diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:43:17 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:43:17 +0000 |
commit | f9ba1f4431124f48769a2666d5d9ec921345ca71 (patch) | |
tree | 84f6056d0a7a06c9fed9927a8be9210064de058c /Master/texmf-dist/doc/fonts/arev/fontsample.tex | |
parent | fd423d0bb64fe29a2be1fbae5baaf4bc386cc274 (diff) |
doc 2
git-svn-id: svn://tug.org/texlive/trunk@78 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/fonts/arev/fontsample.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/arev/fontsample.tex | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/arev/fontsample.tex b/Master/texmf-dist/doc/fonts/arev/fontsample.tex new file mode 100644 index 00000000000..aa0a037bd21 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/arev/fontsample.tex @@ -0,0 +1,44 @@ + +\documentclass{article} + +\usepackage{amsmath,amsthm} +\usepackage[letterpaper,text={5.95in,9in}]{geometry} + +\pagestyle{empty} +\setlength{\parindent}{0cm} + +\usepackage{arev} + +\theoremstyle{definition} +\newtheorem{theorem}{Theorem} + +\begin{document} + +\begin{theorem}[Residue Theorem] +Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then +\[ +\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). +\] +\end{theorem} + +Another nice theorem from complex analysis is + +\begin{theorem}[Maximum Modulus] +Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then +\[ +\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. +\] +\end{theorem} + +\newcommand{\abc}{abcdefghijklmnopqrstuvwxyz} +\newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ} +\newcommand{\alphabeta}{\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda\mu\nu\xi o\pi\varpi\rho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega} +\newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega} + +\ABC \qquad $\ABC$ + +\abc \qquad $\abc$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial$ + +$\AlphaBeta$ \qquad $\alphabeta$ \qquad $01234567890$ + +\end{document} |