summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2024-06-23 20:27:28 +0000
committerKarl Berry <karl@freefriends.org>2024-06-23 20:27:28 +0000
commit7bea8dfd6a579ecfb67fedf818df52e9e6b742c8 (patch)
tree1283a536077a82b84858aa233c65e9dca695cd07 /Master/texmf-dist/doc
parentbed9260423ec6b66d13da158775005b2822dfadc (diff)
tiet-question-paper (23jun24)
git-svn-id: svn://tug.org/texlive/trunk@71601 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE26
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/README.md151
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.pngbin0 -> 10575 bytes
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org182
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdfbin0 -> 27901 bytes
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex204
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdfbin0 -> 38647 bytes
-rw-r--r--Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex180
8 files changed, 743 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE b/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE
new file mode 100644
index 00000000000..df351f4f497
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/LICENSE
@@ -0,0 +1,26 @@
+The MIT License (MIT)
+Copyright (c) 2024 B.V. Raghav
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the ``Software''), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the
+following conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
+ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/README.md b/Master/texmf-dist/doc/latex/tiet-question-paper/README.md
new file mode 100644
index 00000000000..e03586d4fec
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/README.md
@@ -0,0 +1,151 @@
+# `tiet-question-paper.cls` #
+
+[Installation](#installation) |
+[Usage](#usage) |
+[Emacs Org Integration](#emacs-org-integration)
+
+Author: Raghav B. Venkataramaiyer
+Email: bv.raghav -at- thapar -dot- edu
+Email: bvraghav -at- gmail -dot- com
+License: [MIT License](./LICENSE)
+Version: 2024-06-22
+
+Provide a document class `tiet-question-paper` in order
+to create a question paper for [the Thapar
+Institute](https://thapar.edu/) in $\LaTeX$. Although
+created for the TIET, the module, however, is adaptable
+to any organisation.
+
+The following example is a screenshot from
+[`sample.pdf`](./sample.pdf), with the source at
+[`sample.tex`](./sample.tex)
+
+![](./images/sample.png)
+
+## Installation ##
+
+### CTAN ###
+
+TBA
+
+### From Source ###
+
+1. `tlmgr init-usertree`
+2. `kpsewhich -var-value=TEXMFHOME` should return
+ `~/texmf`
+3. `mkdir -p ~/texmf/tex/latex`
+4. `cd ~/texmf/tex/latex`
+5. `git clone
+ git@github.com:bvraghav/qptiet_latex-class tiet-question-paper`
+6. Verify that `kpsewhich tiet-question-paper.cls` finds `tiet-question-paper.cls`.
+
+## Usage ##
+
+### Document Class ###
+
+The document class is based on `article`. And all the
+options are passed forward as is.
+
+```latex
+\documentclass[11pt,onecolumn]{tiet-question-paper}
+```
+
+### Title Block ###
+
+Only the following macros contribute to the title block.
