371.2)--(398.6, 371.2)--(399.1, 371.2)--(399.3, 371.2)--(399.5, 371.3)--(399.7, 371.4)--(399.8, 371.5)--(399.9, 371.6)--(400.0, 371.7)--(400.1, 371.8)--(400.2, 371.9)--(400.2, 372.0)--(400.3, 372.1)--(400.3, 372.2)--(400.3, 372.3)--(400.3, 372.4)--(400.4, 372.5)--(400.4, 372.6)--(400.3, 372.7)--(400.3, 372.8)--(400.3, 372.9)--(400.3, 373.0)--(400.0, 373.7)--(399.9, 374.2)--(399.7, 374.9)--(399.5, 375.5)--(399.3, 376.0)--(399.3, 376.1)--(399.3, 376.2)--(399.4, 376.2)--(399.5, 376.2)--(399.6, 376.2)--(399.7, 376.3)--(399.8, 376.2)--(400.0, 376.1)--(400.1, 376.0)--(400.3, 375.9)--(400.3, 376.0)--(400.3, 376.5)--(400.2, 377.1)--(400.1, 378.1)--(400.1, 378.6)--(400.1, 378.7)--(400.0, 378.7)--(399.5, 378.3)--(399.4, 378.5)--(399.3, 378.7)--(399.2, 378.8)--(399.1, 379.0)--(399.0, 379.1)--(398.8, 379.1)--(398.5, 379.3)--(398.4, 379.3)--(398.3, 379.3)--(398.4, 379.5)--(398.6, 380.1)--(398.9, 380.7)--(398.9, 380.8)--(399.0, 381.0)--(399.0, 381.2)--(398.9, 381.6)--(398.9, 382.1)--(398.9, 382.6)--(398.9, 383.3)--(398.9, 384.4)--(398.9, 384.5)--(398.3, 386.3)--(398.1, 386.4)--(397.8, 387.3)--(397.3, 389.1)--(397.4, 389.1)--(397.6, 389.2)--(397.5, 389.4)--(397.4, 389.5)--(397.4, 389.6)--(397.3, 390.0)--(397.4, 390.0)--(397.3, 390.2)--(397.4, 390.5)--(397.4, 390.9)--(397.0, 390.9)--(396.4, 390.9)--(395.9, 391.3)--(395.9, 391.7)--(395.8, 392.2)--(395.7, 393.1)--(395.6, 393.8)--(395.5, 394.9)--(395.4, 395.6)--(395.3, 396.7)--(395.2, 397.1)--(395.2, 397.5)--(395.1, 398.0)--(395.1, 398.6)--(395.0, 399.1)--(395.0, 399.3)--(395.0, 399.6)--(394.9, 399.8)--(394.9, 400.0)--(394.9, 400.1)--(394.9, 400.5)--(394.8, 400.6)--(394.8, 401.2)--(394.8, 401.6)--(394.8, 402.0)--(394.8, 402.1)--(394.9, 402.8)--(394.9, 403.0)--(394.9, 403.1)--(394.9, 403.3)--(394.9, 403.4)--(394.9, 403.6)--(395.0, 404.2)--(395.0, 404.8)--(395.0, 405.4)--(395.0, 405.9)--(395.1, 406.8)--(395.1, 407.6)--(395.1, 408.3)--(395.2, 408.5)--(395.3, 408.9)--(395.4, 409.3)--(395.7, 409.8)--(395.9, 410.4)--(396.4, 411.4)--(397.0, 412.8)--(397.8, 414.8)--(397.9, 415.1)--(398.0, 415.4)--(398.1, 415.4)--(398.4, 415.9)--(398.4, 416.0)--(398.5, 416.1)--(398.4, 416.2)--(398.6, 416.7)--(398.9, 417.4)--(399.1, 418.1)--(399.2, 418.1)--(399.4, 418.0)--(399.5, 418.0)--(399.4, 418.2)--(399.3, 418.5)--(399.2, 418.6)--(399.3, 418.7)--(399.4, 418.7)--(399.4, 418.8)--(399.5, 419.0)--(399.5, 419.1)--(399.5, 419.2)--(399.4, 419.2)--(399.5, 419.4)--(399.6, 419.6)--(399.8, 420.4)--(400.0, 420.3)--(400.0, 420.4)--(400.2, 420.8)--(400.1, 420.9)--(400.3, 421.3)--(400.4, 421.2)--(400.5, 421.5)--(400.6, 421.9)--(400.5, 422.0)--(400.6, 422.2)--(400.6, 422.4)--(400.6, 422.6)--(400.6, 422.7)--(400.6, 422.9)--(400.5, 423.0)--(400.5, 423.1)--(400.5, 423.2)--(400.4, 423.4)--(400.0, 423.8)--(396.9, 428.2)--(396.8, 428.2)--(396.7, 428.3)--(396.6, 428.4)--(396.2, 428.6)--(395.8, 428.7)--(395.0, 429.1)--(392.9, 429.9)--(391.9, 430.4)--(391.8, 430.4)--(391.6, 430.5)--(391.8, 430.6)--(392.1, 430.6)--(392.3, 430.6)--(392.4, 430.6)--(392.4, 430.5)--(392.5, 430.5)--(392.6, 430.5)--(392.6, 430.6)--(392.7, 430.6)--(392.8, 430.5)--(393.0, 430.4)--(393.1, 430.5)--(393.3, 430.5)--(393.5, 430.6)--(393.8, 430.6)--(394.0, 430.6)--(394.3, 430.6)--(395.3, 430.4)--(395.4, 430.4)--(395.5, 430.4)--(395.6, 430.4)--(395.7, 431.0)--(395.8, 431.1)--(395.7, 431.4)--(395.7, 431.6)--(395.6, 431.7)--(395.5, 431.8)--(395.4, 432.0)--(395.5, 432.0)--(395.5, 432.1)--(395.6, 432.1)--(395.7, 432.1)--(395.8, 432.3)--(395.9, 432.4)--(396.0, 432.5)--(396.1, 432.6)--(396.2, 432.6)--(396.3, 432.6)--(396.4, 432.7)--(396.5, 432.7)--(396.6, 432.9)--(396.6, 433.0)--(396.7, 433.0)--(396.8, 433.1)--(396.8, 433.2)--(396.8, 433.3)--(396.7, 433.3)--(396.7, 433.5)--(396.7, 433.6)--(396.8, 433.7)--(397.0, 433.7)--(397.2, 433.8)--(397.2, 433.9)--(397.3, 433.9)--(397.3, 434.0)--(397.3, 434.1)--(397.3, 434.2)--(397.3, 434.3)--(397.4, 434.3)--(397.4, 434.4)--(397.5, 434.4)--(397.5, 434.3)--(397.6, 434.3)--(397.7, 434.3)--(397.9, 434.5)--(398.0, 434.5)--(398.1, 434.6)--(398.1, 434.7)--(398.2, 434.8)--(398.3, 434.9)--(398.3, 435.0)--(398.3, 435.1)--(398.4, 435.2)--(398.5, 435.3)--(398.5, 435.4)--(398.4, 435.4)--(398.4, 435.5)--(398.3, 435.5)--(398.2, 435.6)--(398.3, 435.7)--(398.4, 435.7)--(398.5, 435.7)--(398.6, 435.7)--(398.6, 435.8)--(398.6, 435.9)--(398.5, 435.8)--(398.5, 435.9)--(398.4, 435.9)--(398.4, 436.0)--(398.4, 436.1)--(398.4, 436.2)--(398.3, 436.2)--(398.3, 436.3)--(398.3, 436.4)--(398.5, 436.4)--(398.6, 436.5)--(398.6, 437.0)--(398.6, 437.1)--(398.6, 437.2)--(398.7, 437.2)--(398.6, 437.3)--(398.8, 437.5)--(398.9, 437.7)--(398.8, 437.8)--(398.8, 437.9)--(398.8, 438.0)--(398.8, 438.1)--(398.9, 438.2)--(399.1, 438.3)--(399.1, 438.4)--(399.0, 438.5)--(399.1, 438.5)--(399.2, 438.6)--(399.2, 438.7)--(399.2, 438.9)--(399.3, 438.9)--(399.3, 439.0)--(399.3, 439.1)--(399.1, 439.3)--(399.1, 439.4)--(399.1, 439.5)--(399.3, 439.8)--(399.4, 439.8)--(399.5, 439.8)--(399.5, 439.9)--(399.6, 439.9)--(399.6, 440.0)--(399.5, 440.1)--(399.5, 440.2)--(399.5, 440.3)--(399.5, 440.5)--(399.5, 440.6)--(399.6, 440.8)--(399.6, 440.9)--(399.6, 441.0)--(399.7, 441.0)--(399.8, 441.0)--(399.9, 441.0)--(399.9, 441.1)--(399.9, 441.2)--(399.8, 441.3)--(399.7, 441.4)--(399.7, 441.5)--(399.8, 441.6)--(399.8, 441.7)--(399.9, 441.6)--(400.0, 441.6)--(400.1, 441.6)--(400.1, 441.7)--(400.0, 441.7)--(400.0, 441.8)--(400.2, 441.7)--(400.4, 441.6)--(400.5, 441.5)--(401.2, 441.0)--(401.9, 440.5)--(402.3, 440.2)--(402.6, 440.0)--(403.2, 439.3)--(403.6, 438.9)--(403.7, 438.7)--(403.8, 438.6)--(403.8, 438.5)--(403.9, 438.4)--(404.0, 438.4)--(404.1, 438.3)--(404.3, 438.3)--(404.4, 438.3)--(404.6, 438.2)--(404.7, 438.2)--(404.8, 438.2)--(404.9, 438.1)--(405.1, 437.9)--(405.5, 437.6)--(405.4, 437.1)--(405.7, 437.1)--(405.7, 437.0)--(405.8, 436.8)--(405.8, 436.7)--(405.9, 436.6)--(406.1, 436.4)--(406.7, 436.0)--(406.6, 435.6)--(407.2, 435.4)--(407.4, 435.2)--(407.7, 434.9)--(407.9, 434.8)--(408.0, 434.6)--(408.2, 434.5)--(408.2, 434.4)--(408.3, 434.2)--(409.1, 433.2)--(409.2, 433.0)--(409.2, 432.9)--(409.3, 432.9)--(409.5, 432.6)--(409.5, 432.5)--(410.1, 432.0)--(410.2, 431.8)--(410.5, 431.5)--(410.6, 431.4)--(410.7, 431.2)--(411.0, 430.8)--(411.2, 430.5)--(411.5, 430.3)--(411.5, 430.2)--(411.6, 430.0)--(411.6, 429.7)--(411.7, 429.8)--(412.2, 429.3)--(413.5, 428.1)--(413.4, 428.0)--(413.4, 427.8)--(413.5, 427.7)--(413.6, 427.7)--(413.8, 427.6)--(413.8, 427.5)--(413.9, 427.4)--(414.0, 427.3)--(414.0, 427.5)--(414.1, 427.6)--(414.2, 427.7)--(414.4, 427.9)--(414.6, 428.1)--(414.8, 428.3)--(415.1, 428.4)--(415.3, 428.6)--(415.6, 428.7)--(415.9, 428.8)--(416.3, 428.9)--(416.7, 429.0)--(417.1, 429.2)--(417.6, 429.2)--(417.6, 429.3)--(417.7, 429.3)--(418.2, 429.3)--(418.7, 429.4)--(418.8, 429.5)--(419.6, 429.8)--(420.2, 430.0)--(420.6, 430.1)--(421.1, 430.3)--(421.8, 430.5)--(422.3, 430.6)--(422.5, 430.6)--(422.5, 430.5)--(422.6, 430.5)--(422.8, 430.5)--(423.0, 430.1)--(423.2, 429.9)--(423.2, 429.8)--(423.3, 429.7)--(423.3, 429.6)--(423.2, 429.5)--(423.2, 429.4)--(423.1, 429.3)--(423.1, 429.2)--(423.1, 429.1)--(423.1, 429.0)--(423.2, 429.0)--(423.2, 428.9)--(423.2, 428.8)--(423.1, 428.7)--(422.8, 428.5)--(422.8, 428.4)--(422.7, 428.4)--(422.7, 428.3)--(422.6, 428.3)--(422.5, 428.3)--(422.4, 428.3)--(422.3, 428.4)--(422.3, 428.5)--(422.2, 428.6)--(422.1, 428.7)--(422.0, 428.7)--(421.9, 428.8)--(421.7, 428.8)--(421.6, 428.8)--(421.5, 428.8)--(421.4, 428.8)--(421.3, 428.7)--(421.3, 428.6)--(421.2, 428.6)--(420.8, 428.5)--(420.6, 428.4)--(420.4, 428.3)--(420.3, 428.3)--(420.3, 428.2)--(420.2, 428.1)--(420.2, 427.9)--(420.1, 427.8)--(420.1, 427.7)--(420.0, 427.6)--(419.9, 427.5)--(419.8, 427.5)--(419.6, 427.4)--(419.6, 427.3)--(419.5, 427.2)--(419.4, 427.2)--(419.4, 427.1)--(419.2, 426.7)--(419.2, 426.5)--(419.2, 426.4)--(419.1, 426.3)--(419.1, 426.2)--(419.1, 426.1)--(419.2, 425.9)--(419.3, 425.8)--(419.3, 425.7)--(419.3, 425.6)--(419.3, 425.5)--(419.2, 425.5)--(419.1, 425.3)--(419.1, 425.2)--(419.0, 425.2)--(419.0, 425.1)--(419.0, 425.0)--(419.0, 424.9)--(419.1, 424.8)--(419.1, 424.7)--(419.3, 424.9)--(419.4, 425.1)--(419.4, 425.2)--(419.5, 425.2)--(419.6, 425.1)--(419.7, 425.1)--(420.4, 424.7)--(421.0, 424.3)--(421.5, 423.9)--(421.7, 423.8)--(422.2, 423.5)--(422.4, 423.4)--(422.6, 423.2)--(422.8, 423.0)--(423.2, 422.7)--(424.6, 421.6)--(424.9, 421.4)--(425.6, 421.0)--(426.3, 420.5)--(426.9, 420.1)--(427.4, 419.8)--(427.9, 419.5)--(428.2, 419.2)--(428.2, 419.1)--(428.6, 418.8)--(428.7, 418.8)--(428.9, 418.6)--(429.2, 418.2)--(429.4, 418.2)--(429.6, 418.0)--(429.8, 418.3)--(430.2, 418.4)--(430.7, 418.1)--(431.2, 417.8)--(431.3, 417.7)--(431.6, 417.4)--(432.1, 417.3)--(432.6, 417.2)--(432.8, 417.2)--(433.1, 417.1)--(433.7, 416.8)--(434.1, 416.6)--(434.7, 416.3)--(435.2, 416.2)--(435.6, 416.0)--(436.0, 415.9)--(436.4, 415.7)--(436.9, 416.0)--(437.1, 416.2)--(438.0, 416.8)--(438.8, 417.4)--(439.2, 417.7)--(439.9, 418.1)--(440.5, 418.4)--(440.6, 418.5)--(440.7, 418.5)--(440.9, 418.5)--(441.0, 418.5)--(441.3, 418.4)--(441.7, 418.4)--(442.0, 418.3)--(442.4, 418.2)--(442.7, 418.1)--(443.3, 417.9)--(443.6, 417.9)--(443.7, 417.9)--(444.0, 417.9)--(444.4, 417.8)--(444.7, 417.6)--(445.0, 417.3)--(445.2, 417.1)--(445.2, 416.9)--(445.3, 417.0)--(445.9, 416.2)--(446.0, 416.0)--(446.1, 416.0)--(446.2, 416.0)--(446.2, 415.9)--(446.3, 415.8)--(447.6, 416.2)--(447.6, 416.6)--(447.9, 416.8)--(448.0, 417.0)--(448.3, 417.1)--(448.5, 417.2)--(448.5, 417.1)--(448.6, 417.2)--(449.3, 417.5)--(449.9, 417.7)--(450.0, 417.8)--(450.1, 417.8)--(450.0, 417.9)--(449.4, 419.2)--(449.5, 420.0)--(450.0, 421.5)--(450.7, 421.8)--(450.9, 421.9)--(451.0, 422.1)--(451.0, 422.3)--(451.1, 422.5)--(451.1, 422.7)--(451.1, 422.8)--(451.4, 422.9)--(451.5, 422.9)--(451.5, 423.0)--(451.4, 423.1)--(451.3, 423.4)--(451.1, 423.7)--(450.9, 424.3)--(450.6, 424.7)--(450.6, 424.8)--(450.5, 424.9)--(450.4, 425.1)--(450.0, 425.6)--(449.6, 426.0)--(450.0, 426.2)--(450.5, 426.5)--(451.4, 427.0)--(452.2, 427.4)--(452.5, 427.6)--(452.9, 427.7)--(453.1, 427.8)--(453.3, 427.9)--(453.6, 428.2)--(454.6, 426.2)--(455.1, 425.2)--(456.1, 425.6)--(457.3, 426.1)--(457.6, 425.1)--(457.8, 425.2)--(458.4, 425.4)--(458.8, 425.6)--(459.1, 425.7)--(459.9, 426.0)--(460.3, 426.2)--(461.6, 426.8)--(461.8, 426.9)--(464.2, 428.6)--(465.8, 429.7)--(466.4, 430.2)--(467.8, 428.5)--(468.3, 428.5)--(468.7, 428.8)--(469.0, 429.0)--(469.3, 429.3)--(469.4, 429.4)--(469.5, 429.5)--(469.7, 429.6)--(470.1, 429.9)--(470.2, 430.0)--(470.3, 430.0)--(470.5, 430.1)--(471.0, 430.6)--(471.1, 430.6)--(471.4, 430.8)--(471.6, 431.0)--(471.6, 431.1)--(471.7, 431.2)--(472.0, 431.6)--(472.1, 431.8)--(472.1, 431.9)--(472.2, 432.4)--(472.3, 432.7)--(472.6, 433.0)--(472.8, 433.4)--(473.3, 433.7)--(473.5, 433.7)--(473.5, 433.8)--(473.6, 433.9)--(473.7, 433.9)--(473.8, 434.0)--(473.9, 434.0)--(474.1, 434.1)--(474.2, 434.2)--(474.3, 434.3)--(474.4, 434.5)--(474.5, 434.5)--(474.7, 434.7)--(474.9, 435.5)--(475.6, 435.7)--(475.9, 435.8)--(476.2, 436.0)--(476.3, 436.1)--(477.0, 436.4)--(477.1, 436.5)--(477.3, 436.7)--(477.6, 436.9)--(478.3, 437.5)--(479.2, 437.9)--(479.4, 438.0)--(479.6, 438.0)--(479.7, 438.0)--(480.5, 438.0)--(480.5, 438.1)--(480.6, 438.1)--(480.7, 438.1)--(480.7, 438.0)--(480.9, 438.0)--(481.1, 438.0)--(481.8, 436.7)--(482.5, 435.6)--(482.6, 435.4)--(482.8, 435.2)--(482.9, 435.1)--(483.0, 435.0)--(483.0, 434.9)--(483.1, 434.8)--(483.8, 433.6)--(483.9, 433.4)--(484.0, 433.3)--(484.2, 433.0)--(484.3, 432.8)--(484.5, 432.5)--(484.7, 432.2)--(484.7, 432.1)--(484.8, 432.0)--(484.9, 431.8)--(485.1, 431.3)--(485.3, 431.1)--(485.3, 430.9)--(485.5, 430.8)--(485.6, 430.7)--(485.7, 430.5)--(485.8, 430.0)--(485.9, 429.8)--(486.0, 429.6)--(486.1, 429.3)--(486.1, 429.0)--(486.2, 428.9)--(486.2, 428.8)--(486.3, 428.8)--(486.3, 428.7)--(486.3, 428.6)--(486.3, 428.4)--(486.4, 428.3)--(486.4, 428.2)--(486.5, 428.1)--(486.6, 427.9)--(486.7, 427.8)--(486.8, 427.7)--(486.9, 427.6)--(487.1, 427.3)--(487.2, 427.1)--(487.4, 426.8)--(487.5, 426.6)--(487.7, 426.2)--(487.8, 426.0)--(487.8, 425.9)--(487.9, 425.8)--(488.0, 425.5)--(488.1, 424.8)--(488.1, 424.4)--(488.2, 423.9)--(488.3, 423.6)--(488.3, 423.3)--(488.4, 423.0)--(488.5, 422.9)--(488.6, 422.5)--(488.7, 422.2)--(488.8, 422.0)--(488.8, 421.7)--(488.9, 421.5)--(488.9, 421.3)--(488.9, 421.2)--(488.9, 420.9)--(488.9, 420.7)--(488.9, 420.4)--(488.9, 420.2)--(488.9, 419.9)--(488.9, 419.3)--(488.8, 419.0)--(488.8, 418.8)--(488.8, 418.6)--(488.8, 418.4)--(488.9, 417.8)--(488.9, 417.5)--(488.9, 417.4)--(488.9, 417.0)--(488.9, 416.9)--(489.0, 416.7)--(489.1, 416.3)--(489.1, 416.2)--(489.2, 416.0)--(489.2, 415.9)--(489.3, 415.8)--(489.4, 415.6)--(489.6, 415.3)--(489.3, 414.0)--(489.3, 413.9)--(489.3, 413.8)--(489.3, 413.7)--(489.3, 413.5)--(489.2, 413.3)--(489.2, 413.2)--(489.1, 412.3)--(488.9, 411.3)--(488.8, 411.0)--(488.8, 410.9)--(488.7, 410.9)--(488.4, 411.1)--(487.7, 411.4)--(487.0, 410.7)--(485.2, 408.7)--(484.6, 408.1)--(484.5, 408.1)--(484.1, 407.6)--(483.6, 407.1)--(482.5, 405.9)--(481.7, 405.1)--(481.6, 405.0)--(481.5, 405.0)--(481.5, 404.9)--(481.1, 404.6)--(480.4, 404.0)--(478.7, 402.6)--(477.9, 402.0)--(476.9, 401.1)--(476.2, 400.6)--(476.3, 400.1)--(476.4, 399.8)--(476.6, 399.4)--(476.7, 399.1)--(476.9, 398.7)--(477.0, 398.4)--(477.3, 397.8)--(476.7, 397.6)--(476.5, 397.6)--(476.4, 397.5)--(476.2, 397.5)--(475.6, 397.3)--(474.2, 396.9)--(474.1, 396.8)--(474.9, 394.3)--(474.8, 393.7)--(475.1, 393.7)--(475.4, 392.7)--(475.4, 392.6)--(475.4, 392.0)--(475.3, 391.9)--(475.2, 391.8)--(475.2, 391.5)--(475.2, 391.2)--(476.2, 391.1)--(478.0, 391.0)--(478.3, 390.9)--(478.5, 390.9)--(478.6, 390.9)--(478.7, 390.7)--(478.8, 390.5)--(478.8, 390.4)--(478.9, 390.2)--(479.0, 390.2)--(479.1, 390.0)--(479.2, 389.7)--(479.3, 389.5)--(477.4, 388.7)--(477.3, 388.4)--(477.4, 388.4)--(477.5, 388.4)--(477.6, 388.0)--(477.6, 387.9)--(477.6, 387.6)--(477.7, 387.3)--(477.8, 387.0)--(477.9, 386.8)--(477.9, 386.6)--(477.9, 386.5)--(478.0, 386.2)--(476.8, 385.5)--(476.4, 385.3)--(476.4, 385.0)--(476.4, 384.7)--(476.5, 384.5)--(476.5, 384.0)--(476.5, 383.6)--(476.5, 383.3)--(476.6, 383.3)--(476.6, 383.1)--(476.6, 382.9)--(476.6, 382.7)--(476.8, 382.4)--(476.9, 382.2)--(477.1, 381.8)--(477.1, 381.7)--(477.5, 381.9)--(477.6, 382.1)--(477.7, 382.1)--(477.6, 382.0)--(477.7, 381.9)--(477.8, 381.6)--(477.9, 381.2)--(478.2, 380.4)--(477.6, 380.2)--(477.0, 380.0)--(477.0, 379.9)--(477.1, 379.8)--(477.1, 379.7)--(477.1, 379.6)--(477.1, 379.3)--(477.1, 379.2)--(477.2, 379.1)--(477.3, 379.1)--(477.4, 379.1)--(477.4, 379.0)--(477.4, 378.9)--(477.5, 378.7)--(477.5, 378.6)--(477.4, 378.3)--(477.3, 377.9)--(477.2, 377.6)--(477.1, 377.2)--(477.0, 377.0)--(476.9, 376.8)--(476.9, 376.5)--(477.0, 376.3)--(477.0, 376.2)--(477.0, 375.9)--(477.0, 375.8)--(477.0, 375.4)--(476.9, 374.8)--(476.8, 374.6)--(476.8, 374.5)--(476.8, 374.4)--(476.4, 374.3)--(476.3, 374.3)--(476.2, 374.3)--(476.0, 374.2)--(475.9, 374.1)--(475.6, 374.0)--(475.5, 373.8)--(475.4, 373.7)--(475.3, 373.4)--(475.1, 373.2)--(475.0, 373.0)--(474.8, 372.8)--(474.5, 372.6)--(474.3, 372.4)--(474.2, 372.2)--(474.1, 372.1)--(473.9, 371.9)--(473.7, 371.7)--(470.4, 370.6)--(470.2, 370.6)--(470.1, 370.5)--(470.0, 370.5)--(469.8, 370.4)--(469.7, 370.0)--(470.3, 369.7)--(469.6, 368.0)--(468.8, 366.0)--(469.1, 365.9)--(469.4, 365.8)--(469.8, 365.6)--(470.9, 365.4)--(469.9, 364.0)--(469.3, 364.0)--(469.2, 364.0)--(468.6, 364.0)--(468.7, 363.5)--(466.0, 363.9)--(465.9, 363.3)--(465.6, 363.0)--(466.6, 362.2)--(466.6, 362.0)--(466.7, 362.0)--(467.0, 361.7)--(465.7, 359.9)--(465.5, 359.6)--(465.4, 359.6)--(465.5, 359.0)--(465.2, 358.7)--(464.6, 358.4)--(463.7, 358.5)--(462.7, 358.6)--(462.7, 357.9)--(462.6, 357.9)--(462.5, 357.9)--(462.3, 357.9)--(462.2, 357.9)--(462.1, 357.8)--(462.0, 357.7)--(461.9, 357.6)--(461.5, 357.0)--(461.3, 356.7)--(461.1, 356.5)--(461.0, 356.3)--(460.8, 356.1)--(460.6, 355.9)--(460.5, 355.8)--(460.3, 355.6)--(460.2, 355.5)--(460.1, 355.5)--(459.9, 355.3)--(459.8, 355.3)--(459.5, 355.1)--(459.2, 355.0)--(458.9, 354.9)--(458.8, 354.8)--(458.6, 354.6)--(458.0, 354.3)--(457.5, 354.1)--(457.2, 353.9)--(457.1, 353.8)--(456.9, 353.7)--(456.8, 353.6)--(456.7, 353.5)--(456.3, 353.2)--(456.0, 352.9)--(455.8, 352.8)--(455.7, 352.7)--(455.6, 352.6)--(455.4, 352.4)--(455.1, 352.3)--(454.7, 352.1)--(454.6, 351.9)--(454.1, 351.6)--(453.7, 351.4)--(453.2, 351.1)--(453.1, 351.0)--(452.9, 350.9)--(452.6, 350.7)--(452.5, 350.9)--(452.5, 351.0)--(452.4, 351.0)--(452.4, 351.2)--(452.3, 351.6)--(452.2, 352.0)--(452.1, 352.1)--(451.9, 352.8)--(451.7, 353.5)--(451.7, 353.6)--(451.7, 353.8)--(451.7, 354.0)--(451.7, 354.1)--(451.8, 354.5)--(451.8, 354.8)--(451.9, 354.9)--(451.5, 354.7)--(451.4, 354.5)--(451.3, 354.3)--(451.2, 354.2)--(451.2, 354.1)--(451.2, 354.0)--(451.1, 353.8)--(451.2, 353.6)--(451.2, 353.5)--(451.2, 353.4)--(451.1, 353.4)--(450.7, 353.3)--(450.6, 353.2)--(450.5, 353.1)--(450.5, 353.0)--(450.4, 353.0)--(450.3, 353.0)--(450.2, 353.0)--(450.1, 352.9)--(450.0, 352.9)--(449.8, 352.9)--(449.4, 352.8)--(449.1, 352.7)--(448.9, 352.7)--(448.8, 352.7)--(448.5, 352.6)--(447.8, 352.4)--(447.6, 352.4)--(447.4, 352.3)--(447.2, 352.2)--(446.8, 351.8)--(446.6, 351.6)--(446.2, 351.4)--(446.1, 351.3)--(446.0, 351.2)--(445.6, 351.0)--(445.5, 350.9)--(445.4, 350.9)--(445.3, 350.8)--(445.2, 350.7)--(445.2, 350.6)--(445.0, 350.5)--(444.9, 350.4)--(444.8, 350.3)--(444.6, 350.2)--(444.5, 350.2)--(444.4, 350.2)--(444.4, 350.1)--(444.4, 350.0)--(444.5, 349.9)--(444.4, 349.8)--(444.3, 349.7)--(444.1, 349.6)--(443.8, 349.5)--(443.4, 349.3)--(443.0, 349.1)--(442.5, 348.8)--(442.3, 348.8)--(442.2, 348.7)--(442.1, 348.7)--(442.0, 348.6)--(442.0, 348.5)--(441.9, 348.4)--(441.8, 348.6)--(441.7, 348.8)--(441.6, 349.0)--(441.5, 348.9)--(441.3, 348.8)--(441.1, 349.0)--(441.0, 348.9)--(440.7, 348.6)--(440.4, 348.5)--(440.2, 348.3)--(439.8, 348.2)--(439.5, 348.1)--(439.3, 348.1)--(439.0, 348.1)--(438.8, 348.1)--(438.7, 348.1)--(438.6, 348.1)--(438.6, 348.0)--(438.5, 348.0)--(438.4, 348.0)--(438.3, 348.0)--(438.0, 348.0)--(437.8, 348.0)--(437.7, 348.0)--(437.7, 347.8)--(437.5, 347.8)--(437.2, 348.0)--(437.1, 348.0)--(437.0, 348.0)--(436.6, 348.1)--(436.2, 348.3)--(436.2, 348.4)--(436.2, 348.5)--(436.2, 348.7)--(436.1, 348.9)--(436.1, 349.2)--(436.0, 349.3)--(436.0, 349.4)--(436.0, 349.6)--(436.0, 349.8)--(436.0, 350.0)--(436.0, 350.1)--(436.0, 350.2)--(436.0, 350.3)--(436.1, 350.6)--(436.1, 350.7)--(436.1, 350.8)--(436.1, 350.9)--(436.0, 351.0)--(435.8, 351.3)--(435.8, 351.5)--(435.8, 351.6)--(435.8, 351.7)--(435.8, 351.8)--(435.8, 351.9)--(435.8, 352.0)--(435.8, 352.1)--(435.8, 352.2)--(435.8, 352.3)--(435.8, 352.4)--(435.7, 352.6)--(435.7, 352.7)--(435.6, 353.0)--(435.6, 353.2)--(435.5, 353.3)--(435.5, 353.8)--(435.5, 353.9)--(435.5, 354.0)--(435.6, 354.2)--(435.7, 354.6)--(435.7, 354.8)--(435.8, 354.9)--(435.8, 355.1)--(435.8, 355.2)--(435.8, 355.3)--(435.8, 355.4)--(435.7, 355.4)--(435.7, 355.5)--(435.6, 355.6)--(435.5, 355.7)--(435.4, 355.8)--(435.3, 355.9)--(435.2, 356.3)--(435.2, 356.4)--(435.1, 356.5)--(435.1, 356.7)--(435.1, 356.9)--(435.1, 357.0)--(435.1, 357.2)--(435.0, 357.4)--(435.0, 357.5)--(435.0, 357.7)--(435.0, 358.0)--(435.0, 358.1)--(435.0, 358.2)--(434.9, 358.5)--(434.8, 359.1)--(434.6, 359.6)--(434.5, 360.1)--(434.3, 360.6)--(434.2, 360.9)--(434.1, 361.1)--(433.9, 361.3)--(433.6, 361.9)--(433.4, 362.2)--(433.3, 362.1)--(433.4, 361.9)--(433.5, 361.8)--(433.6, 361.7)--(433.7, 361.4)--(433.9, 361.2)--(434.0, 360.9)--(434.2, 360.3)--(434.3, 360.1)--(434.4, 360.0)--(434.5, 359.4)--(434.7, 358.6)--(434.9, 358.0)--(434.9, 357.9)--(434.9, 357.8)--(434.9, 357.7)--(434.9, 357.5)--(434.9, 357.4)--(434.9, 356.9)--(435.0, 356.5)--(435.0, 356.4)--(435.0, 356.3)--(435.1, 356.2)--(435.2, 355.9)--(435.3, 355.7)--(435.4, 355.5)--(435.6, 355.4)--(435.6, 355.3)--(435.6, 355.2)--(435.7, 355.1)--(435.7, 355.0)--(435.6, 354.9)--(435.6, 354.8)--(435.6, 354.7)--(435.5, 354.4)--(435.4, 354.2)--(435.4, 354.0)--(435.4, 353.9)--(435.4, 353.7)--(435.4, 353.5)--(435.4, 353.2)--(435.5, 352.7)--(435.5, 352.6)--(435.6, 352.3)--(435.6, 352.2)--(435.7, 352.0)--(435.7, 351.9)--(435.6, 351.8)--(435.6, 351.7)--(435.6, 351.5)--(435.6, 351.4)--(435.7, 351.2)--(435.8, 351.1)--(435.8, 350.9)--(435.9, 350.9)--(435.9, 350.8)--(435.9, 350.7)--(435.9, 350.3)--(435.8, 350.0)--(435.8, 349.9)--(435.8, 349.7)--(435.8, 349.4)--(435.9, 349.0)--(436.0, 348.7)--(436.0, 348.6)--(436.0, 348.4)--cycle; +Richmond_upon_Thames = (166.8, 253.8)--(166.9, 253.5)--(167.0, 253.3)--(167.1, 253.1)--(167.2, 252.8)--(167.4, 252.6)--(167.5, 252.4)--(167.6, 252.2)--(167.8, 252.0)--(167.9, 251.9)--(168.5, 251.2)--(168.7, 250.9)--(169.0, 250.6)--(169.5, 250.1)--(169.6, 250.1)--(169.7, 250.0)--(169.8, 249.9)--(169.7, 249.9)--(169.8, 249.8)--(170.5, 249.2)--(170.8, 249.0)--(170.8, 248.9)--(171.7, 248.1)--(171.9, 248.0)--(172.2, 247.7)--(172.3, 247.7)--(172.4, 247.6)--(172.6, 247.5)--(173.1, 247.1)--(173.1, 247.0)--(173.2, 247.0)--(173.3, 247.1)--(173.5, 247.0)--(173.7, 246.8)--(174.1, 246.6)--(174.0, 246.5)--(174.1, 246.5)--(174.3, 246.6)--(174.5, 246.4)--(174.4, 246.3)--(174.5, 246.2)--(174.6, 246.3)--(175.0, 246.0)--(175.1, 245.9)--(175.2, 245.7)--(175.5, 245.6)--(175.9, 245.2)--(176.1, 245.2)--(176.3, 245.2)--(176.6, 245.1)--(176.8, 244.9)--(177.0, 244.8)--(176.5, 244.4)--(176.6, 244.3)--(177.1, 244.7)--(177.3, 244.6)--(177.4, 244.5)--(177.5, 244.4)--(177.7, 244.2)--(177.7, 244.1)--(178.0, 243.8)--(178.3, 243.5)--(178.3, 243.3)--(178.7, 242.8)--(178.9, 242.2)--(179.3, 241.4)--(179.4, 241.2)--(179.5, 240.7)--(179.5, 240.5)--(179.6, 240.3)--(179.5, 240.1)--(179.5, 239.8)--(179.5, 239.7)--(179.4, 239.3)--(179.4, 239.1)--(179.2, 238.8)--(178.9, 238.3)--(178.8, 238.1)--(178.4, 237.6)--(178.3, 237.4)--(178.2, 237.3)--(178.1, 237.2)--(177.9, 237.1)--(177.6, 236.9)--(177.3, 236.5)--(177.1, 236.3)--(176.9, 236.1)--(176.3, 235.6)--(176.1, 235.4)--(175.8, 235.2)--(175.4, 235.0)--(175.2, 234.9)--(174.6, 234.6)--(174.3, 234.4)--(174.1, 234.3)--(173.6, 234.1)--(173.2, 234.0)--(173.1, 233.9)--(172.5, 233.7)--(172.1, 233.6)--(171.8, 233.5)--(171.7, 233.4)--(171.5, 233.4)--(171.4, 233.3)--(171.4, 233.2)--(171.4, 233.1)--(171.2, 233.0)--(170.9, 233.0)--(170.5, 232.9)--(170.1, 232.8)--(170.0, 232.8)--(169.7, 232.8)--(169.0, 232.8)--(168.8, 232.8)--(168.6, 232.9)--(168.3, 232.9)--(168.1, 232.9)--(168.0, 233.1)--(167.9, 233.1)--(167.9, 233.0)--(167.8, 233.0)--(167.8, 233.1)--(167.4, 233.2)--(167.4, 233.1)--(167.3, 233.1)--(167.1, 233.1)--(166.7, 233.0)--(166.4, 233.0)--(165.9, 232.9)--(165.8, 232.9)--(165.3, 232.8)--(165.0, 232.7)--(165.0, 232.8)--(164.9, 232.8)--(164.9, 232.6)--(164.9, 232.5)--(164.5, 232.4)--(164.3, 232.3)--(164.0, 232.0)--(163.8, 231.9)--(163.7, 231.9)--(163.5, 231.8)--(163.6, 231.7)--(163.5, 231.7)--(163.5, 231.6)--(163.2, 231.3)--(163.0, 231.0)--(162.8, 230.8)--(162.8, 230.7)--(162.2, 229.9)--(162.0, 229.6)--(161.8, 229.3)--(161.7, 229.2)--(161.6, 229.0)--(161.4, 228.7)--(161.3, 228.7)--(161.4, 228.6)--(161.2, 228.3)--(161.1, 228.1)--(161.1, 228.0)--(161.1, 227.9)--(160.7, 227.2)--(160.5, 226.9)--(160.5, 226.8)--(160.6, 226.6)--(160.6, 226.5)--(160.7, 226.3)--(160.6, 226.2)--(160.7, 226.1)--(160.7, 226.0)--(160.7, 225.7)--(160.8, 225.4)--(160.8, 225.2)--(160.8, 225.1)--(160.8, 225.0)--(160.7, 225.0)--(160.6, 224.8)--(160.6, 224.7)--(160.6, 224.6)--(160.4, 224.5)--(160.4, 224.4)--(160.6, 224.5)--(160.8, 224.3)--(161.0, 224.1)--(161.1, 224.0)--(161.2, 223.8)--(161.4, 223.6)--(161.5, 223.5)--(161.5, 223.4)--(161.5, 223.3)--(161.6, 223.3)--(161.8, 223.0)--(161.7, 223.0)--(161.7, 222.9)--(161.8, 222.9)--(161.9, 222.7)--(162.1, 222.4)--(162.2, 222.1)--(162.4, 221.9)--(162.4, 221.7)--(162.4, 221.6)--(162.4, 221.5)--(162.2, 221.4)--(162.2, 221.3)--(162.5, 221.4)--(162.5, 221.3)--(162.5, 221.2)--(162.6, 221.2)--(162.6, 220.8)--(162.7, 220.6)--(162.7, 220.5)--(162.7, 220.2)--(162.8, 219.1)--(162.9, 218.7)--(162.9, 218.5)--(163.1, 218.2)--(163.5, 217.5)--(163.9, 217.1)--(164.1, 216.7)--(164.3, 216.5)--(164.5, 216.2)--(164.3, 216.1)--(164.4, 216.0)--(164.6, 216.2)--(164.9, 215.9)--(164.7, 215.6)--(164.8, 215.5)--(165.0, 215.8)--(165.5, 215.4)--(165.6, 215.4)--(165.8, 215.3)--(166.0, 215.1)--(166.2, 215.0)--(166.2, 214.9)--(166.2, 214.8)--(166.3, 214.9)--(166.4, 214.9)--(166.6, 214.8)--(166.7, 214.7)--(166.8, 214.7)--(167.0, 214.6)--(166.9, 214.4)--(167.0, 214.4)--(167.1, 214.3)--(167.3, 214.3)--(167.4, 214.2)--(167.5, 214.2)--(167.6, 214.2)--(167.8, 214.2)--(168.0, 214.1)--(168.3, 214.0)--(168.5, 213.9)--(168.9, 213.8)--(169.5, 213.7)--(169.9, 213.5)--(170.0, 213.7)--(170.1, 213.9)--(170.0, 214.0)--(169.7, 214.3)--(169.7, 214.2)--(169.6, 214.3)--(169.5, 214.4)--(169.4, 214.5)--(169.3, 214.5)--(169.2, 214.6)--(168.9, 214.7)--(168.5, 214.8)--(168.4, 214.8)--(168.3, 214.7)--(168.1, 214.7)--(168.2, 214.8)--(168.0, 214.8)--(167.9, 214.9)--(167.6, 215.0)--(167.5, 215.0)--(167.3, 215.0)--(167.0, 215.2)--(166.7, 215.3)--(166.6, 215.4)--(166.5, 215.5)--(166.4, 215.6)--(166.4, 215.7)--(166.3, 215.7)--(166.1, 215.8)--(165.9, 215.9)--(165.9, 216.0)--(166.0, 216.0)--(165.8, 216.2)--(165.4, 216.5)--(165.2, 216.7)--(164.9, 216.8)--(164.8, 216.9)--(164.7, 217.0)--(164.8, 217.1)--(164.9, 217.1)--(164.9, 217.2)--(164.8, 217.3)--(164.7, 217.4)--(164.3, 217.7)--(164.0, 218.0)--(164.0, 218.1)--(163.9, 218.3)--(163.8, 218.4)--(163.8, 218.5)--(163.7, 218.7)--(163.5, 219.1)--(163.5, 219.3)--(163.4, 219.5)--(163.4, 219.7)--(163.4, 219.8)--(163.4, 220.0)--(163.4, 220.1)--(163.4, 220.2)--(163.3, 220.4)--(163.4, 220.7)--(163.3, 220.8)--(163.3, 220.9)--(163.4, 220.9)--(163.3, 221.1)--(163.3, 221.2)--(163.2, 221.4)--(163.1, 221.7)--(163.1, 221.8)--(162.9, 222.2)--(162.7, 222.6)--(162.6, 223.0)--(162.5, 223.1)--(162.4, 223.3)--(162.8, 223.2)--(162.8, 223.3)--(162.6, 223.3)--(162.5, 223.4)--(162.4, 223.4)--(162.3, 223.5)--(162.2, 223.5)--(162.2, 223.6)--(162.2, 223.7)--(162.0, 224.1)--(161.9, 224.3)--(162.0, 224.4)--(161.9, 224.6)--(161.8, 224.6)--(161.8, 224.7)--(161.6, 225.0)--(161.5, 225.5)--(161.5, 226.3)--(161.5, 226.8)--(161.6, 227.3)--(161.8, 227.7)--(161.8, 227.8)--(161.9, 227.9)--(161.9, 228.1)--(162.0, 228.2)--(162.2, 228.4)--(162.2, 228.5)--(162.4, 228.7)--(162.6, 228.9)--(162.7, 229.0)--(163.3, 229.4)--(163.4, 229.5)--(163.5, 229.5)--(163.6, 229.6)--(164.1, 229.9)--(164.5, 230.1)--(165.1, 230.4)--(165.5, 230.6)--(165.7, 230.7)--(166.0, 230.8)--(166.3, 231.0)--(167.0, 231.4)--(167.2, 231.5)--(167.3, 231.6)--(167.5, 231.6)--(167.8, 231.7)--(167.9, 231.8)--(168.4, 231.9)--(168.6, 231.9)--(169.2, 231.9)--(169.5, 231.9)--(169.7, 231.9)--(169.9, 231.9)--(170.6, 232.0)--(172.5, 232.6)--(172.8, 232.8)--(173.9, 233.2)--(174.3, 233.3)--(175.0, 233.6)--(175.4, 233.7)--(175.9, 234.0)--(176.2, 234.1)--(176.4, 234.2)--(176.5, 234.3)--(176.8, 234.5)--(177.1, 234.7)--(177.6, 235.1)--(177.8, 235.2)--(177.9, 235.3)--(178.0, 235.3)--(178.1, 235.4)--(178.1, 235.3)--(178.2, 235.3)--(178.3, 235.4)--(178.3, 235.6)--(178.3, 235.7)--(178.7, 236.1)--(179.1, 236.6)--(179.2, 236.7)--(179.4, 237.1)--(179.6, 237.3)--(179.8, 237.6)--(179.9, 237.8)--(180.2, 238.3)--(180.2, 238.4)--(180.3, 238.5)--(180.3, 238.6)--(180.3, 238.7)--(180.3, 238.8)--(180.4, 239.2)--(180.4, 239.6)--(180.4, 239.8)--(180.4, 240.1)--(180.3, 240.2)--(180.3, 240.4)--(180.2, 240.6)--(180.3, 240.8)--(180.2, 240.8)--(180.2, 240.9)--(180.1, 241.2)--(180.0, 241.4)--(179.9, 241.5)--(179.7, 242.1)--(179.5, 242.5)--(179.4, 242.8)--(179.2, 243.2)--(179.0, 243.6)--(178.9, 243.7)--(178.6, 244.2)--(177.9, 245.1)--(177.4, 245.6)--(177.0, 246.1)--(176.6, 246.5)--(176.4, 246.6)--(176.5, 246.7)--(176.5, 246.8)--(176.4, 246.8)--(176.3, 246.7)--(176.2, 246.7)--(175.8, 246.9)--(175.5, 247.1)--(175.3, 247.2)--(175.0, 247.4)--(174.7, 247.5)--(174.6, 247.6)--(174.1, 247.8)--(173.7, 248.0)--(173.3, 248.1)--(173.2, 248.2)--(173.0, 248.3)--(172.7, 248.5)--(172.5, 248.6)--(172.4, 248.8)--(172.2, 248.9)--(172.0, 249.0)--(171.8, 249.3)--(171.4, 249.7)--(171.4, 249.8)--(171.1, 250.0)--(170.6, 250.5)--(170.5, 250.4)--(170.1, 250.7)--(169.9, 251.0)--(170.0, 251.0)--(169.7, 251.3)--(169.7, 251.4)--(169.3, 251.7)--(168.7, 252.3)--(168.6, 252.4)--(168.5, 252.5)--(168.4, 252.7)--(168.3, 252.9)--(168.1, 253.1)--(168.1, 253.3)--(168.0, 253.5)--(168.0, 253.8)--(168.0, 254.0)--(168.0, 254.3)--(168.1, 254.4)--(168.2, 254.9)--(168.3, 255.7)--(168.4, 256.6)--(168.4, 257.2)--(168.8, 259.1)--(168.9, 259.3)--(168.9, 259.4)--(169.1, 259.7)--(169.2, 259.9)--(169.3, 260.0)--(169.4, 260.1)--(169.5, 260.2)--(169.5, 260.3)--(169.6, 260.3)--(169.7, 260.4)--(169.9, 260.4)--(170.0, 260.5)--(170.3, 260.6)--(170.6, 260.7)--(170.8, 260.8)--(170.9, 260.8)--(171.0, 260.8)--(171.0, 260.9)--(171.2, 261.0)--(171.6, 261.1)--(171.8, 261.3)--(171.9, 261.3)--(171.9, 261.4)--(172.0, 261.4)--(172.1, 261.4)--(172.1, 261.5)--(172.2, 261.6)--(172.3, 261.6)--(172.4, 261.6)--(172.5, 261.6)--(172.5, 261.7)--(172.6, 261.8)--(172.7, 261.9)--(173.0, 262.0)--(173.3, 262.2)--(173.4, 262.3)--(173.5, 262.4)--(173.8, 262.5)--(173.9, 262.5)--(174.2, 262.8)--(174.3, 262.9)--(174.4, 262.9)--(174.5, 263.0)--(174.6, 263.1)--(174.7, 263.1)--(175.0, 263.3)--(176.3, 264.1)--(176.4, 264.2)--(176.6, 264.4)--(176.7, 264.5)--(176.9, 264.7)--(176.9, 264.8)--(177.0, 264.9)--(177.7, 266.0)--(178.2, 266.9)--(178.7, 267.9)--(179.3, 269.0)--(179.8, 269.7)--(180.3, 270.4)--(181.1, 271.4)--(181.9, 272.5)--(182.6, 273.4)--(183.1, 274.2)--(183.8, 275.0)--(184.6, 275.8)--(185.3, 276.4)--(185.4, 276.5)--(185.5, 276.5)--(185.6, 276.6)--(187.9, 277.5)--(188.2, 277.6)--(188.5, 277.7)--(188.8, 277.7)--(188.9, 277.8)--(190.1, 277.9)--(190.6, 277.8)--(191.5, 277.6)--(191.7, 277.5)--(191.9, 277.4)--(192.0, 277.4)--(192.1, 277.3)--(192.2, 277.2)--(192.4, 277.1)--(192.5, 276.9)--(192.6, 276.8)--(192.7, 276.7)--(192.9, 276.5)--(193.0, 276.4)--(193.1, 276.3)--(193.2, 276.2)--(193.6, 275.9)--(194.9, 275.1)--(195.2, 274.8)--(196.1, 273.8)--(196.2, 273.7)--(196.4, 273.5)--(196.6, 273.2)--(196.8, 273.0)--(196.9, 272.8)--(197.1, 272.6)--(197.2, 272.4)--(197.4, 272.1)--(197.4, 271.9)--(197.5, 271.7)--(197.7, 271.3)--(197.9, 270.8)--(198.1, 270.1)--(198.5, 268.6)--(199.1, 267.1)--(199.6, 266.0)--(200.0, 265.4)--(200.2, 264.9)--(200.5, 264.5)--(200.7, 264.3)--(200.9, 264.1)--(201.0, 263.8)--(201.3, 263.5)--(202.1, 262.7)--(202.5, 262.4)--(202.9, 262.1)--(203.3, 261.8)--(204.0, 261.4)--(204.1, 261.3)--(204.1, 261.2)--(204.3, 261.1)--(204.5, 261.1)--(205.3, 260.7)--(206.0, 260.5)--(206.7, 260.3)--(206.7, 260.2)--(206.7, 260.1)--(207.1, 260.3)--(207.8, 260.2)--(208.4, 260.2)--(208.7, 260.3)--(208.9, 260.3)--(209.4, 260.3)--(210.0, 260.4)--(210.5, 260.5)--(211.3, 260.8)--(211.7, 260.9)--(211.9, 261.0)--(212.1, 261.1)--(212.4, 261.3)--(212.6, 261.5)--(213.0, 261.7)--(213.5, 262.1)--(213.8, 262.3)--(214.2, 262.8)--(214.7, 263.2)--(215.3, 264.0)--(215.3, 264.1)--(215.5, 264.6)--(216.1, 265.9)--(216.3, 266.2)--(216.3, 266.4)--(216.4, 266.4)--(216.5, 266.9)--(216.6, 267.2)--(216.5, 267.3)--(216.6, 267.6)--(216.6, 268.4)--(216.7, 270.5)--(216.7, 270.6)--(216.7, 271.0)--(216.7, 271.2)--(216.7, 271.4)--(216.6, 271.6)--(216.6, 272.5)--(216.5, 272.7)--(216.5, 272.9)--(216.5, 273.2)--(216.5, 273.4)--(216.6, 273.6)--(216.6, 273.8)--(216.6, 274.1)--(216.7, 274.4)--(216.8, 274.6)--(216.8, 274.7)--(216.9, 274.9)--(216.9, 275.1)--(217.0, 275.2)--(217.1, 275.4)--(217.3, 275.7)--(217.4, 275.8)--(217.4, 275.9)--(217.7, 276.2)--(217.8, 276.3)--(217.9, 276.5)--(218.2, 276.8)--(220.1, 278.7)--(220.3, 278.9)--(221.5, 280.1)--(221.8, 280.3)--(221.9, 280.4)--(222.0, 280.6)--(222.2, 280.7)--(222.4, 280.8)--(222.5, 280.8)--(222.7, 280.9)--(222.9, 281.0)--(223.0, 281.1)--(223.2, 281.2)--(223.4, 281.2)--(223.6, 281.3)--(223.9, 281.3)--(224.1, 281.4)--(224.2, 281.4)--(224.4, 281.4)--(224.8, 281.4)--(225.0, 281.5)--(225.3, 281.5)--(225.6, 281.5)--(226.0, 281.4)--(226.5, 281.4)--(226.7, 281.3)--(226.9, 281.3)--(227.1, 281.3)--(227.2, 281.2)--(227.4, 281.1)--(227.6, 281.1)--(227.8, 281.0)--(228.0, 280.9)--(228.1, 280.8)--(228.4, 280.7)--(228.6, 280.5)--(228.8, 280.4)--(228.9, 280.3)--(229.1, 280.2)--(229.3, 280.0)--(229.4, 279.9)--(229.7, 279.7)--(230.0, 279.3)--(230.2, 279.0)--(230.5, 278.6)--(230.7, 278.4)--(230.9, 278.1)--(231.1, 277.6)--(231.3, 277.3)--(231.7, 276.5)--(231.6, 276.4)--(231.8, 276.0)--(231.8, 275.7)--(231.8, 275.6)--(231.9, 275.5)--(231.9, 275.3)--(232.0, 274.3)--(232.2, 272.8)--(232.4, 271.5)--(232.4, 271.1)--(232.4, 270.9)--(232.4, 270.7)--(232.4, 270.2)--(232.4, 269.3)--(232.4, 269.0)--(232.4, 268.9)--(232.4, 268.4)--(232.4, 267.9)--(232.5, 267.6)--(232.5, 267.4)--(232.6, 267.2)--(232.7, 267.0)--(232.7, 266.9)--(232.8, 266.6)--(232.9, 266.3)--(233.0, 266.1)--(233.1, 265.9)--(233.2, 265.7)--(233.5, 265.3)--(233.8, 264.7)--(234.0, 264.3)--(234.2, 264.1)--(234.3, 263.9)--(234.6, 263.4)--(235.2, 262.6)--(235.1, 262.5)--(234.7, 262.4)--(234.9, 262.2)--(234.8, 262.1)--(234.9, 262.0)--(234.9, 261.9)--(235.0, 261.8)--(235.0, 261.7)--(235.0, 261.6)--(234.9, 261.5)--(234.9, 261.4)--(234.8, 261.4)--(234.7, 261.4)--(234.3, 261.5)--(233.4, 261.7)--(233.3, 261.8)--(232.9, 262.0)--(232.6, 262.0)--(232.4, 262.1)--(231.9, 262.4)--(231.6, 262.6)--(231.5, 262.6)--(231.4, 262.6)--(231.3, 262.7)--(231.2, 262.8)--(231.0, 262.8)--(230.9, 262.8)--(230.8, 262.8)--(230.7, 262.8)--(230.6, 262.9)--(230.5, 262.9)--(230.3, 263.1)--(230.0, 263.3)--(229.8, 263.5)--(229.7, 263.5)--(229.6, 263.6)--(229.5, 263.6)--(229.3, 263.6)--(229.1, 263.5)--(228.8, 263.5)--(228.5, 263.3)--(228.4, 263.2)--(228.4, 263.1)--(228.3, 262.8)--(228.2, 262.8)--(228.2, 262.7)--(228.3, 262.3)--(228.3, 261.8)--(228.3, 261.3)--(228.3, 260.8)--(228.3, 260.5)--(228.3, 260.1)--(228.2, 259.5)--(228.2, 259.1)--(228.1, 258.6)--(228.0, 258.3)--(228.1, 258.0)--(228.1, 257.8)--(228.1, 257.7)--(228.5, 256.7)--(228.2, 256.3)--(228.1, 256.2)--(228.0, 256.1)--(227.9, 256.0)--(228.0, 255.6)--(228.0, 255.2)--(228.1, 254.7)--(228.2, 254.2)--(228.2, 254.0)--(228.2, 253.7)--(227.4, 254.0)--(227.1, 254.0)--(226.9, 254.1)--(226.6, 254.1)--(222.5, 254.7)--(221.5, 254.9)--(220.8, 254.9)--(220.0, 254.9)--(217.9, 254.6)--(217.6, 254.6)--(217.3, 254.6)--(217.0, 254.6)--(215.9, 254.8)--(215.3, 254.8)--(214.6, 254.7)--(214.1, 254.4)--(213.9, 254.1)--(212.8, 252.8)--(212.5, 252.3)--(212.1, 251.5)--(211.8, 250.7)--(211.5, 250.0)--(211.2, 249.4)--(211.2, 249.2)--(212.0, 248.7)--(212.0, 248.6)--(211.9, 248.4)--(211.9, 248.3)--(211.8, 