diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:49:07 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:49:07 +0000 |
commit | 007f67a693e4d031fd3d792df8e4d5f43e2cb2e7 (patch) | |
tree | 90d17e00e572ecb1e24764b6f29c80e098b08d29 /Master/texmf-dist/doc/latex/xymtex | |
parent | 950209b26f70aa87ed07c54f82a95b6f03b7c3a0 (diff) |
doc/latex
git-svn-id: svn://tug.org/texlive/trunk@84 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/xymtex')
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/readme2.doc | 22 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/readme2.jpn | 66 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/xymadd.tex | 2792 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/xymtex2.doc | 94 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/xymtx200.tex | 56 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xymtex/xymyl.tex | 2900 |
6 files changed, 5930 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/xymtex/readme2.doc b/Master/texmf-dist/doc/latex/xymtex/readme2.doc new file mode 100644 index 00000000000..90355a56c29 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/readme2.doc @@ -0,0 +1,22 @@ +readme2.doc +Notes for XyMTeX +Copyright (C) 1993, 1996, 1998 by Shinsaku Fujita, All rights reserved. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +(old) readme1.doc +Notes for XyMTeX +Copyright (C) 1993, 1996 by Shinsaku Fujita, All rights reserved. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +Name: XyMTeX +Description: Macro Package including LaTeX document-style options for + typesetting chemical structural formulas +Keywords: LaTeX, chemistry, structural formula +Author: Shinsaku Fujita +Supported: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html +Latest Version: 2.00 +Archives: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html +Note: Documentation in xymtx200.tex (xymtx200.dvi) + +For Installment, see xymtex2.doc (xymtex2.jpn) + +
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/xymtex/readme2.jpn b/Master/texmf-dist/doc/latex/xymtex/readme2.jpn new file mode 100644 index 00000000000..4144fe7a1b4 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/readme2.jpn @@ -0,0 +1,66 @@ +readme2.jpn +Notes for XyMTeX (in Japanese) +Copyright (C) 1993, 1996, 1998 by Shinsaku Fujita. All rights reserved. +=========================================================================== +(旧)readme1.jpn +Notes for XyMTeX (in Japanese) +Copyright (C) 1993, 1996 by Shinsaku Fujita. All rights reserved. +=========================================================================== +名 称: XyMTeX +登録名: xymtex2.lzh for drawing chem. structures +概 要: 化学構造式を描くためのマクロパッケージ + (LaTeX用のオプションファイル類を含む) +鍵 語: LaTeX, 化学, 構造式 +作 者: Shinsaku Fujita (藤田 眞作) +登録者: 藤田 眞作 +最新版: 2.00 +本 籍: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html +覚 書: ドキュメントは、xymtx200.tex (xymtx200.dvi) +=========================================================================== +Name: XyMTeX +Description: Macro Package including LaTeX document-style options for + typesetting chemical structural formulas +Keywords: LaTeX, chemistry, structural formula +Author: Shinsaku Fujita +Supported: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html +Latest Version: 2.00 +Archives: http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html +Note: Documentation in xymtx200.tex (xymtx200.dvi) +=========================================================================== + +<説明> + XyMTeXは、化学構造式を描くためののマクロパッケージです。 これは、 +LaTeX2e用のパッケージファイル群から成り立っています。各ファイルには +化学構造式を描くためのコマンドのマクロコードが含まれています。各コマンドは、 +広範囲の化合物の構造が描けるように、新しい構想のもとに作成したものです。 +LaTeXのpicture環境を前提にして、その範囲内 (図形組版)で構造式が描けるように +なっています。したがって、構造式出力のプリンターは (プリンタードライバーさえ +あれば) 種類を選ばず、たとえば写植機でも出力が可能です。 + + 約100ページのマニュアル (xymtx200.dvi) が付属しています。この中に、Version +2.00で追加した機能とコマンドの書式 (仕様) と描画例を多数記載しましたので、 +解凍後、まずどのようなことができるのかをご覧ください。 + + chemist.styやmathchem.sty (下記拙著に付録として付いているフロッピーディスク +に収録)に含まれるコマンドを併用すれば、さらにいろいろな反応スキームなどを +描くことができるようになります。XyMTeX(version1.01)から、chemist.styも同梱 +してあります。 + + 「化学者・生化学者のためのLaTeX---パソコンによる論文作成の手引」 + 藤田 眞作 著、東京化学同人 (1993) FD付 + +基本的な使用法は、XyMTeX verion 2.00でも以前のバージョンでも同じです。 +このため、付属のマニュアル (xymtx200.dvi)では、基本的な使用法を記載 +してありません。これらは、次のレファレンスマニュアルを参照してください。 + + 「XyMTeX--Typesetting Chemical Structural Formulas」 + 藤田眞作著、アジソン・ウェスレイ・ジャパン (1997) CD-DOM付 + +<ダウンロード・解凍> +(1) ファイル名xymtex2.lzhでダウンロードしてください +(2) TeXのメインディレクトリー内でlhaで解凍してください。 + a:\tex>lha x b:\xymtex2 + +詳しいインストールの方法は、xymtex2.docをご覧下さい。 + +
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/xymtex/xymadd.tex b/Master/texmf-dist/doc/latex/xymtex/xymadd.tex new file mode 100644 index 00000000000..10cfa37c649 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/xymadd.tex @@ -0,0 +1,2792 @@ +%xymadd.tex
+%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%This file is a part of xymtx200.tex that is the manual of the macro
+%package `XyMTeX' (Version 2.00) for drawing chemical structural formulas.
+%This file is not permitted to be translated into Japanese and any other
+%languages.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Added Commands}
+
+\section{Six-six Fused Carbocycles}
+\subsection{Vertical-Bottom Forms of Decaline Derivatives}
+
+The macro \verb/\decalinevb/ is used to draw
+decaline derivatives of vertical-bottom
+type (added to \textsf{carom.sty}),
+where the numbering of atoms is given from the bottom
+to the left-upper part.
+The word ``vertical'' means that each benzene ring is a vertical type.
+The word ``bottom'' means that the benzene ring with young
+locant numbers is located at the bottom.
+The format of this command is as follows:
+\begin{verbatim}
+ \decalinevb[BONDLIST]{SUBSLIST}
+\end{verbatim}
+%
+% ***************************
+% * decaline derivatives *
+% * (vertical bottom type) *
+% ***************************
+% The following numbering is adopted in this macro.
+%
+% 7
+% *
+% 6 * * 8
+% | |
+% | | 0G (4a)
+% 5 * * *
+% 0F(4a) * * 1
+% | |
+% | |
+% 4 * * 2
+% *
+% 3
+% ^
+% |
+% the original point
+%
+
+Locant numbers for designating substitution positions
+and characters for showing bonds to be doubled
+are represented by the following diagram:
+{\origpttrue
+\begin{center}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decalinevb{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
+5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
+7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sb(r);%
+0F==0F;0G==0G}}
+{\footnotesize
+\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{center}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The option argument BONDLIST is based on the
+assignment of characters (a--k) to respective bonds
+as shown in the above diagram.
+A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
+one of bond modifiers shown in Table \ref{tt:200a}.
+The substitution at the bridgehead positions is
+designated as shown in Table 4.3 of \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decalinevb{1D==O;0FB==H;0GA==H} \qquad
+\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
+0FB==CH$_{3}$;0GA==H}
+\end{verbatim}
+These commands produce:
+\begin{center}
+\decalinevb{1D==O;0FB==H;0GA==H} \qquad
+\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
+0FB==CH$_{3}$;0GA==H}
+\end{center}
+
+The related commands, \verb/\naphdrvb/ and \verb/\tetralinevb/,
+have been defined on the basis of the command \verb/\decalinevb/.
+
+\subsection{Vertical-Top Forms of Decaline Derivatives}
+
+The macro \verb/\decalinevt/ (added to \textsf{carom.sty})
+is used for drawing decaline derivatives
+of vertical-bottom type (numbering from the top to the left-down part).
+The word ``vertical'' means that each benzene ring is a vertical type.
+The word ``top'' means that the benzene ring with young locant
+numbers is located at the top.
+% ************************
+% * decaline derivatives *
+% * (vertical-top type) *
+% ************************
+% The following numbering is adopted in this macro.
+%
+% 2
+% *
+% 1 * * 3
+% | |
+% | |
+% 0G (8a) * * 4
+% 8 * * 0F(4a)
+% | |
+% | |
+% 7 * * 5
+% *
+% 6
+% ^
+% |
+% the original point
+%
+The format of this command is as follows:
+\begin{verbatim}
+ \decalinevt[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+Locant numbers for designating substitution positions
+and characters for showing bonds to be doubled
+are represented by the following diagram:
+{\origpttrue
+\begin{center}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decalinevt{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
+5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
+7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sb(l);%
+0F==0F;0G==0G}}
+{\footnotesize
+\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
+\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{center}
+}
+
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The option argument BONDLIST is based on the
+assignment of characters (a--k) to respective bonds
+as shown in the above diagram.
+A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
+one of bond modifiers shown in Table \ref{tt:200a}.
+The substitution at the bridgehead positions is
+designated as shown in Table 4.3 of \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decalinevt{1D==O;0FB==H;0GA==H} \qquad
+\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
+0FB==CH$_{3}$;0GA==H}
+\end{verbatim}
+These commands produce:
+\begin{center}
+\decalinevt{1D==O;0FB==H;0GA==H} \qquad
+\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
+0FB==CH$_{3}$;0GA==H}
+\end{center}
+
+The related commands, \verb/\naphdrvt/ and \verb/\tetralinevt/,
+have been defined on the basis of the command \verb/\decalinevt/.
+
+
+\section{Six-six Fused Heterocycles}
+\subsection{Vertical-Bottom Forms}
+
+The macro \verb/\decaheterovb/ is generally used to draw
+six-six-fused heterocycles of vertical-bottom type (\textsf{hetarom.sty}).
+\begin{verbatim}
+ \decaheterovb[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ***************************
+% * decahetro derivatives *
+% * (vertical bottom type) *
+% ***************************
+% The following numbering is adopted in this macro.
+%
+% 7
+% *
+% 6 * * 8
+% | |
+% | | 0G (4a)
+% 5 * * *
+% 0F(4a) * * 1
+% | |
+% | |
+% 4 * * 2
+% *
+% 3
+% ^
+% |
+% the original point
+
+
+Locant numbers for designating substitution positions
+as well as characters for setting double bonds
+are shown in the following diagram:
+{
+\begin{xymspec}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decaheterovb[]{1==1;2==2;3==3;4==4;5==5;%
+6==6;7==7;8==8;9==9;{{10}}==10}{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
+5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
+7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);%
+9==9;{{10}}==10}}
+{\footnotesize
+\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+%\put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}}
+%\put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The optional argument BONDLIST is used to specify a bond pattern.
+
+The argument ATOMLIST has a similar format concerning the positions of
+$n$ = 1 to 8. A hetero-atom on the 4a-position is
+designated to be 4a==N or 9==N;
+and a hetero-atom on the 8a-position is given as to be
+8a==N or \{\{10\}\}==N.
+
+The argument SUBSLIST for this macro takes a general format,
+in which the modifiers listed in Table \ref{tt:200a} are used.
+Note that 9 and 10 should be used for designating
+4a and 8a positions.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
+\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
+\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
+\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
+\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{center}
+
+Macros for drawing related fused heterocycles are also defined.
+The formats of these commands are as follows:
+\begin{verbatim}
+ \quinolinevb[BONDLIST]{SUBSLIST}
+ \isoquinolinevb[BONDLIST]{SUBSLIST}
+ \quinoxalinevb[BONDLIST]{SUBSLIST}
+ \quinazolinevb[BONDLIST]{SUBSLIST}
+ \cinnolinevb[BONDLIST]{SUBSLIST}
+ \pteridinevb[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+\subsection{Vertical-Top Forms}
+The macro \verb/\decaheterovt/ is generally used to draw
+six-six-fused heterocycles of vertical-top type (\textsf{hetarom.sty}).
+\begin{verbatim}
+ \decaheterovt[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * decaheterovt derivatives *
+% * (vertical-top type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% 2
+% *
+% 1 * * 3
+% | |
+% | |
+% 0G (8a) * * 4
+% 8 * * 0F(4a)
+% | |
+% | |
+% 7 * * 5
+% *
+% 6
+% ^
+% |
+% the original point
+% \end{verbatim}
+
+Locant numbers for designating substitution positions
+as well as characters for setting double bonds
+are shown in the following diagram:
+{
+\begin{xymspec}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decaheterovt[]{1==1;2==2;3==3;4==4;5==5;%
+6==6;7==7;8==8;9==9;{{10}}==10}{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
+5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
+7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sa(l);%
+9==9;{{10}}==10}}
+{\footnotesize
+\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
+\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
+%\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+%\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The optional argument BONDLIST is used to specify a bond pattern.
+
+The argument ATOMLIST has a similar format concerning the positions of
+$n$ = 1 to 8. A hetero-atom on the 4a-position is
+designated to be 4a==N or 9==N;
+and a hetero-atom on the 8a-position is given as to be
+8a==N or \{\{10\}\}==N.
+
+The argument SUBSLIST for this macro takes a general format,
+in which the modifiers listed in Table \ref{tt:200a} are used.
+Note that 9 and 10 should be used for designating
+4a and 8a positions.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
+\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
+\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\vspace*{1cm}
+\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
+\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
+\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{center}
+
+Macros for drawing related fused heterocycles are also defined.
+The formats of these commands are as follows:
+\begin{verbatim}
+ \quinolinevt[BONDLIST]{SUBSLIST}
+ \isoquinolinevt[BONDLIST]{SUBSLIST}
+ \quinoxalinevt[BONDLIST]{SUBSLIST}
+ \quinazolinevt[BONDLIST]{SUBSLIST}
+ \cinnolinevt[BONDLIST]{SUBSLIST}
+ \pteridinevt[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+\section{Three-Membered Carbocycles}
+
+The macro \verb/\cyclopropanev/ (the same command
+as \verb/\cyclopropane/)
+for drawing three-membered carbocycles
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanev[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% b
+% 3--------2
+% c ` / a
+% `1/ <===== the original point
+%
+%
+%
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\cyclopropanev[]{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(500,250){a}
+\put(300,250){c}
+\put(380,460){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\cyclopropanevi/
+(the same command as \verb/\cyclopropanei/)
+for drawing three-membered carbocycles of inverse type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanevi[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (inverse vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% /1` <===== the original point
+% c / ` a
+% 3--------2
+% b
+%
+% \cyclopropanei[BONDLIST]{SUBSLIST}
+% \cyclopropanevi[BONDLIST]{SUBSLIST}
+
+The following diagram shows
+The locant numbering (1--3)
+and the bond description (a--c):
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\cyclopropanevi[]{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,340){\circle{80}}
+\put(500,250){a}
+\put(250,250){c}
+\put(380,50){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see the counterparts
+of \verb/\cyclopropane/ described in \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\cyclopropaneh/
+for drawing three-membered carbocycles of horizontal type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropaneh[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (horizontal type) *
+% ****************************
+%
+% aaa fff
+% 3
+% | ` c
+% b | 1 bbb ccc
+% | / a
+% 2/
+% ddd eee
+%
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\cyclopropaneh[]{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(200,240){\circle{80}}
+\put(300,150){a}
+\put(100,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+The macro \verb/\cyclopropanehi/
+for drawing three-membered carbocycles of inverse horizontal type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanehi[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (inverse horizontal type)*
+% ****************************
+%
+% aaa bbb
+% c 3
+% / |
+% eee 1 | b
+% fff a` |
+% 2 <---original point
+% ccc ddd
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\cyclopropanehi[]{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(300,150){a}
+\put(450,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+\section{Three-Membered Heterocycles}
+
+The macro \verb/\threeheterov/
+(the same command as \verb/\threehetero/)
+for drawing three-membered heterocycles
+has the following format (\textsf{hetarom.sty})
+\begin{verbatim}
+ \threeheterov[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threeheterov derivatives *
+% * (vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% b
+% 3--------2
+% c ` / a
+% `1/ <===== the original point
+%
+%
+%
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\threeheterov[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(500,250){a}
+\put(300,250){c}
+\put(380,460){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\threeheterovi/
+(the same command as \verb/\threeheteroi/)
+for drawing three-membered heterocycles of inverse type
+has the following format (\textsf{hetarom.sty})
+\begin{verbatim}
+ \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (inverse vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% /1` <===== the original point
+% c / ` a
+% 3--------2
+% b
+%
+% \threeheteroi[BONDLIST]{ATOMLIST}{SUBSLIST}
+% \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
+
+The following diagram shows
+The locant numbering (1--3)
+and the bond description (a--c):
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\threeheterovi[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,340){\circle{80}}
+\put(500,250){a}
+\put(250,250){c}
+\put(380,50){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see the counterparts
+of \verb/\threehetero/ described in \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\threeheteroh/
+for drawing three-membered heterocycles of horizontal type
+has the following format (\textsf{hetaromh.sty})
+\begin{verbatim}
+ \threeheteroh[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (horizontal type) *
+% ****************************
+%
+% aaa fff
+% 3
+% | ` c
+% b | 1 bbb ccc
+% | / a
+% 2/
+% ddd eee
+%
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\threeheteroh[]{1==1;2==2;3==3}{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(200,240){\circle{80}}
+\put(300,150){a}
+\put(100,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+The macro \verb/\threeheterohi/
+for drawing three-membered heterocycles of inverse horizontal type
+has the following format (\textsf{hetatomh.sty})
+\begin{verbatim}
+ \threeheterohi[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (inverse horizontal type)*
+% ****************************
+%
+% aaa bbb
+% c 3
+% / |
+% eee 1 | b
+% fff a` |
+% 2 <---original point
+% ccc ddd
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\threeheterohi[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(300,150){a}
+\put(450,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Aliphatic Moieties}
+\subsection{Trigonal Units}
+
+In addition to the macros \verb/\rtrigonal/ and \verb/\ltrigonal/
+(see \XyMTeX book), macros for broader bond angles,
+\verb/\Rtrigonal/ and \verb/\Ltrigonal/, are
+added to the \textsf{aliphat} package (\textsf{aliphat.sty}).