+
+```latex
+\date{28 May 2024}
+% \institute{Thapar Institute of Engineering \&
+% Technology} % Default value
+% \abbrevinst{\textsc{tiet}} % Reserved for future
+% \instaddress{Patiala 147004} % Reserved for future
+% \cohort{} % Reserved for future
+% \instlogo{images/tiet-logo.pdf} % Optional
+\schoolordepartment{Computer Science \& Engineering Department}
+\examname{End Semester Examination}
+\coursecode{UCS505}
+\coursename{Computer Graphics}
+\timeduration{3 hours}
+\maxmarks{45}
+\faculty{ANG,AMK,HPS,YDS,RGB}
+```
+
+### Geometry ###
+
+The class loads `geometry` package with following
+default options,
+
+```latex
+\RequirePackage[%
+ a4paper,%
+ left=1in,%
+ top=0.5in,%
+ right=0.75in,%
+ bottom=0.75in%
+]{geometry}
+```
+
+However, a user may reconfigure using `\geometry`
+command in [the
+preamble](https://duckduckgo.com/?q=what+is+a+preamble+in+latex+document)
+for example,
+
+```latex
+\geometry{letterpaper,bindingoffset=0.2in,
+ left=1.2in,right=1.2in,top=.8in,bottom=.8in,
+ footskip=.25in}
+```
+
+### Rules ###
+
+```latex
+\bvrhrule
+\bvrhrule[2pt]
+```
+Create a horizontal rule with length equal to line
+width and thickness `0.4pt` by default. Optional
+argument specifies line thickness. Here’s the
+implementation detail,
+
+```latex
+\DeclareRobustCommand%
+% Horizontal rule after each question
+\bvrhrule[1][0.4pt]{\rule{\linewidth}{#1}}
+```
+
+### Line Skip ###
+
+```latex
+\bvrskipline
+\bvrskipline[1.2]
+```
+
+Create vertical blank space with height specified as a
+factor of `\baselineskip`. Optional argument specifies
+the factor, `1.0` by default. Here’s the
+implementation detail,
+
+```latex
+\DeclareRobustCommand%
+% Skip line
+\bvrskipline[1][]{\vspace{#1\baselineskip}}
+```
+
+## Emacs Org Integration ##
+Add the following to [the
+init-file](https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html)
+```elisp
+(add-to-list 'org-latex-classes
+ `("tiet-question-paper" "\\documentclass{tiet-question-paper}
+[NO-DEFAULT-PACKAGES]
+\\usepackage{amsmath}
+\\usepackage{graphicx}
+\\usepackage{wrapfig}
+\\usepackage{amssymb}
+\\usepackage[unicode]{hyperref}
+" nil))
+```
+
+Here’s a [`sample-org`](./sample-org.org) file; that
+produces a [`PDF`](./sample-org.pdf)
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png b/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png
new file mode 100644
index 00000000000..332ad33af10
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/images/sample.png
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
new file mode 100644
index 00000000000..50b55b4275a
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
@@ -0,0 +1,182 @@
+#+date: \today
+
+#+latex_class: tiet-question-paper
+#+latex_class_options: [11pt]
+#+options: num:nil toc:nil author:nil email:nil
+
+#+latex_header_extra: \hypersetup{%
+#+latex_header_extra: colorlinks,%
+#+latex_header_extra: breaklinks,%
+#+latex_header_extra: urlcolor=[rgb]{0,0.35,0.65},%
+#+latex_header_extra: linkcolor=[rgb]{0,0.35,0.65}%
+#+latex_header_extra: }
+
+#+latex_header_extra: \usepackage{libertinus}
+
+#+latex_header_extra: \instlogo{images/tiet-logo.pdf}
+#+latex_header_extra: \schoolordepartment{%
+#+latex_header_extra: Computer Science \& Engineering Department}
+#+latex_header_extra: \examname{End Semester Examination}
+#+latex_header_extra: \coursecode{UCS505}
+#+latex_header_extra: \coursename{Computer Graphics}
+#+latex_header_extra: \timeduration{3 hours}
+#+latex_header_extra: \maxmarks{45}
+#+latex_header_extra: \faculty{ANG,AMK,HPS,YDS,RGB}
+
+#+latex: \maketitle
+
+*Instructions:*
+1. Attempt any 5 questions;
+2. Attempt all the subparts of a question at one place.
+
+#+latex: \bvrhrule\bvrskipline
+
+1.
+ 1. Given the control polygon $\textbf{b}_0,
+ \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a
+ Cubic Bezier curve; determine the vertex
+ coordinates for parameter values $\forall t\in
+ T$. \hfill [7 marks]
+ \begin{align*}
+ T \equiv
+ & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\
+ \begin{bmatrix}
+ \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3
+ \end{bmatrix} \equiv& \begin{bmatrix}
+ 1&2&4&3\\ 1&3&3&1
+ \end{bmatrix}
+ \end{align*}
+
+ 2. Explain the role of convex hull in curves.
