diff options
author | Karl Berry <karl@freefriends.org> | 2024-06-23 20:27:28 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2024-06-23 20:27:28 +0000 |
commit | 7bea8dfd6a579ecfb67fedf818df52e9e6b742c8 (patch) | |
tree | 1283a536077a82b84858aa233c65e9dca695cd07 /Master/texmf-dist/doc | |
parent | bed9260423ec6b66d13da158775005b2822dfadc (diff) |
tiet-question-paper (23jun24)
git-svn-id: svn://tug.org/texlive/trunk@71601 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE | 26 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/README.md | 151 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png | bin | 0 -> 10575 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org | 182 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf | bin | 0 -> 27901 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex | 204 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf | bin | 0 -> 38647 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex | 180 |
8 files changed, 743 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE b/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE new file mode 100644 index 00000000000..df351f4f497 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE @@ -0,0 +1,26 @@ +The MIT License (MIT) +Copyright (c) 2024 B.V. Raghav + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the ``Software''), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the +Software is furnished to do so, subject to the +following conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR +ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/README.md b/Master/texmf-dist/doc/latex/tiet-question-paper/README.md new file mode 100644 index 00000000000..e03586d4fec --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/README.md @@ -0,0 +1,151 @@ +# `tiet-question-paper.cls` # + +[Installation](#installation) | +[Usage](#usage) | +[Emacs Org Integration](#emacs-org-integration) + +Author: Raghav B. Venkataramaiyer +Email: bv.raghav -at- thapar -dot- edu +Email: bvraghav -at- gmail -dot- com +License: [MIT License](./LICENSE) +Version: 2024-06-22 + +Provide a document class `tiet-question-paper` in order +to create a question paper for [the Thapar +Institute](https://thapar.edu/) in $\LaTeX$. Although +created for the TIET, the module, however, is adaptable +to any organisation. + +The following example is a screenshot from +[`sample.pdf`](./sample.pdf), with the source at +[`sample.tex`](./sample.tex) + +![](./images/sample.png) + +## Installation ## + +### CTAN ### + +TBA + +### From Source ### + +1. `tlmgr init-usertree` +2. `kpsewhich -var-value=TEXMFHOME` should return + `~/texmf` +3. `mkdir -p ~/texmf/tex/latex` +4. `cd ~/texmf/tex/latex` +5. `git clone + git@github.com:bvraghav/qptiet_latex-class tiet-question-paper` +6. Verify that `kpsewhich tiet-question-paper.cls` finds `tiet-question-paper.cls`. + +## Usage ## + +### Document Class ### + +The document class is based on `article`. And all the +options are passed forward as is. + +```latex +\documentclass[11pt,onecolumn]{tiet-question-paper} +``` + +### Title Block ### + +Only the following macros contribute to the title block. + +```latex +\date{28 May 2024} +% \institute{Thapar Institute of Engineering \& +% Technology} % Default value +% \abbrevinst{\textsc{tiet}} % Reserved for future +% \instaddress{Patiala 147004} % Reserved for future +% \cohort{} % Reserved for future +% \instlogo{images/tiet-logo.pdf} % Optional +\schoolordepartment{Computer Science \& Engineering Department} +\examname{End Semester Examination} +\coursecode{UCS505} +\coursename{Computer Graphics} +\timeduration{3 hours} +\maxmarks{45} +\faculty{ANG,AMK,HPS,YDS,RGB} +``` + +### Geometry ### + +The class loads `geometry` package with following +default options, + +```latex +\RequirePackage[% + a4paper,% + left=1in,% + top=0.5in,% + right=0.75in,% + bottom=0.75in% +]{geometry} +``` + +However, a user may reconfigure using `\geometry` +command in [the +preamble](https://duckduckgo.com/?q=what+is+a+preamble+in+latex+document) +for example, + +```latex +\geometry{letterpaper,bindingoffset=0.2in, + left=1.2in,right=1.2in,top=.8in,bottom=.8in, + footskip=.25in} +``` + +### Rules ### + +```latex +\bvrhrule +\bvrhrule[2pt] +``` +Create a horizontal rule with length equal to line +width and thickness `0.4pt` by default. Optional +argument specifies line thickness. Here’s the +implementation detail, + +```latex +\DeclareRobustCommand% +% Horizontal rule after each question +\bvrhrule[1][0.4pt]{\rule{\linewidth}{#1}} +``` + +### Line Skip ### + +```latex +\bvrskipline +\bvrskipline[1.2] +``` + +Create vertical blank space with height specified as a +factor of `\baselineskip`. Optional argument specifies +the factor, `1.0` by default. Here’s the +implementation detail, + +```latex +\DeclareRobustCommand% +% Skip line +\bvrskipline[1][]{\vspace{#1\baselineskip}} +``` + +## Emacs Org Integration ## +Add the following to [the +init-file](https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html) +```elisp +(add-to-list 'org-latex-classes + `("tiet-question-paper" "\\documentclass{tiet-question-paper} +[NO-DEFAULT-PACKAGES] +\\usepackage{amsmath} +\\usepackage{graphicx} +\\usepackage{wrapfig} +\\usepackage{amssymb} +\\usepackage[unicode]{hyperref} +" nil)) +``` + +Here’s a [`sample-org`](./sample-org.org) file; that +produces a [`PDF`](./sample-org.pdf) diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png b/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png Binary files differnew file mode 100644 index 00000000000..332ad33af10 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org new file mode 100644 index 00000000000..50b55b4275a --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org @@ -0,0 +1,182 @@ +#+date: \today + +#+latex_class: tiet-question-paper +#+latex_class_options: [11pt] +#+options: num:nil toc:nil author:nil email:nil + +#+latex_header_extra: \hypersetup{% +#+latex_header_extra: colorlinks,% +#+latex_header_extra: breaklinks,% +#+latex_header_extra: urlcolor=[rgb]{0,0.35,0.65},% +#+latex_header_extra: linkcolor=[rgb]{0,0.35,0.65}% +#+latex_header_extra: } + +#+latex_header_extra: \usepackage{libertinus} + +#+latex_header_extra: \instlogo{images/tiet-logo.pdf} +#+latex_header_extra: \schoolordepartment{% +#+latex_header_extra: Computer Science \& Engineering Department} +#+latex_header_extra: \examname{End Semester Examination} +#+latex_header_extra: \coursecode{UCS505} +#+latex_header_extra: \coursename{Computer Graphics} +#+latex_header_extra: \timeduration{3 hours} +#+latex_header_extra: \maxmarks{45} +#+latex_header_extra: \faculty{ANG,AMK,HPS,YDS,RGB} + +#+latex: \maketitle + +*Instructions:* +1. Attempt any 5 questions; +2. Attempt all the subparts of a question at one place. + +#+latex: \bvrhrule\bvrskipline + +1. + 1. Given the control polygon $\textbf{b}_0, + \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a + Cubic Bezier curve; determine the vertex + coordinates for parameter values $\forall t\in + T$. \hfill [7 marks] + \begin{align*} + T \equiv + & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ + \begin{bmatrix} + \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 + \end{bmatrix} \equiv& \begin{bmatrix} + 1&2&4&3\\ 1&3&3&1 + \end{bmatrix} + \end{align*} + + 2. Explain the role of convex hull in curves. + \hfill[2 marks] + +#+latex: \bvrhrule + +#+ATTR_LATEX: :options [resume] +1. + 1. Describe the continuity conditions for + curvilinear geometry. \hfill[5 marks] + 2. Define formally, a