+The formats of these commands are as follows:
+\begin{verbatim}
+ \Rtrigonal[AUXLIST]{SUBSLIST}
+ \Ltrigonal[AUXLIST]{SUBSLIST}
+\end{verbatim}
+% *************************
+% * trigonal unit (right) *
+% *************************
+%
+% 3
+% /
+% /
+% 1 --- 0 120 0 <== the original point
+% `
+% `
+% 2
+% ************************
+% * trigonal unit (left) *
+% ************************
+%
+% 2
+% `
+% `
+% 120 0 --- 1 0 <== the original point
+% /
+% /
+% 3
+
+The bond angles of 2--0--3 are 120$^{\circ}$ in the trigonal units
+printed with these commands. The arguments AUXLIST and SUBSLIST are
+the same as those of \verb/\tetrahedral/.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
+\Ltrigonal{0==C;1D==O;2==Cl;3==F}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
+\Ltrigonal{0==C;1D==O;2==Cl;3==F}
+\end{center}
+
+\subsection{Ethylenes}
+
+The macro \verb/\Ethyleneh/ or \verb/\Ethylene/ is
+a braoder-angled counterpart of
+the macro \verb/\ethyleneh/ or \verb/\ethylene/ (see \XyMTeX book),
+which is used to draw ethylene derivatives with angles 120$^{\circ}$
+(\textsf{aliphat.sty}).
+The format of this command is as follows:
+\begin{verbatim}
+ \Ethyleneh[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \Ethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% *****************
+% * ethylene unit *
+% *****************
+%
+% The following numbering is adopted in this macro.
+%
+% 1 4
+% ` /
+% ` /
+% 120 (1)===(2) 120 (1) <== the original point
+% / `
+% / `
+% 2 3
+%
+%
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(800,880)(0,0)
+\put(0,0){\Ethyleneh{1==1;2==2}{1==1;2==2;3==3;4==4;0==0}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (300,300) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+The argument BONSLIST is used for giving the C--C bond.
+The argument ATOMLIST is used for giving central atoms.
+The argument SUBSLIST is
+the same as that of \verb/\tetrahedral/.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
+\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
+\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
+\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
+\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
+\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
+\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
+\end{center}
+
+A butadiene derivative,
+\begin{center}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
+3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
+\vspace*{1cm}
+\end{center}
+can be drawn by the code,
+\begin{verbatim}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
+3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
+\end{verbatim}
+
+
+\chapter{Zigzag Polymethylene Skeletons}
+
+\section{Dimethylenes}
+
+The macro \verb/\dimethylene/ has two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}):
+%
+% \begin{verbatim}
+%
+% bbb
+% 2
+% a / (or uppercase letters)
+% /
+% 1
+% aaa
+% \end{verbatim}
+%
+\begin{verbatim}
+ \dimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The BONDLIST argument contains one character a or A,
+each of which indicates the presence of an inner (endo-chain) double
+bond on the corresponding position. A lowercase letter is used
+to typeset a double bond at a lower-side of an outer skeletal bond,
+while an uppercase letter typesets a double bond at a upper-side of
+an outer skeletal bond
+(Note that the option `A' represents an aromatic circle in
+ commands \verb/\sixheterov/ etc. ).
+The ATOMLIST and SUBSLIST arguments follow
+the conventions of the \XyMTeX{} system.
+
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(500,500)(0,0)
+\put(0,0){\dimethylene{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
+\put(100,250){a}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+Lowercase vs. uppercase letters (`a' vs. `A') in the BONDLIST of
+the \verb/\dimethylene/ command designate the position of
+an bond added to the bond `a', as shown in the code,
+\begin{verbatim}
+\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
+\hskip2cm
+\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
+\end{verbatim}
+which typesets the following formulas:
+\begin{center}
+\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
+\hskip2cm
+\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
+\end{center}
+
+In addition to the standard bond modifiers
+listed in Table \ref{tt:200a},
+the terminal positions of the \verb/\dimethylene/ command
+can take a bond modifier `W'.
+For example, the code,
+\begin{verbatim}
+\dimethylene{1==S;2==S}{1W==H;2W==H}
+\hskip4cm
+\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
+\hskip1cm
+\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
+\end{verbatim}
+generates the following formulas:
+\begin{center}
+\dimethylene{1==S;2==S}{1W==H;2W==H}
+\hskip4cm
+\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
+\hskip1cm
+\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
+\end{center}
+where the ATOMLIST is used to set two sulfur atoms in
+the dimethylene chain.
+
+The macro \verb/\dimethylenei/ is the inverse counterpart of
+\verb/\dimethylene/, where arguments ATOMLIST, SUBSLIST, and
+BONDLIST take such common formats as found in the
+definition of the latter (\textsf{methylen.sty}):
+\begin{verbatim}
+ \dimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(500,500)(0,0)
+\put(0,0){\dimethylenei{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
+\put(150,280){a}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+Note that the coodinate of position no.~1 is (50, 283),
+where 180 + 103 = 283.
+The following example shows a specification of the SUBSLIST.
+\begin{verbatim}
+\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
+\hskip3cm
+\dimethylenei{}{1W==R$^{\prime}$;%
+2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
+\end{verbatim}
+
+\begin{center}
+\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
+\hskip3cm
+\dimethylenei{}{1W==R$^{\prime}$;%
+2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
+\end{center}
+
+\section{Trimethylenes}
+
+The macros \verb/\trimethylene/ and \verb/\trimethylenei/
+and have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+%
+% \begin{verbatim}
+%
+% bbb
+% 2
+% a / ` b (or uppercase letters)
+% / `
+% 1 3
+% aaa ccc
+% \end{verbatim}
+%
+%
+\begin{verbatim}
+ \trimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \trimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\trimethylene{1==1;2==2;3==3}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa}}
+\put(100,250){a}
+\put(300,250){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip2cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\trimethylenei{1==1;2==2;3==3}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa}}
+\put(150,250){a}
+\put(250,250){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:
+\begin{verbatim}
+\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
+\hskip2cm
+\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
+\hskip2cm
+\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
+\end{verbatim}
+\begin{center}
+\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
+\hskip2cm
+\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
+\hskip2cm
+\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
+\end{center}
+
+\vskip1cm
+\begin{verbatim}
+\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
+3W==CHO;3SA==H;3SB==Me}
+\end{verbatim}
+\begin{center}
+\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
+3W==CHO;3SA==H;3SB==Me}
+
+\vspace*{1cm}
+\end{center}
+
+\section{Tetramethylenes}
+
+The macros \verb/\tetramethylene/ and \verb/\tetramethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \tetramethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \tetramethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylene{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
+4Sb==\raise10pt\hbox{4Sb}}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip3cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenei{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
+4Sb==\lower10pt\hbox{4Sb}}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:
+\begin{verbatim}
+\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
+\end{verbatim}
+\begin{center}
+\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
+
+\vspace*{.5cm}
+\end{center}
+
+
+\begin{verbatim}
+\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
+4W==\cyclohexanev[e]{6==(yl);3B==\null}}
+\end{verbatim}
+\begin{center}
+\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
+4W==\cyclohexanev[e]{6==(yl);3B==\null}}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
+\vspace*{1cm}
+\end{center}
+
+\section{Pentamethylenes}
+
+The macros \verb/\pentamethylene/ and \verb/\pentamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \pentamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \pentamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\pentamethylene{1==1;2==2;3==3;4==4;5==5}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\end{picture}
+\qquad\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip2cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\pentamethylenei{1==1;2==2;3==3;4==4;5==5}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
+\end{verbatim}
+\begin{center}
+\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
+\end{center}
+
+\begin{verbatim}
+\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
+1D==O;2A==OMe;3A==OH;5W==OTBDMS}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
+1D==O;2A==OMe;3A==OH;5W==OTBDMS}
+
+\vspace*{.5cm}
+\end{center}
+
+
+\begin{verbatim}
+\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
+1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
+1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
+
+\vspace*{.5cm}
+\end{center}
+
+\section{Hexamethylenes}
+
+The macros \verb/\hexamethylene/ and \verb/\hexamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \hexamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \hexamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(800,500)(0,0)
+\put(0,0){\hexamethylene{1==1;2==2;3==3;4==4;5==5;6==6}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip1cm
+\begin{picture}(850,500)(0,0)
+\put(0,0){\hexamethylenei{1==1;2==2;3==3;4==4;5==5;6==6}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
+\end{verbatim}
+\begin{center}
+\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
+\end{center}
+
+\begin{verbatim}
+\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
+\end{verbatim}
+\begin{center}
+\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
+\end{center}
+
+\begin{verbatim}
+\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
+\end{verbatim}
+\begin{center}
+\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
+\end{center}
+
+\begin{verbatim}
+\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
+\end{verbatim}
+\begin{center}
+\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
+\end{center}
+
+\section{Heptamethylenes}
+
+The macros \verb/\heptamethylene/ and \verb/\heptamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \heptamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \heptamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1000,500)(0,0)
+\put(0,0){\heptamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip1cm
+\begin{picture}(1050,500)(0,0)
+\put(0,0){\heptamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
+5D==O;6D==N$_{2}$}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
+5D==O;6D==N$_{2}$}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
+3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
+7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
+2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
+3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
+7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
+2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\section{Octamethylenes}
+
+The macros \verb/\octamethylene/ and \verb/\octamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \octamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \octamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1300,700)(0,0)
+\put(0,0){\octamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1300,700)(0,0)
+\put(0,0){\octamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
+\end{verbatim}
+\begin{center}
+\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
+\end{center}
+
+
+\begin{verbatim}
+\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
+8W==\ryl(4==NH){%
+5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
+1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
+8W==\ryl(4==NH){%
+5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
+1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
+
+\vspace*{2cm}
+\end{center}
+
+
+\section{Nonamethylenes}
+
+The macros \verb/\nonamethylene/ and \verb/\nonamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \nonamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \nonamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1500,700)(0,0)
+\put(0,0){\nonamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\put(1450,250){h}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1500,700)(0,0)
+\put(0,0){\nonamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\put(1450,250){h}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
+\end{verbatim}
+\begin{center}
+\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
+\end{center}
+
+\begin{verbatim}
+\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
+\end{verbatim}
+\begin{center}
+\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
+\end{center}
+
+
+\section{Decamethylenes}
+
+The macros \verb/\decamethylene/ and \verb/\decamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \decamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \decamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1700,700)(0,0)
+\put(0,0){\decamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
+8==8;9==9;{{10}}==10}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb};%
+{10}Sa==10Sa;{10}Sb==\raise10pt\hbox{10Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\put(1450,250){h}
+\put(1650,250){i}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1700,700)(0,0)
+\put(0,0){\decamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
+8==8;9==9;{{10}}==10}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb};%
+{10}Sa==10Sa;{10}Sb==\lower10pt\hbox{10Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\put(1450,250){h}
+\put(1650,250){i}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\decamethylene[acf]{}{9==OH}
+\end{verbatim}
+\begin{center}
+\decamethylene[acf]{}{9==OH}
+\end{center}
+
+\begin{verbatim}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
+\end{verbatim}
+\begin{center}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
+\end{center}
+
+\begin{verbatim}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
+\end{verbatim}
+\begin{center}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
+\end{center}
+
+\section{Longer Polymethylene Chains}
+
+A polymethylene chain longer than ten carbons
+should be written by combining two or more units
+selected from the above-mentioned di- to deca-methylenes.
+
+To do this task, we regard one unit
+as a substituent of another unit. In this method,
+the code for the former unit is written in the
+SUBSLIST of the code for the latter. For example, the code,
+\begin{verbatim}
+\decamethylene{}{9D==\null;%
+{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
+\end{verbatim}
+generates the following formula:
+\begin{center}
+\decamethylene{}{9D==\null;%
+{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
+\end{center}
+Alternatively, we regard one unit as a
+replacement part of another unit, where
+the code for the former unit is written in the
+BONDLIST of the code for the latter (see spiro compounds).
+The same formula with slightly different appearance
+can be typeset by the code,
+\begin{verbatim}
+\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
+}{9D==\null}
+\end{verbatim}
+which gives
+\begin{center}
+\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
+}{9D==\null}
+\end{center}
+
+\section{Cisoid Tetramethylenes}
+
+The macros \verb/\tetramethylenecup/ and \verb/\tetramethylenecap/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \tetramethylenecup[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \tetramethylenecap[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenecup{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
+\put(300,250){a}
+\put(450,200){b}
+\put(600,250){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip3cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenecap{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
+\put(200,250){a}
+\put(500,150){b}
+\put(650,250){c}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
+4s==\trimethylene{}{3W==CN;1==(yl)}}{}
+\end{verbatim}
+\begin{center}
+\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
+4s==\trimethylene{}{3W==CN;1==(yl)}}{}
+\end{center}
+
+\begin{verbatim}
+\cyclopentanevi{1D==O;4A==HO;%
+2A==\tetramethylenecup[b]{%
+4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
+3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
+\end{verbatim}
+\begin{center}
+\cyclopentanevi{1D==O;4A==HO;%
+2A==\tetramethylenecup[b]{%
+4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
+3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
+\end{center}
+
+\section{Ring Fusion to Polymethylenes}
+
+The BONDLIST of each ``methylene'' command can accept bond fusion.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
+{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
+{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
+
+\vspace*{1cm}
+\end{center}
+
+
+\section{Ring Replacement to Polymethylenes}
+
+
+The ATOMLIST of each ``methylene'' command can accept atom or
+ring replacement.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\tetramethylenecup[b]{%
+1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
+4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
+2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylenecup[b]{%
+1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
+4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
+2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene{%
+2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
+4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
+5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylene{%
+2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
+4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
+5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
+
+\vspace*{1cm}
+\end{center}
+
+\section{Branched Chains}
+
+Branched chains can be drawn by using a ``methylene'' command
+with the ``yl''-function.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\decamethylene[bf]{}{%
+2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
+{10}W==OH;{{10}}==\null}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\decamethylene[bf]{}{%
+2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
+{10}W==OH;{{10}}==\null}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
+2==\dimethylene{}{1==(yl);2D==O;2W==H}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
+2==\dimethylene{}{1==(yl);2D==O;2W==H}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\octamethylene[bd]{}{1W==MEMO;%
+6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\octamethylene[bd]{}{1W==MEMO;%
+6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\chapter{Enhanced Functions of Commands for General Use}
+
+\section{Expanded Format}
+
+Commands for general use, e.g. \verb/\sixheterov/, have originally
+taken a comman format:
+\begin{verbatim}
+\genCOM[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+where \verb/\genCOM/ represents a command name such as
+\verb/\sixheterov/. In \XyMTeX{} version 2.00,
+we add a top optional argument SKBONDLIST
+to treat stereochemical information as well as
+an end optional argument OMIT to treat a bond-deleted skeleton.
+Thus, the expanded format of each command for general use
+is represented by
+\begin{verbatim}
+\genCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}[OMIT]
+\end{verbatim}
+The argument SKBONDLIST contains pairs of two alphabets in braces,
+where each pair consists of a bond specifier (a lowercase letter)
+and an uppercase letter (A or B).
+The letter A represents an $\alpha$ (downward) bond,
+while B represents a $\beta$ (upward) bond. For example,
+an SKBONDLIST, \verb/({aA}{cB})/, represents that
+bond `a' is an $\alpha$ bond in a dotted form and
+that bond `c' is a $\beta$ bond in a boldfaced form.
+The argument OMIT is a list of bond specifiers, each of
+which designates a bond to be deleted. As a matter of course,
+SKBONDLIST and OMIT take no common bond specifiers.
+
+\section{Boldfaced and Dotted Bonds}
+
+The following example shows that
+the \verb/\sixheterov/ command takes an optional SKBONDLIST,
+\verb/({eB})/, which typesets a boldfaced bond at `e' in
+the resulting tetrahydropyran ring.
+\begin{verbatim}
+\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
+5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
+\end{verbatim}
+\begin{center}
+\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
+5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
+\end{center}
+This is an example of the substitution technique in which
+the side-chain is based on \verb/\tetramethylenei/ written in the
+SUBSLIST of the outer \verb/\sixheterov/ command.
+
+The same structural formula can alternatively drawn by
+means of the replacement technique, in which
+the BONDLIST of the \verb/\sixheterov/ command is used
+for specifying the side-chain. Thus, the code,
+\begin{verbatim}
+\sixheterov({eB}){6==O;%
+5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
+}{1D==O;2A==\null;4A==\null}
+\end{verbatim}
+generates the following formula:
+\begin{center}
+\sixheterov({eB}){6==O;%
+5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
+}{1D==O;2A==\null;4A==\null}
+\end{center}
+
+We have further examples in which the \verb/\sixheterov/ command
+takes an optional SKBONDLIST.
+The following two examples show the comparison between
+the substitution and the replacement technique,
+giving formulas of chemically equivalence with
+slightly different bond lengthes.
+\begin{verbatim}
+\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
+6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
+2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
+\end{verbatim}
+\begin{center}
+\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
+6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
+2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
+\end{center}
+
+
+\begin{verbatim}
+\sixheterov({bA}{eB}){3==O;5==O;%
+6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
+2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
+}{1A==Me;4Sa==\null;4Sb==\null}
+\end{verbatim}
+\begin{center}
+\sixheterov({bA}{eB}){3==O;5==O;%
+6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
+2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
+}{1A==Me;4Sa==\null;4Sb==\null}
+\end{center}
+
+The following structure shows the use of SKBONDLIST in
+drawing a spiro ring.
+
+\begin{verbatim}
+\sixheterov[be]{%
+1s==\fiveheterov({aA}{eB}){4==N}%
+{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
+}{4D==O}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\sixheterov[be]{%
+1s==\fiveheterov({aA}{eB}){4==N}%
+{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
+}{4D==O}
+\end{center}
+
+\section{Bond Deletion}
+
+The OMIT argument of each command for general use is used
+to draw a large ring. The following example is
+a simple case in which one bond is deleted:
+\begin{verbatim}
+\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
+\end{verbatim}
+\begin{center}
+\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
+\end{center}
+
+The absence and presence of the OMIT argument
+give different formulas as follows.
+\begin{verbatim}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
+\end{verbatim}
+\begin{center}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
+\end{center}
+
+A complicated case contains a ring fusion as follows.
+First, the code
+\begin{verbatim}
+\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
+\end{verbatim}
+generates the follwing formula:
+\begin{center}
+\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
+\end{center}
+where \verb/[b]/ indicates the deletion of bond `b'.
