diff options
author | Karl Berry <karl@freefriends.org> | 2020-04-11 22:43:09 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2020-04-11 22:43:09 +0000 |
commit | baea2de648941d9a729477cbdcbcbfb096253dde (patch) | |
tree | 83506f7bffef0a91b77444d9514624aa6cacfb5c /Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex | |
parent | 225c9a6864c8945d937da8f9c458f6bc5eacb6bb (diff) |
tkz-euclide (6apr20)
git-svn-id: svn://tug.org/texlive/trunk@54669 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex | 581 |
1 files changed, 581 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex new file mode 100644 index 00000000000..7b58f6dffd8 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-circles.tex @@ -0,0 +1,581 @@ +\section{The Circles} + +Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle. + +\begin{itemize} + \item I have created a first macro \tkzcname{tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \tkzcname{tkzGetPoint} and \tkzcname{tkzGetLength}; + + \item then a macro \tkzcname{tkzDrawCircle}; + + \item then a macro that allows you to color in a disc, but without drawing the circle \tkzcname{tkzFillCircle}; + + \item sometimes, it is necessary for a drawing to be contained in a disk, this is the role assigned to \tkzcname{tkzClipCircle}; + + + \item it finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. +\end{itemize} + +\subsection{Characteristics of a circle: \tkzcname{tkzDefCircle}} + +This macro allows you to retrieve the characteristics (center and radius) of certain circles. + +\begin{NewMacroBox}{tkzDefCircle}{\oarg{local options}\parg{A,B} or \parg{A,B,C}}% +\tkzHandBomb\ Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzcname{tkzGetPoint} and/or \tkzcname{tkzGetLength} to obtain the center and the radius of the circle, or by using \tkzname{tkzPointResult} and \tkzname{tkzLengthResult} if it is not necessary to keep the results. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}{\parg{A,B}} {$[AB]$ is radius $A$ is the center} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{through} {through}{circle characterized by two points defining a radius} +\TOline{diameter} {through}{circle characterized by two points defining a diameter} +\TOline{circum} {through}{circle circumscribed of a triangle} +\TOline{in} {through}{incircle a triangle} +\TOline{ex} {through}{excircle of a triangle} +\TOline{euler or nine}{through}{Euler's Circle} +\TOline{spieker} {through}{Spieker Circle} +\TOline{apollonius} {through}{circle of Apollonius} +\TOline{orthogonal} {through}{circle of given centre orthogonal to another circle} +\TOline{orthogonal through}{through}{circle orthogonal circle passing through 2 points} +\TOline{K} {1}{coefficient used for a circle of Apollonius} + \bottomrule +\end{tabular} + +{In the following examples, I draw the circles with a macro not yet presented, but this is not necessary. In some cases you may only need the center or the radius.} +\end{NewMacroBox} + + \subsubsection{Example with a random point and option \tkzname{through}} + +\begin{tkzexample}[latex=7 cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,4){A} + \tkzDefPoint(2,2){B} + \tkzDefMidPoint(A,B) \tkzGetPoint{I} + \tkzDefRandPointOn[segment = I--B] + \tkzGetPoint{C} + \tkzDefCircle[through](A,C) + \tkzGetLength{rACpt} + \tkzpttocm(\rACpt){rACcm} + \tkzDrawCircle(A,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B,C) + \tkzLabelCircle[draw,fill=orange, + text width=3cm,text centered, + font=\scriptsize](A,C)(-90)% + {The radius measurement is: + \rACpt pt i.e. \rACcm cm} + \end{tikzpicture} + \end{tkzexample} + + \subsubsection{Example with option \tkzname{diameter}} + It is simpler here to search directly for the middle of $[AB]$. + \begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){B} + \tkzDefCircle[diameter](A,B) + \tkzGetPoint{O} + \tkzDrawCircle[blue,fill=blue!20](O,B) + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,O) + \tkzLabelPoints(A,B,O) + \end{tikzpicture} + \end{tkzexample} + + \subsubsection{Circles inscribed and circumscribed for a given triangle} + You can also obtain the center of the inscribed circle and its projection on one side of the triangle with \tkzcname{tkzGetFirstPoint{I}} and \tkzcname{tkzGetSecondPoint{Ib}}. + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(2,2){A} + \tkzDefPoint(5,-2){B} + \tkzDefPoint(1,-2){C} + \tkzDefCircle[in](A,B,C) + \tkzGetPoint{I} \tkzGetLength{rIN} + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{K} \tkzGetLength{rCI} + \tkzDrawPoints(A,B,C,I,K) + \tkzDrawCircle[R,blue](I,\rIN