diff options
author | Karl Berry <karl@freefriends.org> | 2018-12-01 22:47:30 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2018-12-01 22:47:30 +0000 |
commit | 33a1fed6bf16c61516dd7ef7ecc7598f30ccd689 (patch) | |
tree | 7e3b173f85769f763ac002187d7a88f1219b69a0 /Master/texmf-dist/doc/generic | |
parent | 608fb06f9098a25c854017f05d2a20192083baf8 (diff) |
pst-fractal (1dec18)
git-svn-id: svn://tug.org/texlive/trunk@49295 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/Changes | 2 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/README | 6 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf | bin | 11285757 -> 31954522 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex | 192 |
4 files changed, 194 insertions, 6 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-fractal/Changes b/Master/texmf-dist/doc/generic/pst-fractal/Changes index 9452a519d83..a6f08b3fac8 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/Changes +++ b/Master/texmf-dist/doc/generic/pst-fractal/Changes @@ -1,4 +1,5 @@ pst-fractal.pro -------- +0.06 2017-12-04 added Hilbert fractal 0.05 2017-12-02 added fibinacci curves 0.04 2017-11-26 add sierpinski curve 0.03 2011-02-10 cometic changes @@ -7,6 +8,7 @@ pst-fractal.pro -------- pst-fractal.tex -------- +0.10 2018-11-10 - added Cantor set 0.09 2017-12-02 - added fibinacci curves 0.08 2017-11-26 - added sierpinski curve 0.07 2013-06-17 - allow level 0 for sierpinski diff --git a/Master/texmf-dist/doc/generic/pst-fractal/README b/Master/texmf-dist/doc/generic/pst-fractal/README index 8685dbfa7ba..9bbab9f8cda 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/README +++ b/Master/texmf-dist/doc/generic/pst-fractal/README @@ -4,14 +4,12 @@ Save the files pst-fractal.sty|tex in a directory, which is part of your local TeX tree. The pro file should go into $TEXMF/dvips/pstricks/ Then do not forget to run texhash to update this tree. For more information see the documentation of your LATEX distribution -on installing packages into your local TeX system or read the -TeX Frequently Asked Questions: -(http://www.tex.ac.uk/FAQ-install-where.html). +on installing packages into your local TeX system. PSTricks is PostScript Tricks, the documentation cannot be run with pdftex, use the sequence latex->dvips->ps2pdf. -To get the documentation of this document you have to run +To gett he documentation of this document you have to run pst2pdf pst-fractal-doc --Iext=.jpg %% This program can be redistributed and/or modified under the terms diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf Binary files differindex df9353720e4..28dfccc6a08 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex index 3016fa2987b..884b7d5079f 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex @@ -1,10 +1,10 @@ -%% $Id: pst-fractal-doc.tex 677 2017-12-03 09:51:54Z herbert $ +%% $Id: pst-fractal-doc.tex 846 2018-11-30 21:44:45Z herbert $ \documentclass[fontsize=11pt,english,BCOR=10mm,DIV=13,toc=bibliography,parskip=false, headings=small, headinclude=false,footinclude=false,oneside]{pst-doc} \usepackage[utf8]{inputenc} \usepackage{pst-fractal} \let\pstFV\fileversion -\renewcommand\bgImage{\includegraphics[scale=1.5]{images/pst-fractal-doc-tmp-1}} +\renewcommand\bgImage{\includegraphics[scale=0.75]{images/demo}} \def\PSLenv{\Lenv{pspicture}} \usepackage{animate} @@ -80,6 +80,33 @@ resolution. Run the examples as single documents to see how it will be in high quality. +\section{Cantor set} + +The set is always plotted from the origin down to into negative $y$ values. + +\begin{BDef} +\Lcs{psCantor}\OptArgs\\ +\end{BDef} + +Possible optional arguments are \Lkeyword{linewidth}, \Lkeyword{linecolor}, +\Lkeyword{n} (recursion depth), \Lkeyword{xWidth}, and \Lkeyword{yWidth} (vertical increment). +The defaults are 2mm, black, 5, 10cm, and 5mm. + +\begin{LTXexample}[pos=l] +\begin{pspicture}(10,-2) + \psCantor +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[pos=l] +\begin{pspicture}(10,-2) + \psCantor[linewidth=3mm,linecolor=red, + n=7,xWidth=11,yWidth=4mm] +\end{pspicture} +\end{LTXexample} + + \section{Sierpinski triangle and curve} The triangle must be given by three mandatory arguments. Depending to the kind of @@ -1388,6 +1415,167 @@ colored, activate the \texttt{fillstyle=solid} option in a pre-command. \end{LTXexample} +\section{The Hilbert fractal} + +\begin{BDef} +\Lcs{psHilbert}\OptArgs\\ +\end{BDef} + + + +\begin{itemize} + \item \texttt{n=4} : Number of iterations; + \item \Lkeyset{N=all} : number of points to place, by default all. This option allows you to create an animation in +placing and connecting the successive points to the indicated number. + \item \Lkeyset{dotcolor=red} : color of the points, the size of the points is fixed with the option + \Lkeyword{dotsize} of PSTricks; + \item \Lkeyset{showpoints=false} : boolean of PSTricks to display the points. +\end{itemize} + +The color and the thickness of the lines are adjusted with the usual PSTricks options: + \Lkeyword{linecolor} and \Lkeyword{linewidth}. +The scale of the drawing is defined with the unit option. We can use the option \Lkeyset{linestyle=none}, as well as +\Lkeyset{fillstyle=solid}, \Lkeyword{fillcolor} but, in the latter case only, if all the points are kept +(\Lkeyset{N=all}). + + +\clearpage + + +\subsection{Examples} +\begin{LTXexample} +\begin{pspicture}(0,-1)(1,1) +\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10,gridlabels=0pt](1,1) +\psHilbert[linecolor=red,n=0,linejoin=1,fillstyle=solid,fillcolor=blue] +\rput(0.5,-0.5){n=0} +\end{pspicture} +\qquad +\begin{pspicture}(0,-1)(3,3) +\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10,gridlabels=0pt](3,3) +\psHilbert[linecolor=red,n=1,linejoin=1,fillstyle=solid,fillcolor=blue] +\rput(1.5,-0.5){n=1} +\end{pspicture} +\qquad +\begin{pspicture}(0,-1)(7,7) +\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10,gridlabels=0pt](7,7) +\psHilbert[linecolor=blue,n=2,showpoints=false,dotsize=0.2,fillstyle=solid,fillcolor=red] +\rput(3.5,-0.5){n=2} +\end{pspicture} +\end{LTXexample} + + +Draw the first 220 of 256 points (n=3): + + +\begin{LTXexample} +\begin{pspicture}(0,0)(15,16) +% 4^(n+1)=4^4=256 +\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10,gridlabels=0pt](15,15) +\psHilbert[unit=1,linecolor=blue,linewidth=0.1,n=3,showpoints=true,dotsize=0.25,N=220] +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample} +\begin{pspicture}(0,0)(16,16) +\psgrid[subgriddiv=0,gridcolor=lightgray,griddots=10,gridlabels=0pt](16,16) +\psHilbert[unit=0.5,linecolor=red,linewidth=0.1,showpoints] +\end{pspicture} +\end{LTXexample} + + + + +\begin{LTXexample} +\begin{pspicture}(0,0)(16,16) +\psframe*(0,0)(15.75,15.75) +\psHilbert[unit=0.25,linecolor=-red,n=5,linewidth=0.2,linejoin=1,fillstyle=solid,fillcolor=-blue] +\end{pspicture} +\end{LTXexample} + + +\section{The Henon Sttractor} + +\begin{LTXexample} +\begin{pspicture}(-5,-6)(5,6) +\psclip{\psframe(-5,-5)(5,5)} +\psHenon +\endpsclip +\psgrid[unit=5,subgriddiv=10](-1,-1)(1,1) +\end{pspicture} +\end{LTXexample} + + + + +\subsection{En noir et blanc} +\begin{minipage}{10cm} +\begin{pspicture}(-5,-5)(5,5) +\psclip{\psframe(-5,-5)(5,5)} +\psHenon[pixelscolor=false] +\endpsclip +\psgrid[unit=5,subgriddiv=10](-1,-1)(1,1) +\end{pspicture} +\end{minipage} +\begin{minipage}{6cm} +\begin{verbatim} +\begin{pspicture}(-5,-5)(5,5) +\psclip{\psframe(-5,-5)(5,5)} +\psHenon[pixelscolor=false] +\endpsclip +\psgrid[unit=5,subgriddiv=10](-1,-1)(1,1) +\end{pspicture} +\end{verbatim} +\end{minipage} +\section{Animation pour illustrer le principe de l'attracteur de Hénon} +En fonction du tableau des points initiaux, la figure obtenue dépend de l'angle $a$. +Les commentaires de Robert Dony correspondent à la premiére figure pour $a=1.32837$ rd, les voici : +\begin{center} +\begin{pspicture}(-5,-5)(5,5) +\psclip{\psframe(-5,-5)(5,5)} +\psHenon[pixelscolor=false] +\endpsclip +%\psgrid[unit=5,subgriddiv=10](-1,-1)(1,1) +\psline{->}(-1,4)(-0.1,3)\uput[ul](-1,4){$S_1$} +\psline{->}(4,3.5)(3,2.5)\uput[ur](4,3.5){$S_2$} +\psline{->}(4,-1.5)(3,-.75)\uput[dr](4,-1.5){$S_3$} +\psline{->}(1.25,-3.75)(0.5,-3)\uput[dr](1.25,-3.75){$S_4$} +\psline{->}(-4,0.75)(-3,0.75)\uput[l](-4,0.75){$S_5$} +\psline{->}(2,4)(1.5,2.6)\uput[ur](2,4){$C_1$} +\psline{->}(4,1)(3,0.8)\uput[ur](4,1){$C_2$} +\psline{->}(2.5,-3)(1.5,-2.25)\uput[dr](2.5,-3){$C_3$} +\psline{->}(-3,-2)(-1.75,-1.4)\uput[l](-3,-2){$C_4$} +\psline{->}(-2.5,3)(-1.75,2)\uput[ul](-2.5,3){$C_5$} +\end{pspicture} +\end{center} + + +\subsection{Animation} + +\begin{center} +\begin{animateinline}[controls,palindrome, + begin={\begin{pspicture}(-1,-1)(16,16)}, + end={\end{pspicture}}]{5}% 5 image/s +\multiframe{256}{i=1+1}{% +\psframe*[linecolor=yellow!20](0,0)(15,15) +\psgrid[subgriddiv=1,gridcolor=red!30,gridlabels=0pt](0,0)(15,15) +\psHilbert[linecolor=blue,linewidth=0.05,n=3,showpoints,dotsize=0.2,N=\i]} +\end{animateinline} +\end{center} +\begin{verbatim} +\begin{animateinline}[controls,palindrome, + begin={\begin{pspicture}(-1,-1)(16,16)}, + end={\end{pspicture}}]{5}% 5 image/s +\multiframe{256}{i=1+1}{% +\psframe*[linecolor=yellow!20](0,0)(15,15) +\psgrid[subgriddiv=1,gridcolor=red!30,gridlabels=0pt](0,0)(15,15) +\psHilbert[linecolor=blue,linewidth=0.05,n=3,showpoints,dotsize=0.2,N=\i]} +\end{animateinline} +\end{verbatim} + + +\clearpage%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + \section{List of all optional arguments for \texttt{pst-fractal}} |