+A similar mechanism is also available in a fusing unit,
+\verb/\sixunitv/. The code,
+\begin{verbatim}
+\sixfusev{6==O}{}{E}[b]
+\end{verbatim}
+generates a formula:
+\begin{center}
+\sixfusev{6==O}{}{E}[b]
+
+\vspace*{2cm}
+\end{center}
+where bond `e' is deleted by means of the FUSE argument (E)
+and bond `b' is deleted by means of the OMIT argument (b).
+Finally, we have the structural formula of zearalenone:
+\begin{verbatim}
+\decaheterov[cegi%
+{b\sixfusev[%
+{b\sixfusev{}{3D==O}{E}}%
+]{6==O}{}{E}[b]}%
+]{2==\null%
+}{6==MeO;8==OMe;1D==O}[b]
+\end{verbatim}
+\begin{center}
+\decaheterov[cegi%
+{b\sixfusev[%
+{b\sixfusev{}{3D==O}{E}}%
+]{6==O}{}{E}[b]}%
+]{2==\null%
+}{6==MeO;8==OMe;1D==O}[b]
+\end{center}
+
+Intermediates for steroid synthesis via intermolecular
+cycloadditions of $o$-quinodimethane derivatives
+(Kametani, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2204;
+Grieco, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2247)
+can be drawn by the bond deletion of \verb/\decaheterov/ and
+\verb/\nonaheterov/.
+\begin{verbatim}
+\decaheterov({jA}{dB}){%
+2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
+{}{1==(yl)}%
+}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\decaheterov({jA}{dB}){%
+2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
+{}{1==(yl)}%
+}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
+\end{center}
+
+
+\begin{verbatim}
+\nonaheterov({dA}{hB}){%
+6s==\fourhetero[%
+{d\sixfusev[bdf]{}{5==MeO}{b}}]%
+{}{3==(yl)}%
+}{3B==OH;8B==\null;7D==\null;9A==H}[g]
+\end{verbatim}
+\begin{center}
+\nonaheterov({dA}{hB}){%
+6s==\fourhetero[%
+{d\sixfusev[bdf]{}{5==MeO}{b}}]%
+{}{3==(yl)}%
+}{3B==OH;8B==\null;7D==\null;9A==H}[g]
+
+\vspace*{1cm}
+\end{center}
+
+A remarkable merit of using a skeleton with deleted bonds
+appears in drawing a starting compound with an acyclic part
+along with the resulting product via cyclization,
+since their codes are akin to each other.
+\begin{verbatim}
+\decaheterov[{4+}%
+{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
+]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
+\hskip2cm
+\decaheterov[%
+{c\fivefusevi{5==\null}{4D==O}{E}}%
+]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
+\end{verbatim}
+\begin{center}
+\decaheterov[{4+}%
+{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
+]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
+\hskip2cm
+\decaheterov[%
+{c\fivefusevi{5==\null}{4D==O}{E}}%
+]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
+
+\vspace*{1cm}
+\end{center}
+The latter compound was obtained by
+the cyclization of the former
+(D. J. Hart, et al., {\em J. Am. Chem. Soc.}, 1980, {\bf 102},
+397).
+
+Some polymethylene chains are drawn in a folded form.
+The bond-deletion technique can be applied to
+drawing such folded formulas.
+
+\begin{verbatim}
+\sixheterov{%
+3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
+6s==\dimethylenei{}{1D==\null;2==(yl)};%
+5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
+}{}[e]
+\end{verbatim}
+\begin{center}
+\sixheterov{%
+3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
+6s==\dimethylenei{}{1D==\null;2==(yl)};%
+5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
+}{}[e]
+\end{center}
+
+The following formula, which is an intermediate for
+synthesizing steroid skeletons, can also been
+drawn by this technique.
+
+\begin{verbatim}
+\decaheterov[k%
+{f\fivefusevi{2==\null;5==O}{}{A}}%
+{a\sixfusev[d%
+{b\fivefusevi[d%
+{a\sixfusev{%
+3s==\trimethylenei[a]{}{1==(yl);2==\null}%
+}{6==\null}{D}[c]}%
+]{}{}{D}}%
+]{}{3G==\null}{D}[c]}%
+]{5==O}{{10}Sb==\null;2G==\null}[ej]
+\end{verbatim}
+\begin{center}
+\vspace*{2cm}
+\decaheterov[k%
+{f\fivefusevi{2==\null;5==O}{}{A}}%
+{a\sixfusev[d%
+{b\fivefusevi[d%
+{a\sixfusev{%
+3s==\trimethylenei[a]{}{1==(yl);2==\null}%
+}{6==\null}{D}[c]}%
+]{}{}{D}}%
+]{}{3G==\null}{D}[c]}%
+]{5==O}{{10}Sb==\null;2G==\null}[ej]
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Enhanced Functions of Commands for Ring Fusion}
+
+\section{Expanded Format}
+
+Commands for ring fusion, e.g. \verb/\sixfusev/, have originally
+taken a comman format (version 1.02 not released):
+\begin{verbatim}
+\fuseCOM[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
+\end{verbatim}
+where \verb/\fuseCOM/ represents a command name such as
+\verb/\sixfusev/. In \XyMTeX{} version 2.00,
+we add a top optional argument SKBONDLIST
+to treat stereochemical information as well as
+an end optional argument OMIT to treat a bond-deleted skeleton.
+Thus, the expanded format of each command for general use
+is represented by
+\begin{verbatim}
+\fuseCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}[OMIT]
+\end{verbatim}
+The argument SKBONDLIST contains pairs of two alphabets in braces,
+where (1) each pair consists of a bond specifier (a lowercase letter)
+and an uppercase letter (A or B); and (2) the letter A represents
+an $\alpha$ (downward) bond,
+while B represents a $\beta$ (upward) bond.
+The argument OMIT is a list of bond specifiers, each of
+which designates a bond to be deleted. As a matter of course,
+SKBONDLIST takes no common bond specifiers with FUSE and OMIT.
+
+\section{Boldfaced and Dotted Bonds}
+
+The first example shows that the command
+\verb/\fivefusev/ with a SKBONDLIST
+generates a formula with dotted bonds at fused positions.
+\begin{verbatim}
+\nonaheterov[%
+{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
+]{1==N}{1==COOMe;8A==H;9B==H;%
+6B==\trimethylene[a]{}{3==(yl)};%
+7A==\dimethylene{}{2==(yl);1==OH}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\nonaheterov[%
+{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
+]{1==N}{1==COOMe;8A==H;9B==H;%
+6B==\trimethylene[a]{}{3==(yl)};%
+7A==\dimethylene{}{2==(yl);1==OH}}
+
+\vspace*{1cm}
+\end{center}
+
+The next example shows the use of the SKBONDLISTS of
+\verb/\threefuseh/ and \verb/\fivefusevi/
+to indicate stereochemical information.
+\begin{verbatim}
+\sixheterov[%
+{b\threefuseh({aA}{cA}){1==O}{}{B}}%
+{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
+]{1==O}{6A==PMPO-CH$_{2}$}
+\end{verbatim}
+\begin{center}
+\sixheterov[%
+{b\threefuseh({aA}{cA}){1==O}{}{B}}%
+{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
+]{1==O}{6A==PMPO-CH$_{2}$}
+\end{center}
+
+\section{Bond Deletion}
+\subsection{Larger Rings from Two or More Three-Membered Rings}
+To draw a fused four-membered ring, we can
+use two \verb/\threefuseh(i)/ commands in a nested fashion.
+Four example, the code
+\begin{verbatim}
+\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
+\end{verbatim}
+generates a four-membered unit:
+\begin{center}
+\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
+
+\vspace*{1cm}
+\end{center}
+The resulting unit is used to draw a four-membered
+fused ring, as shown below:
+\begin{verbatim}
+\sixheterov[%
+{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
+]{}{}{c}[b]}%
+]{}{}
+\end{verbatim}
+\begin{center}
+\sixheterov[%
+{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
+]{}{}{c}[b]}%
+]{}{}
+\end{center}
+
+In a similar way,
+a five-membered fusing usit can be drawn
+by combining three \verb/\threefuseh(i)/ commands,
+as shown in the following example:
+\begin{verbatim}
+\decaheterov[%
+{d\threefuseh[%
+{a\threefusehi[%
+{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
+]{2==O;1==\null}{}{c}[a]}%
+]{2==O}{}{C}[a]}%
+]{}{}
+\end{verbatim}
+\begin{center}
+\decaheterov[%
+{d\threefuseh[%
+{a\threefusehi[%
+{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
+]{2==O;1==\null}{}{c}[a]}%
+]{2==O}{}{C}[a]}%
+]{}{}
+
+\vspace*{1cm}
+\end{center}
+
+\subsection{Further Rings}
+
+A six-membered ring fused by a four-membered unit
+gives an eight-membered ring as follows:
+\begin{verbatim}
+\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
+\end{center}
+The bond `b' of the four-membered unit in
+the resulting ring is deleted and used
+as an acceptor ring of a six-membered fusing
+unit. Then, we have a twelve-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+After applying the bond-deletion technique to the
+twelve-membered ring, this is used as an acceptor of
+a five-membered fusing unit. Then we have a
+fifteen-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev{}{}{d}}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev{}{}{d}}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+A further fusion of a six-membered unit gives
+a ninteen-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev[%
+{a\sixfusev{}{}{f}}%
+]{}{}{d}[a]}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev[%
+{a\sixfusev{}{}{f}}%
+]{}{}{d}[a]}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\chapter{Reaction Schemes}
+\section{Compound Numbers}
+
+\begingroup
+%%%%%%%%%%%%%%%
+\makeatletter
+\def\DeclareMathVersion#1{} +\def\SetSymbolFont#1#2#3#4#5#6{}
+\@@input chemist.sty
+\makeatother
+%%%%%%%%%%%%%%%
+
+The XyMcompd environment has two functions:
+\begin{enumerate}
+\itemsep=0pt \parskip=0pt
+\item for giving a compound number and specifying a reference key and
+\item for specifyin the size of a domain to draw a structural formula.
+\end{enumerate}
+For example, the code:
+\begin{verbatim}
+\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}
+\end{verbatim}
+produces the following formula,
+\begin{center}
+\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}
+\end{center}
+The compound number (\cref{cPhCL}) can be referred to
+by designating \verb/\cref{cPhCL}/.
+The code \verb/(400,750)/ specifies the size of
+the drawing domain and the code \verb/(220,200)/ represents
+x- and y-shift values.
+When the XyMcompd environment is
+surrounded by a frame generated by the \verb/\fbox/ command,
+we obtain the following diagram:
+\begin{center}
+\fbox{%
+\begin{XyMcompd}(400,750)(220,200){c1PhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}}
+\end{center}
+The original \verb/\bzdrv/ command
+has a domain to accomodate substituents as follows:
+\begin{center}
+\fbox{\bzdrv{1==Cl}}
+\end{center}
+If such adjustment and cross-reference are unnecessary,
+we write the code:
+\begin{verbatim}
+\begin{XyMcompd}(,)(,){}{}
+\sixheterov{1==S;4==S}{}
+\end{XyMcompd}
+\end{verbatim}
+Thereby, we obtain the formula of the original
+specification:
+\begin{center}
+\begin{XyMcompd}(,)(,){}{}
+\sixheterov{1==S;4==S}{}
+\end{XyMcompd}
+\end{center}
+which is the same formula generated by the code:
+\begin{verbatim}
+\sixheterov{1==S;4==S}{}
+\end{verbatim}
+The last argument of the XyMcompd environment is
+to specify the subnumber of a compound number.
+For example, the code:
+\begin{verbatim}
+\begin{XyMcompd}(400,750)(220,200){PhF}{a}
+\bzdrv{1==F}
+\end{XyMcompd}
+\end{verbatim}
+produces the following formula,
+\begin{center}
+\begin{XyMcompd}(400,750)(220,200){PhF}{a}
+\bzdrv{1==F}
+\end{XyMcompd}
+\end{center}
+
+Derivatives of a compound
+numbered in the XyMderiv environment
+are designated by
+subnumbering using a \verb/\derivlist/ command
+in the XyMderiv environment.
+For example, the code:
+\begin{verbatim}
+\begin{XyMderiv}
+\begin{XyMcompd}(400,750)(220,200){PhX}{}
+\bzdrv{1==X}
+\end{XyMcompd}
+\derivlist{X = Cl;X = NO$_{2}$;X = F}
+\end{XyMderiv}
+\end{verbatim}
+produces the following formula:
+\begin{center}
+\begin{XyMderiv}
+\begin{XyMcompd}(400,750)(220,200){PhX}{}
+\bzdrv{1==X}
+\end{XyMcompd}
+\derivlist{X = Cl;X = NO$_{2}$;X = F}
+\end{XyMderiv}
+\end{center}
+
+\section{Reaction Arrows}
+
+In addition of the reaction arrows described in
+Ref.\ \cite{fujita2}, we have added
+further reaction arrows shown in Fig.\ \ref{FFA1KKKR}.
+They are defined in the package {\sf chemist.sty}.
+Each arrow command is the following format:
+\begin{verbatim}
+\ARROWNAME[xshift]{yshift}{length}{itemover}{itemunder}
+\end{verbatim}
+where \verb/\ARROWNAME/ represents a command name;
+\verb/xshift/ is an optional argument to show a
+horizontal adjustment value;
+\verb/yshift/ is an argument to show a vertical adjustment value;
+\verb/length/ is an argument to desiginate the length of the arrow;
+and the arguments
+\verb/itemover/ and \verb/itemunder/
+represent items placed over and under the arrow.
+The name (\verb/\ARROWNAME/) of each reaction arrow take the format of
+\verb/\react/$\ldots$\verb/arrow/ in which $\ldots$
+is selected from the following list:
+r = right arrow, l = left arrow, lr = leftright arrow,
+d = down arrow, u = up arrow, du = down up arrow,
+eq = equilibium arrow, veq = vertical equiliblium arrow,
+deq = down equiliblium arrow, leq = up equilibium arrow,
+dlr = down leftright arrow, ulr = up leftright arrow,
+sw = southwest arrow, se = southeast arrow,
+nw = northwest arrow, and ne = northeast arrow.
+
+\begin{figure}
+\begin{center}
+\begin{center}\begin{tabular}{ccccccccc}
+(r) &
+\hskip0\unitlength
+\reactrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(l) &
+\hskip0\unitlength
+\reactlarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(d) &
+\hskip0\unitlength
+\reactdarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(u) &
+\hskip0\unitlength
+\reactuarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(sw) &
+\hskip0\unitlength
+\reactswarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(se)&
+\hskip0\unitlength
+\reactsearrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(nw) &
+\hskip0\unitlength
+\reactnwarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ne) &
+\hskip0\unitlength
+\reactnearrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(du)&
+\hskip0\unitlength
+\reactduarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(lr) &
+\hskip0\unitlength
+\reactlrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ulr)&
+\hskip0\unitlength
+\reactulrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(dlr)&
+\hskip0\unitlength
+\reactdlrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(eq) &
+\hskip0\unitlength
+\reacteqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ueq) &
+\hskip0\unitlength
+\reactueqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(deq)&
+\hskip0\unitlength
+\reactdeqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(veq) &
+\hskip0\unitlength
+\reactveqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\\end{tabular}\end{center}\end{center}
+\def\tblref{FFA1KKKR}
+\caption{Reaction arrows of various types}
+\label{\expandafter\tblref}
+\end{figure}
+
+\section{Display Formulas and Tabular Schemes}
+
+Display formulas containing structural formulas and
+reaction arrows are
+drawn by using the equation environment of \LaTeX{} or
+the chemeqn environment of the {\sf chemist} package.
+For example, the code,
+\begin{verbatim}
+\begin{equation}\label{EQ1}
+\begin{XyMcompd}(400,750)(220,200){BPHOH}{}
+\bzdrv{1==OH}
+\end{XyMcompd}
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{CH\mbox{$_{3}$}OH\\}{HCl\\}
+\begin{XyMcompd}(400,750)(220,200){PHOME}{}
+\bzdrv{1==OCH\mbox{$_{3}$}}
+\end{XyMcompd}
+\end{equation}
+\end{verbatim}
+produces the following display formula:
+\begin{equation}\label{EQ1}
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{1==OH}
+\end{XyMcompd}
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{CH\mbox{$_{3}$}OH\\}{HCl\\}
+\begin{XyMcompd}(400,750)(220,200){PHOME}{}
+\bzdrv{1==OCH\mbox{$_{3}$}}
+\end{XyMcompd}
+\end{equation}
+
+Tabular schemes containing structural formulas and
+reaction arrows are drawn by using
+the XyMtab environment of the {\sf chemist} package.
+For example, the code,
+\begin{verbatim}
+\begin{XyMtab}{cccccc}
+\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
+\bzdrv{{1}==Cl;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
+{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{{1}==OH;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
+\bzdrv{{1}==OCH\mbox{$_{3}$};}
+\end{XyMcompd}
+%
+&\\&&&
+\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
+{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
+%
+\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
+\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
+\end{XyMcompd}
+&\\
+\end{XyMtab}
+\end{verbatim}
+generates a tabular scheme as follows:
+\begin{XyMtab}{cccccc}
+\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
+\bzdrv{{1}==Cl;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
+{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{{1}==OH;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
+\bzdrv{{1}==OCH\mbox{$_{3}$};}
+\end{XyMcompd}
+%
+&\\&&&
+\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
+{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
+%
+\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
+\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
+\end{XyMcompd}
+&\\
+\end{XyMtab}
+
+
+\endgroup
+
+
+
+
+\begin{thebibliography}{99}
+
+\bibitem{fujita2a} NIFTY-Serve achives,
+FPRINT library No. 7, Item Nos. 201, 202, 204.
+\bibitem{fujita2b} CTAN,
+tex-archive/macros/latex209/contrib/xymtex/.
+\bibitem{fujita1} Fujita S., ``Typesetting structural formulas with
+the text formatter \TeX{}/\LaTeX{}'',
+{\em Comput. Chem.}, {\bf 18}, 109 (1994).
+\bibitem{fujita1a} Fujita S., ``\XyMTeX{} for Drawing Chemical
+Structural Formulas'',
+{\em TUGboat}, {\bf 16} (1), 80 (1995).
+\bibitem{lamport2}
+Lamport L., {\em \LaTeX{}. A document Preparation System},
+2nd ed. for \LaTeXe{}, Addison-Wesley, Reading (1994).
+See also
+Lamport L., {\em \LaTeX{}. A document Preparation System},
+Addison-Wesley, Reading (1986).
