summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2014-05-20 22:00:54 +0000
committerKarl Berry <karl@freefriends.org>2014-05-20 22:00:54 +0000
commit22ffe2908d71591f30ac96514d5ad0a71113766d (patch)
treec293af2202b3e0d95e3d11f6f721bd5c4eebc76b /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
parent8db754efe5c2736dfbd92d0fe891c6cc89e4071d (diff)
pst-func (19may14)
git-svn-id: svn://tug.org/texlive/trunk@34156 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex110
1 files changed, 109 insertions, 1 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index e582a82e4ea..6530ae60883 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -1,4 +1,4 @@
-%% $Id: pst-func-doc.tex 890 2014-02-02 15:47:16Z herbert $
+%% $Id: pst-func-doc.tex 918 2014-05-19 12:32:37Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,
smallheadings, headexclude,footexclude,oneside]{pst-doc}
\usepackage[utf8]{inputenc}
@@ -66,6 +66,7 @@ Thanks to \\
Patrice Mégret,
Svend Mortensen,
Matthias Rüss,
+ Thomas Söll,
Jose-Emilio Vila-Forcen,
Timothy Van Zandt,
Michael Zedler,
@@ -496,6 +497,7 @@ options can be set in the usual way with \Lcs{psset}.
\end{pspicture*}
\end{LTXexample}
+
\clearpage
\subsection{\Lcs{psBernstein}}
The polynomials defined by
@@ -586,6 +588,112 @@ which plots the envelope curve instead of the Bernstein polynomial.
\end{pspicture*}
\end{LTXexample}
+
+\clearpage
+\subsection{Calculating the zeros of a function or the the intermediate point of two function}
+
+\begin{BDef}
+\Lcs{psZero}\OptArgs\Largr{$x_0,x_1$}\Largb{functionA}\OptArg{functionB}\Largb{node name}
+\end{BDef}
+
+If the second function is not given the macro calculates and displays the zeros of
+the first function. If the second function is defined too, then the macro calculates the
+intermediate point of the two functions. The intervall is defined as $[x_0,x_1]$.
+Possible optional arguments are
+
+
+\medskip
+\begin{tabularx}{\linewidth}{ @{} l >{\ttfamily}l X @{} }\toprule
+\emph{Name} & \emph{Default} & \emph{Meaning} \\\midrule
+\Lkeyword{markZeros} & false & Mark the zeros/intermediate points with a symbol.\\
+\Lkeyword{Newton} & false & Use Newton method instead of the bisector one.\\
+\Lkeyword{PrintCoord} & false & Print the pair of coordinate of the zero/intermediate point.\\
+\Lkeyword{onlyNode} & false & Calculate only the node, do not print anything.\\
+\Lkeyword{onlyYVal} & false & Print only the value.\\
+\Lkeyword{originV} & false & Put the values without an offset.\\
+\Lkeyword{PointName} & I & The printed prefix for the calculated Points.\\
+\Lkeyword{decimals} & 2 & The decimals for the $x$ value.\\
+\Lkeyword{ydecimals} & 2 & The decimals for the $y$ value.\\
+\Lkeyword{xShift} & 0 & $x$ move for the printed value.\\
+\Lkeyword{yShift} & 0 & $y$ move for the printed value.\\\bottomrule
+\end{tabularx}
+
+\medskip
+The following example was done by Thomas Söll.