248.1)--(211.8, 247.9)--(211.7, 247.7)--(211.7, 247.5)--(211.4, 247.0)--(211.1, 246.3)--(211.0, 245.9)--(210.9, 245.4)--(210.8, 244.9)--(210.6, 244.4)--(210.6, 244.0)--(210.6, 243.6)--(210.5, 243.2)--(213.5, 241.0)--(215.3, 239.7)--(217.5, 238.0)--(218.9, 237.0)--(218.9, 236.9)--(219.1, 236.7)--(219.4, 236.3)--(219.8, 235.6)--(220.2, 235.0)--(220.5, 234.5)--(220.9, 233.9)--(221.1, 233.6)--(222.0, 232.1)--(222.3, 231.5)--(222.7, 230.9)--(223.0, 230.4)--(223.0, 230.3)--(222.8, 229.9)--(222.5, 229.3)--(222.3, 229.0)--(222.0, 228.8)--(221.6, 228.5)--(221.1, 228.2)--(220.7, 227.9)--(220.1, 227.5)--(218.7, 226.5)--(217.9, 226.0)--(216.5, 225.0)--(215.9, 224.6)--(215.1, 224.1)--(214.5, 223.7)--(214.2, 223.5)--(213.9, 223.2)--(213.8, 223.2)--(213.7, 223.1)--(213.4, 222.9)--(213.1, 222.9)--(212.9, 222.8)--(213.0, 222.8)--(212.9, 222.8)--(213.0, 222.6)--(212.9, 222.6)--(212.6, 222.4)--(212.4, 222.2)--(211.8, 221.7)--(211.3, 221.4)--(210.5, 220.8)--(210.2, 220.6)--(209.8, 220.4)--(209.2, 219.9)--(209.0, 219.8)--(208.6, 219.5)--(208.4, 219.4)--(207.6, 218.8)--(207.3, 218.6)--(206.8, 218.2)--(206.5, 218.0)--(206.2, 217.7)--(205.9, 217.3)--(205.5, 216.9)--(205.2, 216.7)--(205.0, 216.5)--(204.7, 216.4)--(204.5, 216.2)--(204.4, 216.0)--(204.1, 215.8)--(203.4, 215.2)--(203.2, 215.0)--(203.0, 214.8)--(202.9, 214.6)--(202.8, 214.6)--(202.7, 214.4)--(202.2, 213.7)--(201.6, 212.9)--(201.2, 212.4)--(200.8, 211.8)--(200.0, 210.6)--(199.7, 210.3)--(199.3, 209.7)--(199.0, 209.4)--(196.6, 206.1)--(195.0, 205.4)--(195.0, 205.3)--(193.5, 204.6)--(193.0, 204.4)--(192.6, 204.2)--(192.3, 204.1)--(191.7, 206.1)--(190.2, 210.8)--(190.2, 211.1)--(190.1, 211.2)--(189.9, 212.0)--(189.8, 212.2)--(189.8, 212.4)--(189.3, 213.8)--(187.7, 213.7)--(187.8, 213.4)--(187.5, 213.3)--(187.5, 211.8)--(187.5, 211.7)--(187.5, 211.3)--(187.5, 211.0)--(187.4, 211.0)--(186.5, 211.0)--(186.5, 211.2)--(186.5, 211.3)--(186.5, 211.6)--(186.4, 211.6)--(186.0, 211.6)--(186.1, 211.9)--(186.0, 212.3)--(185.7, 212.5)--(185.7, 212.4)--(185.6, 212.4)--(185.5, 212.5)--(185.2, 212.8)--(184.8, 213.0)--(184.7, 213.2)--(184.6, 213.3)--(184.5, 213.4)--(184.4, 213.4)--(184.2, 213.7)--(184.0, 213.9)--(184.0, 214.0)--(183.6, 214.4)--(182.7, 215.2)--(182.5, 215.5)--(182.3, 215.7)--(182.1, 215.8)--(181.9, 216.0)--(181.6, 216.4)--(181.3, 216.1)--(181.5, 215.8)--(181.7, 215.4)--(181.6, 215.2)--(181.5, 215.2)--(181.3, 215.5)--(179.8, 215.9)--(178.7, 216.2)--(178.6, 216.2)--(178.5, 216.1)--(178.4, 216.0)--(178.4, 215.3)--(178.3, 215.3)--(178.3, 214.9)--(177.9, 214.9)--(177.9, 215.0)--(177.7, 215.0)--(177.6, 215.0)--(177.4, 215.2)--(177.1, 215.3)--(176.8, 215.5)--(176.8, 215.6)--(177.1, 215.9)--(176.2, 216.7)--(176.0, 216.9)--(175.9, 217.0)--(175.8, 217.1)--(175.7, 217.1)--(175.5, 216.9)--(175.3, 217.1)--(175.1, 216.9)--(174.4, 215.9)--(174.2, 215.6)--(173.9, 215.0)--(173.2, 213.7)--(173.1, 213.3)--(172.9, 213.0)--(172.8, 212.6)--(173.5, 212.2)--(173.9, 211.9)--(174.3, 211.7)--(174.6, 211.4)--(175.1, 211.0)--(175.7, 210.6)--(175.9, 210.4)--(176.2, 210.2)--(176.5, 209.9)--(176.9, 209.3)--(177.4, 208.7)--(177.5, 208.4)--(177.7, 208.0)--(178.1, 207.4)--(178.2, 207.2)--(178.3, 206.9)--(178.4, 206.6)--(178.6, 206.2)--(178.6, 206.1)--(178.7, 205.9)--(178.8, 205.6)--(178.8, 205.2)--(178.8, 205.0)--(178.8, 204.8)--(178.6, 204.3)--(178.5, 204.0)--(178.5, 203.8)--(178.4, 203.6)--(178.4, 203.2)--(178.4, 202.9)--(178.4, 202.5)--(178.4, 202.2)--(178.3, 201.8)--(178.1, 201.2)--(178.1, 201.0)--(177.9, 200.7)--(177.9, 200.6)--(177.9, 200.4)--(177.8, 200.3)--(177.8, 200.1)--(177.8, 200.0)--(177.7, 199.7)--(177.4, 198.3)--(177.4, 198.0)--(177.3, 197.8)--(177.3, 197.6)--(177.3, 197.4)--(177.3, 197.2)--(177.3, 196.8)--(177.3, 196.6)--(177.3, 196.5)--(177.3, 196.3)--(177.4, 195.9)--(177.4, 195.6)--(177.4, 195.2)--(177.3, 195.0)--(177.2, 194.2)--(177.1, 193.6)--(177.0, 191.9)--(177.0, 191.7)--(177.0, 191.6)--(177.0, 190.4)--(177.1, 188.7)--(177.1, 188.5)--(177.1, 188.3)--(177.1, 188.0)--(177.2, 187.6)--(177.2, 187.5)--(177.3, 186.6)--(177.4, 185.8)--(177.4, 185.2)--(177.4, 184.6)--(177.4, 183.8)--(177.3, 183.1)--(177.3, 182.6)--(177.2, 182.5)--(177.1, 182.0)--(177.0, 181.8)--(177.0, 181.7)--(176.8, 181.3)--(176.8, 181.2)--(176.6, 181.1)--(176.5, 180.9)--(176.3, 180.7)--(176.1, 180.5)--(175.6, 179.9)--(175.3, 179.6)--(175.3, 179.5)--(175.2, 179.4)--(175.2, 179.2)--(175.1, 179.1)--(174.9, 178.4)--(174.6, 178.0)--(173.8, 177.0)--(172.1, 175.0)--(171.6, 174.4)--(171.5, 174.2)--(171.4, 174.1)--(171.0, 173.7)--(170.8, 173.6)--(170.7, 173.4)--(170.5, 173.3)--(170.3, 173.1)--(169.9, 172.9)--(169.8, 172.8)--(169.5, 172.8)--(169.3, 172.7)--(169.2, 172.6)--(169.0, 172.5)--(168.7, 172.4)--(168.4, 172.3)--(168.2, 172.3)--(167.3, 171.8)--(166.7, 171.6)--(166.5, 171.6)--(165.9, 171.5)--(165.7, 171.5)--(165.2, 171.6)--(164.9, 171.7)--(164.6, 171.8)--(164.5, 171.9)--(164.4, 171.9)--(164.3, 172.0)--(164.1, 172.1)--(164.0, 172.2)--(163.8, 172.4)--(163.4, 172.9)--(162.9, 173.6)--(162.8, 173.7)--(162.7, 173.9)--(162.3, 174.4)--(162.2, 174.5)--(162.0, 174.8)--(161.6, 175.7)--(161.3, 176.2)--(161.2, 176.4)--(161.1, 176.5)--(160.0, 177.8)--(159.3, 178.5)--(158.8, 179.1)--(158.7, 179.2)--(158.6, 179.3)--(158.2, 179.8)--(157.9, 180.2)--(157.8, 180.3)--(157.7, 180.4)--(157.3, 181.0)--(157.2, 181.2)--(157.0, 181.5)--(156.9, 181.8)--(156.8, 182.0)--(156.7, 182.2)--(156.4, 182.8)--(156.2, 183.0)--(155.9, 183.4)--(155.8, 183.6)--(155.6, 183.8)--(155.5, 183.9)--(155.3, 184.2)--(155.2, 184.2)--(155.0, 184.4)--(154.9, 184.4)--(154.8, 184.5)--(154.7, 184.6)--(154.3, 184.7)--(154.1, 184.7)--(153.8, 184.8)--(153.6, 184.9)--(153.5, 184.9)--(153.4, 184.9)--(153.3, 185.0)--(153.2, 185.1)--(153.0, 185.2)--(152.8, 185.3)--(152.5, 185.5)--(152.4, 185.6)--(151.3, 186.8)--(151.2, 186.9)--(151.0, 187.0)--(150.7, 187.2)--(150.6, 187.2)--(150.6, 187.3)--(150.3, 187.4)--(150.1, 187.5)--(150.0, 187.6)--(149.8, 187.6)--(149.4, 187.9)--(149.2, 188.0)--(148.9, 188.3)--(148.8, 188.3)--(148.7, 188.4)--(148.6, 188.5)--(148.3, 188.9)--(148.2, 189.1)--(148.1, 189.1)--(147.8, 189.3)--(147.7, 189.4)--(147.4, 189.6)--(147.2, 189.8)--(146.7, 190.1)--(146.5, 190.3)--(145.9, 190.8)--(145.7, 190.9)--(145.5, 191.1)--(145.0, 191.5)--(144.9, 191.5)--(144.9, 191.6)--(144.9, 191.8)--(144.9, 191.9)--(144.9, 192.0)--(144.9, 192.1)--(144.9, 192.3)--(144.8, 192.4)--(144.8, 192.5)--(144.6, 192.6)--(143.9, 192.9)--(143.5, 193.1)--(143.4, 193.2)--(143.2, 193.3)--(143.1, 193.3)--(142.7, 193.4)--(142.7, 193.5)--(142.6, 193.5)--(142.4, 193.6)--(142.2, 193.7)--(142.1, 193.8)--(141.8, 193.9)--(141.7, 193.9)--(141.5, 193.9)--(141.3, 193.9)--(141.0, 193.9)--(140.6, 193.9)--(140.4, 193.8)--(139.8, 193.8)--(139.4, 193.7)--(138.5, 193.4)--(138.2, 193.3)--(138.0, 193.2)--(137.5, 193.0)--(137.3, 192.9)--(137.2, 192.9)--(137.0, 192.8)--(136.9, 192.7)--(136.8, 192.7)--(136.5, 192.4)--(136.3, 192.2)--(136.1, 192.1)--(135.8, 191.9)--(135.3, 191.7)--(135.2, 191.6)--(135.1, 191.6)--(134.4, 191.1)--(132.8, 190.1)--(132.7, 190.0)--(132.4, 189.9)--(132.2, 189.8)--(131.7, 189.7)--(131.3, 189.6)--(130.8, 189.5)--(130.4, 189.5)--(130.2, 189.4)--(129.7, 189.2)--(129.5, 189.1)--(129.3, 189.1)--(129.2, 189.0)--(129.0, 189.0)--(128.1, 188.9)--(128.0, 188.9)--(127.6, 189.0)--(126.9, 189.1)--(126.8, 189.1)--(126.6, 189.2)--(126.0, 189.4)--(125.6, 189.5)--(125.4, 189.6)--(125.3, 190.7)--(125.0, 190.7)--(125.0, 191.4)--(124.6, 191.4)--(124.1, 191.5)--(123.3, 191.6)--(123.1, 191.7)--(123.0, 191.7)--(122.9, 191.7)--(122.7, 191.6)--(122.5, 191.6)--(122.2, 191.5)--(121.3, 191.5)--(121.2, 192.0)--(120.9, 191.9)--(120.8, 192.7)--(120.7, 193.6)--(120.6, 194.3)--(120.5, 195.0)--(120.4, 196.0)--(120.8, 196.0)--(121.3, 196.0)--(121.6, 196.0)--(122.3, 196.0)--(123.3, 196.0)--(123.2, 196.1)--(123.2, 196.3)--(123.1, 196.4)--(122.9, 196.8)--(123.0, 196.8)--(123.0, 197.1)--(123.1, 197.2)--(123.0, 197.4)--(123.0, 197.6)--(123.0, 197.8)--(122.9, 198.4)--(123.0, 198.5)--(122.9, 198.8)--(122.8, 199.5)--(122.8, 199.6)--(122.8, 199.7)--(122.7, 200.0)--(122.6, 200.4)--(122.4, 201.0)--(122.3, 201.2)--(122.1, 201.6)--(122.5, 202.0)--(122.8, 202.4)--(120.6, 204.0)--(119.8, 204.6)--(119.7, 204.7)--(119.5, 204.8)--(119.4, 204.9)--(119.3, 205.1)--(119.2, 205.3)--(119.0, 205.5)--(118.9, 205.5)--(118.7, 205.7)--(118.4, 205.9)--(118.5, 206.1)--(118.8, 206.0)--(119.1, 205.9)--(119.6, 205.8)--(119.9, 205.6)--(120.1, 205.4)--(120.3, 205.3)--(120.9, 204.9)--(121.7, 204.4)--(122.5, 203.9)--(123.0, 203.5)--(123.4, 203.3)--(123.6, 203.2)--(123.7, 203.2)--(123.7, 203.3)--(123.8, 203.5)--(123.8, 203.6)--(124.0, 203.8)--(124.0, 203.9)--(124.2, 204.3)--(124.3, 204.6)--(124.4, 204.9)--(124.5, 205.2)--(124.5, 205.3)--(124.4, 205.5)--(124.1, 206.0)--(123.9, 206.4)--(123.7, 206.7)--(123.4, 207.2)--(123.2, 207.6)--(122.9, 208.3)--(122.8, 208.7)--(122.6, 209.0)--(122.1, 209.9)--(121.9, 210.3)--(121.9, 210.5)--(121.6, 210.9)--(121.4, 211.2)--(121.4, 211.3)--(121.5, 211.2)--(121.6, 211.1)--(122.2, 211.4)--(122.0, 211.8)--(121.7, 211.9)--(121.7, 212.0)--(122.1, 212.7)--(122.2, 212.9)--(122.4, 213.1)--(123.0, 213.8)--(123.2, 214.1)--(123.7, 214.6)--(124.0, 215.0)--(124.3, 215.2)--(124.6, 215.5)--(124.8, 215.9)--(125.1, 216.1)--(125.2, 216.2)--(125.3, 216.3)--(126.0, 216.9)--(127.5, 218.1)--(127.8, 218.4)--(128.3, 218.8)--(128.5, 219.0)--(128.8, 219.2)--(129.1, 219.3)--(129.5, 219.5)--(129.6, 219.7)--(129.7, 219.7)--(129.7, 219.8)--(128.5, 220.6)--(128.5, 221.1)--(130.5, 222.7)--(133.6, 224.9)--(136.0, 226.7)--(135.9, 226.8)--(135.6, 226.9)--(135.4, 227.0)--(135.0, 227.2)--(134.5, 227.4)--(134.4, 227.4)--(134.2, 227.5)--(134.0, 227.6)--(133.4, 228.1)--(133.3, 228.2)--(133.2, 228.3)--(133.1, 228.3)--(132.9, 228.4)--(132.8, 228.5)--(132.4, 228.5)--(132.3, 228.5)--(132.1, 228.6)--(132.0, 228.8)--(131.8, 228.8)--(131.6, 228.8)--(131.5, 228.8)--(131.4, 228.8)--(131.4, 228.7)--(131.3, 228.6)--(131.3, 228.5)--(131.3, 228.4)--(131.2, 228.2)--(131.1, 228.1)--(130.6, 228.1)--(130.5, 228.1)--(130.4, 228.0)--(129.9, 228.1)--(129.8, 228.2)--(129.7, 228.2)--(129.6, 228.2)--(129.3, 228.1)--(129.2, 228.0)--(129.1, 227.9)--(129.0, 227.6)--(128.9, 227.5)--(128.7, 227.4)--(128.5, 227.4)--(128.3, 227.4)--(128.1, 227.5)--(127.9, 227.6)--(127.5, 227.8)--(127.3, 228.0)--(127.2, 228.1)--(127.1, 228.3)--(127.1, 228.4)--(127.2, 228.5)--(127.3, 228.7)--(127.2, 228.7)--(127.2, 228.8)--(127.1, 228.9)--(127.0, 229.0)--(127.0, 229.2)--(127.1, 229.4)--(127.0, 229.5)--(127.0, 229.6)--(126.4, 229.8)--(125.8, 230.0)--(125.5, 230.1)--(124.8, 230.2)--(124.5, 230.4)--(124.1, 230.9)--(123.9, 231.0)--(123.7, 231.2)--(122.8, 231.8)--(122.6, 231.9)--(122.4, 232.1)--(122.4, 232.2)--(122.4, 232.4)--(122.3, 232.5)--(122.3, 232.6)--(122.3, 232.7)--(122.3, 233.0)--(122.3, 233.2)--(122.3, 233.3)--(122.4, 233.6)--(122.3, 233.7)--(122.3, 233.8)--(122.1, 233.9)--(122.0, 234.1)--(121.9, 234.3)--(121.5, 234.7)--(121.4, 234.9)--(121.4, 235.0)--(121.3, 235.0)--(123.5, 235.6)--(124.1, 235.2)--(124.3, 235.5)--(124.7, 236.0)--(125.2, 236.7)--(126.2, 238.0)--(126.8, 238.8)--(127.4, 239.6)--(128.1, 240.5)--(128.3, 240.8)--(128.5, 241.0)--(128.8, 241.5)--(129.0, 241.7)--(129.2, 242.0)--(129.4, 242.2)--(129.8, 242.8)--(129.8, 242.9)--(130.2, 243.2)--(130.5, 243.5)--(131.1, 244.0)--(131.3, 244.2)--(131.5, 243.9)--(131.6, 243.7)--(131.7, 243.8)--(131.7, 244.0)--(132.1, 243.9)--(133.0, 243.8)--(133.6, 243.7)--(133.7, 243.7)--(134.5, 243.6)--(134.5, 243.7)--(134.8, 244.0)--(135.0, 244.2)--(135.1, 244.3)--(135.3, 244.3)--(135.5, 244.4)--(136.9, 244.7)--(137.3, 244.6)--(137.3, 244.5)--(137.5, 244.5)--(138.4, 244.6)--(138.7, 244.6)--(139.0, 244.8)--(139.4, 245.0)--(140.5, 245.2)--(141.3, 245.3)--(141.8, 245.4)--(142.1, 245.5)--(142.3, 245.5)--(142.6, 245.5)--(142.8, 245.5)--(143.7, 245.5)--(143.9, 245.5)--(144.9, 245.3)--(145.1, 244.9)--(145.2, 244.7)--(145.4, 244.4)--(145.4, 243.9)--(145.4, 243.8)--(145.5, 243.8)--(145.7, 243.8)--(146.2, 243.8)--(146.8, 243.8)--(147.0, 243.8)--(147.3, 243.8)--(147.9, 243.8)--(148.3, 243.8)--(148.7, 243.9)--(148.9, 243.9)--(149.0, 244.0)--(149.2, 244.0)--(149.4, 244.2)--(149.7, 244.3)--(149.8, 244.3)--(150.0, 244.4)--(150.1, 244.4)--(150.3, 244.5)--(150.4, 244.6)--(150.4, 244.9)--(150.6, 245.1)--(150.8, 245.1)--(150.9, 245.2)--(151.1, 245.2)--(151.3, 245.2)--(151.4, 245.2)--(151.6, 245.3)--(151.7, 245.3)--(151.8, 245.3)--(152.2, 245.3)--(152.4, 245.4)--(152.6, 245.7)--(152.8, 246.0)--(152.9, 246.1)--(153.0, 246.3)--(153.1, 246.4)--(153.2, 246.5)--(153.5, 246.6)--(153.8, 246.7)--(153.9, 246.7)--(154.1, 246.7)--(154.1, 246.5)--(154.0, 246.2)--(153.9, 245.9)--(153.8, 245.5)--(153.8, 245.2)--(153.8, 245.1)--(153.8, 245.0)--(153.8, 244.7)--(153.9, 244.5)--(154.0, 244.3)--(154.4, 243.8)--(154.7, 243.3)--(155.0, 243.0)--(155.3, 243.2)--(155.9, 242.5)--(155.8, 242.5)--(156.0, 242.0)--(156.0, 241.8)--(156.1, 241.7)--(156.3, 241.7)--(156.5, 241.6)--(156.7, 242.4)--(156.7, 242.6)--(156.9, 242.8)--(157.1, 242.8)--(158.0, 242.7)--(158.3, 242.7)--(158.7, 242.6)--(158.8, 242.3)--(158.9, 242.4)--(159.0, 242.4)--(159.2, 242.5)--(159.2, 242.6)--(159.3, 242.7)--(159.4, 242.9)--(159.5, 243.0)--(159.6, 243.1)--(159.6, 243.6)--(159.8, 243.8)--(160.0, 244.1)--(160.3, 244.7)--(160.5, 244.9)--(160.7, 245.2)--(161.0, 245.3)--(161.5, 245.5)--(161.9, 245.5)--(162.1, 245.5)--(162.3, 245.4)--(162.5, 245.3)--(162.9, 244.8)--(163.1, 244.4)--(163.2, 244.4)--(163.3, 244.4)--(163.4, 244.5)--(163.6, 244.7)--(163.6, 244.8)--(163.8, 245.1)--(163.9, 245.3)--(164.0, 245.3)--(164.2, 245.4)--(164.3, 245.5)--(164.3, 245.7)--(164.3, 245.8)--(164.2, 245.9)--(164.1, 246.0)--(164.0, 246.2)--(163.9, 246.2)--(163.9, 246.3)--(163.9, 246.4)--(164.0, 246.4)--(164.0, 246.5)--(163.8, 246.7)--(163.8, 246.8)--(163.7, 246.8)--(163.7, 246.9)--(163.7, 247.0)--(163.6, 247.0)--(163.6, 247.1)--(163.7, 247.1)--(163.7, 247.2)--(163.7, 247.3)--(163.8, 247.3)--(163.8, 247.4)--(163.8, 247.5)--(163.8, 247.6)--(163.7, 247.6)--(163.6, 247.6)--(163.5, 247.6)--(163.5, 247.7)--(163.4, 247.7)--(163.4, 247.8)--(163.5, 247.8)--(163.5, 247.9)--(163.5, 248.0)--(163.6, 248.2)--(163.6, 248.4)--(163.6, 248.5)--(163.7, 248.5)--(163.7, 248.6)--(163.7, 248.7)--(163.7, 248.8)--(163.6, 248.8)--(163.6, 248.9)--(163.5, 248.9)--(163.4, 248.9)--(163.4, 249.0)--(163.3, 249.0)--(163.3, 249.1)--(163.3, 249.3)--(163.3, 249.4)--(163.4, 249.4)--(163.4, 249.5)--(163.4, 249.6)--(163.4, 249.7)--(163.7, 250.0)--(163.7, 250.3)--(163.7, 250.4)--(163.8, 250.5)--(163.9, 250.5)--(163.9, 250.7)--(163.9, 250.8)--(164.0, 250.9)--(164.0, 251.0)--(164.1, 251.1)--(164.1, 251.2)--(164.1, 251.5)--(164.2, 251.5)--(164.3, 251.8)--(164.4, 252.2)--(164.6, 252.6)--(164.8, 252.8)--(165.0, 253.1)--(165.2, 253.3)--(165.3, 253.5)--(165.4, 253.6)--(165.5, 253.7)--(165.6, 253.7)--(165.6, 253.8)--(165.7, 253.8)--(165.8, 253.8)--(165.9, 253.8)--(166.0, 253.8)--(166.1, 253.8)--(166.2, 253.8)--(166.7, 253.8)--cycle; +Southwark = (313.4, 305.3)--(313.4, 305.4)--(313.7, 305.4)--(314.0, 305.4)--(314.1, 305.5)--(314.1, 305.3)--(314.2, 305.4)--(314.3, 305.5)--(314.4, 305.5)--(314.5, 305.5)--(314.7, 305.5)--(315.1, 305.5)--(315.5, 305.5)--(316.0, 305.6)--(316.3, 305.6)--(316.2, 305.5)--(316.3, 305.4)--(316.3, 305.3)--(316.7, 305.3)--(316.7, 305.4)--(316.7, 305.5)--(316.9, 305.5)--(317.2, 305.6)--(317.5, 305.6)--(318.5, 305.6)--(319.6, 305.6)--(319.7, 305.5)--(320.2, 305.5)--(320.8, 305.5)--(321.9, 305.4)--(322.3, 305.4)--(322.4, 305.4)--(322.6, 305.4)--(322.9, 305.3)--(323.0, 305.3)--(323.0, 305.2)--(323.2, 305.1)--(323.3, 305.1)--(323.4, 305.0)--(323.5, 305.0)--(324.1, 304.7)--(324.5, 304.6)--(325.1, 304.4)--(325.1, 304.3)--(325.2, 304.2)--(325.2, 304.3)--(325.4, 304.3)--(325.4, 304.2)--(325.8, 304.1)--(325.9, 304.2)--(326.3, 304.1)--(326.3, 303.9)--(326.2, 303.7)--(326.3, 303.6)--(326.3, 303.7)--(326.4, 303.9)--(326.4, 304.1)--(326.8, 304.0)--(327.8, 303.9)--(327.9, 303.9)--(328.0, 303.9)--(328.1, 303.9)--(328.3, 303.9)--(328.6, 303.9)--(328.8, 303.8)--(328.8, 303.7)--(329.0, 303.6)--(329.1, 303.6)--(329.6, 303.6)--(330.2, 303.6)--(330.4, 303.5)--(330.9, 303.4)--(331.0, 303.4)--(331.1, 303.4)--(331.3, 303.3)--(331.4, 303.3)--(331.7, 303.2)--(332.3, 303.1)--(332.5, 303.0)--(332.8, 303.0)--(332.8, 302.9)--(333.4, 302.7)--(333.6, 302.6)--(333.8, 302.5)--(334.0, 302.4)--(334.1, 302.5)--(334.9, 302.1)--(335.1, 302.0)--(335.1, 301.9)--(335.8, 301.6)--(335.9, 301.5)--(336.3, 301.3)--(336.4, 301.3)--(336.7, 301.2)--(336.8, 301.2)--(336.9, 301.2)--(337.5, 300.9)--(337.6, 300.8)--(338.0, 300.7)--(338.4, 300.5)--(338.5, 300.5)--(338.7, 300.4)--(339.1, 300.0)--(339.2, 300.1)--(339.4, 300.0)--(339.9, 299.4)--(339.4, 298.9)--(339.2, 298.7)--(339.1, 298.3)--(339.0, 298.1)--(338.9, 298.0)--(338.4, 297.5)--(338.2, 297.3)--(338.1, 297.1)--(338.0, 297.1)--(338.1, 297.1)--(338.3, 297.2)--(338.9, 297.8)--(339.1, 298.0)--(339.2, 298.1)--(339.3, 298.3)--(339.4, 298.4)--(339.7, 298.8)--(340.0, 299.1)--(340.7, 298.8)--(340.7, 298.9)--(340.9, 298.8)--(341.0, 298.8)--(341.3, 298.7)--(342.2, 298.2)--(342.2, 298.1)--(342.4, 298.1)--(342.5, 298.3)--(344.1, 297.8)--(344.1, 297.6)--(344.2, 297.6)--(344.9, 297.5)--(344.9, 297.4)--(345.2, 297.4)--(345.2, 297.5)--(345.8, 297.6)--(346.2, 297.6)--(346.4, 297.6)--(347.1, 297.5)--(347.1, 297.6)--(347.3, 297.6)--(347.8, 297.6)--(347.9, 297.6)--(348.1, 297.6)--(348.3, 297.6)--(348.6, 297.7)--(349.2, 297.8)--(349.4, 297.8)--(349.5, 297.8)--(350.0, 298.0)--(350.1, 298.0)--(350.1, 297.9)--(350.2, 298.0)--(350.2, 298.1)--(350.3, 298.2)--(350.4, 298.2)--(350.9, 298.5)--(351.0, 298.5)--(351.3, 298.7)--(351.6, 299.0)--(351.7, 299.0)--(351.8, 299.0)--(351.8, 298.9)--(351.9, 299.0)--(352.1, 299.1)--(352.2, 299.2)--(352.5, 299.3)--(352.8, 299.5)--(352.9, 299.6)--(353.6, 300.0)--(353.9, 300.2)--(354.1, 300.4)--(354.2, 300.5)--(354.6, 300.9)--(354.8, 301.1)--(355.2, 301.5)--(355.0, 301.7)--(355.3, 302.0)--(355.7, 301.9)--(355.7, 301.7)--(355.8, 301.6)--(355.9, 301.6)--(355.9, 301.7)--(355.9, 301.8)--(355.8, 302.1)--(355.8, 302.2)--(355.8, 302.3)--(356.1, 302.6)--(356.0, 302.7)--(356.4, 303.0)--(356.6, 302.7)--(356.7, 302.8)--(356.8, 302.9)--(357.0, 302.7)--(357.1, 302.8)--(356.9, 303.0)--(357.0, 303.1)--(356.8, 303.2)--(357.4, 303.8)--(357.6, 303.5)--(357.8, 303.7)--(357.7, 303.8)--(357.6, 304.2)--(358.2, 304.8)--(358.3, 304.8)--(358.5, 304.9)--(358.9, 305.0)--(359.1, 305.1)--(360.5, 305.5)--(360.9, 305.5)--(361.1, 305.5)--(361.3, 305.5)--(361.7, 305.5)--(362.1, 305.4)--(362.3, 305.4)--(363.1, 305.2)--(363.3, 305.2)--(363.3, 305.1)--(363.4, 305.1)--(363.5, 305.2)--(363.6, 305.1)--(363.8, 305.1)--(364.1, 305.0)--(364.3, 304.9)--(364.7, 304.7)--(364.9, 304.5)--(365.2, 304.4)--(365.5, 304.0)--(365.6, 303.9)--(365.7, 303.7)--(365.8, 303.6)--(365.9, 303.5)--(365.9, 303.4)--(366.0, 303.3)--(366.1, 303.0)--(366.2, 302.6)--(366.1, 302.5)--(366.2, 302.4)--(366.3, 302.4)--(366.3, 302.3)--(366.2, 302.2)--(366.2, 302.1)--(366.4, 302.1)--(366.5, 302.2)--(366.6, 302.1)--(366.6, 302.0)--(366.6, 301.9)--(366.6, 301.8)--(366.6, 301.7)--(366.6, 301.4)--(366.6, 301.3)--(366.7, 300.8)--(366.7, 300.7)--(366.6, 300.7)--(366.7, 300.4)--(366.7, 300.2)--(366.7, 300.0)--(366.8, 299.3)--(366.8, 299.2)--(366.8, 298.9)--(366.7, 298.6)--(366.7, 298.5)--(366.7, 297.4)--(366.6, 297.4)--(366.4, 297.4)--(366.6, 296.6)--(366.7, 296.5)--(366.6, 295.0)--(366.5, 295.0)--(366.4, 294.7)--(366.4, 293.9)--(366.6, 293.9)--(366.7, 292.9)--(366.7, 292.8)--(366.6, 292.8)--(366.5, 292.7)--(366.5, 292.6)--(366.6, 292.5)--(366.7, 292.5)--(366.7, 292.4)--(366.7, 292.2)--(366.7, 291.8)--(366.6, 291.4)--(366.6, 291.3)--(366.7, 291.1)--(366.7, 291.0)--(366.6, 291.0)--(366.5, 291.0)--(366.4, 290.9)--(366.3, 290.9)--(366.3, 290.8)--(366.4, 290.7)--(366.5, 290.7)--(366.5, 290.8)--(366.6, 290.8)--(366.7, 290.8)--(366.8, 290.5)--(366.7, 290.3)--(366.8, 290.2)--(366.9, 289.7)--(366.9, 289.6)--(366.8, 289.6)--(366.8, 289.5)--(366.6, 289.4)--(366.3, 289.4)--(366.3, 289.5)--(365.0, 289.1)--(363.5, 288.6)--(363.4, 288.6)--(363.3, 288.6)--(363.2, 288.6)--(363.1, 288.6)--(363.1, 288.7)--(363.0, 288.7)--(363.0, 288.8)--(362.9, 288.8)--(362.8, 288.9)--(362.7, 289.0)--(362.6, 289.1)--(362.5, 289.1)--(362.5, 289.2)--(362.4, 289.2)--(362.4, 289.3)--(362.3, 289.3)--(362.2, 289.3)--(362.1, 289.3)--(362.1, 289.4)--(362.0, 289.4)--(361.9, 289.4)--(361.8, 289.4)--(361.7, 289.3)--(361.4, 289.2)--(361.3, 289.2)--(361.3, 289.1)--(361.6, 288.5)--(360.9, 288.1)--(361.5, 287.2)--(360.0, 286.3)--(360.2, 286.0)--(360.1, 286.0)--(359.8, 286.0)--(358.6, 286.1)--(358.4, 286.4)--(358.4, 286.5)--(358.2, 286.4)--(358.2, 286.3)--(357.9, 286.2)--(357.7, 286.1)--(357.6, 286.2)--(357.4, 286.3)--(357.2, 286.3)--(357.2, 286.5)--(357.2, 286.8)--(356.4, 286.4)--(356.5, 286.3)--(355.3, 285.9)--(355.2, 285.9)--(355.0, 285.8)--(355.0, 285.7)--(354.6, 285.6)--(354.2, 285.4)--(354.0, 285.3)--(353.8, 285.2)--(353.5, 284.9)--(354.7, 284.0)--(354.8, 284.0)--(354.6, 283.8)--(354.6, 283.7)--(354.6, 283.6)--(354.5, 283.6)--(354.4, 283.5)--(354.3, 283.5)--(354.1, 283.4)--(353.9, 283.4)--(353.6, 283.4)--(353.4, 283.4)--(353.3, 283.4)--(353.2, 283.3)--(353.1, 283.3)--(353.0, 283.1)--(352.9, 283.2)--(352.1, 283.5)--(352.3, 283.0)--(352.4, 282.8)--(352.4, 282.7)--(352.5, 282.5)--(352.6, 282.5)--(352.6, 282.4)--(352.7, 282.4)--(352.8, 282.3)--(352.9, 282.2)--(352.9, 282.1)--(352.9, 282.0)--(352.9, 281.9)--(352.9, 281.8)--(352.9, 281.7)--(352.9, 281.5)--(352.9, 281.4)--(352.8, 281.3)--(352.7, 281.3)--(352.7, 281.2)--(352.4, 281.1)--(352.5, 280.8)--(352.6, 280.6)--(352.6, 280.5)--(352.7, 280.5)--(352.7, 280.4)--(352.8, 280.4)--(352.8, 280.1)--(352.9, 279.8)--(352.9, 279.6)--(352.8, 279.5)--(352.9, 278.7)--(353.0, 278.7)--(353.0, 278.5)--(352.9, 278.5)--(353.0, 277.9)--(353.0, 277.8)--(353.0, 277.7)--(353.1, 277.7)--(353.1, 277.6)--(353.0, 277.6)--(353.0, 277.4)--(352.9, 276.9)--(352.9, 276.6)--(352.9, 276.3)--(352.8, 275.9)--(352.8, 275.8)--(352.9, 275.8)--(352.8, 275.8)--(352.8, 275.7)--(352.8, 275.6)--(352.8, 275.5)--(352.7, 275.3)--(352.7, 275.2)--(352.6, 275.2)--(352.6, 275.1)--(352.7, 275.1)--(352.7, 275.0)--(352.6, 275.1)--(352.6, 275.0)--(352.6, 274.9)--(352.7, 274.9)--(352.7, 274.8)--(352.6, 274.6)--(352.6, 274.4)--(352.6, 274.5)--(352.5, 274.5)--(352.5, 274.4)--(352.3, 273.8)--(352.4, 273.8)--(352.1, 273.1)--(353.3, 272.5)--(353.3, 270.6)--(353.4, 267.8)--(353.4, 266.8)--(353.8, 264.9)--(354.0, 264.3)--(354.1, 263.7)--(354.2, 263.3)--(354.2, 263.2)--(353.9, 262.8)--(353.8, 262.7)--(354.0, 262.4)--(354.3, 262.0)--(354.4, 261.8)--(354.8, 261.1)--(354.8, 260.9)--(354.7, 260.8)--(354.5, 260.7)--(354.8, 260.4)--(355.1, 260.0)--(355.0, 260.0)--(354.9, 259.9)--(355.1, 259.8)--(355.3, 259.8)--(355.6, 259.7)--(355.7, 259.6)--(355.8, 259.6)--(355.9, 259.6)--(356.2, 259.4)--(356.5, 259.3)--(356.8, 259.1)--(356.5, 258.8)--(357.1, 258.4)--(357.2, 258.3)--(357.4, 258.1)--(357.6, 258.0)--(357.8, 257.8)--(357.9, 257.7)--(358.1, 257.5)--(358.2, 257.3)--(358.3, 257.0)--(358.5, 256.5)--(358.7, 255.9)--(358.8, 255.5)--(358.9, 255.0)--(359.0, 254.6)--(359.0, 254.1)--(359.1, 253.6)--(359.1, 253.3)--(359.1, 252.9)--(359.0, 252.4)--(359.0, 251.9)--(359.0, 251.6)--(359.0, 251.5)--(358.8, 250.5)--(358.7, 250.2)--(358.7, 250.1)--(358.7, 250.0)--(358.5, 249.4)--(358.4, 249.2)--(359.3, 248.9)--(359.5, 248.8)--(360.4, 248.1)--(360.9, 247.6)--(361.3, 247.3)--(361.4, 247.2)--(361.5, 247.1)--(361.6, 247.1)--(361.1, 245.8)--(360.8, 245.1)--(360.6, 245.0)--(360.3, 244.5)--(360.2, 244.2)--(359.7, 243.4)--(359.5, 242.9)--(359.4, 242.9)--(359.3, 242.8)--(359.3, 242.6)--(359.3, 242.5)--(359.1, 242.2)--(358.8, 241.7)--(358.7, 241.3)--(358.4, 241.4)--(358.1, 241.4)--(357.5, 241.5)--(357.2, 241.5)--(356.9, 241.5)--(356.6, 241.5)--(356.4, 241.4)--(356.0, 241.2)--(355.3, 240.8)--(353.9, 240.0)--(353.6, 239.9)--(353.5, 239.9)--(353.4, 239.9)--(353.3, 239.9)--(353.2, 239.9)--(353.2, 240.0)--(353.0, 240.2)--(352.7, 240.4)--(352.2, 240.7)--(351.4, 241.2)--(350.7, 241.6)--(350.4, 241.2)--(350.0, 240.7)--(349.7, 240.4)--(349.3, 240.1)--(348.4, 239.4)--(348.1, 239.1)--(347.8, 238.7)--(347.7, 238.4)--(347.6, 238.2)--(347.5, 238.0)--(347.3, 237.8)--(347.1, 237.2)--(347.0, 236.9)--(346.9, 236.5)--(346.8, 236.2)--(346.7, 235.9)--(346.7, 235.4)--(346.6, 235.1)--(346.6, 234.6)--(346.7, 233.7)--(346.6, 233.2)--(346.6, 232.8)--(346.4, 232.3)--(346.4, 232.2)--(346.3, 232.1)--(346.1, 231.7)--(345.8, 231.3)--(346.0, 231.1)--(346.3, 231.0)--(346.5, 230.9)--(346.7, 229.5)--(346.7, 228.9)--(346.8, 228.0)--(346.8, 227.8)--(346.8, 227.7)--(346.9, 227.5)--(347.0, 227.4)--(347.0, 227.3)--(346.9, 227.2)--(346.6, 227.0)--(346.5, 226.9)--(346.4, 226.8)--(346.3, 226.7)--(346.3, 226.6)--(346.3, 226.5)--(346.2, 226.4)--(346.2, 226.3)--(346.1, 225.9)--(345.9, 225.4)--(345.7, 224.9)--(345.6, 224.5)--(345.5, 224.1)--(345.4, 224.0)--(345.4, 223.9)--(345.3, 223.8)--(345.3, 223.7)--(345.2, 223.6)--(344.8, 223.2)--(344.5, 222.9)--(344.1, 222.6)--(343.6, 222.1)--(343.3, 222.0)--(342.9, 221.8)--(342.9, 221.7)--(342.6, 221.6)--(342.5, 221.6)--(342.3, 221.5)--(342.1, 221.5)--(341.9, 221.5)--(341.8, 221.5)--(341.7, 221.5)--(341.5, 221.5)--(341.1, 221.5)--(340.9, 221.4)--(340.8, 221.3)--(340.7, 221.2)--(340.6, 221.0)--(340.1, 220.2)--(339.3, 218.4)--(339.3, 218.3)--(339.2, 218.2)--(339.2, 217.8)--(339.2, 217.3)--(339.2, 217.1)--(339.3, 216.9)--(339.4, 216.6)--(339.6, 216.1)--(339.7, 215.9)--(339.9, 215.4)--(340.0, 214.8)--(340.0, 214.5)--(340.0, 214.4)--(339.9, 214.4)--(339.8, 214.3)--(339.7, 214.3)--(339.7, 214.2)--(339.6, 214.2)--(339.5, 214.2)--(339.5, 214.1)--(339.4, 214.0)--(339.4, 213.9)--(339.3, 213.9)--(339.3, 213.8)--(339.0, 213.1)--(338.9, 212.8)--(338.3, 211.1)--(337.6, 209.4)--(337.3, 208.6)--(337.2, 208.3)--(337.2, 208.2)--(336.6, 208.4)--(336.5, 208.4)--(336.5, 208.5)--(336.5, 208.6)--(336.6, 208.8)--(336.7, 209.2)--(336.3, 209.4)--(336.2, 209.6)--(336.1, 209.8)--(336.0, 209.9)--(335.9, 209.7)--(335.7, 209.7)--(335.4, 209.5)--(335.3, 209.5)--(335.1, 210.0)--(334.7, 211.1)--(334.7, 211.2)--(334.5, 211.1)--(333.9, 210.9)--(333.5, 210.8)--(333.5, 210.7)--(333.5, 210.9)--(333.5, 211.2)--(333.4, 211.5)--(333.4, 212.0)--(333.4, 212.4)--(333.3, 212.7)--(333.3, 213.0)--(333.2, 213.4)--(333.0, 213.8)--(332.8, 214.2)--(332.6, 214.6)--(332.4, 215.1)--(332.2, 215.5)--(332.1, 215.6)--(332.0, 215.7)--(331.8, 215.9)--(331.7, 215.9)--(331.6, 216.0)--(331.6, 216.1)--(331.5, 216.1)--(331.5, 216.2)--(331.6, 216.3)--(331.6, 216.5)--(331.7, 216.6)--(331.7, 216.7)--(331.7, 216.8)--(331.6, 216.8)--(331.6, 216.9)--(331.5, 216.9)--(331.2, 217.1)--(330.7, 217.2)--(330.4, 217.3)--(330.3, 217.4)--(330.1, 217.6)--(330.0, 217.7)--(329.9, 217.8)--(329.8, 218.1)--(329.5, 219.0)--(329.2, 220.4)--(329.0, 221.5)--(328.6, 223.3)--(328.5, 224.1)--(328.3, 225.2)--(328.2, 225.6)--(328.1, 225.8)--(327.9, 226.6)--(327.7, 227.1)--(327.5, 227.6)--(327.3, 228.0)--(327.2, 228.1)--(327.2, 228.2)--(327.1, 228.4)--(327.1, 228.5)--(326.9, 229.0)--(326.7, 229.8)--(326.5, 230.4)--(326.4, 230.7)--(326.3, 231.1)--(326.2, 231.4)--(326.1, 231.7)--(325.9, 232.0)--(325.8, 232.2)--(325.6, 232.4)--(325.5, 232.6)--(325.2, 233.2)--(324.9, 234.3)--(324.9, 234.5)--(324.8, 234.6)--(324.8, 234.7)--(324.8, 234.9)--(324.8, 235.1)--(324.8, 235.2)--(324.8, 235.3)--(324.8, 235.5)--(324.7, 235.6)--(324.7, 235.8)--(324.3, 236.4)--(324.2, 236.7)--(324.0, 236.9)--(323.1, 238.0)--(322.7, 238.4)--(322.4, 238.8)--(322.0, 239.1)--(321.8, 239.5)--(321.7, 239.5)--(321.7, 239.6)--(321.7, 239.8)--(321.6, 240.0)--(321.5, 240.3)--(321.5, 240.5)--(321.4, 240.6)--(321.4, 240.7)--(321.3, 240.7)--(321.3, 240.8)--(321.2, 240.8)--(321.1, 240.8)--(321.0, 240.8)--(320.7, 240.8)--(320.7, 240.9)--(320.7, 241.2)--(320.7, 241.6)--(320.6, 241.7)--(320.6, 241.8)--(320.5, 242.0)--(320.4, 242.2)--(320.3, 242.4)--(320.2, 242.5)--(320.2, 242.6)--(320.2, 242.7)--(320.1, 242.8)--(320.1, 243.0)--(320.1, 243.1)--(320.2, 243.2)--(320.2, 243.3)--(320.4, 243.7)--(320.4, 243.8)--(320.4, 243.9)--(320.4, 244.0)--(320.3, 244.6)--(320.3, 244.7)--(320.4, 245.0)--(320.5, 245.1)--(320.7, 245.3)--(321.1, 245.8)--(321.7, 246.5)--(322.1, 246.8)--(322.6, 247.2)--(322.7, 247.4)--(323.0, 247.7)--(323.4, 248.2)--(323.7, 248.5)--(323.9, 248.8)--(324.0, 249.0)--(324.1, 249.3)--(324.3, 249.9)--(324.4, 250.0)--(324.4, 250.2)--(324.5, 250.4)--(324.6, 250.6)--(324.7, 250.8)--(325.0, 251.2)--(325.4, 251.7)--(325.7, 252.2)--(325.8, 252.4)--(325.9, 252.5)--(326.0, 252.5)--(326.1, 252.7)--(326.2, 252.9)--(326.3, 253.0)--(326.8, 254.0)--(327.0, 254.6)--(327.2, 254.9)--(327.3, 255.4)--(327.7, 258.1)--(327.7, 258.4)--(327.7, 258.5)--(327.7, 258.6)--(327.6, 258.7)--(327.6, 258.8)--(326.9, 260.2)--(326.1, 261.8)--(325.7, 262.6)--(325.7, 262.8)--(325.6, 263.0)--(325.5, 263.7)--(325.5, 263.9)--(325.4, 265.1)--(325.4, 265.2)--(325.1, 264.9)--(325.0, 264.8)--(325.0, 264.7)--(325.0, 264.6)--(324.8, 263.8)--(324.8, 263.7)--(324.7, 263.6)--(324.6, 263.5)--(324.5, 263.4)--(324.3, 263.2)--(324.1, 263.0)--(323.4, 262.6)--(322.6, 263.5)--(321.4, 264.9)--(321.2, 265.2)--(321.1, 265.2)--(321.0, 265.6)--(320.9, 266.1)--(320.7, 266.5)--(320.3, 267.1)--(320.1, 267.4)--(320.1, 267.5)--(320.1, 267.7)--(320.1, 268.0)--(320.2, 269.7)--(320.3, 270.1)--(320.4, 270.2)--(320.5, 270.4)--(319.4, 271.1)--(317.9, 271.9)--(316.5, 272.8)--(315.4, 273.5)--(314.9, 273.8)--(314.8, 273.9)--(314.7, 274.0)--(314.6, 274.0)--(314.6, 274.1)--(314.7, 274.1)--(316.5, 274.5)--(316.9, 274.6)--(317.5, 274.8)--(317.1, 275.3)--(317.1, 275.4)--(317.1, 275.5)--(316.9, 275.8)--(316.7, 276.1)--(316.6, 276.1)--(316.5, 276.2)--(316.4, 276.4)--(316.1, 276.7)--(316.2, 276.8)--(316.4, 277.0)--(315.9, 277.4)--(315.5, 277.6)--(315.2, 277.8)--(315.4, 278.2)--(315.6, 278.7)--(315.7, 278.9)--(315.8, 279.2)--(314.8, 279.8)--(314.7, 279.9)--(314.6, 280.0)--(314.5, 280.1)--(314.3, 280.2)--(314.6, 280.5)--(316.3, 283.5)--(316.8, 284.4)--(317.2, 284.9)--(317.4, 285.4)--(317.7, 285.9)--(317.8, 286.1)--(317.9, 286.2)--(317.7, 286.4)--(317.8, 286.5)--(317.6, 286.8)--(317.7, 286.9)--(317.5, 287.0)--(317.4, 287.1)--(317.3, 287.1)--(317.3, 287.0)--(317.2, 287.4)--(317.1, 287.7)--(316.9, 287.9)--(316.9, 288.1)--(316.7, 288.3)--(316.7, 288.6)--(316.6, 288.8)--(316.3, 288.9)--(316.0, 289.0)--(315.0, 289.4)--(313.4, 290.3)--(312.6, 290.7)--(312.6, 290.8)--(312.5, 290.8)--(312.4, 290.8)--(312.3, 290.9)--(312.3, 291.0)--(312.0, 291.9)--(312.7, 292.3)--(312.7, 292.4)--(313.2, 294.1)--(313.3, 294.2)--(313.5, 294.9)--(314.0, 296.3)--(314.1, 296.5)--(314.3, 296.8)--(315.0, 297.7)--(315.1, 297.8)--(315.2, 297.7)--(315.6, 298.2)--(315.5, 298.3)--(315.5, 298.4)--(315.5, 298.5)--(315.5, 298.6)--(315.5, 298.8)--(315.0, 298.4)--(314.5, 299.3)--(315.3, 299.7)--(315.2, 300.0)--(315.1, 300.5)--(315.1, 300.7)--(315.2, 301.0)--(315.2, 301.2)--(315.2, 301.3)--(315.2, 301.5)--(315.1, 301.8)--(314.5, 303.8)--(313.9, 303.6)--(313.9, 303.7)--(313.8, 303.8)--(313.7, 304.2)--(313.7, 304.5)--(313.6, 304.5)--(313.5, 304.5)--(313.4, 304.9)--cycle; +Sutton = (285.5, 96.6)--(284.0, 99.3)--(283.8, 99.2)--(283.7, 99.3)--(282.6, 98.4)--(281.5, 99.8)--(281.0, 100.4)--(280.6, 100.9)--(280.1, 101.5)--(280.5, 101.7)--(280.4, 102.1)--(280.0, 103.2)--(279.9, 103.3)--(279.9, 103.7)--(279.9, 103.8)--(280.0, 103.8)--(280.2, 103.9)--(280.2, 104.2)--(280.2, 104.3)--(280.4, 104.5)--(280.7, 104.6)--(281.3, 104.7)--(280.7, 106.2)--(279.1, 105.8)--(277.0, 105.4)--(276.2, 105.3)--(275.9, 105.2)--(275.9, 105.7)--(276.0, 106.1)--(275.9, 106.0)--(275.8, 106.0)--(274.9, 105.9)--(274.6, 105.8)--(274.2, 105.8)--(274.1, 105.8)--(274.0, 105.8)--(273.9, 105.8)--(273.9, 105.9)--(273.8, 106.2)--(273.7, 106.5)--(273.5, 107.1)--(273.3, 107.7)--(273.1, 108.3)--(272.9, 109.3)--(272.6, 109.2)--(272.5, 109.6)--(272.4, 109.8)--(272.3, 109.9)--(271.9, 110.3)--(271.7, 110.5)--(271.5, 110.6)--(271.4, 110.7)--(269.8, 112.0)--(269.6, 112.2)--(269.2, 112.5)--(269.0, 112.8)--(268.2, 113.5)--(267.6, 114.1)--(267.5, 114.2)--(267.3, 114.3)--(267.1, 114.5)--(266.2, 115.1)--(265.5, 115.8)--(265.3, 115.9)--(264.6, 116.5)--(263.6, 117.3)--(263.5, 117.4)--(263.5, 117.5)--(263.2, 117.6)--(262.8, 117.8)--(262.6, 117.9)--(262.0, 118.2)--(261.5, 118.5)--(261.0, 118.8)--(260.8, 118.9)--(259.4, 119.4)--(258.6, 119.7)--(257.4, 120.2)--(257.4, 120.1)--(257.3, 119.8)--(257.0, 120.0)--(257.0, 120.2)--(257.1, 120.3)--(256.7, 120.4)--(256.5, 120.4)--(256.4, 120.3)--(256.3, 120.3)--(256.2, 120.2)--(256.2, 120.1)--(256.0, 119.8)--(255.8, 119.4)--(255.8, 119.1)--(255.7, 119.0)--(255.6, 118.8)--(255.3, 118.5)--(255.2, 118.5)--(255.0, 118.5)--(254.7, 117.7)--(254.3, 117.0)--(253.9, 116.2)--(253.8, 116.3)--(253.8, 116.2)--(253.7, 116.2)--(253.6, 116.2)--(253.4, 116.6)--(253.3, 116.5)--(253.1, 116.5)--(252.9, 116.3)--(252.7, 116.2)--(252.3, 115.9)--(251.8, 115.5)--(250.1, 114.3)--(250.0, 114.3)--(248.1, 112.9)--(247.6, 112.5)--(247.2, 112.3)--(246.8, 112.0)--(246.6, 111.8)--(245.8, 111.2)--(246.4, 109.6)--(246.6, 108.7)--(246.3, 107.9)--(246.1, 107.6)--(246.1, 107.5)--(245.7, 106.6)--(245.2, 105.6)--(245.2, 105.4)--(245.1, 105.3)--(245.0, 105.3)--(243.9, 104.8)--(243.8, 104.8)--(243.3, 104.8)--(243.0, 104.8)--(242.0, 104.8)--(241.5, 104.8)--(241.1, 104.7)--(240.6, 104.7)--(240.6, 104.8)--(240.4, 104.8)--(240.0, 105.4)--(239.6, 106.0)--(238.9, 106.8)--(238.1, 107.6)--(237.0, 108.7)--(236.1, 109.6)--(236.2, 109.7)--(235.8, 110.0)--(235.2, 110.6)--(234.9, 110.9)--(234.5, 111.3)--(234.1, 112.0)--(235.0, 112.7)--(235.1, 112.7)--(235.0, 112.8)--(235.4, 113.1)--(236.0, 113.5)--(236.1, 113.6)--(236.2, 113.8)--(236.6, 114.3)--(236.9, 114.8)--(237.7, 115.8)--(238.0, 116.0)--(238.2, 116.0)--(238.5, 115.9)--(239.2, 116.5)--(239.1, 116.8)--(238.9, 116.9)--(239.5, 117.5)--(240.0, 117.9)--(240.5, 118.3)--(240.9, 118.6)--(241.3, 119.0)--(241.9, 119.4)--(242.6, 119.9)--(242.5, 120.2)--(242.5, 120.3)--(242.3, 121.0)--(242.2, 121.5)--(242.1, 122.3)--(242.2, 122.4)--(242.0, 122.7)--(241.9, 122.9)--(241.8, 123.2)--(241.6, 123.8)--(241.5, 124.1)--(241.5, 124.2)--(241.4, 124.3)--(241.3, 124.6)--(241.1, 125.4)--(241.0, 125.7)--(240.7, 126.2)--(240.7, 126.5)--(240.6, 126.6)--(240.5, 127.1)--(240.4, 127.3)--(240.4, 127.4)--(240.4, 127.5)--(240.4, 127.6)--(240.3, 127.9)--(240.3, 128.3)--(240.2, 128.7)--(239.6, 128.6)--(239.6, 128.5)--(239.0, 128.6)--(239.1, 128.7)--(239.1, 128.8)--(239.1, 129.1)--(239.1, 129.3)--(239.1, 129.5)--(239.1, 129.8)--(239.1, 130.1)--(239.0, 130.2)--(239.1, 130.3)--(239.1, 130.4)--(239.1, 130.5)--(239.1, 130.7)--(239.1, 131.1)--(239.0, 131.3)--(239.0, 131.7)--(238.9, 132.0)--(238.9, 132.1)--(238.8, 132.3)--(238.7, 