diff options
author | Karl Berry <karl@freefriends.org> | 2019-01-17 21:28:05 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2019-01-17 21:28:05 +0000 |
commit | df2e480fb0e83b9160de826127a9200714b9f3f2 (patch) | |
tree | 4ffb3525a2533fd77c6aa746a2fc1a81c2b78329 /Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex | |
parent | dbec98190c3f22b32302cfc20460edf01458bed7 (diff) |
pst-magneticfield (17jan19)
git-svn-id: svn://tug.org/texlive/trunk@49738 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex | 706 |
1 files changed, 0 insertions, 706 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex deleted file mode 100644 index 38edd66a0d5..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex +++ /dev/null @@ -1,706 +0,0 @@ -%% $Id: pst-magneticfield-docFR.tex 343 2010-06-10 15:08:37Z herbert $ -\documentclass[11pt,english,french,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings - headexclude,footexclude,oneside]{pst-doc} -\usepackage[latin1]{inputenc} -\usepackage{pst-magneticfield} -\let\pstMFfv\fileversion - -%\newenvironment{postscript}{}{} % uncomment, when running with latex - -\lstset{pos=t,language=PSTricks, - morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} -\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} -\def\bgImage{} -% -\begin{document} - -\title{\texttt{pst-magneticfield}} -\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv} -\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss} -%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss} -\date{\today} -\maketitle - - -\clearpage% -\begin{abstract} -Le package \LPack{pst-magneticfield} a pour objet de tracer l'allure des lignes de -champ d'un solénoïde. Les paramètres physiques du solénoïde sont le rayon, le nombre -de spires et la longueur, les valeurs par défaut sont données ci-dessous : -\begin{enumerate} - \item le nombre de spires : \LKeyset{N=6} ; - \item le rayon : \LKeyset{R=2} ; - \item la longueur : \LKeyset{L=4}. -\end{enumerate} -Le tracé a été modélisé avec la méthode de Runge-Kutta 2 qui, après plusieurs essais, -semble être le meilleur compromis entre rapidité des calculs et précision du tracé. -Le calcul des intégrales elliptiques nécessaires à l'évaluation du champ magnétique -a été réalisé par des approximations polynômiales tirées du ``\textit{Handbook of -Mathematical Functions With Formulas, Graph, And Mathematical Tables}'' de -Milton Abramowitz et Irene.A. Stegun \url{http://www.math.sfu.ca/~cbm/aands/}. -\end{abstract} - -\clearpage -\tableofcontents - - -\clearpage - -\section{Introduction} -Les options de tracé, avec les valeurs par défaut, sont les suivantes : -\begin{enumerate} - \item Le nombre de points maximum sur chaque ligne de l'ensemble de la bobine : \LKeyset{pointsB=500} ; - \item le nombre de points maximum sur des lignes autour de spires choisies : \LKeyset{pointsS=1000} ; - \item le nombre de lignes de l'ensemble de la bobine : \LKeyset{nL=8} ; - \item le pas du tracé pour les lignes de l'ensemble de la bobine : \LKeyset{PasB=0.02} ; - \item le pas du tracé pour les lignes autour de spires choisies : \LKeyset{PasS=0.00275} ; - \item la possibilité de choisir individuellement des spires pour améliorer le rendu - du tracé : \LKeyset{numSpires=\{\}} , on place à la suite du signe ``='' les numéros - des spires \textsf{1 2 3 etc.} en partant de la spire du haut. Par défaut, - toutes les spires sont ciblées. - \item Le nombre de lignes de champ autour des spires choisies : \LKeyset{nS=1}. - \item On peut décider de ne pas représenter le solénoïde avec l'option \LKeyset{drawSelf=false}, - c'est utile pour la représentation en 3D. - \item les options de tracé des spires (couleur, épaisseur, flèches) sont : - \begin{enumerate} - \item La couleur et l'épaisseur du trait des spires : \Lkeyset{styleSpire=styleSpire} ; - \item le fléchage du sens du courant : \Lkeyset{styleCourant=sensCourant}. - \end{enumerate} - -\begin{verbatim} -\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} -\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} -\end{verbatim} - - \item La couleur et l'épaisseur des lignes de champ se règlent avec les paramètres