summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2009-08-05 13:31:09 +0000
committerKarl Berry <karl@freefriends.org>2009-08-05 13:31:09 +0000
commit2ead1b8c1d880bf42cb0886b3a9dc62ff777f57a (patch)
tree33f8ac8c23ce05ca00905cb391521b8a728521fa /Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex
parent338aedc9191dd1399350c04a439eab031088fb0c (diff)
pst-3dplot 1.84 (28jul09)
git-svn-id: svn://tug.org/texlive/trunk@14539 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex160
1 files changed, 73 insertions, 87 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex
index 57ef25bdff0..383b65a9801 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex
@@ -1,4 +1,4 @@
-%% $Id: pst-3dplot-doc.tex 60 2008-11-24 13:35:23Z herbert $
+%% $Id: pst-3dplot-doc.tex 107 2009-03-12 17:25:46Z herbert $
\listfiles
\begin{filecontents}{data3D.Roessler}
2.0, 0.0, 0.0
@@ -495,9 +495,8 @@ It is also important that after \LPack{pst-3dplot} no package is loaded, which u
\vfill\noindent
Thanks for feedback and contributions to:\\
-Bruce Burlton | Christophe Jorssen | Chris Kuklewicz | Darrell Lamm | Rolf Niepraschk |
-Michael Sharpe| Uwe Siart |
-Thorsten Suhling
+Bruce Burlton, Christophe Jorssen, Markus Krebs, Chris Kuklewicz, Darrell Lamm, Rolf Niepraschk,
+Michael Sharpe, Uwe Siart, Thorsten Suhling, Maja Zaloznik
\end{abstract}
\clearpage
@@ -669,7 +668,7 @@ should be set with \Lcs{psset} and not part of an optional argument.
\LPack{pst-3dplot} accepts cartesian or spherical coordinates. In both cases there
must be three parameters: \verb+(x,y,z)+ or alternatively ($r$,$\phi$,$\theta$),
where $r$ is the radius, $phi$ the \Index{longitude angle} and $\theta$ the \Index{lattitude angle}.
-For the spherical coordinates set the option \Lkeyset{SphericalCoor=true}. Spherical coordinates
+For the spherical coordinates set the option \Lkeyword{SphericalCoor}=\true. Spherical coordinates
are possible for all macros where three dimensional coordinates are expected, except
for the plotting functions (math functions and data records). Maybe that this is also interesting
for someone, then let me know.
@@ -683,7 +682,6 @@ expanded into PostScript code, as \TeX\ absorbs the space following a
macro.)
-
The syntax for drawing the coordinate axes is
\begin{BDef}
@@ -894,6 +892,7 @@ The following example shows a wrong placing of the labels, the planes should be
\end{LTXexample}
+\clearpage
\subsection{Experimental features}
All features are as long as they are not really tested called experimental. With the optional
argument \Lkeyword{coorType}, which is by default 0, one can change the the viewing of the axes
@@ -933,6 +932,16 @@ The angle \Lkeyword{Alpha} is only valid for placing the ticks, if any. The ang
\end{pspicture}
\end{LTXexample}
+\Lkeyword{coorType}=4 is also called the trimetrie-view. One angle of the axis is 5 and the other 15 degrees.
+The angles \Lkeyword{Alpha} and \Lkeyword{Beta} are not valid.
+
+\begin{LTXexample}[width=9.75cm]
+\psset{coorType=4,IIIDxTicksPlane=yz}
+\begin{pspicture}(-2,-2)(3,3)
+\pstThreeDCoor[IIIDticks,zMax=3]%
+\end{pspicture}
+\end{LTXexample}
+
\clearpage
\section{Rotation}
@@ -1223,11 +1232,12 @@ for the placing of the text or other objects.
This works only well for the \Lcs{pstThreeDPut} macro. The default is \Lkeyval{c} and for the
\Lcs{pstPlanePut} the left baseline \Lkeyval{lB}.
-\subsection{\texttt{pstThreeDPut}}
-The syntax is similiar to the \verb|\rput| macro:
-{\footnotesize\begin{verbatim}
-\pstThreeDPut[options](x,y,z){<any stuff>}
-\end{verbatim}}
+\subsection{\nxLcs{pstThreeDPut}}
+The syntax is similiar to the \Lcs{rput} macro:
+
+\begin{BDef}
+\Lcs{pstThreeDPut}\OptArgs\Largr{x,y,z}\Largb{any stuff}
+\end{BDef}
\begin{LTXexample}[width=3.25cm]
\begin{pspicture}(-2,-1.25)(1,2.25)
@@ -1247,25 +1257,16 @@ view od the coordinate system, the 3D dot must not be seen as the center of the
\subsection[\texttt{pstPlanePut}]{\texttt{pstPlanePut}\protect\footnote{Thanks to Torsten Suhling}}
The syntax of the \Lcs{pstPlanePut} is
-% -------------------------------------------
-% ### Aenderung
-% - raus: -----------------------------------
-% \begin{verbatim}
-% \pstPlanePut[plane=<2D plane>](x,y,z){Object}
-% \end{verbatim}
-%
-% Possible values for the two dimensional plane are \verb| xy xz yz |. If this optional parameter is missing then \verb|plane=xy| is set. The first letter marks the positive direction for the width and the second for the height.
-% - rein: -----------------------------------
-\begin{verbatim}
-\pstPlanePut[plane=<2D plane>,planecorr=<Correction of plane's alignment>](x,y,z){Object}
-\end{verbatim}
-We have two parameters, \Lkeyword{plane} and \Lkeyword{planecorr}; both are optional. Let's start with
+\begin{BDef}
+\Lcs{pstPlanePut}\OptArgs\Largr{x,y,z}\Largb{Object}
+\end{BDef}
+
+We have two special parameters, \Lkeyword{plane} and \Lkeyword{planecorr}; both are optional. Let's start with
the first parameter, \Lkeyword{plane}.
-Possible values for the two dimensional plane are \verb| xy xz yz |. If this parameter is missing
+Possible values for the two dimensional plane are \Lkeyval{xy}, \Lkeyval{xz}, and \Lkeyval{yz}. If this parameter is missing
then \Lkeyset{plane=xy} is set. The first letter marks the positive direction for the width
and the second for the height.
-% - ende ------------------------------------------------
The object can be of any type, in most cases it will be some kind of text. The reference point
for the object is the left side and vertically centered, often abbreviated as \verb|lB|. The
@@ -1302,26 +1303,8 @@ following examples show for all three planes the same textbox.
\bigskip
-The following examples use the \verb|origin| option to show that there are
+The following examples use the \Lkeyword{origin} option to show that there are
still some problems with the xy-plane.
-% ----------------------------------------------------------------------
-% Einfuegung Erlaeuterug examplee und Abbildungen
-% - raus: --------------------------------------------------------------
-%
-% \begin{LTXexample}[width=6.25cm]
-% \begin{pspicture}(-3,-2)(3,4)\psgrid
-% \psset{origin=lb}
-% \pstThreeDCoor
-% \pstThreeDDot[drawCoor=true,linecolor=red](-1,-1,2)
-% \pstPlanePut[plane=xy](-1,-1,2){\fbox{\Huge\red\textbf{XY}}}
-% \pstThreeDDot[drawCoor=true,linecolor=green](1,3.5,1)
-% \pstPlanePut[plane=xz](1,3.5,1){\fbox{\Huge\green\textbf{XZ}}}
-% \pstThreeDDot[drawCoor=true,linecolor=blue](-2,1,3)
-% \pstPlanePut[plane=yz](-2,1,3){\fbox{\Huge\blue\textbf{YZ}}}
-% \end{pspicture}
-% \end{LTXexample}
-% %
-% - rein: --------------------------------------------------------------
The second parameter is \Lkeyword{planecorr}. As first the values:
\begin{description}
@@ -1447,8 +1430,8 @@ The option and arrow part are both optional and the number of points is only lim
to the memory.
All options for lines from \verb|pstricks| are possible, there are no special ones for a 3D line. There is no difference in drawing a line or a vector; the first one has an arrow of type "'\verb|-|"` and the second of "'\verb|->|"`.
-There is no special \verb+polygon+ macro, because you can get nearlx the same with
-\verb+\pstThreeDLine+.
+There is no special polygon macro, because you can get nearly the same with
+\Lcs{pstThreeDLine}.
\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)
@@ -1530,11 +1513,12 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\section{Triangles}
A triangle is given with its three points:
-\begin{verbatim}
-\pstThreeDTriangle[<options>](P1)(P2)(P3)
-\end{verbatim}
+\begin{BDef}
+\Lcs{pstThreeDTriangle}\OptArgs\Largr{P1}\Largr{P2}\Largr{P3}
+\end{BDef}
-When the option \verb|fillstyle| is set to another value than \verb|none| the triangle is filled with the active color or with the one which is set with the option \verb|fillcolor|.
+When the option \Lkeyword{fillstyle} is set to another value than \Lkeyval{none}
+the triangle is filled with the active color or with the one which is set with the option \Lkeyword{fillcolor}.
\begin{LTXexample}[width=6.25cm]
\begin{pspicture}(-3,-4.25)(3,3.25)
@@ -1546,7 +1530,7 @@ When the option \verb|fillstyle| is set to another value than \verb|none| the tr
\end{pspicture}
\end{LTXexample}
-Especially for triangles the option \verb|linejoin| is important. The default value is $1$, which gives rounded edges.
+Especially for triangles the option \Lkeyword{linejoin} is important. The default value is $1$, which gives rounded edges.
\begin{figure}[htb]
\centering
@@ -1584,7 +1568,8 @@ The syntax for a 3D square is:
\end{LTXexample}
\medskip
-Squares are nothing else than a polygon with the starting point $P_o$ given with the origin vector $\vec{o}$ and the two direction vectors $\vec{u}$ and $\vec{v}$, which build the sides of the square.
+Squares are nothing else than a polygon with the starting point $P_o$ given with the
+origin \Index{vector} $\vec{o}$ and the two direction vectors $\vec{u}$ and $\vec{v}$, which build the sides of the \Index{square}.
\begin{LTXexample}[width=7.25cm]
@@ -1604,7 +1589,8 @@ A box is a special case of a square and has the syntax
\end{BDef}
-These are the origin vector $\vec{o}$ and three direction vectors $\vec{u}$, $\vec{v}$ and $\vec{w}$, which are for example shown in the following figure.
+These are the origin vector $\vec{o}$ and three direction vectors $\vec{u}$, $\vec{v}$ and $\vec{w}$,
+which are for example shown in the following figure.
\begin{LTXexample}[width=5.25cm]
@@ -1708,7 +1694,7 @@ The origin vector $\vec{o}$ determines the left corner of the box.
\psset{Beta=10,xyzLight=-7 3 4}
\begin{pspicture}(-3,-2)(3,4)
\pstThreeDCoor[zMax=5]
- \psBox(0,0,0){2}{5}{3}
+\psBox(0,0,0){2}{5}{3}
\end{pspicture}
\end{LTXexample}
@@ -1717,16 +1703,16 @@ The origin vector $\vec{o}$ determines the left corner of the box.
\begin{pspicture}(-3,-2)(3,4)
\psset{Alpha=110}
\pstThreeDCoor[zMax=5]
- \psBox(0,0,0){2}{5}{3}
+\psBox(0,0,0){2}{5}{3}
\end{pspicture}
\end{LTXexample}
\begin{LTXexample}[width=6.25cm]
\psset{Beta=10,xyzLight=-7 3 4}
-\begin{pspicture}(-3,-2)(3,4)
+\begin{pspicture}(-3,-2)(3,3)
\psset{Alpha=200}
-\pstThreeDCoor[zMax=5]
- \psBox(0,0,0){2}{5}{3}
+\pstThreeDCoor[zMax=3]
+\psBox(0,0,0){2}{2}{3}
\end{pspicture}
\end{LTXexample}
@@ -1735,7 +1721,7 @@ The origin vector $\vec{o}$ determines the left corner of the box.
\begin{pspicture}(-3,-2)(3,4)
\psset{Alpha=290}
\pstThreeDCoor[zMax=5]
- \psBox(0,0,0){2}{5}{3}
+\psBox(0,0,0){2}{5}{3}
\end{pspicture}
\end{LTXexample}
@@ -2107,7 +2093,7 @@ The syntax is
\Lcs{pstParaboloid}\OptArgs\Largb{height}\Largb{radius}
\end{BDef}
-\verb+height+ and \verb+radius+ depend to each other, it is the radius of the circle
+\Larg{height} and \Larg{radius} depend to each other, it is the radius of the circle
at the height. By default the paraboloid is placed in the origin of coordinate system, but
with \Lcs{pstThreeDput} it can be placed anywhere. The possible options are listed in
table~\ref{tab:paraboloid}.
@@ -2178,9 +2164,9 @@ otherwise \LPack{xcolor} cannot read the values. A white color is given by \verb
\Lcs{pstThreeDSphere}\OptArgs\Largr{x,y,z}\Largb{Radius}
\end{BDef}
-\verb|(x,y,z)| is the center of the sphere and possible options are listed in table~\ref{tab:sphereOptions}.
-The segment color must be set as a cmyk color \verb|SegmentColor={[cmyk]{c,m,y,k}}| in parenthesis,
-otherwise \verb|xcolor| cannot read the values. A white color is given by \verb|SegmentColor={[cmyk]{0,0,0,0}}|.
+\Largr{x,y,z} is the center of the sphere and possible options are listed in table~\ref{tab:sphereOptions}.
+The segment color must be set as a cmyk color \Lkeyword{SegmentColor}\verb|={[cmyk]{c,m,y,k}}| in parenthesis,
+otherwise \LPack{xcolor} cannot read the values. A white color is given by \Lkeyword{SegmentColor}\verb|={[cmyk]{0,0,0,0}}|.
\begin{table}[htb]
\centering
@@ -2205,21 +2191,21 @@ otherwise \verb|xcolor| cannot read the values. A white color is given by \verb|
\section{Mathematical functions}
-There are two macros for plotting mathematical functions, which work similiar to the one from \verb|pst-plot|.
+There are two macros for plotting mathematical functions, which work similiar to the one from \LPack{pst-plot}.
\subsection{Function $f(x,y)$}
The macro for plotting functions does not have the same syntax as the one from
-\verb|pst-plot|\cite{dtk02.1:voss:mathematischen}, but it is used in the same way:
+\LPack{pst-plot}~\cite{dtk02.1:voss:mathematischen}, but it is used in the same way:
\begin{BDef}
\Lcs{psplotThreeD}\OptArgs\Largr{xMin,xMax}\Largr{yMin,yMax}\Largb{the function}
\end{BDef}
-The function has to be written in \PS{} code and the only valid variable names are \verb|x|
-and \verb|y|, f.ex: \verb|{x dup mul y dup mul add sqrt}| for the math expression $\sqrt{x^2 + y^2}$.
-The macro has the same plotstyle options as \verb|psplot|, except the \verb|plotpoints|-option which is
-split into one for \verb|x| and one for \verb|y| (table \ref{tab:lineOptions}).
+The function has to be written in \PS{} code and the only valid variable names are $x$
+and $y$, f.ex: \verb|{x dup mul y dup mul add sqrt}| for the math expression $\sqrt{x^2 + y^2}$.
+The macro has the same plotstyle options as \Lcs{psplot}, except the \Lkeyword{plotpoints}-option which is
+split into one for $x$ and one for $y$ (table~\ref{tab:lineOptions}).
\begin{table}[htb]
\centering
@@ -2263,7 +2249,7 @@ for (float y=yMin; y<yMax; y+=dy)
\end{verbatim}}
It depends to the inner loop in which direction the curves are drawn. There are four possible
-values for the option \verb|drawStyle| :
+values for the option \Lkeyword{drawStyle}:
\begin{itemize}
\item \Lkeyval{xLines} (default) Curves are drawn in x direction
\item \Lkeyval{yLines} Curves are drawn in y direction
@@ -2272,15 +2258,15 @@ values for the option \verb|drawStyle| :
\end{itemize}
In fact of the inner loop it is only possible to get a closed curve in the defined direction.
-For lines in x direction less \verb|yPlotpoints| are no problem, in difference to
-\verb|xPlotpoints|, especially for the plotstyle options \verb|line| and \verb|dots|.
+For lines in x direction less \Lkeyword{yPlotpoints} are no problem, in difference to
+\Lkeyword{xPlotpoints}, especially for the plotstyle options \Lkeyval{line} and \Lkeyval{dots}.
Drawing three dimensional functions with curves which are transparent makes it difficult
-to see if a point is before or behind another one. \verb|\psplotThreeD| has an option
-\verb|hiddenLine| for a primitive hidden line mode, which only works when the y-intervall
+to see if a point is before or behind another one. \Lcs{psplotThreeD} has an option
+\Lkeyword{hiddenLine} for a primitive hidden line mode, which only works when the y-intervall
is defined in a way that $y_2>y_1$. Then every new curve is plotted over the forgoing one
and filled with the color white. Figure~\ref{fig:3dfunc-hidden} is the same as
-figure~\ref{fig:3dfunc}, only with the option \verb|hiddenLine=true|.