132.8)--(238.7, 133.0)--(238.6, 133.5)--(238.5, 134.0)--(238.5, 134.3)--(238.4, 134.5)--(238.4, 134.6)--(238.5, 134.9)--(238.4, 135.0)--(238.4, 135.1)--(238.3, 135.3)--(238.1, 135.7)--(238.1, 135.8)--(238.1, 135.9)--(238.1, 136.0)--(238.0, 136.2)--(237.9, 136.5)--(237.8, 136.7)--(237.6, 137.1)--(237.5, 137.4)--(237.3, 137.6)--(237.2, 137.7)--(237.1, 137.8)--(237.0, 138.2)--(236.8, 138.5)--(236.5, 139.1)--(235.9, 140.0)--(235.8, 140.2)--(235.8, 140.3)--(235.7, 140.4)--(235.6, 140.8)--(235.4, 141.1)--(234.3, 141.8)--(233.3, 142.6)--(233.2, 142.6)--(232.9, 143.0)--(232.1, 143.8)--(232.0, 143.8)--(231.9, 143.9)--(231.7, 144.0)--(231.2, 144.5)--(230.9, 144.8)--(230.5, 144.0)--(230.4, 144.0)--(230.3, 144.2)--(229.5, 144.7)--(229.0, 145.1)--(228.4, 145.6)--(228.2, 145.7)--(228.0, 145.7)--(227.7, 145.8)--(227.2, 145.8)--(226.9, 145.6)--(226.5, 145.6)--(225.8, 145.7)--(225.5, 145.8)--(225.4, 145.1)--(225.4, 144.9)--(225.3, 144.9)--(224.1, 145.1)--(223.0, 145.3)--(222.6, 145.4)--(222.4, 145.5)--(222.4, 145.6)--(222.5, 145.7)--(222.6, 146.5)--(222.7, 146.9)--(222.8, 147.5)--(222.8, 147.9)--(222.8, 148.0)--(222.9, 148.2)--(222.9, 148.4)--(222.9, 148.7)--(222.9, 149.5)--(222.9, 150.0)--(222.8, 150.5)--(222.8, 150.7)--(222.8, 150.8)--(222.7, 151.6)--(222.7, 152.2)--(222.7, 152.4)--(222.7, 152.5)--(222.8, 152.5)--(222.8, 153.2)--(222.7, 153.9)--(222.7, 154.0)--(222.6, 154.4)--(222.6, 154.5)--(222.6, 154.6)--(222.6, 154.7)--(222.6, 154.8)--(222.6, 154.9)--(222.5, 155.2)--(222.5, 155.5)--(222.4, 156.0)--(222.3, 156.4)--(222.3, 156.9)--(222.3, 157.0)--(222.3, 157.3)--(222.2, 158.3)--(222.2, 159.1)--(222.3, 159.5)--(222.3, 160.2)--(222.3, 160.8)--(222.4, 161.1)--(222.5, 161.2)--(222.5, 161.9)--(222.6, 162.8)--(222.7, 163.4)--(222.8, 164.0)--(223.7, 163.4)--(223.8, 163.6)--(224.0, 163.9)--(224.3, 164.6)--(224.4, 164.8)--(224.4, 165.0)--(224.6, 165.2)--(224.7, 165.4)--(225.0, 165.6)--(225.2, 165.8)--(225.6, 166.2)--(225.7, 166.3)--(225.9, 166.4)--(226.1, 166.6)--(226.2, 166.8)--(226.3, 166.8)--(226.4, 166.9)--(226.5, 166.9)--(226.5, 167.0)--(226.4, 167.6)--(226.4, 167.7)--(226.3, 167.8)--(226.3, 168.1)--(226.3, 168.3)--(226.2, 168.5)--(226.1, 168.8)--(226.0, 169.0)--(226.0, 169.3)--(226.0, 169.4)--(226.0, 169.5)--(225.9, 169.7)--(225.9, 169.8)--(225.9, 169.9)--(225.9, 170.1)--(225.9, 170.2)--(225.8, 170.4)--(225.8, 170.5)--(225.8, 170.6)--(226.1, 170.7)--(226.3, 170.8)--(226.4, 170.9)--(226.5, 171.0)--(226.6, 171.0)--(226.8, 171.1)--(227.2, 171.3)--(227.8, 171.5)--(227.9, 171.5)--(228.1, 171.6)--(229.3, 172.0)--(229.4, 171.5)--(229.4, 171.3)--(229.4, 171.2)--(229.5, 170.7)--(229.6, 170.3)--(229.6, 170.0)--(229.7, 169.8)--(229.8, 169.6)--(229.8, 169.4)--(230.0, 169.0)--(229.8, 168.9)--(230.0, 168.7)--(231.2, 167.7)--(231.9, 167.0)--(232.3, 166.6)--(233.4, 165.5)--(234.3, 164.8)--(236.5, 163.4)--(238.3, 162.2)--(239.0, 161.7)--(239.3, 161.5)--(239.5, 161.5)--(239.6, 161.4)--(239.7, 161.4)--(239.8, 161.3)--(239.9, 161.3)--(240.2, 161.3)--(240.3, 161.2)--(240.6, 161.0)--(240.8, 160.8)--(240.9, 160.8)--(241.0, 160.7)--(241.1, 160.9)--(241.2, 161.0)--(241.4, 161.3)--(241.5, 161.5)--(241.7, 161.8)--(242.0, 162.2)--(242.1, 162.4)--(242.3, 162.6)--(242.5, 163.0)--(242.8, 163.5)--(243.3, 164.2)--(244.0, 165.1)--(243.9, 165.2)--(243.8, 165.2)--(244.1, 165.7)--(244.2, 165.7)--(244.2, 165.6)--(244.5, 166.0)--(244.4, 166.1)--(244.2, 166.2)--(244.4, 166.4)--(244.5, 166.5)--(244.6, 166.6)--(244.7, 166.8)--(244.9, 167.0)--(245.0, 167.2)--(245.1, 167.4)--(245.2, 167.5)--(245.3, 167.7)--(245.4, 167.9)--(245.6, 168.2)--(245.8, 168.5)--(245.9, 168.7)--(246.1, 169.1)--(246.2, 169.2)--(246.3, 169.2)--(246.4, 169.4)--(246.4, 169.5)--(246.4, 169.6)--(246.5, 169.7)--(246.6, 169.7)--(246.6, 169.9)--(246.8, 169.7)--(246.9, 169.6)--(247.0, 169.6)--(247.1, 169.5)--(247.3, 169.5)--(247.3, 169.4)--(247.4, 169.4)--(248.0, 169.0)--(248.1, 168.9)--(248.2, 168.8)--(248.4, 168.6)--(248.9, 168.3)--(249.3, 168.0)--(250.0, 167.6)--(251.0, 168.8)--(252.0, 167.7)--(253.2, 166.3)--(253.3, 166.4)--(253.8, 166.8)--(255.0, 167.7)--(255.9, 168.4)--(256.0, 168.5)--(256.6, 168.8)--(256.7, 168.8)--(256.8, 168.9)--(257.7, 169.7)--(257.9, 169.5)--(258.2, 169.7)--(258.3, 169.7)--(259.1, 168.7)--(259.3, 168.9)--(259.7, 168.6)--(259.8, 168.5)--(259.9, 168.4)--(260.1, 168.2)--(260.2, 168.1)--(260.1, 167.9)--(260.4, 167.8)--(260.6, 167.9)--(260.7, 167.8)--(260.8, 167.7)--(260.8, 167.6)--(261.2, 167.5)--(261.6, 167.1)--(262.5, 168.0)--(263.2, 168.6)--(263.6, 168.9)--(264.2, 169.5)--(264.4, 169.6)--(264.5, 169.7)--(265.2, 170.0)--(265.4, 170.0)--(265.4, 170.1)--(265.5, 170.1)--(265.6, 170.2)--(265.8, 170.4)--(266.4, 171.0)--(267.0, 171.6)--(267.3, 171.9)--(267.4, 171.8)--(267.7, 172.0)--(267.8, 172.2)--(267.9, 172.3)--(268.1, 172.5)--(268.9, 173.6)--(269.7, 174.7)--(270.3, 175.6)--(270.8, 176.2)--(271.2, 176.0)--(271.4, 175.8)--(271.8, 175.6)--(272.1, 175.5)--(272.2, 175.4)--(272.5, 175.4)--(272.7, 175.3)--(272.9, 175.3)--(273.1, 175.3)--(273.2, 175.2)--(273.3, 175.3)--(273.4, 175.2)--(273.5, 175.1)--(273.7, 174.9)--(274.1, 174.6)--(274.1, 174.5)--(274.2, 174.4)--(274.3, 174.2)--(274.3, 174.1)--(274.8, 173.7)--(275.0, 173.6)--(275.1, 173.6)--(275.4, 173.4)--(275.5, 173.2)--(275.6, 173.1)--(275.8, 172.8)--(275.9, 172.6)--(276.1, 172.5)--(276.3, 172.4)--(276.4, 172.3)--(276.6, 172.3)--(276.7, 172.3)--(276.7, 172.2)--(276.8, 172.1)--(276.8, 172.0)--(276.9, 171.9)--(277.0, 171.6)--(277.0, 171.3)--(277.2, 171.1)--(277.3, 170.9)--(277.4, 170.7)--(277.5, 170.4)--(277.6, 170.3)--(277.7, 170.4)--(278.1, 170.4)--(278.2, 170.5)--(278.3, 170.5)--(278.4, 170.5)--(278.5, 170.5)--(278.6, 170.5)--(278.7, 170.5)--(278.8, 170.5)--(278.9, 170.5)--(278.9, 170.4)--(279.0, 170.5)--(279.1, 170.5)--(279.2, 170.5)--(279.3, 170.5)--(279.3, 170.6)--(279.9, 170.6)--(280.0, 170.6)--(280.2, 170.5)--(280.4, 170.4)--(280.6, 170.2)--(280.8, 170.5)--(281.0, 170.8)--(281.2, 171.0)--(281.5, 171.1)--(281.9, 171.4)--(282.1, 171.5)--(282.2, 171.5)--(282.2, 171.4)--(282.3, 171.4)--(282.4, 171.4)--(282.4, 171.6)--(282.4, 171.7)--(282.5, 171.7)--(282.5, 171.8)--(282.6, 171.9)--(282.7, 171.9)--(282.8, 171.9)--(282.9, 171.8)--(284.0, 172.1)--(284.2, 172.1)--(285.3, 172.3)--(286.2, 172.5)--(286.3, 172.6)--(286.5, 172.6)--(286.5, 172.5)--(287.0, 172.6)--(288.0, 172.8)--(289.5, 173.1)--(290.1, 173.2)--(290.2, 173.2)--(290.3, 173.3)--(290.4, 173.4)--(292.1, 173.7)--(292.9, 173.4)--(293.6, 172.6)--(293.7, 172.5)--(293.8, 172.3)--(293.9, 172.3)--(294.4, 172.6)--(294.7, 172.7)--(294.8, 172.7)--(295.0, 172.8)--(295.2, 172.8)--(295.3, 172.8)--(295.4, 172.8)--(295.6, 172.9)--(295.8, 172.9)--(296.5, 173.3)--(296.6, 173.3)--(296.8, 173.4)--(296.9, 173.4)--(297.0, 173.4)--(297.3, 173.4)--(297.4, 173.5)--(297.6, 173.6)--(297.8, 173.7)--(298.0, 173.8)--(298.2, 173.9)--(298.5, 174.1)--(298.6, 174.1)--(298.7, 174.2)--(298.8, 174.2)--(299.0, 174.1)--(299.2, 174.0)--(299.3, 173.9)--(299.7, 173.7)--(300.0, 173.5)--(300.1, 173.4)--(300.2, 173.3)--(300.3, 173.3)--(300.2, 173.3)--(300.0, 172.9)--(299.8, 172.7)--(300.1, 172.5)--(300.4, 172.2)--(300.7, 171.9)--(300.8, 171.8)--(301.3, 171.3)--(301.6, 171.0)--(302.1, 170.6)--(302.2, 170.4)--(302.4, 170.3)--(302.5, 170.1)--(302.5, 170.0)--(302.3, 169.8)--(302.2, 169.6)--(302.0, 169.4)--(301.8, 169.1)--(301.7, 169.0)--(302.4, 168.8)--(303.0, 168.4)--(303.1, 168.4)--(303.0, 168.3)--(303.0, 168.2)--(302.8, 168.2)--(302.7, 168.1)--(302.6, 168.1)--(302.6, 168.0)--(302.6, 167.6)--(302.7, 167.3)--(302.9, 166.3)--(302.9, 165.9)--(303.0, 165.9)--(303.1, 165.4)--(303.1, 165.1)--(303.2, 164.9)--(302.9, 164.8)--(302.1, 164.6)--(302.1, 164.5)--(302.6, 164.0)--(303.3, 163.2)--(303.6, 162.9)--(303.7, 162.7)--(303.8, 162.4)--(303.8, 162.2)--(303.9, 161.8)--(304.1, 161.2)--(304.3, 160.4)--(304.5, 159.5)--(304.6, 159.2)--(304.7, 159.0)--(304.8, 158.7)--(304.9, 158.4)--(305.1, 157.8)--(305.2, 157.8)--(305.4, 157.3)--(305.3, 157.2)--(305.1, 157.1)--(304.7, 157.1)--(304.8, 156.5)--(304.5, 156.4)--(304.0, 156.3)--(304.1, 156.3)--(304.9, 155.8)--(305.5, 155.5)--(306.0, 155.3)--(306.2, 155.1)--(306.3, 154.9)--(306.4, 154.6)--(306.4, 154.4)--(306.3, 154.4)--(306.2, 154.3)--(306.3, 154.3)--(306.6, 153.6)--(307.0, 152.8)--(307.1, 152.7)--(307.3, 152.4)--(307.3, 152.3)--(307.3, 152.2)--(307.3, 152.1)--(307.3, 151.8)--(307.3, 151.7)--(307.3, 151.5)--(307.3, 151.4)--(307.4, 151.0)--(307.5, 150.8)--(307.5, 150.6)--(307.6, 150.0)--(307.8, 149.1)--(307.8, 148.9)--(307.9, 148.8)--(307.9, 148.6)--(308.0, 148.5)--(308.0, 148.2)--(308.1, 148.1)--(308.2, 147.7)--(308.2, 147.3)--(308.3, 147.0)--(308.3, 146.6)--(308.3, 146.5)--(307.6, 146.2)--(306.9, 146.0)--(306.9, 145.9)--(306.9, 145.8)--(307.3, 145.7)--(307.6, 145.6)--(307.9, 145.4)--(308.0, 145.2)--(308.1, 145.1)--(308.1, 145.0)--(308.7, 145.1)--(308.8, 145.1)--(308.8, 145.2)--(308.7, 145.2)--(308.9, 145.3)--(309.2, 143.7)--(308.9, 143.5)--(309.0, 143.4)--(309.0, 143.1)--(309.1, 142.8)--(308.8, 142.6)--(308.9, 142.4)--(308.8, 142.4)--(308.7, 142.4)--(308.9, 141.7)--(308.8, 141.4)--(308.9, 141.2)--(308.4, 141.1)--(308.6, 140.6)--(308.5, 140.6)--(308.6, 140.0)--(308.3, 139.9)--(308.2, 140.0)--(307.9, 139.9)--(308.0, 139.6)--(308.6, 139.0)--(308.6, 138.9)--(307.6, 138.8)--(307.5, 139.0)--(306.7, 138.7)--(306.8, 138.2)--(306.8, 138.1)--(307.0, 137.3)--(307.1, 137.1)--(309.0, 137.5)--(309.3, 135.7)--(309.5, 134.7)--(309.7, 133.5)--(309.9, 132.8)--(310.0, 132.3)--(310.7, 132.4)--(310.7, 132.3)--(310.8, 132.0)--(311.0, 131.2)--(311.2, 130.3)--(311.3, 129.6)--(311.4, 129.0)--(311.5, 128.4)--(311.6, 128.0)--(311.7, 127.5)--(312.0, 126.3)--(312.1, 125.3)--(312.1, 125.2)--(312.4, 125.2)--(312.5, 124.2)--(312.2, 124.2)--(311.4, 124.1)--(311.2, 124.3)--(311.1, 124.0)--(311.1, 123.9)--(310.8, 124.0)--(309.8, 123.9)--(307.0, 123.6)--(306.4, 123.5)--(306.2, 123.5)--(306.1, 123.4)--(305.9, 123.3)--(305.6, 123.1)--(305.5, 123.1)--(305.4, 123.4)--(305.5, 123.5)--(305.5, 123.7)--(305.6, 123.7)--(305.4, 124.0)--(305.4, 124.3)--(305.3, 125.1)--(305.3, 125.3)--(305.2, 125.7)--(305.1, 125.8)--(305.0, 125.9)--(304.6, 125.8)--(304.5, 125.8)--(304.4, 125.9)--(304.1, 125.7)--(304.2, 125.5)--(304.1, 125.4)--(303.9, 125.2)--(304.0, 125.0)--(304.0, 124.9)--(303.8, 124.8)--(303.7, 124.7)--(303.6, 124.6)--(303.4, 124.6)--(303.2, 124.5)--(302.9, 124.4)--(302.3, 124.3)--(302.4, 124.3)--(302.4, 124.0)--(302.6, 123.7)--(302.4, 123.7)--(301.3, 123.6)--(301.4, 123.6)--(301.5, 122.9)--(301.6, 122.3)--(301.6, 122.4)--(301.2, 122.4)--(301.0, 122.5)--(300.5, 122.5)--(300.1, 122.5)--(299.9, 122.5)--(299.6, 122.5)--(299.3, 122.5)--(299.1, 122.4)--(299.0, 122.4)--(299.0, 122.8)--(298.8, 122.8)--(298.7, 122.8)--(298.4, 122.7)--(297.9, 122.4)--(297.1, 122.1)--(295.6, 121.3)--(295.4, 121.2)--(295.2, 121.1)--(295.0, 121.0)--(294.9, 120.9)--(295.0, 120.7)--(294.4, 120.4)--(294.4, 120.5)--(294.1, 120.3)--(293.8, 120.0)--(293.5, 119.9)--(293.6, 119.9)--(293.6, 119.8)--(293.3, 119.7)--(293.3, 119.6)--(293.6, 118.9)--(293.7, 118.9)--(293.8, 118.7)--(294.0, 118.2)--(294.1, 118.0)--(294.0, 117.9)--(293.9, 117.8)--(293.7, 117.7)--(293.5, 117.6)--(293.6, 117.3)--(293.6, 117.2)--(293.4, 116.8)--(293.0, 116.6)--(292.6, 116.4)--(291.4, 116.0)--(291.3, 115.9)--(291.5, 115.2)--(291.6, 115.2)--(291.7, 114.4)--(291.9, 113.5)--(292.2, 112.2)--(292.4, 111.2)--(292.6, 110.8)--(292.6, 110.5)--(292.7, 109.9)--(292.7, 109.5)--(292.8, 108.9)--(293.0, 108.6)--(293.2, 107.9)--(293.3, 107.8)--(294.0, 107.0)--(293.6, 106.7)--(292.5, 106.1)--(291.2, 105.4)--(290.5, 104.8)--(290.4, 104.8)--(290.9, 104.4)--(292.1, 103.6)--(292.4, 103.4)--(292.7, 103.1)--(293.8, 102.3)--(293.9, 102.1)--(293.8, 101.7)--(294.0, 101.7)--(293.4, 100.0)--(293.1, 99.0)--(292.9, 98.8)--(292.5, 98.6)--(292.0, 98.3)--(291.7, 98.2)--(291.5, 98.0)--(291.2, 98.0)--(290.9, 98.0)--(290.7, 98.1)--(290.5, 97.8)--(290.4, 97.8)--(289.9, 97.5)--(289.7, 97.5)--(289.7, 97.4)--(289.6, 97.4)--(289.1, 97.6)--(289.0, 97.7)--(288.9, 97.6)--(288.7, 97.5)--(288.6, 97.5)--(288.2, 98.3)--(287.6, 97.9)--(286.8, 97.3)--(286.2, 97.0)--(286.2, 97.1)--(286.0, 97.0)--(286.0, 96.8)--(285.8, 96.7)--(285.6, 96.6)--cycle; +Tower_Hamlets = (333.9, 305.2)--(334.0, 305.2)--(334.1, 305.6)--(334.1, 305.7)--(334.1, 305.8)--(334.2, 306.1)--(334.3, 306.3)--(334.3, 306.4)--(334.0, 306.5)--(334.1, 306.6)--(334.2, 306.9)--(334.4, 307.0)--(334.5, 307.2)--(334.7, 307.5)--(334.8, 307.6)--(334.9, 307.7)--(335.1, 307.8)--(335.4, 307.8)--(335.5, 307.8)--(335.5, 307.9)--(335.5, 308.0)--(335.5, 308.1)--(335.5, 308.2)--(335.8, 308.2)--(335.9, 308.2)--(336.0, 308.1)--(336.1, 307.7)--(336.3, 307.8)--(336.3, 307.7)--(336.3, 307.5)--(336.4, 307.5)--(336.4, 307.4)--(336.5, 307.4)--(336.6, 307.4)--(337.0, 307.6)--(337.1, 307.6)--(337.3, 307.6)--(337.4, 307.7)--(337.5, 307.7)--(337.7, 307.8)--(337.9, 307.8)--(338.1, 307.8)--(338.2, 307.8)--(338.3, 307.8)--(338.3, 307.9)--(338.4, 308.0)--(338.4, 308.1)--(338.4, 308.4)--(338.4, 308.6)--(338.4, 308.7)--(338.3, 308.9)--(338.3, 309.1)--(338.2, 309.3)--(338.2, 309.5)--(338.1, 309.7)--(338.1, 310.3)--(338.0, 310.9)--(337.9, 311.4)--(337.8, 311.8)--(337.7, 312.3)--(337.4, 312.6)--(337.2, 312.9)--(337.1, 313.0)--(336.8, 313.3)--(336.6, 313.6)--(335.7, 314.6)--(335.4, 314.9)--(335.4, 315.0)--(335.3, 315.1)--(335.0, 315.8)--(335.0, 315.9)--(334.8, 316.3)--(334.8, 316.5)--(334.7, 316.5)--(334.7, 316.6)--(334.6, 316.8)--(334.4, 317.0)--(334.5, 317.0)--(334.5, 317.6)--(334.3, 317.5)--(333.5, 317.4)--(333.7, 318.1)--(333.8, 318.8)--(333.9, 319.4)--(333.9, 319.5)--(333.9, 319.9)--(334.1, 320.4)--(334.3, 320.8)--(334.5, 320.9)--(335.0, 321.1)--(335.3, 321.2)--(335.5, 321.0)--(335.7, 321.1)--(335.7, 321.2)--(335.7, 321.4)--(335.8, 321.6)--(335.9, 322.0)--(335.9, 322.1)--(335.9, 322.3)--(336.0, 322.6)--(336.0, 322.7)--(335.9, 323.0)--(335.8, 323.6)--(335.4, 323.5)--(335.3, 324.7)--(335.3, 325.1)--(335.3, 325.4)--(335.2, 325.6)--(335.2, 325.7)--(335.2, 325.8)--(335.3, 326.0)--(335.4, 326.4)--(335.4, 326.7)--(334.8, 326.8)--(335.0, 327.1)--(335.4, 327.5)--(335.6, 327.8)--(335.8, 328.1)--(335.9, 328.1)--(336.0, 328.3)--(336.1, 328.5)--(336.3, 329.2)--(336.5, 329.7)--(336.7, 329.9)--(336.8, 330.1)--(336.9, 330.1)--(337.1, 330.3)--(337.5, 330.5)--(337.7, 330.6)--(337.8, 330.7)--(338.1, 330.9)--(338.4, 330.9)--(338.6, 331.0)--(338.9, 331.0)--(339.3, 331.1)--(339.8, 331.1)--(340.2, 331.1)--(341.1, 331.2)--(341.6, 331.3)--(342.3, 331.4)--(342.3, 331.7)--(342.5, 332.3)--(342.7, 332.8)--(342.9, 333.3)--(343.0, 333.6)--(343.1, 333.3)--(344.3, 333.5)--(344.7, 333.7)--(345.0, 333.7)--(345.0, 333.9)--(344.9, 334.1)--(344.8, 334.3)--(344.7, 334.7)--(344.6, 334.8)--(344.6, 335.3)--(344.5, 335.7)--(344.6, 335.8)--(344.7, 336.0)--(344.8, 336.2)--(345.1, 336.2)--(345.3, 336.0)--(345.6, 335.7)--(345.9, 335.3)--(346.1, 335.1)--(346.2, 335.0)--(346.3, 334.9)--(346.4, 334.9)--(346.6, 334.8)--(346.8, 334.8)--(347.0, 334.7)--(347.2, 334.7)--(347.4, 334.8)--(347.9, 334.9)--(348.2, 335.0)--(348.4, 335.1)--(348.7, 335.3)--(349.2, 335.6)--(349.5, 335.8)--(349.7, 335.8)--(349.8, 335.9)--(350.0, 335.9)--(350.1, 335.9)--(350.2, 336.0)--(350.4, 336.0)--(350.6, 336.0)--(350.8, 336.0)--(351.1, 335.9)--(351.4, 335.8)--(351.5, 335.8)--(351.5, 336.0)--(351.6, 336.4)--(351.6, 336.7)--(351.8, 336.9)--(351.9, 337.1)--(352.1, 337.2)--(352.2, 337.3)--(352.3, 337.4)--(352.4, 337.4)--(352.8, 337.5)--(352.9, 337.5)--(353.0, 337.5)--(353.1, 337.5)--(353.2, 337.5)--(353.5, 337.5)--(353.7, 337.4)--(353.9, 337.2)--(354.2, 337.0)--(354.4, 336.8)--(354.5, 336.8)--(354.5, 336.7)--(354.6, 336.7)--(354.7, 336.6)--(354.8, 336.6)--(354.9, 336.6)--(355.1, 336.5)--(355.3, 336.5)--(355.4, 336.5)--(355.6, 336.5)--(356.2, 336.6)--(357.0, 336.9)--(357.1, 337.0)--(357.4, 337.3)--(357.6, 337.6)--(357.7, 337.7)--(357.8, 337.7)--(357.9, 337.6)--(357.9, 337.7)--(358.7, 338.3)--(359.3, 338.8)--(359.5, 339.1)--(359.8, 339.5)--(360.2, 340.2)--(360.9, 341.3)--(361.2, 341.8)--(361.6, 342.5)--(361.9, 343.0)--(362.0, 343.1)--(362.0, 343.2)--(362.1, 343.2)--(362.2, 343.3)--(361.7, 343.7)--(362.4, 344.4)--(363.0, 345.1)--(363.5, 345.5)--(363.9, 345.8)--(364.2, 346.3)--(364.4, 346.4)--(364.4, 346.6)--(364.5, 346.7)--(364.7, 346.9)--(364.8, 347.0)--(364.9, 347.0)--(365.0, 346.9)--(365.7, 346.3)--(366.0, 346.0)--(366.3, 345.8)--(366.4, 345.7)--(366.7, 345.6)--(367.1, 345.4)--(367.3, 345.3)--(367.5, 345.2)--(367.5, 345.0)--(367.7, 344.7)--(367.8, 344.4)--(368.0, 344.5)--(368.2, 344.5)--(368.6, 344.7)--(368.9, 344.8)--(369.1, 344.9)--(369.5, 345.1)--(370.0, 345.4)--(370.1, 345.5)--(370.1, 345.7)--(370.2, 345.6)--(370.3, 345.5)--(371.3, 345.6)--(371.9, 345.7)--(372.1, 345.7)--(372.2, 345.8)--(372.4, 345.8)--(372.4, 345.9)--(373.0, 345.9)--(373.8, 346.0)--(374.1, 346.0)--(374.5, 346.0)--(375.0, 346.0)--(375.5, 345.9)--(375.8, 345.9)--(376.1, 345.9)--(376.2, 345.8)--(376.3, 345.9)--(376.4, 345.8)--(376.4, 345.6)--(376.4, 345.5)--(376.5, 345.4)--(376.6, 345.2)--(376.7, 344.9)--(376.7, 344.8)--(376.7, 344.7)--(376.6, 344.5)--(376.5, 344.0)--(376.5, 343.8)--(376.4, 343.6)--(376.3, 343.5)--(376.2, 343.4)--(376.0, 343.3)--(375.8, 343.3)--(375.7, 343.2)--(375.6, 343.1)--(375.6, 343.0)--(375.6, 342.6)--(375.6, 342.4)--(375.6, 342.3)--(375.5, 342.1)--(375.4, 342.0)--(375.3, 341.8)--(375.1, 341.6)--(375.0, 341.4)--(374.9, 341.3)--(374.8, 341.1)--(374.7, 340.7)--(374.7, 340.4)--(374.6, 340.1)--(374.5, 340.1)--(374.4, 339.9)--(374.3, 339.9)--(374.2, 339.8)--(374.0, 339.7)--(373.8, 339.5)--(373.6, 339.3)--(373.4, 339.0)--(373.3, 338.8)--(373.3, 338.7)--(373.3, 338.6)--(373.4, 338.5)--(373.4, 338.3)--(373.4, 338.1)--(373.5, 337.9)--(373.6, 337.8)--(373.8, 337.7)--(373.9, 337.7)--(374.1, 337.6)--(374.3, 337.4)--(374.4, 337.2)--(374.6, 337.0)--(374.7, 336.7)--(374.8, 336.4)--(374.9, 336.2)--(374.9, 336.0)--(375.0, 335.8)--(375.0, 335.6)--(375.0, 335.5)--(375.1, 335.4)--(375.2, 335.2)--(375.4, 335.0)--(375.6, 334.9)--(375.6, 334.8)--(375.7, 334.6)--(375.7, 334.4)--(375.7, 334.3)--(375.7, 334.2)--(375.6, 334.0)--(375.6, 333.8)--(375.6, 333.7)--(375.6, 333.6)--(375.7, 333.4)--(375.9, 333.1)--(376.1, 332.7)--(376.1, 332.6)--(376.3, 332.4)--(376.6, 332.2)--(376.8, 332.1)--(377.5, 331.7)--(377.9, 331.6)--(378.2, 331.4)--(378.4, 331.3)--(378.4, 331.2)--(378.5, 331.1)--(378.5, 331.0)--(378.6, 330.9)--(378.8, 330.8)--(379.2, 330.7)--(379.5, 330.6)--(380.1, 330.6)--(380.6, 330.5)--(380.7, 330.4)--(380.8, 330.3)--(380.9, 330.2)--(381.0, 330.0)--(381.0, 329.8)--(381.1, 329.6)--(381.1, 329.5)--(381.3, 329.3)--(381.4, 329.2)--(381.8, 328.8)--(382.2, 328.6)--(382.3, 328.4)--(382.4, 328.3)--(382.5, 328.0)--(382.6, 327.8)--(382.7, 327.6)--(382.8, 327.4)--(383.0, 327.2)--(383.1, 327.1)--(383.2, 326.9)--(383.2, 326.7)--(383.2, 326.4)--(383.2, 326.3)--(383.1, 326.1)--(383.0, 326.0)--(383.0, 325.8)--(382.9, 325.5)--(382.9, 324.6)--(382.8, 324.3)--(382.8, 324.0)--(382.8, 323.8)--(382.9, 323.7)--(383.0, 323.4)--(383.0, 323.2)--(383.0, 323.1)--(382.9, 323.1)--(382.7, 323.1)--(382.7, 322.8)--(382.6, 322.4)--(382.6, 322.2)--(382.6, 322.0)--(382.1, 322.0)--(382.1, 321.7)--(382.2, 321.6)--(382.2, 321.5)--(382.3, 321.3)--(382.2, 321.0)--(382.2, 320.9)--(382.2, 320.5)--(382.2, 320.1)--(382.2, 319.9)--(382.2, 319.8)--(382.3, 319.7)--(382.3, 319.6)--(382.6, 319.4)--(383.1, 319.1)--(383.4, 318.8)--(383.5, 318.7)--(383.7, 318.4)--(383.8, 318.3)--(384.0, 318.1)--(384.1, 317.9)--(384.2, 317.8)--(384.2, 317.7)--(384.3, 317.5)--(384.3, 317.3)--(384.3, 317.2)--(384.3, 317.0)--(384.3, 316.8)--(384.3, 316.5)--(384.4, 316.4)--(384.4, 316.3)--(384.4, 316.2)--(384.5, 316.1)--(384.6, 316.0)--(384.7, 316.0)--(384.7, 315.9)--(384.8, 315.9)--(384.9, 315.9)--(385.0, 315.8)--(385.1, 315.9)--(385.3, 315.9)--(385.7, 316.1)--(385.9, 316.5)--(386.3, 317.3)--(386.3, 317.4)--(386.4, 317.5)--(386.5, 317.6)--(386.6, 317.6)--(386.7, 317.6)--(386.8, 317.6)--(386.9, 317.6)--(387.1, 317.5)--(387.1, 317.4)--(388.0, 316.8)--(388.2, 316.6)--(388.3, 316.6)--(388.6, 316.3)--(388.7, 316.2)--(388.9, 316.1)--(389.3, 315.9)--(390.0, 315.6)--(390.4, 315.3)--(390.6, 315.2)--(391.0, 314.8)--(391.1, 314.7)--(391.2, 314.5)--(391.2, 314.4)--(391.3, 314.3)--(391.3, 314.2)--(391.3, 314.0)--(391.2, 313.6)--(391.1, 313.4)--(391.0, 313.2)--(391.0, 313.1)--(390.7, 313.0)--(390.7, 312.9)--(390.6, 312.9)--(390.6, 312.8)--(390.6, 312.6)--(390.6, 312.3)--(390.1, 311.0)--(390.1, 310.6)--(390.1, 310.4)--(390.0, 310.3)--(389.8, 310.3)--(389.8, 310.2)--(390.0, 310.1)--(390.1, 310.0)--(390.2, 309.9)--(390.3, 309.7)--(390.4, 309.6)--(390.6, 309.6)--(391.0, 309.5)--(391.4, 309.5)--(391.5, 309.5)--(391.5, 309.6)--(391.7, 309.7)--(391.9, 309.7)--(391.9, 309.8)--(392.0, 309.9)--(392.0, 310.0)--(392.1, 310.0)--(392.1, 310.2)--(392.2, 310.5)--(392.2, 310.6)--(392.3, 310.7)--(392.3, 310.8)--(392.3, 311.0)--(392.4, 311.3)--(392.4, 311.5)--(392.5, 312.3)--(392.5, 312.5)--(392.5, 312.6)--(392.5, 312.8)--(392.6, 312.9)--(392.6, 313.0)--(392.7, 313.1)--(392.7, 313.2)--(392.7, 313.3)--(392.8, 313.4)--(392.9, 313.5)--(393.0, 313.5)--(393.1, 313.5)--(393.2, 313.5)--(393.4, 313.5)--(393.5, 313.5)--(393.5, 313.4)--(393.6, 313.4)--(393.6, 313.3)--(393.7, 313.2)--(393.7, 313.1)--(393.8, 312.9)--(393.9, 312.4)--(393.9, 312.3)--(393.9, 312.1)--(393.8, 311.6)--(393.6, 311.0)--(393.4, 310.5)--(393.1, 310.1)--(392.9, 309.8)--(392.8, 309.7)--(392.8, 309.6)--(392.8, 309.4)--(392.7, 309.3)--(392.8, 309.2)--(392.8, 309.0)--(392.9, 308.9)--(393.1, 308.6)--(393.3, 308.6)--(393.3, 308.4)--(393.9, 308.3)--(393.9, 308.4)--(394.6, 308.2)--(395.0, 308.0)--(395.1, 308.0)--(395.1, 307.9)--(395.2, 307.8)--(395.3, 307.7)--(395.3, 307.5)--(395.3, 307.4)--(395.3, 307.3)--(395.3, 307.2)--(395.3, 307.1)--(395.2, 307.0)--(395.2, 306.9)--(395.2, 306.8)--(395.3, 306.7)--(395.1, 306.2)--(395.0, 306.2)--(394.7, 306.4)--(393.9, 306.7)--(393.8, 306.7)--(393.7, 306.7)--(393.2, 306.9)--(393.2, 307.1)--(393.0, 307.1)--(392.9, 307.0)--(391.7, 307.2)--(391.7, 307.3)--(391.5, 307.3)--(391.4, 306.9)--(391.3, 306.9)--(391.2, 306.9)--(391.2, 307.0)--(391.2, 307.1)--(391.1, 307.1)--(391.0, 307.1)--(391.0, 307.0)--(390.9, 307.0)--(390.9, 306.9)--(389.9, 306.8)--(389.7, 306.8)--(388.0, 306.2)--(387.8, 306.1)--(387.8, 306.2)--(387.5, 306.0)--(387.5, 305.9)--(387.4, 305.9)--(387.4, 305.8)--(387.3, 305.8)--(387.2, 305.8)--(387.0, 305.7)--(387.0, 305.6)--(387.0, 305.5)--(386.8, 305.3)--(386.6, 305.2)--(386.7, 305.1)--(386.4, 304.9)--(386.2, 304.5)--(385.7, 303.9)--(385.4, 303.5)--(385.3, 303.4)--(385.2, 303.5)--(385.1, 303.6)--(385.1, 303.5)--(385.1, 303.4)--(385.1, 303.3)--(385.2, 303.2)--(385.0, 302.8)--(384.9, 302.7)--(384.8, 302.5)--(384.6, 302.3)--(384.6, 302.2)--(384.5, 302.2)--(384.4, 302.1)--(384.4, 302.0)--(384.4, 301.9)--(384.5, 301.8)--(384.3, 301.6)--(384.2, 301.5)--(384.1, 301.3)--(384.0, 300.8)--(384.0, 300.5)--(383.9, 300.2)--(383.9, 300.0)--(383.8, 299.6)--(383.8, 299.4)--(383.3, 299.2)--(383.0, 299.3)--(382.9, 299.2)--(382.9, 299.1)--(383.0, 299.0)--(383.3, 299.0)--(383.8, 298.7)--(383.8, 298.5)--(383.8, 298.3)--(383.7, 298.3)--(383.8, 297.9)--(383.9, 297.9)--(383.9, 297.8)--(383.8, 297.8)--(383.8, 297.7)--(383.8, 297.6)--(383.9, 297.7)--(383.9, 297.4)--(384.1, 296.3)--(384.1, 296.1)--(384.2, 296.0)--(384.2, 295.9)--(384.4, 295.9)--(384.5, 295.6)--(384.8, 294.4)--(384.9, 294.4)--(385.4, 293.2)--(385.0, 293.0)--(385.1, 293.0)--(385.0, 292.9)--(385.2, 292.9)--(385.3, 292.7)--(385.4, 292.5)--(385.5, 292.3)--(385.6, 291.9)--(385.8, 291.9)--(385.9, 291.7)--(386.1, 291.8)--(386.5, 290.9)--(386.8, 289.9)--(387.2, 289.1)--(387.2, 288.9)--(387.2, 288.7)--(387.3, 288.4)--(387.4, 287.8)--(387.4, 287.6)--(387.4, 287.5)--(387.3, 286.9)--(387.3, 286.7)--(387.2, 286.5)--(387.2, 286.3)--(387.0, 285.8)--(387.0, 285.6)--(386.9, 285.5)--(386.9, 285.4)--(386.7, 285.2)--(386.6, 284.9)--(386.5, 284.8)--(386.4, 284.8)--(385.9, 285.1)--(385.9, 285.0)--(386.3, 284.6)--(386.1, 284.3)--(385.9, 284.2)--(385.8, 284.1)--(385.7, 284.0)--(385.3, 283.6)--(385.2, 283.6)--(385.1, 283.5)--(384.6, 283.2)--(384.1, 283.0)--(383.9, 282.9)--(383.7, 282.8)--(383.6, 282.8)--(382.8, 282.5)--(382.7, 282.7)--(382.5, 282.7)--(382.5, 282.5)--(381.9, 282.3)--(381.5, 282.3)--(381.0, 282.2)--(380.6, 282.1)--(380.6, 282.2)--(380.5, 282.2)--(380.5, 282.1)--(380.0, 282.1)--(379.9, 282.1)--(379.9, 282.0)--(379.3, 282.1)--(379.1, 282.1)--(379.0, 282.1)--(378.2, 282.2)--(378.1, 282.2)--(378.0, 282.3)--(377.9, 282.3)--(377.2, 282.5)--(377.0, 282.5)--(376.8, 282.6)--(376.7, 282.6)--(376.5, 282.7)--(376.3, 282.8)--(375.2, 283.4)--(374.7, 283.6)--(374.5, 283.7)--(373.8, 284.3)--(373.6, 284.5)--(373.3, 284.8)--(373.2, 285.0)--(373.0, 285.2)--(372.8, 285.4)--(372.6, 285.6)--(372.2, 286.1)--(371.8, 286.7)--(371.7, 286.8)--(371.6, 287.0)--(371.5, 287.3)--(371.3, 287.7)--(371.1, 288.2)--(371.0, 288.6)--(371.0, 288.7)--(370.8, 289.0)--(370.6, 289.7)--(370.4, 290.4)--(370.4, 290.5)--(370.8, 290.7)--(371.7, 290.7)--(371.6, 290.9)--(370.8, 290.9)--(370.7, 290.9)--(370.6, 290.9)--(370.1, 291.0)--(370.1, 291.1)--(370.0, 291.2)--(370.0, 291.5)--(370.0, 291.7)--(370.0, 291.9)--(370.0, 292.5)--(370.1, 293.7)--(370.2, 294.8)--(370.2, 294.9)--(370.2, 295.2)--(370.2, 295.5)--(370.1, 295.7)--(370.1, 296.8)--(370.0, 296.8)--(370.0, 297.0)--(369.9, 297.1)--(370.1, 297.1)--(370.1, 298.5)--(370.1, 299.6)--(370.1, 299.8)--(370.2, 300.0)--(370.4, 300.9)--(370.6, 300.9)--(370.8, 300.9)--(370.9, 300.9)--(371.0, 300.9)--(371.1, 300.8)--(371.2, 300.8)--(371.2, 300.9)--(371.2, 301.0)--(370.9, 301.0)--(370.8, 301.1)--(370.5, 301.1)--(370.4, 301.2)--(370.4, 301.3)--(370.3, 301.4)--(370.2, 301.5)--(370.1, 301.8)--(369.9, 302.3)--(369.9, 302.4)--(369.9, 302.6)--(369.8, 302.8)--(369.7, 303.0)--(369.5, 303.3)--(369.8, 303.4)--(369.8, 303.7)--(369.5, 303.6)--(369.3, 303.9)--(369.1, 304.3)--(369.0, 304.3)--(369.0, 304.4)--(369.0, 304.5)--(369.6, 304.7)--(369.6, 304.8)--(369.5, 304.9)--(368.9, 304.6)--(368.8, 304.6)--(368.3, 305.2)--(368.4, 305.3)--(368.1, 305.6)--(367.9, 305.4)--(367.1, 306.0)--(367.3, 306.3)--(367.6, 306.7)--(367.9, 306.9)--(368.2, 307.1)--(368.2, 307.2)--(368.1, 307.2)--(367.8, 307.0)--(367.5, 306.9)--(367.4, 306.8)--(367.3, 306.7)--(367.2, 306.7)--(367.1, 306.7)--(367.1, 306.5)--(367.0, 306.4)--(366.8, 306.5)--(366.6, 306.5)--(366.4, 306.5)--(366.3, 306.4)--(366.0, 306.6)--(365.9, 306.7)--(365.9, 306.8)--(365.8, 306.9)--(365.8, 306.8)--(364.8, 307.2)--(364.5, 307.3)--(364.3, 307.3)--(364.0, 307.4)--(364.0, 307.6)--(363.8, 307.7)--(363.7, 307.5)--(362.9, 307.7)--(362.9, 307.8)--(362.9, 307.9)--(362.8, 307.8)--(362.7, 307.8)--(362.7, 307.7)--(362.6, 307.7)--(362.6, 307.8)--(362.5, 307.8)--(362.5, 307.9)--(362.3, 307.9)--(362.0, 308.0)--(361.8, 308.0)--(361.4, 308.0)--(361.3, 308.0)--(360.6, 308.1)--(360.3, 308.1)--(360.1, 308.1)--(360.1, 308.3)--(360.0, 308.3)--(359.9, 308.3)--(360.0, 308.0)--(359.7, 308.0)--(359.1, 307.9)--(358.5, 307.8)--(358.5, 307.7)--(358.4, 307.7)--(357.7, 307.6)--(357.7, 307.5)--(357.4, 307.5)--(357.4, 307.3)--(357.2, 307.3)--(356.5, 306.8)--(356.4, 307.0)--(355.7, 306.6)--(355.6, 306.5)--(355.4, 306.3)--(355.2, 306.1)--(355.1, 306.1)--(355.0, 306.0)--(354.9, 305.9)--(354.8, 305.9)--(354.6, 305.9)--(354.5, 305.9)--(354.5, 305.8)--(354.4, 305.8)--(354.5, 305.7)--(354.7, 305.7)--(354.7, 305.6)--(354.7, 305.4)--(354.6, 305.4)--(354.5, 305.4)--(354.4, 305.4)--(353.8, 304.8)--(353.7, 304.9)--(353.3, 304.5)--(353.4, 304.4)--(353.0, 304.1)--(352.7, 303.8)--(352.6, 303.8)--(352.5, 303.7)--(352.4, 303.8)--(352.2, 303.6)--(352.3, 303.5)--(351.7, 302.9)--(351.6, 303.0)--(351.4, 302.9)--(351.5, 302.7)--(351.1, 302.2)--(351.0, 302.3)--(350.7, 301.9)--(350.6, 301.8)--(350.0, 301.1)--(349.9, 301.0)--(349.6, 300.7)--(349.3, 300.5)--(348.9, 300.3)--(348.7, 300.2)--(348.6, 300.2)--(348.5, 300.2)--(348.5, 300.1)--(348.3, 300.1)--(347.9, 300.0)--(347.6, 300.0)--(347.3, 300.0)--(347.2, 299.9)--(347.1, 300.0)--(347.0, 300.0)--(346.9, 300.0)--(346.7, 300.0)--(346.5, 300.0)--(346.2, 300.1)--(345.9, 300.2)--(345.9, 300.1)--(345.6, 300.2)--(345.5, 300.2)--(345.5, 300.3)--(345.5, 300.4)--(345.4, 300.4)--(345.4, 300.3)--(345.3, 300.3)--(345.1, 300.4)--(345.1, 300.5)--(344.3, 300.8)--(344.1, 300.9)--(343.9, 301.0)--(343.8, 300.9)--(343.3, 301.1)--(342.7, 301.4)--(342.7, 301.3)--(342.1, 301.5)--(341.9, 301.6)--(341.9, 301.7)--(341.8, 301.7)--(341.8, 301.8)--(341.8, 301.9)--(341.9, 302.0)--(342.0, 302.1)--(341.9, 302.2)--(341.8, 302.1)--(341.8, 302.0)--(341.7, 301.9)--(341.6, 301.7)--(341.2, 301.9)--(340.5, 302.2)--(340.4, 302.3)--(339.9, 302.6)--(339.6, 302.8)--(339.5, 302.9)--(339.6, 303.0)--(339.5, 303.1)--(339.6, 303.2)--(339.5, 303.3)--(339.4, 303.1)--(339.1, 303.1)--(339.0, 303.1)--(338.8, 303.2)--(338.9, 303.2)--(338.8, 303.3)--(338.7, 303.2)--(338.6, 303.1)--(338.6, 303.2)--(338.6, 303.3)--(338.1, 303.5)--(338.0, 303.5)--(337.9, 303.5)--(337.9, 303.4)--(337.2, 303.7)--(337.3, 303.9)--(337.0, 304.0)--(336.7, 304.0)--(336.6, 304.1)--(336.5, 304.1)--(336.1, 304.3)--(335.4, 304.5)--(335.1, 304.6)--(334.9, 304.6)--(334.8, 304.7)--(334.4, 304.8)--(334.2, 305.0)--(334.1, 305.1)--(334.0, 305.1)--cycle; +Waltham_Forest = (399.2, 418.6)--(399.3, 418.5)--(399.4, 418.2)--(399.5, 418.0)--(399.4, 418.0)--(399.2, 418.1)--(399.1, 418.1)--(398.9, 417.4)--(398.6, 416.7)--(398.4, 416.2)--(398.5, 416.1)--(398.4, 416.0)--(398.4, 415.9)--(398.1, 415.4)--(398.0, 415.4)--(397.9, 415.1)--(397.8, 414.8)--(397.0, 412.8)--(396.4, 411.4)--(395.9, 410.4)--(395.7, 409.8)--(395.4, 409.3)--(395.3, 408.9)--(395.2, 408.5)--(395.1, 408.3)--(395.1, 407.6)--(395.1, 406.8)--(395.0, 405.9)--(395.0, 405.4)--(395.0, 404.8)--(395.0, 404.2)--(394.9, 403.6)--(394.9, 403.4)--(394.9, 403.3)--(394.9, 403.1)--(394.9, 403.0)--(394.9, 402.8)--(394.8, 402.1)--(394.8, 402.0)--(394.8, 401.6)--(394.8, 401.2)--(394.8, 400.6)--(394.9, 400.5)--(394.9, 400.1)--(394.9, 400.0)--(394.9, 399.8)--(395.0, 399.6)--(395.0, 399.3)--(395.0, 399.1)--(395.1, 398.6)--(395.1, 398.0)--(395.2, 397.5)--(395.2, 397.1)--(395.3, 396.7)--(395.4, 395.6)--(395.5, 394.9)--(395.6, 393.8)--(395.7, 393.1)--(395.8, 392.2)--(395.9, 391.7)--(395.9, 391.3)--(396.4, 390.9)--(397.0, 390.9)--(397.4, 390.9)--(397.4, 390.5)--(397.3, 390.2)--(397.4, 390.0)--(397.3, 390.0)--(397.4, 389.6)--(397.4, 389.5)--(397.5, 389.4)--(397.6, 389.2)--(397.4, 389.1)--(397.3, 389.1)--(397.8, 387.3)--(398.1, 386.4)--(398.3, 386.3)--(398.9, 384.5)--(398.9, 384.4)--(398.9, 383.3)--(398.9, 382.6)--(398.9, 382.1)--(398.9, 381.6)--(399.0, 381.2)--(399.0, 381.0)--(398.9, 380.8)--(398.9, 380.7)--(398.6, 380.1)--(398.4, 379.5)--(398.3, 379.3)--(398.4, 379.3)--(398.5, 379.3)--(398.8, 379.1)--(399.0, 379.1)--(399.1, 379.0)--(399.2, 378.8)--(399.3, 378.7)--(399.4, 378.5)--(399.5, 378.3)--(400.0, 378.7)--(400.1, 378.7)--(400.1, 378.6)--(400.1, 378.1)--(400.2, 377.1)--(400.3, 376.5)--(400.3, 376.0)--(400.3, 375.9)--(400.1, 376.0)--(400.0, 376.1)--(399.8, 376.2)--(399.7, 376.3)--(399.6, 376.2)--(399.5, 376.2)--(399.4, 376.2)--(399.3, 376.2)--(399.3, 376.1)--(399.3, 376.0)--(399.5, 375.5)--(399.7, 374.9)--(399.9, 374.2)--(400.0, 373.7)--(400.3, 373.0)--(400.3, 372.9)--(400.3, 372.8)--(400.3, 372.7)--(400.4, 372.6)--(400.4, 372.5)--(400.3, 372.4)--(400.3, 372.3)--(400.3, 372.2)--(400.3, 372.1)--(400.2, 372.0)--(400.2, 371.9)--(400.1, 371.8)--(400.0, 371.7)--(399.9, 371.6)--(399.8, 371.5)--(399.7, 371.4)--(399.5, 371.3)--(399.3, 371.2)--(399.1, 371.2)--(398.6, 371.2)--(398.0, 371.2)--(397.2, 371.1)--(397.2, 370.7)--(397.2, 370.1)--(397.2, 369.8)--(397.2, 369.2)--(397.2, 369.1)--(397.1, 368.7)--(397.1, 368.2)--(397.1, 367.4)--(397.1, 366.9)--(397.2, 366.4)--(397.4, 365.3)--(397.6, 364.3)--(397.8, 364.3)--(398.1, 364.3)--(398.2, 364.3)--(398.3, 364.2)--(398.5, 364.2)--(398.7, 364.1)--(398.9, 363.9)--(399.0, 363.8)--(399.3, 363.6)--(399.7, 363.2)--(399.8, 363.1)--(399.9, 363.0)--(400.0, 362.9)--(400.1, 362.8)--(400.4, 362.5)--(400.6, 362.1)--(401.2, 361.4)--(401.4, 361.1)--(401.6, 360.9)--(402.3, 359.7)--(402.2, 359.6)--(402.5, 359.4)--(401.5, 358.8)--(401.0, 358.5)--(401.0, 358.4)--(400.4, 358.2)--(400.0, 357.9)--(399.3, 357.4)--(399.2, 357.6)--(398.8, 357.4)--(398.6, 357.8)--(398.4, 358.1)--(398.4, 358.2)--(397.6, 359.3)--(397.2, 359.0)--(395.6, 358.1)--(395.2, 358.6)--(394.2, 357.5)--(395.1, 356.2)--(394.8, 355.9)--(394.6, 355.7)--(394.3, 355.5)--(394.2, 355.3)--(394.2, 355.2)--(394.2, 355.1)--(393.3, 354.9)--(393.0, 354.8)--(392.9, 354.8)--(392.4, 354.6)--(391.7, 354.3)--(391.5, 354.4)--(391.5, 354.6)--(391.6, 354.8)--(391.6, 355.0)--(391.6, 355.3)--(391.7, 355.5)--(391.6, 355.7)--(391.3, 355.7)--(391.2, 355.6)--(391.2, 356.0)--(391.0, 356.0)--(391.1, 355.7)--(390.3, 355.6)--(390.3, 355.7)--(390.3, 355.8)--(390.1, 355.8)--(389.9, 355.7)--(389.8, 355.8)--(389.8, 355.9)--(389.3, 355.8)--(389.1, 355.7)--(388.5, 355.6)--(387.9, 355.5)--(387.4, 355.4)--(387.0, 355.3)--(386.9, 355.3)--(386.5, 355.1)--(385.8, 354.8)--(385.1, 354.5)--(385.0, 354.7)--(384.1, 354.3)--(383.7, 354.0)--(383.5, 353.9)--(383.3, 353.8)--(382.8, 353.7)--(382.1, 353.4)--(381.9, 353.3)--(381.8, 353.3)--(381.7, 353.3)--(381.6, 353.3)--(381.5, 353.7)--(381.4, 354.0)--(381.3, 354.3)--(381.3, 354.6)--(381.3, 354.8)--(381.3, 355.0)--(381.3, 355.2)--(381.2, 355.3)--(381.0, 355.8)--(380.8, 355.9)--(380.7, 356.0)--(380.5, 356.1)--(380.4, 356.2)--(380.3, 356.2)--(380.2, 356.2)--(380.1, 356.2)--(379.9, 356.1)--(379.4, 355.9)--(378.6, 355.6)--(378.5, 355.6)--(378.4, 355.5)--(378.2, 355.5)--(377.6, 355.3)--(376.7, 355.1)--(375.9, 355.0)--(375.9, 354.8)--(375.8, 354.7)--(375.7, 354.8)--(375.7, 354.9)--(375.7, 355.0)--(375.7, 355.1)--(375.6, 355.8)--(375.4, 357.0)--(375.3, 357.3)--(375.2, 357.6)--(375.1, 357.9)--(375.0, 357.7)--(374.7, 358.9)--(374.5, 359.1)--(374.2, 359.3)--(373.1, 360.1)--(372.3, 360.6)--(371.8, 360.9)--(371.5, 361.2)--(371.4, 361.2)--(371.1, 361.2)--(370.9, 361.3)--(370.8, 361.3)--(370.8, 361.5)--(370.8, 361.9)--(370.6, 362.3)--(370.6, 362.5)--(370.5, 362.7)--(370.5, 362.8)--(370.4, 362.9)--(370.3, 363.0)--(370.2, 363.1)--(370.1, 363.3)--(370.0, 363.5)--(369.7, 363.8)--(369.4, 364.1)--(369.2, 364.2)--(369.1, 364.3)--(369.0, 364.4)--(368.8, 364.5)--(368.3, 364.9)--(368.0, 365.0)--(367.9, 365.1)--(367.6, 365.3)--(367.1, 365.5)--(367.0, 365.6)--(366.8, 365.6)--(366.7, 365.6)--(366.5, 365.6)--(366.4, 365.6)--(366.3, 365.6)--(366.2, 365.5)--(366.1, 365.5)--(366.0, 365.5)--(366.0, 365.4)--(365.9, 365.4)--(365.8, 365.4)--(365.8, 365.3)--(365.7, 365.3)--(365.4, 365.1)--(365.0, 364.9)--(364.8, 364.8)--(364.6, 364.7)--(364.3, 364.7)--(364.1, 364.7)--(364.0, 364.7)--(363.9, 364.8)--(363.6, 