diff options
author | Karl Berry <karl@freefriends.org> | 2016-12-12 22:52:09 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2016-12-12 22:52:09 +0000 |
commit | 5440276d0dda2eb514887c87b7d9ab67c49d6a85 (patch) | |
tree | d049310bacc13fea75165368176f70542756a5e6 /Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex | |
parent | bb25bb8b4c057e717bace5e04140c0a0c4a75b88 (diff) |
pst-solides3d (12dec16)
git-svn-id: svn://tug.org/texlive/trunk@42686 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex | 198 |
1 files changed, 198 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex new file mode 100644 index 00000000000..520083b7052 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/text/par-projectionpoint-en.tex @@ -0,0 +1,198 @@ +\section{Points} + +\subsection{Direct definition} + +The object \Lkeyword{point} defines a \Index{point}. The values $(x,y)$ of +its coordinates can be passed directly to the macro +\Lcs{psProjection} or indirectly via the option \Lkeyword{args}. + +Thus the two commands \verb+\psProjection[object=point](1,2)+ and +\verb+\psProjection[object=point,arg=1 2]+ are equivalent and lead +to the projection of the point with coordinates $(1,2)$ onto the +chosen plane. + +\subsection{Labels} + +The option \texttt{\Lkeyword{text}=my text} allows us to project a string of +characters onto the chosen plane next to a chosen point. The +positioning is made with the argument \texttt{\Lkeyword{pos}=value} where +\texttt{value} is one of the following $\{$ul, cl, bl, dl, ub, cb, bb, +db, uc, cc, bc, dc, ur, cr, br, dr$\}$. + +The details of the parameter \Lkeyword{pos} will be discussed in a +later paragraph. + +\begin{LTXexample}[width=7.5cm] +\begin{pspicture}(-3,-3)(4,3.5)% +\psframe*[linecolor=blue!50](-3,-3)(4,3.5) +\psset{viewpoint=50 30 15,Decran=60} +\psset{solidmemory} +%% definition du plan de projection +\psSolid[object=plan, + definition=equation, + args={[1 0 0 0] 90}, + name=monplan, + planmarks, + showBase] +\psset{plan=monplan} +%% definition du point A +\psProjection[object=point, + args=-2 1, + text=A, + pos=ur] +\psProjection[object=point, + text=B, + pos=ur](2,1) +\composeSolid +\axesIIID(4,2,2)(5,4,3) +\end{pspicture} +\end{LTXexample} + + + +\subsection{Naming and memorising a point} + +If the option \texttt{\Lkeyword{name}=myName} is given, the coordinates +$(x,y)$ of the chosen point are saved under the name \texttt{myName} and so +can be reused. + +\subsection{Some other definitions} + +There are other methods to define a point in 2D. The options +\Lkeyword{definition} and \Lkeyword{args} support the following +methods: + +\begin{itemize} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{milieu}}; +\texttt{\Lkeyword{args}=$A$ $B$}. + +The midpoint of the line segment $[AB]$ + +\item \texttt{\Lkeyword{definition}=\Lkeyval{parallelopoint}}; +\texttt{\Lkeyword{args}=$A$ $B$ $C$}. + +The point $D$ for which $(ABCD)$ is a +parallelogram. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{translatepoint}}; +\texttt{\Lkeyword{args}=$M$ $u$}. + +The image of the point $M$ shifted by the vector +$\vec u$ + + +\item \texttt{\Lkeyword{definition}=\Lkeyval{rotatepoint}}; +\texttt{\Lkeyword{args}=$M$ $I$ $r$}. + +The image of the point $M$ under a +rotation about the point $I$ through an angle $r$ (in degrees) + +\item \texttt{\Lkeyword{definition}=\Lkeyval{hompoint}}; +\texttt{\Lkeyword{args}=$M$ $A$ $k$}. + +The point $M'$ satisfying +$\overrightarrow {AM'} = k \overrightarrow {AM}$ + +\item \texttt{\Lkeyword{definition}=\Lkeyval{orthoproj}}; +\texttt{\Lkeyword{args}=+$M$ $d$}. + +The orthogonal projection of the point +$M$ onto the line $d$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{projx}}; +\texttt{\Lkeyword{args}=$M$}. + +The projection of the point $M$ onto the $Ox$ +axis. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{projy}}; +\texttt{\Lkeyword{args}=$M$}. + +The projection of the point $M$ onto the $Oy$ +axis. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{sympoint}}; +\texttt{\Lkeyword{args}=$M$ $I$}. + +The point of symmetry of $M$ with respect +to the point $I$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{axesympoint}}; +\texttt{\Lkeyword{args}=$M$ $d$}. + +The axially symmetrical point of $M$ with +respect to the line $d$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{cpoint}}; +\texttt{\Lkeyword{args}=$\alpha $ $C$}. + +The point corresponding to the +angle $\alpha $ on the circle $C$ + +\item \texttt{[definition=xdpoint]}; +\verb+args=+$x$ $d$. + +The $Ox$ intercept $x$ of the line $d$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{ydpoint}}; +\texttt{\Lkeyword{args}=$y$ $d$}. + +The $Oy$ intercept $y$ of the line $d$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{interdroite}}; +\texttt{\Lkeyword{args}=$d_1$ $d_2$}. + +The intersection point of the lines +$d_1$ and $d_2$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{interdroitecercle}}; +\texttt{\Lkeyword{args}=$d$ $I$ $r$}. + +The intersection points of the line +$d$ with a circle of centre $I$ and radius $r$. + +\end{itemize} + +In the example below, we define and name three points $A$, $B$ and +$C$, and then calculate the point $D$ for which $(ABCD)$ is a +parallelogram together with the centre of this parallelogram. + +\begin{LTXexample}[width=7.5cm] +\begin{pspicture}(-3,-3)(4,3.5)% +\psframe*[linecolor=blue!50](-3,-3)(4,3.5) +\psset{viewpoint=50 30 15,Decran=60} +\psset{solidmemory} +%% definition du plan de projection +\psSolid[object=plan, + definition=equation, + args={[1 0 0 0] 90}, + name=monplan, + planmarks, + showbase] +\psset{plan=monplan} +%% definition du point A +\psProjection[object=point, + text=A,pos=ur,name=A](-1,.7) +%% definition du point B +\psProjection[object=point, + text=B,pos=ur,name=B](2,1) +%% definition du point C +\psProjection[object=point, + text=C,pos=ur,name=C](1,-1.5) +%% definition du point D +\psProjection[object=point, + definition=parallelopoint, + args=A B C, + text=D,pos=ur,name=D] +%% definition du point G +\psProjection[object=point, + definition=milieu, + args=D B] +\composeSolid +\axesIIID(4,2,2)(5,4,3) +\end{pspicture} +\end{LTXexample} + +\endinput + |