diff options
author | Karl Berry <karl@freefriends.org> | 2013-04-07 18:19:31 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-04-07 18:19:31 +0000 |
commit | 752012c605d34cd943795527a9738475a6958fcc (patch) | |
tree | 4ee06acdd8333a662c2d6f6ef716235053468f55 /Master/texmf-dist/asymptote/stats.asy | |
parent | 9789d09132f18a838e84f041b4b3aff28d3426ec (diff) |
texmf -> texmf-dist: start with unique dirs from texmf
git-svn-id: svn://tug.org/texlive/trunk@29712 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/asymptote/stats.asy')
-rw-r--r-- | Master/texmf-dist/asymptote/stats.asy | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/Master/texmf-dist/asymptote/stats.asy b/Master/texmf-dist/asymptote/stats.asy new file mode 100644 index 00000000000..be9efdfa429 --- /dev/null +++ b/Master/texmf-dist/asymptote/stats.asy @@ -0,0 +1,292 @@ +private import graph; + +real legendmarkersize=2mm; + +real mean(real A[]) +{ + return sum(A)/A.length; +} + +// unbiased estimate +real variance(real A[]) +{ + return sum((A-mean(A))^2)/(A.length-1); +} + +real variancebiased(real A[]) +{ + return sum((A-mean(A))^2)/A.length; +} + +// unbiased estimate +real stdev(real A[]) +{ + return sqrt(variance(A)); +} + +real rms(real A[]) +{ + return sqrt(sum(A^2)/A.length); +} + +real skewness(real A[]) +{ + real[] diff=A-mean(A); + return sum(diff^3)/sqrt(sum(diff^2)^3/A.length); +} + +real kurtosis(real A[]) +{ + real[] diff=A-mean(A); + return sum(diff^4)/sum(diff^2)^2*A.length; +} + +real kurtosisexcess(real A[]) +{ + return kurtosis(A)-3; +} + +real Gaussian(real x, real sigma) +{ + static real sqrt2pi=sqrt(2pi); + return exp(-0.5*(x/sigma)^2)/(sigma*sqrt2pi); +} + +real Gaussian(real x) +{ + static real invsqrt2pi=1/sqrt(2pi); + return exp(-0.5*x^2)*invsqrt2pi; +} + +// Return frequency count of data in [bins[i],bins[i+1]) for i=0,...,n-1. +int[] frequency(real[] data, real[] bins) +{ + int n=bins.length-1; + int[] freq=new int[n]; + for(int i=0; i < n; ++i) + freq[i]=sum(bins[i] <= data & data < bins[i+1]); + return freq; +} + +// Return frequency count in n uniform bins from a to b +// (faster than the above more general algorithm). +int[] frequency(real[] data, real a, real b, int n) +{ + int[] freq=sequence(new int(int x) {return 0;},n); + real h=n/(b-a); + for(int i=0; i < data.length; ++i) { + int I=Floor((data[i]-a)*h); + if(I >= 0 && I < n) + ++freq[I]; + } + return freq; +} + +// Return frequency count in [xbins[i],xbins[i+1]) and [ybins[j],ybins[j+1]). +int[][] frequency(real[] x, real[] y, real[] xbins, real[] ybins) +{ + int n=xbins.length-1; + int m=ybins.length-1; + int[][] freq=new int[n][m]; + bool[][] inybin=new bool[m][y.length]; + for(int j=0; j < m; ++j) + inybin[j]=ybins[j] <= y & y < ybins[j+1]; + for(int i=0; i < n; ++i) { + bool[] inxbini=xbins[i] <= x & x < xbins[i+1]; + int[] freqi=freq[i]; + for(int j=0; j < m; ++j) + freqi[j]=sum(inxbini & inybin[j]); + } + return freq; +} + +// Return frequency count in nx by ny uniform bins in box(a,b). +int[][] frequency(real[] x, real[] y, pair a, pair b, int nx, int ny=nx) +{ + int[][] freq=new int[nx][]; + for(int i=0; i < nx; ++i) + freq[i]=sequence(new int(int x) {return 0;},ny); + real hx=nx/(b.x-a.x); + real hy=ny/(b.y-a.y); + real ax=a.x; + real ay=a.y; + for(int i=0; i < x.length; ++i) { + int I=Floor((x[i]-ax)*hx); + int J=Floor((y[i]-ay)*hy); + if(I >= 0 && I <= nx && J >= 0 && J <= ny) + ++freq[I][J]; + } + return freq; +} + +int[][] frequency(pair[] z, pair a, pair b, int nx, int ny=nx) +{ + int[][] freq=new int[nx][]; + for(int i=0; i < nx; ++i) + freq[i]=sequence(new int(int x) {return 0;},ny); + real hx=nx/(b.x-a.x); + real hy=ny/(b.y-a.y); + real ax=a.x; + real ay=a.y; + for(int i=0; i < z.length; ++i) { + int I=Floor((z[i].x-ax)*hx); + int J=Floor((z[i].y-ay)*hy); + if(I >= 0 && I < nx && J >= 0 && J < ny) + ++freq[I][J]; + } + return freq; +} + +path halfbox(pair a, pair b) +{ + return a--(a.x,b.y)--b; +} + +path topbox(pair a, pair b) +{ + return a--(a.x,b.y)--b--(b.x,a.y); +} + +// Draw a histogram for bin boundaries bin[n+1] of frequency data in count[n]. +void histogram(picture pic=currentpicture, real[] bins, real[] count, + real low=-infinity, + pen fillpen=nullpen, pen drawpen=nullpen, bool bars=false, + Label legend="", real markersize=legendmarkersize) +{ + if((fillpen == nullpen || bars == true) && drawpen == nullpen) + drawpen=currentpen; + bool[] valid=count > 0; + real m=min(valid ? count : null); + real M=max(valid ? count : null); + bounds my=autoscale(pic.scale.y.scale.T(m),pic.scale.y.T(M), + pic.scale.y.scale); + if(low == -infinity) low=pic.scale.y.scale.Tinv(my.min); + real last=low; + int n=count.length; + begingroup(pic); + for(int i=0; i < n; ++i) { + if(valid[i]) { + real c=count[i]; + pair b=Scale(pic,(bins[i+1],c)); + pair a=Scale(pic,(bins[i],low)); + if(fillpen != nullpen) { + fill(pic,box(a,b),fillpen); + if(!bars) draw(pic,b--(b.x,a.y),fillpen); + } + if(!bars) + draw(pic,halfbox(Scale(pic,(bins[i],last)),b),drawpen); + else draw(pic,topbox(a,b),drawpen); + last=c; + } else { + if(!bars && last != low) { + draw(pic,Scale(pic,(bins[i],last))--Scale(pic,(bins[i],low)),drawpen); + last=low; + } + } + } + if(!bars && last != low) + draw(pic,Scale(pic,(bins[n],last))--Scale(pic,(bins[n],low)),drawpen); + endgroup(pic); + + if(legend.s != "") { + marker m=marker(scale(markersize)*shift((-0.5,-0.5))*unitsquare, + drawpen,fillpen == nullpen ? Draw : + (drawpen == nullpen ? Fill(fillpen) : FillDraw(fillpen))); + legend.p(drawpen); + pic.legend.push(Legend(legend.s,legend.p,invisible,m.f)); + } +} + +// Draw a histogram for data in n uniform bins between a and b +// (optionally normalized). +void histogram(picture pic=currentpicture, real[] data, real a, real b, int n, + bool normalize=false, real low=-infinity, + pen fillpen=nullpen, pen drawpen=nullpen, bool bars=false, + Label legend="", real markersize=legendmarkersize) +{ + real dx=(b-a)/n; + real[] freq=frequency(data,a,b,n); + if(normalize) freq /= dx*sum(freq); + histogram(pic,a+sequence(n+1)*dx,freq,low,fillpen,drawpen,bars,legend, + markersize); +} + +// Method of Shimazaki and Shinomoto for selecting the optimal number of bins. +// Shimazaki H. and Shinomoto S., A method for selecting the bin size of a +// time histogram, Neural Computation (2007), Vol. 19(6), 1503-1527. +// cf. http://www.ton.scphys.kyoto-u.ac.jp/~hideaki/res/histogram.html +int bins(real[] data, int max=100) +{ + real m=min(data); + real M=max(data)*(1+epsilon); + real n=data.length; + int bins=1; + real minC=2n-n^2; // Cost function for N=1. + for(int N=2; N <= max; ++N) { + real C=N*(2n-sum(frequency(data,m,M,N)^2)); + if(C < minC) { + minC=C; + bins=N; + } + } + + return bins; +} + +// return a pair of central Gaussian random numbers with unit variance +pair Gaussrandpair() +{ + real r2,v1,v2; + do { + v1=2.0*unitrand()-1.0; + v2=2.0*unitrand()-1.0; + r2=v1*v1+v2*v2; + } while(r2 >= 1.0 || r2 == 0.0); + return (v1,v2)*sqrt(-log(r2)/r2); +} + +// return a central Gaussian random number with unit variance +real Gaussrand() +{ + static real sqrt2=sqrt(2.0); + static pair z; + static bool cached=true; + cached=!cached; + if(cached) return sqrt2*z.y; + z=Gaussrandpair(); + return sqrt2*z.x; +} + +struct linefit { + real m,b; // slope, intercept + real dm,db; // standard error in slope, intercept + real r; // correlation coefficient + real fit(real x) { + return m*x+b; + } +} + +// Do a least-squares fit of data in real arrays x and y to the line y=m*x+b +linefit leastsquares(real[] x, real[] y) +{ + linefit L; + int n=x.length; + if(n == 1) abort("Least squares fit requires at least 2 data points"); + real sx=sum(x); + real sy=sum(y); + real sxx=n*sum(x^2)-sx^2; + real sxy=n*sum(x*y)-sx*sy; + L.m=sxy/sxx; + L.b=(sy-L.m*sx)/n; + if(n > 2) { + real syy=n*sum(y^2)-sy^2; + if(sxx == 0 || syy == 0) return L; + L.r=sxy/sqrt(sxx*syy); + real arg=syy-sxy^2/sxx; + if(arg <= 0) return L; + real s=sqrt(arg/(n-2)); + L.dm=s*sqrt(1/sxx); + L.db=s*sqrt(1+sx^2/sxx)/n; + } + return L; +} |