365.0)--(363.3, 365.2)--(363.1, 365.3)--(362.9, 365.4)--(362.4, 365.6)--(362.1, 365.6)--(362.0, 365.6)--(361.9, 365.6)--(361.8, 365.6)--(361.7, 365.6)--(361.6, 365.6)--(361.5, 365.5)--(361.2, 365.3)--(361.0, 365.3)--(360.9, 365.2)--(360.7, 365.2)--(360.5, 365.2)--(360.4, 365.2)--(360.3, 365.2)--(360.2, 365.3)--(360.1, 365.4)--(360.0, 365.5)--(359.8, 365.7)--(359.7, 365.8)--(359.5, 365.9)--(359.4, 365.9)--(359.3, 365.8)--(359.2, 365.8)--(359.1, 365.8)--(358.9, 365.7)--(358.4, 365.5)--(358.3, 365.4)--(358.1, 365.4)--(358.0, 365.4)--(357.8, 365.4)--(357.7, 365.4)--(357.3, 365.6)--(357.0, 365.7)--(356.7, 365.7)--(356.6, 365.7)--(356.5, 365.7)--(356.3, 365.7)--(356.1, 365.7)--(355.9, 365.9)--(355.6, 366.3)--(355.4, 366.3)--(355.0, 366.4)--(354.9, 366.4)--(354.9, 366.5)--(354.8, 366.5)--(354.7, 366.6)--(354.6, 366.6)--(354.6, 366.7)--(354.5, 366.7)--(354.5, 366.8)--(354.5, 366.9)--(354.5, 367.0)--(354.5, 367.1)--(354.5, 367.2)--(354.5, 367.3)--(354.6, 367.3)--(354.6, 367.4)--(354.7, 367.6)--(354.8, 367.8)--(354.8, 367.9)--(354.9, 367.9)--(354.9, 368.0)--(354.9, 368.1)--(354.9, 368.2)--(354.9, 368.3)--(354.9, 368.4)--(354.9, 368.5)--(354.9, 368.6)--(354.8, 368.7)--(354.8, 368.8)--(354.3, 369.5)--(354.3, 369.6)--(354.2, 369.7)--(353.8, 370.0)--(353.7, 370.1)--(353.6, 370.2)--(353.5, 370.3)--(353.3, 370.6)--(353.2, 370.7)--(353.1, 370.8)--(352.6, 371.3)--(352.2, 371.7)--(352.0, 372.0)--(351.9, 372.1)--(351.7, 372.3)--(351.1, 372.6)--(350.5, 373.0)--(350.3, 373.2)--(350.2, 373.3)--(350.1, 373.4)--(350.0, 373.7)--(349.5, 374.8)--(349.4, 375.0)--(349.3, 375.1)--(349.2, 375.2)--(349.1, 375.2)--(349.0, 375.3)--(348.7, 375.3)--(348.5, 375.3)--(348.4, 375.3)--(348.3, 375.3)--(348.2, 375.4)--(348.1, 375.5)--(348.0, 375.6)--(347.8, 375.8)--(347.7, 376.2)--(347.4, 376.5)--(347.1, 376.8)--(346.7, 377.3)--(346.5, 377.5)--(346.5, 377.7)--(346.4, 377.9)--(346.4, 378.2)--(346.3, 378.6)--(346.2, 378.8)--(346.0, 379.2)--(345.8, 379.6)--(345.6, 380.1)--(345.5, 380.2)--(345.3, 380.7)--(345.3, 380.9)--(345.1, 381.5)--(344.8, 382.2)--(344.6, 382.9)--(344.4, 383.3)--(344.4, 383.4)--(344.2, 383.8)--(343.9, 384.3)--(343.9, 384.4)--(343.8, 384.4)--(343.8, 384.5)--(343.7, 384.6)--(343.7, 384.7)--(343.7, 384.8)--(343.7, 384.9)--(343.6, 384.9)--(343.6, 385.0)--(343.6, 385.1)--(343.6, 385.2)--(343.7, 385.2)--(343.7, 385.3)--(343.7, 385.4)--(343.8, 385.5)--(343.8, 385.6)--(343.8, 385.7)--(343.9, 385.8)--(343.9, 385.9)--(344.0, 386.0)--(344.0, 386.1)--(344.1, 386.2)--(344.2, 386.3)--(344.2, 386.4)--(344.3, 386.5)--(344.4, 386.6)--(344.5, 386.7)--(344.5, 386.8)--(344.6, 386.8)--(345.1, 387.3)--(345.3, 387.4)--(345.6, 387.7)--(346.2, 388.2)--(346.3, 388.3)--(346.4, 388.4)--(346.5, 388.4)--(346.5, 388.5)--(346.6, 388.5)--(346.6, 388.6)--(346.6, 388.7)--(346.7, 388.7)--(346.7, 388.9)--(346.8, 389.0)--(346.8, 389.1)--(346.8, 389.2)--(346.9, 389.2)--(346.9, 389.3)--(347.0, 389.4)--(347.0, 389.5)--(347.1, 389.5)--(347.2, 389.6)--(347.3, 389.7)--(347.4, 389.8)--(347.5, 389.9)--(347.6, 390.0)--(347.7, 390.1)--(347.8, 390.2)--(347.8, 390.3)--(347.9, 390.3)--(347.9, 390.4)--(348.0, 390.5)--(348.0, 390.6)--(348.1, 390.7)--(348.1, 390.8)--(348.2, 390.9)--(348.2, 391.0)--(348.2, 391.1)--(348.3, 391.1)--(348.3, 391.2)--(348.3, 391.3)--(348.3, 391.4)--(348.3, 391.5)--(348.4, 391.6)--(348.4, 391.7)--(348.4, 391.8)--(348.4, 391.9)--(348.5, 392.0)--(348.5, 392.1)--(348.6, 392.2)--(348.6, 392.3)--(348.7, 392.4)--(348.7, 392.5)--(348.8, 392.6)--(348.8, 392.7)--(348.9, 392.7)--(348.9, 392.8)--(349.2, 393.1)--(349.6, 393.5)--(349.7, 393.6)--(350.0, 393.9)--(350.1, 393.9)--(350.1, 394.0)--(350.2, 394.0)--(350.2, 394.1)--(350.3, 394.1)--(350.3, 394.2)--(350.3, 394.3)--(350.4, 394.3)--(350.4, 394.4)--(350.4, 394.5)--(350.4, 394.6)--(350.4, 394.7)--(350.4, 394.8)--(350.3, 394.8)--(350.3, 394.9)--(350.2, 395.1)--(350.1, 395.2)--(350.1, 395.4)--(350.0, 395.5)--(350.0, 395.6)--(349.8, 395.9)--(349.6, 396.3)--(349.5, 396.6)--(349.4, 396.9)--(349.4, 397.2)--(349.4, 397.5)--(349.4, 397.9)--(349.5, 398.2)--(349.6, 398.5)--(349.7, 399.0)--(350.0, 399.7)--(350.0, 400.0)--(350.1, 400.6)--(350.1, 401.2)--(350.1, 401.3)--(350.1, 401.4)--(350.1, 401.5)--(350.2, 401.6)--(350.2, 401.7)--(350.2, 401.8)--(350.3, 401.8)--(350.3, 401.9)--(350.4, 402.0)--(350.4, 402.1)--(350.5, 402.1)--(350.5, 402.2)--(350.6, 402.3)--(350.7, 402.4)--(350.8, 402.5)--(350.8, 402.6)--(350.8, 402.7)--(350.9, 402.7)--(350.9, 402.8)--(350.9, 402.9)--(350.9, 403.4)--(350.9, 403.6)--(351.0, 403.7)--(351.0, 403.8)--(351.0, 403.9)--(351.1, 404.0)--(351.1, 404.1)--(351.2, 404.2)--(351.2, 404.3)--(351.2, 404.4)--(351.3, 404.4)--(351.3, 404.5)--(351.4, 404.6)--(351.4, 404.7)--(351.5, 404.8)--(351.6, 404.9)--(351.7, 405.0)--(351.8, 405.1)--(351.9, 405.3)--(352.4, 405.9)--(353.1, 406.8)--(353.7, 407.6)--(354.0, 408.0)--(354.2, 408.4)--(354.4, 408.8)--(355.1, 409.9)--(355.6, 410.8)--(355.9, 411.4)--(356.2, 412.0)--(356.5, 412.7)--(356.8, 413.4)--(356.8, 413.5)--(356.8, 413.6)--(356.9, 413.7)--(356.9, 413.9)--(357.0, 414.0)--(357.0, 414.1)--(357.1, 414.2)--(357.1, 414.3)--(357.2, 414.4)--(357.2, 414.5)--(357.3, 414.6)--(357.3, 414.7)--(357.4, 414.7)--(357.4, 414.8)--(357.5, 414.9)--(357.6, 415.0)--(357.7, 415.1)--(357.8, 415.1)--(357.8, 415.2)--(357.9, 415.2)--(359.2, 416.1)--(359.7, 416.4)--(360.7, 417.0)--(360.9, 417.1)--(361.0, 417.2)--(361.1, 417.3)--(361.1, 417.4)--(361.2, 417.4)--(361.3, 417.5)--(361.4, 417.5)--(361.4, 417.6)--(361.5, 417.6)--(361.5, 417.7)--(361.6, 417.7)--(361.7, 417.8)--(361.8, 417.9)--(361.8, 418.0)--(361.9, 418.2)--(362.0, 418.2)--(362.0, 418.3)--(362.1, 418.4)--(362.1, 418.5)--(362.2, 418.5)--(362.2, 418.6)--(362.2, 418.7)--(362.3, 418.8)--(362.3, 418.9)--(362.3, 419.0)--(362.3, 419.1)--(362.3, 419.2)--(362.3, 419.3)--(362.3, 419.4)--(362.3, 419.5)--(362.3, 419.6)--(362.3, 419.7)--(362.2, 419.7)--(362.2, 419.8)--(362.2, 419.9)--(362.2, 420.0)--(362.1, 420.0)--(362.1, 420.1)--(362.1, 420.2)--(362.0, 420.2)--(361.7, 420.8)--(361.6, 420.9)--(361.6, 421.0)--(361.5, 421.0)--(361.5, 421.1)--(361.4, 421.2)--(361.4, 421.3)--(361.3, 421.4)--(361.3, 421.5)--(361.3, 421.6)--(361.2, 421.6)--(361.2, 421.7)--(361.2, 421.8)--(361.1, 421.9)--(361.1, 422.0)--(361.1, 422.1)--(361.1, 422.2)--(361.1, 422.3)--(361.2, 422.4)--(361.2, 422.5)--(361.2, 422.6)--(361.2, 422.7)--(361.2, 422.8)--(361.3, 422.8)--(361.3, 422.9)--(361.3, 423.0)--(361.3, 423.1)--(361.3, 423.2)--(361.4, 423.3)--(361.4, 423.4)--(361.4, 423.5)--(361.5, 423.6)--(361.8, 424.1)--(362.2, 425.0)--(362.6, 425.8)--(362.9, 426.4)--(363.0, 426.5)--(363.0, 426.6)--(363.1, 426.8)--(363.1, 426.9)--(363.2, 427.0)--(363.3, 427.1)--(363.4, 427.3)--(363.6, 427.5)--(363.7, 427.7)--(363.8, 427.9)--(364.0, 428.1)--(364.6, 428.8)--(365.0, 429.2)--(365.2, 429.5)--(365.7, 430.3)--(366.2, 431.0)--(366.3, 431.1)--(366.5, 431.5)--(366.6, 431.6)--(366.8, 431.9)--(367.3, 432.6)--(367.4, 432.7)--(367.5, 432.8)--(367.8, 433.2)--(367.9, 433.5)--(368.0, 433.7)--(368.1, 434.0)--(368.2, 434.4)--(368.3, 434.8)--(368.3, 435.0)--(368.4, 435.2)--(368.5, 435.5)--(368.6, 435.8)--(368.8, 436.1)--(368.9, 436.3)--(369.1, 436.7)--(369.2, 436.8)--(369.3, 437.1)--(369.5, 437.4)--(369.8, 438.1)--(371.5, 441.8)--(372.3, 443.4)--(372.8, 444.7)--(373.3, 445.8)--(373.5, 446.1)--(373.6, 446.4)--(374.0, 447.3)--(374.4, 448.0)--(374.5, 448.3)--(374.7, 448.8)--(374.8, 449.2)--(374.8, 449.4)--(374.8, 449.7)--(374.9, 450.0)--(375.3, 451.2)--(375.6, 452.4)--(375.7, 452.9)--(375.8, 453.2)--(375.8, 454.0)--(376.0, 457.3)--(376.3, 460.3)--(376.4, 460.3)--(376.7, 460.5)--(376.8, 460.5)--(377.1, 460.5)--(377.3, 460.5)--(377.6, 460.4)--(377.7, 460.7)--(378.3, 460.7)--(378.5, 460.7)--(378.6, 460.7)--(378.8, 460.6)--(379.0, 460.6)--(379.2, 460.5)--(379.5, 460.4)--(379.7, 460.3)--(379.4, 460.0)--(379.2, 459.6)--(379.3, 459.5)--(379.3, 459.3)--(379.2, 459.2)--(379.1, 459.0)--(379.0, 458.7)--(378.9, 458.4)--(379.1, 458.4)--(379.1, 458.2)--(379.1, 458.1)--(379.1, 457.8)--(379.1, 457.6)--(379.1, 457.5)--(379.2, 457.4)--(379.3, 457.4)--(379.8, 457.3)--(380.2, 457.2)--(380.5, 457.2)--(380.7, 457.2)--(380.8, 457.2)--(380.9, 457.2)--(381.0, 457.3)--(381.7, 457.4)--(381.8, 457.2)--(381.8, 457.1)--(381.8, 457.0)--(381.9, 456.9)--(382.0, 456.7)--(382.1, 456.5)--(382.3, 456.7)--(382.8, 457.0)--(383.3, 457.3)--(383.6, 457.5)--(384.1, 457.7)--(384.2, 457.7)--(384.5, 457.7)--(384.6, 457.6)--(384.5, 457.5)--(384.6, 457.5)--(384.6, 457.4)--(384.6, 457.3)--(384.6, 457.2)--(384.9, 456.5)--(385.0, 456.3)--(385.1, 456.1)--(385.2, 456.0)--(385.3, 455.9)--(385.4, 455.7)--(385.5, 455.6)--(385.6, 455.6)--(385.7, 455.6)--(385.9, 455.6)--(386.0, 455.5)--(386.3, 455.5)--(386.6, 455.5)--(386.8, 455.5)--(386.9, 455.5)--(387.0, 455.4)--(387.1, 455.4)--(387.3, 455.5)--(387.3, 455.4)--(387.9, 455.4)--(388.4, 455.4)--(388.7, 455.5)--(388.9, 455.5)--(389.1, 455.6)--(389.3, 455.6)--(389.4, 455.6)--(389.5, 455.6)--(389.7, 455.5)--(390.0, 455.5)--(390.7, 455.4)--(391.1, 455.4)--(391.6, 455.4)--(391.7, 455.4)--(391.8, 455.4)--(392.3, 455.3)--(392.5, 455.3)--(392.6, 455.2)--(392.8, 455.1)--(392.9, 455.1)--(393.0, 455.1)--(393.3, 455.1)--(393.5, 455.1)--(393.8, 455.0)--(394.2, 454.8)--(394.6, 454.8)--(394.7, 454.8)--(394.9, 454.7)--(395.0, 454.6)--(395.2, 454.6)--(395.4, 454.5)--(395.9, 454.4)--(396.3, 454.3)--(396.5, 454.3)--(397.0, 454.2)--(397.5, 454.2)--(398.3, 454.3)--(398.8, 454.5)--(400.0, 455.0)--(400.6, 455.3)--(400.6, 455.2)--(400.7, 454.7)--(400.8, 454.1)--(400.8, 453.5)--(400.9, 452.6)--(400.9, 451.7)--(401.0, 451.5)--(401.6, 451.3)--(402.1, 451.2)--(402.2, 451.2)--(402.3, 451.1)--(402.4, 451.1)--(402.3, 450.9)--(402.3, 450.8)--(402.2, 450.6)--(402.2, 450.5)--(402.2, 450.4)--(402.2, 450.3)--(402.1, 450.0)--(402.1, 449.9)--(402.1, 449.7)--(402.2, 449.6)--(402.2, 449.5)--(402.2, 449.4)--(402.3, 449.1)--(402.4, 449.1)--(402.5, 448.8)--(402.7, 448.6)--(402.8, 448.3)--(402.9, 448.0)--(402.8, 447.8)--(402.7, 447.5)--(402.4, 446.8)--(402.2, 446.2)--(402.1, 445.9)--(402.0, 445.6)--(401.8, 445.0)--(401.7, 444.4)--(401.7, 444.2)--(401.7, 444.0)--(401.7, 443.9)--(401.8, 443.9)--(401.7, 443.8)--(401.6, 443.7)--(400.8, 442.7)--(400.6, 442.3)--(400.4, 441.6)--(400.2, 441.7)--(400.0, 441.8)--(400.0, 441.7)--(400.1, 441.7)--(400.1, 441.6)--(400.0, 441.6)--(399.9, 441.6)--(399.8, 441.7)--(399.8, 441.6)--(399.7, 441.5)--(399.7, 441.4)--(399.8, 441.3)--(399.9, 441.2)--(399.9, 441.1)--(399.9, 441.0)--(399.8, 441.0)--(399.7, 441.0)--(399.6, 441.0)--(399.6, 440.9)--(399.6, 440.8)--(399.5, 440.6)--(399.5, 440.5)--(399.5, 440.3)--(399.5, 440.2)--(399.5, 440.1)--(399.6, 440.0)--(399.6, 439.9)--(399.5, 439.9)--(399.5, 439.8)--(399.4, 439.8)--(399.3, 439.8)--(399.1, 439.5)--(399.1, 439.4)--(399.1, 439.3)--(399.3, 439.1)--(399.3, 439.0)--(399.3, 438.9)--(399.2, 438.9)--(399.2, 438.7)--(399.2, 438.6)--(399.1, 438.5)--(399.0, 438.5)--(399.1, 438.4)--(399.1, 438.3)--(398.9, 438.2)--(398.8, 438.1)--(398.8, 438.0)--(398.8, 437.9)--(398.8, 437.8)--(398.9, 437.7)--(398.8, 437.5)--(398.6, 437.3)--(398.7, 437.2)--(398.6, 437.2)--(398.6, 437.1)--(398.6, 437.0)--(398.6, 436.5)--(398.5, 436.4)--(398.3, 436.4)--(398.3, 436.3)--(398.3, 436.2)--(398.4, 436.2)--(398.4, 436.1)--(398.4, 436.0)--(398.4, 435.9)--(398.5, 435.9)--(398.5, 435.8)--(398.6, 435.9)--(398.6, 435.8)--(398.6, 435.7)--(398.5, 435.7)--(398.4, 435.7)--(398.3, 435.7)--(398.2, 435.6)--(398.3, 435.5)--(398.4, 435.5)--(398.4, 435.4)--(398.5, 435.4)--(398.5, 435.3)--(398.4, 435.2)--(398.3, 435.1)--(398.3, 435.0)--(398.3, 434.9)--(398.2, 434.8)--(398.1, 434.7)--(398.1, 434.6)--(398.0, 434.5)--(397.9, 434.5)--(397.7, 434.3)--(397.6, 434.3)--(397.5, 434.3)--(397.5, 434.4)--(397.4, 434.4)--(397.4, 434.3)--(397.3, 434.3)--(397.3, 434.2)--(397.3, 434.1)--(397.3, 434.0)--(397.3, 433.9)--(397.2, 433.9)--(397.2, 433.8)--(397.0, 433.7)--(396.8, 433.7)--(396.7, 433.6)--(396.7, 433.5)--(396.7, 433.3)--(396.8, 433.3)--(396.8, 433.2)--(396.8, 433.1)--(396.7, 433.0)--(396.6, 433.0)--(396.6, 432.9)--(396.5, 432.7)--(396.4, 432.7)--(396.3, 432.6)--(396.2, 432.6)--(396.1, 432.6)--(396.0, 432.5)--(395.9, 432.4)--(395.8, 432.3)--(395.7, 432.1)--(395.6, 432.1)--(395.5, 432.1)--(395.5, 432.0)--(395.4, 432.0)--(395.5, 431.8)--(395.6, 431.7)--(395.7, 431.6)--(395.7, 431.4)--(395.8, 431.1)--(395.7, 431.0)--(395.6, 430.4)--(395.5, 430.4)--(395.4, 430.4)--(395.3, 430.4)--(394.3, 430.6)--(394.0, 430.6)--(393.8, 430.6)--(393.5, 430.6)--(393.3, 430.5)--(393.1, 430.5)--(393.0, 430.4)--(392.8, 430.5)--(392.7, 430.6)--(392.6, 430.6)--(392.6, 430.5)--(392.5, 430.5)--(392.4, 430.5)--(392.4, 430.6)--(392.3, 430.6)--(392.1, 430.6)--(391.8, 430.6)--(391.6, 430.5)--(391.8, 430.4)--(391.9, 430.4)--(392.9, 429.9)--(395.0, 429.1)--(395.8, 428.7)--(396.2, 428.6)--(396.6, 428.4)--(396.7, 428.3)--(396.8, 428.2)--(396.9, 428.2)--(400.0, 423.8)--(400.4, 423.4)--(400.5, 423.2)--(400.5, 423.1)--(400.5, 423.0)--(400.6, 422.9)--(400.6, 422.7)--(400.6, 422.6)--(400.6, 422.4)--(400.6, 422.2)--(400.5, 422.0)--(400.6, 421.9)--(400.5, 421.5)--(400.4, 421.2)--(400.3, 421.3)--(400.1, 420.9)--(400.2, 420.8)--(400.0, 420.4)--(400.0, 420.3)--(399.8, 420.4)--(399.6, 419.6)--(399.5, 419.4)--(399.4, 419.2)--(399.5, 419.2)--(399.5, 419.1)--(399.5, 419.0)--(399.4, 418.8)--(399.4, 418.7)--(399.3, 418.7)--cycle; +Wandsworth = (234.9, 262.2)--(235.0, 262.2)--(235.1, 262.3)--(235.4, 262.5)--(236.1, 261.6)--(237.0, 260.5)--(237.5, 260.0)--(238.0, 259.4)--(238.0, 259.3)--(239.1, 258.3)--(239.6, 257.9)--(240.5, 257.2)--(240.7, 257.1)--(241.1, 256.8)--(241.0, 256.8)--(242.0, 256.1)--(242.4, 255.9)--(242.4, 255.8)--(242.5, 255.8)--(242.6, 255.8)--(243.2, 255.5)--(244.1, 255.1)--(245.1, 254.6)--(246.3, 254.1)--(246.5, 254.0)--(247.4, 253.7)--(249.0, 253.3)--(250.0, 253.1)--(251.2, 253.0)--(251.4, 252.9)--(251.6, 252.9)--(252.0, 252.9)--(252.0, 253.0)--(254.5, 253.1)--(254.8, 252.6)--(254.8, 252.3)--(254.8, 252.0)--(254.8, 251.7)--(254.9, 251.1)--(254.8, 250.7)--(254.8, 250.6)--(254.9, 250.4)--(254.8, 250.0)--(254.8, 249.9)--(255.0, 249.8)--(255.3, 249.8)--(255.6, 249.8)--(255.6, 249.9)--(255.3, 249.9)--(255.2, 250.0)--(255.1, 250.1)--(255.1, 251.4)--(255.1, 251.5)--(255.0, 251.7)--(255.0, 251.8)--(255.0, 251.9)--(255.1, 251.8)--(255.2, 251.7)--(255.2, 251.6)--(255.3, 251.5)--(255.7, 251.6)--(255.3, 252.0)--(255.3, 252.1)--(255.2, 252.2)--(255.2, 252.4)--(255.2, 252.5)--(255.2, 252.6)--(255.0, 252.9)--(255.0, 253.1)--(255.3, 253.1)--(255.4, 252.9)--(255.5, 253.0)--(255.5, 253.2)--(256.6, 253.4)--(256.7, 253.4)--(257.2, 253.5)--(257.5, 253.6)--(257.8, 253.7)--(258.1, 253.8)--(258.3, 253.8)--(259.1, 254.1)--(259.4, 254.2)--(260.2, 254.6)--(260.3, 254.7)--(262.4, 256.1)--(262.8, 256.4)--(263.4, 257.1)--(263.6, 257.2)--(263.7, 257.3)--(263.8, 257.5)--(264.2, 258.1)--(264.3, 258.2)--(264.4, 258.4)--(264.5, 258.6)--(264.6, 258.8)--(264.7, 258.9)--(265.0, 259.6)--(265.6, 261.0)--(265.7, 261.4)--(265.8, 261.4)--(265.9, 261.6)--(266.1, 261.5)--(266.2, 261.6)--(265.9, 261.7)--(266.1, 262.1)--(266.5, 262.0)--(266.5, 262.1)--(266.1, 262.2)--(266.2, 262.6)--(266.3, 262.8)--(266.5, 263.9)--(266.6, 264.2)--(266.7, 264.5)--(266.9, 264.4)--(266.9, 264.5)--(266.7, 264.6)--(266.7, 264.8)--(266.8, 264.9)--(266.8, 265.2)--(266.8, 265.4)--(266.9, 265.6)--(266.9, 265.7)--(267.0, 266.0)--(267.0, 266.1)--(267.0, 266.2)--(267.1, 266.7)--(267.2, 267.1)--(267.3, 267.3)--(267.5, 267.2)--(267.7, 268.0)--(267.8, 268.2)--(267.9, 268.2)--(267.9, 268.3)--(267.8, 268.3)--(267.7, 268.4)--(267.7, 268.5)--(267.7, 268.6)--(267.9, 269.0)--(268.0, 269.0)--(267.8, 269.1)--(268.0, 269.6)--(268.0, 269.7)--(268.2, 270.0)--(268.2, 270.2)--(268.4, 270.5)--(268.6, 270.8)--(268.7, 271.1)--(268.9, 271.3)--(269.1, 271.6)--(269.2, 271.7)--(269.4, 271.9)--(269.6, 272.1)--(270.1, 272.5)--(270.3, 272.7)--(270.4, 272.7)--(270.6, 272.8)--(270.8, 272.9)--(271.0, 273.0)--(271.1, 273.0)--(271.2, 273.0)--(271.3, 273.1)--(272.7, 273.6)--(273.2, 273.8)--(273.3, 273.8)--(273.3, 273.9)--(274.3, 274.1)--(274.6, 274.2)--(274.7, 274.3)--(275.2, 274.4)--(275.2, 274.3)--(275.3, 274.3)--(277.6, 274.9)--(280.1, 275.5)--(281.2, 275.8)--(282.8, 276.2)--(283.6, 276.3)--(283.6, 276.4)--(284.1, 276.5)--(285.4, 276.8)--(285.4, 276.7)--(285.5, 276.8)--(285.5, 276.9)--(285.9, 277.0)--(286.1, 277.0)--(286.2, 277.0)--(286.9, 277.0)--(287.5, 277.0)--(287.8, 277.0)--(288.1, 277.0)--(288.2, 277.0)--(290.1, 276.6)--(291.4, 276.4)--(292.1, 276.2)--(292.2, 276.2)--(292.3, 276.2)--(292.5, 276.2)--(293.2, 276.2)--(293.6, 276.2)--(293.8, 276.2)--(294.0, 276.2)--(294.2, 276.2)--(294.4, 276.2)--(294.4, 275.9)--(294.7, 275.9)--(294.7, 276.1)--(294.7, 276.2)--(294.7, 276.3)--(294.8, 276.3)--(295.2, 276.5)--(295.3, 276.5)--(295.4, 276.5)--(295.5, 276.5)--(296.3, 276.8)--(296.3, 276.9)--(296.6, 277.0)--(297.2, 277.2)--(297.3, 277.2)--(297.5, 277.3)--(297.6, 277.2)--(297.7, 277.3)--(297.9, 277.4)--(298.0, 277.3)--(298.1, 277.4)--(298.0, 277.5)--(298.3, 277.7)--(298.4, 277.8)--(298.5, 277.9)--(298.6, 278.0)--(298.9, 278.2)--(299.0, 278.3)--(299.1, 278.3)--(299.4, 278.4)--(299.6, 278.5)--(299.9, 278.6)--(300.0, 278.7)--(300.2, 278.8)--(300.4, 278.9)--(300.5, 278.9)--(300.5, 278.8)--(300.7, 278.6)--(300.8, 278.6)--(301.0, 278.6)--(301.5, 278.5)--(301.8, 278.4)--(301.9, 278.3)--(301.6, 277.7)--(301.5, 277.4)--(301.4, 277.1)--(301.3, 276.5)--(301.3, 276.0)--(301.2, 275.6)--(300.9, 275.4)--(300.4, 275.1)--(300.1, 274.9)--(299.9, 274.8)--(299.5, 274.6)--(299.4, 274.0)--(299.3, 274.0)--(299.3, 273.9)--(299.2, 273.8)--(299.1, 273.5)--(298.9, 273.2)--(298.9, 273.0)--(298.7, 272.8)--(298.6, 272.7)--(298.6, 272.6)--(298.5, 272.4)--(298.4, 272.3)--(298.4, 272.1)--(298.3, 271.8)--(298.3, 271.7)--(298.2, 271.6)--(298.2, 271.5)--(298.1, 271.5)--(298.0, 271.2)--(297.8, 270.6)--(297.5, 269.9)--(297.3, 269.6)--(297.1, 269.0)--(297.0, 268.7)--(297.0, 268.6)--(297.0, 268.4)--(296.9, 268.4)--(296.8, 268.3)--(296.8, 268.0)--(296.7, 267.8)--(296.5, 267.5)--(296.4, 267.6)--(296.2, 267.3)--(296.3, 267.3)--(296.1, 266.8)--(296.4, 266.6)--(296.6, 266.5)--(296.6, 266.4)--(296.6, 266.3)--(296.6, 266.1)--(296.6, 265.9)--(296.4, 265.8)--(296.2, 265.5)--(296.1, 265.4)--(296.0, 265.3)--(295.9, 265.1)--(295.8, 265.1)--(295.7, 265.1)--(295.6, 265.1)--(295.5, 265.1)--(295.4, 265.1)--(295.3, 265.1)--(295.2, 265.2)--(295.1, 265.3)--(294.9, 265.5)--(294.5, 264.9)--(294.3, 264.6)--(294.2, 264.4)--(294.0, 264.2)--(293.9, 264.1)--(293.7, 264.1)--(293.7, 264.2)--(293.5, 264.1)--(293.4, 264.1)--(293.3, 264.1)--(293.2, 264.0)--(293.1, 263.9)--(293.2, 263.8)--(293.3, 263.7)--(293.0, 263.5)--(292.9, 263.5)--(292.6, 263.8)--(292.2, 263.4)--(291.6, 263.0)--(291.8, 262.7)--(291.0, 262.0)--(290.7, 262.5)--(290.6, 262.5)--(288.6, 261.1)--(287.8, 260.6)--(286.4, 259.6)--(285.8, 259.2)--(285.6, 259.2)--(285.6, 258.9)--(285.6, 258.8)--(285.6, 257.7)--(285.7, 257.3)--(285.2, 257.2)--(285.4, 255.4)--(285.4, 255.1)--(285.4, 254.9)--(285.6, 254.1)--(285.6, 253.9)--(285.7, 253.7)--(285.8, 253.4)--(285.8, 253.3)--(285.9, 253.2)--(286.1, 252.8)--(286.2, 252.6)--(286.3, 252.4)--(286.4, 252.2)--(286.4, 252.1)--(286.7, 250.0)--(286.7, 249.7)--(286.8, 249.5)--(287.0, 249.0)--(287.2, 248.4)--(287.4, 247.8)--(287.4, 247.7)--(287.4, 247.6)--(287.6, 246.7)--(287.7, 246.2)--(287.8, 245.3)--(287.8, 245.1)--(287.7, 245.0)--(287.8, 244.9)--(287.9, 243.9)--(288.0, 242.9)--(288.1, 242.9)--(288.2, 242.9)--(288.0, 242.2)--(288.3, 242.1)--(288.8, 241.9)--(290.2, 241.3)--(290.8, 241.0)--(290.9, 241.0)--(291.2, 240.9)--(291.8, 240.8)--(291.8, 240.5)--(291.7, 240.3)--(291.6, 240.1)--(291.5, 239.8)--(291.4, 239.6)--(291.3, 239.5)--(291.1, 239.1)--(290.9, 238.9)--(290.6, 238.6)--(290.2, 238.2)--(290.2, 238.0)--(290.1, 237.7)--(289.9, 237.1)--(289.8, 236.7)--(289.8, 236.2)--(289.7, 235.6)--(289.7, 235.2)--(289.6, 235.1)--(289.6, 235.0)--(289.7, 234.5)--(289.8, 234.0)--(290.0, 233.5)--(290.2, 233.1)--(290.3, 232.9)--(290.4, 232.7)--(290.5, 232.4)--(290.6, 232.2)--(290.9, 231.5)--(291.0, 231.1)--(291.2, 230.6)--(291.4, 230.6)--(291.8, 230.6)--(292.0, 230.6)--(292.6, 230.6)--(293.1, 230.6)--(294.3, 230.5)--(295.1, 230.6)--(295.5, 230.6)--(295.9, 230.7)--(296.2, 230.8)--(296.4, 230.9)--(296.5, 230.9)--(296.5, 230.7)--(296.4, 230.4)--(296.2, 230.0)--(296.0, 229.5)--(295.9, 229.4)--(295.8, 229.0)--(295.5, 229.1)--(295.5, 228.9)--(295.5, 228.8)--(295.4, 228.8)--(295.5, 228.7)--(295.6, 228.5)--(295.6, 228.4)--(295.6, 228.3)--(295.6, 228.0)--(295.6, 227.7)--(295.5, 227.4)--(295.4, 227.1)--(295.3, 226.9)--(295.2, 226.7)--(295.0, 226.5)--(294.8, 226.4)--(294.5, 226.2)--(294.4, 226.1)--(294.3, 226.0)--(294.2, 225.9)--(294.0, 225.6)--(293.9, 225.3)--(293.8, 225.2)--(293.9, 224.5)--(294.0, 224.1)--(294.0, 223.8)--(294.1, 223.6)--(294.1, 223.4)--(294.2, 223.3)--(294.5, 222.9)--(295.1, 222.1)--(295.4, 221.8)--(295.6, 221.8)--(296.0, 221.9)--(296.2, 221.9)--(296.3, 221.9)--(296.4, 221.8)--(296.6, 220.7)--(296.8, 219.8)--(297.0, 218.9)--(297.2, 218.3)--(297.3, 218.0)--(297.2, 217.9)--(297.1, 217.9)--(296.8, 217.9)--(296.3, 218.0)--(295.9, 218.1)--(295.6, 218.1)--(295.1, 218.2)--(295.1, 218.1)--(295.1, 218.0)--(295.1, 217.9)--(295.1, 217.5)--(295.1, 217.1)--(295.1, 216.5)--(295.1, 216.2)--(295.1, 215.7)--(295.1, 215.3)--(295.0, 214.0)--(294.9, 213.2)--(294.9, 212.3)--(294.9, 211.7)--(294.9, 211.5)--(295.0, 210.7)--(295.0, 210.5)--(295.2, 209.4)--(295.2, 209.3)--(295.4, 208.7)--(295.8, 207.7)--(295.5, 207.4)--(295.3, 207.1)--(294.9, 206.6)--(294.6, 206.3)--(294.0, 205.6)--(293.8, 205.4)--(293.7, 205.3)--(293.6, 205.2)--(293.5, 205.1)--(293.4, 205.0)--(293.2, 204.9)--(293.1, 204.8)--(292.9, 204.7)--(292.5, 204.4)--(292.4, 204.3)--(292.2, 204.2)--(291.9, 204.1)--(291.7, 204.0)--(291.6, 203.9)--(291.2, 203.8)--(291.1, 203.9)--(290.9, 204.0)--(290.7, 204.1)--(290.4, 204.2)--(290.3, 204.3)--(290.3, 204.4)--(290.2, 204.4)--(290.2, 204.5)--(290.1, 204.5)--(290.0, 204.7)--(289.8, 204.9)--(289.6, 205.1)--(289.5, 205.1)--(289.4, 205.1)--(289.1, 205.1)--(289.0, 205.1)--(288.8, 205.3)--(288.6, 205.5)--(288.3, 205.8)--(287.9, 206.0)--(287.8, 206.1)--(287.7, 206.1)--(287.5, 206.2)--(287.4, 206.2)--(287.2, 206.3)--(287.1, 206.3)--(287.0, 206.3)--(286.8, 206.2)--(286.6, 206.1)--(286.5, 206.0)--(286.4, 206.0)--(286.0, 206.2)--(285.0, 206.7)--(283.6, 207.4)--(283.3, 207.5)--(283.0, 207.6)--(282.5, 207.8)--(282.0, 208.0)--(281.6, 208.3)--(281.2, 208.6)--(280.8, 208.8)--(280.6, 208.9)--(280.5, 208.7)--(280.5, 208.8)--(280.5, 208.9)--(280.4, 209.0)--(280.4, 208.6)--(280.3, 208.6)--(280.3, 208.5)--(280.4, 208.5)--(280.3, 208.2)--(280.4, 208.2)--(280.3, 208.2)--(280.3, 208.1)--(280.1, 208.2)--(280.1, 208.1)--(279.7, 207.1)--(279.5, 206.7)--(279.3, 205.9)--(279.2, 205.9)--(278.5, 205.9)--(277.9, 205.9)--(277.5, 206.0)--(277.2, 206.0)--(276.8, 206.1)--(276.9, 206.2)--(277.0, 206.1)--(277.0, 206.3)--(276.8, 206.4)--(276.1, 206.5)--(275.8, 206.5)--(275.7, 206.6)--(275.5, 206.6)--(275.4, 206.6)--(275.1, 206.7)--(274.5, 206.9)--(274.5, 207.0)--(274.0, 207.2)--(273.6, 207.4)--(272.9, 207.8)--(272.7, 207.9)--(272.6, 208.0)--(272.4, 208.2)--(272.3, 208.3)--(271.9, 208.6)--(271.8, 208.7)--(271.7, 208.8)--(271.4, 209.0)--(271.0, 209.2)--(270.8, 209.3)--(270.8, 209.2)--(270.7, 209.2)--(270.1, 209.5)--(270.1, 209.6)--(270.0, 209.6)--(269.8, 209.7)--(269.4, 209.9)--(269.3, 209.9)--(268.8, 210.1)--(268.1, 210.3)--(267.8, 210.4)--(267.2, 210.5)--(267.0, 210.6)--(265.8, 210.7)--(265.0, 210.9)--(264.1, 211.8)--(263.6, 212.5)--(263.5, 212.7)--(263.3, 213.4)--(263.1, 214.1)--(263.1, 215.2)--(263.1, 215.8)--(263.1, 216.2)--(263.2, 217.3)--(263.3, 217.8)--(263.3, 218.1)--(263.2, 218.2)--(263.1, 218.2)--(263.1, 218.3)--(263.1, 218.4)--(263.1, 218.5)--(263.1, 218.7)--(263.0, 218.9)--(262.9, 219.1)--(262.7, 219.2)--(262.5, 219.5)--(262.4, 219.7)--(262.1, 220.2)--(261.7, 220.0)--(261.6, 220.0)--(261.1, 220.0)--(261.0, 219.9)--(261.0, 219.0)--(260.4, 219.0)--(260.3, 219.0)--(259.7, 218.7)--(259.8, 218.4)--(259.4, 218.2)--(259.2, 218.4)--(259.0, 218.6)--(259.0, 218.7)--(258.9, 218.8)--(258.9, 219.0)--(258.9, 219.1)--(258.8, 219.3)--(258.7, 219.5)--(258.6, 219.7)--(258.4, 220.0)--(258.4, 220.3)--(258.3, 220.4)--(258.3, 220.5)--(258.4, 220.7)--(258.4, 220.8)--(258.5, 220.8)--(258.5, 220.9)--(258.6, 221.0)--(258.7, 221.2)--(258.9, 221.8)--(258.9, 222.0)--(259.0, 222.2)--(259.1, 222.5)--(259.2, 223.1)--(259.2, 223.5)--(259.3, 224.0)--(259.4, 224.8)--(259.5, 225.1)--(259.5, 225.7)--(259.6, 226.2)--(259.3, 226.2)--(259.2, 226.2)--(259.1, 226.4)--(258.8, 226.5)--(258.6, 226.5)--(258.5, 226.6)--(258.6, 226.6)--(258.6, 226.8)--(258.7, 227.0)--(258.8, 227.0)--(258.8, 227.1)--(259.0, 227.5)--(259.0, 227.6)--(259.1, 227.8)--(259.0, 228.2)--(258.9, 228.6)--(258.9, 228.9)--(258.9, 229.1)--(258.9, 229.2)--(258.9, 229.3)--(258.9, 229.4)--(258.7, 229.3)--(257.2, 228.9)--(257.0, 228.9)--(256.6, 228.8)--(255.9, 228.5)--(255.8, 228.5)--(255.7, 228.6)--(254.5, 228.2)--(254.3, 228.0)--(254.0, 228.0)--(253.1, 227.6)--(250.9, 227.0)--(250.1, 226.7)--(250.0, 226.6)--(249.5, 226.5)--(249.1, 226.4)--(248.9, 226.4)--(248.3, 226.2)--(248.0, 226.1)--(247.4, 226.0)--(247.0, 225.8)--(246.9, 225.8)--(246.6, 225.7)--(246.5, 225.7)--(246.3, 225.7)--(246.0, 225.6)--(245.7, 225.6)--(245.2, 225.4)--(244.9, 225.4)--(244.4, 225.3)--(244.0, 225.1)--(243.7, 225.0)--(243.6, 225.0)--(243.4, 225.0)--(243.2, 225.0)--(243.1, 225.0)--(242.9, 225.0)--(242.5, 225.0)--(242.2, 224.9)--(241.6, 224.9)--(241.3, 224.8)--(241.2, 224.8)--(241.0, 225.0)--(241.0, 225.1)--(240.9, 225.1)--(240.9, 225.2)--(240.8, 225.2)--(240.8, 225.3)--(240.6, 225.5)--(240.3, 225.6)--(240.2, 225.7)--(240.0, 225.7)--(240.0, 225.8)--(239.9, 225.8)--(239.8, 225.8)--(239.7, 225.8)--(239.6, 225.8)--(239.5, 225.8)--(239.4, 225.8)--(239.3, 225.8)--(239.2, 225.8)--(239.1, 225.8)--(239.0, 225.8)--(238.7, 225.7)--(238.4, 225.6)--(237.9, 225.5)--(237.4, 225.6)--(235.9, 225.8)--(235.2, 225.9)--(235.0, 225.6)--(234.8, 225.7)--(234.6, 225.8)--(234.3, 225.8)--(234.1, 225.7)--(233.3, 225.6)--(232.9, 225.5)--(232.0, 225.3)--(231.7, 225.3)--(231.2, 225.1)--(230.9, 225.1)--(230.6, 225.1)--(230.5, 225.0)--(230.3, 225.0)--(230.1, 224.9)--(229.7, 224.7)--(229.0, 224.3)--(227.7, 223.6)--(227.0, 223.3)--(226.5, 223.0)--(226.0, 222.7)--(225.4, 222.4)--(224.9, 222.1)--(224.5, 221.9)--(224.0, 221.7)--(223.9, 221.6)--(223.5, 221.4)--(223.2, 221.3)--(222.8, 221.1)--(222.4, 220.9)--(222.1, 220.8)--(221.8, 220.7)--(221.5, 220.6)--(220.9, 220.3)--(220.2, 220.0)--(219.9, 219.8)--(219.2, 219.5)--(218.7, 219.3)--(218.3, 219.2)--(217.7, 218.9)--(217.3, 218.7)--(217.0, 218.6)--(216.9, 218.5)--(216.8, 218.5)--(216.7, 218.5)--(216.7, 218.8)--(216.7, 219.2)--(216.7, 219.4)--(216.7, 219.5)--(216.7, 219.8)--(216.6, 220.2)--(216.5, 220.3)--(216.4, 220.4)--(216.4, 220.5)--(216.3, 220.6)--(216.2, 220.7)--(216.0, 220.8)--(215.6, 221.1)--(215.5, 221.2)--(215.4, 221.2)--(215.4, 221.3)--(215.3, 221.4)--(215.2, 221.5)--(215.1, 221.6)--(215.1, 221.8)--(215.0, 221.9)--(215.0, 222.1)--(215.0, 222.3)--(215.0, 222.6)--(215.0, 222.9)--(214.9, 223.0)--(214.9, 223.1)--(214.8, 223.3)--(214.7, 223.4)--(214.5, 223.6)--(214.5, 223.7)--(215.1, 224.1)--(215.9, 224.6)--(216.5, 225.0)--(217.9, 226.0)--(218.7, 226.5)--(220.1, 227.5)--(220.7, 227.9)--(221.1, 228.2)--(221.6, 228.5)--(222.0, 228.8)--(222.3, 229.0)--(222.5, 229.3)--(222.8, 229.9)--(223.0, 230.3)--(223.0, 230.4)--(222.7, 230.9)--(222.3, 231.5)--(222.0, 232.1)--(221.1, 233.6)--(220.9, 233.9)--(220.5, 234.5)--(220.2, 235.0)--(219.8, 235.6)--(219.4, 236.3)--(219.1, 236.7)--(218.9, 236.9)--(218.9, 237.0)--(217.5, 238.0)--(215.3, 239.7)--(213.5, 241.0)--(210.5, 243.2)--(210.6, 243.6)--(210.6, 244.0)--(210.6, 244.4)--(210.8, 244.9)--(210.9, 245.4)--(211.0, 245.9)--(211.1, 246.3)--(211.4, 247.0)--(211.7, 247.5)--(211.7, 247.7)--(211.8, 247.9)--(211.8, 248.1)--(211.9, 248.3)--(211.9, 248.4)--(212.0, 248.6)--(212.0, 248.7)--(211.2, 249.2)--(211.2, 249.4)--(211.5, 250.0)--(211.8, 250.7)--(212.1, 251.5)--(212.5, 252.3)--(212.8, 252.8)--(213.9, 254.1)--(214.1, 254.4)--(214.6, 254.7)--(215.3, 254.8)--(215.9, 254.8)--(217.0, 254.6)--(217.3, 254.6)--(217.6, 254.6)--(217.9, 254.6)--(220.0, 254.9)--(220.8, 254.9)--(221.5, 254.9)--(222.5, 254.7)--(226.6, 254.1)--(226.9, 254.1)--(227.1, 254.0)--(227.4, 254.0)--(228.2, 253.7)--(228.2, 254.0)--(228.2, 254.2)--(228.1, 254.7)--(228.0, 255.2)--(228.0, 255.6)--(227.9, 256.0)--(228.0, 256.1)--(228.1, 256.2)--(228.2, 256.3)--(228.5, 256.7)--(228.1, 257.7)--(228.1, 257.8)--(228.1, 258.0)--(228.0, 258.3)--(228.1, 258.6)--(228.2, 259.1)--(228.2, 259.5)--(228.3, 260.1)--(228.3, 260.5)--(228.3, 260.8)--(228.3, 261.3)--(228.3, 261.8)--(228.3, 262.3)--(228.2, 262.7)--(228.2, 262.8)--(228.3, 262.8)--(228.4, 263.1)--(228.4, 263.2)--(228.5, 263.3)--(228.8, 263.5)--(229.1, 263.5)--(229.3, 263.6)--(229.5, 263.6)--(229.6, 263.6)--(229.7, 263.5)--(229.8, 263.5)--(230.0, 263.3)--(230.3, 263.1)--(230.5, 262.9)--(230.6, 262.9)--(230.7, 262.8)--(230.8, 262.8)--(230.9, 262.8)--(231.0, 262.8)--(231.2, 262.8)--(231.3, 262.7)--(231.4, 262.6)--(231.5, 262.6)--(231.6, 262.6)--(231.9, 262.4)--(232.4, 262.1)--(232.6, 262.0)--(232.9, 262.0)--(233.3, 261.8)--(233.4, 261.7)--(234.3, 261.5)--(234.7, 261.4)--(234.8, 261.4)--(234.9, 261.4)--(234.9, 261.5)--(235.0, 261.6)--(235.0, 261.7)--(235.0, 261.8)--(234.9, 261.9)--(234.9, 262.0)--(234.8, 262.1)--cycle; +Westminster = (285.5, 279.0)--(285.4, 279.5)--(285.4, 279.6)--(285.3, 279.7)--(285.2, 279.9)--(284.5, 280.6)--(284.3, 280.8)--(283.0, 282.0)--(282.0, 282.9)--(281.3, 283.5)--(281.8, 284.0)--(281.6, 284.5)--(281.5, 284.7)--(281.4, 285.0)--(281.4, 285.1)--(281.3, 285.6)--(282.0, 286.2)--(281.1, 287.5)--(281.8, 288.3)--(281.1, 289.0)--(281.1, 289.1)--(281.2, 289.2)--(281.2, 289.3)--(281.3, 289.4)--(281.5, 289.6)--(281.4, 289.9)--(281.3, 290.1)--(281.3, 290.2)--(281.0, 292.3)--(280.9, 292.6)--(280.1, 293.5)--(279.7, 294.0)--(279.2, 296.2)--(279.2, 296.4)--(279.1, 296.4)--(279.1, 296.5)--(279.1, 296.6)--(279.1, 296.7)--(279.1, 297.5)--(278.7, 297.4)--(277.7, 297.0)--(277.6, 296.9)--(277.5, 296.8)--(277.4, 296.8)--(277.3, 296.6)--(277.2, 296.5)--(277.0, 296.3)--(276.5, 295.5)--(276.3, 295.3)--(276.2, 295.1)--(274.4, 293.5)--(274.1, 294.1)--(272.9, 293.0)--(272.7, 293.2)--(272.6, 293.6)--(272.5, 293.7)--(272.3, 293.8)--(271.5, 293.6)--(270.2, 293.3)--(270.0, 293.3)--(270.0, 293.2)--(269.5, 293.1)--(269.5, 293.0)--(268.8, 292.9)--(268.8, 292.8)--(264.6, 292.2)--(264.5, 293.2)--(264.0, 296.3)--(263.6, 296.2)--(263.3, 296.2)--(263.1, 296.2)--(262.8, 296.2)--(262.6, 296.3)--(262.4, 296.3)--(262.1, 296.3)--(261.3, 296.6)--(261.1, 296.9)--(260.2, 300.0)--(259.3, 303.2)--(258.5, 305.8)--(258.0, 305.8)--(257.2, 305.7)--(256.4, 305.6)--(255.9, 305.5)--(255.6, 305.4)--(254.9, 307.6)--(254.5, 307.4)--(254.2, 307.5)--(253.9, 308.5)--(253.4, 311.1)--(252.9, 311.0)--(250.5, 310.5)--(250.0, 313.0)--(249.4, 314.3)--(248.9, 314.1)--(248.2, 315.2)--(247.8, 315.9)--(247.6, 316.2)--(247.6, 316.4)--(247.5, 316.4)--(247.5, 316.6)--(247.5, 316.8)--(247.4, 316.8)--(247.3, 317.0)--(247.2, 317.1)--(247.2, 317.2)--(247.4, 317.3)--(247.7, 317.4)--(248.0, 317.5)--(248.3, 317.5)--(248.6, 317.5)--(248.7, 317.5)--(249.0, 317.5)--(249.3, 317.5)--(249.3, 317.3)--(249.4, 317.3)--(249.4, 317.4)--(249.0, 318.2)--(248.8, 318.7)--(248.7, 318.7)--(248.7, 318.8)--(248.7, 319.1)--(248.6, 319.4)--(248.6, 319.6)--(248.0, 319.9)--(247.9, 319.9)--(247.8, 319.9)--(247.7, 320.0)--(247.3, 320.2)--(247.1, 320.3)--(246.9, 320.5)--(246.7, 320.8)--(246.6, 321.0)--(246.2, 321.7)--(246.1, 321.9)--(245.9, 322.4)--(245.7, 322.6)--(245.6, 322.8)--(245.4, 323.1)--(245.2, 323.2)--(245.0, 323.3)--(244.8, 323.3)--(244.6, 323.4)--(244.4, 323.4)--(244.2, 323.4)--(244.1, 323.4)--(244.0, 323.4)--(243.5, 323.6)--(243.3, 323.6)--(243.0, 323.7)--(242.7, 323.8)--(242.5, 323.8)--(241.8, 323.9)--(241.4, 323.9)--(240.8, 324.0)--(240.4, 324.0)--(240.1, 324.0)--(239.5, 323.9)--(239.2, 323.8)--(238.9, 323.8)--(238.8, 324.0)--(238.7, 324.4)--(238.6, 324.5)--(238.6, 324.6)--(238.6, 324.7)--(238.6, 324.8)--(238.7, 325.0)--(238.5, 325.1)--(238.4, 326.2)--(238.4, 326.4)--(238.5, 326.6)--(238.5, 326.9)--(238.6, 327.1)--(238.7, 327.2)--(238.8, 327.2)--(238.9, 327.3)--(239.0, 327.4)--(239.0, 327.5)--(239.1, 327.6)--(239.1, 327.7)--(239.1, 327.8)--(239.1, 327.9)--(239.0, 328.0)--(238.9, 328.5)--(238.9, 328.6)--(238.9, 328.7)--(238.9, 328.8)--(238.9, 328.9)--(239.0, 329.0)--(239.3, 329.1)--(239.7, 329.2)--(239.8, 329.2)--(239.9, 329.3)--(240.1, 329.3)--(240.3, 329.4)--(240.5, 329.4)--(240.6, 329.4)--(240.7, 329.5)--(241.0, 329.5)--(241.4, 329.5)--(241.6, 329.6)--(241.8, 329.7)--(242.0, 329.7)--(242.4, 330.0)--(242.5, 330.0)--(242.8, 330.2)--(243.0, 330.3)--(243.3, 330.4)--(243.5, 330.5)--(244.0, 330.6)--(244.2, 330.7)--(244.4, 330.7)--(244.6, 330.7)--(244.8, 330.7)--(244.9, 330.7)--(245.1, 330.8)--(245.4, 330.8)--(245.6, 330.9)--(245.8, 330.9)--(246.3, 330.9)--(246.7, 330.8)--(247.0, 330.8)--(247.2, 330.8)--(247.4, 330.8)--(247.4, 330.9)--(247.5, 330.8)--(247.7, 330.7)--(247.9, 330.6)--(248.1, 330.5)--(248.2, 330.5)--(248.3, 330.5)--(248.4, 330.3)--(248.5, 330.2)--(248.5, 330.1)--(248.5, 330.0)--(248.6, 329.9)--(248.7, 329.8)--(248.8, 329.7)--(248.9, 329.7)--(249.1, 329.6)--(249.2, 329.5)--(249.6, 329.2)--(249.8, 329.1)--(249.9, 329.0)--(250.0, 328.9)--(250.1, 328.8)--(250.2, 328.7)--(250.3, 328.6)--(250.4, 328.6)--(250.5, 328.5)--(250.5, 328.4)--(250.7, 328.2)--(250.8, 328.1)--(251.0, 327.8)--(251.0, 327.6)--(251.0, 327.3)--(251.0, 326.8)--(251.0, 326.7)--(251.0, 326.6)--(251.0, 326.4)--(251.0, 326.3)--(250.9, 326.2)--(251.0, 325.9)--(251.1, 325.4)--(251.4, 325.3)--(251.5, 325.4)--(251.6, 325.4)--(251.7, 325.4)--(251.8, 325.4)--(251.8, 325.3)--(251.8, 325.2)--(252.0, 325.1)--(252.0, 325.2)--(252.1, 325.4)--(252.6, 326.4)--(253.5, 328.3)--(254.0, 329.3)--(254.3, 329.8)--(254.4, 330.2)--(254.6, 330.5)--(254.7, 330.7)--(254.8, 331.0)--(254.8, 331.2)--(254.8, 331.4)--(254.7, 331.5)--(254.5, 331.9)--(254.3, 332.2)--(254.3, 332.3)--(255.3, 334.8)--(255.4, 334.6)--(255.6, 334.4)--(255.8, 334.2)--(256.1, 334.0)--(256.5, 333.7)--(256.6, 333.6)--(256.7, 333.6)--(256.8, 333.5)--(256.8, 333.4)--(256.9, 333.3)--(257.0, 333.2)--(257.2, 332.9)--(257.4, 333.0)--(257.8, 333.3)--(257.8, 333.4)--(257.9, 333.4)--(257.9, 333.5)--(259.4, 335.9)--(259.5, 336.0)--(260.0, 336.7)--(260.0, 336.8)--(260.1, 336.9)--(260.3, 337.1)--(260.4, 337.1)--(260.5, 337.3)--(261.3, 337.7)--(262.1, 338.2)--(262.9, 338.6)--(263.0, 338.6)--(263.1, 338.7)--(263.3, 338.8)--(263.6, 338.8)--(263.8, 