B-Spline curve. \hfill [2 + marks] + 3. How is a Bezier curve different from a B-Spline + curve? \hfill [2 marks] + +#+latex: \bvrhrule + +#+ATTR_LATEX: :options [resume] +1. + 1. Given a triangle, with vertices defined by column + vectors of $P$; find its vertices after + reflection across XZ plane. \hfill [3 marks] + \begin{align*} + P\equiv + &\begin{bmatrix} + 3&6&5 \\ 4&4&6 \\ 1&2&3 + \end{bmatrix} + \end{align*} + 2. Given a pyramid with vertices defined by the + column vectors of $P$, and an axis of rotation + $A$ with direction $\textbf{v}$ and passing + through $\textbf{p}$. Find the coordinates of + the vertices after rotation about $A$ by an angle + of $\theta=\pi/4$.\hfill [6 marks] + \begin{align*} + P\equiv + &\begin{bmatrix} + 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 + \end{bmatrix} \\ + \begin{bmatrix} + \mathbf{v} & \mathbf{p} + \end{bmatrix}\equiv + &\begin{bmatrix} + 0&0 \\1&1\\1&0 + \end{bmatrix} + \end{align*} +#+latex: \bvrhrule + +#+ATTR_LATEX: :options [resume] +1. + 1. Explain the two winding number rules for inside + outside tests. \hfill [4 marks] + 2. Explain the working principle of a CRT. \hfill [5 + marks] + +#+latex: \bvrhrule + +#+ATTR_LATEX: :options [resume] +1. + 1. Given a projection plane $P$ defined by normal + $\textbf{n}$ and a reference point $\textbf{a}$; + and the centre of projection as $\mathbf{p}_0$; + find the perspective projection of the point + $\textbf{x}$ on $P$. \hfill [5 marks] + \begin{align*} + \begin{bmatrix} + \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} + \end{bmatrix}\equiv + & + \begin{bmatrix} + 3&-1&1&8\\4&2&1&10\\5&-1&3&6 + \end{bmatrix} + \end{align*} + 2. Given a geometry $G$, which is a standard unit + cube scaled uniformly by half and viewed through + a Cavelier projection bearing $\theta=\pi/4$ + wrt. $X$ axis. \hfill [2 marks] + 3. Given a view coordinate system (VCS) with origin + at $\textbf{p}_v$ and euler angles ZYX as + $\boldsymbol{\theta}$ wrt. the world coordinate + system (WCS); find the location $\mathbf{x}_v$ in + VCS, corresponding to $\textbf{x}_w$ in + WCS. \hfill [2 marks] + \begin{align*} + \begin{bmatrix} + \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w + \end{bmatrix}\equiv + &\begin{bmatrix} + 5&\pi/3&10\\5&0&10\\0&0&0 + \end{bmatrix} + \end{align*} + +#+latex: \bvrhrule + +#+ATTR_LATEX: :options [resume] +1. + 1. Describe the visible surface detection problem in + about 25 words. \hfill [1 mark] + 2. To render a scene with $N$ polygons into a + display with height $H$; what are the space and + time complexities respectively of a typical + image-space method. \hfill [2 marks] + 3. Given a 3D space bounded within $[0\quad0\quad0]$ + and $[7\quad7\quad-7]$, containing two infinite + planes each defined by 3 incident points + $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and + $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$ + respectively bearing colours (RGB) as + $\mathbf{c}_a$ and $\textbf{c}_b$ respectively. + \begin{align*} + \begin{bmatrix} + \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 + &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 + &\mathbf{c}_a&\mathbf{c}_b + \end{bmatrix}\equiv + &\begin{bmatrix} + 1&6&1&6&1&6&1&0 \\ + 1&3&6&6&3&1&0&0 \\ + -1&-6&-1&-1&-6&-1&0&1 + \end{bmatrix} + \end{align*} + Compute and/ or determine using the depth-buffer + method, the colour at pixel $\mathbf{x}=(2,4)$ on + a display resolved into $7\times7$ pixels. The + projection plane is at $Z=0$, looking at + $-Z$. \hfill [6 marks] + +#+latex: \bvrhrule + + +# Local Variables: +# org-latex-default-packages-alist: nil +# org-latex-packages-alist: nil +# End: diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf Binary files differnew file mode 100644 