summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/metapost
diff options
context:
space:
mode:
authorNorbert Preining <preining@logic.at>2007-11-27 15:41:48 +0000
committerNorbert Preining <preining@logic.at>2007-11-27 15:41:48 +0000
commit959a2cbbbf85d2247595d38365fcc26b6056c5f7 (patch)
tree01bb086c86e944e4212268937352d1c7f1ea3df4 /Master/texmf-dist/doc/metapost
parent662990e06c128ef614f35ce9426ffebe94d99c04 (diff)
new metapost package bpolynomial
git-svn-id: svn://tug.org/texlive/trunk@5626 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/metapost')
-rw-r--r--Master/texmf-dist/doc/metapost/bpolynomial/CHANGES15
-rw-r--r--Master/texmf-dist/doc/metapost/bpolynomial/README37
-rw-r--r--Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.pdfbin0 -> 467193 bytes
-rw-r--r--Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.tex317
-rw-r--r--Master/texmf-dist/doc/metapost/bpolynomial/examples.mp73
5 files changed, 442 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/metapost/bpolynomial/CHANGES b/Master/texmf-dist/doc/metapost/bpolynomial/CHANGES
new file mode 100644
index 00000000000..892c2cb32f6
--- /dev/null
+++ b/Master/texmf-dist/doc/metapost/bpolynomial/CHANGES
@@ -0,0 +1,15 @@
+Version 0.3 released on 2007-11-26:
+* Changed:
+ + Improved documentation.
+ + Slightly improved numeric stability.
+
+
+Version 0.2 pre-released on 2007-11-25:
+* Added:
+ + Added documentation.
+* Changed:
+ + New user-interface.
+
+
+Version 0.1 of 2007-11-24:
+* First working version.
diff --git a/Master/texmf-dist/doc/metapost/bpolynomial/README b/Master/texmf-dist/doc/metapost/bpolynomial/README
new file mode 100644
index 00000000000..adbaaf3d9f5
--- /dev/null
+++ b/Master/texmf-dist/doc/metapost/bpolynomial/README
@@ -0,0 +1,37 @@
+% This material is subject to the LaTeX Project Public License. See
+% http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
+% for the details of that license.
+
+package: bpolynomial v0.3 2007/11/26
+author: Stephan Hennig (stephanhennig@arcor.de)
+
+
+Description
+-----------
+The MetaPost package bpolynomial.mp helps drawing polynomial functions
+of up to degree three. It provides macros to calculate Bézier curves
+exactly matching a given constant, linear, quadratic or cubic polynomial.
+
+
+Installation
+------------
+To install the package put the files into the following
+directories in a local texmf tree and update the file
+name data base.
+
+<localtexmftree>/doc/metapost/bpolynomial:
+ bpolynomial.pdf
+ bpolynomial.tex
+ examples.mp
+
+<localtexmftree>/metapost/bpolynomial:
+ bpolynomial.mp
+
+
+Usage Notes
+-----------
+See file bpolynomial.pdf.
+
+
+Happy TeXing!
+Stephan Hennig
diff --git a/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.pdf b/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.pdf
new file mode 100644
index 00000000000..7c9badf177d
--- /dev/null
+++ b/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.tex b/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.tex
new file mode 100644
index 00000000000..02acf9e0402
--- /dev/null
+++ b/Master/texmf-dist/doc/metapost/bpolynomial/bpolynomial.tex
@@ -0,0 +1,317 @@
+%%% bpolynomial.tex
+%%% Copyright 2007 Stephan Hennig <stephanhennig@arcor.de>
+%
+% This work may be distributed and/or modified under the conditions of
+% the LaTeX Project Public License, either version 1.3 of this license
+% or (at your option) any later version. The latest version of this
+% license is in http://www.latex-project.org/lppl.txt
+%
+\RequirePackage[resetfonts]{cmap}
+\documentclass{article}
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\newcommand*{\cmd}[1]{\texttt{#1}}
+\newcommand*{\pkg}{\cmd{bpolynomial.mp}}
+\newcommand{\user}[1]{\emph{#1}}
+\newcommand*{\B}{B\'ezier}
+\usepackage{xcolor}
+\colorlet{framecol}{black!50}
+\usepackage{listings}
+\lstloadlanguages{MetaPost,[LaTeX]TeX}
+\lstset{language=MetaPost, basicstyle=\small\ttfamily, keywordstyle={}, commentstyle={}, columns=flexible, showspaces=false, showstringspaces=false, frame=single, rulecolor=\color{framecol}, aboveskip=2ex, belowskip=2ex, framesep=2ex, xleftmargin=2ex, xrightmargin=2ex}
+\lstnewenvironment{listing}[1][]
+{\lstset{#1}}
+{}
+\usepackage{multicol}
+\usepackage{url}
+\usepackage{graphicx}
+\setcounter{topnumber}{1}
+\setcounter{bottomnumber}{0}
+\usepackage{ifpdf}
+\ifpdf
+\DeclareGraphicsRule{*}{mps}{*}{}
+\fi
+
+\begin{document}
+\title{The \pkg\ package\thanks{This document describes \pkg\ v0.3, last revised 11/26/2007.}}
+\author{Stephan Hennig\thanks{stephanhennig@arcor.de}}
+\maketitle
+
+\begin{abstract}
+The MetaPost package \pkg\ helps drawing polynomial functions of up to degree three. It provides macros to calculate \B\ curves exactly matching a given constant, linear, quadratic or cubic polynomial.