pt) + \tkzDrawCircle[R,red](K,\rCI pt) + \tkzLabelPoints[below](B,C) + \tkzLabelPoints[above left](A,I,K) + \tkzDrawPolygon(A,B,C) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Example with option \tkzname{ex}} +We want to define an excircle of a triangle relatively to point $C$ + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefCircle[ex](B,C,A) + \tkzGetPoint{J_c} \tkzGetLength{rc} + \tkzDefPointBy[projection=onto A--C ](J_c) + \tkzGetPoint{X_c} + \tkzDefPointBy[projection=onto A--B ](J_c) + \tkzGetPoint{Y_c} + \tkzGetPoint{I} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle[R,color=lightgray](J_c,\rc pt) + % possible \tkzDrawCircle[ex](A,B,C) + \tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto A--C ](I) + \tkzGetPoint{F} + \tkzDefPointBy[projection=onto A--B ](I) + \tkzGetPoint{D} + \tkzDrawLines[add=0 and 2.2,dashed](C,A C,B) + \tkzDrawSegments[dashed](J_c,X_c I,D I,F J_c,Y_c) + \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B) + \tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c) + \tkzLabelPoints(B,A,J_c,I,D,X_c,Y_c) + \tkzLabelPoints[above left](C) + \tkzLabelPoints[left](F) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Euler's circle for a given triangle with option \tkzname{euler}} + +We verify that this circle passes through the middle of each side. +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(5,3.5){A} + \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C} + \tkzDefCircle[euler](A,B,C) + \tkzGetPoint{E} \tkzGetLength{rEuler} + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} + \tkzDrawPoints(A,B,C,E,M_a,M_b,M_c) + \tkzDrawCircle[R,blue](E,\rEuler pt) + \tkzDrawPolygon(A,B,C) + \tkzLabelPoints[below](B,C) + \tkzLabelPoints[left](A,E) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Apollonius circles for a given segment option \tkzname{apollonius}} + +\begin{tkzexample}[latex=9cm,small] +\begin{tikzpicture}[scale=0.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefCircle[apollonius,K=2](A,B) + \tkzGetPoint{K1} + \tkzGetLength{rAp} + \tkzDrawCircle[R,color = blue!50!black, + fill=blue!20,opacity=.4](K1,\rAp pt) + \tkzDefCircle[apollonius,K=3](A,B) + \tkzGetPoint{K2} \tkzGetLength{rAp} + \tkzDrawCircle[R,color=red!50!black, + fill=red!20,opacity=.4](K2,\rAp pt) + \tkzLabelPoints[below](A,B,K1,K2) + \tkzDrawPoints(A,B,K1,K2) + \tkzDrawLine[add=.2 and 1](A,B) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Circles exinscribed to a given triangle option \tkzname{ex}} + You can also get the center and the projection of it on one side of the triangle. + + with \tkzcname{tkzGetFirstPoint\{Jb\}} and \tkzcname{tkzGetSecondPoint\{Tb\}}. + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(1,2.5){C} + \tkzDefCircle[ex](A,B,C) \tkzGetPoint{I} + \tkzGetLength{rI} + \tkzDefCircle[ex](C,A,B) \tkzGetPoint{J} + \tkzGetLength{rJ} + \tkzDefCircle[ex](B,C,A) \tkzGetPoint{K} + \tkzGetLength{rK} + \tkzDefCircle[in](B,C,A) \tkzGetPoint{O} + \tkzGetLength{rO} + \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C) + \tkzDrawPoints(I,J,K) + \tkzDrawPolygon(A,B,C) + \tkzDrawPolygon[dashed](I,J,K) + \tkzDrawCircle[R,blue!50!black](O,\rO) + \tkzDrawSegments[dashed](A,K B,J C,I) + \tkzDrawPoints(A,B,C) + \tkzDrawCircles[R](J,{\rJ} I,{\rI} K,{\rK}) + \tkzLabelPoints(A,B,C,I,J,K) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Spieker circle with option \tkzname{spieker}} +The incircle of the medial triangle $M_aM_bM_c$ is the Spieker circle: + +\begin{tkzexample}[latex=8cm, small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c} + \tkzDefTriangleCenter[spieker](A,B,C) + \tkzGetPoint{S_p} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](M_a,M_b,M_c) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](M_a,M_b,M_c,S_p) + \tkzDrawCircle[in,red](M_a,M_b,M_c) + \tkzAutoLabelPoints[center=S_p,dist=.3](M_a,M_b,M_c) + \tkzLabelPoints[blue,right](S_p) + \tkzAutoLabelPoints[center=S_p](A,B,C) +\end{tikzpicture} +\end{tkzexample} + + + \subsubsection{Orthogonal circle passing through two given points, option \tkzname{orthogonal through}} + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(-1.5,-1.5){z1} + \tkzDefPoint(1.5,-1.25){z2} + \tkzDefCircle[orthogonal through=z1 and z2](O,A) + \tkzGetPoint{c} + \tkzDrawCircle[thick,color=red](tkzPointResult,z1) + \tkzDrawPoints[fill=red,color=black, + size=4](O,A,z1,z2,c) + \tkzLabelPoints(O,A,z1,z2,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Orthogonal circle