+
+\bigskip
+\definecolor{BeigeTS}{rgb}{0.98,0.95,0.87}
+\definecolor{CornBlauTS}{rgb}{0.39,0.59,0.93}
+\definecolor{SandBraun}{rgb}{0.96,0.64,0.38}
+\psset{yunit=1.25cm,arrowinset=0.02,arrowlength=2,linewidth=0.5pt,saveNodeCoors,NodeCoorPrefix=n}
+\def\funkf{2*sqrt(x)*cos(ln(x))*sin(x)}
+\begin{pspicture}[plotpoints=500,algebraic,fontscale=5,markZeros,PrintCoord,
+ PointName=N,dotscale=0.7](-0.5,-3)(10,2.5)
+\psStep[fillstyle=solid,fillcolor=BeigeTS,opacity=0.7,linewidth=0.3pt,
+ linecolor=SandBraun!50](0.001,9.5){40}{\funkf}
+\psStep[StepType=Riemann,fillstyle=solid,opacity=0.3,fillcolor=CornBlauTS,
+ linecolor=CornBlauTS,linewidth=0.3pt](0.001,9.5){40}{\funkf}
+\psaxes[labelFontSize=\scriptstyle,ticksize=-0.1 0]{->}(0,0)(0,-2.75)(10,2.5)
+\psplot[linecolor=BeigeTS!60,linewidth=0.8pt]{0.001}{9.75}{\funkf}
+\psplotTangent[linecolor=blue,Derive={Derive(1,\funkf)}]{1.29}{1.5}{\funkf}
+\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$}
+{\psset{dotscale=1.5,linecolor=blue!50!black!90,ydecimals=0}
+ \psZero[xShift=-0.2,yShift=0.15,postString=1,Newton](0.5,1){\funkf}{N1}
+ \psZero[xShift=-0.05,yShift=0.15,postString=2](2,4){\funkf}{N2}
+ \psZero[xShift=-0.45,yShift=0.15,postString=3](4,6){\funkf}{N3}
+ \psZero[xShift=-0.45,yShift=0.15,postString=4](6,7){\funkf}{N4}
+ \psZero[xShift=-0.45,yShift=0.15,postString=5](9,11){\funkf}{N5}
+ \psZero[xShift=-1.15,yShift=0,PointName=M,
+ postString={m=1}](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{M}%
+}
+\pcline{->}(0.5,-1)(M)
+\nbput[nrot=:U,labelsep=0.01]{%
+ \scriptsize Steigung ist hier
+ \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=7]{nMx,{Derive(1,\funkf)}}}
+\psdot[linecolor=green,strokeopacity=0.8](*{nMx} {\funkf})
+\uput[90](*{nMx} {\funkf}){$m=$
+ \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=8]{nMx,{Derive(1,\funkf)}}}
+\end{pspicture}
+
+
+%\begin{LTXexample}[pos=t]
+\begin{lstlisting}
+\definecolor{BeigeTS}{rgb}{0.98,0.95,0.87}
+\definecolor{CornBlauTS}{rgb}{0.39,0.59,0.93}
+\definecolor{SandBraun}{rgb}{0.96,0.64,0.38}
+\psset{yunit=1.25cm,arrowinset=0.02,arrowlength=2,linewidth=0.5pt,saveNodeCoors,NodeCoorPrefix=n}
+\def\funkf{2*sqrt(x)*cos(ln(x))*sin(x)}
+\begin{pspicture}[plotpoints=500,algebraic,fontscale=5,markZeros,PrintCoord,
+ PointName=N,dotscale=0.7](-0.5,-3)(10,2.5)
+\psStep[fillstyle=solid,fillcolor=BeigeTS,opacity=0.7,linewidth=0.3pt,
+ linecolor=SandBraun!50](0.001,9.5){40}{\funkf}
+\psStep[StepType=Riemann,fillstyle=solid,opacity=0.3,fillcolor=CornBlauTS,
+ linecolor=CornBlauTS,linewidth=0.3pt](0.001,9.5){40}{\funkf}
+\psaxes[labelFontSize=\scriptstyle,ticksize=-0.1 0]{->}(0,0)(0,-2.75)(10,2.5)
+\psplot[linecolor=BeigeTS!60,linewidth=0.8pt]{0.001}{9.75}{\funkf}
+\psplotTangent[linecolor=blue,Derive={Derive(1,\funkf)}]{1.29}{1.5}{\funkf}
+\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$}
+{\psset{dotscale=1.5,linecolor=blue!50!black!90,ydecimals=0}
+ \psZero[xShift=-0.2,yShift=0.15,postString=1,Newton](0.5,1){\funkf}{N1}
+ \psZero[xShift=-0.05,yShift=0.15,postString=2](2,4){\funkf}{N2}
+ \psZero[xShift=-0.45,yShift=0.15,postString=3](4,6){\funkf}{N3}
+ \psZero[xShift=-0.45,yShift=0.15,postString=4](6,7){\funkf}{N4}
+ \psZero[xShift=-0.45,yShift=0.15,postString=5](9,11){\funkf}{N5}
+ \psZero[xShift=-1.15,yShift=0,PointName=M,
+ postString={m=1}](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{M}%
+}
+\pcline{->}(0.5,-1)(M)
+\nbput[nrot=:U,labelsep=0.01]{%
+ \scriptsize Steigung ist hier
+ \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=7]{nMx,{Derive(1,\funkf)}}}
+\psdot[linecolor=green,strokeopacity=0.8](*{nMx} {\funkf})
+\uput[90](*{nMx} {\funkf}){$m=$
+ \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=8]{nMx,{Derive(1,\funkf)}}}
+\end{pspicture}
+\end{lstlisting}
+%\end{LTXexample}
+
+
\psset{unit=1cm}
\clearpage
\section{\Lcs{psFourier}}