+\end{abstract}
+
+\begin{multicols}{2}
+\tableofcontents
+\end{multicols}
+
+
+\section{Introduction}
+MetaPost has a variable type \cmd{path} that can be used for drawing smooth and visualy pleasing curves. Internally, paths are \B\ curves and MetaPost is able to calculate the points along such a curve.\footnote{Since PostScript has a concept of \B\ curves, too, for MetaPost drawing a path is simply an act of copying the parameters of the corresponding \B\ curve into PostScript output. But nonetheless MetaPost \emph{can} calculate points on a \B\ curve.}
+
+When drawing graphs, the problem users are confronted with is how to define a suitable path representing a given function $f(x)$? The \cmd{splines} package by Dan Luecking provides macros to draw smooth piece-wise \B\ curves through arbitrary sample points.~\cite{mp:splines} However, since \B\ curves are polynomials of degree three, we can do better with just one \B\ curve segment for such polynomials. This package eases the task of finding a \B\ curve matching a given polynomial
+
+\begin{equation}
+f(x) = ax^3 + bx^2 + cx + d
+\end{equation}
+
+
+\section{Usage}
+\subsection{Macro \cmd{newBPolynomial}}
+The \pkg\ package provides just one macro \cmd{newBPolynomial}. This macro takes one suffix parameter and four numeric parameters that are the coefficients of the given polynomial. A polynomial definition for a function
+\begin{equation}
+ f(x) = 2x^3 + 0x^2 - 3x - 1
+\end{equation}
+exemplary looks like this
+\begin{listing}
+newBPolynomial.f(2, 0, -3, -1);
+\end{listing}
+Here, suffix parameter \cmd{f} serves as an identifier where some names of macros and variables, that have to be called later, are derived from and the parameters $2$, $0$, $-3$, $-1$ match the coefficients of our function $f$. To be more precise, command
+\begin{center}
+ \cmd{newBPolynomial.<suffix>()}
+\end{center}
+defines two new macros
+\begin{center}
+ \cmd{<suffix>.getPath()}
+\end{center}
+and
+\begin{center}
+ \cmd{<suffix>.eval()}
+\end{center}
+that do the real work.
+
+\subsection{Macro \cmd{<suffix>.getPath}}
+Macro \cmd{<suffix>.getPath(xmin, xmax)} returns a path exactly matching the polynomial defined by \cmd{newBPolynomial.<suffix>} on the intervall $[xmin, xmax]$. Let's have a look at an example. Drawing our polynomial $f(x)$ on the intervall $(-2, 2)$ can be done with the following code (figure~\ref{fig:cubic}).
+\begin{listing}
+newBPolynomial.f(2, 0, -3, -1);
+draw f.getPath(-2, 2) xscaled 1cm yscaled 0.1cm;
+\end{listing}
+
+\begin{figure}
+ \begin{minipage}[t]{.45\linewidth}
+ \centering
+ \includegraphics{examples.1}
+ \caption{A cubic polynomial.}
+ \label{fig:cubic}
+ \end{minipage}\hfill%
+ \begin{minipage}[t]{.45\linewidth}
+ \centering
+ \includegraphics{examples.2}
+ \caption{With stars.}
+ \label{fig:starred}
+ \end{minipage}
+\end{figure}
+
+Once a polynomial $\langle$suffix$\rangle$ has been defined \cmd{<suffix>.getPath} can be called as often as required with varying arguments and returns a path corresponding to the requested section of polynomial $\langle$suffix$\rangle$.
+
+Note, since the \pkg\ package never uses $\langle$suffix$\rangle$ as a complete identifier, you can use that as the name of a path variable to store the path returned by \cmd{<suffix>.getPath} for later drawing. Any other path (array) variable serves the same purpose, though.
