summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/multenum/multienum.sample
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-01-09 00:44:40 +0000
committerKarl Berry <karl@freefriends.org>2006-01-09 00:44:40 +0000
commitb4fc5f639874db951177ec539299d20908adb654 (patch)
tree52f08823ca58fffe3db6a9b075635038c567626c /Master/texmf-dist/doc/latex/multenum/multienum.sample
parentdec3d98ebe442d7ea93efbaa8dd2e2be8149a467 (diff)
doc 4
git-svn-id: svn://tug.org/texlive/trunk@80 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/multenum/multienum.sample')
-rw-r--r--Master/texmf-dist/doc/latex/multenum/multienum.sample159
1 files changed, 159 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/multenum/multienum.sample b/Master/texmf-dist/doc/latex/multenum/multienum.sample
new file mode 100644
index 00000000000..b90f146386d
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/multenum/multienum.sample
@@ -0,0 +1,159 @@
+%This is a 2-page sample illustrating how to use the
+%multienum package
+
+\documentclass{article}
+\setlength{\textwidth}{6in}
+\setlength{\textheight}{8.5in}
+\setlength{\topmargin}{-0.5in}
+\setlength{\oddsidemargin}{0.25in}
+\usepackage{multicol,multienum}
+
+
+
+\begin{document}
+\begin{center}
+{\Large\bf Sample formating using {\tt multienumerate}}
+\end{center}
+
+\bigskip
+Sometimes we want to typeset the solutions to exercises. This
+is easy to do using the {\tt multienumerate} environment.
+\subsection*{Answers to All Exercises}
+\begin{multienumerate}
+\mitemxxxx{Not}{Linear}{Not}{Quadratic}
+\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
+\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
+\end{multienumerate}
+
+
+\bigskip
+\hrule
+
+\bigskip
+
+We can also enumerate the items using an even-only or odd only
+counter.
+\subsection*{Answers to Even-Numbered Exercises}
+\begin{multienumerate}[evenlist]
+\mitemxxxx{Not}{Linear}{Not}{Quadratic}
+\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
+\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
+\end{multienumerate}
+
+\hrule
+
+\subsection*{Answers to Odd-Numbered Exercises}
+\begin{multienumerate}[oddlist]
+\mitemxxxx{Not}{Linear}{Not}{Quadratic}
+\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
+\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
+\end{multienumerate}
+
+\bigskip
+\hrule
+
+\bigskip
+
+Sometimes we want to create sublists which are
+enumerated using an alpha counter.
+
+\begin{multienumerate}
+\mitemx{Which of the following numbers is the solution of the
+equation
+$x+3=7$:}
+\begin{multienumerate}
+\mitemxxxx{1}{2}{3}{4}
+\end{multienumerate}
+\mitemx{The value of $\log_28$ is:}
+\begin{multienumerate}
+\mitemxxxx{1}{$-1$}{3}{$-3$}
+\end{multienumerate}
+\end{multienumerate}
+\pagebreak
+
+\begin{multicols}{2}
+\subsection*{Answers to All Exercises}
+\begin{multienumerate}
+\mitemxx{Not}{Linear}
+\mitemxx{Not}{Quadratic}
+\mitemxx{Not}{Linear}
+\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}
+\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxx{$(2,-1,3)$}{None}
+\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
+\mitemxx{Not}{Linear}
+\mitemxx{Not}{Quadratic}
+\mitemxx{Not}{Linear}
+\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}
+\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxx{$(2,-1,3)$}{None}
+\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
+\mitemxx{Not}{Linear}
+\mitemxx{Not}{Quadratic}
+\mitemxx{Not}{Linear}
+\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
+$(s,3s-6)$}
+\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
+\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
+or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
+\mitemxx{$(2,-1,3)$}{None}
+\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
+\end{multienumerate}
+
+\subsection*{Multiple Choice}
+\begin{multienumerate}
+\mitemx{Which of the following numbers is the solution of the
+equation
+$x+3=7$:}
+\begin{multienumerate}
+\mitemxxxx{1}{2}{3}{4}
+\end{multienumerate}
+\mitemx{The value of $\log_28$ is:}
+\begin{multienumerate}
+\mitemxxxx{1}{$-1$}{3}{$-3$}
+\end{multienumerate}
+\mitemx{Which of the following numbers is the solution of the
+equation
+$x+3=7$:}
+\begin{multienumerate}
+\mitemxxxx{1}{2}{3}{4}
+\end{multienumerate}
+\mitemx{The value of $\log_28$ is:}
+\begin{multienumerate}
+\mitemxxxx{1}{$-1$}{3}{$-3$}
+\end{multienumerate}
+\mitemx{Which of the following numbers is the solution of the
+equation
+$x+3=7$:}
+\begin{multienumerate}
+\mitemxxxx{1}{2}{3}{4}
+\end{multienumerate}
+\mitemx{The value of $\log_28$ is:}
+\begin{multienumerate}
+\mitemxxxx{1}{$-1$}{3}{$-3$}
+\end{multienumerate}
+\end{multienumerate}
+\end{multicols}
+
+\end{document}
+
+
+