+ \hfill[2 marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Describe the continuity conditions for
+ curvilinear geometry. \hfill[5 marks]
+ 2. Define formally, a B-Spline curve. \hfill [2
+ marks]
+ 3. How is a Bezier curve different from a B-Spline
+ curve? \hfill [2 marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Given a triangle, with vertices defined by column
+ vectors of $P$; find its vertices after
+ reflection across XZ plane. \hfill [3 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 3&6&5 \\ 4&4&6 \\ 1&2&3
+ \end{bmatrix}
+ \end{align*}
+ 2. Given a pyramid with vertices defined by the
+ column vectors of $P$, and an axis of rotation
+ $A$ with direction $\textbf{v}$ and passing
+ through $\textbf{p}$. Find the coordinates of
+ the vertices after rotation about $A$ by an angle
+ of $\theta=\pi/4$.\hfill [6 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1
+ \end{bmatrix} \\
+ \begin{bmatrix}
+ \mathbf{v} & \mathbf{p}
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 0&0 \\1&1\\1&0
+ \end{bmatrix}
+ \end{align*}
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Explain the two winding number rules for inside
+ outside tests. \hfill [4 marks]
+ 2. Explain the working principle of a CRT. \hfill [5
+ marks]
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Given a projection plane $P$ defined by normal
+ $\textbf{n}$ and a reference point $\textbf{a}$;
+ and the centre of projection as $\mathbf{p}_0$;
+ find the perspective projection of the point
+ $\textbf{x}$ on $P$. \hfill [5 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x}
+ \end{bmatrix}\equiv
+ &
+ \begin{bmatrix}
+ 3&-1&1&8\\4&2&1&10\\5&-1&3&6
+ \end{bmatrix}
+ \end{align*}
+ 2. Given a geometry $G$, which is a standard unit
+ cube scaled uniformly by half and viewed through
+ a Cavelier projection bearing $\theta=\pi/4$
+ wrt. $X$ axis. \hfill [2 marks]
+ 3. Given a view coordinate system (VCS) with origin
+ at $\textbf{p}_v$ and euler angles ZYX as
+ $\boldsymbol{\theta}$ wrt. the world coordinate
+ system (WCS); find the location $\mathbf{x}_v$ in
+ VCS, corresponding to $\textbf{x}_w$ in
+ WCS. \hfill [2 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 5&\pi/3&10\\5&0&10\\0&0&0
+ \end{bmatrix}
+ \end{align*}
+
+#+latex: \bvrhrule
+
+#+ATTR_LATEX: :options [resume]
+1.
+ 1. Describe the visible surface detection problem in
+ about 25 words. \hfill [1 mark]
+ 2. To render a scene with $N$ polygons into a
+ display with height $H$; what are the space and
+ time complexities respectively of a typical
+ image-space method. \hfill [2 marks]
+ 3. Given a 3D space bounded within $[0\quad0\quad0]$
+ and $[7\quad7\quad-7]$, containing two infinite
+ planes each defined by 3 incident points
+ $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and
+ $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$
+ respectively bearing colours (RGB) as
+ $\mathbf{c}_a$ and $\textbf{c}_b$ respectively.
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2
+ &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2
+ &\mathbf{c}_a&\mathbf{c}_b
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 1&6&1&6&1&6&1&0 \\
+ 1&3&6&6&3&1&0&0 \\
+ -1&-6&-1&-1&-6&-1&0&1
+ \end{bmatrix}
+ \end{align*}
+ Compute and/ or determine using the depth-buffer
+ method, the colour at pixel $\mathbf{x}=(2,4)$ on
+ a display resolved into $7\times7$ pixels. The
+ projection plane is at $Z=0$, looking at
+ $-Z$. \hfill [6 marks]
+
+#+latex: \bvrhrule
+
+
+# Local Variables:
+# org-latex-default-packages-alist: nil
+# org-latex-packages-alist: nil
+# End:
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf
new file mode 100644
index 00000000000..bd60bf62e65
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex
new file mode 100644
index 00000000000..54c7290a679
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.tex
@@ -0,0 +1,204 @@
+% Created 2024-06-22 Sat 22:57
+% Intended LaTeX compiler: pdflatex
+\documentclass[11pt]{tiet-question-paper}
+\usepackage{amsmath}
+\usepackage{graphicx}
+\usepackage{wrapfig}
+\usepackage{amssymb}
+\usepackage[unicode]{hyperref}
+
+
+\hypersetup{%
+colorlinks,%
+breaklinks,%
+urlcolor=[rgb]{0,0.35,0.65},%
+linkcolor=[rgb]{0,0.35,0.65}%
+}
+\usepackage{libertinus}
+\instlogo{images/tiet-logo.pdf}
+\schoolordepartment{%
+Computer Science \& Engineering Department}
+\examname{End Semester Examination}
+\coursecode{UCS505}
+\coursename{Computer Graphics}
+\timeduration{3 hours}
+\maxmarks{45}
+\faculty{ANG,AMK,HPS,YDS,RGB}
+\date{\today}
+\title{}
+\hypersetup{
+ pdfauthor={B.V. Raghav},
+ pdftitle={},
+ pdfkeywords={},
+ pdfsubject={},
+ pdfcreator={Emacs 29.3 (Org mode 9.6.15)},
+ pdflang={English}}
+\begin{document}
+
+\maketitle
+
+\textbf{Instructions:}
+\begin{enumerate}
+\item Attempt any 5 questions;
+\item Attempt all the subparts of a question at one place.