338.9)--(264.0, 338.9)--(264.2, 338.9)--(264.3, 338.9)--(266.1, 338.8)--(267.4, 338.7)--(267.3, 337.3)--(267.3, 337.2)--(267.3, 337.1)--(267.4, 337.1)--(267.7, 336.6)--(268.8, 337.5)--(269.5, 336.8)--(270.5, 337.8)--(270.5, 337.7)--(270.6, 337.7)--(270.8, 337.6)--(271.2, 337.2)--(271.4, 337.1)--(271.5, 337.0)--(272.6, 335.9)--(273.7, 334.7)--(274.5, 335.2)--(274.6, 335.3)--(274.8, 335.4)--(275.8, 336.0)--(276.8, 336.5)--(277.5, 335.5)--(278.1, 335.6)--(278.8, 335.9)--(280.0, 336.3)--(280.2, 336.5)--(280.4, 336.5)--(280.6, 336.6)--(280.7, 336.6)--(281.0, 336.7)--(281.1, 336.7)--(281.3, 336.7)--(281.7, 336.8)--(282.1, 336.9)--(283.1, 333.7)--(283.5, 332.2)--(284.3, 329.9)--(286.3, 323.1)--(287.3, 323.4)--(287.7, 321.9)--(288.0, 322.0)--(288.1, 322.0)--(288.5, 322.0)--(288.4, 322.7)--(288.6, 322.7)--(288.9, 322.7)--(289.0, 322.6)--(288.9, 322.0)--(288.9, 321.9)--(289.1, 321.9)--(289.2, 321.8)--(289.3, 321.9)--(290.4, 320.5)--(291.1, 319.7)--(291.6, 319.1)--(292.0, 318.5)--(292.3, 318.1)--(292.6, 317.8)--(292.7, 317.7)--(292.7, 317.6)--(292.8, 317.4)--(293.6, 316.4)--(294.0, 316.7)--(294.4, 316.2)--(294.8, 316.5)--(295.4, 315.5)--(295.4, 315.4)--(295.6, 315.0)--(295.7, 315.0)--(295.8, 315.0)--(296.0, 315.2)--(296.4, 314.8)--(296.7, 314.6)--(296.8, 314.1)--(297.4, 314.3)--(297.7, 314.4)--(297.7, 314.5)--(297.9, 314.5)--(298.2, 314.0)--(298.2, 313.9)--(298.2, 313.8)--(298.2, 313.5)--(298.2, 313.4)--(298.2, 313.2)--(298.7, 311.6)--(298.8, 311.2)--(299.0, 310.5)--(299.2, 310.5)--(299.3, 310.5)--(299.4, 310.4)--(299.7, 310.2)--(299.8, 310.1)--(300.0, 309.9)--(300.2, 309.7)--(300.3, 309.6)--(300.4, 309.7)--(300.5, 309.7)--(300.6, 309.7)--(300.7, 309.9)--(300.7, 310.0)--(300.8, 310.1)--(300.9, 310.2)--(301.2, 310.5)--(301.9, 310.9)--(302.4, 311.4)--(302.7, 311.7)--(303.0, 312.0)--(303.1, 312.1)--(303.5, 312.5)--(304.0, 311.9)--(304.2, 312.2)--(304.6, 312.1)--(305.3, 311.9)--(305.8, 311.8)--(306.0, 311.9)--(306.3, 312.0)--(306.4, 312.1)--(306.4, 312.2)--(306.4, 312.4)--(306.6, 312.4)--(307.1, 312.7)--(307.4, 312.9)--(309.1, 313.6)--(309.7, 312.3)--(310.8, 312.7)--(310.8, 312.8)--(311.2, 312.9)--(311.3, 312.9)--(311.3, 312.8)--(311.4, 312.3)--(311.7, 311.4)--(311.7, 311.2)--(311.5, 311.2)--(311.1, 311.1)--(311.2, 310.8)--(311.3, 310.5)--(310.9, 310.3)--(310.9, 310.2)--(310.8, 310.1)--(310.9, 310.1)--(310.8, 310.0)--(311.0, 309.8)--(311.1, 309.6)--(311.0, 309.5)--(311.2, 309.2)--(311.3, 309.2)--(311.4, 308.9)--(311.5, 308.8)--(311.4, 308.6)--(311.4, 308.4)--(311.4, 308.0)--(311.5, 307.8)--(311.4, 307.8)--(311.4, 307.9)--(311.2, 307.9)--(311.2, 307.8)--(311.0, 307.8)--(310.8, 307.7)--(310.7, 307.8)--(310.4, 307.8)--(310.2, 307.7)--(309.6, 307.6)--(309.0, 307.4)--(308.9, 307.4)--(308.8, 307.4)--(308.5, 307.3)--(308.3, 307.2)--(308.2, 307.1)--(307.8, 306.9)--(307.8, 306.8)--(307.2, 306.5)--(307.2, 306.6)--(307.1, 306.5)--(306.9, 306.4)--(306.8, 306.3)--(306.8, 306.4)--(306.7, 306.3)--(306.4, 306.1)--(306.1, 305.9)--(305.7, 305.5)--(305.5, 305.3)--(305.6, 305.2)--(305.4, 304.9)--(305.3, 305.0)--(305.1, 304.6)--(305.0, 304.4)--(304.7, 303.9)--(304.8, 303.9)--(304.8, 303.8)--(304.7, 303.7)--(304.6, 303.4)--(304.6, 303.3)--(304.6, 303.2)--(304.5, 303.0)--(304.4, 302.8)--(304.3, 302.8)--(304.2, 302.3)--(304.1, 302.4)--(304.0, 302.1)--(304.0, 301.8)--(303.9, 301.5)--(303.8, 301.0)--(303.7, 300.5)--(303.7, 300.1)--(303.7, 300.0)--(303.5, 298.4)--(303.4, 297.7)--(303.3, 297.7)--(303.3, 297.0)--(303.4, 296.9)--(303.4, 296.6)--(303.4, 296.4)--(303.3, 296.3)--(303.3, 296.2)--(303.4, 296.2)--(303.1, 293.5)--(302.9, 291.3)--(302.9, 291.2)--(302.9, 291.0)--(302.9, 290.8)--(302.8, 289.8)--(302.8, 289.7)--(302.7, 288.6)--(302.7, 287.9)--(302.8, 287.8)--(302.7, 287.5)--(302.7, 287.4)--(302.5, 286.5)--(302.4, 286.3)--(302.4, 286.2)--(302.3, 286.0)--(302.1, 285.7)--(301.7, 284.8)--(301.6, 284.6)--(301.5, 284.3)--(301.4, 284.2)--(301.4, 284.1)--(301.3, 284.1)--(301.2, 284.0)--(301.1, 283.9)--(301.0, 283.7)--(300.9, 283.4)--(300.4, 282.7)--(300.4, 282.5)--(300.3, 282.3)--(300.0, 282.0)--(298.5, 280.3)--(298.4, 280.3)--(298.3, 280.2)--(298.2, 280.1)--(298.0, 279.9)--(297.9, 279.8)--(297.8, 279.7)--(297.7, 279.7)--(297.5, 279.6)--(297.0, 279.3)--(296.7, 279.2)--(296.6, 279.2)--(296.4, 279.1)--(296.3, 279.1)--(296.0, 279.0)--(295.9, 279.1)--(295.2, 278.9)--(295.2, 278.8)--(294.8, 278.7)--(294.6, 278.6)--(294.4, 278.6)--(293.8, 278.5)--(293.5, 278.5)--(293.2, 278.5)--(293.1, 278.5)--(292.5, 278.5)--(292.2, 278.5)--(292.1, 278.5)--(291.8, 278.6)--(290.9, 278.8)--(290.5, 278.9)--(290.0, 279.1)--(289.9, 279.1)--(289.7, 279.1)--(289.5, 279.2)--(288.6, 279.3)--(288.2, 279.3)--(287.7, 279.3)--(287.0, 279.2)--(286.7, 279.2)--(286.2, 279.1)--(286.2, 279.3)--(286.2, 279.4)--(286.2, 279.5)--(286.2, 279.8)--(286.1, 279.8)--(286.1, 279.9)--(286.1, 279.8)--(286.0, 279.8)--(285.9, 279.9)--(285.8, 279.8)--(285.7, 279.7)--(285.8, 279.6)--(286.0, 279.5)--(286.0, 279.4)--(286.0, 279.3)--(286.0, 279.2)--(286.0, 279.1)--cycle; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.mp new file mode 100644 index 00000000000..09be4d36cd1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.mp @@ -0,0 +1,40 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); +z1 = (10,10); +z4 = 144 right rotated 12; +z5 = z4 shifted (2, 78); +z7 = z4 reflectedabout(origin, (1,1)); + +z2 = 1/2 [z5, z7]; +z9 = whatever [z1, z4]; +z2-z9 = whatever * (z7-z1); +z8 = whatever [z1, z5] = whatever [z2, z4]; +z3 = whatever [z2, z9] = whatever [z4, z7]; +z6 = whatever [z1, z7] = whatever [z3, z5]; + +drawoptions(dashed withdots scaled 1/4 withcolor Blues 7 7); +draw z1 -- z4 -- z7 -- z1 -- z5 -- z6; +draw z4 -- z2 -- z9; +draw z5 -- z7; +drawoptions(); + +for i=1 upto 9: + fill fullcircle scaled 12 shifted z[i] withcolor Blues 7 2; + draw fullcircle scaled 12 shifted z[i] withcolor Blues 7 7; + label("\textsf{" & decimal i & "}", z[i]); +endfor + +for i=1 upto 2: + draw (50i, 0) -- (50i, 150) dashed withdots scaled 1/4 withcolor Reds 7 7; + draw (0, 50i) -- (150, 50i) dashed withdots scaled 1/4 withcolor Reds 7 7; +endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.pdf Binary files differnew file mode 100644 index 00000000000..a3c04cebae0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/magic-square-14.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo-with-grid.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo-with-grid.pdf Binary files differnew file mode 100644 index 00000000000..ffd5a71b830 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo-with-grid.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.mp new file mode 100644 index 00000000000..c208e79708a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.mp @@ -0,0 +1,32 @@ +\documentclass[border=1mm]{standalone} +\usepackage{luamplib} +\usepackage{graphicx} +\usepackage{fontspec}\setmainfont[Scale=0.6]{Helvetica} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +draw btex \includegraphics[width=5in]{glenshiel.jpg} etex; +if false: +for i=1 upto 36: + draw (origin -- 180 up) shifted (10i, 0) withcolor if i mod 10 = 0: red else: 1/2 fi; +endfor +for i=1 upto 18: + draw (origin -- 360 right) shifted (0, 10i) withcolor if i mod 10 = 0: red else: 1/2 fi; +endfor +fi +vardef callout@#(expr t, p, o) = + save T; picture T; T = thelabel.@#(t, p+o); + draw T; drawarrow p+o -- p cutbefore bbox T; +enddef; +ahangle := 20; ahlength := 2; drawoptions(withpen pencircle scaled 1/4 withcolor 1/2 blue); +callout.top("Sgurr na Ciste Dubhe", (80, 96), (-10, 20)); +callout.top("Sgurr nan Spainteach", (100, 91), (6, 12)); +label.top("\tiny Cuillin Ridge, Isle of Skye", (140, 81)); +label.top("Sgurr na Carnach", (190, 90)); +label.top("Sgurr Fhuaran", (282, 94)); +label.bot("\itshape View looking west from the summit of Saileag – 19 April 2005", point 5/2 of bbox currentpicture shifted 4 down); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.pdf Binary files differnew file mode 100644 index 00000000000..fc3155d8558 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/marked-up-photo.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.mp new file mode 100644 index 00000000000..84c3839f647 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.mp @@ -0,0 +1,27 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +pair a,b; +a = 42 up; b = 72 right; +beginfig(1); + +draw (-1/4)[origin,b]--5/4[origin,b] withcolor .8 white; +draw (-1/4)[origin,a]--5/4[origin,a] withcolor .8 white; + +draw (-1)[a,b]--a dashed evenly; +draw a--b withcolor .67 red; +draw b--2[a,b] dashed evenly; + +dotlabel.urt(btex $a$ etex, a); +dotlabel.urt(btex $b$ etex, b); +dotlabel.urt(btex ${1\over2}[a,b]$ etex, 1/2[a,b]); +dotlabel.urt(btex $\left(-{1\over2}\right)[a,b]$ etex, (-1/2)[a,b]); +dotlabel.llft(btex $-{1\over2}[a,b]$ etex, -1/2[a,b]); +label(btex Probably not what was intended\dots etex, -1/2[a,b] shifted (0,-24)) withcolor .58 blue; +dotlabel.urt(btex ${3\over2}[a,b]$ etex, (3/2)[a,b]); +dotlabel.lrt(btex $(0,0)$ etex, origin); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.pdf Binary files differnew file mode 100644 index 00000000000..d56116c5b39 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-pitfall.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.mp new file mode 100644 index 00000000000..6814522e776 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.mp @@ -0,0 +1,44 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(3); +path t; t = (0,0) -- (220,42) -- (180,-90) -- cycle; +pair centroid; +centroid = 2/3[point 0 of t,point 3/2 of t]; + +path s[]; +for i=0 upto 5: + s[i] = point 1/2 i of t -- point 1/2 + 1/2 i of t -- centroid -- cycle; +endfor + +color c[]; +c[0] = (1,0.96863,0.73725); +c[1] = (0.99608,0.76863,0.3098); +c[2] = (0.85098,0.37255,0.054902); + +picture a,b; +a = image( +for i=0 upto 2: + fill s[2i] withcolor .6[c[i],white]; + fill s[2i+1] withcolor .4[c[i],white]; +endfor +for i=0 upto 2: +draw point i of t -- point 3/2+i of t; +endfor +draw t;); +b = image( +for i=0 upto 2: + fill s[2i] withcolor .6[c[i],white]; + fill s[2i+1] rotatedabout(point i+1/2 of t, 180) withcolor .4[c[i],white]; +endfor +for i=0 upto 2: + draw point i of t -- centroid -- centroid rotatedabout(point i+1/2 of t,180) -- cycle; +endfor +draw t;); +draw a; +draw b shifted 222 right; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.pdf Binary files differnew file mode 100644 index 00000000000..de8d8d3a748 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-sallows.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.mp new file mode 100644 index 00000000000..77e2825dfa1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.mp @@ -0,0 +1,29 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +pair a,b; +a = 42 up; b = 72 right; +path t,s,p,c; +t = origin--a--b--cycle; +s = unitsquare scaled 40 shifted 92 right; +p = (for i=0 upto 4: down scaled 21 rotated 72i -- endfor cycle) + shifted 180 right shifted 21 up; +c = fullcircle scaled 42 shifted 250 right shifted 21 up; + +beginfig(2); +forsuffixes $=t,s,p,c: + draw $; + draw point 0 of $ -- point 1/2 length $ of $ + dashed withdots scaled 1/3 + withcolor .67 red; +endfor +label.bot("\textsl{Dotted lines drawn with}: \mpl{point 0 of p -- point 1/2 length p of p}", + point 1/2 of bbox currentpicture); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.pdf Binary files differnew file mode 100644 index 00000000000..4b40c2506ad --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/mediation-shapes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.mp new file mode 100644 index 00000000000..ebf8f8cb043 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.mp @@ -0,0 +1,19 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + + u = 8mm; + defaultfont := "texnansi-lmr10"; + string minus_sign; + minus_sign := char 12; % if you are using the 8r encoding + minus_sign := char 143; % if you are using the texnansi encoding + for x=-3 upto 3: label(decimal x, (x*u,+9)) withcolor .67 red; endfor + for x=-3 upto 3: label(if x<0: minus_sign & fi decimal abs(x), (x*u,-5)) withcolor .58 blue; endfor + label.lft("with plain decimal:" infont "texnansi-lmss10" scaled 0.9, (-3.6u,9)) withcolor .67 red; + label.lft("with this hack:" infont "texnansi-lmss10" scaled 0.9, (-3.6u,-5)) withcolor .58 blue; + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.pdf Binary files differnew file mode 100644 index 00000000000..05d57963b4a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/minus.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.mp new file mode 100644 index 00000000000..497189ed163 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.mp @@ -0,0 +1,23 @@ +\documentclass[border=0mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +label("\vbox{\hsize 4in It is a truth universally acknowledged," + & " that a single man in possession of a good fortune," + & " must be in want of a wife.\par}", origin); +label(btex \vbox{\hsize 4in + It is a truth universally acknowledged, + that a single man in possession of a good fortune, + must be in want of a wife. + \par} etex, 128 down); +label(btex + \begin{tabular}{c} + A way to get simple\\ + two line labels + \end{tabular} etex, 256 down); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.pdf Binary files differnew file mode 100644 index 00000000000..ecc0cb76115 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/multi-line-labels.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.mp new file mode 100644 index 00000000000..1838e838f51 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.mp @@ -0,0 +1,28 @@ +\documentclass[border=0mm]{standalone} +\usepackage{fontspec} +\setmainfont{TeX Gyre Pagella} +\usepackage{luamplib} +\mplibtextextlabel{enable} % <-- added option +\begin{document} +\begin{mplibcode} + beginfig(1); + for x = 0 upto 1: + draw (80x,16) -- (80x, -68) withcolor 3/4[red, white]; + endfor + for y = 0 upto 3: + draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white]; + endfor + + string s; s = "Hand gloves"; + draw s infont defaultfont shifted (0, 0); + draw s infont "phvr8r" shifted (0, -20); + draw TEX(s) shifted (0, -40); + draw btex Hand gloves etex shifted (0, -60); + + dotlabel.urt(s, (80, 0)); + dotlabel.urt(s infont "phvr8r", (80, -20)); + dotlabel.urt(TEX(s), (80, -40)); + dotlabel.urt(btex Hand gloves etex, (80, -60)); + endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.pdf Binary files differnew file mode 100644 index 00000000000..5ebad8d2742 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels-tte.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.mp new file mode 100644 index 00000000000..8b1d60b8400 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.mp @@ -0,0 +1,27 @@ +\documentclass[border=5mm]{standalone} +\usepackage{fontspec} +\setmainfont{TeX Gyre Pagella} % <-- note chosen font +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} + beginfig(1); + for x = 0 upto 1: + draw (80x,16) -- (80x, -68) withcolor 3/4[red, white]; + endfor + for y = 0 upto 3: + draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white]; + endfor + + string s; s = "Hand gloves"; + draw s infont defaultfont shifted (0, 0); + draw s infont "phvr8r" shifted (0, -20); + draw TEX(s) shifted (0, -40); + draw btex Hand gloves etex shifted (0, -60); + + dotlabel.urt(s, (80, 0)); + dotlabel.urt(s infont "phvr8r", (80, -20)); + dotlabel.urt(TEX(s), (80, -40)); + dotlabel.urt(btex Hand gloves etex, (80, -60)); + endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.pdf Binary files differnew file mode 100644 index 00000000000..e5a85a74ccb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/neo-labels.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.mp new file mode 100644 index 00000000000..8366bb3c1b5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.mp @@ -0,0 +1,54 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + pair A, B, C, D, N, M, p, q, r; + A = origin; B = 377 dir 10; C = 233 dir 70; + % pedal points + p = whatever[B, C]; A - p = whatever * (B-C) rotated 90; + q = whatever[C, A]; B - q = whatever * (C-A) rotated 90; + r = whatever[A, B]; C - r = whatever * (A-B) rotated 90; + + D = whatever[A, p] = whatever[B, q]; + N = 1/4(A + B + C + D); + M = D rotatedabout(N, 180); % M is also the circumcentre + + path circumcircle, nine_point_circle; + nine_point_circle = fullcircle scaled 2 abs(N - 1/2[A, B]) shifted N; + circumcircle = fullcircle scaled 2 abs(M - A) shifted M; + + draw nine_point_circle withcolor 3/4 red; + draw circumcircle withcolor 1/2[3/4 blue, white]; + + drawoptions(dashed evenly scaled 1/4 withcolor 1/2); + draw 1/2[A,B] -- M -- 1/2[B, C]; + draw 1/2[C,A] -- M -- D; + draw A -- p; + draw B -- q; + draw C -- r; + + drawoptions(withpen pencircle scaled 1/4); + draw fullcircle scaled 2 shifted 1/2[A, B]; + draw fullcircle scaled 2 shifted 1/2[A, C]; + draw fullcircle scaled 2 shifted 1/2[A, D]; + draw fullcircle scaled 2 shifted 1/2[B, C]; + draw fullcircle scaled 2 shifted 1/2[B, D]; + draw fullcircle scaled 2 shifted 1/2[C, D]; + draw fullcircle scaled 2 shifted p; + draw fullcircle scaled 2 shifted q; + draw fullcircle scaled 2 shifted r; + + drawoptions(); + draw A--B--C--cycle; + dotlabel.llft("$A$", A); + dotlabel.rt("$B$", B); + dotlabel.ulft("$C$", C); + dotlabel.urt("\ $D$", D); + dotlabel.llft("$M$", M); + dotlabel.llft("$N$", N); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.pdf Binary files differnew file mode 100644 index 00000000000..8436ae129bf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/nine-point-circle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.mp new file mode 100644 index 00000000000..47ee8f4ec95 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.mp @@ -0,0 +1,27 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric u, v; u = 40; v = 29; + path xx, yy; + xx = (3/2 left -- 5 right) scaled u; + yy = (3/2 down -- 4 up) scaled v; + for x=-1, 1, 2, 3, 4: + draw yy shifted (x * u, 0) withcolor 7/8; % grid + draw (down--up) shifted (x * u, 0); % ticks + label("$" & decimal x & "$", (x * u, -8)); + endfor + for y=-1, 1, 2, 3: + draw xx shifted (0, y * v) withcolor 7/8; % grid + draw (left--right) shifted (0, y * v); % ticks + label("$" & decimal y & "$", (-10, y * v)); + endfor + drawarrow xx; label.rt("$x$", point 1 of xx); + drawarrow yy; label.top("$y$", point 1 of yy); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.pdf Binary files differnew file mode 100644 index 00000000000..d8e68dab34e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/numbered-axes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.mp new file mode 100644 index 00000000000..5535611558c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.mp @@ -0,0 +1,22 @@ +\documentclass{standalone} +\usepackage{dwmpcode} +\usepackage{luamplib} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +beginfig(1); +ahangle := 30; +path xx, yy; xx = left scaled 8 -- right scaled 89; yy = down scaled 8 -- up scaled 55; +path u; u = origin {right} .. (55,0) .. (55,34) .. {-2, -1} origin; +drawarrow xx withcolor .67 white; +drawarrow yy withcolor .67 white; +drawarrow u cutafter fullcircle scaled 4; +dotlabeldiam := 2; +dotlabel.urt("$\scriptstyle (55,34)$", point 2 of u); +dotlabel.lrt("$\scriptstyle (55,0)$", point 1 of u); +dotlabel.llft("$\scriptstyle (0,0)$", point 0 of u); +label.bot(TEX("\mpl{drawarrow u cutafter fullcircle scaled 4};") scaled 0.8, +point 1/2 of bbox currentpicture shifted 13 down); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.pdf Binary files differnew file mode 100644 index 00000000000..16986eacca3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/open-triangle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.mp new file mode 100644 index 00000000000..5137cdf9840 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.mp @@ -0,0 +1,42 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(3); + path A, B; picture p[]; + A = fullcircle scaled 2.5cm; + B = fullcircle scaled 1.8cm shifted (1cm,0); + p1 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p2 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B,180); + p3 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p4 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B, 180); + A := reverse A; + p5 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p6 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B,180); + p7 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p8 = image(fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B;); + + for i=1 upto 4: draw p[i] scaled .75 shifted (80i, 0); label(decimal i, (5mm+80i,0)); endfor + for i=1 upto 4: draw p[i+4] scaled .75 shifted (80i,-68); label(decimal (4+i), (5mm+80i,-68)); endfor + + picture L; + L = image( + for i=0 upto 3: fill unitsquare scaled 2 shifted (1/2,1/2) rotated (45+90i); endfor + label.rt("\small To rotate a circular path, you can use: \mpl{p rotatedaround(center p, 180)}", + 3 right); + ); + label(L, point 1/2 of bbox currentpicture shifted 21 down); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.pdf Binary files differnew file mode 100644 index 00000000000..51a3e0ef521 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-default-fillers.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.mp new file mode 100644 index 00000000000..edee192c1c6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.mp @@ -0,0 +1,16 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(2); + path A, B; + A = fullcircle scaled 2.5cm; + B = fullcircle scaled 1.8cm shifted (1cm,0); + fill buildcycle(A,B) withcolor .8[blue,white]; drawarrow A; drawarrow B; + label.rt(btex Where has the fill colour gone? etex, point 0 of B shifted (1cm,0)); + label.ulft(btex $A$ etex, point 3 of A); + label.urt(btex $B$ etex, point 1 of B); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.pdf Binary files differnew file mode 100644 index 00000000000..4bf91ed568b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps-missing-filler.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.mp new file mode 100644 index 00000000000..d08b934249f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.mp @@ -0,0 +1,97 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +% is point "p" inside cyclic path "ring" ? +vardef inside(expr p, ring) = + save t, count, test_line; + count := 0; + path test_line; + test_line = p -- (infinity, ypart p); + for i = 1 upto length ring: + t := xpart (subpath(i-1,i) of ring intersectiontimes test_line); + if ((0 <= t) and (t<1)): count := count + 1; fi + endfor + odd(count) + enddef; + +vardef front_half primary p = subpath(0, 1/2 length p) of p enddef; +vardef back_half primary p = subpath(1/2 length p, length p) of p enddef; + +% a and b should be cyclic paths... +vardef xoverlap(expr a, b) = + boolean p, q; + p = inside(point 0 of a, b); + q = inside(point 0 of b, a); + if ((not p) and (not q)): + buildcycle(a,b) + elseif (not p): + buildcycle(front_half b, a, back_half b) + elseif (not q): + buildcycle(front_half a, b, back_half a) + else: + buildcycle(front_half a, back_half b, front_half b, back_half a) + fi + enddef; + +vardef xcombine(expr a, b) = + boolean p, q; + p = inside(point 0 of a, b); + q = inside(point 0 of b, a); + if (p and q): + buildcycle(a,b) + elseif p: + buildcycle(front_half b, a, back_half b) + elseif q: + buildcycle(front_half a, b, back_half a) + else: + buildcycle(front_half a, back_half b, front_half b, back_half a) + fi + enddef; + +vardef overlap(expr a, b) = + save p, q, A, B; + boolean p, q; + p = not inside(point 0 of a, b); + q = not inside(point 0 of b, a); + path A, B; + A = counterclockwise a; + B = counterclockwise b; + if (p and q): + buildcycle(A,B) + elseif p: + buildcycle(front_half B, A, back_half B) + elseif q: + buildcycle(front_half A, B, back_half A) + else: + buildcycle(front_half A, back_half B, front_half B, back_half A) + fi + enddef; + +beginfig(4); + path A, B; picture p[]; + A = fullcircle scaled 2.5cm; + B = fullcircle scaled 1.8cm shifted (1cm,0); + p1 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p2 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B,180); + p3 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p4 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B, 180); + A := reverse A; + p5 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p6 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + B := B rotatedabout(center B,180); + p7 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + A := A rotated 180; + p8 = image(fill overlap(A,B) withcolor .8[red,white]; drawarrow A; drawarrow B;); + + for i=1 upto 4: draw p[i] scaled .75 shifted (80i, 0); label(decimal i, (5mm+80i,0)); endfor + for i=1 upto 4: draw p[i+4] scaled .75 shifted (80i,-68); label(decimal (4+i), (5mm+80i,-68)); endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.pdf Binary files differnew file mode 100644 index 00000000000..f076ef2b7c6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/overlaps.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.mp new file mode 100644 index 00000000000..802b1b1801e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.mp @@ -0,0 +1,48 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + z0 = origin; + z1 = 333 dir -18; + z2 = 104 dir 45; + z3 = 233 dir 34; + z4 = 166 dir 12; + + z5 = whatever[z0, z1]; + z6 = whatever[z0, z1]; + z7 = whatever[z0, z1]; + + z5 - z4 = whatever * (z3 - z2); + z6 - z4 = whatever * (z3 - z2) rotated 90; + z7 - z4 = whatever * (z1 - z0) rotated 90; + + z9 = whatever [z2,z3] = whatever [z4,z6]; + + numeric t, u, o; + t = abs(z4-z5); + u = abs(z6-z7); + o = 12; + drawoptions(withpen pencircle scaled 1/4 withcolor 1/2 white); + draw unitsquare scaled 5 rotated angle (z6 - z4) shifted z9; + draw unitsquare scaled 5 rotated angle (z4 - z6) shifted z4; + draw (1+o/t)[z5,z4] -- (1+o/t)[z4,z5]; + draw (1+o/t)[z9,z6] -- (1+o/t)[z6,z9]; + drawoptions(); + + draw z0--z1; + draw z2--z3; + + interim labeloffset := 6; + forsuffixes $=0,1,2,3,4,5,6,7: + dotlabel.top("$\;\;" & char ($ + ASCII "A") & "$", z$) + if $=5: withcolor 2/3 red fi + if $=6: withcolor 2/3 blue fi + if $=7: withcolor 1/2 green fi + ; + endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.pdf Binary files differnew file mode 100644 index 00000000000..0fd68348c02 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/parallel.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.mp new file mode 100644 index 00000000000..177581a305b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.mp @@ -0,0 +1,11 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input penrose +beginfig(1); + draw penrose(3); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.pdf Binary files differnew file mode 100644 index 00000000000..71c9c5d98b9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-P3.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.mp new file mode 100644 index 00000000000..94f3800b4ca --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.mp @@ -0,0 +1,39 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input penrose +beginfig(1); + path s, t; phi = 1.61803398875; + s = unitsquare shifted -(1/2, 1/2) rotated 45 xscaled phi yscaled 2 sind(36) scaled 20; + t = unitsquare shifted -(1/2, 1/2) rotated 45 xscaled (1/phi) yscaled 2 sind(72) scaled 20; + picture p[]; + p1 = image( + draw (left--right) scaled 30 dashed evenly; + draw s; + ); + p3 = image( + draw (left--right) scaled 13 dashed evenly; + draw t; + ) rotated 90 shifted 130 right; + p2 = image( + draw subpath (1, 3) of s -- cycle dashed withdots scaled 1/16 withpen pencircle scaled 1/8 withcolor 1/2; + inflate_wide(3, 1, point 1 of s, point 2 of s, point 3 of s); + ) shifted 64 right; + p4 = image( + draw subpath (1, 3) of t -- cycle dashed withdots scaled 1/16 withpen pencircle scaled 1/8 withcolor 1/2; + inflate_tall(3, 1, point 1 of t, point 2 of t, point 3 of t); + ) rotated 90 shifted 200 right; + ahangle := 30; + draw p1; + draw p2; + draw p3; + draw p4; + drawarrow (7 left -- 8 right) shifted point 7/4 of bbox p1 withcolor .67 red; + drawarrow (1 left -- 14 right) shifted point 7/4 of bbox p3 withcolor .67 red; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.pdf Binary files differnew file mode 100644 index 00000000000..ae8b8bc3a64 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose-stages.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose.mp new file mode 100644 index 00000000000..930a66680cb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/penrose.mp @@ -0,0 +1,84 @@ +input colorbrewer-rgb +numeric psi, size; +psi = (sqrt 5 - 1) / 2; +size = 800; +vardef inflate_tall(expr mode, level, a, b, c) = + save d, e; pair d, e; + if level = 0: + drawoptions(withpen pencircle scaled 1/8); + filldraw a--b--c--cycle withcolor (abs(b)/size)[Reds 7 2, Blues 8 2]; + if mode = 2: + draw c--a--b; + else: + % save arc; path arc; + % arc = fullcircle rotated angle (c-a) scaled 1/2 abs(b-a) shifted a + % if turningnumber (a--b--c--cycle) < 0: cutafter else: cutbefore fi (a--b); + % cutdraw arc withpen pencircle scaled 3/2 withcolor Reds 7 4; + % cutdraw arc reflectedabout(b, 1/2[a,c]) withpen pencircle scaled 3/2 withcolor Blues 8 8; + % draw arc reflectedabout(b, 1/2[a,c]) withpen pencircle scaled 1/2 withcolor Blues 8 2; + draw a--b--c; + fi + drawoptions(); + else: + if mode = 3: + d = psi[b,a]; + inflate_tall(mode, level - 1, d, c, a); + inflate_wide(mode, level - 1, c, d, b); + elseif mode = 2: + d = psi[a, b]; + e = psi[b, c]; + inflate_tall(mode, level - 1, c, a, e); + inflate_tall(mode, level - 1, d, a, e); + inflate_wide(mode, level - 1, e, d, b); + fi + fi +enddef; +vardef inflate_wide(expr mode, level, a, b, c) = + save d, e; pair d, e; + if level = 0: + drawoptions(withpen pencircle scaled 1/8); + filldraw a--b--c--cycle withcolor (abs(b)/size)[Reds 7 3, white]; + if mode = 2: + draw c--a--b; + else: + % save arc; path arc; + % arc = fullcircle rotated angle (c-a) scaled 3/2 abs (b-a) shifted a + % if turningnumber (a--b--c--cycle) < 0: cutafter else: cutbefore fi (a--b); + % cutdraw arc withpen pencircle scaled 3/2 withcolor Reds 7 4; + % path arc; + % arc = fullcircle rotated angle (a-c) scaled 1/2 abs (b-a) shifted c + % if turningnumber (a--b--c--cycle) > 0: cutafter else: cutbefore fi (c--b); + % cutdraw arc withpen pencircle scaled 3/2 withcolor Blues 8 8; + % draw arc withpen pencircle scaled 1/2 withcolor Blues 8 2; + draw a--b--c; + + fi + drawoptions(); + else: + if mode = 3: + d = psi[a,b]; e = psi[a,c]; + inflate_tall(mode, level - 1, d, e, b); + inflate_wide(mode, level - 1, e, d, a); + inflate_wide(mode, level - 1, c, e, b); + elseif mode = 2: + d = psi[c, a]; + inflate_tall(mode, level - 1, d, c, b); + inflate_wide(mode, level - 1, b, d, a); + fi + fi +enddef; + +vardef penrose(expr mode) = + save a, b, c, P, R; + pair a, b, c; + b = origin; + c = (sind(18), sind(72)) scaled size; + a = (-xpart c, ypart c); + picture P; P = image(inflate_tall(mode, 7, a, b, c)); + picture R; R = image( + for t = 0 upto 9: + draw P if odd t: reflectedabout(b, c) fi rotatedabout(b, 72t); + endfor); + clip R to (unitsquare shifted -(1/2, 1/2) xscaled 987 yscaled 610); + R +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/picture_frame.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/picture_frame.mp new file mode 100644 index 00000000000..d957c540740 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/picture_frame.mp @@ -0,0 +1,71 @@ +% Toby Thurston -- 16 Apr 2021 +% Draw a kitsch picture frame round a rectangular path + +color gold, dark, grey; +gold = 1/256(243, 197, 127); +dark = 1/256(144, 87, 50); +grey = 1/256(156, 147, 138); + +picture ball; ball = image(for i=0 upto 16: + fill interpath(i/16, + fullcircle scaled 10, + fullcircle scaled 3 shifted (-2, 2) + ) withcolor (i/16)[gold, 15/16 white]; +endfor) scaled 1/4; + +newinternal pf_width; pf_width := 21; + +vardef frame expr P = + save base, side, f, t, u, xx; + picture base, side; path f; numeric t, u, xx; + + t = arclength subpath (0,1) of bbox P; + u = arclength subpath (1,2) of bbox P; + xx = max(t, u) + 2 pf_width; + f = unitsquare xscaled xx yscaled pf_width; + + % convenience / nonce function + vardef paint_strip(expr y, wd, shade) = + draw subpath (0, 1) of f + shifted (0, if y < 0: pf_width + fi y) + withpen pencircle scaled wd + withcolor shade + enddef; + + base = image( + % background colour + fill f withcolor gold; + % grey strips + paint_strip(2, 3, 5/4 grey); + paint_strip(3.5, 1/4, grey); + paint_strip(5, 1/4, 1/2[gold, dark]); + paint_strip(-6.5, 1/4, 1/2[gold, dark]); + paint_strip(-6, 1/4, 1/2[gold, dark]); + paint_strip(-2, 2, 5/4 grey); + % spatter with random spots + for i=0 upto 4 * arclength(subpath (0,1) of f): + fill fullcircle scaled uniformdeviate 3/4 + shifted (uniformdeviate xx, uniformdeviate pf_width) + withcolor dark; + endfor + % decorative balls + for x = 2 step 3 until xx: + draw ball shifted (x, 2); + endfor + ); + + % make two trapezium shapes + side = base; + clip side to (pf_width, 0) -- (pf_width + u, 0) + -- (2 pf_width + u, pf_width) -- (0, pf_width) -- cycle; + clip base to (pf_width, 0) -- (pf_width + t, 0) + -- (2 pf_width + t, pf_width) -- (0, pf_width) -- cycle; + + % arrange the pieces into a square + image( + draw base rotated 180 shifted point 1 of bbox P shifted (+pf_width, 0); + draw base rotated 0 shifted point 3 of bbox P shifted (-pf_width, 0); + draw side rotated 90 shifted point 0 of bbox P shifted (0, -pf_width); + draw side rotated 270 shifted point 2 of bbox P shifted (0, +pf_width); + ) +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.mp new file mode 100644 index 00000000000..83a957d415e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.mp @@ -0,0 +1,36 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef pinwheel(expr level, a, b, c, s) = + if level = 0: + fill a--b--c--cycle withcolor s; + draw a--b--c--cycle withpen pencircle scaled 1/16 withcolor Blues 9 1; + % path t; t = a--b--9/10[b,c]--cycle; + % fill t withcolor s; + % draw t withpen pencircle scaled 1/16 withcolor Greens 9 1; + % draw point 5/2 of t withpen pencircle scaled 2 withcolor (1/4 + greenpart s, redpart s, bluepart s); + else: + save d, e, f, g; + pair d, e, f, g; + d = 2/5[b, c]; e = 4/5[b,c]; f = 1/2[e, a]; g = 1/2[a, b]; + pinwheel(level - 1, e, a, c, Blues 9 4); + pinwheel(level - 1, f, g, a, Blues 9 3); + pinwheel(level - 1, f, g, e, Blues 9 2); + pinwheel(level - 1, d, e, g, Blues 9 5); + pinwheel(level - 1, d, b, g, Blues 9 6); + fi +enddef; +beginfig(1); + numeric a, b; b = 6.4in; 2a = b; + pinwheel(5, (0, 0), (b, 0), (0, a), ""); + pinwheel(5, (b, a), (0, a), (b, 0), ""); + currentpicture := currentpicture rotated 90; + % for i=1 upto 1: + % draw currentpicture shifted (lrcorner currentpicture - llcorner currentpicture); + % endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.pdf Binary files differnew file mode 100644 index 00000000000..d0723c21c4f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pinwheel.