summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2010-01-17 23:44:23 +0000
committerKarl Berry <karl@freefriends.org>2010-01-17 23:44:23 +0000
commit1f5d5aecc9a0afaf88d196f4957d29cad92603b3 (patch)
tree057f71fd3d064b89ff6b81356a9bc4372887fda9 /Master/texmf-dist/doc
parent9b502b8cb4a1074839fecf97df4bec87473f357b (diff)
new font package txfontsb 1.00 (17jan10)
git-svn-id: svn://tug.org/texlive/trunk@16763 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/fonts/txfontsb/README7
-rw-r--r--Master/texmf-dist/doc/fonts/txfontsb/txfontsb.pdfbin0 -> 71695 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/txfontsb/txfontsb.tex300
3 files changed, 307 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/txfontsb/README b/Master/texmf-dist/doc/fonts/txfontsb/README
new file mode 100644
index 00000000000..a13ee540993
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/txfontsb/README
@@ -0,0 +1,7 @@
+Initial release (v1.0/20/Dec/2009) of txfontsb package adding true small caps
+and greek to txfonts package.
+
+Go to the doc sudirectory for instructions.
+
+A. Tsolomitis.
+
diff --git a/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.pdf b/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.pdf
new file mode 100644
index 00000000000..b2cac9e7e03
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.tex b/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.tex
new file mode 100644
index 00000000000..6765a936fe0
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/txfontsb/txfontsb.tex
@@ -0,0 +1,300 @@
+\documentclass{article}
+\usepackage[polutonikogreek,english]{babel}
+\usepackage[iso-8859-7]{inputenc}
+\usepackage{txfontsb}
+\newcommand{\uishape}{\relax}
+\newcommand{\tabnums}{\relax}
+\newcommand{\textfrac}[2]{\ensuremath\frac{#1}{#2}}
+
+%%%%% Theorems and friends
+\newtheorem{theorem}{Θεώρημα}[section]
+\newtheorem{lemma}[theorem]{Λήμμα}
+\newtheorem{proposition}[theorem]{Πρόταση}
+\newtheorem{corollary}[theorem]{Πόρισμα}
+\newtheorem{definition}[theorem]{Ορισμός}
+\newtheorem{remark}[theorem]{Παρατήρηση}
+\newtheorem{axiom}[theorem]{Αξίωμα}
+\newtheorem{exercise}[theorem]{Άσκηση}
+
+
+%%%%% Environment ``proof''
+\newenvironment{proof}[1]{{\textit{Απόδειξη:}}}{\ \hfill$\Box$}
+\newenvironment{hint}[1]{{\textit{Υπόδειξη:}}}{\ \hfill$\Box$}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\title{The \textsc{txfontsb} package}
+\author{Antonis Tsolomitis\\
+Laboratory of Digital Typography\\ and Mathematical Applications\\
+Department of Mathematics\\
+University of the Aegean}
+\date {\textsc{20} December \textsc{2009}}
+
+
+\begin{document}
+\maketitle
+
+\section{Introduction}
+
+
+The txfontsb package is an extension of the txfonts package.
+Mainly it adds two things:
+\begin{itemize}
+\item true small caps and old style numbers for the OT1 encoding
+ (through the \verb|\textsc| and \verb|\scshape| commands), and an
+ oblique small caps shape (through the \verb|\textscsl| and
+ \verb|\scslshape| commands).
+\item Greek support (LGR encoding) supporting monotonic and polytonic
+ systems through the Babel package. This also includes true small
+ caps for the Greek letters.
+\end{itemize}
+
+The greek shapes are based on the Free Font of \textsc{gnu}. However
+since Babel composes the Greek accented characters using the ligature
+mechanism, we had to modify the original GNU fonts, and this is the
+reason that they have been renamed as FreeSerifb (instead of FreeSerif).
+
+Moreover, kerning information has been added for Greek letters that was
+missing from the original FreeSerif font.
+
+The fonts are loaded with
+
+\verb|\usepackage{txfontsb}|.
+
+The package has two one option:
+\begin{itemize}
+\item the option \verb|Upsionalt| uses an
+alternative shape for the Greek capital and small capital Upsilon.