+\bibitem{goossens}
+Goossens, M., Mittelbach, F., \& Samarin, A.,
+{\em The \LaTeX{} Companion},
+Addison-Wesley, Reading (1994).
+\bibitem{fujita2c} NIFTY-Serve achives,
+FPRINT library No. 7, Item Nos. 385, 386.
+\bibitem{fujita2d}
+http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
+\bibitem{XyMTeXbook}
+Fujita, S., {\em \XyMTeX{}---Typesetting Chemical Structural
+Formulas}, Addison-Wesley, Tokyo (1997).
+The book title is abbreviated as ``\XyMTeX book'' in
+the present manual.
+\bibitem{knuth}
+For the \TeX{} system, see
+ Knuth D. E., {\em The \TeX{}book},
+Addison-Wesley, Reading (1984).
+\bibitem{haas}
+For the Chem\TeX{} macros, see
+ Haas R. T. \& O'Kane K. C., {\em Comput. Chem.}, {\bf 11}, 251 (1987).
+\bibitem{ramek}
+For drawing chemical formulas by \TeX{}, see
+Ramek, M., in Clark, M. (ed), \TeX: Applications, Uses, Methods,
+Ellis Horwood, London (1990), p. 277.
+\bibitem{fujita2}
+For chemical application of the \LaTeX{} system, see
+Fujita S., {\em Kagakusha-Seikagakusha no tame no
+\LaTeX{} (\LaTeX{} for Chemists and Biochemists)},
+Tokyo Kagaku Dozin, Tokyo (1993).
+\bibitem{podar}
+For epic macros, see
+Podar S., ``Enhancements to the picture environment
+of \LaTeX{}'', Manual for Version 1.2 dated July 14, 1986.
+\bibitem{graphic}
+For graphic applications of \TeX{}, \LaTeX{} and relevant systems,
+see Goossens, M., Rahtz, S., \& Mittelbach, F.,
+{\em \LaTeX{} Graphics Companion},
+Addison Wesley Longman, Reading (1997).
+\end{thebibliography}
+
+\endinput
+
+\begin{verbatim}
+\end{verbatim}
+\begin{center}
+\end{center}
+
+
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc b/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc new file mode 100644 index 00000000000..91a2b797172 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/xymtex2.doc @@ -0,0 +1,94 @@ +xymtex2.doc
+On-line document for XyMTeX in English
+Copyright (C) 1993, 1996, 1998 by Shinsak Fujita. All rights reserved.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+renamed and revised: xymtex1.doc
+Copyright (C) 1993, 1996 by Shinsak Fujita. All rights reserved.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+`XyMTeX' is a macro package for drawing chemical structural formulas.
+
+(1) Setting up
+
+ This package has been frozen with LHA. Let the frozen package
+ (xymtex2.lzh) be placed in the b: directory. To melt the frozen package
+ in the a:\tex directory, please input the following statement in the
+ command line of your display.
+
+ a:\tex>lha x b:\xymtex2
+
+ Thereby, the directory <\xymtex> is automatically created as the
+ subdirectory of the a:\tex directory; and the following hierarchy of
+ directories and files is generated.
+
+ a---\tex---\xymtex --- hetaromh.sty, hetarom.sty, ccycle.sty,
+ | | | chemstr.sty, carom.sty, lowcycl.sty, aliphat.sty,
+ | hcycle.sty, locant.sty, polymers.sty, chemist.sty
+ | methylen.sty, fusering.sty
+ |
+ | (dtx files)
+ |
+ |--\drvdvi---drv files, dvi files
+ |
+ |--\doc200--- xymtx200.tex, xymtx200.dvi,
+ | xymyl.tex, xymadd.tex
+ | (other files for the document preparation)
+ |
+ |---xymtex2.doc (this document)
+ |
+ |---xymtex2.jpn (on-line document in Japanes)
+ |
+ |---readme2.doc (notes in English)
+ |
+ |---readme2.jpn (notes in Japanese)
+
+ The package (sty) files in the \xymtex directory contains the macro
+ codes of XymTeX commands. The specification of XyMTeX commands and
+ examples of using these commands are included in the xymtex.dvi file of
+ the \doc directory.
+
+ The xymtx200.dvi file is a dvi file that is a manual for utilizing
+ XyMTeX (about 100 pages). The processed dvi file can be obtained in the same
+ directory of this distribution. It can be printed with an appropriate
+ printer driver (lips3dvi, dviprt, or others) and can be displayed with an
+ appropriate previewer (dviout, etc.).
+
+ The xymtx200.tex is the main file of the manuscript for creating the
+ xymtx200.dvi. The other tex files in the \doc200 directory are input files
+ which are read by the main file.
+
+(2) Designating a serach path
+
+ In order to set a search path for using XyMTeX, please add the directory
+ name to the TEXINPUTS line in \texmf.cnf, which is stored in the
+ \tex\texmf\web2c directory (for a standard distribution of LaTeX2e).
+ For example, you add
+
+ platex2e_inputs = .;$TEXMF/tex/platex2e//;$TEXMF/tex/latex2e//;
+ $TEXMF/tex//;a:/tex/inputs//;
+ a:/tex/chem//;a:/tex/xymtex//;a:/tex/opsty//
+ ~~~~~~~~~~~~~~~ <---- to be added
+
+(3) Writing your manuscript
+
+ Each command of XyMTeX can be used if you add the name of the
+ corresponding style file to the option list at the top of your
+ manuscript file, e.g.
+
+ \documentclass{article}
+ \usepackage{epic,hetarom,hetaromh}
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ where the underlined names are XyMTeX package files containing your
+ requisite commands. If all of the XyMTeX commands are required,
+ the short-cut declaration
+
+ \documentclass{article}
+ \usepackage{xymtex}
+
+ can be used for simplicity.
+
+(4) Running LaTeX2e or pLaTeX2e
+
+ You should use XyMTeX commands within LaTeX.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(END)
+
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex b/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex new file mode 100644 index 00000000000..fd7de31385c --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/xymtx200.tex @@ -0,0 +1,56 @@ +%xymtx200.tex +%Copyright (C) 1998, Shinsaku Fujita, All rights reserved. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%This file is a part of xymtx200.tex that is the manual of the macro +%package `XyMTeX' for drawing chemical structural formulas. +%This file is not permitted to be translated into Japanese and any other +%languages. +\typeout{``xymtx200.tex''--- +This file is a part of xymtex.tex that is the manual of the macro % +package `XyMTeX'. 1998/12/25 S. Fujita} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\documentclass{book} +%\usepackage{xymtex} +\usepackage{carom} +\usepackage{hetaromh} +\usepackage{aliphat} +\usepackage{hcycle} +\usepackage{fusering} +\usepackage{methylen} +\usepackage{locant} +\usepackage{lowcycle} +\usepackage{epic} +\usepackage{xymman} +% +\begin{document} +\mbox{} +\thispagestyle{empty} +\vfill +\begin{center} +{\LARGE\bfseries \protect\XyMTeX{} for +Typesetting Chemical Structural Formulas. +Enhanced Functions for Version 2.00} + +\vspace*{2cm} +{\Large\bfseries Shinsaku Fujita} + +\vspace*{1cm} +Department of Chemistry and Materials Technology, \\ +Kyoto Institute of Technology, \\ +Matsugasaki, Sakyoku, Kyoto, 606 Japan +\par\vspace*{1cm} +December 25, 1998 (Version 2.00) \\ +(revised March 20, 1999) +\end{center} +\vfill\mbox{} +% +\newpage +\tableofcontents +% +\input{xymyl} +\input{xymadd} + +\end{document} + + +
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/xymtex/xymyl.tex b/Master/texmf-dist/doc/latex/xymtex/xymyl.tex new file mode 100644 index 00000000000..daae2314c7d --- /dev/null +++ b/Master/texmf-dist/doc/latex/xymtex/xymyl.tex @@ -0,0 +1,2900 @@ +%xymyl.tex +%Copyright (C) 1998, Shinsaku Fujita, All rights reserved. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%This file is a part of xymtx200.tex that is the manual of the macro +%package `XyMTeX' (version 2.00) for drawing chemical structural formulas. +%This file is not permitted to be translated into Japanese and any other +%languages. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Introduction} + +\section{History} +\subsection{Version 1.00 (1993)} + +The first version of the \XyMTeX{} system (version 1.00, 1993) +with a detailed on-line manual +has been depositted to NIFTY-Serve archives (FPRINT library No.\ 7) +by the author\cite{fujita2a} and to the CTAN by volunteers\cite{fujita2b}. +The articles on the construction and usage of \XyMTeX{} have appeared in +Ref. \cite{fujita1,fujita1a}. +Although the packages (style files) of the \XyMTeX{} system have +originally aimed at using under +the \LaTeX{}2.09 system, they also work effectively +under the \LaTeXe{} system \cite{lamport2,goossens} without any changes. Thus, +what you have to do is to rewrite a top statement for \LaTeX{}2.09 such as +\begin{verbatim} +\documentstyle[epic,carom,hetarom]{article} +\end{verbatim} +into the counterpart for \LaTeXe{}, {\em e.g.}, +\begin{verbatim} +\documentclass{article} +\usepackage{epic,carom,hetarom} +\end{verbatim} + +\subsection{Version 1.01 (1996)} + +The Version 1.01 of the \XyMTeX{} system has been released in 1996, +when the system with a detailed on-line manual +was depositted to NIFTY-Serve archives (FPRINT library No.\ 7) +by the author \cite{fujita2c}. The system is now available +from Fujita's homepage \cite{fujita2d} via internet +or from a CD-ROM that is attached to the referece manual published +in 1997 \cite{XyMTeXbook}.\footnote{% +The basic items described in the \XyMTeX book are +common and applied also in Version 2.00. +Please refer to the \XyMTeX book, when +they are used without explanations in this manual.} + +The purpose of version 1.01 is +the updating of \XyMTeX{} to meet the \LaTeXe{} way of +preparing packages (option style files). +The following items have +been revised or added for encouraging the \XyMTeX{} users +to write articles of chemical fields. + +\begin{enumerate} +\item Each of the old sty files of \XyMTeX{} has been rewritten +into a dtx file, from which we have prepared a new sty file by using +the {\sf docstrip} utility of \LaTeXe. +If you want to obtain the document of each source +file, you may apply \LaTeXe{} to the corresponding drv file, which +has also been prepared from the dtx file by using the {\sf docstrip} +utility. +\item Macros for drawing chair-form cyclohexanes and +for drawing adamantanes of an alternative type have been added. +\item Macros for drawing polymers have been added. +\item The package {\sf chemist.sty}, which was originally +prepared for \cite{fujita2}, has been rewritten into a dtx file and +added to \XyMTeX{} as a new component. This package enables us +to use various functions such as + \begin{enumerate} + \item the numbering and cross-reference + of chemical compounds and derivatives, + \item various arrows of fixed and flexible length for chemical equations, + \item `chem' version and chemical environments for describing + chemical equations, and + \item various box-preparing macros for chemical or general use. + \end{enumerate} +\end{enumerate} + +\subsection{Version 1.02 (1998, not released)} + +The Version 1.02 of \XyMTeX{} has been devoted to the +development of the nested-substitution method, +which simplifies the coding of \XyMTeX{} commands. +In \XyMTeX{} version 1.01, each subsitituent is assumed to be rather small +so that it can be specified by means of a substitution list ``SUBSLIST''. +For example, 1-fluorobenzene, +\begin{center} +\bzdrh{4==F} +\end{center} +is drawn by the following code: +\begin{verbatim} +\bzdrh{4==F} +\end{verbatim} +To draw a substituent with a complicated structure, +a designation of the same line produces an insufficient result. +Thus, if we simply write the code +\begin{verbatim} +\bzdrh{4==\bzdrh{}} +\end{verbatim} +to draw a biphenyl structure, +we have a separate structure as follows: + +\vskip1.5\baselineskip +\begin{center} +\bzdrh{4==\bzdrh{}} +\end{center} + +Within the scope of \XyMTeX version 1.01, +such a substituent with a complicated structure +can be treated by three distinct methods +(see Chapters 14 and 15 of \XyMTeX book). + +\begin{enumerate} +\item(Method I) +When we write a code \verb/\bzdrh{4==}\bzdrh{}/ +to draw a biphenyl structure, +we obtain an insufficient result such as +\begin{center} +\bzdrh{4==}\bzdrh{} +\end{center} +since each command has an area to draw its target sturucture. +To remedy this situation, we can write +\begin{verbatim} +\bzdrh{4==}\kern-33pt\bzdrh{} +\end{verbatim} +Then, we obtain the following structure: +\begin{center} +\bzdrh{4==}\kern-33pt\bzdrh{} +\end{center} +However, a more complicated adjustment is +necessary to apply this method to a case in which +the components of a structual formula are not linearly aligned. +\item (Method II) +We can carry out the same task by using +the \LaTeX{} picture einvironment. +The code +\begin{verbatim} +\begin{picture}(1400,700)(0,0) +\put(0,0){\bzdrh{4==}} +\put(546,0){\bzdrh{}} +\end{picture} +\end{verbatim} +produces the following structure: +\begin{center} +\begin{picture}(1400,700)(0,0) +\put(0,0){\bzdrh{4==}} +\put(546,0){\bzdrh{}} +\end{picture} +\end{center} +This method realizes such a complicated adustment as mentioned above, +since the \verb/\put/ is capable of putting components at arbitrary positions. +\item (Method III) +In a further method of drawing the biphenyl structure, +one phenyl group is regarded as a substituent of the other phenyl. +These two parts can be combined by writing a code, +\begin{verbatim} +\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}} +\end{verbatim} +in which the commands \verb/\kern/ (for horizontal adjustment) and +\verb/\lower/ (for vertical adjustment) are used to adjust the +substitution site. Thereby, we have +\begin{center} +\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}} +\end{center} +This method has a disadvantage of calculating +adjustment values manually for every formula to be drawn. +\end{enumerate} + +These three methods are useful for drawing complicated structure. +However, they have an essential disadvantage: their codes give +no, or at most partial, connectivity data between parts to be combined, though +such parts appear to be combined as a picture. +For example, the code +\begin{verbatim} +\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}} +\end{verbatim} +producing +\begin{center} +\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}} +\end{center} +has no connectivity data at the meta position to the chlorine +atom of the scecond benzene ring. + +As clarified by the discussion in the preceding paragraphs, +the \XyMTeX{} system should have a function to place +substituents at appropriate sites without complex designation, +where connectivity data are maintained during the process +of drawing. +The target of \XyMTeX{} Version 1.02 is to treat nested +substitution with the automatic adjustment of subsitution sites +(named as the nested-substitution method). +Concretely speaking, for example, +such a code as +\begin{verbatim} +\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}} +\end{verbatim} +directly produces +\begin{center} +\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}} +\end{center} +where the code shows that the second benzene ring is +linked to the para position of the first benzene ring +at the meta position to the chlorine atom. +Thus the target accomplished by the ``yl''-function, +as shown in this code. + +\section{Version 2.00 (1998)} + +The ``yl''-function developed in \XyMTeX{} Version 1.02 +is regarded as a modification of SUSBLISTs. +As an extention of this mothodology, +BONDLISTs can be modified to treat ring fusion, +since each ring fusion is considered to be a kind of +substitution on a bond. In addition, +ATOMLIST can also be used to +treat spiro rings, since each spiro ring +is a kind of atom replacement at an appropriate vertex. + +To expand the scope of the \XyMTeX{} system, +we introduce several new functions as follows. +\begin{enumerate} +\item Several bond modifiers are added to draw +alternative up- and down-bonds as well as +to treat ring fusion. +\item The ``yl''-function for SUBSLISTs is further improved. +The commands \verb/\ryl/ and \verb/\lyl/ are +prepared to typeset intervening moieties. +\item Ring fusion is treated by adding a fusing unit to +the BONDLIST of each command. +\item Several fusing units (three- to six-membered units) +are developed (fusering.sty). +\item A new function for typesetting a spiro ring is +introduced in each command for general use. +A spiro ring is treated by ring-replacement technique, +where the corresponding code is +written in the ATOMLIST of each command. +\item Commands for typeseting zigzag polymethylenes are +developed (methylen.sty). +\item Commands for drawing six-six fused carbocycles +and heterocycles are added. +\item An optional argument SKBONDLIST is added to +each command of general use for drawing +boldfaced and dotted skeletal bonds. +\item An optional argument OMIT is added to +each command of general use for drawing related +skeletons by bond deletion. +\end{enumerate} + +The \XyMTeX{} system (version 2.00) consists of package files +listed in Table \ref{tt:200a1}. +The package file `\textsf{chemstr.sty}' is the basic file +that is automatically read within any other package file of \XyMTeX{}. +It contains macros for internal use, {\em e.g.}, +common commands for bond-setting and atom-setting. +The other package files contain macros for users. +These files are designed to work not only as packages for \LaTeXe +but also as option style files for \LaTeX{}2.09 (native mode). +\begin{table}[hpbt] +\caption{Package Files of \protect\XyMTeX{}} +\label{tt:200a1} +\begin{center} +\begin{tabular}{lp{10cm}} +\hline +package name & \multicolumn{1}{c}{included functions} \\ +\hline +\textsf{aliphat.sty} + & macros for drawing aliphatic compounds \\ +\textsf{carom.sty} + & macros for drawing vertical and horizontal types + of carbocyclic compounds \\ +\textsf{lowcycle.sty} + & macros for drawing five-or-less-membered carbocyles. \\ +\textsf{ccycle.sty} + & macros for drawing bicyclic compounds etc. \\ +\textsf{hetarom.sty} + & macros for drawing vertical types of heterocyclic compounds \\ +\textsf{hetaromh.sty} + & macros for drawing horizontal types of heterocyclic compounds \\ +\textsf{hcycle.sty} + & macros for drawing pyranose and furanose derivatives \\ +\textsf{chemstr.sty} + & basic commands for atom- and bond-typesetting \\ +\textsf{locant.sty} + & commands for printing locant numeres \\ +\textsf{polymers.sty} + & commands for drawing polymers \\ +\textsf{fusering.sty} + & commands for drawing units for ring fusion \\ +\textsf{methylen.sty} + & commands for drawing zigzag polymethylene chains \\ +\textsf{xymtex.sty} + & a package for calling all package files \\ +\textsf{chemist.sty} + & commands for using `chem' version and chemical environments \\ +\hline +\end{tabular} +\end{center} +\end{table} + +The use of \textsf{xymtex.sty} calling all package files +may sometimes cause the ``\TeX{} capacity exceeded'' error. +In this case, you should call necessary packages distinctly +by using the \verb/\usepackage/ command. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Bond Modifiers Added} + +\section{Alternative Bond Modifiers for Up and Down Bonds} + +In addition to the original bond modifiers (see the \XyMTeX book), +the present version of \XyMTeX{} +provides us with several bond modifiers that can be used +in the argument SUBSLIST of each \XyMTeX{} command. +These modifiers are listed in Table \ref{tt:200a} +along with the original bond modifiers. + +\begin{table} +\caption{Locant numbering and bond modifiers for SUBSLIST} +\label{tt:200a} +\begin{center} +\begin{tabular}{lp{12cm}} +\hline +Bond Modifiers & \multicolumn{1}{c}{Printed structures} \\ +\hline +\multicolumn{2}{l}{\bfseries Original Bond Modifiers} \\ + $n$ or $n$S & exocyclic single bond at $n$-atom \\ + $n$D & exocyclic double bond at $n$-atom \\ + $n$A & alpha single bond at $n$-atom \\ + $n$B & beta single bond at $n$-atom \\ + $n$Sa & alpha (not specified) single bond at $n$-atom \\ + $n$Sb & beta (not specified) single bond at $n$-atom \\ + $n$SA & alpha single bond at $n$-atom (dotted line) \\ + $n$SB & beta single bond at $n$-atom (boldface) \\ +\hline +\multicolumn{2}{l}{\bfseries Bond Modifiers Added} \\ + $n$Sd & alpha single bond at $n$-atom (dotted line) + with an alternative direction to $n$SA \\ + $n$Su & beta single bond at $n$-atom (boldface) + with an alternative direction to $n$SB \\ + $n$FA & alpha single bond at $n$-atom (dotted line) + for ring fusion \\ + $n$FB & beta single bond at $n$-atom (boldface) + for ring fusion \\ + $n$GA & alpha single bond at $n$-atom (dotted line) + for the other ring fusion \\ + $n$GB & beta single bond at $n$-atom (boldface) + for the other ring fusion \\ +\hline +\end{tabular} +\end{center} +\end{table} + +The added bond modifiers, `Sd' (d for down) and `Su' (u for up), designate +$\alpha$- and $\beta$-bonds in such an exchanged +manner as the original bond modifiers, `SA' and `SB' designate. +Figure \ref{ff:200a} shows the comparison between +the added bond modifiers and the original ones +by using a cyclohexane skeleton (\verb/\cyclohexanev/). + +\begin{figure}[h] +\begin{center} +\cyclohexanev{1Sd==1Sd;1Su==1Su;% +2Sd==2Sd;2Su==2Su;3Sd==3Sd;3Su==3Su;% +4Sd==4Sd;4Su==4Su;5Sd==5Sd;5Su==5Su;% +6Sd==6Sd;6Su==6Su} \qquad\qquad +\cyclohexanev{1SA==1SA;1SB==1SB;% +2SA==2SA;2SB==2SB;3SA==3SA;3SB==3SB;% +4SA==4SA;4SB==4SB;5SA==5SA;5SB==5SB;% +6SA==6SA;6SB==6SB} +\caption{Bond Modifiers for $\alpha$- and $\beta$-Bonds} +\label{ff:200a} +\end{center} +\end{figure} + +\section{Bond Modifiers for Ring Fusion} + +In the present verstion (2.00), we have added a new function for ring fusion. +Since the function requires bond modifiers +for desiginating substitution at such fused positions, +we have added the modifiers, `FA', `FB', `GA', and `GB'. +These modifiers are illustrated in Figure \ref{ff:200b} + + +\begin{figure} +\begin{center} +\cyclohexanev{1FA==1FA;1GB==1GB;3FA==3FA;3GB==3GB;5FA==5FA;5GB==5GB} +\qquad\qquad +\cyclohexanev{1FB==1FB;1GA==1GA;3FB==3FB;3GA==3GS;5FB==5FB;5GA==5GA} + + +\cyclohexanev{2FA==2FA;2GB==2GB;4FA==4FA;4GB==4GB;6FA==6FA;6GB==6GB} +\qquad\qquad +\cyclohexanev{2FB==2FB;2GA==2GA;4FB==4FB;4GA==4GA;6FB==6FB;6GA==6GA} +\caption{Bond Modifiers for Ring Fusion} +\label{ff:200b} +\end{center} +\end{figure} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Nested-Substituent Method} + +\section{Introduction} + +Chapter 14 (Combining Structures) +and Chapter 15 (Large Substituents) of the \XyMTeX book +have described several techniques to draw complicated formulas. +Among them, the nested-substituent method is most promising. +For example, the code +\begin{verbatim} +\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}} +\end{verbatim} +gives a combined structure, +\begin{center} +\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}} +\end{center} +Although the code shows the connectivity between the two phenyl +groups, the following disadvantages remain: +\begin{enumerate} +\item The code contains no data indicating that the connection site +is the meta-position concerning the fluorine atom. +\item The commands \verb/\kern/ (for horizontal adjustment) and +\verb/\lower/ (for vertical adjustment) are necessary to adjust the +subsitutution site. +\end{enumerate} + +As clarified by the above examples, the main target of \XyMTeX{} +Version 2.00 is to extend the nested-substituent method +so that it provides a function of indicating full connectivity data +as well as a function of +automatical adjustment without using such commands +as \verb/\kern/ and \verb/\lower/. + +\section{``yl''-Functions} + +In \XyMTeX{} Version 2.00, the ``yl''-function is +added so as to improve the nested-subsituent method. +Thereby, any structure drawn by a \XyMTeX{} +command (except a few special commands) +can be converted into the corresponding substituent +by adding the code \verb/(yl)/ with a locant number. +The resulting code for the substituent can be added +to the SUBSLIST of any other command for +drawing a mother skeleton, where the final code +contains the full connectivity data of the combined structure. +For example, the code +\begin{verbatim} +\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}} +\end{verbatim} +typesets the following structure, +\begin{center} +\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}} +\end{center} +Thus, fluorobenzene produced by the command \verb/\bzdrh{3==F}/ +is converted into a subsituent, i.e. 3-fluorophenyl, +by adding the code \verb/(yl)/, as shown in the +code, \verb/\bzdrh{1==(yl);3==F}/. Then, the resulting code +is added to the SUBSLIST of another command \verb/\bzdrh/. + +The connectivity at the meta-position is +represented by the statement \verb/1==(yl)/ of +the innner code \verb/\bzdrh{1==(yl);3==F}/. +Note that the inner code \verb/\bzdrh{1==(yl);3==F}/ produces +a substituent with no height and no width and that +the reference point of the substituent is shifted to +the point no.~1 by the (yl)-statement in order to +link to the mother structure (the phenyl group +produced by the code \verb/\bzdrh{1==Cl;4=={...}}/). + +The shift of a reference point becomes clear when +we examine a formula, +\begin{center} +\vspace*{2cm} +\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}} +\end{center} +generated by the code, +\begin{verbatim} +\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}} +\end{verbatim} +The original structure of the substituent with no ``yl'' function +is found to be +\begin{center} +\begin{picture}(700,800)(0,0) +\put(0,0){\bzdrh{3==F}} +\put(0,0){\circle*{50}} +\end{picture} +\end{center} +as generated by the code +\begin{verbatim} +\begin{picture}(700,800)(0,0) +\put(0,0){\bzdrh{3==F}} +\put(0,0){\circle*{50}} +\end{picture} +\end{verbatim} +where the solid circle is the reference point. +The picture shown above +indicates that the reference point +is different from any vertices of the benzene ring. +On the other hand, the code with a ``yl''-function, +\begin{verbatim} +\begin{picture}(700,800)(0,-200) +\put(0,0){\bzdrh{6==(yl);3==F}} +\put(0,0){\circle*{50}} +\end{picture} +\end{verbatim} +typesets the following structure, +\begin{center} +\begin{picture}(700,800)(0,-200) +\put(0,0){\bzdrh{6==(yl);3==F}} +\put(0,0){\circle*{50}} +\end{picture} +\end{center} +The picture shown above +indicates that the reference point is shifted to the position +no.~6 of the benzene ring. + +The code \verb/\bzdrh{1==(yl);3==F}/ producing the substituent +can be used in the argument of any structure-drawing command +of \XyMTeX{}. The following example is the one +in which it is placed in the argument of a command \verb/\bzdrv/. +Thus, the code +\begin{verbatim} +\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}} +\end{verbatim} +typesets the following structure, +\begin{center} +\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}} +\end{center} + +The structural formula of 1-chloro-4-morphorinobenzene +can be drawn in two different ways. The codes, +\begin{verbatim} +\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}} +\hskip 6cm +\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}} +\end{verbatim} +produce the following formulas: +\begin{center} +\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}} +\hskip 6cm +\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}} +\end{center} +In the former code, +the morphorino group is regareded as a substituent, +as the name ``1-chloro-4-morphori\-nobenzene'' indicates. +On the other hand, the chlorophenyl group +is considered to be a substituent in the latter code +so as to correspond to the name ``N-(4-chlorophenyl)morphorine''. + +The ``yl''-function is quite versatile, as indicated by the code, +\begin{verbatim} +\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;% +5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}} +\end{verbatim} +producing the following structure: +\begin{center} +\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;% +5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}} +\end{center} +\par\vskip2cm +\noindent +where the substituted phenyl group is regarded as a substituent. +An opposite view can be realized by the code +\begin{verbatim} +\bzdrv{3==OMe;4==OMe;6==Br;% +1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}} +\end{verbatim} +which typesets the same structure: +\vskip2cm +\begin{center} +\bzdrv{3==OMe;4==OMe;6==Br;% +1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}} +\end{center} +where the moiety drawn by the command \verb/\decaheterov/ is +regarded as a substituent. + +Two or more substituents generated by the ``yl''-function +can be introduced into an ATOMLIST. For example, +\begin{verbatim} +\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}} +\end{verbatim} +typesets the following structure, +\begin{center} +\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}} +\end{center} + +The structural formula of hexaphenylbenzene can be +drawn by this technique. Thus the code, +\begin{verbatim} +\bzdrv{1==\bzdrv{4==(yl)};% +2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};% +4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};% +6==\bzdrv{3==(yl)}} +\end{verbatim} +generates the following formula: +\begin{center} +\vspace*{1cm} +\bzdrv{1==\bzdrv{4==(yl)};% +2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};% +4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};% +6==\bzdrv{3==(yl)}} + +\vspace*{1cm} +\end{center} + +\section{Nested ``yl''-functions} + +Two or more ``yl''-functions can be nested. +For example, a structure +\begin{center} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}} +\end{center} +depicted by the code, +\begin{verbatim} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}} +\end{verbatim} +can be converted into a substituent by adding +``yl''-function, as shown in the following code: +\begin{verbatim} +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}} +\end{verbatim} +Then this substituent is nested in the SUBSLIST of +the command \verb/\cyclohexaneh/ to give a code, +\begin{verbatim} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{verbatim} +Thereby we have the structural formula of +benzoylcyclohexane: +\begin{center} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{center} + +The resulting structure can be further converted into +a substituent by adding ``yl''-function. The +following example shows that the substituent is +linked to the 4-position of a naphthol ring: +\begin{center} +\naphdrh{1==HO;4==% +\cyclohexaneh[]{1==(yl);4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}} +\end{center} +which is typeset by the triply nested code: +\begin{verbatim} +\naphdrh{1==HO;4==% +\cyclohexaneh[]{1==(yl);4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}} +\end{verbatim} +The same structural formula can be drawn by regarding +the 1-naphthol-4-yl group and the benzoyl group as +substituents, as shown in the following code: +\begin{verbatim} +\cyclohexaneh[]{% +1==\naphdrh{1==HO;4==(yl)};% +4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{verbatim} +Accordingly, we have +\begin{center} +\cyclohexaneh[]{% +1==\naphdrh{1==HO;4==(yl)};% +4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{center} + +\bigskip +The structure of benzoylcyclohexane can also be drawn by considering +the \verb/\tetrahedral/ moiety as a mother skeleton, +as shown in the code: +\begin{verbatim} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}} +\end{verbatim} +Thereby, we have the formula, +\begin{center} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}} +\end{center} +which shows that +two or more substituents produced by the ``yl''-function +can be written in a SUBSLIST. +This treatment corresponds to the alternative name of +benzoylcyclohexane, i.e., cyclohexyl phenyl ketone, +since the codes \verb/\cyclohexaneh{4==(yl)}/ and +\verb/\bzdrh{1==(yl)}/ represent +a cyclohexyl and a phenyl group, respectively. + +Although +the resulting structure cannot be used as a substituent concerning +the cyclohexane ring, the SUBSLIST of the command \verb/\cyclohexaneh/ +is capable of accomodating the substituent \verb/\naphdrh{1==HO;4==(yl)}/ +to give +\begin{verbatim} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};% +2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}} +\end{verbatim} +which typesets the same structural formula: +\begin{center} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};% +2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}} + +\vspace*{1cm} +\end{center} + + +The formula, +\begin{center} +\vspace*{2cm} +\bzdrv{% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}} + +\vspace*{2cm} +\end{center} +illustrates the more complicated structure of a code +with nested ``yl''-functions: +\begin{verbatim} +\bzdrv{% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}} +\end{verbatim} + +To simplify the coding, we define a macro +drawing a biphenyl unit as follows: +\begin{verbatim} +\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}} +\end{verbatim} +Then, this macro is used in the SUBSLIST of \verb/\bzdrv/ +to give the code, +\begin{verbatim} +\bzdrv{% +1==\biph{4}{2}{5};% +2==\biph{5}{3}{6};% +3==\biph{6}{4}{1};% +4==\biph{1}{5}{2};% +5==\biph{2}{6}{3};% +6==\biph{3}{1}{4}} +\end{verbatim} +Thereby, we have +\begin{center} +\vspace*{2cm} +\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}} +\bzdrv{% +1==\biph{4}{2}{5};% +2==\biph{5}{3}{6};% +3==\biph{6}{4}{1};% +4==\biph{1}{5}{2};% +5==\biph{2}{6}{3};% +6==\biph{3}{1}{4}} + +\vspace*{2cm} +\end{center} + +A more complex nested code, + +\begin{verbatim} +\vspace*{8cm} +\bzdrv{% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl)}}}}}}}}}};% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl)}}}}}}}}}};% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl)}}}}}}}}}};% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl)}}}}}}}}}};% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl)}}}}}}}}}};% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl)}}}}}}}}}}} +\end{verbatim} +produces the following formula: + +\clearpage%to avoid ! TeX capacity exceeded + +\begin{center} +\vspace*{8cm} +\bzdrv{% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl)}% +}}}% +}}}% +}}};% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl)}% +}}}% +}}}% +}}};% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl)}% +}}}% +}}}% +}}};% +4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl)}% +}}}% +}}}% +}}};% +5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);% +1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl)}% +}}}% +}}}% +}}};% +6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);% +2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);% +3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);% +4==\bzdrv{1==(yl)}% +}}}% +}}}% +}}}} +\end{center} + +\clearpage + +The code to draw this structural formula is +too complicated to cause the ``\TeX{} capacity exceeded'' error. +To avoid the error, we use \verb/\clearpage/ commands before +and after the output of the formula. +In addition, we call only necessary packages +to treat this cocument without the use of \textsf{xymtex.sty} +calling all package files. + +\section{Remarks} +\subsection{Drawing Domains} +Substituents produced by the ``yl''-function have no dimensions. +For example, benzoylcyclohexane +\begin{center} +\fbox{% +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}% +} +\end{center} +produced by the code +\begin{verbatim} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{verbatim} +has a drawing domain around the cyclohexane mother skeleton, +as encircled by a frame. Since the bezoyl moiety occupies no area, +it may be superimposed on other contexts +so as to require some space adjustments. +For example, the above code duplicated without +any space adjustment, +\begin{verbatim} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}% +\end{verbatim} +gives an insufficient result: +\begin{center} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}% +\end{center} +This superposition can be avoided by a horizontal spacing. Thus +the code +\begin{verbatim} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\hskip2cm +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}% +\end{verbatim} +typesets improved formulas: +\begin{center} +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\hskip2cm +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}% +\end{center} + +If a more thorough adjustment is required, +a formula should be placed in a \LaTeX{} picture environment +as follows. +\begin{verbatim} +\begin{picture}(1600,900)(0,0) +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{picture} +\end{verbatim} +This code produces +\begin{center} +\fbox{% +\begin{picture}(1600,900)(0,0) +\cyclohexaneh[]{4==% +\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}} +\end{picture} +} +\end{center} +where a frame is added by means of a \verb/\fbox/ command. + +A drawing domain around a formula depends upon a mother skeleton +selected. For example, the formula of benzoylcyclohexane at the top +of this section has a drawing domain shown by the frame, since +a \verb/\cyclohexaneh/ is selected as a mother skeleton. +On the other hand, the alternative formula +of benzoylcyclohexane depicted by the code, +\begin{verbatim} +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}} +\end{verbatim} +has a drawing domain due to the \verb/\tetrahedral/ skeleton. +Thus, the code gives the following output: +\begin{center} +\fbox{% +\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}} +} +\end{center} +where the frame indicates such a drawing domain, +when an \verb/\fbox/ command is used around +the \verb/\tetrahedral/ command. +The domain shown by the frame (due to \verb/\fbox/) is equal to +any domain based on the simple use of the \verb/\tetrahedral/ command +(without using the ``yl''-function). +For example, compare the above frame with the one +appearing in the formula, +\begin{center} +\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}} +\end{center} +depicted by the code, +\begin{verbatim} +\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}} +\end{verbatim} + +\subsection{Reference Points} + +Each \XyMTeX{} command for drawing a mother skeleton +has its reference point and its inner reference point. +These points can be printed out by switching +\verb/\origpt/ on. For example, the code +\begin{verbatim} +{ +\origpttrue +\cyclohexanev{} +} +\end{verbatim} +generates the diagram: +\begin{center} +{ +\origpttrue +\cyclohexanev{} +} +\end{center} +where the solid circle indicates the reference point (0,0) and +the open circle indicates the inner reference point (400,240). +The values of cooridates are output on a display and in a log file: +\begin{verbatim} +command `sixheterov' origin: (0,0) ---> (400,240) +\end{verbatim} +since \verb/\cyclohexanev/ is based on \verb/\sixheterov/. + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Linking Units} + +The commands \verb/\ryl/ and \verb/\lyl/ described +in this chapter are added to +the {\sf chemstr} package (file name: chemstr.sty). +The \verb/\divalenth/ command is added to +the {\sf aliphat} package (file name: aliphat.sty). + +\section{$\backslash$ryl command}. + +The ``yl''-function provides us with +a tool to generate a substituent that +is linked {\itshape directly} to a substitution site +of a mother skeleton. There are, however, +many cases in which a substituent +is linked to a substitution site by an intervening unit +(e.g., O, SO$_{2}$ and NH). +The command \verb/\ryl/ is used to +generate a right-hand substituent with a linking unit. +For example, the code +\begin{verbatim} +\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}} +\end{verbatim} +produces a benzenesulfonamido substituent, +\bigskip +\begin{center} +\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}} + +\vspace*{1cm} +\end{center} +The resulting unit is added to the SUBSLIST of +a command for drawing a skeletal command. +For example, the code +\begin{verbatim} +\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}} +\end{verbatim} +generates the following formula: +\begin{center} +\vspace*{1cm} +\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}} +\end{center} + +The \verb/\ryl/ command takes two arguments. +\begin{verbatim} +\ryl(LINK){GROUP} +\end{verbatim} +The first argument LINK in the parentheses indicates +an intervening unit with an integer showing +the slope of a left incidental bond. +For example, the number 5 of the