diff options
author | Karl Berry <karl@freefriends.org> | 2011-09-04 16:35:48 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2011-09-04 16:35:48 +0000 |
commit | 60b4ec6f2bf1ba57aa206b2ac46c454d75f3bf93 (patch) | |
tree | cbf61d6f8bd4a2c6ff62d5e7940e22c352757cfa /Master/texmf-dist/doc/latex/lapdf/rcircle.tex | |
parent | d422465c9efb44dd32ba6a50f6ef9879bce018be (diff) |
lapdf is back (2sep11)
git-svn-id: svn://tug.org/texlive/trunk@23806 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/lapdf/rcircle.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/lapdf/rcircle.tex | 341 |
1 files changed, 341 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/lapdf/rcircle.tex b/Master/texmf-dist/doc/latex/lapdf/rcircle.tex new file mode 100644 index 00000000000..a4e31599739 --- /dev/null +++ b/Master/texmf-dist/doc/latex/lapdf/rcircle.tex @@ -0,0 +1,341 @@ +\input preamble.tex + +\Defdim(\a,0) +\Defdim(\d,0) +\Defdim(\x,0) +\Defdim(\y,0) + +\def\Ncirc(#1){\Rad(#1,\a) + \Cos(\Np\a,\x) \Add(\x,\x) + \Sin(\Np\a,\y) \Add(\y,\y) + \Circle(64)(\Np\x,\Np\y,2) \Stroke} + +\def\ctitle#1{{\huge\bf{#1}}} + +\title{\Huge \bf{Drawing Circles \\ + with \\ + Rational Quadratic Bezier Curves}} +\author{Detlef Reimers, detlefreimers@gmx.de} +\date{\today} + +% --------------------------------------------------------------------------- +\begin{document} +\maketitle + +\begin{center} +\begin{lapdf}(8, 10)(-4,-5) + \Whiledim{\d<360}{\Nextcol(0,23) \Ncirc(\Np\d) \Dadd(\d,15)} +\end{lapdf} + +\ctitle{Description} +\end{center} +This document explains, how to calculate the bezier points for +complete circles. These can be drawn with the \texttt{Rcurve} +commmand from the \texttt{lapdf.sty}. If the weight of the point +$P_1$ is $w=\cos(\alpha)$, where $\alpha$ ist the angle between +$P_{0}P_{1}$ and $P_{1}P_{2}$, then the conic will be a circular +arc, if also both length $P_{0}P_{1}$ and $P_{1}P_{2}$ are equal. + +We have to smothly join several of these arcs together, to get +a full circle. Only in the case of two segments, we have have to +use one negative weight. In all other cases we only have positive +weights. In all of the following calculations and drawings we assume, +that the center of the circle lies at the origin. + +\pagebreak +\parskip0.3cm + +\begin{center} +\ctitle{General calculation scheme} + +\begin{lapdf}(14,13.5)(-7,-6.5) + \Dash(1) + \Setwidth(0.01) + \Polygon(+0.00,-5.00) + (+3.63,-5.00)(+4.76,-1.55) + (+5.88,+1.91)(+2.94,+4.05) + (+0.00,+6.18)(-2.94,+4.05) + (-5.88,+1.91)(-4.76,-1.55) + (-3.63,-5.00)(+0.00,-5.00) \Stroke + \Line(+0.00,+0.00)(+0.00,-5.00) \Stroke + \Line(+0.00,+0.00)(+3.63,-5.00) \Stroke + \Line(+0.00,+0.00)(+4.76,-1.55) \Stroke + \Line(+0.00,+0.00)(+5.88,+1.91) \Stroke + \Line(+0.00,+0.00)(+2.94,+4.05) \Stroke + \Line(+0.00,+0.00)(+0.00,+6.18) \Stroke + \Line(+0.00,+0.00)(-2.94,+4.05) \Stroke + \Line(+0.00,+0.00)(-5.88,+1.91) \Stroke + \Line(+0.00,+0.00)(-4.76,-1.55) \Stroke + \Line(+0.00,+0.00)(-3.63,-5.00) \Stroke + \Dash(0) + \Setwidth(0.02) + \Blue + \Circle(96)(0,0,6.18) \Stroke + \Red + \Circle(96)(0,0,5) \Stroke + \Black + \Rcurve(64)(+0.00,-1.30,1)(+0.42,-1.30,0.5)(0.76,-1.05,1) \Stroke + \Point(1)(+3.63,-5.00) + \Point(1)(+4.76,-1.55) + \Point(1)(+5.88,+1.91) + \Point(1)(+2.94,+4.05) + \Point(1)(+0.00,+6.18) + \Point(1)(-2.94,+4.05) + \Point(1)(-5.88,+1.91) + \Point(1)(-4.76,-1.55) + \Point(1)(-3.63,-5.00) + \Point(1)(+0.00,-5.00) + \Text(+3.63,-5.10,tl){$P_1$} + \Text(+4.86,-1.55,tl){$P_2$} + \Text(+5.98,+2.01,cl){$P_3$} + \Text(+3.04,+4.15,bl){$P_4$} + \Text(+0.00,+6.38,bc){$P_5$} + \Text(-3.04,+4.15,br){$P_6$} + \Text(-5.98,+2.01,cr){$P_7$} + \Text(-4.86,-1.55,tr){$P_8$} + \Text(-3.63,-5.10,tr){$P_9$} + \Text(+0.00,-5.10,tc){$P_0=P_{10}$} + \Text(0.10,-2.90,cl){$r$} + \Text(0.10,+3.10,cl){$R$} + \Text(0.25,-0.80,cc){$\alpha$} +\end{lapdf} +\end{center} +We always put $P_0$ at the bottom of the circle and all other points +follow counterclockwise. +This is the general procedure for circle construction with rational +quadratic bezier curves (see picture): +\begin{enumerate} +\item Set the radius $r$. +\item Set the number of bezier segments $n$. +\item Calculate $\alpha = \displaystyle {360^\circ \over 2n}$. +\item Calculate outer radius $R=\displaystyle {r \over \cos(\alpha)}$. +\item Calculate all even bezier points + $P_{2i} = \displaystyle {+r \cdot \sin(2i\cdot\alpha) + \choose -r \cdot \cos(2i\cdot\alpha)}$ for $i=0 \dots n$. +\item Calculate odd bezier points + $P_{2i+1} = \displaystyle {+R \cdot \sin((2i+1)\cdot\alpha) + \choose -R \cdot \cos((2i+1)\cdot\alpha)}$ for $i=0 \dots n-1$. +\end{enumerate} +You can control your calculations, if you check your endpoint $P_{2n}$. +This point is equal with $P_0$. All curves are drawn with the +{\tt Rmoveto()} and {\tt Rcurveto()} combination. + +\pagebreak + +\parskip1cm +\begin{center} +\ctitle{2 Segments} + +\begin{lapdf}(6,7.5)(-3,-3) + \Lingrid(5)(0,1)(-3,3)(-3,5) + \Dash(1) + \Setwidth(0.01) + \Polygon(+2.165,+1.25) + (+0.00,+5.0)(-2.165,+1.25) \Stroke + \Dash(0) + \Red + \Setwidth(0.02) + \Rmoveto(+2.165,+1.25,1) + \Rcurveto(64)(+0.00,+5.0,+0.5)(-2.165,+1.25,1) + \Rcurveto(64)(+0.00,+5.0,-0.5)(+2.165,+1.25,1) \Stroke + \Black + \Point(1)(+2.165,+1.25) + \Point(1)(+0.000,+5.00) + \Point(1)(-2.165,+1.25) +\end{lapdf} + +Circle