+\end{itemize}
+
+
+\newcommand{\textscy}[1]{{\fontfamily{txryc}\fontshape{sc}\selectfont#1}}
+\font\Ualt gtimesysc6a at 10 pt
+\greektext
+\begin{center}
+\begin{tabular}{c|cccc}
+\ &\textlatin{Kerned (default)} & \textlatin{Unkerned}
+&\textlatin{Kerned SC (default)} & \textlatin{Unkerned}\\\hline
+\ &\ &\ &\ &\ \\[-2ex]
+\textlatin{Default Upsilon} &ΑΫΛΟΣ &Α{Ϋ}ΛΟΣ &\textsc{Αϋλος} &\textsc{Α{ϋ}λος}\\
+\textlatin{Upsilonalt} &{\Ualt ΑΫΛΟΣ} &{\Ualt Α{Ϋ}ΛΟΣ} &\textscy{Αϋλος} &\textscy{Α{ϋ}λος}\\
+\end{tabular}
+\end{center}
+\latintext
+
+
+
+
+
+\section{Installation}
+
+Copy the contents of the subdirectory afm in
+texmf/fonts/afm/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory doc in
+texmf/doc/latex/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory enc in
+texmf/fonts/enc/dvips/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory map in
+texmf/fonts/map/dvips/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory tex in
+texmf/tex/latex/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory tfm in
+texmf/fonts/tfm/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory type1 in
+texmf/fonts/type1/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent Copy the contents of the subdirectory vf in
+texmf/fonts/vf/GNU/FreeFont/FreeSerifb/
+
+\medskip
+
+\noindent In your installations updmap.cfg file add the line
+
+\medskip
+
+\noindent Map gptimes.map
+
+\medskip
+
+Refresh your filename database and the map file database (for example, on Unix systems
+run mktexlsr and then run the updmap script as root).
+
+You are now ready to use the fonts provided that you have a relatively
+modern installation that includes txfonts.
+
+\section{Usage}
+
+As said in the introduction the package covers both english (txfonts) and
+greek. Greek covers polytonic too, through babel (read the
+documentation
+of the babel package and its greek option).
+
+For example, the preample
+
+\begin{verbatim}
+\documentclass{article}
+\usepackage[english,greek]{babel}
+\usepackage[iso-8859-7]{inputenc}
+\usepackage{txfontsb}
+\end{verbatim}
+
+will be the correct setup for articles in Greek.
+
+\bigskip
+
+\section{Old style numbers}
+
+Old style numbers are accesed with the \verb|\textsc| command:
+
+\medskip
+
+\noindent The command \verb|\textsc{0123456789}| gives \textsc{0123456789}.
+
+\section{Samples}
+
+The next two pages provide samples in english (just txfonts) and greek with math.
+
+
+\newpage
+
+Adding up these inequalities with respect to $i$, we get
+\begin{equation} \sum c_i d_i \leq \frac1{p} +\frac1{q} =1\label{10}\end{equation}
+since $\sum c_i^p =\sum d_i^q =1$.\hfill$\Box$
+
+In the case $p=q=2$
+the above inequality is also called the
+\textit{Cauchy-Schwartz inequality}.
+
+Notice, also, that by formally defining $\left( \sum |b_k|^q\right)^{1/q}$ to be
+$\sup |b_k|$ for $q=\infty$, we give sense to (9) for all
+$1\leq p\leq\infty$.
+
+
+A similar inequality is true for functions instead of sequences with the sums
+being substituted by integrals.
+
+\medskip
+
+\textbf{Theorem} {\itshape Let $1<p<\infty$ and let $q$ be such that $1/p +1/q =1$. Then,
+for all functions $f,g$ on an interval $[a,b]$
+such that the integrals $\int_a^b |f(t)|^p\,dt$, $\int_a^b |g(t)|^q\,dt$ and
+$\int_a^b |f(t)g(t)|\,dt$ exist \textup{(}as Riemann integrals\textup{)},
+we have
+\begin{equation}
+\int_a^b |f(t)g(t)|\,dt\leq
+\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
+\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
+\end{equation}
+}
+
+Notice that if the Riemann integral $\int_a^b f(t)g(t)\,dt$ also exists, then
+from the inequality $\left|\int_a^b f(t)g(t)\,dt\right|\leq
+\int_a^b |f(t)g(t)|\,dt$ follows that
+\begin{equation}
+\left|\int_a^b f(t)g(t)\,dt\right|\leq
+\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
+\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
+\end{equation}
+
+
+
+\textit{Proof:} Consider a partition of the interval $[a,b]$ in $n$ equal
+subintervals with endpoints
+$a=x_0<x_1<\cdots<x_n=b$. Let $\Delta x=(b-a)/n$.