+figure~\ref{fig:3dfunc}, only with the option \Lkeyword{hiddenLine}.
\begin{lstlisting}
\begin{pspicture}(-6,-4)(6,5)
@@ -2430,8 +2416,8 @@ Parametric plots are only possible for drawing curves or areas. The syntax for
\Lcs{parametricplotThreeD}\OptArgs\Largr{t1,t2}\Largr{u1,u2}\Largb{three parametric functions x y z}
\end{BDef}
-The only possible variables are \verb|t| and \verb|u| with \verb|t1,t2| and \verb|u1,u2| as the
-range for the parameters. The order for the functions is not important and \verb|u| may be
+The only possible variables are $t$ and $u$ with $t1,t2$ and $u1,u2$ as the
+range for the parameters. The order for the functions is not important and $u$ may be
optional when having only a three dimensional curve and not an area.
\begin{align}
\begin{array}{rl}
@@ -2449,16 +2435,16 @@ To draw a spiral we have the parametric functions:
\end{array}
\end{align}
-In the example the $t$ value is divided by $600$ for the \verb|z| coordinate, because we have the
+In the example the $t$ value is divided by $600$ for the $z$ coordinate, because we have the
values for $t$ in degrees, here with a range of $0\mbox{\textdegree}\ldots 2160\mbox{\textdegree}$. Drawing a curve in
a three dimensional coordinate system does only require one parameter, which has to be by default
-\verb|t|. In this case we do not need all parameters, so that one can write
+$t$. In this case we do not need all parameters, so that one can write
\begin{BDef}
\Lcs{parametricplotThreeD}\OptArgs\Largr{t1,t2}\Largb{three parametric functions x y z}
\end{BDef}
-which is the same as \verb|(0,0)| for the parameter \verb|u|.
+which is the same as \verb|(0,0)| for the parameter $u$.
\begin{LTXexample}[width=6.75cm]
\begin{pspicture}(-3.25,-2.25)(3.25,5.25)
@@ -2486,7 +2472,7 @@ And the same with the algebraic option:
Instead of using the \Lcs{pstThreeDSphere} macro (see section \ref{sec:spheres}) it is also
possible to use parametric functions for a sphere. The macro plots continous lines only for
-the \verb|t| parameter, so a sphere plotted with the longitudes need the parameter equations as
+the $t$ parameter, so a sphere plotted with the longitudes need the parameter equations as
\begin{align}
\begin{array}{l}
x = \cos t \cdot \sin u\\
@@ -2604,7 +2590,7 @@ The syntax is very easy
If the data file is not in the same directory than the document, insert the file name
with the full path. Figure~\ref{fig:fileplot} shows a file plot with the
-option \Lkeyword{linestyle}=\Lkeyval{line}.
+option \Lkeyset{linestyle=line}.
\begin{figure}[!htbp]
@@ -2623,7 +2609,7 @@ option \Lkeyword{linestyle}=\Lkeyval{line}.
The syntax is
\begin{BDef}
-\Lcs{dataplotThreeD}\OptArgs\Largb{<data object>}
+\Lcs{dataplotThreeD}\OptArgs\Largb{data object}
\end{BDef}
In difference to the macro \Lcs{fileplotThreeD} the \Lcs{dataplotThreeD} cannot plot any external data
@@ -2775,7 +2761,7 @@ the parameter \verb|#1| into a sequence of the three coordinates, dived by a spa
The syntax is:
%
\begin{BDef}
-\Lcs{getThreeDCoor}(<vector>)<\nxLcs{macro}>
+\Lcs{getThreeDCoor}\Largr{vector}\nxLcs{macro}
\end{BDef}
\verb|\macro| holds the sequence of the three coordinates \verb|x y z|, divided by a space.
@@ -2783,7 +2769,7 @@ The syntax is:
\subsection{Adding two vectors}
The syntax is
\begin{BDef}
-\Lcs{pstaddThreeDVec}(<vector A>)(<vector B>)\verb+\tempa\tempb\tempc+
+\Lcs{pstaddThreeDVec}\Largr{vector A}\Largr{vector B}\verb+\tempa\tempb\tempc+
\end{BDef}
\verb|\tempa\tempb\tempc| must be user or system defined macros, which holds the three
@@ -2792,7 +2778,7 @@ coordinates of the vector $\vec{C}=\vec{A}+\vec{B}$.
\subsection{Substract two vectors}
The syntax is
\begin{BDef}
-\Lcs{pstsubThreeDVec}(<vector A>)(<vector B>)\verb+\tempa\tempb\tempc+
+\Lcs{pstsubThreeDVec}\Largr{vector A}\Largr{vector B}\verb+\tempa\tempb\tempc+
\end{BDef}
\verb|\tempa\tempb\tempc| must be user or system defined macros, which holds the three