index 00000000000..bd60bf62e65 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex new file mode 100644 index 00000000000..54c7290a679 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex @@ -0,0 +1,204 @@ +% Created 2024-06-22 Sat 22:57 +% Intended LaTeX compiler: pdflatex +\documentclass[11pt]{tiet-question-paper} +\usepackage{amsmath} +\usepackage{graphicx} +\usepackage{wrapfig} +\usepackage{amssymb} +\usepackage[unicode]{hyperref} + + +\hypersetup{% +colorlinks,% +breaklinks,% +urlcolor=[rgb]{0,0.35,0.65},% +linkcolor=[rgb]{0,0.35,0.65}% +} +\usepackage{libertinus} +\instlogo{images/tiet-logo.pdf} +\schoolordepartment{% +Computer Science \& Engineering Department} +\examname{End Semester Examination} +\coursecode{UCS505} +\coursename{Computer Graphics} +\timeduration{3 hours} +\maxmarks{45} +\faculty{ANG,AMK,HPS,YDS,RGB} +\date{\today} +\title{} +\hypersetup{ + pdfauthor={B.V. Raghav}, + pdftitle={}, + pdfkeywords={}, + pdfsubject={}, + pdfcreator={Emacs 29.3 (Org mode 9.6.15)}, + pdflang={English}} +\begin{document} + +\maketitle + +\textbf{Instructions:} +\begin{enumerate} +\item Attempt any 5 questions; +\item Attempt all the subparts of a question at one place. +\end{enumerate} + +\bvrhrule\bvrskipline + +\begin{enumerate} +\item \begin{enumerate} +\item Given the control polygon \(\textbf{b}_0, + \textbf{b}_1, \textbf{b}_2, \textbf{b}_3\) of a +Cubic Bezier curve; determine the vertex +coordinates for parameter values \(\forall t\in + T\). \hfill [7 marks] +\begin{align*} + T \equiv + & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ + \begin{bmatrix} + \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 + \end{bmatrix} \equiv& \begin{bmatrix} + 1&2&4&3\\ 1&3&3&1 + \end{bmatrix} +\end{align*} + +\item Explain the role of convex hull in curves. +\hfill[2 marks] +\end{enumerate} +\end{enumerate} + +\bvrhrule + +\begin{enumerate}[resume] +\item \begin{enumerate} +\item Describe the continuity conditions for +curvilinear geometry. \hfill[5 marks] +\item Define formally, a B-Spline curve. \hfill [2 +marks] +\item How is a Bezier curve different from a B-Spline +curve? \hfill [2 marks] +\end{enumerate} +\end{enumerate} + +\bvrhrule + +\begin{enumerate}[resume] +\item \begin{enumerate} +\item Given a triangle, with vertices defined by column +vectors of \(P\); find its vertices after +reflection across XZ plane. \hfill [3 marks] +\begin{align*} + P\equiv + &\begin{bmatrix} + 3&6&5 \\ 4&4&6 \\ 1&2&3 + \end{bmatrix} +\end{align*} +\item Given a pyramid with vertices defined by the +column vectors of \(P\), and an axis of rotation +\(A\) with direction \(\textbf{v}\) and passing +through \(\textbf{p}\). Find the coordinates of +the vertices after rotation about \(A\) by an angle +of \(\theta=\pi/4\).\hfill [6 marks] +\begin{align*} + P\equiv + &\begin{bmatrix} + 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 + \end{bmatrix} \\ + \begin{bmatrix} + \mathbf{v} & \mathbf{p} + \end{bmatrix}\equiv + &\begin{bmatrix} + 0&0 \\1&1\\1&0 + \end{bmatrix} +\end{align*} +\end{enumerate} +\end{enumerate} +\bvrhrule + +\begin{enumerate}[resume] +\item \begin{enumerate} +\item Explain the two winding number rules for inside +outside tests. \hfill [4 marks] +\item Explain the working principle of a CRT. \hfill [5 +marks] +\end{enumerate} +\end{enumerate} + +\bvrhrule + +\begin{enumerate}[resume] +\item \begin{enumerate} +\item Given a projection plane \(P\) defined by normal +\(\textbf{n}\) and a reference point \(\textbf{a}\); +and the centre of projection as \(\mathbf{p}_0\); +find the perspective projection of the point +\(\textbf{x}\) on \(P\). \hfill [5 marks] +\begin{align*} + \begin{bmatrix} + \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} + \end{bmatrix}\equiv + & + \begin{bmatrix} + 