+\begin{listing}
+newBPolynomial.f(2, 0, -3, -1);
+path f;
+f := f.getPath(-2, 2);
+draw f xscaled 1cm yscaled 0.1cm;
+\end{listing}
+
+\subsection{Macro \cmd{<suffix>.eval}}
+The other macro defined by \cmd{newBPolynomial.<suffix>}, macro \cmd{<suffix>.eval}, can be used to evaluate polynomial $\langle$suffix$\rangle$ at a given x-coordinate. This macro takes one parameter---the x-coordinate. A ``starred'' version of our polynomial can be plotted with the following code (figure~\ref{fig:starred}).
+\begin{listing}
+newBPolynomial.f(2, 0, -3, -1);
+for x=-2 step .25 until 2:
+ label(btex $\star$ etex, (x, f.eval(x)) xscaled 1cm yscaled 0.1cm);
+endfor
+\end{listing}
+
+\subsection{Accessing polynomial coefficients}
+Additionally, macro \cmd{newBPolynomial.<suffix>} saves the coefficients passed as arguments in variables \cmd{<suffix>.a}, \cmd{<suffix>.b}, \cmd{<suffix>.c} and \cmd{<suffix>.d} for later reference.
+
+
+\section{Examples}
+In the first example a simple corrdinate system is drawn manually. Then a quadratic polynomial \cmd{f} is drawn in three strokes. Two dahsed strokes correspond to the positive values of \cmd{f}, a dotted stroke corresponds to negative values. Finally, a cubic polynomials \cmd{g} is plotted and a table of points is written to the console and log file (figure~\ref{fig:coordinatesystem}).
+
+\begin{figure}
+ \centering
+ \includegraphics{examples.3}
+ \caption{Two polynomials in a coordinate system.}
+ \label{fig:coordinatesystem}
+\end{figure}
+
+\begin{listing}
+numeric u;
+u := 0.5cm;
+ %%% Draw a coordinate system.
+ xmin := -5; xmax := 6;
+ ymin := -5; ymax := 6;
+ drawarrow ((xmin,0)--(xmax,0)) scaled u;
+ drawarrow ((0,ymin)--(0,ymax)) scaled u;
+ drawoptions(withpen pencircle scaled 1bp);
+ %%% Define polynomial f of degree 2.
+path f[];
+ newBPolynomial.f(0, 0.5, -2, 0);
+ f1 := f.getPath(-2, 0);
+ f2 := f.getPath(0, 4);
+ f3 := f.getPath(4, 5.5);
+ draw f1 scaled u dashed evenly scaled 2;
+ draw f3 scaled u dashed evenly scaled 2;
+ draw f2 scaled u dashed withdots
+ withpen pencircle scaled 1.5bp withcolor .5white;
+ %%% Define polynomial g of degree 3.
+path g;
+ newBPolynomial.g(0.3, 0, -3, -1);
+ g := g.getPath(-3.5, 4);
+ show g;
+ draw g scaled u;
+ %%% Write table with some points of g to log file.
+ show "Polynomial: " & decimal g.a & "x^3+" & decimal g.b
+ & "x^2+" & decimal g.c & "x+" & decimal g.d;
+ for x=-5 upto 5:
+ show (x, g.eval(x));
+ endfor
+\end{listing}
+
+Note command \cmd{show g} that writes path~\cmd{g} to the \cmd{log} file. Inspecting that we can easily verify, that \cmd{g} consists of just one path segment:
+\begingroup\small
+\begin{verbatim}
+(-3.5,-3.36273)..controls (-1,16.70013) and (1.5,-22.30025)..(4,6.2002)
+\end{verbatim}
+\endgroup
+
+The next example demonstrates how \pkg\ and John Hobby's \cmd{graph} package\cite{mp:graph} can be used together to draw polynomials in a coordinate system. Instead of \cmd{draw} paths have just to be drawn with a \cmd{gdraw} command. The latter macro additionally clips paths to the boundaries of the coordinate system (figure~\ref{fig:bpolynomialgraph}).