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.mp new file mode 100644 index 00000000000..e535290d21c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.mp @@ -0,0 +1,17 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path xx, yy; + xx = (left -- right) scaled 130; + yy = (down -- up) scaled 80; + drawarrow xx; + drawarrow yy; + label.rt("$x$", point 1 of xx); + label.top("$y$", point 1 of yy); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.pdf Binary files differnew file mode 100644 index 00000000000..fc1a7666131 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/plain-axes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.mp new file mode 100644 index 00000000000..6673ca63419 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.mp @@ -0,0 +1,59 @@ +\documentclass[border=3mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path C, L; + numeric r; + r = 89; + C = fullcircle scaled 2r; + L = (up--down) scaled 138 shifted 180 right rotated 34; + pair a, b, o; + a = point 0 of L; b = point 1 of L; + o = center C; + + pair P, Q, R, P', m; + P = whatever[a, b]; o - P = whatever * (a - b) rotated 90; + Q = C intersectionpoint halfcircle zscaled (P-o) shifted 1/2[P, o]; + R = Q reflectedabout(P, o); + P' = whatever[o, P] = whatever [Q, R]; + + draw fullcircle scaled abs(P' - o) shifted 1/2[o, P'] + dashed withdots scaled 1/4 + withpen pencircle scaled 1/4 + withcolor 1/3 blue; + + draw unitsquare scaled 5 rotated (270 + angle (P-Q)) shifted Q withcolor 3/4 white; + draw unitsquare scaled 5 rotated (90 + angle (P-o)) shifted P withcolor 3/4 white; + draw unitsquare scaled 5 rotated (90 + angle (P-o)) shifted P' withcolor 3/4 white; + + draw P -- Q -- o -- R -- cycle withcolor 1/2 white; + draw Q--R; draw o -- P; + draw L withcolor 2/3 blue; + + draw C dashed evenly scaled 1/2 withcolor 1/2[2/3 blue, white]; + + dotlabel.top("$Q$", Q); + dotlabel.lrt("$R$", R); + dotlabel.urt("$P$", P); + dotlabel.llft("$O$", o); fill fullcircle scaled 3/4 dotlabeldiam shifted o withcolor white; + label.lft("$r$", 1/2[o, Q]); + + drawdot P' withpen pencircle scaled dotlabeldiam; + label("$P'$", P' shifted 10 dir 68) withcolor 2/3 blue; + + drawoptions(withcolor 2/3 blue); + label.bot("\textit{circle of inversion}", point 6 of C); + label.urt("\textit{polar}", point 1/4 of L); + z0 = P' + 20 dir -20; draw z0 -- P' cutafter fullcircle scaled 8 shifted P' + withpen pencircle scaled 1/4; + label.rt("\textit{pole}", z0); + drawoptions(); + + label("$\displaystyle {r\over OP} = {OP' \over r}$", 1/2[point 0 of C, point 1 of L] + 12 down); + label("$\displaystyle r^2 = OP \times OP'$", 1/2[point 0 of C, point 1 of L] + 36 down); + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.pdf Binary files differnew file mode 100644 index 00000000000..5bb43987cc4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/pole-and-polar.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.mp new file mode 100644 index 00000000000..59ac82181bf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.mp @@ -0,0 +1,22 @@ +%prologues := 3; +%outputtemplate := "%j%c.%{outputformat}"; +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +interim bboxmargin := 0; +vardef boxed(expr p) = save P; picture P; P = image(draw bbox p withcolor 7/8[red, white]; draw p); P enddef; +beginfig(1); + for i=2 upto 15: + numeric y; y = -14i - 4 floor(i/4); + label.lft(decimal 16i infont "phvr8r" scaled 0.6, (-6, y+2)) withcolor 0.54 red; + for j = 0 upto 15: + draw boxed(char (16i+j) infont "gporsonrg6r") shifted (12j + 2 floor(j/4), y); + endfor + endfor + for x = 0 upto 4: + draw (50x-4, -18) -- (50x-4, -224) withcolor 0.54 red; + endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.pdf Binary files differnew file mode 100644 index 00000000000..7a26026f469 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/porson.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections-code.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections-code.mp new file mode 100644 index 00000000000..e10619e2b63 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections-code.mp @@ -0,0 +1,34 @@ +% define the end points of the three rays +z1 = right scaled 200 rotated 10; +z2 = right scaled 100 rotated 135; +z3 = right scaled 225 rotated -17.5; +% define the other points, relative to Q +pair A, B, P, Q, R; +Q = 0.8125 z3; +A = whatever[origin, z1]; A-Q = whatever * z1 rotated 90; +P = whatever[origin, z2]; P-Q = whatever * z2 rotated 90; +B = whatever[origin, z1]; B-P = whatever * z1 rotated 90; +R = whatever[A,Q]; R-P = whatever * (B-P) rotated 90; +% mark the angles +drawoptions(withcolor .67 blue); +path c; c = fullcircle scaled 30; +draw c rotated angle (Q-P) shifted P cutafter (P--B); +draw c rotated angle (P-Q) shifted Q cutafter (Q--R); +draw c rotated angle P cutafter (origin--z1); +drawoptions(); +% draw the rays and A--Q +drawarrow origin -- z1; label(btex $r_1$ etex, z1 scaled 1.05); +drawarrow origin -- z2; label(btex $r_2$ etex, z2 scaled 1.08); +drawarrow origin -- z3; label(btex $r_3$ etex, z3 scaled 1.05); +draw A--Q; +% draw the dashed lines +drawoptions(dashed evenly); +draw B--P--R--Q--P; drawarrow origin -- P scaled 4/3; +drawoptions(); +% label the points +dotlabel.urt(btex $Q$ etex, Q); +dotlabel.top(btex $A$ etex, A); +dotlabel.lrt(btex $R$ etex, R) withcolor .67 blue; +label.top (btex $B$ etex, B); +label.llft(btex $P$ etex, P); +label.llft(btex $O$ etex, origin); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.mp new file mode 100644 index 00000000000..42d683c89d7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.mp @@ -0,0 +1,10 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +input projections-code +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.pdf Binary files differnew file mode 100644 index 00000000000..327f5caf951 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/projections.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.mp new file mode 100644 index 00000000000..e8ef24e4bd3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.mp @@ -0,0 +1,42 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +def perpendicular expr t of p = + direction t of p rotated 90 shifted point t of p + enddef; + +vardef block(expr r) = + save u, n, s, theta, base, ray; + numeric u, n, s, theta; + u = 5mm; n = 32; s = 8u; theta = -45; + + path base, ray[]; + base = origin for i=1 upto n-1: -- (i/n*s,r*normaldeviate) endfor + -- (s,0) -- (s,-u) -- (0,-u) -- cycle; + + image( + fill base withcolor .8[blue,white]; + draw base withcolor .67 blue; + + for i=2 upto 6: + ray[i] = (left--right) scaled 2/3 s rotated theta shifted (i*u,0); + b := ypart(ray[i] intersectiontimes base); + ray[i] := point 0 of ray[i] + -- point b of base + -- point 0 of ray[i] reflectedabout(point b of base, perpendicular b of base); + drawarrow ray[i]; + endfor + + label("r=" & decimal r, center base); + ) enddef; + +beginfig(0); + + draw block(0); draw block(0.42) shifted 180 right; + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.pdf Binary files differnew file mode 100644 index 00000000000..361fa0686a7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/qed.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.mp new file mode 100644 index 00000000000..ee1c7fd6fe6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.mp @@ -0,0 +1,72 @@ +\documentclass[border=1mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef radical_axis(expr ca, cb) = + numeric t, d, ra, rb; + ra = abs(center ca - point 0 of ca); + rb = abs(center cb - point 0 of cb); + d = abs(center cb - center ca); + 2t = 1 + (ra+rb) / d * (ra-rb) / d; + (up -- down) scaled 89 + rotated angle (center cb - center ca) + shifted t[center ca, center cb] +enddef; + +vardef tangent_times(expr C, p) = + save m, a, b, G, H; + pair m; numeric a, b; path G, H; + m = 1/2[p, center C]; + H = halfcircle scaled abs (p - center C) + rotated angle (p - center C) shifted m; + G = H rotatedabout(m, 180); + (a, whatever) = C intersectiontimes H; + (b, whatever) = C intersectiontimes G; + (a, b if b < a: + 8 fi) +enddef; + +beginfig(1); + path c[], a[]; + z1 = origin; z2 = 233 right rotated 4; z3 = 209 right rotated -42; + c1 = fullcircle scaled 202 shifted z1; + c2 = fullcircle scaled 106 shifted z2; + c3 = fullcircle scaled 62 shifted z3; + a1 = radical_axis(c1, c2); + a2 = radical_axis(c2, c3); + a3 = radical_axis(c3, c1); + + z0 = whatever [point 0 of a1, point 1 of a1] + = whatever [point 0 of a2, point 1 of a2]; + + numeric t; + (t, whatever) = tangent_times(c1, z0); + + drawoptions(withpen pencircle scaled 1 withcolor 3/4[blue, white]); + draw c1; draw c2; draw c3; + + drawoptions(withcolor 3/4[blue, white]); + draw z1 -- point t of c1 dashed evenly; + + drawoptions(withpen pencircle scaled 1/4); + draw z1 -- z2 -- z3 -- cycle; + drawoptions(); + draw a1; draw a2; draw a3; + + drawoptions(withcolor 2/3 red); + draw fullcircle scaled 2 abs (point t of c1 - z0) shifted z0; + draw z0 -- point t of c1 dashed evenly; + drawdot z0 withpen pencircle scaled dotlabeldiam; + + drawoptions(withcolor 1/4[blue, white]); + drawdot z1 withpen pencircle scaled dotlabeldiam; + drawdot z2 withpen pencircle scaled dotlabeldiam; + drawdot z3 withpen pencircle scaled dotlabeldiam; + label.urt(btex $C_1$ etex, point 1 of c1); + label.urt(btex $C_2$ etex, point 1 of c2); + label.rt (btex $C_3$ etex, point 0 of c3); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.pdf Binary files differnew file mode 100644 index 00000000000..fc643c1d711 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/radical-axis.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.mp new file mode 100644 index 00000000000..290ba81b7ee --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.mp @@ -0,0 +1,43 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +def freehand_segment(expr p) = + point 0 of p {direction 0 of p rotated (4+normaldeviate)} .. + point 1 of p {direction 1 of p rotated (4+normaldeviate)} +enddef; +def freehand_path(expr p) = + freehand_segment(subpath(0,1) of p) + for i=1 upto length(p)-1: + & freehand_segment(subpath(i,i+1) of p) + endfor + if cycle p: & cycle fi +enddef; +defaultfont := "eurm10"; +color sepia; sepia = (0.44, 0.26, 0.08); +picture marker; marker = image(for s=-1/2, 1/2: + draw (left--right) scaled 2 rotated 60 shifted (s,0); +endfor); +def moved_along expr x of p = rotated angle direction x of p + shifted point x of p enddef; + +beginfig(1); +pair A, B, C, D; +A = (0,-30); B = (180,0); C = (120,90); D = (1/2 + 1/40 normaldeviate)[A, B]; +path triangle, circumcircle, bisector; +triangle = freehand_path(A--D--B--C--cycle); +bisector = freehand_segment(C--D); +circumcircle = freehand_path(A..B..C..cycle); +draw triangle; +draw bisector; +draw circumcircle withcolor .67 red; +draw marker moved_along 1/2 of triangle withcolor .67 red; +draw marker moved_along 3/2 of triangle withcolor .67 red; +label.lft("A", A); +label.rt ("B", B); +label.top("C", C); +label.bot("D", D); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.pdf Binary files differnew file mode 100644 index 00000000000..d1e3586cd04 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-circumcircle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.mp new file mode 100644 index 00000000000..0bbacf44365 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.mp @@ -0,0 +1,42 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +vardef freehand_through@#(expr a, b) = + save t; pair t; t = @# * unitvector(b - a) rotated (4 + normaldeviate); + a - t .. a {t} .. b {t} .. b + t +enddef; + +vardef mid_arc@#(expr p, a, b) = + save c; path c; c = fullcircle scaled (2*@#) shifted p cutbefore a cutafter b; + point arctime 1/2 arclength c of c of c +enddef; + +beginfig(1); +defaultfont := "eurm10"; color sepia; sepia = (0.44, 0.26, 0.08); +pair A, B, C; +A = (0,-30); B = (180,0); C = (120,90); + +path a, b, c; +a = freehand_through 7 (A, B); +b = freehand_through 8 (B, C); +c = freehand_through 6 (C, A); + +drawoptions(withcolor sepia); +draw a; draw b; draw c; + +drawoptions(withcolor .67 blue); +label.bot ("a", point 3/2 of a); +label.rt ("b", point 3/2 of b); +label.ulft("c", point 3/2 of c); + +drawoptions(withcolor .5 red); +label(char 11, mid_arc 16 (A, a, c)); +label(char 12, mid_arc 14 (B, b, a)); +label(char 13, mid_arc 14 (C, c, b)); + +drawoptions(); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.pdf Binary files differnew file mode 100644 index 00000000000..55e5548095d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-freehand-through.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.mp new file mode 100644 index 00000000000..d2c13dd10b9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.mp @@ -0,0 +1,33 @@ +\documentclass[border=2mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +beginfig(1); +path xx, yy, ff; +xx = origin -- 233 right; +yy = origin -- 144 up; + +z1 = (72, 62); +z2 = (180, 110); + +ff = (xpart point 0 of xx, ypart point 0 of yy) {dir 76} + .. z1 {dir 64} .. z2 {dir 64} .. (xpart point 1 of xx, ypart point 1 of yy) {dir 30}; + +draw ff withcolor 0.54 red; +drawarrow xx; +drawarrow yy; +forsuffixes $=1,2: + draw (0, y$) -- z$ -- (x$,0) dashed evenly withcolor 1/2; + dotlabel.lft("\texttt{(0,y" & decimal $ & ")}", (0, y$)); + dotlabel.bot("\texttt{(x" & decimal $ & ",0)}", (x$, 0)); + dotlabel.rt("$z_" & decimal $ & "$", z$); +endfor + + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.pdf Binary files differnew file mode 100644 index 00000000000..8ec56fba8e9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-function.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.mp new file mode 100644 index 00000000000..d77f7fc1417 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.mp @@ -0,0 +1,25 @@ +\documentclass[border=0mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + numeric u; u = 72; + for x = -2u step 1/8 until 2u: + drawdot (x, normaldeviate * 1/2u) withpen pencircle scaled 2; + endfor + path c; + c = fullcircle scaled u shifted (u, 1/2u); + picture P; P = currentpicture; clip P to c; + draw c withcolor .54 red; + draw P withcolor .84 red; + + picture B; B = currentpicture; + path S; + S = unitsquare shifted (-1/2, -1/2) scaled 4u; + fill S withcolor (1,1,31/32); draw S; clip B to S; draw B; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.pdf Binary files differnew file mode 100644 index 00000000000..54b7a91dc66 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-selection.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.mp new file mode 100644 index 00000000000..de581a58fed --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.mp @@ -0,0 +1,24 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +numeric desired_length, n, s; +desired_length = 180; n = 30; s = 80; +for r=0 upto 8: + path shape; + shape = for i=1 upto n: + (s + r * normaldeviate, 0) rotated (360/n*i) .. + endfor cycle; + + shape := shape scaled (desired_length/arclength shape); + + draw shape shifted (r*s, 0) withcolor (r/8)[black,red]; + label(decimal r, (r*s, 0)); + +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.pdf Binary files differnew file mode 100644 index 00000000000..540fdb680c0 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-shapes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.mp new file mode 100644 index 00000000000..a11a5f22f3e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.mp @@ -0,0 +1,45 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + randomseed := 3.1415; + color tr, tb; tr = 0.84 red; tb = 1.2(.2,.2,.7); + numeric w, h, n; w = 377; h = 80; n = 500; + pair zenith, nadir; zenith = nadir = origin; + path walk[]; + + draw (origin--right) scaled w; + draw (origin--right) scaled w shifted (0,+h/2) withcolor 3/4; + draw (origin--right) scaled w shifted (0,-h/2) withcolor 3/4; + + for i=1 upto 8: + numeric y; y = 0; + walk[i] = origin for x=w/n step w/n until w: + hide( + y := y if uniformdeviate 1 < 1/2: + else: - fi 1; + if y > ypart zenith: zenith := (x,y) ; fi + if y < ypart nadir: nadir := (x,y) ; fi + ) + -- (x,y) + endfor; + undraw walk[i] withpen pencircle scaled 3/4; + draw walk[i] withcolor (1/2+y/h)[tr, tb]; + label.rt("$\scriptstyle" & decimal i & "$", + point infinity of walk[i] + if i=1: shifted (-3, 3) + elseif i=3: shifted (1,3) + elseif i=5: shifted (-3, 3) + elseif i=7: shifted (-1, -4) fi); + endfor + + drawarrow (12 up -- 2 up ) shifted zenith withcolor tb; + drawarrow (12 down -- 2 down) shifted nadir withcolor tr; + + fill fullcircle scaled 2; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.pdf Binary files differnew file mode 100644 index 00000000000..c76047183cc --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/random-walks-red-blue.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.mp new file mode 100644 index 00000000000..594a2eebf5d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.mp @@ -0,0 +1,26 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef bush(expr start, aim, level, limit) = + save s, target; + numeric s; s = level / limit; + for a = -32, -8, 8, 16: + pair target; + target = aim scaled ((32 + 16 normaldeviate) * s) rotated a shifted start; + draw start -- target + withpen pencircle scaled s + withcolor BrBG[limit][limit-level]; + if level > 1: + bush(target, aim rotated a, level - 1, limit); + fi + endfor +enddef; +beginfig(1); +bush(origin, dir 80, 6, 8); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.pdf Binary files differnew file mode 100644 index 00000000000..415b01c3915 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-bush.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.mp new file mode 100644 index 00000000000..df4dc37c486 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.mp @@ -0,0 +1,40 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\mplibtextextlabel{enable} +\begin{document} +\begin{mplibcode} +vardef acosd(expr a) = angle (a, 1 +-+ a) enddef; +numeric r, phi, theta; +phi = 0.61803398875; +r = phi**phi; +theta = acosd(1/2(1/r + r - r * r * r)); + +vardef dragon(expr a, b) = + if abs(a-b) > 1: + save p; pair p; + p = r[a, b] rotatedabout(a, theta); + dragon(a, p) & reverse dragon(b, p) + else: + a -- b + fi +enddef; + +beginfig(1); + path p; p = dragon(origin, 518 right); + draw p withpen pencircle scaled 1/8 withcolor \mpcolor{carrot}; + picture base; base = image( + draw 10 left -- 90 right withcolor 3/4; + path a; a = (origin -- r * dir theta -- right) scaled 80; + draw a; + for t=0 upto 2: draw point t of a withpen pencircle scaled 2 withcolor .54 red; endfor + label.ulft("$r$", point 1/2 of a); + label.urt ("$r^2$", point 3/2 of a); + label.bot ("$1$", 1/2[point 0 of a, point 2 of a]); + label("$\theta$", 18 dir 1/2 theta); + ); + label.lrt(base, ulcorner currentpicture); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.pdf Binary files differnew file mode 100644 index 00000000000..810ad035601 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon-golden.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.mp new file mode 100644 index 00000000000..60b8549cf1d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.mp @@ -0,0 +1,40 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +numeric r, theta; r = sqrt 1/2; theta = 45; +vardef dragon(expr level, a, b) = + if level > 0: + save p; pair p; + p = r[a, b] rotatedabout(a, theta); + dragon(level - 1, a, p) & reverse dragon(level - 1, b, p) + else: + a .. b + fi +enddef; + +vardef rounded_corners expr p = + save r, n; numeric r, n; r = 1/3; n = length p; + subpath (0, 1-r) of p + for t=1 upto n-1: + .. subpath (t+r, t+1-r) of p + endfor .. subpath (n-r, n) of p +enddef; + +beginfig(1); + + path d; d = dragon(15, origin, 240 right); + draw d withpen pencircle scaled 1/4 withcolor (.2, .2, .7); + label.top("The dragon curve at level 15", point 1/3 of bbox currentpicture); + + draw rounded_corners dragon(10, origin, 240 right) + shifted 280 down + withcolor .54 red; + + label.top("\dots\ and at level 10 with rounded corners", point 1/3 of bbox currentpicture); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.pdf Binary files differnew file mode 100644 index 00000000000..3338a7addef --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-dragon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.mp new file mode 100644 index 00000000000..ec543a75125 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.mp @@ -0,0 +1,53 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path h[], snake; +h0 = (for i = 1 upto 6: 40 dir 60i -- endfor cycle) rotated angle (9, -sqrt(3)); +for i = 1 upto 6: + h[i] = h0 shifted (point 0 of h0 - point 2 of h0) rotated 60i; +endfor +snake = point 0 of h3 -- point 1 of h2 -- point 2 of h1 + -- point 1 of h6 -- point 2 of h5 -- point 3 of h0 + -- point 1 of h4 -- point 0 of h5; + +for i=1 upto 6: + draw subpath (4, 9) of h[i] withcolor 3/4; +endfor + +% path usnake; +% usnake = snake +% shifted - point 0 of h3 +% scaled (1/abs(point 0 of h3 - point 0 of h5)); + +% def zx(expr a, b) = zscaled (point b of snake - point a of snake) +% shifted point a of snake enddef; + +% draw usnake zx(1, 0) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(1, 2) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(2, 3) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(3, 4) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(5, 4) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(6, 5) dashed withdots scaled 1/2 withcolor 2/3 red; +% draw usnake zx(6, 7) dashed withdots scaled 1/2 withcolor 2/3 red; + + +draw 2/3[point 0 of h3, point 0 of h5] -- point 0 of h5 withcolor 1/2; +drawarrow point 0 of h3 -- 2/3[point 0 of h3, point 0 of h5] withcolor 1/2; +draw snake withcolor 2/3 red; +for t=1, 5, 6: + drawarrow subpath (t, t-2/3) of snake withcolor \mpcolor{textred}; +endfor +for t=1, 2, 3, 6: + drawarrow subpath (t, t+2/3) of snake withcolor \mpcolor{textred}; +endfor + +dotlabel.llft("$(0, 0)$", point 0 of h3); +dotlabel.lrt ("$(1, 0)$", point 0 of h5); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.pdf Binary files differnew file mode 100644 index 00000000000..06f111a067a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake-construction.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.mp new file mode 100644 index 00000000000..be94b530659 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.mp @@ -0,0 +1,70 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} + +path h[], snake; +h0 = for i = 1 upto 6: dir 60i -- endfor cycle; +for i = 1 upto 6: + h[i] = h0 shifted (point 0 of h0 - point 2 of h0) rotated 60i; +endfor +snake = point 0 of h3 -- point 1 of h2 -- point 2 of h1 + -- point 1 of h6 -- point 2 of h5 -- point 3 of h0 + -- point 1 of h4 -- point 0 of h5; +snake := snake shifted - point 0 of h3; +snake := snake rotated - angle (point 0 of h5 - point 0 of h3); +snake := snake scaled (1 / length (point 0 of h5 - point 0 of h3)); + +vardef hexon(expr a, b) = + pair c, m; + c = b rotatedaround(a, 60); + m = 2/3[c, 1/2[a, b]]; + a -- a rotatedaround(m, 60) -- + b -- b rotatedaround(m, 60) -- + c -- c rotatedaround(m, 60) -- cycle +enddef; + +path w; +w = origin -- right; +w := w -- point 0 of w rotatedabout(point 1 of w, 120); +w := w -- point 1 of w rotatedabout(point 2 of w, -120); +w := w rotated - angle (point 3 of w - point 0 of w); +w := w scaled (1/abs (point 3 of w - point 0 of w)); + +pair a, b; +a = 144 down rotated -60; +b = 144 down rotated +60; +numeric n; n = 4; + +path boundary; +boundary = hexon(a, b); +for i = 1 upto n: + boundary := for t = 1 upto length boundary: + subpath (0, 2) of w + zscaled (point t of boundary - point t-1 of boundary) + shifted point t-1 of boundary -- endfor cycle; +endfor + + +vardef rattle(expr level, a, b) = + if level > 0: + save s; path s; s = snake zscaled (b-a) shifted a; + reverse rattle(level - 1, point 1 of s, a) & + rattle(level - 1, point 1 of s, point 2 of s) & + rattle(level - 1, point 2 of s, point 3 of s) & + rattle(level - 1, point 3 of s, point 4 of s) & + reverse rattle(level - 1, point 5 of s, point 4 of s) & + reverse rattle(level - 1, point 6 of s, point 5 of s) & + rattle(level - 1, point 6 of s, b) + else: + a -- b + fi +enddef; +beginfig(1); + path s; s = rattle(n, a, b); + fill a + (-40, 0) -- s -- b + (40, 0) -- + b + (40, 224) -- a + (-40, 224) -- cycle withcolor 3/4[1/4 blue, white]; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.pdf Binary files differnew file mode 100644 index 00000000000..3bcc884ad19 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-flowsnake.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.mp new file mode 100644 index 00000000000..f6e1ac1e7bf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.mp @@ -0,0 +1,34 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +r = 0.75; theta = 17; +vardef make_tree(expr bar) = + save a; numeric a; a = abs(point 1 of bar - point 0 of bar); + cutdraw bar withpen pencircle scaled (a/8); + if a > 5: + save s; pair s; s = 1/32 a * r * unitvector(direction 1 of bar) rotated 90; + make_tree( + bar shifted - point 0 of bar shifted s + scaled (r + 1/16 normaldeviate) + rotated (theta + 8 normaldeviate) + shifted point 1 of bar + ); + make_tree( + bar shifted - point 0 of bar shifted -s + scaled (r + 1/16 normaldeviate) + rotated -(theta + 8 normaldeviate) + shifted point 1 of bar + ); + fi +enddef; +beginfig(1); +for i=1 upto 4: + picture T; T = image(make_tree(origin -- 40 up)); draw T shifted (170i, 0); +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.pdf Binary files differnew file mode 100644 index 00000000000..3803c073cae --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree-deviate.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.mp new file mode 100644 index 00000000000..c4e31178af9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.mp @@ -0,0 +1,34 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef make_tree(expr bar) = + save a; numeric a; a = abs(point 1 of bar - point 0 of bar); + cutdraw bar withpen pencircle scaled 1.2(1/8 a) withcolor background; + cutdraw bar withpen pencircle scaled (1/8 a) withcolor 1/256(57, 35, 32); + if a > leaf: + save s; pair s; s = 1/32 a * r * unitvector(direction 1 of bar) rotated 90; + make_tree( + bar shifted - point 0 of bar + shifted s scaled r rotated theta + shifted point 1 of bar + ); + make_tree( + bar shifted - point 0 of bar + shifted -s scaled r rotated -theta + shifted point 1 of bar + ); + else: + draw point 1 of bar withpen pencircle scaled 1 withcolor 2/3 green; + fi +enddef; +beginfig(1); +numeric stem, leaf, r, theta; +r = 0.75; theta = 14; +stem = 100; leaf = 3; % max(1, round(stem * (r ** 12))); +make_tree(origin -- stem * up); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.pdf Binary files differnew file mode 100644 index 00000000000..8db8f8a29e1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-general-tree.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.mp new file mode 100644 index 00000000000..a1310384915 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.mp @@ -0,0 +1,30 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +r = 0; +vardef make_H(expr level, bar, thickness) = + cutdraw bar withpen pencircle scaled thickness + withcolor Blues[9][9 - floor(level/2)]; + + % save spike, m; path spike; pair m; m = unitvector(direction 1/2 of bar rotated 90); + % spike = point 0 of bar .. m scaled +thickness shifted point 1/2 of bar .. point 1 of bar & + % point 1 of bar .. m scaled -thickness shifted point 1/2 of bar .. point 0 of bar & cycle; + % fill spike withcolor Reds 9 7; + + if level > 0: + save foo, fo; + path foo, fo; + foo = bar shifted - point 1/2 of bar scaled 0.7071067811865475; + make_H(level - 1, foo rotated 90 shifted point r of bar, thickness); + make_H(level - 1, foo rotated 90 shifted point 1-r of bar, thickness); + fi +enddef; +beginfig(1); +make_H(8, (left -- right) scaled 200, 1/2); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.pdf Binary files differnew file mode 100644 index 00000000000..5efa7ed845a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-h-tree.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.mp new file mode 100644 index 00000000000..c5d070a23d2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.mp @@ -0,0 +1,30 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +picture s[]; +path p; p = origin -- 42 right; +s1 = image(undraw (origin -- up) scaled 21; draw p;); +for i=2 upto 5: + s[i] = image( + draw p withcolor 7/8; + p := p scaled sqrt 1/2; + p := p rotated 45 .. reverse p rotated 135 shifted 42 right; + draw p; + ) shifted (80 * i - 80, 0); +endfor + +beginfig(1); +draw s1; draw s2; draw s3; draw s4; draw s5; +ahangle := 30; y = 10; +drawoptions(withcolor (.2,.2,.7)); +drawarrow (50,y) -- (70, y); +drawarrow (130,y) -- (150, y); +drawarrow (205,y) -- (220, y); +drawarrow (285,y) -- (300, y); +drawoptions(); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.pdf Binary files differnew file mode 100644 index 00000000000..6ef4716a863 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-heighway-stages.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.mp new file mode 100644 index 00000000000..e696eac4f8f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.mp @@ -0,0 +1,32 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} + +vardef koch(expr level, a, b) = + if level = 0: + a -- b + else: + save p, q, r; pair p, q, r; + p = 1/3[a,b]; r = 2/3[a,b]; q = r rotatedabout(p, 60); + koch(level-1, a, p) & + koch(level-1, p, q) & + koch(level-1, q, r) & + koch(level-1, r, b) + fi +enddef; +beginfig(1); + wd = 300; + for n=0 upto 4: + numeric y; y = -1/3 wd * n; + path k; k = koch(n, origin, (wd, 0)) shifted (0, y); + draw k withcolor 2/3 blue; + label.urt("\small\textsf{Level " & decimal n & "}", point infinity of k); + label.top("$\scriptstyle " & decimal length k & "/" & decimal arclength k & "$", (wd/2, y)); + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.pdf Binary files differnew file mode 100644 index 00000000000..d0be311ae6f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-koch-steps.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.mp new file mode 100644 index 00000000000..fbde07eafaf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.mp @@ -0,0 +1,30 @@ +% ref Mandlebrot, FGoN, p.32 and p.48 +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +path gene; gene = (0,0) -- (1,0) -- (1, -1) -- (2, -1); +gene := gene rotated - angle point length gene of gene; +gene := gene scaled (1 / abs point length gene of gene); +beginfig(1); +for n=5, 6: + path p; p = gene scaled 300; + for i = 1 upto n: + p := for t = 1 upto length p: + subpath (0, 2) of gene + zscaled (point t of p - point t-1 of p) + shifted point t-1 of p -- endfor point length p of p; + endfor + p := p shifted (0, -144n); + for i = 0 upto length p: + fill fullcircle scaled 4 + shifted point i of p + withcolor 7/8; + endfor + draw p withcolor 1/2; +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.pdf Binary files differnew file mode 100644 index 00000000000..bc6fe1f25d7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-mink-sausage.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.mp new file mode 100644 index 00000000000..1829c8003cf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.mp @@ -0,0 +1,33 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef make_gasket(expr t, s, level, c) = + if level = 0: + fill t withcolor Reds[7][7-c]; + draw t; + else: + save little_t; path little_t; little_t = t scaled s; + for i=1 upto length t: + make_gasket(little_t shifted (point i of t - point i of little_t), s, level-1, c); + endfor + fi +enddef; +vardef sf(expr n) = + numeric s; s = 0; + for k=1 upto floor (n/4): + s := s + cosd(360 / n * k); + endfor + 1 / (2 * (1 + s)) +enddef; +beginfig(1); + for n=5 upto 9: + draw image(make_gasket(for i=1 upto n: 64 up rotated (360/n*i) -- endfor cycle, sf(n), 3, n-4)) + shifted (144n, 0); + endfor + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.pdf Binary files differnew file mode 100644 index 00000000000..718d201949c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-pentagon.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.mp new file mode 100644 index 00000000000..c0bbc2ec1ab --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.mp @@ -0,0 +1,21 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef make_gasket(expr t, s, limit) = + if length (point 1 of t - point 0 of t) < limit: + fill t; + else: + save little_t; path little_t; little_t = t scaled s; + for i=1 upto length t: + make_gasket(little_t shifted (point i of t - point i of little_t), s, limit); + endfor + fi +enddef; +beginfig(1); + path T; T = for i = 1 upto 3: 220 up rotated (120i) -- endfor cycle; + make_gasket(T, 1/2, 20); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.pdf Binary files differnew file mode 100644 index 00000000000..7a2c122f2c5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-sierpinski-triangle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.mp new file mode 100644 index 00000000000..59657cb1b81 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.mp @@ -0,0 +1,33 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef make_tree(expr level, bar) = + draw bar; + if level > 0: + for t=-theta, theta: + make_tree(level - 1, bar shifted - point 0 of bar + scaled r rotated t shifted point 1 of bar + ); + endfor + fi +enddef; +beginfig(1); +picture T[]; +numeric r, theta; +r = 0.58; theta = 60; T1 = image( + make_tree(3, origin -- 100 up); + label.urt("\ $r=" & decimal r & "$, $\theta=" & decimal theta & "$", origin) withcolor \mpcolor{textred}; +); +r := 0.75; theta := 14; T2 = image( + make_tree(10, origin -- 100 up); + label.urt("\ $r=" & decimal r & "$, $\theta=" & decimal theta & "$", origin) withcolor \mpcolor{textred}; +); +draw T1 shifted 32 up; +draw T2 shifted 128 right; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.pdf Binary files differnew file mode 100644 index 00000000000..1c3c848604c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rec-simple-tree.