code \verb/5==NH--SO$_{2}$/ +shown above represents that the left terminal is to be linked +through $(-5,-3)$ bond, though the linking bond +is not typeset by the \verb/\ryl/ command only. +The slopes of the linking bonds are designated by +integers between 0 and 8: +\begin{center} +\begin{tabular}{cc|cc|cc} +0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\ +3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\ +6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\ +\end{tabular} +\end{center} + +The second argument GROUP of \verb/\ryl/ is +a substituent produced by a ``yl''-function, +where a number before a delimiter (==) indicates +the slope of a right incidental bond. +For example, the number 4 of the code +\verb/4==\bzdrh{1==(yl)}/ shown above +represents that the right terminal is to be linked +through $(1,0)$ bond to the benzene ring generated by +the \verb/\bzdrh/ command. +The slopes of the linking bonds are designated by +integers between 0 and 8: +\begin{center} +\begin{tabular}{cc|cc|cc} +0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\ +3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\ +6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\ +\end{tabular} +\end{center} + +To illustrate linking bonds with various slopes, +the code +\begin{verbatim} +\cyclohexanev[]{% +1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}}; +2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}; +3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};% +4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}} +\end{verbatim} +is written to give + +\vspace*{2cm} +\begin{center} +\cyclohexanev[]{% +1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}}; +2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}; +3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};% +4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}} +\end{center} +\vspace*{2cm} + +Other examples are drawn by the code +\begin{verbatim} +\cyclohexaneh[]{% +3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}; +5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};% +4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}} +\end{verbatim} +giving +\vspace*{1cm} +\begin{center} +\cyclohexaneh[]{% +3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}; +5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};% +4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}} +\end{center} +\vspace*{1cm} + +The first argument in the parentheses of the +command \verb/\ryl/ contains a string of letters +after an intermediate delimiter ==, where +a left linking site is shifted according to the +length of the letter string. +The above formula shows such an example +as having NH--SO$_{2}$--NH. + + +The following examples compare the +``yl''-function with the \verb/\ryl/ command. +\begin{verbatim} +\cyclohexaneh{4==\bzdrh{1==(yl)}} +\hskip2cm +\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}} +\end{verbatim} + +\begin{center} +\cyclohexaneh{4==\bzdrh{1==(yl)}} +\hskip2cm +\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}} +\end{center} + +The compound {\bfseries 21} +on page 299 of the \XyMTeX book +%``\XyMTeX{}---Typesetting Chemical +%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) +can be alternatively drawn by using +the \verb/\ryl/ command, as shown in the code: +\begin{verbatim} +\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;% +3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}} +\end{verbatim} +which typeset the following formula: +\begin{center} +\vspace*{1cm} +\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;% +3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}} + +\vspace*{2cm} +\end{center} + +The first argument of the \verb/\ryl/ is optional; i.e., it can be +omitted. Such an omitted case is useful to draw a methylene as +a vertex. For example, a methylene is represented as +a character string ``CH$_{2}$'', as shown in the formula, +\begin{center} +\sixheterov[d]{2==S}{5==\null;% +3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}} +\end{center} +This formula is generated by the code, +\begin{verbatim} +\sixheterov[d]{2==S}{5==\null;% +3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}} +\end{verbatim} +where the \verb/\ryl/ command takes an optional argument +in parentheses to draw CH$_{2}$ exciplicitly. +Such a methylene can alternatively be represented as a simple vertex, +as shown in the formula, +\begin{center} +\sixheterov[d]{2==S}{5==\null;% +3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}} +\end{center} +This formula is generated by the code, +\begin{verbatim} +\sixheterov[d]{2==S}{5==\null;% +3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}} +\end{verbatim} +where the \verb/\ryl/ command takes no optional argument. + +The second argument of the \verb/\ryl/ command can +accomodate substituents other than a substituent +generated by the ``yl'' function. For example, +the inner code \verb/\ryl{0A==Me;...}/ in the code, +\begin{verbatim} +\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;% +6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};% +2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;% +4Sa==\null;4Sb==\null}}} +\end{verbatim} +represents a methyl group on a vertex due to the command \verb/\ryl/. +Thereby, we have +\begin{center} +\vspace*{1cm} +\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;% +6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};% +2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;% +4Sa==\null;4Sb==\null}}} + +\vspace*{1cm} +\end{center} + + + +\section{$\backslash$lyl command} + +The command \verb/\lyl/ is the left-hand +counterpart of the command \verb/\ryl/. +\begin{verbatim} +\lyl(LINK){GROUP} +\end{verbatim} +The slopes of the linking bonds +concerning the right terminal are designated by +integers between 0 and 8: +\begin{center} +\begin{tabular}{cc|cc|cc} +0 & $(0,1)$ & 1 & $(3,5)$ & 2 & $(1,1)$ \\ +3 & $(5,3)$ & 4 & $(1,0)$ & 5 & $(5,-3)$ \\ +6 & $(1,-1)$ & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\ +\end{tabular} +\end{center} +The slopes of the linking bonds concerning +the left terminal are designated by +integers between 0 and 8: +\begin{center} +\begin{tabular}{cc|cc|cc} +0 & $(0,1)$ & 1 & $(-3,5)$ & 2 & $(-1,1)$ \\ +3 & $(-5,3)$ & 4 & $(-1,0)$ & 5 & $(-5,-3)$ \\ +6 & $(-1,-1)$ & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\ +\end{tabular} +\end{center} + +To illustrate linking bonds with various slopes, +the code +\begin{verbatim} +\cyclohexanev[]{% +1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};% +6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}} +\end{verbatim} +is written to give + + +\vspace*{2cm} +\begin{center} +\cyclohexanev[]{% +1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};% +6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}} +\end{center} +\vspace*{2cm} + +Other examples are drawn by the code +\begin{verbatim} +\cyclohexaneh[]{% +2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}}; +6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +1==\lyl(4==NH--SO$_{2}$--HN){4==\bzdrh{4==(yl)}}} +\end{verbatim} +giving +\vspace*{1cm} +\begin{center} +\cyclohexaneh[]{% +2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}}; +6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};% +1==\lyl(4==NH--SO$_{2}$--NH){4==\bzdrh{4==(yl)}}} +\end{center} +\vspace*{1cm} + +The first argument in the parentheses of the +command \verb/\lyl/ contains a string of letters +after an intermediate delimiter ==, where +a left linking site is shifted according to the +length of the letter string. +The above formula shows such an example +as having NH--SO$_{2}$--NH. + +The structural formula of adonitoxin, +which has once been depicted in a different way +in Chapter 15 of the \XyMTeX book +%``\XyMTeX{}---Typesetting Chemical +%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) +can be obtained by the code, +\begin{verbatim} +\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;% +{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;% +{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};% +3==\lyl(3==O){8==% +\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;% +4Sa==H;5Sb==H;5Sa==CH$_{3}$}}} +\end{verbatim} + +\begin{quotation} +\vspace*{1cm} +\hspace*{4cm} +\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;% +{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;% +{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};% +3==\lyl(3==O){8==% +\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;% +4Sa==H;5Sb==H;5Sa==CH$_{3}$}}} +\end{quotation} + +\vskip1cm + + +\section{Nested $\backslash$ryl and $\backslash$lyl commands} + +Two or more \verb/\ryl/ and \verb/\lyl/ commands can be nested. +Let us illustrate nesting processes by drawing a cyan +dye releaser, which has once been depicted in different ways +(see Chapters 14 and 15 of the \XyMTeX book). +%in ``\XyMTeX{}---Typesetting Chemical +%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)). + +\vspace*{1cm} +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);% +5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;% +8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}} + +\vskip3cm +First, the code +\begin{verbatim} +\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\null}} +\end{verbatim} +generates a substituent: +\begin{quotation} +\vspace*{1cm} +\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\null}} + +\vspace*{1cm} +\end{quotation} +in which the command \verb/\null/ is used to show a further +substitution site. The resulting substituent is +nested in the SUBSLIT of another \verb/\bzdrv/ command +as shown in the code: +\begin{verbatim} +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\null}}} +\end{verbatim} +Thereby we have +\begin{quotation} +\vskip1cm +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\null}}} +\end{quotation} + +\vskip1cm \noindent +The inner code \verb/5==\null/ is replaced by a further +code of substitution: +\begin{verbatim} +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}% +\end{verbatim} +to give a code, +\begin{verbatim} +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}% +}}} +\end{verbatim} +This code generates the following structure (Formula A): +\begin{quotation} +\vskip1cm +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);% +5==\null}}}}} +\end{quotation} + +\vskip1cm +Another substituent is typeset by the code, +\begin{verbatim} +\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;% +8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}} +\end{verbatim} +Then, we have a substituent (Formula B): +\begin{quotation} +\vskip1cm +\hspace*{4cm}\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;% +8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}} +\end{quotation} + +\vspace{3cm} +Finally, the inner code \verb/5==\null/ for Formula A is replaced +by the code for Formula B +in order to combine Formula A with Formula B. +Then we obtain a code represented by +\begin{verbatim} +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);% +5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;% +8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}} +\end{verbatim} +Thereby, we have a target formula: + +\vspace*{1cm} +\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;% +2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;% +5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);% +5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;% +8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}} + +\vskip3cm + +The structural formula of adonitoxin, +which has benn drawn by considering the steroid nucleus to be +a mother skeleton in the preceding subsection, +can be alternatively drawn by nesting +a ``yl''-function and a \verb/\ryl/ command. +In this case, the pyranose ring is regarded as a mother skeleton. +Thus, the code +\begin{verbatim} +\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;% +4Sa==H;5Sb==H;5Sa==CH$_{3}$;% +1Sb==\ryl(8==O){3==% +\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;% +{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;% +{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}} +\end{verbatim} +typesets the following formula: +\begin{quotation} +\vspace*{4cm} +\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;% +4Sa==H;5Sb==H;5Sa==CH$_{3}$;% +1Sb==\ryl(8==O){3==% +\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;% +{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;% +{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}} +\end{quotation} + +\section{$\backslash$divalenth command} + +The command \verb/\divalenth/ generates a divalent skeleton +with variable length. +\begin{verbatim} +\divalenth{GROUP}{SUBSLIST} +\end{verbatim} +The divalent skeleton is given by +a string of alphabets in the GROUP argument. +The locant number in the GROUP argument is fixed to be zero. +For example, the code +\begin{verbatim} +\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$} +\end{verbatim} +generates a linear formula: +\begin{center} +\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$} +\end{center} + +4,4$^{\prime}$-Methylenedibenzoic acid can be drawn in the same line. +The code +\begin{verbatim} +\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}} +\end{verbatim} +generates +\begin{center} +\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}} +\end{center} + +In place of the CH$_{2}$ unit described in the preceding example, +we introduce the O--CH$_{2}$--O unit so as to give +4,4$^{\prime}$-methylenedioxydibenzoic acid. The structurel formula +can be drawn to be +\begin{center} +\divalenth{0==O--CH$_{2}$--O}% +{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}} +\end{center} +by means of the code: +\begin{verbatim} +\divalenth{0==O--CH$_{2}$--O}% +{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}} +\end{verbatim} +Note that the starting point of the moiety +generated by the code \verb/2==\bzdrh{1==(yl);4==COOH}/ is +automatically shifted so as to accomodate the O--CH$_{2}$--O unit. + + +An additional example of the use of the \verb/\divalenth/ command +is the drawing of +1,6$^{\prime}$-ureylenedi-2-naphthalenesulfonic acid +\begin{quotation} +\vspace*{2cm}\hspace*{4cm} +\divalenth{0==NH--CO--NH}% +{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}} + +\vspace*{2cm} +\end{quotation} +by means of the code +\begin{verbatim} +\divalenth{0==NH--CO--NH}% +{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}} +\end{verbatim} + + +$p$-[2-($m$-Carboxyphenoxy)ethyl]benzoic acid is +drawn by the code +\begin{verbatim} +\divalenth{0==O--CH$_{2}$--CH$_{2}$}% +{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}} +\end{verbatim} +which generates a formula: +\begin{center} +\divalenth{0==O--CH$_{2}$--CH$_{2}$}% +{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}} + +\vspace*{1cm} +\end{center} +The same structure can be depicted by applying +the ``yl''-function to the \verb/\divalenth/ command. +The code +\begin{verbatim} +\bzdrh{6==COOH;4==% +\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}} +\end{verbatim} +generates the same formula: +\begin{center} +\bzdrh{6==COOH;4==% +\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}} + +\vspace*{1cm} +\end{center} +This type of usage gives an equivalent function of +the command \verb/\ryl/ or \verb/\lyl/. Compare this with +an example using the \verb/\ryl/ command: +\begin{verbatim} +\bzdrh{6==COOH;4==% +\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}} +\end{verbatim} +This code gives the same formula: +\begin{center} +\bzdrh{6==COOH;4==% +\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}} +\end{center} + +\section{Remarks} + +The use of \verb/\divalenth/ with a ``yl''-function has +no means of adjusting the left-hand point of linking. +For example, the code, +\begin{verbatim} +\bzdrv{2==COOH;4==% +\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}} +\end{verbatim} +give an insufficient formula: +\begin{center} +\bzdrv{2==COOH;4==% +\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}} + +\vspace*{1cm} +\end{center} +where the left-hand point of linking should be shifted to +a more appropiate direction. On the other hand, +the \verb/\ryl/ (or \verb/\lyl/) command can correctly +specify the left-hand point of linking. Thus the code, +\begin{verbatim} +\bzdrv{2==COOH;4==% +\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}} +\end{verbatim} +typesets a formula: +\begin{center} +\bzdrv{2==COOH;4==% +\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}} + +\vspace*{1cm} +\end{center} +where the code \verb/0==O--CH$_{2}$--CH$_{2}$/ specifies +the left-hand terminal of the unit O--CH$_{2}$--CH$_{2}$ +is linked at the upper point of the oxygen atom. + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Ring Fusion} + +\section{Ring Fusion on Carbocyclic Compounds} +\subsection{Designation of Fused Bonds} + +A unit to be fused is written in the BONDLIST of a command with +a bond specifier (a lowercase or uppercase alphabet). +For example, the code +\begin{verbatim} +\hanthracenev[{A\sixfusev{}{}{d}}]{} +\end{verbatim} +gives a perhydroanthracene with a fused six-membered ring +at the bond `a' of the perhydroanthracene nucleus: +\begin{quotation} +\vskip1cm +\hanthracenev[{A\sixfusev{}{}{d}}]{} +\end{quotation} +The letter `A' of the code +\verb/{A\sixfusev{}{}{d}}/ is a bond specifier that represents +the older terminal of the bond `a' of the +perhydroanthracene nucleus +(For the designation of the bonds of perhydroanthracene, +see Chapter 5 of the \XyMTeX book.% +%``\XyMTeX{}---Typesetting Chemical +%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997).% +\footnote{% +The word `older' or `younger' is concerned with the order of numbering +of vertices. For a six-membered ring, the numbering +1---2---3---4---5---6---1 shows that +the terminal 1 of the +bond `a' (1---2) is youger, while the terminal 2 of the bond +`a' is older. It should be noted that the terminal 6 of the +bond `f' (6---1) is youger, while the terminal 1 of the bond +`f' is older.