with $2n+1=5$ points ($w_{2n}=1$ and $w_{2n+1} = \pm \cos(60^\circ) = \pm 0.5$). +\end{center} +\begin{center} +\ctitle{3 Segments} + +\begin{lapdf}(6,7.5)(-3,-3) + \Lingrid(5)(0,1)(-5,5)(-3,5) + \Dash(1) + \Setwidth(0.01) + \Polygon(+0.00,-2.50) + (+4.333,-2.50)(+2.165,+1.25) + (+0.000,+5.00)(-2.165,+1.25) + (-4.333,-2.50)(+0.000,-2.50) \Stroke + \Dash(0) + \Setwidth(0.02) + \Red + \Rmoveto(+0.000,-2.50,1) + \Rcurveto(64)(+4.33,-2.50,0.5)(+2.165,+1.25,1) + \Rcurveto(64)(+0.00,+5.00,0.5)(-2.165,+1.25,1) + \Rcurveto(64)(-4.33,-2.50,0.5)(+0.000,-2.50,1) \Stroke + \Black + \Point(1)(+0.000,-2.50) + \Point(1)(+4.333,-2.50) + \Point(1)(+2.165,+1.25) + \Point(1)(+0.000,+5.00) + \Point(1)(-2.165,+1.25) + \Point(1)(-4.333,-2.50) +\end{lapdf} + +Circle with $2n+1=7$ points ($w_{2n}=1$ and $w_{2n+1} = \cos(60^\circ) = 0.5$). +\end{center} + +\pagebreak + +\begin{center} +\ctitle{4 Segments} + +\begin{lapdf}(6,6)(-3,-3) + \Lingrid(5)(0,1)(-3,3)(-3,3) + \Dash(1) + \Setwidth(0.01) + \Polygon(+2.50,+0.00) + (+2.50,+2.50)(+0.00,+2.50) + (-2.50,+2.50)(-2.50,+0.00) + (-2.50,-2.50)(+0.00,-2.50) + (+2.50,-2.50)(+2.50,+0.00) \Stroke + \Dash(0) + \Setwidth(0.02) + \Red + \Rmoveto(+2.50,+0.00,1) + \Rcurveto(64)(+2.50,+2.50,0.707)(+0.00,+2.50,1) + \Rcurveto(64)(-2.50,+2.50,0.707)(-2.50,+0.00,1) + \Rcurveto(64)(-2.50,-2.50,0.707)(+0.00,-2.50,1) + \Rcurveto(64)(+2.50,-2.50,0.707)(+2.50,+0.00,1) \Stroke + \Black + \Point(1)(+2.50,+0.00) + \Point(1)(+2.50,+2.50) + \Point(1)(+0.00,+2.50) + \Point(1)(-2.50,+2.50) + \Point(1)(-2.50,+0.00) + \Point(1)(-2.50,-2.50) + \Point(1)(+0.00,-2.50) + \Point(1)(+2.50,-2.50) +\end{lapdf} + +Circle with $2n+1=9$ points ($w_{2n}=1$ and $w_{2n+1} = \cos(45^\circ) = 0.707$). +\end{center} +\begin{center} +\ctitle{5 Segments} + +\begin{lapdf}(6,6)(-3,-3) + \Lingrid(5)(0,1)(-3,3)(-3,3) + \Dash(1) + \Setwidth(0.01) + \Polygon(+0.00,-2.50) + (+1.815,-2.500)(+2.38,-0.775) + (+2.940,+0.905)(+1.47,+2.025) + (+0.000,+3.090)(-1.47,+2.025) + (-2.940,+0.905)(-2.38,-0.775) + (-1.815,-2.500)(+0.00,-2.500) \Stroke + \Dash(0) + \Setwidth(0.02) + \Red + \Rmoveto(+0.00,-2.500,1) + \Rcurveto(64)(+1.815,-2.500,0.809)(+2.380,-0.775,1) + \Rcurveto(64)(+2.940,+0.905,0.809)(+1.470,+2.025,1) + \Rcurveto(64)(+0.000,+3.090,0.809)(-1.470,+2.025,1) + \Rcurveto(64)(-2.940,+0.905,0.809)(-2.380,-0.775,1) + \Rcurveto(64)(-1.815,-2.500,0.809)(+0.000,-2.500,1) \Stroke + \Black + \Point(1)(+1.815,-2.500) + \Point(1)(+2.380,-0.775) + \Point(1)(+2.940,+0.905) + \Point(1)(+1.470,+2.025) + \Point(1)(+0.000,+3.090) + \Point(1)(-1.470,+2.025) + \Point(1)(-2.940,+0.905) + \Point(1)(-2.380,-0.775) + \Point(1)(-1.815,-2.500) + \Point(1)(+0.000,-2.500) +\end{lapdf} + +Circle