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rope.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rope.mp new file mode 100644 index 00000000000..09bf92a56a3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/rope.mp @@ -0,0 +1,21 @@ +vardef rope expr c = + save s, w, hemp, n, a, b, A; + color hemp; hemp = 1/256 (192, 149, 82); + numeric s, w, n, A; + w = -1; n = -1; A = arclength c; s = A/floor(A/2); + path a[]; + for t=0 step s until A + 1: + a[incr n] = (0,+w) rotated angle direction arctime t-3/2s of c of c shifted point arctime t-3/2s of c of c + .. (0,+w) rotated angle direction arctime t-1/2s of c of c shifted point arctime t-1/2s of c of c + .. (0,-w) rotated angle direction arctime t+1/2s of c of c shifted point arctime t+1/2s of c of c + .. (0,-w) rotated angle direction arctime t+3/2s of c of c shifted point arctime t+3/2s of c of c; + endfor + image( + for i=1 upto n: + path b; b = buildcycle(a[i-1], reverse a[i]); + fill b withcolor 1/2[white, hemp]; + draw b withpen pencircle scaled 1/8; + endfor + ) + enddef; + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-cm.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-cm.mp new file mode 100644 index 00000000000..bdbaad10b51 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-cm.mp @@ -0,0 +1,6 @@ +numeric u[]; +u0 = 1 cm; +u1 = 1 mm; +drawoptions(withcolor 0.54 red); +input ruler +drawoptions(); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-inch.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-inch.mp new file mode 100644 index 00000000000..54fb5a654d2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-inch.mp @@ -0,0 +1,6 @@ +numeric u[]; +u0 = 1 in; +u1 = 6 bp; +drawoptions(withcolor 0.54 red); +input ruler +drawoptions(); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-pt.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-pt.mp new file mode 100644 index 00000000000..0b0992bae43 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler-pt.mp @@ -0,0 +1,6 @@ +numeric u[]; +u0 = 12 bp; +u1 = 1 bp; +drawoptions(withcolor 0.54 red); +input ruler +drawoptions(); diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler.mp new file mode 100644 index 00000000000..9d11af25d3f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/ruler.mp @@ -0,0 +1,19 @@ +% add a ruler along the left hand and lower edges +% of the bounding box of the currentpicture +% ** meant to be embedded by something that sets u[] appropriately ** +path B; B = bbox currentpicture; +for s=0, 1: + path p; numeric a; pair o; + p = subpath (0, 1) of if s=0: reverse fi B; + a = arclength p; + o = if s=0: left else: down fi; + for i=0 upto 3: + exitif not known u[i]; + for j=0 upto floor(a/u[i]): + pair t; t = point arctime j*u[i] of p of p; + draw (origin -- (6 - 2i) * o) shifted t; + if i=0: label(decimal j, t shifted 12 o); fi + endfor + endfor + draw p; +endfor diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn-code.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn-code.mp new file mode 100644 index 00000000000..9e80e0a4928 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn-code.mp @@ -0,0 +1,17 @@ +path globe, gap, ring[], limb[]; +globe = fullcircle scaled 2cm; +gap = fullcircle xscaled 3cm yscaled .8cm; +ring1 = fullcircle xscaled 4cm yscaled 1.2cm; +ring2 = ring1 scaled 0.93; +ring3 = ring1 scaled 0.89; +limb1 = buildcycle(subpath(5,7) of ring1, subpath(8,4) of globe); +limb2 = buildcycle(subpath(5,7) of gap, subpath(-2,6) of globe); +picture saturn; saturn = image( + fill ring1 withcolor .1 red + .1 green + .4 white; + fill ring2 withcolor .2 white; + fill ring3 withcolor .1 red + .1 green + .6 white; + unfill gap; + fill limb1 withcolor .2 red + .1 green + .7 white; + fill limb2 withcolor .2 red + .1 green + .7 white; +); +draw saturn rotated 30; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.mp new file mode 100644 index 00000000000..08825c4f94d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.mp @@ -0,0 +1,10 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +input saturn-code +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.pdf Binary files differnew file mode 100644 index 00000000000..3ba35ab9659 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/saturn.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.mp new file mode 100644 index 00000000000..9134946b150 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.mp @@ -0,0 +1,37 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + +path b, w; +b = ((-3,-4)--(3,-2)--(3,+2)--(-3,4)--cycle) scaled 5; +w = b reflectedabout(up, down); + +numeric n; +n = 128; + +picture B, W; +B = image(for i=0 step 1/n until 1: + draw point 4-i of b -- point 1+i**2 of b + withcolor 1-i**8; + endfor); + + W = image(for i=0 step 1/n until 1: + draw point 4-i of w -- point 1+i**2 of w + withcolor 3/4-i**8; + endfor); + +for i=-9 upto 9: + for j=-4 upto 4: + draw if odd (i+j): W else: B fi shifted (i*30,j*30); + endfor +endfor + +clip currentpicture to bbox currentpicture yscaled 7/8; + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.pdf Binary files differnew file mode 100644 index 00000000000..ea0b67ef2b2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shadows.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.mp new file mode 100644 index 00000000000..62737f38fec --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.mp @@ -0,0 +1,24 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path c, C; numeric r; r = 60; +c = fullcircle scaled 2r shifted (-r, 0); +C = fullcircle scaled 4r shifted (2r, 0); +numeric t, u; +(t, whatever) = C intersectiontimes C shifted (center c - center C); +(u, whatever) = c intersectiontimes (point t of C -- center c); +path s; +s = subpath (0, u) of c -- subpath (t, 4) of C -- cycle; +for i=0 upto r: + draw (left--right) scaled 2r rotated -42 shifted (3i, 0) + withpen pencircle scaled 1/4 withcolor 2/3 blue; +endfor +clip currentpicture to s; +draw c; draw C; +draw center c -- center C -- point t of C -- cycle; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.pdf Binary files differnew file mode 100644 index 00000000000..df8eef9b56f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/shady-circles.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.mp new file mode 100644 index 00000000000..77aa5e450bf --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.mp @@ -0,0 +1,15 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path C; C = fullcircle scaled 100; draw C withcolor 2/3 red; +for i=0 upto 11: + drawdot point 2/3 i of C withpen pencircle scaled dotlabeldiam; + label("$p_{" & decimal i & "}$", point 2/3 i of C scaled 1.2); +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.pdf Binary files differnew file mode 100644 index 00000000000..209463a97ab --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-circle-labels.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.mp new file mode 100644 index 00000000000..83ef3d28335 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.mp @@ -0,0 +1,14 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + draw (left--right) scaled 2in withcolor 2/3 red; + for i=-4 upto 4: + dotlabel.top("$" & decimal i & "$", (32i, 0)); + endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.pdf Binary files differnew file mode 100644 index 00000000000..bb798247c51 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/simple-number-line.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.mp new file mode 100644 index 00000000000..ca298e5e99b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.mp @@ -0,0 +1,25 @@ +\documentclass[border=0mm]{standalone} +\usepackage{luamplib} +\def\s#1{\let\\\cr\vbox{\halign{\hfil\strut ##\hfil\cr#1\crcr}}} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); +z0 = origin; z1 = 100 down; z2 = 144 down; +picture L[]; +L0 = thelabel(btex \vbox{\hsize 2in\parindent 0pt\raggedright + An extended caption or label that will be set as a + small paragraph with automatic hyphenation and + line-wrapping. +} etex, z0); +L1 = thelabel(btex \s{Single line} etex, z1); +L2 = thelabel(btex \s{Longer text split\\onto a new line} etex, z2); +forsuffixes $=0,1,2: + draw L$; draw bbox L$ withcolor Blues 8 2; + draw fullcircle scaled 2 shifted z$ withcolor Reds 8 7; +endfor +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.pdf Binary files differnew file mode 100644 index 00000000000..d1a1ba6fd51 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/split-labels.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.mp new file mode 100644 index 00000000000..b59986110cb --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.mp @@ -0,0 +1,24 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input tangent-times + +beginfig(1); +path C; pair p; numeric a, b; +C = fullcircle scaled 100; +p = 189 right rotated 30; +(a, b) = tangent_times(C, p); + +draw C withpen pencircle scaled 2 withcolor 3/4[(.2, .2, .7), white]; +draw p -- subpath (a, b) of C -- cycle dashed evenly; +label.llft("$C$", point 5 of C); +dotlabel.urt("$p$", p); +dotlabel.ulft("point $a$ of $C$", point a of C); +dotlabel.lrt("point $b$ of $C$", point b of C); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.pdf Binary files differnew file mode 100644 index 00000000000..074d7560426 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times-on-circle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times.mp new file mode 100644 index 00000000000..ecbb62bb97d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangent-times.mp @@ -0,0 +1,11 @@ +vardef tangent_times(expr C, p) = + save m, a, b, G, H; + pair m; numeric a, b; path G, H; + m = 1/2[p, center C]; + H = halfcircle scaled abs (p - center C) + rotated angle (p - center C) shifted m; + G = H rotatedabout(m, 180); + (a, whatever) = C intersectiontimes H; + (b, whatever) = C intersectiontimes G; + (a, b if b < a: + 8 fi) +enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.mp new file mode 100644 index 00000000000..c93dc1d1d68 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.mp @@ -0,0 +1,60 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{dwmpcode} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path p; numeric s; s = 144; +p := (origin {1, 3} .. (1, 0) .. {1, 2} (2, 0)) scaled s; + +ahangle := 20; +ahlength := 6; +picture P[]; +P1 = image( + draw p withcolor 0.54 red; + for t=0 upto length p: draw fullcircle scaled dotlabeldiam shifted point t of p; endfor + label.bot(TEX("\mpl{point 0 of p}") scaled 0.8, point 0 of p shifted 16 right); + label.urt(TEX("\mpl{point 1 of p}") scaled 0.8, point 1 of p); + label.top(TEX("\mpl{point 2 of p}") scaled 0.8, point 2 of p shifted 16 left); +); +P2 = image( + draw p withcolor 0.54 red; + drawoptions(withcolor 1/2); + for t=0 upto length p: + drawarrow precontrol t of p -- postcontrol t of p; + fill fullcircle scaled 2 shifted precontrol t of p; + draw fullcircle scaled 4 shifted point t of p; + endfor + label.bot(TEX("\mpl{precontrol 0 of p}") scaled 0.8, precontrol 0 of p shifted (24, -2)); + label.top(TEX("\mpl{postcontrol 0 of p}") scaled 0.8, postcontrol 0 of p shifted (24, 4)); + label.top(TEX("\mpl{precontrol 1 of p}") scaled 0.8, precontrol 1 of p); + label.bot(TEX("\mpl{postcontrol 1 of p}") scaled 0.8, postcontrol 1 of p); + label.bot(TEX("\mpl{precontrol 2 of p}") scaled 0.8, precontrol 2 of p); + label.top(TEX("\mpl{postcontrol 2 of p}") scaled 0.8, postcontrol 2 of p shifted (-24, 2)); + drawoptions(); +); +P3 = image( + draw p withcolor 0.54 red; + drawoptions(withcolor 1/2); + for t=0 step 1/4 until length p: + pair s; s = 16 unitvector(direction t of p); + drawarrow (-s -- s) shifted point t of p; + draw point t of p withpen pencircle scaled 2; + endfor + drawoptions(); + numeric x, y; x = 8; y = -12; + label.rt(TEX("\mpl{pair s;}") scaled 0.7, (x, y+10)); + label.rt(TEX("\mpl{for t=0 step 1/4 until length p:}") scaled 0.7, (x, y)); + label.rt(TEX("\quad\mpl{s := 16 unitvector(direction t of p);}") scaled 0.7, (x, y-10)); + label.rt(TEX("\quad\mpl{drawarrow (-s -- s) shifted point t of p);}") scaled 0.7, (x, y-20)); + label.rt(TEX("\quad\mpl{draw point t of p withpen pencircle scaled 2;}") scaled 0.7, (x, y-30)); + label.rt(TEX("\mpl{endfor}") scaled 0.7, (x, y-40)); +); +draw P1; +draw P2 shifted 144 down; +draw P3 shifted 248 down; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.pdf Binary files differnew file mode 100644 index 00000000000..6fdd9064a24 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-on-path.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.mp new file mode 100644 index 00000000000..500e009160d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.mp @@ -0,0 +1,38 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path C, C'; pair p, t, t'; +C = fullcircle scaled 100; +p = 189 right rotated 30; + +C' = fullcircle zscaled p shifted 1/2 p; +% t = C intersectionpoint C'; +% t' = reverse C intersectionpoint C'; +t = C intersectionpoint halfcircle zscaled p shifted 1/2 p; +t' = C intersectionpoint halfcircle zscaled -p shifted 1/2 p; + +drawoptions(dashed withdots scaled 1/4 withcolor (.2, .2, .7)); +draw C'; draw t -- center C -- p; + +drawoptions(withcolor (.2, .2, .7)); +dotlabel.lrt("$m$", 1/2 p); +dotlabel.llft("$o$", center C); + +drawoptions(dashed evenly); +draw t -- p -- t'; + +drawoptions(); +draw C; +label.llft("$C$", point 5 of C); + +dotlabel.urt("$p$", p); +dotlabel.ulft("$t$", t); +dotlabel.bot("\strut $t'$", t'); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.pdf Binary files differnew file mode 100644 index 00000000000..69913039552 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-point-to-circle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.mp new file mode 100644 index 00000000000..504fdf19e0f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.mp @@ -0,0 +1,55 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input tangent-times +color tb; tb = (0.2, 0.2, 0.7); +beginfig(1); +path A, B; +A = fullcircle scaled 144; +B = fullcircle scaled 60 shifted (200, 140); + +numeric R, r; +R = abs (point 0 of A - center A); +r = abs (point 0 of B - center B); + +path C; numeric t, u; +C = fullcircle scaled (2R-2r) shifted center A; +(t, u) = tangent_times(C, center B); + +draw A withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw B withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw C withpen pencircle scaled 1 withcolor 7/8[blue, white]; + +draw subpath (t, u) of C -- center B -- cycle dashed evenly withcolor 1/2; +draw subpath (t, u) of A -- subpath (u-8, t) of B -- cycle; + +drawoptions(dashed withdots scaled 1/2 withcolor 1/4); +forsuffixes $=t, u: + draw point $ of C -- point $ of A; + draw center B -- point $ of B; +endfor + +drawoptions(withcolor tb); +label.urt("$A$", point 1 of A); +label.ulft("$B$", point 4 of B); +label.urt("$C$", point 1/2 of C); +drawdot center B withpen pencircle scaled dotlabeldiam; + +drawoptions(); +dotlabel.lrt("$t$", point t of C); +dotlabel.ulft("$t'$", point t of A); +dotlabel.ulft("$t''$", point t of B); +dotlabel.ulft("$u$", point u of C); +dotlabel.lrt("$u'$", point u of A); +dotlabel.lrt("$u''$", point u of B); + +label.rt("$r$", 1/2[center B, point t of B]); +label.rt("$r$", 1/2[point t of C, point t of A]); + + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.pdf Binary files differnew file mode 100644 index 00000000000..db6464e4a42 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-exterior.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.mp new file mode 100644 index 00000000000..afa46790e68 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.mp @@ -0,0 +1,59 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input tangent-times +vardef adjust_time(expr tt, AA, BB) = + tt + 1/45 angle (point 0 of AA - center AA) + - 1/45 angle (point 0 of BB - center BB) +enddef; +beginfig(1); +path A, B; +A = fullcircle scaled 144 rotated uniformdeviate 360; +B = fullcircle scaled 60 shifted 240 right rotated 36; + +numeric R, r; +R = abs (point 0 of A - center A); +r = abs (point 0 of B - center B); + +path C; +C = fullcircle scaled (2R+2r) shifted center A; % NB +ve + +numeric t, t', t'', u, u', u''; +(t, u) = tangent_times(C, center B); +t' = adjust_time(t, C, A); +u' = adjust_time(u, C, A); +t'' = adjust_time(t + 4, C, B); % Note the plus fours +u'' = adjust_time(u + 4, C, B); + +draw A withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw B withpen pencircle scaled 2 withcolor 3/4[blue, white]; +draw C withpen pencircle scaled 1 withcolor 3/4[blue, white]; + +draw subpath (t', u') of A -- subpath (u'', t'') of B -- cycle; +draw center B -- subpath (t, u) of C -- cycle dashed evenly; + +draw center B -- point t'' of B dashed withdots scaled 1/2; +draw center B -- point u'' of B dashed withdots scaled 1/2; +draw point t of C -- point t' of A dashed withdots scaled 1/2; +draw point u of C -- point u' of A dashed withdots scaled 1/2; + +dotlabel.ulft(btex $t$ etex, point t of C); +dotlabel.lrt (btex $t'$ etex, point t' of A); +dotlabel.lrt (btex $t''$ etex, point t'' of B); +dotlabel.lrt (btex $u$ etex, point u of C); +dotlabel.ulft(btex $u'$ etex, point u' of A); +dotlabel.ulft(btex $u''$ etex, point u'' of B); +drawdot center B withpen pencircle scaled dotlabeldiam; + +drawoptions(withcolor 1/2[blue, white]); + label.urt(btex $A$ etex, point 1/2(t'+u'- 7.6) of A); + label.rt (btex $B$ etex, point 1/2(t''+u''- 2) of B); + label.urt(btex $C$ etex, point 1/2(t+u-8) of C); +drawoptions(); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.pdf Binary files differnew file mode 100644 index 00000000000..f9faedbd975 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tangents-two-circles-interior.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.mp new file mode 100644 index 00000000000..3796618baff --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.mp @@ -0,0 +1,58 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +vardef sbox primary P = + superellipse(1/2[point 1 of bbox P, point 2 of bbox P], + 1/2[point 2 of bbox P, point 3 of bbox P], + 1/2[point 3 of bbox P, point 0 of bbox P], + 1/2[point 0 of bbox P, point 1 of bbox P], 0.75) + enddef; + +beginfig(1); + r = 0.9; + z0 = (0, 0); + z1 = r*(89, -55); + z2 = r*(42, 30); + z3 = z1 + z2; + + picture FE, FEV, E, EV, M, N, U, V; + FE = thelabel("$f^*E$", (x0, y0)); + M = thelabel("$M$", (x0, y1)); + E = thelabel("$E$", (x1, y0)); + N = thelabel("$N$", (x1, y1)); + FEV = thelabel("$f^*E_V$", (x2, y2)); + U = thelabel("$U$", (x2, y3)); + EV = thelabel("$E_V$", (x3, y2)); + V = thelabel("$V$", (x3, y3)); + + forsuffixes @=E, M, N, U, V, EV, FE, FEV: draw @; endfor + + ahangle := 20; + vardef connect(expr a, b) = + save line; path line; + interim bboxmargin := 3; + line = center a .. center b + cutbefore sbox a cutafter sbox b; + cutdraw line withpen pencircle scaled 4 withcolor background; + drawarrow line + enddef; + + connect(FEV, EV); + connect(FEV, U); + connect(EV, V); + connect(U, V); + + connect(FEV, FE); + connect(EV, E); + connect(U, M); + connect(V, N); + + connect(FE, E); + connect(FE, M); + connect(E, N); + connect(M, N); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.pdf Binary files differnew file mode 100644 index 00000000000..c2b95990db9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tikzcd-example.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.mp new file mode 100644 index 00000000000..ce9d1565e66 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.mp @@ -0,0 +1,83 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +vardef make_image(expr P, n, u, v, s, arrows) = + save currentpicture; + picture currentpicture; + currentpicture := nullpicture; + for i = -n upto n: + for j = -n upto n: + draw P shifted (i * u + j * v); + endfor + endfor; + if arrows: + interim ahangle := 20; + drawarrow origin--u dashed evenly scaled 1/2 withpen pencircle scaled 1/4 withcolor Reds 8 8; + drawarrow origin--v dashed evenly scaled 1/2 withpen pencircle scaled 1/4 withcolor Blues 8 8; + draw origin withpen pencircle scaled 1; + fi + clip currentpicture to s; + draw s dashed withdots scaled 1/2; + currentpicture +enddef; +beginfig(1); + path hexagon, triangle; pair u, v; numeric n; + hexagon = for i=0 upto 5: (0, 16) rotated 60i -- endfor cycle; + triangle = for i=0 upto 2: (0, 16) rotated 120i -- endfor cycle; + + u = point 0 of triangle - point 1 of triangle; + v = u rotated -60; + + path s; s = superellipse(89 right, 89 up, 89 left, 89 down, 0.78); + n = 8; + picture P[]; + P3 = make_image(triangle, n, u, v, s, true); + P6 = make_image(hexagon, n, u, v, s, true); + + picture T; T = image( + path t'; t' = triangle reflectedabout(point 0 of triangle, point 1 of triangle); + fill triangle withcolor Reds 8 2; + fill t' withcolor Blues 8 2; + draw triangle; + draw t'; + ); + P4 = make_image(T, n, u, v, s, true); + picture H; H = image( + path ha, hb; + ha = hexagon reflectedabout(point 0 of hexagon, point 1 of hexagon); + hb = hexagon reflectedabout(point 0 of hexagon, point 5 of hexagon); + fill hexagon withcolor Oranges 8 2; + fill ha withcolor Blues 8 2; + fill hb withcolor Greens 8 2; + draw hexagon; draw ha; draw hb; + ); + P7 = make_image(H, n, u zscaled 1.732 dir 30, v zscaled 1.732 dir 30, s, true); + + picture dualt, dualh; + dualt = image( + draw triangle withcolor 1/2; + for i=0 upto 2: draw origin -- point i+1/2 of triangle withcolor Reds 7 6; endfor + draw currentpicture reflectedabout(point 0 of triangle, point 1 of triangle); + ); + dualh = image( + draw hexagon withcolor 1/2; + for i=0 upto 5: + draw origin -- point i+1/2 of hexagon withcolor Reds 7 6; + endfor + ); + P5 = make_image(dualt, n, u, v, s, false); + P8 = make_image(dualh, n, u, v, s, false); + + draw P3 shifted (-100, +100); + draw P4 shifted (-100, -100); + draw P5 shifted (-100, -300); + draw P6 shifted (+100, +100); + draw P7 shifted (+100, -100); + draw P8 shifted (+100, -300); +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.pdf Binary files differnew file mode 100644 index 00000000000..a4a9313e420 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-hex-trig.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.mp new file mode 100644 index 00000000000..81ea654deff --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.mp @@ -0,0 +1,31 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + numeric a; a = 13; + path s; s = unitsquare shifted -(1/2, 1/2) rotated 45 shifted (sqrt(3/2), 0) scaled a; + picture unit; + ahangle := 10; + unit = image( + for i=-1 upto 1: + fill s rotated 60i withcolor Spectral[9][3+2i]; + draw s rotated 60i; + endfor + ); + pair u, v; + u = point 2 of s - point 0 of s rotated -60; + v = u rotated 60; + numeric n; n = 8; + for i = -n upto n: + for j = -n upto n: + draw unit shifted (i * u + j * v); + endfor + endfor + clip currentpicture to fullcircle scaled 400; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.pdf Binary files differnew file mode 100644 index 00000000000..c2b4272c604 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-k.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.mp new file mode 100644 index 00000000000..4eee3b32be1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.mp @@ -0,0 +1,33 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input colorbrewer-rgb +beginfig(1); + path s; s = unitsquare shifted -(1/2, 1/2) scaled 21; + path t; t = s rotated 45; + + vardef show_corners(expr p) = + save s; numeric s; s = abs(point 1 of p - point 0 of p) / (2 + sqrt(2)); + image( for i=0 upto 3: + fill unitsquare scaled s shifted point 0 of p rotated 90i withcolor Oranges[8][1+2i]; + draw unitsquare scaled s shifted point 0 of p rotated 90i; + endfor) + enddef; + + pair u, v; + u = point 1 of s - point 0 of s; + v = u rotated 90; + numeric n; n = 8; + for i = -n upto n: + for j = -n upto n: + draw show_corners(s) shifted (i * u + j * v); + draw show_corners(s) rotated -45 shifted (i * u + j * v); + endfor + endfor + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.pdf Binary files differnew file mode 100644 index 00000000000..79cd5b6ff4c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-kepler-x.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.mp new file mode 100644 index 00000000000..6b0fdf540a4 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.mp @@ -0,0 +1,41 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +picture P[]; +P1 = image( +for i = -10 upto 10: + draw (left--right) scaled 200 shifted (0, 20i); + draw (down--up) scaled 200 shifted (20i, 0); +endfor +clip currentpicture to fullcircle scaled 180; +draw fullcircle scaled 180; +); + +P2 = image( +path unit; pair u, v; color a, b; +unit = unitsquare scaled 24; +u = point 1 of unit - point 0 of unit; +v = point 3 of unit - point 0 of unit; +a = 3/4[red, white]; b = 3/4[blue, white]; +for i=-5 upto 5: + for j=-5 upto 5: + fill unit shifted (i*u + j*v) + withcolor if odd (i+j): a else: b fi; + endfor +endfor +for i=-5 upto 5: + for j=-5 upto 5: + draw subpath (0,2) of unit shifted (i*u + j*v); + endfor +endfor +clip currentpicture to fullcircle scaled 180; +draw fullcircle scaled 180; +); +draw P1; draw P2 shifted 200 down; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.pdf Binary files differnew file mode 100644 index 00000000000..ef086a2e0a6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling-simple.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.mp new file mode 100644 index 00000000000..9a82b1fd39b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.mp @@ -0,0 +1,56 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + +prologues := 3; +outputtemplate := "%j%c.eps"; +vardef poly_on(expr a,b,n) = + save s,t,c; pair c; + s = 360/n; + t = 90-180/n; + c = whatever[a,b rotatedabout(a,+t)] + = whatever[b,a rotatedabout(b,-t)]; + for i=0 upto n-1: a rotatedabout(c,i*s) -- endfor cycle +enddef; + +vardef make_uniform_tiling_shd(expr u, reps, scolor, hcolor, dcolor) = + save x,y,s, h, d, t; path s[], h[], d; picture t; + (x,y) = dir 15; + d = for i=0 upto 11: (x/2y, 1/2) scaled u rotated 30i -- endfor cycle; + for i=0 upto 2: s[i] = unitsquare scaled u shifted point -1 of d rotated (60+60i); endfor + for i=0 upto 1: h[i] = poly_on(point 9+2i of d, point 8+2i of d, 6); endfor + t = image( + fill d withcolor dcolor; + for i=0 upto 2: fill s[i] withcolor scolor; endfor + for i=0 upto 1: fill h[i] withcolor hcolor; endfor + + draw d; + for i=0 upto 2: draw s[i]; endfor + for i=0 upto 1: draw h[i]; endfor + ); + save dx, dy; pair dx, dy; + dx = (u,0) + point -1/2 of d - point 11/2 of d; + dy = dx rotated 60; + for i=-reps upto reps: + for j=-reps upto reps: + draw t shifted (i*dx) shifted (j*dy); + endfor + endfor +enddef; + +def rgb(expr r,g,b) = (r/255, g/255, b/255) enddef; +color b[]; +b1 = rgb(255,255,217); +b2 = rgb(237,248,177); +b3 = rgb(199,233,180); + +beginfig(2); +picture tt; tt = image(make_uniform_tiling_shd(4mm, 7, b1, b2, b3); fill fullcircle scaled 3 withcolor red;); +clip tt to fullcircle scaled 12cm; draw tt; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.pdf Binary files differnew file mode 100644 index 00000000000..b37895e16cd --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tiling.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.mp new file mode 100644 index 00000000000..9a461eb7370 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.mp @@ -0,0 +1,18 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input torn-edge +beginfig(1); +path c; c = fullcircle scaled 200; +draw c withcolor .8 white; +y=0; n = 600; +path t; t = for i=0 upto n-1: + point i/n*length(c) of c + + (0, walkr y) rotated angle direction i/n*length(c) of c + -- +endfor cycle; +draw t withcolor .67 red; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.pdf Binary files differnew file mode 100644 index 00000000000..2142838a3d7 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-circle.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.mp new file mode 100644 index 00000000000..18a365c4c2a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.mp @@ -0,0 +1,14 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input torn-edge +beginfig(2); +path t; numeric x, y; +x = 0; y=0; +t = (x, -20) -- (x, y) for i=1 upto 288: -- (incr x, walkr y) endfor -- (x, -20) -- cycle; +fill t withcolor 1/32(32,32,31); +draw t withcolor .67 blue; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.pdf Binary files differnew file mode 100644 index 00000000000..c0afc7349f6 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge-straight.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge.mp new file mode 100644 index 00000000000..5d0afface04 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/torn-edge.mp @@ -0,0 +1,7 @@ +vardef signr suffix $ = + if $<0: - else: + fi uniformdeviate 1 + enddef; +vardef walkr suffix $ = + $ := $ if uniformdeviate 1 < (2**-abs($)): + else: - fi signr $; + $ + enddef; diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.mp new file mode 100644 index 00000000000..7b061c8da7e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.mp @@ -0,0 +1,23 @@ +prologues := 3; +outputtemplate := "trad-font-changes.eps"; +beginfig(1); +yy := 120; +forsuffixes $ = + font_times, + font_palatino, + font_charter, + font_utopia, + font_cmbright, + font_century, + font_concrete, + font_bookman, + font_arev: + draw str $ infont "texnansi-lmtt10" shifted (-22,yy) withcolor .43 green; + write "draw btex \input " & str $ & " {\bf NB}. Learn $v=u+at$ right {\it now\/}! etex shifted (80," & decimal yy & ");" to ".mplabels"; + yy := yy - 16; +endfor + write EOF to ".mplabels"; + input .mplabels; +endfig; +end. + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.pdf Binary files differnew file mode 100644 index 00000000000..6046a3507f1 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-changes.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.mp new file mode 100644 index 00000000000..44674cf6040 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.mp @@ -0,0 +1,50 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + +vardef set_line(expr f, n) = + save code, name, sample; + picture code, name, sample; + code = f infont "cs-lmtt10"; + name = n infont "cs-lmss10"; + sample = "Hand in glove 42" infont f; + yy := yy - 14; + draw code shifted (-48,yy); + draw name shifted (0,yy); + draw sample shifted (124,yy); + enddef; + +vardef set_symbol_line(expr f, n) = + save code, name, sample; + picture code, name, sample; + code = f infont "cs-lmtt10"; + name = n infont "cs-lmss10"; + sample = (char 97 & char 98 & char 99 & char 100 & char 101 & char 102) infont f; + yy := yy - 14; + draw code shifted (-48,yy); + draw name shifted (0,yy); + draw sample shifted (124,yy); + enddef; + + +beginfig(2); +yy := 150; +set_line("pagk8r","Avant Garde"); +set_line("pbkl8r","Bookman"); +set_line("pcrr8r","Courier"); +set_line("phvr8r","Helvetica"); +set_line("pncr8r","New Century Schoolbook"); +set_line("pplr8r","Palatino"); +set_line("ptmr8r","Times"); +set_line("pzcmi8r","Zapf Chancery"); +yy := yy - 6; +set_symbol_line("pzdr","Zapf Dingbats"); +set_symbol_line("psyr","Symbol"); +set_symbol_line("eurm10","Euler"); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.pdf Binary files differnew file mode 100644 index 00000000000..2f5c40ddda2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-samples.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.mp new file mode 100644 index 00000000000..8a9a4c6c052 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.mp @@ -0,0 +1,38 @@ +% why have I set this one using `lualatex`? +% (a) to keep my build process consistent, so that I am using luamplib for *all* +% the external pictures +% (b) to show you that you can use the full traditional MP typesetting with "infont" +% even though you are compiling with lualatex... +% Toby Thurston -- 04 Apr 2023 +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); +ypos = 0; +picture matrix; +for $="texnansi-lmr10", "pplr8r": + draw ("Font: " & $) infont "texnansi-lmss10" scaled .7 shifted (-20,ypos) withcolor .67 red; + for m=0 upto 15: + ypos := ypos - 12; + if (m mod 4)=0: + ypos := ypos - 4; + fi + label.lft(decimal 16m infont "texnansi-lmss10" scaled .7, (-7,ypos+3)) withcolor .67 red; + for c=0 upto 15: + xx := 16m+c; + if (xx<>0) and (xx<>10) and (xx<>13) and (xx<>160): + matrix := char (16m+c) infont $; + draw matrix shifted (c*14,ypos) shifted 1/2(llcorner matrix - lrcorner matrix) + withcolor if ((32<xx) and (xx<127)) or (160<xx): black else: .67 blue fi; + else: + draw unitsquare shifted 1/2 left scaled 3 shifted (c*14,ypos) withcolor .67 red; + fi + endfor + endfor + for i=0 upto 4: draw (-7+56i,ypos-4) -- (-7+56i,ypos+17*12-4) withcolor .67 red; endfor + ypos := ypos - 24; +endfor +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.pdf Binary files differnew file mode 100644 index 00000000000..13fc4801b7d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trad-font-tables.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.mp new file mode 100644 index 00000000000..980ceae25ea --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.mp @@ -0,0 +1,41 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path C, base, section, aa; + numeric theta; + C = fullcircle scaled 144; + base = origin -- right scaled 172.8; + theta = 60; + + z1 = point 0 of C scaled 1.2 rotated theta; + z2 = point 4 of C rotated theta; + + draw C; + draw z1 -- origin -- base; + draw origin -- z2 -- base shifted z2 dashed evenly; + + section = base scaled 1.2 rotated 1/3 theta shifted z2 cutafter base; + draw section; + + label.ulft("$a$", 1/2 z2); + aa = subpath (eps, infinity) of section cutbefore C; + label.lrt("$a$", point 1/2 of aa); + + draw origin -- point 0 of aa dashed withdots scaled 1/2; + + drawoptions(withcolor 2/3 blue); % distinguish angle labels + label("$\theta$", 16 dir 1/2 theta); + label("$\theta/3$", 52 dir 1/6 theta shifted z2); + drawoptions(); + + drawoptions(withpen pencircle scaled 2/3 dotlabeldiam); + draw origin; draw z2; draw point 0 of aa; draw point 1 of aa; + drawoptions(); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.pdf Binary files differnew file mode 100644 index 00000000000..7dc1d031e2e --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-classical.