+\end{enumerate}
+
+\bvrhrule\bvrskipline
+
+\begin{enumerate}
+\item \begin{enumerate}
+\item Given the control polygon \(\textbf{b}_0,
+ \textbf{b}_1, \textbf{b}_2, \textbf{b}_3\) of a
+Cubic Bezier curve; determine the vertex
+coordinates for parameter values \(\forall t\in
+ T\). \hfill [7 marks]
+\begin{align*}
+ T \equiv
+ & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\
+ \begin{bmatrix}
+ \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3
+ \end{bmatrix} \equiv& \begin{bmatrix}
+ 1&2&4&3\\ 1&3&3&1
+ \end{bmatrix}
+\end{align*}
+
+\item Explain the role of convex hull in curves.
+\hfill[2 marks]
+\end{enumerate}
+\end{enumerate}
+
+\bvrhrule
+
+\begin{enumerate}[resume]
+\item \begin{enumerate}
+\item Describe the continuity conditions for
+curvilinear geometry. \hfill[5 marks]
+\item Define formally, a B-Spline curve. \hfill [2
+marks]
+\item How is a Bezier curve different from a B-Spline
+curve? \hfill [2 marks]
+\end{enumerate}
+\end{enumerate}
+
+\bvrhrule
+
+\begin{enumerate}[resume]
+\item \begin{enumerate}
+\item Given a triangle, with vertices defined by column
+vectors of \(P\); find its vertices after
+reflection across XZ plane. \hfill [3 marks]
+\begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 3&6&5 \\ 4&4&6 \\ 1&2&3
+ \end{bmatrix}
+\end{align*}
+\item Given a pyramid with vertices defined by the
+column vectors of \(P\), and an axis of rotation
+\(A\) with direction \(\textbf{v}\) and passing
+through \(\textbf{p}\). Find the coordinates of
+the vertices after rotation about \(A\) by an angle
+of \(\theta=\pi/4\).\hfill [6 marks]
+\begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1
+ \end{bmatrix} \\
+ \begin{bmatrix}
+ \mathbf{v} & \mathbf{p}
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 0&0 \\1&1\\1&0
+ \end{bmatrix}
+\end{align*}
+\end{enumerate}
+\end{enumerate}
+\bvrhrule
+
+\begin{enumerate}[resume]
+\item \begin{enumerate}
+\item Explain the two winding number rules for inside
+outside tests. \hfill [4 marks]
+\item Explain the working principle of a CRT. \hfill [5
+marks]
+\end{enumerate}
+\end{enumerate}
+
+\bvrhrule
+
+\begin{enumerate}[resume]
+\item \begin{enumerate}
+\item Given a projection plane \(P\) defined by normal
+\(\textbf{n}\) and a reference point \(\textbf{a}\);
+and the centre of projection as \(\mathbf{p}_0\);
+find the perspective projection of the point
+\(\textbf{x}\) on \(P\). \hfill [5 marks]
+\begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x}
+ \end{bmatrix}\equiv
+ &
+ \begin{bmatrix}
+ 3&-1&1&8\\4&2&1&10\\5&-1&3&6
+ \end{bmatrix}
+\end{align*}
+\item Given a geometry \(G\), which is a standard unit
+cube scaled uniformly by half and viewed through
+a Cavelier projection bearing \(\theta=\pi/4\)
+wrt. \(X\) axis. \hfill [2 marks]
+\item Given a view coordinate system (VCS) with origin
+at \(\textbf{p}_v\) and euler angles ZYX as
+\(\boldsymbol{\theta}\) wrt. the world coordinate
+system (WCS); find the location \(\mathbf{x}_v\) in
+VCS, corresponding to \(\textbf{x}_w\) in
+WCS. \hfill [2 marks]