} +Note that the younger +terminal of the bond `a' is designated by the letter `a'. +On the other hand, +the code \verb/\sixfusev{}{}{d}/ of \verb/{A\sixfusev{}{}{d}}/ +in the BONDLIST represents the fused six-membered ring +with the bond `d' omitted. The letter `d' indicates +that the fusing point of the unit is the youger terminal +of the omitted bond `d'. If the the fusing point of the unit +is the other (older) terminal, the +corresponding uppercase letter `D' should be used. + +Accordingly, the same formula can be drawn by the +code exchanging uppercase and lowercase letters, +\begin{verbatim} +\hanthracenev[{a\sixfusev{}{}{D}}]{} +\end{verbatim} +Thereby, we have +\begin{quotation} +\vskip1cm +\hanthracenev[{a\sixfusev{}{}{D}}]{} +\end{quotation} + +Two or more rings can be fused. For example, +the code +\begin{verbatim} +\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{} +\end{verbatim} +generates a formula with two fused rings at the +bonds `a' and `c' of a perhydroanthracene nucleus. +\begin{quotation} +\vskip1cm +\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{} + +\vskip1cm +\end{quotation} + +The BONDLIST can accomodates usual bond specifiers without +a fusing unit in order to designate inner double bonds. +For example, the code +\begin{verbatim} +\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{} +\end{verbatim} +gives a hydroanthracene that have inner double bonds +as well as a fused six-membered ring: +\begin{quotation} +\vskip1cm +\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{} +\end{quotation} +Note that the command \verb/\sixfusev/ can take +an optional argument to designate inner double bonds, +as shown by the code \verb/\sixfusev[a]{}{}{d}/. + +In order to specify substituents in addition, +we can use the SUBSLIST of the command \verb/\hanthracenev/ as well +as the one of the command \verb/\sixfusev/. For example, the code +\begin{verbatim} +\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO} +\end{verbatim} +gives a hydroanthracene having additional substituents: +\begin{quotation} +\vspace*{1cm} +\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO} +\end{quotation} + +The compound {\bfseries 13} on page 294 +(Chapter IV-4) of the \XyMTeX book +%``\XyMTeX{}---Typesetting Chemical +%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) +can alternatively be drawn by applying the +present technique. Thus, the code +\begin{verbatim} +\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{% +1==OCH$_{3}$;4==OH;{10}D==O;% +9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}} +\end{verbatim} +gives the following formula: +\begin{quotation} +\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{% +1==OCH$_{3}$;4==OH;{10}D==O;% +9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}} +\end{quotation} + + +\section{Ring Fusion on Heterocyclic Compounds} + +The methodology of ring fusion for heterocyclic compounds +is the same as described for carbocyclic compounds. +Thus, a unit to be fused is written in the BONDLIST of +a command with a bond specifier (a lowercase or uppercase alphabet). +For example, the code +\begin{verbatim} +\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H} +\end{verbatim} +gives the structural formula of carbazole: +\begin{quotation} +\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H} +\end{quotation} +which is depicted by attaching a six-membered ring +(\verb/\sixfusev[ac]{}{}{e}}/) +to the bond `b' of an indole nucleus. + +Let us consider the substitution of a carbon atom +with a nitrogen atom at one of the fused positions +in the above compound, as shown by the following formula: +\begin{quotation} +\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H} +\end{quotation} +This formula is obtained by writing the code: +\begin{verbatim} +\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H} +\end{verbatim} +where the code \verb/6==\null/ in the ATOMLIST of +\verb/\sixfusev/ (for the fused six-membered ring) +and the code \verb/3==N/ in the ATOMLIST of +\verb/\nonaheterov/ produces the nitrogen +atom at the fused position. +The specification of the nitrogen atom +is also available by exchanging \verb/\null/ and \verb/N/. +Thus the code +\begin{verbatim} +\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H} +\end{verbatim} +gives the same structural formula: +\begin{quotation} +\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H} +\end{quotation} + +The ring fusion at the bond `a' of perhydroindole +is represented by the code +\begin{verbatim} +\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{} +\end{verbatim} +which gives a heterocycle: +\begin{quotation} +\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{} +\end{quotation} + + + +Benz[{\itshape h}]isoquinoline, +\begin{quotation} +\vspace*{1cm} +\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{} +\end{quotation} +can be typset by the code, +\begin{verbatim} +\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{} +\end{verbatim} +in which the bond specifier `h' corresponds to +the {\itshape h} of the IUPAC name. +Note that the IUPAC name regards the structure as +an isoquinoline (drawn by \verb/\decaheterovt/) fused by a benzo moiety. +The same structure +can be drawn by the alternative code: +\begin{verbatim} +\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{} +\end{verbatim} +which regards the structure as a naphthalene (drawn by +\verb/\decaheterov/) with +a fused heterocycle. Thereby, we have + \begin{quotation} +\vspace*{1cm} +\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{} +\end{quotation} + +\section{Neted Ring Fusion} + +The \verb/\sixfusev/ command is capable of +accomodating another \verb/\sixfusev/ command in +a nested fashion. By this technique, +the carbazole structure can take a further +fused ring so as to produce the structural formula +of 7{\itshape H}-pyrazino[2,3-{\itshape c}]carbaozole. +Thus, the code, +\begin{verbatim} +\nonaheterov[begj{b\sixfusev[% +ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H} +\end{verbatim} +gives the structural formula of the fused heterocycle: +\begin{quotation} +\vspace*{1cm} +\nonaheterov[begj{b\sixfusev[% +ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H} +\end{quotation} +which is depicted by attaching a six-membered ring +(\verb/\sixfusev[ac]{}{}{e}}/) +to the bond `b' of an indole nucleus. + +The structural formula of +pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline, +\begin{center} +\nonaheterov[adh% +{b\sixfusev[ac]{6==\null}{}{e}}% +{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{} +\end{center} +is generated by the code, +\begin{verbatim} +\nonaheterov[adh% +{b\sixfusev[ac]{6==\null}{}{e}}% +{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{} +\end{verbatim} +Since this code is intended to contain no nested ring fusion, +the order of structure construction is different +from that of the IUPAC name. + +The IUPAC name, +pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline, +corresponds to a quinaxaline with a fused five-membered ring (an imidazo +moiety) which is in turn fused by a six-membered ring (a pyrido moiety). +The order of constructing the IUPAC name is realized in the code +with nested ring fusion, +\begin{verbatim} +\decaheterov[acegi% +{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}] +{1==N;4==N}{} +\end{verbatim} +which produces the same structure, +\begin{center} +\decaheterov[acegi% +{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}] +{1==N;4==N}{} +\end{center} + +Note that the indicators `1$^{\prime}$,2$^{\prime}$' and `1,2'of +the locant [1$^{\prime}$,2$^{\prime}$:1,2] in the IUPAC name +correspond respectively to the +bond specifiers , `E' and `b', appeared in the code, +\verb/{b\sixfusev[ac]{6==\null}{}{E}}/. +On the other hand, the indicators, +`4,5' and `{\itshape b}' of of the locant [4,5-{\itshape b}] +are respectively associated with +the specifiers, `d' and `b', appeared in the code, +\verb/{b\fivefusev[...]{1==N;3==N}{}{d}}/. + +An alkaloid with a coryanthe skeleton +(R. T. Brown and C. L. Chapple, {\itshape Chem. Commun.}, +1973, 887) can be typeset by the code with nested fusion, +\begin{verbatim} +\nonaheterov[begj{b\sixfusev[% +{c\sixfusev{1==\null}{3SB==H;3SA==Et;% +4GA==H;% +4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]% +{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H} +\end{verbatim} +where a six-five ring drawn by the command \verb/\nonaheterov/ +is regarded as a mother skeleton. Thus, we have +\begin{quotation} +\nonaheterov[begj{b\sixfusev[% +{c\sixfusev{1==\null}{3SB==H;3SA==Et;% +4GA==H;% +4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]% +{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H} +\vspace*{2cm} +\end{quotation} +For the command \verb/\dimethylenei/, see the chapter at issue. + +When a six-six ring drawn by the command \verb/\decaheterovb/ +is regarded as a mother skeleton, as shown in the code with +another nested ring fusion, +\begin{verbatim} +\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]% +{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;% +3GA==H;% +3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}} +\end{verbatim} +we find another way of drawing the same structural formula, +\begin{center} +\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]% +{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;% +3GA==H;% +3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}} + +\vspace*{1cm} +\end{center} + +The following example shows a code with complicated +nested structure: +\begin{verbatim} +\cyclohexanev[% +{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[% +{d\sixfusev[{d\sixfusev[{d\sixfusev[% +{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[% +{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}% +]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}% +]{}{}{A}}]{}{}{A}}]{}{}{A}}]{}{}{F}}% +]{}{}{F}}]{}{}{E}}]{}{}{D}}% +{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[% +{f\sixfusev[{f\sixfusev[{f\sixfusev[% +{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[% +{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}% +]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}% +]{}{}{C}}]{}{}{C}}]{}{}{C}}]{}{}{B}}% +]{}{}{B}}]{}{}{A}}]{}{}{F}}% +{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[% +{b\sixfusev[{b\sixfusev[{b\sixfusev[% +{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[% +{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}% +]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}% +]{}{}{E}}]{}{}{E}}]{}{}{E}}]{}{}{D}}% +]{}{}{D}}]{}{}{C}}]{}{}{B}}% +]{} +\end{verbatim} +This code generates a multiply fused formula: + +\clearpage + +\begin{center} +\vspace*{8cm} +\cyclohexanev[% +{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[% +{d\sixfusev[{d\sixfusev[{d\sixfusev[% +{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[% +{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}% +]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}% +]{}{}{A}}]{}{}{A}}]{}{}{A}}% +]{}{}{F}}% +]{}{}{F}}]{}{}{E}}]{}{}{D}}% +{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[% +{f\sixfusev[{f\sixfusev[{f\sixfusev[% +{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[% +{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}% +]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}% +]{}{}{C}}]{}{}{C}}]{}{}{C}}% +]{}{}{B}}% +]{}{}{B}}]{}{}{A}}]{}{}{F}}% +{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[% +{b\sixfusev[{b\sixfusev[{b\sixfusev[% +{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[% +{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}% +]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}% +]{}{}{E}}]{}{}{E}}]{}{}{E}}% +]{}{}{D}}% +]{}{}{D}}]{}{}{C}}]{}{}{B}}% +]{} +\end{center} + + + +\clearpage + + + +\section{Remarks} + +\subsection{OPT Arguments} + +It should be noted that the OPT arguments of +such commands as \verb/\bzdrv/, \verb/\naphdrv/, +and \verb/\anthracenev/ cannot be used +for the ring-fusion technique. In place of the OPT argument, +the BONDLIST argument of the corresponding general +command, e.g. \verb/\cyclohexanev/ or \verb/\sixheterov/ +correspoding to \verb/\bzdrv/, +should be used for the purpose of ring fusion. . +For example, a bezene ring of the formula, +\begin{center} +\vspace*{1cm} +\cyclohexanev[ace{a\sixfusev{}{}{D}}]{} +\end{center} +should be drawn by using the \verb/\cyclohexanev/ command, +as shown in the code: +\begin{verbatim} +\cyclohexanev[ace{a\sixfusev{}{}{D}}]{} +\end{verbatim} + +\subsection{\protect\XyMTeX{} Warning} + +An incorrect result due to +a wrong specification of a fused bond is +notified by a \XyMTeX{} warning. +For example, the code, +\begin{verbatim} +\hanthracenev[{a\sixfusev{}{}{d}}]{} +\end{verbatim} +gives a formula of wrong fusion: +\begin{center} +\vspace*{2cm} +\hanthracenev[{a\sixfusev{}{}{d}}]{} +\end{center} +According to this wrong situation, +a \XyMTeX{} warning appears in a display or in a log file, e.g., +\begin{verbatim} + XyMTeX Warning: Mismatched fusion at bond `a, i, or other' + on input line 1904 +\end{verbatim} +There are two ways to correct the wrong fusion and, +as a result, to avoid such a \XyMTeX{} warning. +First, the code +\begin{verbatim} +\hanthracenev[{A\sixfusev{}{}{d}}]{} +\end{verbatim} +in which the acceptor bond specifier `a' is changed into `A', +gives a correct result, as found in the top example of +this chapter. Alternatively, +the donor bond specifier `d' can be changed into `D'. +Thus, the code, +\begin{verbatim} +\hanthracenev[{a\sixfusev{}{}{D}}]{} +\end{verbatim} +also typesets the second formula with correct fusion. + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Fusing Units} + +The commands described in this chapter are stored in +the {\sf fusering} package (file name: fusering.sty). + +\section{Six-membered Fusing Units} +\subsection{Vertical Units of Normal and Inverse Types} +In \XyMTeX{} version 1.01, we can use \verb/\sixunitv/ +and \verb/\fiveunitv/ as building blocks, where +one or more bonds can be omitted. +In the present version, we prepare +such commands as \verb/\sixfusev/ an \verb/\sixfusevi/, +producing building blocks with only one deleted bond. +These commands can be used in the BONDLIST of another +command so as to give a fused structural formula, +as described in the preceding chapter. +The commands \verb/\sixfusev/ and \verb/\sixfusevi/ have formats +represented by +\begin{verbatim} +\sixfusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\sixfusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--f) +or the uppercase counterpart (A--F), +each of which is a bond specifier representing one bond to be omitted. +A lowercase character (a--f) represents the younger terminal of +the omitted bond. +The corresponding uppercase character (A--F) designates +the other terminal of the bond to be omitted. +The other arguments have the same formats as described +in the general conventions (see \XyMTeX book). +The locant numbers and the bond specifiers of +the command \verb/\sixfusev/ correspond to +those of the command \verb/\sixheterov/ (see \XyMTeX book). +The command \verb/\sixfusevi/ is the inverse counterpart +of \verb/\sixfusev/ and corresponds to the command \verb/\sixheterovi/. +Moreover, the BONDLIST is capbable of +accormodating the ring-fusion function described +in the preseding chapter, +the ATOMLIST can accomodate the spiro-ring function +described afterward, and +the SUBSLIST serves a method producing subsituents (``yl''-function) +describe previously. + +For example, the last argument `F' of the \verb/\sixfusev/ +appearing in the code, +\begin{verbatim} +\sixfusev[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F} +\end{verbatim} +results in the deletion of the bond `f' between atom no.~6 (youger +teminal) and atom no.~1 (older terminal) from a hexagon, +typesetting the following building block: +\begin{center} +\sixfusev[]{1==\null}{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F} + +\vspace*{3cm} +\end{center} +where the reference point for superposition is +the older terminal (i.e. atom no.~1) of the bond `f'. +The code \verb/1==\null/ gives a vacancy at the position of atom no.~1. +When the building block is used in the BONDLIST of +the \verb/\decaheterov/, as shown in the code, +\begin{verbatim} +\decaheterov[fhk% +{c\sixfusev[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O} +\end{verbatim} +we have the following structure, +\begin{center} +\decaheterov[fhk% +{c\sixfusev[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O} +\vspace*{2cm} +\end{center} + +The last argument `F' of the \verb/\sixfusev/ +can be changed into `f', as found in the code, +\begin{verbatim} +\decaheterovi[fhk% +{a\sixfusev[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O} +\end{verbatim} +where we use \verb/\decaheterovi/ in place of +\verb/\decaheterov/ for drawing the bicyclic mother skeleton. +Thereby, we have the following structure, +\begin{center} +\decaheterovi[fhk% +{a\sixfusev[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O} +\vspace*{2cm} +\end{center} + +The vertically opposite formula can be drawn by the combination of +\verb/\sixfusevi/ and \verb/\decaheterovi/ with no other changes +of designation (in comparison with the first code of this +section), i.e. +\begin{verbatim} +\decaheterovi[fhk% +{c\sixfusevi[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O} +\end{verbatim} +Thereby we have +\begin{center} +\vspace*{2cm} +\decaheterovi[fhk% +{c\sixfusevi[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O} +\end{center} + +\subsection{Horizontal Units of Normal and Inverse Types} + +For drawing horizontal fusing units, +we can use the commands \verb/\sixfuseh/ and \verb/\sixfusehi/, +which are represented by +\begin{verbatim} +\sixfuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\sixfusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} + +The horizontal formula of normal type related to the tricyclic +formulas described in the preceding subsection +can be drawn by the combination of +\verb/\sixfuseh/ and \verb/\decaheteroh/ with few changes +of designation (CH$_{3}$O to OCH$_{3}$), i.e. +\begin{verbatim} +\decaheteroh[fhk% +{c\sixfuseh[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$} +\end{verbatim} +which typsets the following structure, +\begin{center} +\vspace*{1cm} +\decaheteroh[fhk% +{c\sixfuseh[]{1==\null}% +{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$} +\end{center} + +The horizontally opposite formula can be drawn by the combination of +\verb/\sixfusehi/ and \verb/\decaheterohi/ with +slight changes concerning the handedness of subsitutents, i.e. +\begin{verbatim} +\decaheterohi[fhk% +{c\sixfusehi[]{1==\null}% +{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$} +\end{verbatim} +Thereby we have +\begin{center} +\vspace*{1cm} +\decaheterohi[fhk% +{c\sixfusehi[]{1==\null}% +{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$} +\end{center} + +\section{Five-membered Fusing Units} +\subsection{Vertical Units of Normal and Inverse Types} +To obtain a vertical five-membered building block, +we can use \verb/\fivefusev/ and \verb/\fivefusevi/: +\begin{verbatim} +\fivefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\fivefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--e) +or the uppercase counterpart (A--E), +each of which is a bond specifier representing one bond to be omitted. +The other specifications have the same formats +as found in the preceding section. + +The following example (left) gives the use of the \verb/\fivefusevi/ +command by itself, where its SUBSLIST contains some substituents: +\begin{verbatim} +\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm +\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E} +\end{verbatim} +\begin{center} +%\vspace*{1cm} +\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm +\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E} + +\vspace*{2cm} +\end{center} +To show hydrogen substitution at the fused positions, we +add the designation of \verb/1GA==H;5GB==H/ to the +SUBSLIST of the \verb/\fivefusevi/ command (right above). +Then, the latter code is written in the BONDLIST of +a command \verb/\decalinev/, as found in the code: +\begin{verbatim} +\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]% +{6D==O;5A==;0FB==;0GA==H} +\end{verbatim} +Thereby, we obtain +\begin{center} +\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]% +{6D==O;5A==;0FB==;0GA==H} + +\vspace*{1cm} +\end{center} + +Fusing units such as \verb/\fivefusev/ +can be multiply nested in itself and in other types of fusing units. +The following example shows such a trebly-nested case. +\begin{verbatim} +\decaheterovi[AB% +{b\fivefusev[{a\sixfusev[ce% +{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{verbatim} +\begin{quotation} +\decaheterovi[AB% +{b\fivefusev[{a\sixfusev[ce% +{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} + +\vspace*{2cm} +\end{quotation} + +When all of the commands in the above code are +changed into the inverse counterparts +(\verb/\decaheterovi/ to \verb/\decaheterov/; +\verb/\fivefusev/ and \verb/\fivefusevi/; and +\verb/\sixfusev/ to \verb/\sixfusevi/), +the code is transformed into another code, +\begin{verbatim} +\decaheterov[AB% +{b\fivefusevi[{a\sixfusevi[ce% +{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{verbatim} +Thereby, we can obtain the formula of vertically inverse type. +\begin{quotation} +\vspace*{2cm} +\decaheterov[AB% +{b\fivefusevi[{a\sixfusevi[ce% +{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{quotation} + +\subsection{Horizontal Units of Normal and Inverse Types} +Horizontal five-membered building block are +obtained by using \verb/\fivefuseh/ and \verb/\fivefusehi/: +\begin{verbatim} +\fivefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\fivefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--e) +or the uppercase counterpart (A--E), +each of which is a bond specifier representing one bond to be omitted. +The other specifications have the same formats +as found in the preceding section. + +The example given for \verb/\fivefusevi/ is +changed into the one using the horizontal counterpart \verb/\fivefusehi/: +\begin{verbatim} +\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O} +\end{verbatim} +\begin{center} +\vspace*{1cm} +\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O} +\end{center} +Note that no changes of other designation are necessary except that +\verb/\decalineh/ and \verb/\fivefusehi/ are used +in place of the vertical counterpart described above. + +The multiply nested example described above for drawing +a structure of vertical type can be changed into +the corresponding one of horizontal type, +if all of the commmands are changed into horizontal types +(\verb/\decaheterovi/ to \verb/\decaheterohi/; +\verb/\fivefusev/ to \verb/\fivefuseh/; and +\verb/\sixfusev/ to \verb/\sixfuseh/). + +\begin{verbatim} +\decaheterohi[AB% +{b\fivefuseh[{a\sixfuseh[ce% +{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{verbatim} +\begin{quotation} +\vspace*{2cm}\hspace*{4cm} +\decaheterohi[AB% +{b\fivefuseh[{a\sixfuseh[ce% +{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{quotation} + +When all the commands in the above code are +changed into the inverse counterparts +(\verb/\decaheterohi/ to \verb/\decaheteroh/; +\verb/\fivefuseh/ and \verb/\fivefusehi/; and +\verb/\sixfuseh/ to \verb/\sixfusehi/), +the code is transformed into another code, +\begin{verbatim} +\decaheteroh[AB% +{b\fivefusehi[{a\sixfusehi[ce% +{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{verbatim} +Thereby, we can obtain the formula of horizontally inverse type. +\begin{quotation} +\vspace*{2cm}\hspace*{4cm} +\decaheteroh[AB% +{b\fivefusehi[{a\sixfusehi[ce% +{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]% +{2==N}{}{D}}]{1==N}{} +\end{quotation} + +\section{Four-membered Fusing Units} + +To obtain a four-membered building block, +we can use \verb/\fourfuse/: +\begin{verbatim} +\fourfuse[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--d) +or the uppercase counterpart (A--D), +each of which is a bond specifier representing one bond to be omitted. +The assignment of characters (a to d) and locants (1 to 4) +for the command \verb/\fourhetero/ is applied +in the same way to this case. +The other specifications have the same formats +as those of the command \verb/\fourhetero/. + +For example, the code, +\begin{verbatim} +\sixheterov[{e\fourfuse{}{}{b}}]{}{} +\sixheterov[{b\fourfuse{}{}{d}}]{}{} +\sixheteroh[{b\fourfuse{}{}{a}}]{}{} +\sixheteroh[{e\fourfuse{}{}{c}}]{}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheterov[{e\fourfuse{}{}{b}}]{}{} +\sixheterov[{b\fourfuse{}{}{d}}]{}{} +\sixheteroh[{b\fourfuse{}{}{a}}]{}{} +\sixheteroh[{e\fourfuse{}{}{c}}]{}{} +\end{center} + +A hetero atom at a fused position is designated in the ATOMLIST +of \verb/\fourfuse/, which is associated the code \verb/\null/ +in the ATOMLIST of a command for drawing a mother skeleton. +For example, the code +\begin{verbatim} +\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{} +\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{} +\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{} +\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{} +\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{} +\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{} +\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{} +\end{center} + +Penicillin G can be drawn by using the \verb/\fourfuse/ command +in the code, +\begin{verbatim} +\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]% +{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H} +\end{verbatim} +which typeset the following formula: +\begin{center} +\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]% +{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H} +\end{center} + +\section{Three-membered Fusing Units} +\subsection{Vertical Units of Normal and Inverse Types} +To obtain three-membered building blocks of +vertical type, we can use \verb/\threefusev/ and \verb/\threefusevi/: +\begin{verbatim} +\threefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\threefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--c) +or the uppercase counterpart (A--C), +each of which is a bond specifier representing one bond to be omitted. +The assignment of characters (a to c) and locants (1 to 3) +for the command \verb/\threeheterov/ or \verb/\threeheterovi/ is applied +in the same way to this case. +The other specifications have the same formats +as those of the command \verb/\threeheterov/ or \verb/\threeheterovi/. + +For example, the code using \verb/\threefusev/, +\begin{verbatim} +\sixheteroh[{a\threefusev{}{}{a}}]{}{} +\sixheteroh[{e\threefusev{}{}{b}}]{}{} +\sixheteroh[{c\threefusev{}{}{c}}]{}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheteroh[{a\threefusev{}{}{a}}]{}{} +\sixheteroh[{e\threefusev{}{}{b}}]{}{} +\sixheteroh[{c\threefusev{}{}{c}}]{}{} +\end{center} +The use of the inverse type is shown in the code, +\begin{verbatim} +\sixheteroh[{F\threefusevi{}{}{a}}]{}{} +\sixheteroh[{B\threefusevi{}{}{b}}]{}{} +\sixheteroh[{D\threefusevi{}{}{c}}]{}{} +\end{verbatim} +which produces the following structural formulas. +\begin{center} +\sixheteroh[{F\threefusevi{}{}{a}}]{}{} +\sixheteroh[{B\threefusevi{}{}{b}}]{}{} +\sixheteroh[{D\threefusevi{}{}{c}}]{}{} +\end{center} + +Hetero-atoms at fused positions can be typeset by designating +ATOMLISTs. For example, the code, +\begin{verbatim} +\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{} +\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{} +\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{} +\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{} +\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{} +\end{center} + +\subsection{Horizontal Units of Normal and Inverse Types} +Three-membered building blocks of +horizontal type can be obtained by using +\verb/\threefuseh/ and \verb/\threefusehi/: +\begin{verbatim} +\threefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\threefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} +\end{verbatim} +where the argument FUSE is an alphabetical character (a--c) +or the uppercase counterpart (A--C), +each of which is a bond specifier representing one bond to be omitted. +The assignment of characters (a to c) and locants (1 to 3) +for the command \verb/\threeheteroh/ or \verb/\threeheterohi/ is applied +in the same way to this case. +The other specifications have the same formats +as those of the command \verb/\threeheteroh/ or \verb/\threeheterohi/. + +For example, the code using \verb/\threefuseh/, +\begin{verbatim} +\sixheterov[{F\threefuseh{}{}{a}}]{}{} +\sixheterov[{B\threefuseh{}{}{b}}]{}{} +\sixheterov[{D\threefuseh{}{}{c}}]{}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheterov[{F\threefuseh{}{}{a}}]{}{} +\sixheterov[{B\threefuseh{}{}{b}}]{}{} +\sixheterov[{D\threefuseh{}{}{c}}]{}{} +\end{center} +The use of the inverse type is shown in the code, +\begin{verbatim} +\sixheterov[{a\threefusehi{}{}{a}}]{}{} +\sixheterov[{e\threefusehi{}{}{b}}]{}{} +\sixheterov[{c\threefusehi{}{}{c}}]{}{} +\end{verbatim} +which produces the following structural formulas. +\begin{center} +\sixheterov[{a\threefusehi{}{}{a}}]{}{} +\sixheterov[{e\threefusehi{}{}{b}}]{}{} +\sixheterov[{c\threefusehi{}{}{c}}]{}{} +\end{center} + +Hetero-atoms at fused positions can be typeset by designating +ATOMLISTs. For example, the code, +\begin{verbatim} +\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{} +\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{} +\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{} +\end{verbatim} +produces the following structural formulas. +\begin{center} +\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{} +\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{} +\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{} +\end{center} + +An aziridine derivative, +\begin{center} +\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{} +\end{center} +can be drawn by the code, +\begin{verbatim} +\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{} +\end{verbatim} + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\chapter{Spiro Rings} +\section{General Conventions for Spiro-Ring Attachment} + +There are several ways for naming spiro compounds +in the light of the IUPAC nomenclature. +Rule A-41.4 allows us to use such a name as +spiro[cyclopentane-1,1$^{\prime}$-indene] +for representing the following structure: +\begin{center} +\vspace*{1cm} +\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{} +\end{center} +The same structure is named indene-1-spiro-1$^{\prime}$-cyclohexane +in terms of Rule A-42.1. +Spiro[5.5]undecane, the name due to Rule A-41.1 and A-41.2, +is alternatively referred to as +cyclohexanespirocyclohexane in terms of Rule A-42.1: +\begin{center} +\vspace*{1cm} +\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{} +\end{center} +where the `cyclohexanespiro' shows the replacement of a +carbon atom in a cyclohexne by another cyclohexane ring. +These rules essentially have the same methodology as the +IUPAC replacement nomenclature, e.g., +oxacyclohexane (more formally, oxane or tetrahydropyran) +for the formula +\begin{center} +\sixheterov[]{1==O}{} +\end{center} +generated by the code, +\begin{verbatim} +\sixheterov[]{1==O}{} +\end{verbatim} +where the prefix `oxa' shows the replacement of a +carbon atom with an oxygen atom. +Obviously, the prefix `cyclohexanespiro' of the name +`cyclohexanespirocyclohexane' is akin to +the prefix `oxa' of the name `oxacyclohexane' or `oxane' +from the viewpoint of the construction of names. +Since the unit due to the latter prefix is designated by +the \verb/1==O/ involved in the ATOMLIST, +the former prefix can be treated in the same way. +Hence, spiro compounds are drawn as follows: +\begin{enumerate} +\item +\XyMTeX{} regards a spiro ring +as a unit for the IUPAC replacement nomenclature, +which is generated from an appropriate structure by ``yl''-function. +\item the code of the unit due to the ``yl''-function is added to +the ATOMLIST of a mother skeleton. +\end{enumerate} + +Spiro[5.5]undecane is regarded as `cyclohexana'-cyclohexane +(more formally, `cyclohexanespiro'-cyclo\-hexane), +as found in the code, +\begin{verbatim} +\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{} +\end{verbatim} +where the code +\verb/\sixheterov[]{}{4==(yl)}/ produced by the ``yl''-function +corresponds to the suffix `cyclohexana' and +is written in the ATOMLIST of the outer \verb/sixheterov/ command. +Thereby, we can obtain +\begin{center} +\vspace*{1cm} +\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{} +\end{center} + +Note that the atom modifier `s' in the code +\verb/1s==\sixheterov[]{}{4==(yl)}/ represents no +hetero-atom at the spiro position. +When a hetero-atom is present at the spiro position, +an atom modifier `h' is used in place of `s'. +For example, the code +\begin{verbatim} +\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{} +\end{verbatim} +typeset the following formula: +\begin{center} +\vspace*{1cm} +\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{} +\end{center} + +It should be noted that the absence of such atom +modifiers represents a usual replacement by +a hetero atom, as found in the formula of +oxane shown above or in the one of +thiacyclohexane (tetrahydrothiane): +\begin{center} +\sixheterov[]{1==S}{} +\end{center} +generated by the code, +\begin{verbatim} +\sixheterov[]{1==S}{} +\end{verbatim} + +\section{Several Examples} + +Spiro[cyclopentane-1,1$^{\prime}$-indene] described above +can be drawn in two ways: +\begin{center} +\vspace*{1cm} +\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{} +\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{} + +\vspace*{1cm} +\end{center} +where we use two different codes: +\begin{verbatim} +\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{} +\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{} +\end{verbatim} +which correspond to +`cyclohexane-1-spiro-1$^{\prime}$-indene' and +`indene-1-spiro-1$^{\prime}$-cyclohexane' (formal), +respectively. + +A spiro dienone +\begin{center} +\vspace*{1cm} +\sixheterov[be]{% +1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;% +4==PhCH$_{2}$OCO;5D==O}}{4D==O} +\end{center} +can be drawn by writing a code, +\begin{verbatim} +\sixheterov[be]{% +1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;% +4==PhCH$_{2}$OCO;5D==O}}{4D==O} +\end{verbatim} + +1-Azaspiro[5.5]undecene +which is the skeleton present in histrionicotoxin +(Tetrahedron Lett., 1981, {\bf 22}, 2247) +\begin{center} +\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph} +\end{center} +can be drawn by the code, +\begin{verbatim} +\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph} +\end{verbatim} + +The following example shows a case +to which both ring fusion and spiro attachment are applied. +The code, +\begin{verbatim} +\decaheterov[fhk% +{g\fivefusev{1==O;4==O}{}{b}}% +]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{} +\end{verbatim} +gives the following formula: +\begin{center} +\vspace*{2cm} +\decaheterov[fhk% +{g\fivefusev{1==O;4==O}{}{b}}% +]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{} +\end{center} + +A 1,3-dioxolane derivative +\begin{center} +\fiveheterov{2==O;5==O;% +1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}% +\end{center} +can be drawn by the code, +\begin{verbatim} +\fiveheterov{2==O;5==O;1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}% +\end{verbatim} +The same compound is also drawn by usual techniques +as follows: +\begin{verbatim} +\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R} +\end{verbatim} +\begin{center} +\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R} +\end{center} + +\begin{verbatim} +\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R} +\end{verbatim} +\begin{center} +\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R} +\end{center} + +1,2,3,4-Tetrahydroquinoline-4-spiro-4$^{\prime}$-piperidine, +\begin{quotation} +\vspace*{2cm} +\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H} +\end{quotation} +can be drawn by writing a code, +\begin{verbatim} +\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H} +\end{verbatim} + +3,3$^{\prime}$-Spirobi[3{\it H}-indole], +\begin{quotation} +\vspace*{1cm} +\nonaheterovi[begj]{3==N;% +1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{} +\end{quotation} +is typeset by the code, +\begin{verbatim} +\nonaheterovi[begj]{3==N;% +1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{} +\end{verbatim} + +The code, +\begin{verbatim} +\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{% +5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}} +\end{verbatim} +typesets the following structure: +\begin{center} +\vspace*{1cm} +\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{% +5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}} +\end{center} + +A spiro intermediate during spiro annelation +(T.\ S.\ T.\ Wang, {\em Tetrahedron Lett.}, 1975, 1637), +\begin{quotation} +\vspace*{1cm} +\nonaheterov[aA]{1==N;% +3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{} +\end{quotation} +can be drawn by the code, +\begin{verbatim} +\nonaheterov[aA]{1==N;% +3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{} +\end{verbatim} + +A lactone intermediate containing a protected ketone +(A. Grieco and M. Nishizawa, {\em Chem. Commun.}, 1976, 582), +\begin{center} +\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{% +6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H} + +\vspace*{1cm} +\end{center} +is drawn by the code, +\begin{verbatim} +\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{% +6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H} +\end{verbatim} + +\section{Multi-Spiro Derivatives} + +Multi-sipro derivatives are drawn by nesting spiro function. +For example, cyclohexanespirocyclopentane-3$^{\prime}$-% +spirocyclohexane (Rule A-42.4), +\begin{center} +\sixheteroh[]{4s==\fiveheterov{% +2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{} +\end{center} +is typeset by the code, +\begin{verbatim} +\sixheteroh[]{4s==\fiveheterov{% +2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{} +\end{verbatim} +When \verb/\fiveheterov/ is a mother skeleton, +such a nested command is unnecessary: +\begin{verbatim} +\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};% +5s==\sixheteroh[]{}{4==(yl)}}{} +\end{verbatim} +\begin{center} +\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};% +5s==\sixheteroh[]{}{4==(yl)}}{} +\end{center} + +The name (Rule A-42.4), +fluorene-9-spiro-1$^{\prime}$-cyclohexane-4$^{\prime}$-% +spiro-1$^{\prime}$-indene, corresponds to the code, +\begin{verbatim} +\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{% +1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{} +\end{verbatim} +which gives +\begin{quotation} +\vspace*{2cm} +\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{% +1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{} +\end{quotation} + + +\section{Atom Replacement} + +The ATOMLIST of each command is capable of +accommodating a group if a sufficient space is available. +For example, compare two codes, +\begin{verbatim} +\sixheteroh{4==NCOOEt}{} +\hskip 2cm +\sixheteroh{4==N}{4==COOEt} +\end{verbatim} +generating formulas equivalent chemically to each other: +\begin{center} +\sixheteroh{4==NCOOEt}{} +\hskip 2cm +\sixheteroh{4==N}{4==COOEt} +\end{center} +Note that the former example uses an ATOMLIST and +the latter uses an SUBSLIST for describing substituents. + +Even when no such space is available, the use of +a command, \verb/\upnobond/ or \verb/\downnobond/, +give a solution (see \XyMTeX book pages 259--260). +Compare the following formulas, +\begin{center} +\sixheterov{4==\downnobond{N}{COOEt}}{} +\sixheterov{4==N}{4==COOEt} +\sixheterov{1==\upnobond{N}{COOEt}}{} +\sixheterov{1==N}{1==COOEt} +\end{center} +generated by the code, +\begin{verbatim} +\sixheterov{4==\downnobond{N}{COOEt}}{} +\sixheterov{4==N}{4==COOEt} +\sixheterov{1==\upnobond{N}{COOEt}}{} +\sixheterov{1==N}{1==COOEt} +\end{verbatim} + +These examples show that a substituent (e.g. NCOOEt) can +be regarded as a component for atom replacement using a ATOMLIST. +This methodology can be applied to a case in which +such a substituent is generated by the ``yl''-function or +by such a linking command as \verb/\ryl/ or \verb/\lyl/. +The following example shows the use the \verb/\ryl/ command +in the ATOMLIST of \verb/\sixheteroh/. +\begin{verbatim} +\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{} +\end{verbatim} +\begin{center} +\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{} + +\vspace*{1cm} +\end{center} + +A bond bewtween a COO unit and a phenyl group is frequently +omitted. For this purpose, we use command \verb/\ayl/ +defined as +\begin{verbatim} +\makeatletter +\def\ayl{\@ifnextchar({\@ayl@}{\@ayl@(10,40)}} +\def\@ayl@(#1,#2)#3{% +\begingroup\yl@xdiff=0 \yl@ydiff=0% +\kern#1\unitlength\raise#2\unitlength\hbox to0pt{#3\hss}% +\endgroup} +\makeatother +\end{verbatim} +Thereby, we have the following examples. +\begin{verbatim} +\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{} +\end{verbatim} +\begin{center} +\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{} +\hskip2cm +\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{} +\end{center} + +\begin{verbatim} +\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{} +\hskip2cm +\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}} +\end{verbatim} +\begin{center} +\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{} +\hskip2cm +\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}} +\end{center} + + +\endinput + + +\begin{verbatim} +\end{verbatim} +\begin{center} +\end{center} + + +\begin{verbatim} +\end{verbatim} +\begin{quotation} +\end{quotation} + +
\ No newline at end of file |