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.mp new file mode 100644 index 00000000000..8f55281efb3 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.mp @@ -0,0 +1,22 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + path ray; + numeric theta; + ray = origin -- 200 right; + theta = 42; + draw ray; + draw ray rotated 1/3 theta withcolor 2/3 red; + draw ray rotated 2/3 theta withcolor 2/3 red; + draw ray rotated theta; + dotlabel.llft("$0$", origin); + label("$\theta/3$", 72 right rotated 1/6 theta) withcolor 2/3 blue; + label("$\theta/3$", 72 right rotated 3/6 theta) withcolor 2/3 blue; + label("$\theta/3$", 72 right rotated 5/6 theta) withcolor 2/3 blue; +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.pdf Binary files differnew file mode 100644 index 00000000000..7a63ce3cf3b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-simple.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.mp new file mode 100644 index 00000000000..400934e6479 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.mp @@ -0,0 +1,42 @@ +\documentclass[border=0mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +randomseed := 2485.81543; +vardef measured_angle(expr p, o, q) = + (angle (p-o) - angle (q-o)) mod 360 +enddef; +beginfig(1); +picture T; +for i=0 upto 1: + for j=0 upto 1: + clearxy; + T := image( + z1 = (120 + uniformdeviate 21, 0); + z2 = (120 + uniformdeviate 21, 0) rotated 120 rotated 21 normaldeviate; + z3 = (120 + uniformdeviate 21, 0) rotated 240 rotated 21 normaldeviate; + numeric a, b, c; + a = measured_angle(z3, z1, z2); + b = measured_angle(z1, z2, z3); + c = measured_angle(z2, z3, z1); + z4 = whatever [z1, z2 rotatedabout(z1, 1/3 a)] + = whatever [z2, z3 rotatedabout(z2, 2/3 b)]; + z5 = whatever [z2, z3 rotatedabout(z2, 1/3 b)] + = whatever [z3, z1 rotatedabout(z3, 2/3 c)]; + z6 = whatever [z3, z1 rotatedabout(z3, 1/3 c)] + = whatever [z1, z2 rotatedabout(z1, 2/3 a)]; + fill z4--z5--z6--cycle withcolor 3/4[red + 1/2 green, white]; + draw z4--z5--z6--cycle; + draw z1 -- z4 -- z2 -- z5 -- z3 -- z6 -- cycle + dashed withdots scaled 1/4; + draw z1 -- z2 -- z3 -- cycle; + ); + draw T shifted (200i, 240j); + endfor +endfor +label.rt(btex \vbox{\halign{#\hfil\cr The trisectors of each angle\cr +in any given triangle form a\cr central equilateral triangle.\cr}} etex, (24, 128)); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.pdf Binary files differnew file mode 100644 index 00000000000..2bf044ad78f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/trisection-triangles.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.mp new file mode 100644 index 00000000000..6fd4c3ead1a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.mp @@ -0,0 +1,65 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{unicode-math} +\setmainfont[Numbers=OldStyle]{TeX Gyre Pagella} +\setmathfont{TeX Gyre Pagella Math} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path data, p; +data = (1967, 311) + -- (1968, 332) + -- (1969, 372) + -- (1970, 385) + -- (1971, 385) + -- (1972, 393) + -- (1973, 387) + -- (1974, 381) + -- (1975, 387) + -- (1976, 400) + -- (1977, 380); + +numeric u, v; +u = xpart urcorner textext("1980\kern 0.75em"); +v = 1.414; +p = data shifted -(xpart point 0 of data, 300) xscaled u yscaled v; +draw p; + +for d = 300 step 20 until 400: + numeric y; y = (d - 300) * v; + label.lft("\strut\scriptsize\$\,\small" & decimal d, (-12, y)); + draw (-8, y) -- (-12, y); + if d > 370: + draw (xpart point 3 of p, y) -- (xpart point infinity of p + 8, y) + dashed evenly scaled 1/4 withpen pencircle scaled 1/4; + fi +endfor +path a; a = (xpart point infinity of p + 21, (380 - 300) * v) + -- (xpart point infinity of p + 21, (400 - 300) * v); +interim ahangle := 180; +interim ahlength := 2; +drawdblarrow a withpen pencircle scaled 1/4; +label("\small 5\%", point 1/2 of a shifted 12 right); + +for t=0 upto length p: + numeric x, y; (x, y) = point t of p; + undraw (x, y) withpen pencircle scaled 2 dotlabeldiam; + draw (x, y) withpen pencircle scaled dotlabeldiam; + draw (x, -8) -- (x, -12); + label("\strut\small" & decimal xpart point t of data, (x, -20)); +endfor + +label.urt(btex \vbox{\halign{\small #\hfill\cr +Per capita\cr budget expenditure\cr in constant dollars\cr}} etex, +(0, (410 - 300) * v)); + +picture p; p = currentpicture; currentpicture := nullpicture; +bboxmargin := 12; +fill bbox p withcolor 1/32(32, 32, 31); +draw p; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.pdf Binary files differnew file mode 100644 index 00000000000..9a369d27d14 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-budget.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.mp new file mode 100644 index 00000000000..708f229696a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.mp @@ -0,0 +1,363 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{unicode-math} +\setmainfont[Numbers=OldStyle]{TeX Gyre Pagella} +\setmathfont{TeX Gyre Pagella Math} +\def\tl#1{\vbox{\tiny\let\\\cr\halign{\hss ##\hss\cr#1\crcr}}} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input basedate +path euro, years, events; +euro = + (base(1999, 01, 31), 70.256200) + -- (base(1999, 02, 28), 68.85200) + -- (base(1999, 03, 31), 67.106100) + -- (base(1999, 04, 30), 66.456200) + -- (base(1999, 05, 31), 65.751900) + -- (base(1999, 06, 30), 65.054700) + -- (base(1999, 07, 31), 65.818600) + -- (base(1999, 08, 31), 66.039600) + -- (base(1999, 09, 30), 64.618500) + -- (base(1999, 10, 31), 64.604600) + -- (base(1999, 11, 30), 63.715400) + -- (base(1999, 12, 31), 62.694500) + -- (base(2000, 01, 31), 61.723600) + -- (base(2000, 02, 29), 61.416200) + -- (base(2000, 03, 31), 61.095600) + -- (base(2000, 04, 30), 59.795100) + -- (base(2000, 05, 31), 60.165300) + -- (base(2000, 06, 30), 62.91600) + -- (base(2000, 07, 31), 62.337900) + -- (base(2000, 08, 31), 60.789500) + -- (base(2000, 09, 30), 60.777700) + -- (base(2000, 10, 31), 58.965700) + -- (base(2000, 11, 30), 60.020900) + -- (base(2000, 12, 31), 61.469800) + -- (base(2001, 01, 31), 63.488500) + -- (base(2001, 02, 28), 63.3800) + -- (base(2001, 03, 31), 62.956100) + -- (base(2001, 04, 30), 62.167200) + -- (base(2001, 05, 31), 61.405900) + -- (base(2001, 06, 30), 60.874200) + -- (base(2001, 07, 31), 60.811600) + -- (base(2001, 08, 31), 62.70600) + -- (base(2001, 09, 30), 62.322400) + -- (base(2001, 10, 31), 62.422700) + -- (base(2001, 11, 30), 61.851800) + -- (base(2001, 12, 31), 61.94300) + -- (base(2002, 01, 31), 61.676200) + -- (base(2002, 02, 28), 61.136700) + -- (base(2002, 03, 31), 61.565600) + -- (base(2002, 04, 30), 61.413900) + -- (base(2002, 05, 31), 62.738200) + -- (base(2002, 06, 30), 64.39600) + -- (base(2002, 07, 31), 63.882400) + -- (base(2002, 08, 31), 63.575100) + -- (base(2002, 09, 30), 63.061600) + -- (base(2002, 10, 31), 63.008300) + -- (base(2002, 11, 30), 63.737600) + -- (base(2002, 12, 31), 64.218200) + -- (base(2003, 01, 31), 65.650100) + -- (base(2003, 02, 28), 66.890200) + -- (base(2003, 03, 31), 68.137100) + -- (base(2003, 04, 30), 68.917100) + -- (base(2003, 05, 31), 71.205200) + -- (base(2003, 06, 30), 70.409100) + -- (base(2003, 07, 31), 69.997700) + -- (base(2003, 08, 31), 69.876900) + -- (base(2003, 09, 30), 69.764400) + -- (base(2003, 10, 31), 69.859800) + -- (base(2003, 11, 30), 69.252500) + -- (base(2003, 12, 31), 70.127900) + -- (base(2004, 01, 31), 69.311900) + -- (base(2004, 02, 29), 67.658400) + -- (base(2004, 03, 31), 67.186300) + -- (base(2004, 04, 30), 66.456100) + -- (base(2004, 05, 31), 67.167300) + -- (base(2004, 06, 30), 66.304900) + -- (base(2004, 07, 31), 66.615300) + -- (base(2004, 08, 31), 66.917400) + -- (base(2004, 09, 30), 68.148700) + -- (base(2004, 10, 31), 69.067300) + -- (base(2004, 11, 30), 69.916800) + -- (base(2004, 12, 31), 69.655900) + -- (base(2005, 01, 31), 70.672300) + -- (base(2005, 02, 28), 68.954800) + -- (base(2005, 03, 31), 69.266800) + -- (base(2005, 04, 30), 68.301400) + -- (base(2005, 05, 31), 68.404700) + -- (base(2005, 06, 30), 66.887400) + -- (base(2005, 07, 31), 68.613100) + -- (base(2005, 08, 31), 68.5500) + -- (base(2005, 09, 30), 67.759400) + -- (base(2005, 10, 31), 68.186800) + -- (base(2005, 11, 30), 67.934800) + -- (base(2005, 12, 31), 67.914300) + -- (base(2006, 01, 31), 68.629700) + -- (base(2006, 02, 28), 68.299400) + -- (base(2006, 03, 31), 68.879200) + -- (base(2006, 04, 30), 69.411300) + -- (base(2006, 05, 31), 68.343200) + -- (base(2006, 06, 30), 68.7700) + -- (base(2006, 07, 31), 68.851400) + -- (base(2006, 08, 31), 67.681500) + -- (base(2006, 09, 30), 67.498800) + -- (base(2006, 10, 31), 67.294500) + -- (base(2006, 11, 30), 67.386300) + -- (base(2006, 12, 31), 67.297100) + -- (base(2007, 01, 31), 66.365300) + -- (base(2007, 02, 28), 66.73900) + -- (base(2007, 03, 31), 67.988900) + -- (base(2007, 04, 30), 67.95900) + -- (base(2007, 05, 31), 68.144800) + -- (base(2007, 06, 30), 67.589800) + -- (base(2007, 07, 31), 67.449200) + -- (base(2007, 08, 31), 67.714700) + -- (base(2007, 09, 30), 68.791700) + -- (base(2007, 10, 31), 69.624700) + -- (base(2007, 11, 30), 70.779800) + -- (base(2007, 12, 31), 72.135100) + -- (base(2008, 01, 31), 74.638700) + -- (base(2008, 02, 29), 74.922400) + -- (base(2008, 03, 31), 77.322800) + -- (base(2008, 04, 30), 79.552400) + -- (base(2008, 05, 31), 79.079900) + -- (base(2008, 06, 30), 79.094700) + -- (base(2008, 07, 31), 79.236500) + -- (base(2008, 08, 31), 79.221500) + -- (base(2008, 09, 30), 79.928300) + -- (base(2008, 10, 31), 78.440300) + -- (base(2008, 11, 30), 82.852800) + -- (base(2008, 12, 31), 90.767900) + -- (base(2009, 01, 31), 92.114300) + -- (base(2009, 02, 28), 88.967100) + -- (base(2009, 03, 31), 91.925500) + -- (base(2009, 04, 30), 89.774800) + -- (base(2009, 05, 31), 88.591200) + -- (base(2009, 06, 30), 85.739200) + -- (base(2009, 07, 31), 86.02100) + -- (base(2009, 08, 31), 86.196800) + -- (base(2009, 09, 30), 89.16800) + -- (base(2009, 10, 31), 91.597400) + -- (base(2009, 11, 30), 89.818800) + -- (base(2009, 12, 31), 89.911700) + -- (base(2010, 01, 31), 88.424400) + -- (base(2010, 02, 28), 87.548100) + -- (base(2010, 03, 31), 90.177300) + -- (base(2010, 04, 30), 87.677600) + -- (base(2010, 05, 31), 85.83100) + -- (base(2010, 06, 30), 82.888900) + -- (base(2010, 07, 31), 83.636200) + -- (base(2010, 08, 31), 82.39800) + -- (base(2010, 09, 30), 83.807500) + -- (base(2010, 10, 31), 87.57300) + -- (base(2010, 11, 30), 85.595400) + -- (base(2010, 12, 31), 84.741200) + -- (base(2011, 01, 31), 84.729300) + -- (base(2011, 02, 28), 84.686200) + -- (base(2011, 03, 31), 86.708800) + -- (base(2011, 04, 30), 88.313100) + -- (base(2011, 05, 31), 87.653300) + -- (base(2011, 06, 30), 88.668300) + -- (base(2011, 07, 31), 88.569400) + -- (base(2011, 08, 31), 87.548400) + -- (base(2011, 09, 30), 87.21700) + -- (base(2011, 10, 31), 87.015700) + -- (base(2011, 11, 30), 85.784300) + -- (base(2011, 12, 31), 84.494100) + -- (base(2012, 01, 31), 83.159600) + -- (base(2012, 02, 29), 83.664600) + -- (base(2012, 03, 31), 83.485600) + -- (base(2012, 04, 30), 82.378400) + -- (base(2012, 05, 31), 80.472400) + -- (base(2012, 06, 30), 80.644300) + -- (base(2012, 07, 31), 78.858800) + -- (base(2012, 08, 31), 78.862900) + -- (base(2012, 09, 30), 79.89500) + -- (base(2012, 10, 31), 80.69300) + -- (base(2012, 11, 30), 80.362500) + -- (base(2012, 12, 31), 81.282400) + -- (base(2013, 01, 31), 83.14100) + -- (base(2013, 02, 28), 86.2300) + -- (base(2013, 03, 31), 85.989300) + -- (base(2013, 04, 30), 85.050300) + -- (base(2013, 05, 31), 84.83100) + -- (base(2013, 06, 30), 85.192200) + -- (base(2013, 07, 31), 86.163400) + -- (base(2013, 08, 31), 85.98600) + -- (base(2013, 09, 30), 84.243200) + -- (base(2013, 10, 31), 84.770300) + -- (base(2013, 11, 30), 83.829200) + -- (base(2013, 12, 31), 83.68200) + -- (base(2014, 01, 31), 82.752100) + -- (base(2014, 02, 28), 82.464100) + -- (base(2014, 03, 31), 83.143900) + -- (base(2014, 04, 30), 82.506500) + -- (base(2014, 05, 31), 81.574400) + -- (base(2014, 06, 30), 80.463800) + -- (base(2014, 07, 31), 79.300800) + -- (base(2014, 08, 31), 79.758700) + -- (base(2014, 09, 30), 79.150400) + -- (base(2014, 10, 31), 78.837400) + -- (base(2014, 11, 30), 79.037400) + -- (base(2014, 12, 31), 78.805100) + -- (base(2015, 01, 31), 76.705900) + -- (base(2015, 02, 28), 74.11400) + -- (base(2015, 03, 31), 72.317800) + -- (base(2015, 04, 30), 72.364700) + -- (base(2015, 05, 31), 72.255300) + -- (base(2015, 06, 30), 72.076600) + -- (base(2015, 07, 31), 70.762500) + -- (base(2015, 08, 31), 71.401100) + -- (base(2015, 09, 30), 73.266100) + -- (base(2015, 10, 31), 73.267700) + -- (base(2015, 11, 30), 70.662300) + -- (base(2015, 12, 31), 72.61500) + -- (base(2016, 01, 31), 75.332500) + -- (base(2016, 02, 29), 77.556300) + -- (base(2016, 03, 31), 78.041900) + -- (base(2016, 04, 30), 79.311700) + -- (base(2016, 05, 31), 77.868700) + -- (base(2016, 06, 30), 79.00800) + -- (base(2016, 07, 31), 84.173500) + -- (base(2016, 08, 31), 85.603400) + -- (base(2016, 09, 30), 85.237500) + -- (base(2016, 10, 31), 89.187500) + -- (base(2016, 11, 30), 86.6400) + -- (base(2016, 12, 31), 84.447800) + -- (base(2017, 01, 31), 86.087300) + -- (base(2017, 02, 28), 85.299700) + -- (base(2017, 03, 31), 86.653800) + -- (base(2017, 04, 30), 84.7200) + -- (base(2017, 05, 31), 85.610300) + -- (base(2017, 06, 30), 87.732600) + -- (base(2017, 07, 31), 88.646200) + -- (base(2017, 08, 31), 91.20400) + -- (base(2017, 09, 30), 89.478400) + -- (base(2017, 10, 31), 89.03800) + -- (base(2017, 11, 30), 88.873100) + -- (base(2017, 12, 31), 88.37100) + -- (base(2018, 01, 31), 88.307800) + -- (base(2018, 02, 28), 88.380700) + -- (base(2018, 03, 31), 88.297700) + -- (base(2018, 04, 30), 87.298900) + -- (base(2018, 05, 31), 87.835600) + -- (base(2018, 06, 30), 87.852700) + -- (base(2018, 07, 31), 88.778300) + -- (base(2018, 08, 31), 89.686900) + -- (base(2018, 09, 30), 89.369500) + -- (base(2018, 10, 31), 88.273600) + -- (base(2018, 11, 30), 88.099300) + -- (base(2018, 12, 31), 89.733600) + -- (base(2019, 01, 31), 88.56500) + -- (base(2019, 02, 28), 87.257800) + -- (base(2019, 03, 31), 85.830800) + -- (base(2019, 04, 30), 86.259500) + -- (base(2019, 05, 31), 87.048600) + -- (base(2019, 06, 30), 89.14400) + -- (base(2019, 07, 31), 89.935100) + -- (base(2019, 08, 31), 91.649700) + -- (base(2019, 09, 30), 89.223500) + -- (base(2019, 10, 31), 87.21200) + -- (base(2019, 11, 30), 85.81800) + -- (base(2019, 12, 31), 84.903300) + -- (base(2020, 01, 31), 84.880700) + -- (base(2020, 02, 29), 84.179300) + -- (base(2020, 03, 31), 89.452900) + -- (base(2020, 04, 30), 87.50400) + -- (base(2020, 05, 31), 88.826200) + -- (base(2020, 06, 30), 89.960700) + -- (base(2020, 07, 31), 90.43400) + -- (base(2020, 08, 31), 90.034100) + -- (base(2020, 09, 30), 91.040100) + -- (base(2020, 10, 31), 90.656300) + -- (base(2020, 11, 30), 89.649300) + -- (base(2020, 12, 31), 90.677900) + -- (base(2021, 01, 31), 89.174800) + -- (base(2021, 02, 28), 87.189400) + -- (base(2021, 03, 31), 85.864500) + -- (base(2021, 04, 30), 86.550500) + -- (base(2021, 05, 31), 86.335700) + -- (base(2021, 06, 30), 85.900900) + -- (base(2021, 07, 31), 85.619400) + -- (base(2021, 08, 31), 85.315600) + -- (base(2021, 09, 30), 85.644300) + -- (base(2021, 10, 31), 84.744100) + -- (base(2021, 11, 30), 84.789100) + -- (base(2021, 12, 31), 84.94200) + -- (base(2022, 01, 31), 83.52100) + -- (base(2022, 02, 28), 83.827900) + -- (base(2022, 03, 31), 83.615400) + -- (base(2022, 04, 30), 83.557800) + -- (base(2022, 05, 22), 84.892600) + ; + +years = (base(1999, 01, 01), 1999) for y=2000 upto 2022: -- (base(y, 1, 1), y) endfor; + +numeric offset; +offset = base(1999, 1, 1); +euro := euro shifted -(offset, 0) xscaled 42 yscaled 3; +years := years shifted -(offset, 0) xscaled 42; + +beginfig(1); +draw euro withcolor 3/4 blue; +numeric baseline; baseline = 54*3; +draw (xpart point 0 of euro, baseline) -- (xpart point infinity of euro, baseline); +for t = 1 upto length years: + numeric x, y, q; (x, y) = point t of years; 4q = xpart (point t-1 of years - point t of years); + draw (x, baseline) -- (x, baseline + 4); + for i=1 upto 3: + draw (x + i*q, baseline) -- (x + i*q, baseline + 2); + endfor + if not odd y: + label.bot("\small\strut " & decimal y, (x, baseline)); + fi +endfor +numeric minx, miny, maxx, maxy; +miny = 1000; maxy = 0; +minx = maxx = 0; +for i=0 upto length euro: + numeric x, y; (x, y) = point i of euro; + if y > maxy: maxy := y; maxx := x; fi + if y < miny: miny := y; minx := x; fi +endfor +draw (2 up -- up) scaled 2 shifted (maxx, maxy) withcolor red; +draw (2 down -- down) scaled 2 shifted (minx, miny) withcolor red; + +numeric left_axis, right_axis; left_axis = -16; right_axis = 368; + +draw (left_axis, miny) -- (left_axis, maxy); +for y = 60 step 10 until 100: + draw (left_axis, 3y) -- (left_axis + 2, 3y); + label.lft("\small\strut " & if y < 100: "0." & decimal y else: "1.00" fi, (left_axis, 3y)); +endfor + +draw (right_axis, miny) -- (right_axis, maxy); +for eur = 100 step 10 until 170: + numeric y; y = 100/eur * 100; + draw (right_axis, 3y) -- (right_axis - 2, 3y); + label.rt("\small\strut " & if eur=100: "1.00" else: "1." & decimal (eur mod 100) fi, (right_axis, 3y)); +endfor + +label.top("\small £/€", (left_axis - 10, 310)); +label.top("\small €/£", (right_axis + 10, 310)); + +interim dotlabeldiam := 3/2; +dotlabel.top("\tiny Creation", (base(1999, 1, 1) - offset, 71) xscaled 42 yscaled 3); +dotlabel.top("\tiny 9/11", (base(2001, 9, 11) - offset, 64) xscaled 42 yscaled 3); +dotlabel.lrt("\tl{Lehmans\\collapse}", (base(2008, 9, 15) - offset, 77) xscaled 42 yscaled 3); +dotlabel.lrt("\tl{Brexit\\vote}", (base(2016, 6, 24) - offset, 77) xscaled 42 yscaled 3); +dotlabel.bot("\tl{UK leaves\\EU}", (base(2020, 1, 31) - offset, 83) xscaled 42 yscaled 3); +dotlabel.top("\tl{WHO declares\\pandemic}", (base(2020, 3, 11) - offset, 91) xscaled 42 yscaled 3); +dotlabel.bot("\tl{Ukraine\\invaded}", (base(2022, 2, 24) - offset, 82.5) xscaled 42 yscaled 3); + + +picture p; p = currentpicture; currentpicture := nullpicture; +bboxmargin := 12; +fill bbox p withcolor 1/32(32, 32, 31); +draw p; + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.pdf Binary files differnew file mode 100644 index 00000000000..18bb4f461bc --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-currency.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.mp new file mode 100644 index 00000000000..ab52f8336fd --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.mp @@ -0,0 +1,55 @@ +\documentclass{standalone} +\usepackage{luamplib} +\usepackage{unicode-math} +\setmainfont[Numbers=OldStyle]{TeX Gyre Pagella} +\setmathfont{TeX Gyre Pagella Math} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); +path data, p; +data = (1978, 18) + -- (1979, 19) + -- (1980, 20) + -- (1981, 22) + -- (1982, 24) + -- (1983, 26) + -- (1984, 27) + -- (1985, 27.5); +numeric u, v; +u = xpart urcorner textext("1980\kern 0.75em"); +v = 8; +p = data shifted -(xpart point 0 of data, 0) xscaled u yscaled v; +draw (xpart point 0 of p, 20) -- p -- (xpart point infinity of p, 20); +draw (xpart point 0 of p, 0) -- (xpart point infinity of p, 0); + +for t=0 upto length p: + numeric x, y; (x, y) = point t of p; + undraw (x, y) withpen pencircle scaled 2 dotlabeldiam; + draw (x, y) withpen pencircle scaled dotlabeldiam; + label("\strut" & decimal ypart point t of data, (x, y + 8)); + draw (x, 0) -- (x, 4); + label("\strut" & decimal xpart point t of data, (x, 12)); +endfor + +dotlabel.rt(btex \vbox to 6pt{\halign{\small #\hss\cr +13.7 mpg, average\cr for all cars on\cr road, 1978\cr}\vss} etex, +(xpart point 0 of p, 13.7v)); +dotlabel.lft(btex \vbox to 6pt{\halign{\small #\hss\cr +19.5 mpg, expected\cr average for all cars\cr on road, 1985\cr}\vss} etex, +(xpart point infinity of p, 19.5v)); + +label.top(btex \vbox{\halign{\hss\textsc{#}\hss\cr +required fuel economy standards:\cr +new cars built from 1978 to 1985\cr}} etex, +point 5/2 of bbox currentpicture shifted 21 up); + +picture p; p = currentpicture; currentpicture := nullpicture; +bboxmargin := 12; +fill bbox p withcolor 1/32(32, 32, 31); +draw p; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.pdf Binary files differnew file mode 100644 index 00000000000..7eac49d2b4a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/tufte-mpg.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.mp new file mode 100644 index 00000000000..802d1a1ab8a --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.mp @@ -0,0 +1,31 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +input compass-rose +input colorbrewer-rgb +beginfig(1); +picture O; +O = compass_rose(Blues 8 8, Reds 8 7) scaled 1/2; +%O = thelabel(TEX("\TeX"), origin) scaled 3; + +numeric s; pair p; +s = 108; +p = origin; +draw O shifted p; draw bbox O withcolor 3/4[red, white]; label.urt("\small\texttt{bbox P}", point -1 of bbox O) withcolor 3/4[red, white]; +p := (1s, 0); draw O rotated 30 shifted p; label("\small\texttt{rotated 30}", p shifted 54 down); +p := (2s,+15); draw O shifted p; label("\small\texttt{shifted 15 up}", p shifted 54 down); + +p := ( 0, -1s); draw O scaled 3/4 shifted p; label("\small\texttt{scaled 3/4}", p shifted 54 down); +p := (1s, -1s); draw O xscaled 3/4 shifted p; label("\small\texttt{xscaled 3/4}", p shifted 54 down); +p := (2s, -1s); draw O yscaled 3/4 shifted p; label("\small\texttt{yscaled 3/4}", p shifted 54 down); + +p := ( 0, -2s); draw O slanted 3/4 shifted p; label("\small\texttt{slanted 3/4}", p shifted 54 down); +p := (1s, -2s); draw O zscaled 3/4 dir 21 shifted p; label("\small\texttt{zscaled 3/4 dir 21}", p shifted 54 down); +p := (2s, -2s); draw O reflectedabout(up, down) shifted p; label("\small\texttt{reflectedabout(up, down)}", p shifted 54 down); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.pdf Binary files differnew file mode 100644 index 00000000000..24b6fd8341b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/twister.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.mp new file mode 100644 index 00000000000..629ebe18e2d --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.mp @@ -0,0 +1,26 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\usepackage{fontspec} \newfontface\polytonic{GFS Porson} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + +label("café noir £2.50", origin); +label(btex \vbox{\hsize 4in + Nous étions à l'Étude, quand le Proviseur entra, suivi d'un + \textit{nouveau} habillé en bourgeois et d'un garçon de classe + qui portait un grand pupitre. Ceux qui dormaient se réveillèrent, + et chacun se leva comme surpris dans son travail. +\par} etex, 60 down); +label(btex \vbox{\polytonic\halign{#\hfil\cr +μῆνιν ἄειδε θεὰ Πηληϊάδεω Ἀχιλῆος\cr +οὐλομένην, ἣ μυρί᾽ Ἀχαιοῖς ἄλγε᾽ ἔθηκε,\cr +πολλὰς δ᾽ ἰφθίμους ψυχὰς Ἄϊδι προΐαψεν\cr +ἡρώων, αὐτοὺς δὲ ἑλώρια τεῦχε κύνεσσιν\cr +οἰωνοῖσί τε πᾶσι, Διὸς δ᾽ ἐτελείετο βουλή,\cr +ἐξ οὗ δὴ τὰ πρῶτα διαστήτην ἐρίσαντε\cr +Ἀτρεΐδης τε ἄναξ ἀνδρῶν καὶ δῖος Ἀχιλλεύς.\cr}} etex, 220 down); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.pdf Binary files differnew file mode 100644 index 00000000000..53ca0238c16 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/unicode.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.mp new file mode 100644 index 00000000000..56068603887 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.mp @@ -0,0 +1,35 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +beginfig(1); + +def U primary s = if string s: decode(s) fi enddef; + +vardef decode(expr given) = + save a,b,i,s,out; string s, out; numeric a, b, i; + out = ""; i=0; + forever: + i := i+1; s := substring(i-1,i) of given; a := ASCII s; + if a < 128: + elseif a = 194: + i := i+1; s := substring (i-1,i) of given; + elseif a = 195: + i := i+1; s := char (64 + ASCII substring (i-1,i) of given); + else: + s := "?"; + fi + out := out & s; + exitif i >= length given; + endfor + out +enddef; +beginfig(2); + draw "café noir £2.50" infont "pncr8r"; + draw U"café noir £2.50" infont "pncr8r" shifted 12 down; + defaultfont := "pncr8r"; + label.rt("café noir £2.50", 24 down); + label.rt(U"café noir £2.50", 36 down); +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.pdf Binary files differnew file mode 100644 index 00000000000..521f8dfc668 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/utf8.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.mp new file mode 100644 index 00000000000..448246aac3b --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.mp @@ -0,0 +1,30 @@ +prologues := 3; +outputtemplate := "%j.eps"; +verbatimtex +\documentclass{article} +\usepackage{listings} +\newcommand\mpstyle{\lstset{ +language=Metapost, basicstyle=\ttfamily, +frame=none, columns=fullflexible, +keepspaces=true, showstringspaces=false}} +\lstnewenvironment{code}[1][]{\mpstyle\lstset{#1}}{} +\begin{document} +etex +beginfig(1); +picture P; +P = thelabel(btex \vbox{\begin{code} + % special operators + vardef incr suffix $ = $:=$+1; $ enddef; + vardef decr suffix $ = $:=$-1; $ enddef; + + def reflectedabout(expr w,z) = % reflects about the line w..z + transformed begingroup transform T_; + w transformed T_ = w; + z transformed T_ = z; + xxpart T_ = -yypart T_; + xypart T_ = yxpart T_; % T_ is a reflection + T_ endgroup enddef; +\end{code}} etex, origin); +fill bbox P withcolor (1,1,31/32); draw P; draw bbox P; +endfig; +end. diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.pdf Binary files differnew file mode 100644 index 00000000000..438c727086c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-listing.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.mp new file mode 100644 index 00000000000..7e4081a8e8c --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.mp @@ -0,0 +1,13 @@ +prologues := 3; +outputtemplate := "%j.eps"; +beginfig(1); + string s; s = "\TeX\ sets maths like this $e=mc^2$"; + draw ("1. " & s) infont defaultfont; + draw ("2. " & s) infont "texnansi-lmr10" shifted 20 down; + draw ("3. " & s) infont "cmtt10" shifted 40 down; + draw ("4. " & s) infont "texnansi-lmtt10" shifted 60 down; + bboxmargin := 14; + picture p; p = currentpicture; fill bbox currentpicture withcolor (1,1,31/32); draw p; + draw bbox p; +endfig; +end. diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.pdf Binary files differnew file mode 100644 index 00000000000..b2b3408c131 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/verbatim-with-infont.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.mp new file mode 100644 index 00000000000..70b46781827 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.mp @@ -0,0 +1,48 @@ +\documentclass[border=1mm]{standalone} +\usepackage{luatex85} +\usepackage{luamplib} +\usepackage{dwmpcode} +\mplibtextextlabel{enable} +\begin{document} +\hbox to 5.3in{$\vcenter{% +\begin{mplibcode} +beginfig(1); + z1 = (10, 50); + z2 = (80, 190); + z3 = (0, 170); + z4 = (60, 10); + + draw z1--z2; + draw z3--z4; + + z0 = alpha [z1, z2] = beta [z3, z4]; + + forsuffixes @=0,1,2,3,4: + dotlabel.rt("$z_" & decimal @ & "$", z@) + withcolor 2/3 if @=0: red else: blue fi; + endfor + + %label.urt(decimal alpha, (x2, y0)); + %label.lrt(decimal beta, (x2, y0)); + +endfig; +\end{mplibcode}} +\qquad\vcenter{ +\begin{code} +beginfig(1); + z1 = (10, 50); + z2 = (80, 190); + z3 = (0, 170); + z4 = (60, 10); + + z0 = whatever [z1, z2] = whatever [z3, z4]; + + draw z1--z2; + draw z3--z4; + forsuffixes @=0,1,2,3,4: + dotlabel.rt("$z_" & decimal @ & "$", z@) + withcolor 2/3 if @=0: red else: blue fi; + endfor +endfig; +\end{code}}$\hss} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.pdf Binary files differnew file mode 100644 index 00000000000..e02bd9c3545 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/whatever.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.mp new file mode 100644 index 00000000000..3d29b50e804 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.mp @@ -0,0 +1,46 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\def\tll#1{$\vcenter{\let\\\cr\halign{\hss\textsf{##}\hss\cr#1\cr}}$} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +path paper; paper = origin {dir -16} .. (55, 0) {dir -13} -- (55,34) -- (0, 34) -- cycle; +path source, EPS, pdf; +source = paper; +EPS = paper shifted 105 right; +pdf = paper shifted 210 right; +beginfig(1); + fill source withcolor (1,1,7/8); + draw source; + label("\tll{MP source}", center source); + label.bot("\tll{Edit with\\MacVim}", point 1/2 of source shifted 8 down); + + fill EPS withcolor (15/16, 15/16, 1); + draw EPS dashed withdots scaled 1/2; label("\textsf{EPS}", center EPS); + + fill pdf withcolor (7/8, 7/8, 1); + draw pdf; label("\textsf{PDF}", center pdf); + picture p, u; + p = thelabel.bot("\tll{Preview with\\Skim.app}", point 1/2 of pdf shifted 8 down); + u = thelabel.top("\tll{Use in \LaTeX with\\\texttt{\textbackslash includegraphics}}", point 5/2 of pdf shifted 34 up); + draw p; draw u; + + interim ahangle := 30; + drawarrow (origin -- 34 up) shifted point 5/2 of pdf dashed evenly scaled 1/2; + drawarrow point 3/2 of bbox source -- point 7/2 of bbox EPS; + label.top("\texttt{mpost}", 1/2[center source, center EPS]); + drawarrow point 3/2 of bbox EPS -- point 7/2 of bbox pdf; + label.top("\texttt{epstopdf}", 1/2[center EPS, center pdf]); + + drawarrow center EPS -- center u + cutbefore bbox EPS cutafter bbox u + dashed withdots scaled 1/2; + + draw center EPS -- center p + cutbefore bbox EPS cutafter bbox p + dashed withdots scaled 1/2; + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.pdf Binary files differnew file mode 100644 index 00000000000..fc0eac78886 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow-plain.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.mp new file mode 100644 index 00000000000..0afa3396c73 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.mp @@ -0,0 +1,30 @@ +\documentclass[border=5mm]{standalone} +\usepackage{luamplib} +\def\tll#1{$\vcenter{\let\\\cr\halign{\hss\textsf{##}\hss\cr#1\cr}}$} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +path paper; paper = origin {dir -16} .. (55, 0) {dir -13} -- (55,34) -- (0, 34) -- cycle; +path source, pdf; +source = paper; +pdf = paper shifted 210 right; +beginfig(1); + fill source withcolor (1,1,7/8); + draw source; + label("\tll{MP source\\in wrapper}", center source); + label.bot("\tll{Edit with\\MacVim}", point 1/2 of source shifted 8 down); + + fill pdf withcolor (7/8, 7/8, 1); + draw pdf; label("\textsf{PDF}", center pdf); + label.bot("\tll{Preview with\\Skim.app}", point 1/2 of pdf shifted 8 down); + label.top("\tll{Use in \LaTeX with\\\texttt{\textbackslash includegraphics}}", point 5/2 of pdf shifted 34 up); + + interim ahangle := 30; + drawarrow (origin -- 34 up) shifted point 5/2 of pdf dashed evenly scaled 1/2; + drawarrow point 3/2 of bbox source -- point 7/2 of bbox pdf; + label.top("\texttt{lualatex}", 1/2[center source, center pdf]); + +endfig; +\end{mplibcode} +\end{document} + diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.pdf Binary files differnew file mode 100644 index 00000000000..705656fafb5 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/workflow.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.mp new file mode 100644 index 00000000000..074014c82c9 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.mp @@ -0,0 +1,53 @@ +\documentclass{standalone} +\usepackage{luamplib} +\begin{document} +\mplibtextextlabel{enable} +\begin{mplibcode} +beginfig(1); + + picture U, XY, X, Y, Z; + z1 = -z2 = (-61, 42); + + U = thelabel("$U$", z1); + XY = thelabel("$X\times_ZY$", origin); + X = thelabel("$X$", (x2, 0)); + Y = thelabel("$Y$", (0, y2)); + Z = thelabel("$Z$", z2); + + forsuffixes @=U, XY, X, Y, Z: draw @; endfor + + ahangle := 20; + vardef connect@#(expr s, a, b) = + curved_connect@#(s, a, b, center b - center a) + enddef; + + vardef curved_connect@#(expr s, a, b, d) = + save line, mark; + + path line; + line = center a {d} .. center b; + interim bboxmargin := 4; + drawarrow line cutbefore bbox a cutafter bbox b; + + picture mark; + mark = thelabel@#("$\scriptstyle " & s & "$", point 1/2 of line); + interim bboxmargin := 1; + unfill bbox mark; draw mark; + enddef; + + connect.bot("p", XY, X); + connect.rt ("q", XY, Y); + connect.top("g", Y, Z); + connect.lft("f", X, Z); + + curved_connect.urt("x", U, X, right); + curved_connect.llft("y", U, Y, dir -80); + + drawoptions(dashed withdots scaled 1/2); + connect("(x,y)", U, XY); + drawoptions(); + + +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.pdf Binary files differnew file mode 100644 index 00000000000..fb5cb9d295f --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/xypic-example.pdf diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.jpg b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.jpg Binary files differnew file mode 100644 index 00000000000..16f0438eea2 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.jpg diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.mp b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.mp new file mode 100644 index 00000000000..77830d66295 --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.mp @@ -0,0 +1,12 @@ +\documentclass[border=5mm]{standalone} +\usepackage{graphicx} +\usepackage{luamplib} +\begin{document} +\begin{mplibcode} +input picture_frame +beginfig(1); + picture F; F = thelabel(TEX("\includegraphics[width=200pt]{youth.jpg}"), origin); + draw F; draw frame F; +endfig; +\end{mplibcode} +\end{document} diff --git a/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.pdf b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.pdf Binary files differnew file mode 100644 index 00000000000..ad0aee97cab --- /dev/null +++ b/Master/texmf-dist/doc/metapost/drawing-with-metapost/src/youth.pdf |