with $2n+1=11$ points ($w_{2n}=1$ and $w_{2n+1} = \cos(36^\circ) = 0.809$). +\end{center} + +\pagebreak + +\begin{center} +\ctitle{6 Segments} + +\begin{lapdf}(6,6)(-3,-3) + \Lingrid(5)(0,1)(-3,3)(-3,3) + \Dash(1) + \Setwidth(0.01) + \Polygon(+2.50,+0.00) + (+2.50,+1.445)(+1.25,+2.165) + (+0.00,+2.885)(-1.25,+2.165) + (-2.50,+1.445)(-2.50,+0.000) + (-2.50,-1.445)(-1.25,-2.165) + (+0.00,-2.885)(+1.25,-2.165) + (+2.50,-1.445)(+2.50,+0.000) \Stroke + \Dash(0) + \Setwidth(0.02) + \Red + \Rmoveto(+2.50,+0.000,1) + \Rcurveto(64)(+2.50,+1.445,0.866)(+1.25,+2.165,1) + \Rcurveto(64)(+0.00,+2.885,0.866)(-1.25,+2.165,1) + \Rcurveto(64)(-2.50,+1.445,0.866)(-2.50,+0.000,1) + \Rcurveto(64)(-2.50,-1.445,0.866)(-1.25,-2.165,1) + \Rcurveto(64)(+0.00,-2.885,0.866)(+1.25,-2.165,1) + \Rcurveto(64)(+2.50,-1.445,0.866)(+2.50,+0.000,1) \Stroke + \Black + \Point(1)(+2.50,+0.000) + \Point(1)(+2.50,+1.445) + \Point(1)(+1.25,+2.165) + \Point(1)(+0.00,+2.885) + \Point(1)(-1.25,+2.165) + \Point(1)(-2.50,+1.445) + \Point(1)(-2.50,+0.000) + \Point(1)(-2.50,-1.445) + \Point(1)(-1.25,-2.165) + \Point(1)(+0.00,-2.885) + \Point(1)(+1.25,-2.165) + \Point(1)(+2.50,-1.445) +\end{lapdf} + +Circle with $2n+1=13$ points ($w_{2n}=1$ and $w_{2n+1} = \cos(30^\circ) = 0.866$). +\end{center} + +\begin{center} +\ctitle{7 Segments} + +\begin{lapdf}(6,6)(-3,-3) + \Lingrid(5)(0,1)(-3,3)(-3,3) + \Dash(1) + \Setwidth(0.01) + \Polygon(+0.00,-2.50) + (+1.205,-2.50)(+1.955,-1.560) + (+2.705,-0.62)(+2.440,+0.555) + (+2.170,+1.73)(+1.085,+2.255) + (+0.000,+2.78)(-1.085,+2.255) + (-2.170,+1.73)(-2.440,+0.555) + (-2.705,-0.62)(-1.955,-1.560) + (-1.205,-2.50)(+0.000,-2.500) \Stroke + \Dash(0) + \Setwidth(0.02) + \Red + \Rmoveto(+0.000,-2.500,1) + \Rcurveto(64)(+1.205,-2.50,0.901)(+1.905,-1.560,1) + \Rcurveto(64)(+2.705,-0.62,0.901)(+2.440,+0.555,1) + \Rcurveto(64)(+2.170,+1.73,0.901)(+1.085,+2.255,1) + \Rcurveto(64)(+0.000,+2.78,0.901)(-1.085,+2.255,1) + \Rcurveto(64)(-2.170,+1.73,0.901)(-2.440,+0.555,1) + \Rcurveto(64)(-2.705,-0.62,0.901)(-1.905,-1.560,1) + \Rcurveto(64)(-1.205,-2.50,0.901)(+0.000,-2.500,1) \Stroke + \Black + \Point(1)(+0.000,-2.500) + \Point(1)(+1.205,-2.500) + \Point(1)(+1.905,-1.560) + \Point(1)(+2.705,-0.620) + \Point(1)(+2.440,+0.555) + \Point(1)(+2.170,+1.730) + \Point(1)(+1.085,+2.255) + \Point(1)(+0.000,+2.780) + \Point(1)(-1.085,+2.255) + \Point(1)(-2.170,+1.730) + \Point(1)(-2.440,+0.555) + \Point(1)(-2.705,-0.620) + \Point(1)(-1.905,-1.560) + \Point(1)(-1.205,-2.500) +\end{lapdf} + +Circle with $2n+1=15$ points ($w_{2n}=1$ and $w_{2n+1} = \cos(25.71^\circ) = 0.901$). +\end{center} +\end{document} |