of given center} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/O,1/0/A} + \tkzDefPoints{1.5/1.25/B,-2/-3/C} + \tkzDefCircle[orthogonal from=B](O,A) + \tkzGetPoints{z1}{z2} + \tkzDefCircle[orthogonal from=C](O,A) + \tkzGetPoints{t1}{t2} + \tkzDrawCircle(O,A) + \tkzDrawCircle[thick,color=red](B,z1) + \tkzDrawCircle[thick,color=red](C,t1) + \tkzDrawPoints(t1,t2,C) + \tkzDrawPoints(z1,z2,O,A,B) + \tkzLabelPoints(O,A,B,C) +\end{tikzpicture} +\end{tkzexample} + +%<----------------------------------------------------------------------------> + +\section{Draw, Label the Circles} +\begin{itemize} + \item I created a first macro \tkzcname{tkzDrawCircle}, + + \item then a macro that allows you to color a disc, but without drawing the circle. \tkzcname{tkzFillCircle}, + + \item sometimes, it is necessary for a drawing to be contained in a disc,this is the role assigned to \tkzcname{tkzClipCircle}, + + + \item It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. +\end{itemize} + +\subsection{Draw a circle} +\begin{NewMacroBox}{tkzDrawCircle}{\oarg{local options}\parg{A,B}}% +\tkzHandBomb\ Attention you need only two points to define a radius or a diameter. An additional option \tkzname{R} is available to give a measure directly. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{A,B}} {two points to define a radius or a diameter} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{through}{through}{circle with two points defining a radius} +\TOline{diameter}{through}{circle with two points defining a diameter} +\TOline{R} {through}{circle characterized by a point and the measurement of a radius} + \bottomrule +\end{tabular} + +\medskip +Of course, you have to add all the styles of \TIKZ\ for the tracings... +\end{NewMacroBox} + + \subsubsection{Circles and styles, draw a circle and color the disc} + We'll see that it's possible to colour in a disc while tracing the circle. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(3,0){A} + % circle with centre O and passing through A + \tkzDrawCircle[color=blue](O,A) + % diameter circle $[OA]$ + \tkzDrawCircle[diameter,color=red,% + line width=2pt,fill=red!40,% + opacity=.5](O,A) + % circle with centre O and radius = exp(1) cm + \edef\rayon{\fpeval{0.25*exp(1)}} + \tkzDrawCircle[R,color=orange](O,\rayon cm) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Drawing circles} +\begin{NewMacroBox}{tkzDrawCircles}{\oarg{local options}\parg{A,B C,D}}% +\tkzHandBomb\ Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} is available to give a measure directly. + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2 pt3,pt4 ...}}{\parg{A,B C,D}} {List of two points} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{through}{through}{circle with two points defining a radius} +\TOline{diameter}{through}{circle with two points defining a diameter} +\TOline{R} {through}{circle characterized by a point and the measurement of a radius} + \bottomrule +\end{tabular} + +\medskip +Of course, you have to add all the styles of \TIKZ\ for the tracings... +\end{NewMacroBox} + + \subsubsection{Circles defined by a triangle.} + +\begin{tkzexample}[latex=9cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,0){B} + \tkzDefPoint(3,2){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawCircles(A,B B,C C,A) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B,C) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Concentric circles.} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDrawCircles[R](A,1cm A,2cm A,3cm) + \tkzDrawPoint(A) + \tkzLabelPoints(A) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Exinscribed circles.} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] +\tkzDefPoints{0/0/A,4/0/B,1/2.5/C} +\tkzDrawPolygon(A,B,C) +\tkzDefCircle[ex](B,C,A) +\tkzGetPoint{J_c} \tkzGetSecondPoint{T_c} +\tkzGetLength{rJc} +\tkzDrawCircle[R](J_c,{\rJc pt}) +\tkzDrawLines[add=0 and 1](C,A C,B) +\tkzDrawSegment(J_c,T_c) +\tkzMarkRightAngle(J_c,T_c,B) +\tkzDrawPoints(A,B,C,J_c,T_c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Cardioid} +Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. + + Its name comes from the Greek \textit{kardia (heart)}, in reference to its shape, and was given to it by Johan Castillon (Wikipedia). + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,0){A} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:2){M} + \tkzDrawCircle(M,A) + } +\end{tikzpicture} +\end{tkzexample} + +\subsection{Draw a semicircle} +\begin{NewMacroBox}{tkzDrawSemiCircle}{\oarg{local