+\begin{align*}
+ \begin{bmatrix}
+ \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 5&\pi/3&10\\5&0&10\\0&0&0
+ \end{bmatrix}
+\end{align*}
+\end{enumerate}
+\end{enumerate}
+
+\bvrhrule
+
+\begin{enumerate}[resume]
+\item \begin{enumerate}
+\item Describe the visible surface detection problem in
+about 25 words. \hfill [1 mark]
+\item To render a scene with \(N\) polygons into a
+display with height \(H\); what are the space and
+time complexities respectively of a typical
+image-space method. \hfill [2 marks]
+\item Given a 3D space bounded within \([0\quad0\quad0]\)
+and \([7\quad7\quad-7]\), containing two infinite
+planes each defined by 3 incident points
+\(\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2\) and
+\(\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2\)
+respectively bearing colours (RGB) as
+\(\mathbf{c}_a\) and \(\textbf{c}_b\) respectively.
+\begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2
+ &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2
+ &\mathbf{c}_a&\mathbf{c}_b
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 1&6&1&6&1&6&1&0 \\
+ 1&3&6&6&3&1&0&0 \\
+ -1&-6&-1&-1&-6&-1&0&1
+ \end{bmatrix}
+\end{align*}
+Compute and/ or determine using the depth-buffer
+method, the colour at pixel \(\mathbf{x}=(2,4)\) on
+a display resolved into \(7\times7\) pixels. The
+projection plane is at \(Z=0\), looking at
+\(-Z\). \hfill [6 marks]
+\end{enumerate}
+\end{enumerate}
+
+\bvrhrule
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf
new file mode 100644
index 00000000000..9f1ff2b6709
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex
new file mode 100644
index 00000000000..4541405a81d
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample.tex
@@ -0,0 +1,180 @@
+\documentclass[11pt,a4paper,onecolumn]{tiet-question-paper}
+\date{28 May 2024}
+\institute{Alpha}
+\instlogo{images/tiet-logo.pdf}
+\schoolordepartment{%
+ Computer Science \& Engineering Department}
+\examname{%
+ End Semester Examination}
+\coursecode{UCS505}
+\coursename{Computer Graphics}
+\timeduration{3 hours}
+\maxmarks{45}
+\faculty{ANG,AMK,HPS,YDS,RGB}
+
+\begin{document}
+\maketitle
+\textbf{Instructions:}
+\begin{enumerate}
+\item Attempt any 5 questions;
+\item Attempt all the subparts of a question at one
+ place.
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}
+\item
+ \begin{enumerate}
+ \item Given the control polygon
+ $\textbf{b}_0, \textbf{b}_1, \textbf{b}_2,
+ \textbf{b}_3$ of a Cubic Bezier curve; determine
+ the coordinates for parameter values
+ $\forall t\in T$. \hfill [7 marks]
+
+ \begin{align*}
+ T \equiv
+ & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\
+ \begin{bmatrix}
+ \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3
+ \end{bmatrix} \equiv
+ & \begin{bmatrix}
+ 1&2&4&3\\ 1&3&3&1
+ \end{bmatrix}
+ \end{align*}
+ \item Explain the role of convex hull in curves.
+ \hfill[2 marks]
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}[resume]
+\item
+ \begin{enumerate}
+ \item Describe the continuity conditions for
+ curvilinear geometry.