+We have
+\begin{eqnarray}
+\sum_{i=1}^n |f(x_i)g(x_i)|\Delta x &\leq&
+\sum_{i=1}^n |f(x_i)g(x_i)|(\Delta x)^{\frac1{p}+\frac1{q}}\nonumber\\
+&=&\sum_{i=1}^n \left(|f(x_i)|^p \Delta x\right)^{1/p} \left(|g(x_i)|^q
+\Delta x\right)^{1/q}.\label{functionalHolder1}\\ \nonumber
+\end{eqnarray}
+
+\newpage\greektext
+
+
+% $\bullet$ Μήκος τόξου καμπύλης
+
+% \begin{proposition}\label{chap2:sec1:prop 23}
+% Έστω $\gamma$ καμπύλη με παραμετρική εξίσωση $x=g(t)$, $y=f(t)$,
+% $t\in [a,\,b]$ αν $g'$, $f'$ συνεχείς στο $[a,\,b]$ τότε η
+% $\gamma$ έχει μήκος $S=L(\gamma)=\int_a^b \sqrt{g'(t)^2+f'(t)^2}
+% dt$.
+% \end{proposition}
+
+\textbullet\ Εμβαδόν επιφάνειας από περιστροφή\\
+
+\begin{proposition}\label{chap2:sec1:prop23-2}
+Έστω $\gamma$ καμπύλη με παραμετρική εξίσωση $x=g(t)$, $y=f(t)$,
+$t\in [a,\,b]$ αν $g'$, $f'$ συνεχείς στο $[a,\,b]$ τότε το
+εμβαδόν από περιστροφή της $\gamma$ γύρω από τον $xx'$ δίνεται \\
+$Β=2\pi\int_a^b |f(t)| \sqrt{g'(t)^2+f^{\prime}(t^2)} dt$. \\ Αν η
+$\gamma$ δίνεται από την $y=f(x)$, $x\in [a,\,b]$ τότε
+$Β=2\pi\int_a^b |f(t)| \sqrt{1+f'(x)^2} dx$
+\end{proposition}
+
+\textbullet\ Όγκος στερεών από περιστροφή\\ Έστω $f :
+[a,\,b]\rightarrow \mathbb{R}$ συνεχής και $R=\{f, Ox,x=a,x=b\}$
+είναι ο όγκος από περιστροφή του γραφήματος της $f$ γύρω από τον
+$Ox$ μεταξύ των ευθειών $x=a$, και $x=b$, τότε $V=\pi\int_a^b f
+(x)^2 dx$
+
+\textbullet\ Αν $f,g : [a,\,b]\rightarrow \mathbb{R}$ και $0\leq
+g(x)\leq f(x)$ τότε ο όγκος στερεού που παράγεται από περιστροφή
+των γραφημάτων των $f$ και $g$, $R=\{f,g, Ox,x=a,x=b\}$ είναι \\
+$V=\pi\int_a^b\{ f (x)^2-g(x)^2\} dx$.
+
+\textbullet\ Αν $x=g(t)$, $y=f(t)$, $t=[t_1,\,t_2]$ τότε
+$V=\pi\int_{t_1}^{t_2}\{ f (t)^2 g'(t)\} dt$ για $g(t_1)=a$,
+$g(t_2)=b$.
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Ασκήσεις}\label{chap2:sec2}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{exercise}\label{chap2:ex1}
+Να εκφραστεί το παρακάτω όριο ως ολοκλήρωμα $Riemann$ κατάλ\-ληλης
+συνάρτησης\\
+$$\lim_{n\rightarrow\infty} \frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} $$
+\end{exercise}
+%%%%%%%%%
+\textit{Υπόδειξη:}
+Πρέπει να σκεφτούμε μια συνάρτηση της οποίας γνωρίζουμε ότι υπάρχει το ολοκλήρωμα.
+ Τότε παίρνουμε μια διαμέριση $P_n$ και δείχνουμε π.χ.\ ότι το $U(f,P_n)$ είναι η ζητούμενη σειρά.
+
+\bigskip
+
+%%%%%%%%%%%%%%
+\textit{Λύση:}
+Έχουμε ότι
+\begin{eqnarray}\frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} =
+\frac{1}{n}\sqrt[n]{e}+\frac{1}{n}\sqrt[n]{e^2}+\cdots +
+\frac{1}{n}\sqrt[n]{e^n}\nonumber\\
+=\frac{1}{n}e^{\frac{1}{n}}+\frac{1}{n}e^{\frac{2}{n}}+\cdots+\frac{1}{n}e^{\frac{n}{n}}\nonumber
+\end{eqnarray}
+
+\end{document}
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End: