diff options
author | Karl Berry <karl@freefriends.org> | 2014-05-20 22:00:54 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2014-05-20 22:00:54 +0000 |
commit | 22ffe2908d71591f30ac96514d5ad0a71113766d (patch) | |
tree | c293af2202b3e0d95e3d11f6f721bd5c4eebc76b /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | |
parent | 8db754efe5c2736dfbd92d0fe891c6cc89e4071d (diff) |
pst-func (19may14)
git-svn-id: svn://tug.org/texlive/trunk@34156 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 110 |
1 files changed, 109 insertions, 1 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex index e582a82e4ea..6530ae60883 100644 --- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -1,4 +1,4 @@ -%% $Id: pst-func-doc.tex 890 2014-02-02 15:47:16Z herbert $ +%% $Id: pst-func-doc.tex 918 2014-05-19 12:32:37Z herbert $ \documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false, smallheadings, headexclude,footexclude,oneside]{pst-doc} \usepackage[utf8]{inputenc} @@ -66,6 +66,7 @@ Thanks to \\ Patrice Mégret, Svend Mortensen, Matthias Rüss, + Thomas Söll, Jose-Emilio Vila-Forcen, Timothy Van Zandt, Michael Zedler, @@ -496,6 +497,7 @@ options can be set in the usual way with \Lcs{psset}. \end{pspicture*} \end{LTXexample} + \clearpage \subsection{\Lcs{psBernstein}} The polynomials defined by @@ -586,6 +588,112 @@ which plots the envelope curve instead of the Bernstein polynomial. \end{pspicture*} \end{LTXexample} + +\clearpage +\subsection{Calculating the zeros of a function or the the intermediate point of two function} + +\begin{BDef} +\Lcs{psZero}\OptArgs\Largr{$x_0,x_1$}\Largb{functionA}\OptArg{functionB}\Largb{node name} +\end{BDef} + +If the second function is not given the macro calculates and displays the zeros of +the first function. If the second function is defined too, then the macro calculates the +intermediate point of the two functions. The intervall is defined as $[x_0,x_1]$. +Possible optional arguments are + + +\medskip +\begin{tabularx}{\linewidth}{ @{} l >{\ttfamily}l X @{} }\toprule +\emph{Name} & \emph{Default} & \emph{Meaning} \\\midrule +\Lkeyword{markZeros} & false & Mark the zeros/intermediate points with a symbol.\\ +\Lkeyword{Newton} & false & Use Newton method instead of the bisector one.\\ +\Lkeyword{PrintCoord} & false & Print the pair of coordinate of the zero/intermediate point.\\ +\Lkeyword{onlyNode} & false & Calculate only the node, do not print anything.\\ +\Lkeyword{onlyYVal} & false & Print only the value.\\ +\Lkeyword{originV} & false & Put the values without an offset.\\ +\Lkeyword{PointName} & I & The printed prefix for the calculated Points.\\ +\Lkeyword{decimals} & 2 & The decimals for the $x$ value.\\ +\Lkeyword{ydecimals} & 2 & The decimals for the $y$ value.\\ +\Lkeyword{xShift} & 0 & $x$ move for the printed value.\\ +\Lkeyword{yShift} & 0 & $y$ move for the printed value.\\\bottomrule +\end{tabularx} + +\medskip +The following example was done by Thomas Söll. + +\bigskip +\definecolor{BeigeTS}{rgb}{0.98,0.95,0.87} +\definecolor{CornBlauTS}{rgb}{0.39,0.59,0.93} +\definecolor{SandBraun}{rgb}{0.96,0.64,0.38} +\psset{yunit=1.25cm,arrowinset=0.02,arrowlength=2,linewidth=0.5pt,saveNodeCoors,NodeCoorPrefix=n} +\def\funkf{2*sqrt(x)*cos(ln(x))*sin(x)} +\begin{pspicture}[plotpoints=500,algebraic,fontscale=5,markZeros,PrintCoord, + PointName=N,dotscale=0.7](-0.5,-3)(10,2.5) +\psStep[fillstyle=solid,fillcolor=BeigeTS,opacity=0.7,linewidth=0.3pt, + linecolor=SandBraun!50](0.001,9.5){40}{\funkf} +\psStep[StepType=Riemann,fillstyle=solid,opacity=0.3,fillcolor=CornBlauTS, + linecolor=CornBlauTS,linewidth=0.3pt](0.001,9.5){40}{\funkf} +\psaxes[labelFontSize=\scriptstyle,ticksize=-0.1 0]{->}(0,0)(0,-2.75)(10,2.5) +\psplot[linecolor=BeigeTS!60,linewidth=0.8pt]{0.001}{9.75}{\funkf} +\psplotTangent[linecolor=blue,Derive={Derive(1,\funkf)}]{1.29}{1.5}{\funkf} +\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$} +{\psset{dotscale=1.5,linecolor=blue!50!black!90,ydecimals=0} + \psZero[xShift=-0.2,yShift=0.15,postString=1,Newton](0.5,1){\funkf}{N1} + \psZero[xShift=-0.05,yShift=0.15,postString=2](2,4){\funkf}{N2} + \psZero[xShift=-0.45,yShift=0.15,postString=3](4,6){\funkf}{N3} + \psZero[xShift=-0.45,yShift=0.15,postString=4](6,7){\funkf}{N4} + \psZero[xShift=-0.45,yShift=0.15,postString=5](9,11){\funkf}{N5} + \psZero[xShift=-1.15,yShift=0,PointName=M, + postString={m=1}](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{M}% +} +\pcline{->}(0.5,-1)(M) +\nbput[nrot=:U,labelsep=0.01]{% + \scriptsize Steigung ist hier + \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=7]{nMx,{Derive(1,\funkf)}}} +\psdot[linecolor=green,strokeopacity=0.8](*{nMx} {\funkf}) +\uput[90](*{nMx} {\funkf}){$m=$ + \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=8]{nMx,{Derive(1,\funkf)}}} +\end{pspicture} + + +%\begin{LTXexample}[pos=t] +\begin{lstlisting} +\definecolor{BeigeTS}{rgb}{0.98,0.95,0.87} +\definecolor{CornBlauTS}{rgb}{0.39,0.59,0.93} +\definecolor{SandBraun}{rgb}{0.96,0.64,0.38} +\psset{yunit=1.25cm,arrowinset=0.02,arrowlength=2,linewidth=0.5pt,saveNodeCoors,NodeCoorPrefix=n} +\def\funkf{2*sqrt(x)*cos(ln(x))*sin(x)} +\begin{pspicture}[plotpoints=500,algebraic,fontscale=5,markZeros,PrintCoord, + PointName=N,dotscale=0.7](-0.5,-3)(10,2.5) +\psStep[fillstyle=solid,fillcolor=BeigeTS,opacity=0.7,linewidth=0.3pt, + linecolor=SandBraun!50](0.001,9.5){40}{\funkf} +\psStep[StepType=Riemann,fillstyle=solid,opacity=0.3,fillcolor=CornBlauTS, + linecolor=CornBlauTS,linewidth=0.3pt](0.001,9.5){40}{\funkf} +\psaxes[labelFontSize=\scriptstyle,ticksize=-0.1 0]{->}(0,0)(0,-2.75)(10,2.5) +\psplot[linecolor=BeigeTS!60,linewidth=0.8pt]{0.001}{9.75}{\funkf} +\psplotTangent[linecolor=blue,Derive={Derive(1,\funkf)}]{1.29}{1.5}{\funkf} +\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$} +{\psset{dotscale=1.5,linecolor=blue!50!black!90,ydecimals=0} + \psZero[xShift=-0.2,yShift=0.15,postString=1,Newton](0.5,1){\funkf}{N1} + \psZero[xShift=-0.05,yShift=0.15,postString=2](2,4){\funkf}{N2} + \psZero[xShift=-0.45,yShift=0.15,postString=3](4,6){\funkf}{N3} + \psZero[xShift=-0.45,yShift=0.15,postString=4](6,7){\funkf}{N4} + \psZero[xShift=-0.45,yShift=0.15,postString=5](9,11){\funkf}{N5} + \psZero[xShift=-1.15,yShift=0,PointName=M, + postString={m=1}](0.5,2){Derive(1,\funkf)-1+\funkf}[\funkf]{M}% +} +\pcline{->}(0.5,-1)(M) +\nbput[nrot=:U,labelsep=0.01]{% + \scriptsize Steigung ist hier + \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=7]{nMx,{Derive(1,\funkf)}}} +\psdot[linecolor=green,strokeopacity=0.8](*{nMx} {\funkf}) +\uput[90](*{nMx} {\funkf}){$m=$ + \psPrintValueNew[PSfont=Palatino-Roman,decimals=0,round,fontscale=8]{nMx,{Derive(1,\funkf)}}} +\end{pspicture} +\end{lstlisting} +%\end{LTXexample} + + \psset{unit=1cm} \clearpage \section{\Lcs{psFourier}} |