+
+\begin{figure}
+ \centering
+ \includegraphics{examples.4}
+ \caption{Packages \pkg\ and \cmd{graph} interacting.}
+ \label{fig:bpolynomialgraph}
+\end{figure}
+
+\begin{listing}
+path f,g;
+ xmin := -7; xmax := 7;
+ ymin := -7; ymax := 7;
+ newBPolynomial.f(0, 0.5, -2, 0);
+ f := f.getPath(xmin, xmax);
+ newBPolynomial.g(0.3, 0, -3, -1);
+ g := g.getPath(xmin, xmax);
+ draw begingraph(10cm, 6cm);
+ setrange(xmin,ymin, xmax,ymax);
+ autogrid(grid.bot, grid.lft)
+ dashed withdots withpen pencircle scaled .7bp withcolor .5white;
+ drawoptions(withpen pencircle scaled 1bp);
+ gdraw f dashed evenly scaled 2;
+ gdraw g;
+ drawoptions();
+ endgraph;
+\end{listing}
+
+The code of all examples can also be found in file \cmd{examples.mp}.
+
+
+\section{Mathematics}
+A \B\ curve $P(t)$ with end points $A=(x_A,y_A)$ and $D=(x_D,y_D)$ and control points $B=(x_B,y_B)$ and $C=(x_C,y_C)$ is defined as
+\begin{equation}
+P(t) = \left(
+ \begin{array}{@{}c@{}}
+ x\\
+ y\\
+ \end{array}
+ \right)(t) = A + 3(B-A)t + 3(C-2B+A)t^2 + (D-3C+3B-A)t^3,\quad 0\leq t\leq 1.
+\end{equation}
+
+An arbitrary function $y=f(x)$ can be written in parameter form as
+\begin{equation}
+ F(t) = \left(
+ \begin{array}{@{}c@{}}
+ x \\
+ y \\
+ \end{array}
+ \right)(t) = \left(
+ \begin{array}{@{}c@{}}
+ x(t) \\
+ f\big(x(t)\big) \\
+ \end{array}
+ \right),\quad t\in \mathbb{R}
+\end{equation}
+with parameter $t$.
+
+For a function
+\begin{equation}
+ f(x) = ax^3 + bx^2 + cx + d,\quad x\in [x_0, x_1]
+\end{equation}
+we have
+\begin{equation}
+ x(t) = x_0 + (x_1-x_0)t,\quad 0\leq t\leq 1
+\end{equation}
+and hence
+\begin{equation}
+ F(t) = \left(
+ \begin{array}{@{}c@{}}
+ x_0 + (x_1-x_0)t \\
+ ax(t)^3 + bx(t)^2 + cx(t) + d \\
+ \end{array}
+ \right),\quad 0\leq t\leq 1.
+\end{equation}
+Writing F(t) down explicitly is left as an exercise for the interested reader.
+
+Finally, setting
+\begin{equation}
+ P(t) = F(t)
+\end{equation}
+and sorting the coefficients of the $t^k$ one arrives at the following \emph{original} equation system:
+\begin{align}
+ x_A & = x_0 \label{eq:xA} \\
+ 3(x_B-x_A) & = x_1 - x_0 \label{eq:xB} \\
+ 3(x_C-2x_B+x_A) & = 0 \label{eq:xC} \\
+ x_D-3x_C+3x_B-x_A & = 0 \label{eq:xD} \\
+ y_A & = ax_0^3 + bx_0^2 + cx_0 + d \label{eq:yA} \\
+ 3(y_B-y_A) & = 3ax_0^2(x_1-x_0) + 2bx_0(x_1-x_0) + c(x_1-x_0) \label{eq:yB} \\
+ 3(y_C-2y_B+y_A) & = 3ax_0(x_1-x_0)^2 + b(x_1-x_0)^2 \label{eq:yC} \\
+ y_D-3y_C+3y_B-y_A & = a(x_1-x_0)^3 \label{eq:yD}
+\end{align}
+Note, there are only constants on the right-hand side of all equations. That is, this equation system is linear in the eight variables $x_A$, $x_B$, $x_C$, $x_D$, $y_A$, $y_B$, $y_C$, $y_D$.
+
+Since MetaPost can solve linear equation systems, hacking equations~\ref{eq:xA} to~\ref{eq:yD} into MetaPost code and requesting a path segment
+\begin{center}\ttfamily
+ ($x_A$,$y_A$)..controls ($x_B$,$y_B$) and ($x_C$,$y_C$)..($x_D$,$y_D$)
+\end{center}
+returns the polynomial shaped curve we are looking for.
+
+Internally, the \pkg\ package does not solve the original equation system, but a \emph{modified} variant, that is numerically slightly more robust.
+
+Equations~\ref{eq:xA} to~\ref{eq:xD} can be written down explicitly as
+\begin{align}
+ x_A & = x_0 \label{eq:xA'} \\
+ x_B & = x_0 + \frac{1}{3}(x_1-x_0) \label{eq:xB'} \\
+ x_C & = x_1 - \frac{1}{3}(x_1-x_0) \label{eq:xC'} \\
+ x_D & = x_1 \label{eq:xD'}
+\end{align}
+
+Additionally, we know that $D=(x_D,y_D)$ is a point on the polynomial. Therefore, equation~\ref{eq:yD} of the original system can be replaced by
+\begin{align}
+ y_D & = ax_1^3 + bx_1^2 + cx_1 + d \label{eq:yD'}
+\end{align}
+
+Equations~\ref{eq:yA} to~\ref{eq:yC} of the original equation system and the new equations~\ref{eq:xA'} to~\ref{eq:yD'} constitute the modified equation system, that is solved in \pkg.
+
+\nobreak
+\bigskip
+\raggedright
+\parbox{\linewidth}{\itshape
+ Happy \TeX ing!\par
+ Stephan Hennig
+}
+
+
+\begin{thebibliography}{999}
+\bibitem{mp:graph} \textsc{Hobby}, John~D., \emph{Drawing graphs with MetaPost}, \url{http://www.tug.org/docs/metapost/mpgraph.pdf}
+\bibitem{mp:splines} \textsc{Luecking}, Dan, \emph{Macros to compute splines}, 2005, \url{CTAN:graphics/metapost/contrib/macros/splines/splines.pdf}
+\end{thebibliography}
+
+\end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-PDF-mode: t
+%%% TeX-master: t
+%%% End:
diff --git a/Master/texmf-dist/doc/metapost/bpolynomial/examples.mp b/Master/texmf-dist/doc/metapost/bpolynomial/examples.mp
new file mode 100644
index 00000000000..135b7881fdc
--- /dev/null
+++ b/Master/texmf-dist/doc/metapost/bpolynomial/examples.mp
@@ -0,0 +1,73 @@
+input bpolynomial;
+input graph
+prologues := 3;
+
+
+beginfig(1);
+ newBPolynomial.f(2, 0, -3, -1);
+ draw f.getPath(-2, 2) xscaled 1cm yscaled 0.1cm;
+endfig;
+
+
+beginfig(2);
+ newBPolynomial.f(2, 0, -3, -1);
+ for x=-2 step .25 until 2:
+ label(btex $\star$ etex, (x, f.eval(x)) xscaled 1cm yscaled 0.1cm);
+ endfor
+endfig;
+
+
+beginfig(3);
+numeric u;
+u := 0.5cm;
+ %%% Draw a coordinate system.
+ xmin := -5; xmax := 6;
+ ymin := -5; ymax := 6;
+ drawarrow ((xmin,0)--(xmax,0)) scaled u;
+ drawarrow ((0,ymin)--(0,ymax)) scaled u;
+ drawoptions(withpen pencircle scaled 1bp);
+ %%% Define polynomial f of degree 2.
+path f[];
+ newBPolynomial.f(0, 0.5, -2, 0);
+ f1 := f.getPath(-2, 0);
+ f2 := f.getPath(0, 4);
+ f3 := f.getPath(4, 5.5);
+ draw f1 scaled u dashed evenly scaled 2;
+ draw f3 scaled u dashed evenly scaled 2;
+ draw f2 scaled u dashed withdots
+ withpen pencircle scaled 1.5bp withcolor .5white;
+ %%% Define polynomial g of degree 3.
+path g;
+ newBPolynomial.g(0.3, 0, -3, -1);
+ g := g.getPath(-3.5, 4);
+ show g;
+ draw g scaled u;
+ %%% Write table with some points of g to log file.
+ show "Polynomial: " & decimal g.a & "x^3+" & decimal g.b
+ & "x^2+" & decimal g.c & "x+" & decimal g.d;
+ for x=-5 upto 5:
+ show (x, g.eval(x));
+ endfor
+endfig;
+
+
+beginfig(4);
+path f,g;
+ xmin := -7; xmax := 7;
+ ymin := -7; ymax := 7;
+ newBPolynomial.f(0, 0.5, -2, 0);
+ f := f.getPath(xmin, xmax);
+ newBPolynomial.g(0.3, 0, -3, -1);
+ g := g.getPath(xmin, xmax);
+ draw begingraph(10cm, 6cm);
+ setrange(xmin,ymin, xmax,ymax);
+ autogrid(grid.bot, grid.lft)
+ dashed withdots withpen pencircle scaled .7bp withcolor .5white;
+ drawoptions(withpen pencircle scaled 1bp);
+ gdraw f dashed evenly scaled 2;
+ gdraw g;
+ drawoptions();
+ endgraph;
+endfig;
+
+end