diff options
author | Karl Berry <karl@freefriends.org> | 2007-11-26 19:01:29 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2007-11-26 19:01:29 +0000 |
commit | 3b476740d3917d55decfe33266eff05facc32c48 (patch) | |
tree | 543b5c265316679ae92af4d8e3bc867af13757c6 /Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex | |
parent | 9f1f0edb36f79cb54f281a4654b2a29e62eb9d29 (diff) |
new font gfsartemisia
git-svn-id: svn://tug.org/texlive/trunk@5612 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex | 395 |
1 files changed, 395 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex b/Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex new file mode 100644 index 00000000000..876e76c6848 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/gfsartemisia/gfsartemisia.tex @@ -0,0 +1,395 @@ +%% (c) copyright 2006, 2007 +%% Antonis Tsolomitis +%% Department of Mathematics, University of the Aegean +%% +%% This document can be redistributed and/or modified under the terms +%% of the LaTeX Project Public License Distributed from CTAN +%% archives in directory macros/latex/base/lppl.txt; either +%% version 1 of the License, or any later version. + +\documentclass{article} +\usepackage[polutonikogreek,english]{babel} +\usepackage[iso-8859-7]{inputenc} +%\usepackage{gfsartemisia-euler,latexsym,amsfonts} +\usepackage{gfsartemisia} + +%\renewcommand{\ttdefault}{hlst} + +%%%%% Theorems and friends +\newtheorem{theorem}{Θεώρημα}[section] +\newtheorem{lemma}[theorem]{Λήμμα} +\newtheorem{proposition}[theorem]{Πρόταση} +\newtheorem{corollary}[theorem]{Πόρισμα} +\newtheorem{definition}[theorem]{Ορισμός} +\newtheorem{remark}[theorem]{Παρατήρηση} +\newtheorem{axiom}[theorem]{Αξίωμα} +\newtheorem{exercise}[theorem]{Άσκηση} + + +%%%%% Environment ``proof'' +\newenvironment{proof}[1]{{\textit{Απόδειξη:}}}{\ \hfill$\Box$} +\newenvironment{hint}[1]{{\textit{Υπόδειξη:}}}{\ \hfill$\Box$} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + + +\title{The \textsc{gfsartemisia} font family} +\author{Antonis Tsolomitis\\ +Laboratory of Digital Typography\\ and Mathematical Software\\ +Department of Mathematics\\ +University of the Aegean} +\date {\textsc{27} November \textsc{2006}} + + +\begin{document} +\maketitle + +\section{Introduction} +The Artemisia family of the Greek Font Society was made available for free +in autumn 2006. This font existed with a commercial license for many +years before. Support for \LaTeX\ and the babel package was prepared +several years ago by the author and I.\ Vasilogiorgakis. With the +free availability of the fonts I have modified the original package +so that it reflects the changes occured in the latest releases by \textsc{gfs}. + +The package supports three encodings: OT1, T1 and LGR to the extend +that the font themselves cover these. OT1 and LGR should be +fairly complete. The greek part is to be used with the greek option of +the Babel package. + +The fonts are loaded either with + +\verb|\usepackage{gfsartemisia}| + +\noindent or with + +\verb|\usepackage{gfsartemisia-euler}|. + + +The math symbols are taken from the txfonts package for the first (except +of course the characters that are already provided by Artemisia) and +from the euler package for the second. + All