usuels - de \LPack{pstricks} : \Lkeyword{linecolor} et \Lkeyword{linewidth}. - \item On peut mettre en image de fond la carte de la densité de flux avec l'option \textsf{StreamDensityPlot}, celle-ci est par défaut en couleur, mais il est possible de l'afficher en niveaux de gris avec \textsf{setgray}. -\end{enumerate} -Une commande \Lcs{psmagneticfieldThreeD} permet la visualisation en 3D du solénoïde et -des lignes de champ. - -\clearpage -\section{Influence des paramètres physiques sur la carte du champ magnétique} -\subsection{La longueur du solénoïde} - -\begin{center} -\begin{postscript} -\psset{unit=0.5cm} -\begin{pspicture*}(-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,StreamDensityPlot](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,StreamDensityPlot]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5cm} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{lstlisting} - - -\textbf{Remarque :} pour affiner le tracé du deuxième solénoïde, on a du augmenter -le nombre de points et diminuer le pas du tracé : -\begin{postscript} -\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}} -\end{postscript}, -ce qui rallonge la durée des calculs. - - - -\clearpage - -\subsection{Le nombre de spires} -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{Les options de tracé} -\subsection{Le nombre de lignes de champ} -En raison de la symétrie du phénomène le nombre de lignes de champ donné en option -\Lkeyword{nL} est la moitié du nombre réellement représenté auquel il faut ajouter -la ligne confondue avec l'axe de révolution. Il faut aussi rajouter les lignes -autour des spires \Lkeyword{nS}, ces spires pouvant être choisies individuellement -avec \Lkeyword{numSpires}. - - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\subsection{Le nombre de points et le pas du tracé} -Le tracé des lignes de champ est réalisé par une méthode numérique (RK2) et il s'ensuit -le pas du tracé et le nombre de points choisis influent sur la précision du tracé, -comme dans les deux exemples ci-dessous : - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{lstlisting} - - -Si les valeurs par défaut ne conviennent pas il faut donc trouver par des -essais les valeurs qui donnent un tracé correct. - - -\clearpage - -\section{Le paramètre: numSpires} -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\section{Le param\`etre \nxLkeyword{AntiHelmholtz}} -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{La vue en 3D} -La vue en 3D utilise la commande - -\begin{BDef} -\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ -\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 -\end{BDef} - -dans laquelle les options sont les paramètres de -\Lcs{psmagneticfield} et \verb+(x1,y1)(x2,y2)+ les coordonnées des coins -inférieur gauche et supérieur droit du cadre dans lequel est encapsulée -la carte du champ comme pour \Lcs{psframe}. On pourra utiliser l'option \Lkeyword{viewpoint} du -package \LPack{pst-3d} pour modifier le point de vue. - -Les options du cadre sont, par défaut, les suivantes : -\begin{verbatim} -\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} -\newpsstyle{cadre}{linecolor=green!20} -\end{verbatim} - -Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme dans l'exemple ci-dessous. - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - -\section{Density plots} -\begin{center} -\begin{postscript} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{lstlisting} - -\section{Un article très intéressant} -Il s'agit de celui paru dans le bulletin de l'union des physiciens \no{}918(2) de novembre 2009 : \textit{Intégrales elliptiques et champ magnétique créé par une spire circulaire}, dans lequel Thierry PRÉ démontre l'expression des composantes du champ magnétique de deux façons, à partir de la loi de Biot-Savart, puis à partir du potentiel vecteur ; il donne aussi différentes représentations des lignes de champ de plusieurs configurations de spires, obtenues à l'aide du logiciel \textit{Mathematica}. - -\url{http://www.udppc.asso.fr/bupdoc/textes/fichierjoint/918/0918D119.zip} - -Thierry met les sources \textsf{Mathematica} des figures illustrant son article