3&-1&1&8\\4&2&1&10\\5&-1&3&6 + \end{bmatrix} +\end{align*} +\item Given a geometry \(G\), which is a standard unit +cube scaled uniformly by half and viewed through +a Cavelier projection bearing \(\theta=\pi/4\) +wrt. \(X\) axis. \hfill [2 marks] +\item Given a view coordinate system (VCS) with origin +at \(\textbf{p}_v\) and euler angles ZYX as +\(\boldsymbol{\theta}\) wrt. the world coordinate +system (WCS); find the location \(\mathbf{x}_v\) in +VCS, corresponding to \(\textbf{x}_w\) in +WCS. \hfill [2 marks] +\begin{align*} + \begin{bmatrix} + \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w + \end{bmatrix}\equiv + &\begin{bmatrix} + 5&\pi/3&10\\5&0&10\\0&0&0 + \end{bmatrix} +\end{align*} +\end{enumerate} +\end{enumerate} + +\bvrhrule + +\begin{enumerate}[resume] +\item \begin{enumerate} +\item Describe the visible surface detection problem in +about 25 words. \hfill [1 mark] +\item To render a scene with \(N\) polygons into a +display with height \(H\); what are the space and +time complexities respectively of a typical +image-space method. \hfill [2 marks] +\item Given a 3D space bounded within \([0\quad0\quad0]\) +and \([7\quad7\quad-7]\), containing two infinite +planes each defined by 3 incident points +\(\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2\) and +\(\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2\) +respectively bearing colours (RGB) as +\(\mathbf{c}_a\) and \(\textbf{c}_b\) respectively. +\begin{align*} + \begin{bmatrix} + \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 + &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 + &\mathbf{c}_a&\mathbf{c}_b + \end{bmatrix}\equiv + &\begin{bmatrix} + 1&6&1&6&1&6&1&0 \\ + 1&3&6&6&3&1&0&0 \\ + -1&-6&-1&-1&-6&-1&0&1 + \end{bmatrix} +\end{align*} +Compute and/ or determine using the depth-buffer +method, the colour at pixel \(\mathbf{x}=(2,4)\) on +a display resolved into \(7\times7\) pixels. The +projection plane is at \(Z=0\), looking at +\(-Z\). \hfill [6 marks] +\end{enumerate} +\end{enumerate} + +\bvrhrule +\end{document} diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf Binary files differnew file mode 100644 index 00000000000..9f1ff2b6709 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex new file mode 100644 index 00000000000..4541405a81d --- /dev/null +++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex @@ -0,0 +1,180 @@ +\documentclass[11pt,a4paper,onecolumn]{tiet-question-paper} +\date{28 May 2024} +\institute{Alpha} +\instlogo{images/tiet-logo.pdf} +\schoolordepartment{% + Computer Science \& Engineering Department} +\examname{% + End Semester Examination} +\coursecode{UCS505} +\coursename{Computer Graphics} +\timeduration{3 hours} +\maxmarks{45} +\faculty{ANG,AMK,HPS,YDS,RGB} + +\begin{document} +\maketitle +\textbf{Instructions:} +\begin{enumerate} +\item Attempt any 5 questions; +\item Attempt all the subparts of a question at one + place. +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate} +\item + \begin{enumerate} + \item Given the control polygon + $\textbf{b}_0, \textbf{b}_1, \textbf{b}_2, + \textbf{b}_3$ of a Cubic Bezier curve; determine + the coordinates for parameter values + $\forall t\in T$. \hfill [7 marks] + + \begin{align*} + T \equiv + & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ + \begin{bmatrix} + \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 + \end{bmatrix} \equiv + & \begin{bmatrix} + 1&2&4&3\\ 1&3&3&1 + \end{bmatrix} + \end{align*} + \item Explain the role of convex hull in curves. + \hfill[2 marks] + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate}[resume] +\item + \begin{enumerate} + \item Describe the continuity conditions for + curvilinear geometry. + \hfill[5 marks] + \item Define formally, a B-Spline