diff options
author | Karl Berry <karl@freefriends.org> | 2013-11-26 23:13:18 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-11-26 23:13:18 +0000 |
commit | 93d97c86679ad3e449ccb58cff961c4dfca740e9 (patch) | |
tree | 1c4a93df34198cc2ea6c491a5200ebb4d946be83 /Master/texmf-dist/doc/latex/media9/media9.tex | |
parent | 1c716b33b15ae27eccb19b37200eb67b35d64050 (diff) |
media9 (26nov13)
git-svn-id: svn://tug.org/texlive/trunk@32247 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/media9/media9.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/media9/media9.tex | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/Master/texmf-dist/doc/latex/media9/media9.tex b/Master/texmf-dist/doc/latex/media9/media9.tex index e6187eee6dd..186d50bb6c2 100644 --- a/Master/texmf-dist/doc/latex/media9/media9.tex +++ b/Master/texmf-dist/doc/latex/media9/media9.tex @@ -310,11 +310,11 @@ Switches from the default perspective to orthographic view mode. In orthographic \begin{verbatim} 3Dmenu \end{verbatim} -Mainly used during document authoring. Adds three entries, `\emph{\sffamily Generate Default View}', `\emph{\sffamily Get Current View}' and `\emph{\sffamily Cross Section}' to the context (right-click) menu of an activated 3D annotation. Moreover, it allows individual parts of the scene to be scaled, translated and rotated against the remaining scene objects using the keyboard. Their new position can be saved in the current view. Parts to be modified should be highlighted with the mouse first (the part's bounding box becomes visible). Then, arrow keys \keys{\arrowkeyleft}, \keys{\arrowkeyright} let the part spin around its vertical axis, and \keys{\arrowkeyup}, \keys{\arrowkeydown} tilt against the vertical position. \keys{X}, \keys{\shift+X}, \keys{Y}, \keys{\shift+Y}, \keys{Z}, \keys{\shift+Z} translate the selected part along the World axes and \keys{S}, \keys{\shift+S} scale the part. +Mainly used during document authoring. Adds three entries, `\emph{\sffamily Generate Default View}', `\emph{\sffamily Get Current View}' and `\emph{\sffamily Cross Section}' to the context (right-click) menu of an activated 3D annotation. Moreover, it allows single parts or part groups of the scene to be scaled, translated and rotated against the remaining scene objects using the keyboard. Their new position can be saved in the current view (`\emph{\sffamily Get Current View}'). At first, parts to be modified must be highlighted by clicking either into the scene or into the model tree (the part's bounding box becomes visible). Then, arrow keys \keys{\arrowkeyleft}, \keys{\arrowkeyright} let the part spin around the vertical axis, and \keys{\arrowkeyup}, \keys{\arrowkeydown} tilt against it. In order to spin parts around their local up-axis, keep \keys{\ctrl} pressed while using \keys{\arrowkeyleft} and \keys{\arrowkeyright}. Keys \keys{X}, \keys{\shift+X}, \keys{Y}, \keys{\shift+Y}, \keys{Z}, \keys{\shift+Z} translate the selected part along the World axes, and \keys{S}, \keys{\shift+S} scale the part. `\emph{\sffamily Generate Default View}' computes optimal camera settings such that the visible parts of the 3D scene fit tightly into the viewing area. The result is printed, formatted as a list of \verb+\includemedia+ options, into the JavaScript console. The calculation is based on the 3D object size and its position in the World coordinate system as well as the current viewing mode (perspective or orthographic). -`\emph{\sffamily Cross Section}' is a toggle switch to add or remove a cross section to or from the current view. If a part of the 3D scene was previously selected, the central rotating point of the section plane is put into the part's centre, otherwise into the target point of the camera. The section plane can be rotated around the vertical axis and tilted against its upright position using the arrow keys \keys{\arrowkeyleft}, \keys{\arrowkeyright}, \keys{\arrowkeyup} and \keys{\arrowkeydown}. Keys \keys{X}, \keys{\shift+X}, \keys{Y}, \keys{\shift+Y}, \keys{Z}, \keys{\shift+Z} move the section plane along the World axes. +`\emph{\sffamily Cross Section}' is a toggle switch to add or remove a cross section to or from the current view. If a part of the 3D scene was previously selected, the central rotating point of the section plane is put into the part's centre, otherwise into the target point of the camera. The section plane can be rotated around the vertical axis and tilted against its upright position using the arrow keys \keys{\arrowkeyleft}, \keys{\arrowkeyright}, \keys{\arrowkeyup} and \keys{\arrowkeydown}. Keys \keys{X}, \keys{\shift+X}, \keys{Y}, \keys{\shift+Y}, \keys{Z}, \keys{\shift+Z} move the section plane along the World axes, and \keys{S}, \keys{\shift+S} scale its size. `\emph{\sffamily Get Current View}' writes camera settings, any part alterations, an optional cross section as well as part and scene rendering attributes of the current view into the JavaScript console. The output is a readily formatted \verb+VIEW+ section to be inserted into or appended to a file of predefined views. See option `\verb+3Dviews+'. All settings reachable via the `\emph{\sffamily Part Options}' and `\emph{\sffamily Viewing Options}' context menu items are written to the \verb+VIEW+ section. \begin{verbatim} @@ -827,7 +827,7 @@ Currently, two open-source software packages are known to export into the PRC fi MeshLab~\cite{meshlab} is an open-source conversion and processing software for 3D mesh data which can import from and export to a number of file formats. Its U3D export filter is based on the open-source `Universal 3D Sample Software'~\cite{u3dlib}. -There are a few options to \verb+\includemedia+ which define how the 3D object is positioned within the view port of a virtual camera, or conversely, how the virtual camera is positioned and oriented within a coordinate system, called `The World', which bears the 3D object at a fixed position. Fig.~\ref{3dscene} should help to visualize the scenery: The virtual camera is orbiting at a distance of $ROO$ (option `\verb+3Droo+') around the centre of orbit, specified by the position vector $\overrightarrow{COO}$ (option `\verb+3Dcoo+'); $\sphericalangle AAC$ (option `\verb+3Daac+') is the camera's aperture angle. The direction vector $\overrightarrow{C2C}$ (option `\verb+3Dc2c+') is needed to specify the initial camera position. The camera may be given an initial roll angle (option `\verb+3Droll+') around its optical axis $(-1)\cdot\overrightarrow{C2C}$. +There are a few options to \verb+\includemedia+ which define how the 3D object is positioned within the view port of a virtual camera, or conversely, how the virtual camera is positioned and oriented within a coordinate system, called `The World', which bears the 3D object at a fixed position. Fig.~\ref{3dscene} should help to grasp the scenery: The virtual camera is orbiting at a distance of $ROO$ (option `\verb+3Droo+') around the centre of orbit, specified by the position vector $\overrightarrow{COO}$ (option `\verb+3Dcoo+'); $\sphericalangle AAC$ (option `\verb+3Daac+') is the camera's aperture angle. The direction vector $\overrightarrow{C2C}$ (option `\verb+3Dc2c+') is needed to specify the initial camera position. The camera may be given an initial roll angle (option `\verb+3Droll+') around its optical axis $(-1)\cdot\overrightarrow{C2C}$. \begin{figure}[ht] \resizebox{\linewidth}{!}{\input{files/3dsystem}} \caption{Camera and 3D object in the World System $XYZ$; centre of orbit position vector \usebox{\COO}, centre of orbit to camera direction vector \usebox{\CtoC}, radius of orbit $ROO$, aperture angle of camera $\sphericalangle AAC$.}\label{3dscene} |