+ \hfill[5 marks]
+ \item Define formally, a B-Spline curve. \hfill [2
+ marks]
+ \item How is a Bezier curve different from a B-Spline
+ curve?
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}[resume]
+\item
+ \begin{enumerate}
+ \item Given a triangle, with vertices defined by
+ column vectors of $P$; find its vertices after
+ reflection across XZ plane. \hfill [3 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 3&6&5 \\ 4&4&6 \\ 1&2&3
+ \end{bmatrix}
+ \end{align*}
+ \item Given a pyramid with vertices defined by the
+ column vectors of $P$, and an axis of rotation $A$
+ with direction $\textbf{v}$ and passing through
+ $\textbf{p}$. Find the coordinates of the vertices
+ after rotation about $A$ by an angle of
+ $\theta=\pi/4$.\hfill [6 marks]
+ \begin{align*}
+ P\equiv
+ &\begin{bmatrix}
+ 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1
+ \end{bmatrix} \\
+ \begin{bmatrix}
+ \mathbf{v} & \mathbf{p}
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 0&0 \\1&1\\1&0
+ \end{bmatrix}
+ \end{align*}
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}[resume]
+\item
+ \begin{enumerate}
+ \item Explain the two winding number rules for
+ inside outside tests. \hfill [4 marks]
+ \item Explain the working principle of a
+ CRT. \hfill [5 marks]
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}[resume]
+\item
+ \begin{enumerate}
+ \item Given a projection plane $P$ defined by normal
+ $\textbf{n}$ and a reference point $\textbf{a}$;
+ and the centre of projection as $\mathbf{p}_0$;
+ find the perspective projection of the point
+ $\textbf{x}$ on $P$. \hfill [5 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x}
+ \end{bmatrix}\equiv
+ &
+ \begin{bmatrix}
+ 3&-1&1&8\\4&2&1&10\\5&-1&3&6
+ \end{bmatrix}
+ \end{align*}
+ \item Given a geometry $G$, which is a standard unit
+ cube scaled uniformly by half and viewed through a
+ Cavelier projection bearing $\theta=\pi/4$
+ wrt. $X$-axis. \hfill [2 marks]
+ \item Given a view coordinate system (VCS) with
+ origin at $\textbf{p}_v$ and euler angles ZYX
+ $\boldsymbol{\theta}$ wrt. world coordinate system
+ (WCS); find the location $\mathbf{x}_v$ in VCS,
+ corresponding to the point $\textbf{x}_w$ in
+ WCS. \hfill [2 marks]
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 5&\pi/3&10\\5&0&10\\0&0&0
+ \end{bmatrix}
+ \end{align*}
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\begin{enumerate}[resume]
+\item
+ \begin{enumerate}
+ \item Describe the visible surface detection
+ problem in about 25 words. \hfill [1 mark]
+ \item To render a scene with $N$ polygons into a
+ display with height $H$; what are the space and
+ time complexities respectively of a typical
+ image-space method. \hfill [2 marks]
+ \item Given a 3D space bounded within
+ $[0\quad0\quad0]$ and $[7\quad7\quad-7]$,
+ containing two infinite planes each defined by 3
+ incident points
+ $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and
+ $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$
+ respectively bearing colours (RGB) as
+ $\mathbf{c}_a$ and $\textbf{c}_b$ respectively.
+ \begin{align*}
+ \begin{bmatrix}
+ \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2
+ &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2
+ &\mathbf{c}_a&\mathbf{c}_b
+ \end{bmatrix}\equiv
+ &\begin{bmatrix}
+ 1&6&1&6&1&6&1&0 \\
+ 1&3&6&6&3&1&0&0 \\
+ -1&-6&-1&-1&-6&-1&0&1
+ \end{bmatrix}
+ \end{align*}
+
+ Compute and/ or determine using the depth-buffer
+ method, the colour at pixel $\mathbf{x}=(2,4)$ on
+ a display resolved into $7\times7$ pixels. The
+ projection plane is at $Z=0$, looking at
+ $-Z$. \hfill [6 marks]
+ \end{enumerate}
+\end{enumerate}
+\bvrhrule[0.4pt]
+\end{document}