à la disposition de ceux qui ont la chance de posséder ou de pouvoir utiliser ce logiciel : -\begin{verbatim} -Commandes à copier dans mathematica pour les figures de mon article ......... - -************************************************************************************************************** -bx[x_, y_, a_, R_, I_] := - I*(y - R)/x/ - Sqrt[(a + Abs[x])^2 + (y - R)^2]*(-EllipticK[ - 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 + - Abs[x]^2 + (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)* - EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)]) -************************************************************************************************************** -by[x_, y_, a_, R_, I_] := - I/Sqrt[(a + Abs[x])^2 + (y - R)^2]*(EllipticK[ - 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 - - Abs[x]^2 - (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)* - EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)]) -************************************************************************************************************** -StreamPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4, - 4}] - -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4, - 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] + - bx[x, y, 1, 0, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1] + by[x, y, 1, 0, 1]}, {x, -4, - 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1] + - bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, 0.5, 1] + by[x, y, 1, -0.5, 1] + by[x, y, 1, 1.5, 1] + - by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, - StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] + - bx[x, y, 1, 2, 1] + bx[x, y, 1, -2, 1] + bx[x, y, 1, 0, 1], - by[x, y, 1, 1, 1] + by[x, y, 1, -1, 1] + by[x, y, 1, 2, 1] + - by[x, y, 1, -2, 1] + by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, -1.5, 1] + by[x, y, 1, 1.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1], - by[x, y, 1, -0.5, 1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.25, 1] + bx[x, y, 1, -0.25, 1], - by[x, y, 1, -0.25, 1] + by[x, y, 1, 0.25, 1]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 0.125, 5] + bx[x, y, 1, -0.125, 5], - by[x, y, 1, -0.125, 5] + by[x, y, 1, 0.125, 5]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, -1], - by[x, y, 1, -0.5, -1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 4] + bx[x, y, 1, -0.5, 2] + - bx[x, y, 1, 1.5, 8] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, 0.5, 4] + by[x, y, 1, -0.5, 2] + by[x, y, 1, 1.5, 8] + - by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, - StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 0.5, -0.5, 1] + - bx[x, y, 2, 1.5, 1] + bx[x, y, 0.25, -1.5, 1], - by[x, y, 1, 0.5, 1] + by[x, y, 0.5, -0.5, 1] + by[x, y, 2, 1.5, 1] + - by[x, y, 0.25, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{ - bx[x - 2, y, 0.5, 0, 1] - - by[-y + 2, x, 0.5, 0, 1] - - bx[x + 2, y, 0.5, 0, 1] + - by[-y - 2, x, 0.5, 0, 1] - , - by[x - 2, y, 0.5, 0, 1] + - bx[-y + 2, x, 0.5, 0, 1] - - by[x + 2, y, 0.5, 0, 1] - - bx[-y - 2, x, 0.5, 0, 1] - }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** - -StreamDensityPlot[{ - bx[x - 2, y, 0.5, 0, 1] - - by[-y + 2, x, 0.5, 0, 1] - - bx[x + 2, y, 0.5, 0, 1] + - by[-y - 2, x, 0.5, 0, 1] + - bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - - by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 + - by[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - , - by[x - 2, y, 0.5, 0, 1] + - bx[-y + 2, x, 0.5, 0, 1] - - by[x + 2, y, 0.5, 0, 1] - - bx[-y - 2, x, 0.5, 0, 1] + - bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - bx[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> Hue , - StreamPoints -> Fine - ] -************************************************************************************************************** -\end{verbatim} - - - -\clearpage -\section{Liste des arguments optionnels pour \texttt{pst-magneticfield}} - -\xkvview{family=pst-magneticfield,columns={key,type,default}} - -\nocite{*} -\bgroup -\raggedright -\bibliographystyle{plain} -\bibliography{pst-magneticfield-doc} -\egroup - - -\printindex - - - - -\end{document} |