options}\parg{A,B}}% + +\medskip +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{O,A} or\parg{A,B}} {radius or diameter} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +\toprule +options & default & definition \\ +\midrule +\TOline{through} {through}{circle characterized by two points defining a radius} +\TOline{diameter} {through}{circle characterized by two points defining a diameter} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Use of \tkzcname{tkzDrawSemiCircle}} + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzDrawPolygon(B,C,D,A) + \tkzDefPoint(3,6){F} + \tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J} + \tkzInterLL(D,B)(I,J) \tkzGetPoint{K} + \tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M} + \tkzDrawCircle(M,I) + \tkzCalcLength(M,I) \tkzGetLength{dMI} + \tkzFillPolygon[color = red!50](A,B,C,D) + \tkzFillCircle[R,color = yellow](M,\dMI pt) + \tkzDrawSemiCircle[fill = blue!50!black](F,D)% + \end{tikzpicture} +\end{tkzexample} + + +\subsection{Colouring a disc} +This was possible with the previous macro, but disk tracing was mandatory, this is no longer the case. + +\begin{NewMacroBox}{tkzFillCircle}{\oarg{local options}\parg{A,B}}% +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{radius} {radius}{two points define a radius} +\TOline{R} {radius}{a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +You don't need to put \tkzname{radius} because that's the default option. Of course, you have to add all the styles of \TIKZ\ for the plots. +\end{NewMacroBox} + + \subsubsection{Example from a sangaku} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmin=0,xmax = 6,ymin=0,ymax=6] + \tkzDefPoint(0,0){B} \tkzDefPoint(6,0){C}% + \tkzDefSquare(B,C) \tkzGetPoints{D}{A} + \tkzClipPolygon(B,C,D,A) + \tkzDefMidPoint(A,D) \tkzGetPoint{F} + \tkzDefMidPoint(B,C) \tkzGetPoint{E} + \tkzDefMidPoint(B,D) \tkzGetPoint{Q} + \tkzDefTangent[from = B](F,A) \tkzGetPoints{G}{H} + \tkzInterLL(F,G)(C,D) \tkzGetPoint{J} + \tkzInterLL(A,J)(F,E) \tkzGetPoint{K} + \tkzDefPointBy[projection=onto B--A](K) + \tkzGetPoint{M} + \tkzFillPolygon[color = green](A,B,C,D) + \tkzFillCircle[color = orange](B,A) + \tkzFillCircle[color = blue!50!black](M,A) + \tkzFillCircle[color = purple](E,B) + \tkzFillCircle[color = yellow](K,Q) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Clipping a disc} + +\begin{NewMacroBox}{tkzClipCircle}{\oarg{local options}\parg{A,B} or \parg{A,r}}% +\begin{tabular}{lll}% +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{A,B} or \parg{A,r}}{\parg{A,B} or \parg{A,2cm}} {AB radius or diameter } +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{radius} {radius}{circle characterized by two points defining a radius} +\TOline{R} {radius}{circle characterized by a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +It is not necessary to put \tkzname{radius} because that is the default option. +\end{NewMacroBox} + + \subsubsection{Example} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzGrid \tkzClip + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){O} + \tkzDefPoint(4,4){B} + \tkzDefPoint(6,6){C} + \tkzDrawPoints(O,A,B,C) + \tkzLabelPoints(O,A,B,C) + \tkzDrawCircle(O,A) + \tkzClipCircle(O,A) + \tkzDrawLine(A,C) + \tkzDrawCircle[fill=red!20,opacity=.5](C,O) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Giving a label to a circle} +\begin{NewMacroBox}{tkzLabelCircle}{\oarg{local options}\parg{A,B}\parg{angle}\marg{label}}% +\begin{tabular}{lll}% +options & default & definition \\ +\midrule +\TOline{radius} {radius}{circle characterized by two points defining a radius} +\TOline{R} {radius}{circle characterized by a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +You don't need to put \tkzname{radius} because that's the default option. We can use the styles from \TIKZ. The label is created and therefore "passed" between braces. +\end{NewMacroBox} + +\subsubsection{Example} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N} + \tkzDefPointBy[rotation=center O angle 50](N) + \tkzGetPoint{M} + \tkzDefPointBy[rotation=center O angle -20](N) + \tkzGetPoint{P} + \tkzDefPointBy[rotation=center O angle 125](N) + \tkzGetPoint{P'} + \tkzLabelCircle[above=4pt](O,N)(120){$\mathcal{C}$} + \tkzDrawCircle(O,M) + \tkzFillCircle[color=blue!20,opacity=.4](O,M) + \tkzLabelCircle[R,draw,fill=orange,% + text width=2cm,text centered](O,3 cm)(-60)% + {The circle\\ $\mathcal{C}$} + \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) +\end{tikzpicture} +\end{tkzexample} + +\endinput |