curve. \hfill [2 + marks] + \item How is a Bezier curve different from a B-Spline + curve? + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate}[resume] +\item + \begin{enumerate} + \item Given a triangle, with vertices defined by + column vectors of $P$; find its vertices after + reflection across XZ plane. \hfill [3 marks] + \begin{align*} + P\equiv + &\begin{bmatrix} + 3&6&5 \\ 4&4&6 \\ 1&2&3 + \end{bmatrix} + \end{align*} + \item Given a pyramid with vertices defined by the + column vectors of $P$, and an axis of rotation $A$ + with direction $\textbf{v}$ and passing through + $\textbf{p}$. Find the coordinates of the vertices + after rotation about $A$ by an angle of + $\theta=\pi/4$.\hfill [6 marks] + \begin{align*} + P\equiv + &\begin{bmatrix} + 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 + \end{bmatrix} \\ + \begin{bmatrix} + \mathbf{v} & \mathbf{p} + \end{bmatrix}\equiv + &\begin{bmatrix} + 0&0 \\1&1\\1&0 + \end{bmatrix} + \end{align*} + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate}[resume] +\item + \begin{enumerate} + \item Explain the two winding number rules for + inside outside tests. \hfill [4 marks] + \item Explain the working principle of a + CRT. \hfill [5 marks] + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate}[resume] +\item + \begin{enumerate} + \item Given a projection plane $P$ defined by normal + $\textbf{n}$ and a reference point $\textbf{a}$; + and the centre of projection as $\mathbf{p}_0$; + find the perspective projection of the point + $\textbf{x}$ on $P$. \hfill [5 marks] + \begin{align*} + \begin{bmatrix} + \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} + \end{bmatrix}\equiv + & + \begin{bmatrix} + 3&-1&1&8\\4&2&1&10\\5&-1&3&6 + \end{bmatrix} + \end{align*} + \item Given a geometry $G$, which is a standard unit + cube scaled uniformly by half and viewed through a + Cavelier projection bearing $\theta=\pi/4$ + wrt. $X$-axis. \hfill [2 marks] + \item Given a view coordinate system (VCS) with + origin at $\textbf{p}_v$ and euler angles ZYX + $\boldsymbol{\theta}$ wrt. world coordinate system + (WCS); find the location $\mathbf{x}_v$ in VCS, + corresponding to the point $\textbf{x}_w$ in + WCS. \hfill [2 marks] + \begin{align*} + \begin{bmatrix} + \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w + \end{bmatrix}\equiv + &\begin{bmatrix} + 5&\pi/3&10\\5&0&10\\0&0&0 + \end{bmatrix} + \end{align*} + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\begin{enumerate}[resume] +\item + \begin{enumerate} + \item Describe the visible surface detection + problem in about 25 words. \hfill [1 mark] + \item To render a scene with $N$ polygons into a + display with height $H$; what are the space and + time complexities respectively of a typical + image-space method. \hfill [2 marks] + \item Given a 3D space bounded within + $[0\quad0\quad0]$ and $[7\quad7\quad-7]$, + containing two infinite planes each defined by 3 + incident points + $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and + $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$ + respectively bearing colours (RGB) as + $\mathbf{c}_a$ and $\textbf{c}_b$ respectively. + \begin{align*} + \begin{bmatrix} + \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 + &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 + &\mathbf{c}_a&\mathbf{c}_b + \end{bmatrix}\equiv + &\begin{bmatrix} + 1&6&1&6&1&6&1&0 \\ + 1&3&6&6&3&1&0&0 \\ + -1&-6&-1&-1&-6&-1&0&1 + \end{bmatrix} + \end{align*} + + Compute and/ or determine using the depth-buffer + method, the colour at pixel $\mathbf{x}=(2,4)$ on + a display resolved into $7\times7$ pixels. The + projection plane is at $Z=0$, looking at + $-Z$. \hfill [6 marks] + \end{enumerate} +\end{enumerate} +\bvrhrule[0.4pt] +\end{document} |