Artemisia characters are scaled +in the \verb|.fd| files by a factor of 0.93 in order to match the +x-height of txfonts or by 0.98 in order to match the +x-height of the Euler fonts. + +\section{Installation} + +Copy the contents of the subdirectory afm in +texmf/fonts/afm/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory doc in +texmf/doc/latex/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory enc in +texmf/fonts/enc/dvips/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory map in +texmf/fonts/map/dvips/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory tex in +texmf/tex/latex/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory tfm in +texmf/fonts/tfm/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory type1 in +texmf/fonts/type1/GFS/Artemisia/ + +\medskip + +\noindent Copy the contents of the subdirectory vf in +texmf/fonts/vf/GFS/Artemisia/ + +\medskip + +\noindent In your installations updmap.cfg file add the line + +\medskip + +\noindent Map gfsartemisia.map + +\medskip + +Refresh your filename database and the map file database (for example, +for te\TeX\ run mktexlsr (for Mik\TeX, run initexmf -{}-update-fndb) and then run the updmap script (as root){}). + +You are now ready to use the fonts provided that you have a relatively +modern installation that includes txfonts. + +\section{Usage} + +As said in the introduction the package covers both english and +greek. Greek covers polytonic too through babel (read the +documentation +of the babel package and its greek option). + +For example, the preample + +\begin{verbatim} +\documentclass{article} +\usepackage[english,greek]{babel} +\usepackage[iso-8859-7]{inputenc} +\usepackage{gfsartemisia} +\end{verbatim} + +will be the correct setup for articles in Greek. + +\bigskip + +\subsection{Transformations by \texttt{dvips}} + +Other than the shapes provided by the fonts themselves, this package +provides a slanted small caps shape +using the standard mechanism provided by dvips. Slanted small caps are +called with \verb|\scslshape|. +For example, the code +\begin{verbatim} +\textsc{small caps \textgreek{πεζοκεφαλαία} 0123456789} {\scslshape + \textgreek{πεζοκεφαλαία 0123456789}} +\end{verbatim} +will give + + +\textsc{small caps \textgreek{πεζοκεφαλαία} 0123456789} {\scslshape + \textgreek{πεζοκεφαλαία 0123456789}} + +\noindent The command \verb|\textscsl{}| is also provided. + + + + +\subsection{Tabular numbers} + +Tabular numbers (of fixed width) are accessed with the command +\verb|\tabnums{}|. Compare + +\begin{tabular}{ll} +\verb+|0|1|2|3|4|5|6|7|8|9|+ & |0|1|2|3|4|5|6|7|8|9|\\ +\verb+\tabnums{|0|1|2|3|4|5|6|7|8|9|}+ & \tabnums{|0|1|2|3|4|5|6|7|8|9|} +\end{tabular} + + +\subsection{Text fractions} + +Text fractions are composed using the lower and upper numerals +provided by the fonts, and are +accessed with the command \verb|\textfrac{}{}|. +For example, \verb|\textfrac{-22}{7}| gives \textfrac{-22}{7}. + +Precomposed fractions are provided too by \verb|\onehalf|, +\verb|\onethird|, etc. + + +\subsection{Additional characters} + +\begin{center} +\begin{tabular}{|c|c|}\hline +\verb|\textbullet| &\textbullet \\ \hline +\verb|\artemisiatextparagraph| &\textparagraph \\ \hline +\verb|\artemisiatextparagraphalt| & \textparagraphalt\\ \hline +\verb|\careof| & \careof\\ \hline +\verb|\numero| & \numero\\ \hline +\verb|\estimated| & \estimated\\ \hline +\verb|\whitebullet| & \whitebullet\\ \hline +\verb|\textlozenge| & \textlozenge\\ \hline +\verb|\eurocurrency| & \eurocurrency\\ \hline +\verb|\interrobang| & \interrobang\\ \hline +\verb|\yencurrency| & \yencurrency\\ \hline +\verb|\stirling| & \stirling\\\hline +\verb|\stirlingoldstyle| & \stirlingoldstyle \\ \hline +\verb|\textdagger| & \textdagger\\ \hline +\verb|\textdaggerdbl| & \textdaggerdbl\\ \hline +\verb|\greekfemfirst| & \greekfemfirst\\ \hline +\verb|\onehalf| & \onehalf\\ \hline +\verb|\onethird| &\onethird \\ \hline +\verb|\twothirds| & \twothirds\\ \hline +\verb|\onefifth| & \onefifth\\ \hline +\verb|\twofifths| & \twofifths\\ \hline +\verb|\threefifths| & \threefifths\\ \hline +\verb|\fourfifths| &\fourfifths \\ \hline +\verb|\onesixth| & \onesixth\\ \hline +\verb|\fivesixths| & \fivesixths\\ \hline +\verb|\oneeighth| & \oneeighth\\ \hline +\verb|\threeeighths| &\threeeighths \\ \hline +\verb|\fiveeighths| &\fiveeighths \\ \hline +\verb|\seveneighths| & \seveneighths\\ \hline +\end{tabular} +\end{center} + + + +Euro is also available in LGR enconding. \verb|\textgreek{\euro}| +gives \textgreek{\euro}. + +\subsection{Alternate characters} + +In the greek encoding the initial theta is chosen +automatically. Compare: \textgreek{θάλασσα} but \textgreek{Αθηνά}. +Other alternate characters are not chosen automatically. + + + +\section{Problems} + + + The +accents of the capital letters should hang in the left margin when such a letter starts a +line. \TeX\ and \LaTeX\ do not provide the tools for such a +feature. However, this seems to be possible with +\textlatin{pdf\TeX} +As this is work in progress, please be patient\ldots + + + + +\section{Samples} + +The next four pages provide samples in english and greek with +math. The first two with txfonts and the last two with euler. + + +\newpage + +Adding up these inequalities with respect to $i$, we get +\begin{equation} \sum c_i d_i \leq \frac1{p} +\frac1{q} =1\label{10}\end{equation} +since $\sum c_i^p =\sum d_i^q =1$.\hfill$\Box$ + +In the case $p=q=2$ +the above inequality is also called the +\textit{Cauchy-Schwartz inequality}. + +Notice, also, that by formally defining $\left( \sum |b_k|^q\right)^{1/q}$ to be +$\sup |b_k|$ for $q=\infty$, we give sense to (9) for all +$1\leq p\leq\infty$. + + +A similar inequality is true for functions instead of sequences with the sums +being substituted by integrals. + +\medskip + +\textbf{Theorem} {\itshape Let $1<p<\infty$ and let $q$ be such that $1/p +1/q =1$. Then, +for all functions $f,g$ on an interval $[a,b]$ +such that the integrals $\int_a^b |f(t)|^p\,dt$, $\int_a^b |g(t)|^q\,dt$ and +$\int_a^b |f(t)g(t)|\,dt$ exist \textup{(}as Riemann integrals\textup{)}, +we have +\begin{equation} +\int_a^b |f(t)g(t)|\,dt\leq +\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p} +\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} . +\end{equation} +} + +Notice that if the Riemann integral $\int_a^b f(t)g(t)\,dt$ also exists, then +from the inequality $\left|\int_a^b f(t)g(t)\,dt\right|\leq +\int_a^b |f(t)g(t)|\,dt$ follows that +\begin{equation} +\left|\int_a^b f(t)g(t)\,dt\right|\leq +\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p} +\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} . +\end{equation} + + + +\textit{Proof:} Consider a partition of the interval $[a,b]$ in $n$ equal +subintervals with endpoints +$a=x_0<x_1<\cdots<x_n=b$. Let $\Delta x=(b-a)/n$. +We have +\begin{eqnarray} +\sum_{i=1}^n |f(x_i)g(x_i)|\Delta x &\leq& +\sum_{i=1}^n |f(x_i)g(x_i)|(\Delta x)^{\frac1{p}+\frac1{q}}\nonumber\\ +&=&\sum_{i=1}^n \left(|f(x_i)|^p \Delta x\right)^{1/p} \left(|g(x_i)|^q +\Delta x\right)^{1/q}.\label{functionalHolder1}\\ \nonumber +\end{eqnarray} + +\newpage\greektext + + +% $\bullet$ Μήκος τόξου καμπύλης + +% \begin{proposition}\label{chap2:sec1:prop 23} +% Έστω $\gamma$ καμπύλη με παραμετρική εξίσωση $x=g(t)$, $y=f(t)$, +% $t\in [a,\,b]$ αν $g'$, $f'$ συνεχείς στο $[a,\,b]$ τότε η +% $\gamma$ έχει μήκος $S=L(\gamma)=\int_a^b \sqrt{g'(t)^2+f'(t)^2} +% dt$. +% \end{proposition} + +\textbullet\ Εμβαδόν επιφάνειας από περιστροφή\\ + +\begin{proposition}\label{chap2:sec1:prop23-2} +Έστω $\gamma$ καμπύλη με παραμετρική εξίσωση $x=g(t)$, $y=f(t)$, +$t\in [a,\,b]$ αν $g'$, $f'$ συνεχείς στο $[a,\,b]$ τότε το +εμβαδόν από περιστροφή της $\gamma$ γύρω από τον $xx'$ δίνεται \\ +$Β=2\pi\int_a^b |f(t)| \sqrt{g'(t)^2+f^{\prime}(t^2)} dt$. \\ Αν η +$\gamma$ δίνεται από την $y=f(x)$, $x\in [a,\,b]$ τότε +$Β=2\pi\int_a^b |f(t)| \sqrt{1+f'(x)^2} dx$ +\end{proposition} + +\textbullet\ Όγκος στερεών από περιστροφή\\ Έστω $f : +[a,\,b]\rightarrow \mathbb{R}$ συνεχής και $R=\{f, Ox,x=a,x=b\}$ +είναι ο όγκος από περιστροφή του γραφήματος της $f$ γύρω από τον +$Ox$ μεταξύ των ευθειών $x=a$, και $x=b$, τότε $V=\pi\int_a^b f +(x)^2 dx$ + +\textbullet\ Αν $f,g : [a,\,b]\rightarrow \mathbb{R}$ και $0\leq +g(x)\leq f(x)$ τότε ο όγκος στερεού που παράγεται από περιστροφή +των γραφημάτων των $f$ και $g$, $R=\{f,g, Ox,x=a,x=b\}$ είναι \\ +$V=\pi\int_a^b\{ f (x)^2-g(x)^2\} dx$. + +\textbullet\ Αν $x=g(t)$, $y=f(t)$, $t=[t_1,\,t_2]$ τότε +$V=\pi\int_{t_1}^{t_2}\{ f (t)^2 g'(t)\} dt$ για $g(t_1)=a$, +$g(t_2)=b$. + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Ασκήσεις}\label{chap2:sec2} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{exercise}\label{chap2:ex1} +Να εκφραστεί το παρακάτω όριο ως ολοκλήρωμα $Riemann$ κατάλ\-ληλης +συνάρτησης\\ +$$\lim_{n\rightarrow\infty} \frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} $$ +\end{exercise} +%%%%%%%%% +\textit{Υπόδειξη:} +Πρέπει να σκεφτούμε μια συνάρτηση της οποίας γνωρίζουμε ότι υπάρχει το ολοκλήρωμα. + Τότε παίρνουμε μια διαμέριση $P_n$ και δείχνουμε π.χ. ότι το $U(f,P_n)$ είναι η ζητούμενη σειρά. + +\bigskip + +%%%%%%%%%%%%%% +\textit{Λύση:} +Πρέπει να σκεφτούμε μια συνάρτηση της οποίας γνωρίζουμε ότι υπάρχει το ολοκλήρωμα. +Τότε παίρνουμε μια διαμέριση $P_n$ και δείχνουμε π.χ. ότι το $U(f,P_n)$ είναι η ζητούμενη σειρά.\\ +Έχουμε ότι +\begin{eqnarray}\frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} = +\frac{1}{n}\sqrt[n]{e}+\frac{1}{n}\sqrt[n]{e^2}+\cdots + +\frac{1}{n}\sqrt[n]{e^n}\nonumber\\ +=\frac{1}{n}e^{\frac{1}{n}}+\frac{1}{n}e^{\frac{2}{n}}+\cdots+\frac{1}{n}e^{\frac{n}{n}}\nonumber +\end{eqnarray} + + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: |