summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2010-06-14 22:31:40 +0000
committerKarl Berry <karl@freefriends.org>2010-06-14 22:31:40 +0000
commitb3f1741ccbe6dede2fc5cc309815e40728c0330f (patch)
treee9c7d2ffc516d8fff6defbf3b85205078e1701f9 /Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
parentfa2a29ef6564da92ff9b4caede3dd5456dd48eb6 (diff)
glossaries 2.06 (14jun10)
git-svn-id: svn://tug.org/texlive/trunk@18975 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex')
-rw-r--r--Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
index e9ebc9cf811..d7f43bc7952 100644
--- a/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
+++ b/Master/texmf-dist/doc/latex/glossaries/samples/sampleEq.tex
@@ -91,8 +91,8 @@ description=Catalan's constant,sort=G}
This is a sample document illustrating the use of the \textsf{glossaries}
package. The functions here have been taken from ``Tables of
Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
-The glossary is a list of special functions, so
-the equation number has been used rather than the page number. This
+The glossary is a list of special functions, so
+the equation number has been used rather than the page number. This
can be done using the \texttt{counter=equation} package
option.
\end{abstract}
@@ -105,7 +105,7 @@ option.
\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
\end{equation}
-\verb|\ensuremath| is only required here if using
+\verb|\ensuremath| is only required here if using
hyperlinks.
\begin{equation}
\glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x)
@@ -178,7 +178,7 @@ Alternatively:
\section{Laguerre polynomials}
\begin{equation}
-L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha}
+L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha}
\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
\end{equation}
@@ -186,8 +186,8 @@ L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha}
Bessel functions $Z_\nu$ are solutions of
\begin{equation}
-\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2}
-+ \frac{1}{z}\,\frac{dZ_\nu}{dz} +
+\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2}
++ \frac{1}{z}\,\frac{dZ_\nu}{dz} +
\left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right)
\end{equation}