summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/geometry.asy
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-04-07 18:19:31 +0000
committerKarl Berry <karl@freefriends.org>2013-04-07 18:19:31 +0000
commit752012c605d34cd943795527a9738475a6958fcc (patch)
tree4ee06acdd8333a662c2d6f6ef716235053468f55 /Master/texmf-dist/asymptote/geometry.asy
parent9789d09132f18a838e84f041b4b3aff28d3426ec (diff)
texmf -> texmf-dist: start with unique dirs from texmf
git-svn-id: svn://tug.org/texlive/trunk@29712 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/asymptote/geometry.asy')
-rw-r--r--Master/texmf-dist/asymptote/geometry.asy7192
1 files changed, 7192 insertions, 0 deletions
diff --git a/Master/texmf-dist/asymptote/geometry.asy b/Master/texmf-dist/asymptote/geometry.asy
new file mode 100644
index 00000000000..bbbc823fc54
--- /dev/null
+++ b/Master/texmf-dist/asymptote/geometry.asy
@@ -0,0 +1,7192 @@
+// geometry.asy
+
+// Copyright (C) 2007
+// Author: Philippe IVALDI 2007/09/01
+// http://www.piprime.fr/
+
+// This program is free software ; you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation ; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY ; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+
+// You should have received a copy of the GNU Lesser General Public License
+// along with this program ; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+// COMMENTARY:
+// An Asymptote geometry module.
+
+// THANKS:
+// Special thanks to Olivier Guibé for his help in mathematical issues.
+
+// BUGS:
+
+// CODE:
+
+import math;
+import markers;
+
+// A rotation in the direction dir limited to [-90,90]
+// This is useful for rotating text along a line in the direction dir.
+private transform rotate(explicit pair dir)
+{
+ real angle=degrees(dir);
+ if(angle > 90 && angle < 270) angle -= 180;
+ return rotate(angle);
+}
+
+// *=======================================================*
+// *........................HEADER.........................*
+/*<asyxml><variable type="real" signature="epsgeo"><code></asyxml>*/
+real epsgeo = 10 * sqrt(realEpsilon);/*<asyxml></code><documentation>Variable used in the approximate calculations.</documentation></variable></asyxml>*/
+
+/*<asyxml><function type="void" signature="addMargins(picture,real,real,real,real)"><code></asyxml>*/
+void addMargins(picture pic = currentpicture,
+ real lmargin = 0, real bmargin = 0,
+ real rmargin = lmargin, real tmargin = bmargin,
+ bool rigid = true, bool allObject = true)
+{/*<asyxml></code><documentation>Add margins to 'pic' with respect to
+ the current bounding box of 'pic'.
+ If 'rigid' is false, margins are added iff an infinite curve will
+ be prolonged on the margin.
+ If 'allObject' is false, fixed - size objects (such as labels and
+ arrowheads) will be ignored.</documentation></function></asyxml>*/
+ pair m = allObject ? truepoint(pic, SW) : point(pic, SW);
+ pair M = allObject ? truepoint(pic, NE) : point(pic, NE);
+ if(rigid) {
+ draw(m - inverse(pic.calculateTransform()) * (lmargin, bmargin), invisible);
+ draw(M + inverse(pic.calculateTransform()) * (rmargin, tmargin), invisible);
+ } else pic.addBox(m, M, -(lmargin, bmargin), (rmargin, tmargin));
+}
+
+real approximate(real t)
+{
+ real ot = t;
+ if(abs(t - ceil(t)) < epsgeo) ot = ceil(t);
+ else if(abs(t - floor(t)) < epsgeo) ot = floor(t);
+ return ot;
+}
+
+real[] approximate(real[] T)
+{
+ return map(approximate, T);
+}
+
+/*<asyxml><function type="real" signature="binomial(real,real)"><code></asyxml>*/
+real binomial(real n, real k)
+{/*<asyxml></code><documentation>Return n!/((n - k)!*k!)</documentation></function></asyxml>*/
+ return gamma(n + 1)/(gamma(n - k + 1) * gamma(k + 1));
+}
+
+/*<asyxml><function type="real" signature="rf(real,real,real)"><code></asyxml>*/
+real rf(real x, real y, real z)
+{/*<asyxml></code><documentation>Computes Carlson's elliptic integral of the first kind.
+ x, y, and z must be non negative, and at most one can be zero.</documentation></function></asyxml>*/
+ real ERRTOL = 0.0025,
+ TINY = 1.5e-38,
+ BIG = 3e37,
+ THIRD = 1/3,
+ C1 = 1/24,
+ C2 = 0.1,
+ C3 = 3/44,
+ C4 = 1/14;
+ real alamb, ave, delx, dely, delz, e2, e3, sqrtx, sqrty, sqrtz, xt, yt, zt;
+ if(min(x, y, z) < 0 || min(x + y, x + z, y + z) < TINY ||
+ max(x, y, z) > BIG) abort("rf: invalid arguments.");
+ xt = x;
+ yt = y;
+ zt = z;
+ do {
+ sqrtx = sqrt(xt);
+ sqrty = sqrt(yt);
+ sqrtz = sqrt(zt);
+ alamb = sqrtx * (sqrty + sqrtz) + sqrty * sqrtz;
+ xt = 0.25 * (xt + alamb);
+ yt = 0.25 * (yt + alamb);
+ zt = 0.25 * (zt + alamb);
+ ave = THIRD * (xt + yt + zt);
+ delx = (ave - xt)/ave;
+ dely = (ave - yt)/ave;
+ delz = (ave - zt)/ave;
+ } while(max(fabs(delx), fabs(dely), fabs(delz)) > ERRTOL);
+ e2 = delx * dely - delz * delz;
+ e3 = delx * dely * delz;
+ return (1.0 + (C1 * e2 - C2 - C3 * e3) * e2 + C4 * e3)/sqrt(ave);
+}
+
+/*<asyxml><function type="real" signature="rd(real,real,real)"><code></asyxml>*/
+real rd(real x, real y, real z)
+{/*<asyxml></code><documentation>Computes Carlson's elliptic integral of the second kind.
+ x and y must be positive, and at most one can be zero.
+ z must be non negative.</documentation></function></asyxml>*/
+ real ERRTOL = 0.0015,
+ TINY = 1e-25,
+ BIG = 4.5 * 10.0^21,
+ C1 = (3/14),
+ C2 = (1/6),
+ C3 = (9/22),
+ C4 = (3/26),
+ C5 = (0.25 * C3),
+ C6 = (1.5 * C4);
+ real alamb, ave, delx, dely, delz, ea, eb, ec, ed, ee, fac, sqrtx, sqrty,
+ sqrtz, sum, xt, yt, zt;
+ if (min(x, y) < 0 || min(x + y, z) < TINY || max(x, y, z) > BIG)
+ abort("rd: invalid arguments");
+ xt = x;
+ yt = y;
+ zt = z;
+ sum = 0;
+ fac = 1;
+ do {
+ sqrtx = sqrt(xt);
+ sqrty = sqrt(yt);
+ sqrtz = sqrt(zt);
+ alamb = sqrtx * (sqrty + sqrtz) + sqrty * sqrtz;
+ sum += fac/(sqrtz * (zt + alamb));
+ fac = 0.25 * fac;
+ xt = 0.25 * (xt + alamb);
+ yt = 0.25 * (yt + alamb);
+ zt = 0.25 * (zt + alamb);
+ ave = 0.2 * (xt + yt + 3.0 * zt);
+ delx = (ave - xt)/ave;
+ dely = (ave - yt)/ave;
+ delz = (ave - zt)/ave;
+ } while (max(fabs(delx), fabs(dely), fabs(delz)) > ERRTOL);
+ ea = delx * dely;
+ eb = delz * delz;
+ ec = ea - eb;
+ ed = ea - 6 * eb;
+ ee = ed + ec + ec;
+ return 3 * sum + fac * (1.0 + ed * (-C1 + C5 * ed - C6 * delz * ee)
+ +delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave));
+}
+
+/*<asyxml><function type="real" signature="elle(real,real)"><code></asyxml>*/
+real elle(real phi, real k)
+{/*<asyxml></code><documentation>Legendre elliptic integral of the 2nd kind,
+ evaluated using Carlson's functions RD and RF.
+ The argument ranges are -infinity < phi < +infinity, 0 <= k * sin(phi) <= 1.</documentation></function></asyxml>*/
+ real result;
+ if (phi >= 0 && phi <= pi/2) {
+ real cc, q, s;
+ s = sin(phi);
+ cc = cos(phi)^2;
+ q = (1 - s * k) * (1 + s * k);
+ result = s * (rf(cc, q, 1) - (s * k)^2 * rd(cc, q, 1)/3);
+ } else
+ if (phi <= pi && phi >= 0) {
+ result = 2 * elle(pi/2, k) - elle(pi - phi, k);
+ } else
+ if (phi <= 3 * pi/2 && phi >= 0) {
+ result = 2 * elle(pi/2, k) + elle(phi - pi, k);
+ } else
+ if (phi <= 2 * pi && phi >= 0) {
+ result = 4 * elle(pi/2, k) - elle(2 * pi - phi, k);
+ } else
+ if (phi >= 0) {
+ int nb = floor(0.5 * phi/pi);
+ result = nb * elle(2 * pi, k) + elle(phi%(2 * pi), k);
+ } else result = -elle(-phi, k);
+ return result;
+}
+
+/*<asyxml><function type="pair[]" signature="intersectionpoints(pair,pair,real,real,real,real,real,real)"><code></asyxml>*/
+pair[] intersectionpoints(pair A, pair B,
+ real a, real b, real c, real d, real f, real g)
+{/*<asyxml></code><documentation>Intersection points with the line (AB) and the quadric curve
+ a * x^2 + b * x * y + c * y^2 + d * x + f * y + g = 0 given in the default coordinate system</documentation></function></asyxml>*/
+ pair[] op;
+ real ap = B.y - A.y,
+ bpp = A.x - B.x,
+ cp = A.y * B.x - A.x * B.y;
+ real sol[];
+ if (abs(ap) > epsgeo) {
+ real aa = ap * c + a * bpp^2/ap - b * bpp,
+ bb = ap * f - bpp * d + 2 * a * bpp * cp/ap - b * cp,
+ cc = ap * g - cp * d + a * cp^2/ap;
+ sol = quadraticroots(aa, bb, cc);
+ for (int i = 0; i < sol.length; ++i) {
+ op.push((-bpp * sol[i]/ap - cp/ap, sol[i]));
+ }
+ } else {
+ real aa = a * bpp,
+ bb = d * bpp - b * cp,
+ cc = g * bpp - cp * f + c * cp^2/bpp;
+ sol = quadraticroots(aa, bb, cc);
+ for (int i = 0; i < sol.length; ++i) {
+ op.push((sol[i], -cp/bpp));
+ }
+ }
+ return op;
+}
+
+/*<asyxml><function type="pair[]" signature="intersectionpoints(pair,pair,real[])"><code></asyxml>*/
+pair[] intersectionpoints(pair A, pair B, real[] equation)
+{/*<asyxml></code><documentation>Return the intersection points of the line AB with
+ the conic whose an equation is
+ equation[0] * x^2 + equation[1] * x * y + equation[2] * y^2 + equation[3] * x + equation[4] * y + equation[5] = 0</documentation></function></asyxml>*/
+ if(equation.length != 6) abort("intersectionpoints: bad length of array for a conic equation.");
+ return intersectionpoints(A, B, equation[0], equation[1], equation[2],
+ equation[3], equation[4], equation[5]);
+}
+// *........................HEADER.........................*
+// *=======================================================*
+
+// *=======================================================*
+// *......................COORDINATES......................*
+
+real EPS = sqrt(realEpsilon);
+
+/*<asyxml><typedef type = "convert" return = "pair" params = "pair"><code></asyxml>*/
+typedef pair convert(pair);/*<asyxml></code><documentation>Function type to convert pair in an other coordinate system.</documentation></typedef></asyxml>*/
+/*<asyxml><typedef type = "abs" return = "real" params = "pair"><code></asyxml>*/
+typedef real abs(pair);/*<asyxml></code><documentation>Function type to calculate modulus of pair.</documentation></typedef></asyxml>*/
+/*<asyxml><typedef type = "dot" return = "real" params = "pair, pair"><code></asyxml>*/
+typedef real dot(pair, pair);/*<asyxml></code><documentation>Function type to calculate dot product.</documentation></typedef></asyxml>*/
+/*<asyxml><typedef type = "polar" return = "pair" params = "real, real"><code></asyxml>*/
+typedef pair polar(real, real);/*<asyxml></code><documentation>Function type to calculate the coordinates from the polar coordinates.</documentation></typedef></asyxml>*/
+
+/*<asyxml><struct signature="coordsys"><code></asyxml>*/
+struct coordsys
+{/*<asyxml></code><documentation>This structure represents a coordinate system in the plane.</documentation></asyxml>*/
+ /*<asyxml><method type = "pair" signature="relativetodefault(pair)"><code></asyxml>*/
+ restricted convert relativetodefault = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to this coordinate system to
+ the pair relatively to the default coordinate system.</documentation></method></asyxml>*/
+ /*<asyxml><method type = "pair" signature="defaulttorelativet(pair)"><code></asyxml>*/
+ restricted convert defaulttorelative = new pair(pair m){return m;};/*<asyxml></code><documentation>Convert a pair given relatively to the default coordinate system to
+ the pair relatively to this coordinate system.</documentation></method></asyxml>*/
+ /*<asyxml><method type = "real" signature="dot(pair,pair)"><code></asyxml>*/
+ restricted dot dot = new real(pair m, pair n){return dot(m, n);};/*<asyxml></code><documentation>Return the dot product of this coordinate system.</documentation></method></asyxml>*/
+ /*<asyxml><method type = "real" signature="abs(pair)"><code></asyxml>*/
+ restricted abs abs = new real(pair m){return abs(m);};/*<asyxml></code><documentation>Return the modulus of a pair in this coordinate system.</documentation></method></asyxml>*/
+ /*<asyxml><method type = "pair" signature="polar(real,real)"><code></asyxml>*/
+ restricted polar polar = new pair(real r, real a){return (r * cos(a), r * sin(a));};/*<asyxml></code><documentation>Polar coordinates routine of this coordinate system.</documentation></method></asyxml>*/
+ /*<asyxml><property type = "pair" signature="O,i,j"><code></asyxml>*/
+ restricted pair O = (0, 0), i = (1, 0), j = (0, 1);/*<asyxml></code><documentation>Origin and units vector.</documentation></property></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(convert,convert,polar,dot)"><code></asyxml>*/
+ void init(convert rtd, convert dtr,
+ polar polar, dot dot)
+ {/*<asyxml></code><documentation>The default constructor of the coordinate system.</documentation></method></asyxml>*/
+ this.relativetodefault = rtd;
+ this.defaulttorelative = dtr;
+ this.polar = polar;
+ this.dot = dot;
+ this.abs = new real(pair m){return sqrt(dot(m, m));};;
+ this.O = rtd((0, 0));
+ this.i = rtd((1, 0)) - O;
+ this.j = rtd((0, 1)) - O;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><operator type = "bool" signature="==(coordsys,coordsys)"><code></asyxml>*/
+bool operator ==(coordsys c1, coordsys c2)
+{/*<asyxml></code><documentation>Return true iff the coordinate system have the same origin and units vector.</documentation></operator></asyxml>*/
+ return c1.O == c2.O && c1.i == c2.i && c1.j == c2.j;
+}
+
+/*<asyxml><function type="coordsys" signature="cartesiansystem(pair,pair,pair)"><code></asyxml>*/
+coordsys cartesiansystem(pair O = (0, 0), pair i, pair j)
+{/*<asyxml></code><documentation>Return the Cartesian coordinate system (O, i, j).</documentation></function></asyxml>*/
+ coordsys R;
+ real[][] P = {{0, 0}, {0, 0}};
+ real[][] iP;
+ P[0][0] = i.x;
+ P[0][1] = j.x;
+ P[1][0] = i.y;
+ P[1][1] = j.y;
+ iP = inverse(P);
+ real ni = abs(i);
+ real nj = abs(j);
+ real ij = angle(j) - angle(i);
+
+ pair rtd(pair m)
+ {
+ return O + (P[0][0] * m.x + P[0][1] * m.y, P[1][0] * m.x + P[1][1] * m.y);
+ }
+
+ pair dtr(pair m)
+ {
+ m-=O;
+ return (iP[0][0] * m.x + iP[0][1] * m.y, iP[1][0] * m.x + iP[1][1] * m.y);
+ }
+
+ pair polar(real r, real a)
+ {
+ real ca = sin(ij - a)/(ni * sin(ij));
+ real sa = sin(a)/(nj * sin(ij));
+ return r * (ca, sa);
+ }
+
+ real tdot(pair m, pair n)
+ {
+ return m.x * n.x * ni^2 + m.y * n.y * nj^2 + (m.x * n.y + n.x * m.y) * dot(i, j);
+ }
+
+ R.init(rtd, dtr, polar, tdot);
+ return R;
+}
+
+
+/*<asyxml><function type="void" signature="show(picture,Label,Label,Label,coordsys,pen,pen,pen,pen,pen)"><code></asyxml>*/
+void show(picture pic = currentpicture, Label lo = "$O$",
+ Label li = "$\vec{\imath}$",
+ Label lj = "$\vec{\jmath}$",
+ coordsys R,
+ pen dotpen = currentpen, pen xpen = currentpen, pen ypen = xpen,
+ pen ipen = red,
+ pen jpen = ipen,
+ arrowbar arrow = Arrow)
+{/*<asyxml></code><documentation>Draw the components (O, i, j, x - axis, y - axis) of 'R'.</documentation></function></asyxml>*/
+ unravel R;
+ dot(pic, O, dotpen);
+ drawline(pic, O, O + i, xpen);
+ drawline(pic, O, O + j, ypen);
+ draw(pic, li, O--(O + i), ipen, arrow);
+ Label lj = lj.copy();
+ lj.align(lj.align, unit(I * j));
+ draw(pic, lj, O--(O + j), jpen, arrow);
+ draw(pic, lj, O--(O + j), jpen, arrow);
+ Label lo = lo.copy();
+ lo.align(lo.align, -2 * dir(O--O + i, O--O + j));
+ lo.p(dotpen);
+ label(pic, lo, O);
+}
+
+/*<asyxml><operator type = "pair" signature="/(pair,coordsys)"><code></asyxml>*/
+pair operator /(pair p, coordsys R)
+{/*<asyxml></code><documentation>Return the xy - coordinates of 'p' relatively to
+ the coordinate system 'R'.
+ For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), (0, 0)/R is (-1, -2).</documentation></operator></asyxml>*/
+ return R.defaulttorelative(p);
+}
+
+/*<asyxml><operator type = "pair" signature="*(coordsys,pair)"><code></asyxml>*/
+pair operator *(coordsys R, pair p)
+{/*<asyxml></code><documentation>Return the coordinates of 'p' given in the
+ xy - coordinates 'R'.
+ For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), R * (0, 0) is (1, 2).</documentation></operator></asyxml>*/
+ return R.relativetodefault(p);
+}
+
+/*<asyxml><operator type = "path" signature="*(coordsys,path)"><code></asyxml>*/
+path operator *(coordsys R, path g)
+{/*<asyxml></code><documentation>Return the reconstructed path applying R * pair to each node, pre and post control point of 'g'.</documentation></operator></asyxml>*/
+ guide og = R * point(g, 0);
+ real l = length(g);
+ for(int i = 1; i <= l; ++i)
+ {
+ pair P = R * point(g, i);
+ pair post = R * postcontrol(g, i - 1);
+ pair pre = R * precontrol(g, i);
+ if(i == l && (cyclic(g)))
+ og = og..controls post and pre..cycle;
+ else
+ og = og..controls post and pre..P;
+ }
+ return og;
+}
+
+/*<asyxml><operator type = "coordsys" signature="*(transform,coordsys)"><code></asyxml>*/
+coordsys operator *(transform t,coordsys R)
+{/*<asyxml></code><documentation>Provide transform * coordsys.
+ Note that shiftless(t) is applied to R.i and R.j.</documentation></operator></asyxml>*/
+ coordsys oc;
+ oc = cartesiansystem(t * R.O, shiftless(t) * R.i, shiftless(t) * R.j);
+ return oc;
+}
+
+/*<asyxml><constant type = "coordsys" signature="defaultcoordsys"><code></asyxml>*/
+restricted coordsys defaultcoordsys = cartesiansystem(0, (1, 0), (0, 1));/*<asyxml></code><documentation>One can always refer to the default coordinate system using this constant.</documentation></constant></asyxml>*/
+/*<asyxml><variable type="coordsys" signature="currentcoordsys"><code></asyxml>*/
+coordsys currentcoordsys = defaultcoordsys;/*<asyxml></code><documentation>The coordinate system used by default.</documentation></variable></asyxml>*/
+
+/*<asyxml><struct signature="point"><code></asyxml>*/
+struct point
+{/*<asyxml></code><documentation>This structure replaces the pair to embed its coordinate system.
+ For example, if 'P = point(cartesiansystem((1, 2), i, j), (0, 0))',
+ P is equal to the pair (1, 2).</documentation></asyxml>*/
+ /*<asyxml><property type = "coordsys" signature="coordsys"><code></asyxml>*/
+ coordsys coordsys;/*<asyxml></code><documentation>The coordinate system of this point.</documentation></property><property type = "pair" signature="coordinates"><code></asyxml>*/
+ restricted pair coordinates;/*<asyxml></code><documentation>The coordinates of this point relatively to the coordinate system 'coordsys'.</documentation></property><property type = "real" signature="x, y"><code></asyxml>*/
+ restricted real x, y;/*<asyxml></code><documentation>The xpart and the ypart of 'coordinates'.</documentation></property></asyxml>*/
+ /*<asyxml><method type = "" signature="init(coordsys,pair)"><code><property type = "real" signature="m"><code></asyxml>*/
+ real m = 1;/*<asyxml></code><documentation>Used to cast mass<->point.</documentation></property></asyxml>*/
+ void init(coordsys R, pair coordinates, real mass)
+ {/*<asyxml></code><documentation>The constructor.</documentation></method></asyxml>*/
+ this.coordsys = R;
+ this.coordinates = coordinates;
+ this.x = coordinates.x;
+ this.y = coordinates.y;
+ this.m = mass;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="point" signature="point(coordsys,pair,real)"><code></asyxml>*/
+point point(coordsys R, pair p, real m = 1)
+{/*<asyxml></code><documentation>Return the point which has the coodinates 'p' in the
+ coordinate system 'R' and the mass 'm'.</documentation></function></asyxml>*/
+ point op;
+ op.init(R, p, m);
+ return op;
+}
+
+/*<asyxml><function type="point" signature="point(explicit pair,real)"><code></asyxml>*/
+point point(explicit pair p, real m)
+{/*<asyxml></code><documentation>Return the point which has the coodinates 'p' in the current
+ coordinate system and the mass 'm'.</documentation></function></asyxml>*/
+ point op;
+ op.init(currentcoordsys, p, m);
+ return op;
+}
+
+/*<asyxml><function type="point" signature="point(coordsys,explicit point,real)"><code></asyxml>*/
+point point(coordsys R, explicit point M, real m = M.m)
+{/*<asyxml></code><documentation>Return the point of 'R' which has the coordinates of 'M' and the mass 'm'.
+ Do not confuse this routine with the further routine 'changecoordsys'.</documentation></function></asyxml>*/
+ point op;
+ op.init(R, M.coordinates, M.m);
+ return op;
+}
+
+/*<asyxml><function type="point" signature="changecoordsys(coordsys,point)"><code></asyxml>*/
+point changecoordsys(coordsys R, point M)
+{/*<asyxml></code><documentation>Return the point 'M' in the coordinate system 'coordsys'.
+ In other words, the returned point marks the same plot as 'M' does.</documentation></function></asyxml>*/
+ point op;
+ coordsys mco = M.coordsys;
+ op.init(R, R.defaulttorelative(mco.relativetodefault(M.coordinates)), M.m);
+ return op;
+}
+
+/*<asyxml><function type="pair" signature="pair coordinates(point)"><code></asyxml>*/
+pair coordinates(point M)
+{/*<asyxml></code><documentation>Return the coordinates of 'M' in its coordinate system.</documentation></function></asyxml>*/
+ return M.coordinates;
+}
+
+/*<asyxml><function type="bool" signature="bool samecoordsys(bool...point[])"><code></asyxml>*/
+bool samecoordsys(bool warn = true ... point[] M)
+{/*<asyxml></code><documentation>Return true iff all the points have the same coordinate system.
+ If 'warn' is true and the coordinate systems are different, a warning is sent.</documentation></function></asyxml>*/
+ bool ret = true;
+ coordsys t = M[0].coordsys;
+ for (int i = 1; i < M.length; ++i) {
+ ret = (t == M[i].coordsys);
+ if(!ret) break;
+ t = M[i].coordsys;
+ }
+ if(warn && !ret)
+ warning("coodinatesystem",
+ "the coordinate system of two objects are not the same.
+The operation will be done relative to the default coordinate system.");
+ return ret;
+}
+
+/*<asyxml><function type="point[]" signature="standardizecoordsys(coordsys,bool...point[])"><code></asyxml>*/
+point[] standardizecoordsys(coordsys R = currentcoordsys,
+ bool warn = true ... point[] M)
+{/*<asyxml></code><documentation>Return the points with the same coordinate system 'R'.
+ If 'warn' is true and the coordinate systems are different, a warning is sent.</documentation></function></asyxml>*/
+ point[] op = new point[];
+ op = M;
+ if(!samecoordsys(warn ... M))
+ for (int i = 1; i < M.length; ++i)
+ op[i] = changecoordsys(R, M[i]);
+ return op;
+}
+
+/*<asyxml><operator type = "pair" signature="cast(point)"><code></asyxml>*/
+pair operator cast(point P)
+{/*<asyxml></code><documentation>Cast point to pair.</documentation></operator></asyxml>*/
+ return P.coordsys.relativetodefault(P.coordinates);
+}
+
+/*<asyxml><operator type = "pair[]" signature="cast(point[])"><code></asyxml>*/
+pair[] operator cast(point[] P)
+{/*<asyxml></code><documentation>Cast point[] to pair[].</documentation></operator></asyxml>*/
+ pair[] op;
+ for (int i = 0; i < P.length; ++i) {
+ op.push((pair)P[i]);
+ }
+ return op;
+}
+
+/*<asyxml><operator type = "point" signature="cast(pair)"><code></asyxml>*/
+point operator cast(pair p)
+{/*<asyxml></code><documentation>Cast pair to point relatively to the current coordinate
+ system 'currentcoordsys'.</documentation></operator></asyxml>*/
+ return point(currentcoordsys, p);
+}
+
+/*<asyxml><operator type = "point[]" signature="cast(pair[])"><code></asyxml>*/
+point[] operator cast(pair[] p)
+{/*<asyxml></code><documentation>Cast pair[] to point[] relatively to the current coordinate
+ system 'currentcoordsys'.</documentation></operator></asyxml>*/
+ pair[] op;
+ for (int i = 0; i < p.length; ++i) {
+ op.push((point)p[i]);
+ }
+ return op;
+}
+
+/*<asyxml><function type="pair" signature="locate(point)"><code></asyxml>*/
+pair locate(point P)
+{/*<asyxml></code><documentation>Return the coordinates of 'P' in the default coordinate system.</documentation></function></asyxml>*/
+ return P.coordsys * P.coordinates;
+}
+
+/*<asyxml><function type="point" signature="locate(pair)"><code></asyxml>*/
+point locate(pair p)
+{/*<asyxml></code><documentation>Return the point in the current coordinate system 'currentcoordsys'.</documentation></function></asyxml>*/
+ return p; //automatic casting 'pair to point'.
+}
+
+/*<asyxml><operator type = "point" signature="*(real,explicit point)"><code></asyxml>*/
+point operator *(real x, explicit point P)
+{/*<asyxml></code><documentation>Multiply the coordinates (not the mass) of 'P' by 'x'.</documentation></operator></asyxml>*/
+ return point(P.coordsys, x * P.coordinates, P.m);
+}
+
+/*<asyxml><operator type = "point" signature="/(explicit point,real)"><code></asyxml>*/
+point operator /(explicit point P, real x)
+{/*<asyxml></code><documentation>Divide the coordinates (not the mass) of 'P' by 'x'.</documentation></operator></asyxml>*/
+ return point(P.coordsys, P.coordinates/x, P.m);
+}
+
+/*<asyxml><operator type = "point" signature="/(real,explicit point)"><code></asyxml>*/
+point operator /(real x, explicit point P)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return point(P.coordsys, x/P.coordinates, P.m);
+}
+
+/*<asyxml><operator type = "point" signature="-(explicit point)"><code></asyxml>*/
+point operator -(explicit point P)
+{/*<asyxml></code><documentation>-P. The mass is inchanged.</documentation></operator></asyxml>*/
+ return point(P.coordsys, -P.coordinates, P.m);
+}
+
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit point)"><code></asyxml>*/
+point operator +(explicit point P1, explicit point P2)
+{/*<asyxml></code><documentation>Provide 'point + point'.
+ If the two points haven't the same coordinate system, a warning is sent and the
+ returned point has the default coordinate system 'defaultcoordsys'.
+ The masses are added.</documentation></operator></asyxml>*/
+ point[] P = standardizecoordsys(P1, P2);
+ coordsys R = P[0].coordsys;
+ return point(R, P[0].coordinates + P[1].coordinates, P1.m + P2.m);
+}
+
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit pair)"><code></asyxml>*/
+point operator +(explicit point P1, explicit pair p2)
+{/*<asyxml></code><documentation>Provide 'point + pair'.
+ The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.
+ The mass is not changed.</documentation></operator></asyxml>*/
+ coordsys R = currentcoordsys;
+ return point(R, P1.coordinates + point(R, p2).coordinates, P1.m);
+}
+point operator +(explicit pair p1, explicit point p2)
+{
+ return p2 + p1;
+}
+
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit point)"><code></asyxml>*/
+point operator -(explicit point P1, explicit point P2)
+{/*<asyxml></code><documentation>Provide 'point - point'.</documentation></operator></asyxml>*/
+ return P1 + (-P2);
+}
+
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit pair)"><code></asyxml>*/
+point operator -(explicit point P1, explicit pair p2)
+{/*<asyxml></code><documentation>Provide 'point - pair'.
+ The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.</documentation></operator></asyxml>*/
+ return P1 + (-p2);
+}
+point operator -(explicit pair p1, explicit point P2)
+{
+ return p1 + (-P2);
+}
+
+/*<asyxml><operator type = "point" signature="*(transform,explicit point)"><code></asyxml>*/
+point operator *(transform t, explicit point P)
+{/*<asyxml></code><documentation>Provide 'transform * point'.
+ Note that the transforms scale, xscale, yscale and rotate are carried out relatively
+ the default coordinate system 'defaultcoordsys' which is not desired for point
+ defined in an other coordinate system.
+ On can use scale(real, point), xscale(real, point), yscale(real, point), rotate(real, point),
+ scaleO(real), xscaleO(real), yscaleO(real) and rotateO(real) (described further)
+ to change the coordinate system of reference.</documentation></operator></asyxml>*/
+ coordsys R = P.coordsys;
+ return point(R, (t * locate(P))/R, P.m);
+}
+
+/*<asyxml><operator type = "point" signature="*(explicit point,explicit point)"><code></asyxml>*/
+point operator *(explicit point P1, explicit point P2)
+{/*<asyxml></code><documentation>Provide 'point * point'.
+ The resulted mass is the mass of P2</documentation></operator></asyxml>*/
+ point[] P = standardizecoordsys(P1, P2);
+ coordsys R = P[0].coordsys;
+ return point(R, P[0].coordinates * P[1].coordinates, P2.m);
+}
+
+/*<asyxml><operator type = "point" signature="*(explicit point,explicit pair)"><code></asyxml>*/
+point operator *(explicit point P1, explicit pair p2)
+{/*<asyxml></code><documentation>Provide 'point * pair'.
+ The pair 'p2' is supposed to be the coordinates of
+ the point in the coordinates system of 'P1'.
+ 'pair * point' is also defined.</documentation></operator></asyxml>*/
+ point P = point(P1.coordsys, p2, P1.m);
+ return P1 * P;
+}
+point operator *(explicit pair p1, explicit point p2)
+{
+ return p2 * p1;
+}
+
+/*<asyxml><operator type = "bool" signature="==(explicit point,explicit point)"><code></asyxml>*/
+bool operator ==(explicit point M, explicit point N)
+{/*<asyxml></code><documentation>Provide the test 'M == N' wish returns true iff MN < EPS</documentation></operator></asyxml>*/
+ return abs(locate(M) - locate(N)) < EPS;
+}
+
+/*<asyxml><operator type = "bool" signature="!=(explicit point,explicit point)"><code></asyxml>*/
+bool operator !=(explicit point M, explicit point N)
+{/*<asyxml></code><documentation>Provide the test 'M != N' wish return true iff MN >= EPS</documentation></operator></asyxml>*/
+ return !(M == N);
+}
+
+/*<asyxml><operator type = "guide" signature="cast(point)"><code></asyxml>*/
+guide operator cast(point p)
+{/*<asyxml></code><documentation>Cast point to guide.</documentation></operator></asyxml>*/
+ return locate(p);
+}
+
+/*<asyxml><operator type = "path" signature="cast(point)"><code></asyxml>*/
+path operator cast(point p)
+{/*<asyxml></code><documentation>Cast point to path.</documentation></operator></asyxml>*/
+ return locate(p);
+}
+
+/*<asyxml><function type="void" signature="dot(picture,Label,explicit point,align,string,pen)"><code></asyxml>*/
+void dot(picture pic = currentpicture, Label L, explicit point Z,
+ align align = NoAlign,
+ string format = defaultformat, pen p = currentpen)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ Label L = L.copy();
+ L.position(locate(Z));
+ if(L.s == "") {
+ if(format == "") format = defaultformat;
+ L.s = "("+format(format, Z.x)+", "+format(format, Z.y)+")";
+ }
+ L.align(align, E);
+ L.p(p);
+ dot(pic, locate(Z), p);
+ add(pic, L);
+}
+
+/*<asyxml><function type="real" signature="abs(coordsys,pair)"><code></asyxml>*/
+real abs(coordsys R, pair m)
+{/*<asyxml></code><documentation>Return the modulus |m| in the coordinate system 'R'.</documentation></function></asyxml>*/
+ return R.abs(m);
+}
+
+/*<asyxml><function type="real" signature="abs(explicit point)"><code></asyxml>*/
+real abs(explicit point M)
+{/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system.</documentation></function></asyxml>*/
+ return M.coordsys.abs(M.coordinates);
+}
+
+/*<asyxml><function type="real" signature="length(explicit point)"><code></asyxml>*/
+real length(explicit point M)
+{/*<asyxml></code><documentation>Return the modulus |M| in its coordinate system (same as 'abs').</documentation></function></asyxml>*/
+ return M.coordsys.abs(M.coordinates);
+}
+
+/*<asyxml><function type="point" signature="conj(explicit point)"><code></asyxml>*/
+point conj(explicit point M)
+{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
+ return point(M.coordsys, conj(M.coordinates), M.m);
+}
+
+/*<asyxml><function type="real" signature="degrees(explicit point,coordsys,bool)"><code></asyxml>*/
+real degrees(explicit point M, coordsys R = M.coordsys, bool warn = true)
+{/*<asyxml></code><documentation>Return the angle of M (in degrees) relatively to 'R'.</documentation></function></asyxml>*/
+ return (degrees(locate(M) - R.O, warn) - degrees(R.i))%360;
+}
+
+/*<asyxml><function type="real" signature="angle(explicit point,coordsys,bool)"><code></asyxml>*/
+real angle(explicit point M, coordsys R = M.coordsys, bool warn = true)
+{/*<asyxml></code><documentation>Return the angle of M (in radians) relatively to 'R'.</documentation></function></asyxml>*/
+ return radians(degrees(M, R, warn));
+}
+
+/*<asyxml><function type="bool" signature="finite(explicit point)"><code></asyxml>*/
+bool finite(explicit point p)
+{/*<asyxml></code><documentation>Avoid to compute 'finite((pair)(infinite_point))'.</documentation></function></asyxml>*/
+ return finite(p.coordinates);
+}
+
+/*<asyxml><function type="real" signature="dot(point,point)"><code></asyxml>*/
+real dot(point A, point B)
+{/*<asyxml></code><documentation>Return the dot product in the coordinate system of 'A'.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A.coordsys, A, B);
+ return P[0].coordsys.dot(P[0].coordinates, P[1].coordinates);
+}
+
+/*<asyxml><function type="real" signature="dot(point,explicit pair)"><code></asyxml>*/
+real dot(point A, explicit pair B)
+{/*<asyxml></code><documentation>Return the dot product in the default coordinate system.
+ dot(explicit pair, point) is also defined.</documentation></function></asyxml>*/
+ return dot(locate(A), B);
+}
+real dot(explicit pair A, point B)
+{
+ return dot(A, locate(B));
+}
+
+/*<asyxml><function type="transforms" signature="rotateO(real)"><code></asyxml>*/
+transform rotateO(real a)
+{/*<asyxml></code><documentation>Rotation around the origin of the current coordinate system.</documentation></function></asyxml>*/
+ return rotate(a, currentcoordsys.O);
+};
+
+/*<asyxml><function type="transform" signature="projection(point,point)"><code></asyxml>*/
+transform projection(point A, point B)
+{/*<asyxml></code><documentation>Return the orthogonal projection on the line (AB).</documentation></function></asyxml>*/
+ pair dir = unit(locate(A) - locate(B));
+ pair a = locate(A);
+ real cof = dir.x * a.x + dir.y * a.y;
+ real tx = a.x - dir.x * cof;
+ real txx = dir.x^2;
+ real txy = dir.x * dir.y;
+ real ty = a.y - dir.y * cof;
+ real tyx = txy;
+ real tyy = dir.y^2;
+ transform t = (tx, ty, txx, txy, tyx, tyy);
+ return t;
+}
+
+/*<asyxml><function type="transform" signature="projection(point,point,point,point,bool)"><code></asyxml>*/
+transform projection(point A, point B, point C, point D, bool safe = false)
+{/*<asyxml></code><documentation>Return the (CD) parallel projection on (AB).
+ If 'safe = true' and (AB)//(CD) return the identity.
+ If 'safe = false' and (AB)//(CD) return an infinity scaling.</documentation></function></asyxml>*/
+ pair a = locate(A);
+ pair u = unit(locate(B) - locate(A));
+ pair v = unit(locate(D) - locate(C));
+ real c = u.x * a.y - u.y * a.x;
+ real d = (conj(u) * v).y;
+ if (abs(d) < epsgeo) {
+ return safe ? identity() : scale(infinity);
+ }
+ real tx = c * v.x/d;
+ real ty = c * v.y/d;
+ real txx = u.x * v.y/d;
+ real txy = -u.x * v.x/d;
+ real tyx = u.y * v.y/d;
+ real tyy = -u.y * v.x/d;
+ transform t = (tx, ty, txx, txy, tyx, tyy);
+ return t;
+}
+
+/*<asyxml><function type="transform" signature="scale(real,point)"><code></asyxml>*/
+transform scale(real k, point M)
+{/*<asyxml></code><documentation>Homothety.</documentation></function></asyxml>*/
+ pair P = locate(M);
+ return shift(P) * scale(k) * shift(-P);
+}
+
+/*<asyxml><function type="transform" signature="xscale(real,point)"><code></asyxml>*/
+transform xscale(real k, point M)
+{/*<asyxml></code><documentation>xscale from 'M' relatively to the x - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/
+ pair P = locate(M);
+ real a = degrees(M.coordsys.i);
+ return (shift(P) * rotate(a)) * xscale(k) * (rotate(-a) * shift(-P));
+}
+
+/*<asyxml><function type="transform" signature="yscale(real,point)"><code></asyxml>*/
+transform yscale(real k, point M)
+{/*<asyxml></code><documentation>yscale from 'M' relatively to the y - axis of the coordinate system of 'M'.</documentation></function></asyxml>*/
+ pair P = locate(M);
+ real a = degrees(M.coordsys.j) - 90;
+ return (shift(P) * rotate(a)) * yscale(k) * (rotate(-a) * shift(-P));
+}
+
+/*<asyxml><function type="transform" signature="scale(real,point,point,point,point,bool)"><code></asyxml>*/
+transform scale(real k, point A, point B, point C, point D, bool safe = false)
+{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Affinit%C3%A9_%28math%C3%A9matiques%29"/>
+ (help me for English translation...)
+ If 'safe = true' and (AB)//(CD) return the identity.
+ If 'safe = false' and (AB)//(CD) return a infinity scaling.</documentation></function></asyxml>*/
+ pair a = locate(A);
+ pair u = unit(locate(B) - locate(A));
+ pair v = unit(locate(D) - locate(C));
+ real c = u.x * a.y - u.y * a.x;
+ real d = (conj(u) * v).y;
+ real d = (conj(u) * v).y;
+ if (abs(d) < epsgeo) {
+ return safe ? identity() : scale(infinity);
+ }
+ real tx = (1 - k) * c * v.x/d;
+ real ty = (1 - k) * c * v.y/d;
+ real txx = (1 - k) * u.x * v.y/d + k;
+ real txy = (k - 1) * u.x * v.x/d;
+ real tyx = (1 - k) * u.y * v.y/d;
+ real tyy = (k - 1) * u.y * v.x/d + k;
+ transform t = (tx, ty, txx, txy, tyx, tyy);
+ return t;
+}
+
+/*<asyxml><function type="transform" signature="scaleO(real)"><code></asyxml>*/
+transform scaleO(real x)
+{/*<asyxml></code><documentation>Homothety from the origin of the current coordinate system.</documentation></function></asyxml>*/
+ return scale(x, (0, 0));
+}
+
+/*<asyxml><function type="transform" signature="xscaleO(real)"><code></asyxml>*/
+transform xscaleO(real x)
+{/*<asyxml></code><documentation>xscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/
+ return scale(x, (0, 0), (0, 1), (0, 0), (1, 0));
+}
+
+/*<asyxml><function type="transform" signature="yscaleO(real)"><code></asyxml>*/
+transform yscaleO(real x)
+{/*<asyxml></code><documentation>yscale from the origin and relatively to the current coordinate system.</documentation></function></asyxml>*/
+ return scale(x, (0, 0), (1, 0), (0, 0), (0, 1));
+}
+
+/*<asyxml><struct signature="vector"><code></asyxml>*/
+struct vector
+{/*<asyxml></code><documentation>Like a point but casting to pair, adding etc does not take account
+ of the origin of the coordinate system.</documentation><property type = "point" signature="v"><code></asyxml>*/
+ point v;/*<asyxml></code><documentation>Coordinates as a point (embed coordinate system and pair).</documentation></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><operator type = "point" signature="cast(vector)"><code></asyxml>*/
+point operator cast(vector v)
+{/*<asyxml></code><documentation>Cast vector 'v' to point 'M' so that OM = v.</documentation></operator></asyxml>*/
+ return v.v;
+}
+
+/*<asyxml><operator type = "vector" signature="cast(pair)"><code></asyxml>*/
+vector operator cast(pair v)
+{/*<asyxml></code><documentation>Cast pair to vector relatively to the current coordinate
+ system 'currentcoordsys'.</documentation></operator></asyxml>*/
+ vector ov;
+ ov.v = point(currentcoordsys, v);
+ return ov;
+}
+
+/*<asyxml><operator type = "vector" signature="cast(explicit point)"><code></asyxml>*/
+vector operator cast(explicit point v)
+{/*<asyxml></code><documentation>A point can be interpreted like a vector using the code
+ '(vector)a_point'.</documentation></operator></asyxml>*/
+ vector ov;
+ ov.v = v;
+ return ov;
+}
+
+/*<asyxml><operator type = "pair" signature="cast(explicit vector)"><code></asyxml>*/
+pair operator cast(explicit vector v)
+{/*<asyxml></code><documentation>Cast vector to pair (the coordinates of 'v' in the default coordinate system).</documentation></operator></asyxml>*/
+ return locate(v.v) - v.v.coordsys.O;
+}
+
+/*<asyxml><operator type = "align" signature="cast(vector)"><code></asyxml>*/
+align operator cast(vector v)
+{/*<asyxml></code><documentation>Cast vector to align.</documentation></operator></asyxml>*/
+ return (pair)v;
+}
+
+/*<asyxml><function type="vector" signature="vector(coordsys, pair)"><code></asyxml>*/
+vector vector(coordsys R = currentcoordsys, pair v)
+{/*<asyxml></code><documentation>Return the vector of 'R' which has the coordinates 'v'.</documentation></function></asyxml>*/
+ vector ov;
+ ov.v = point(R, v);
+ return ov;
+}
+
+/*<asyxml><function type="vector" signature="vector(point)"><code></asyxml>*/
+vector vector(point M)
+{/*<asyxml></code><documentation>Return the vector OM, where O is the origin of the coordinate system of 'M'.
+ Useful to write 'vector(P - M);' instead of '(vector)(P - M)'.</documentation></function></asyxml>*/
+ return M;
+}
+
+/*<asyxml><function type="point" signature="point(explicit vector)"><code></asyxml>*/
+point point(explicit vector u)
+{/*<asyxml></code><documentation>Return the point M so that OM = u, where O is the origin of the coordinate system of 'u'.</documentation></function></asyxml>*/
+ return u.v;
+}
+
+/*<asyxml><function type="pair" signature="locate(explicit vector)"><code></asyxml>*/
+pair locate(explicit vector v)
+{/*<asyxml></code><documentation>Return the coordinates of 'v' in the default coordinate system (like casting vector to pair).</documentation></function></asyxml>*/
+ return (pair)v;
+}
+
+/*<asyxml><function type="void" signature="show(Label,pen,arrowbar)"><code></asyxml>*/
+void show(Label L, vector v, pen p = currentpen, arrowbar arrow = Arrow)
+{/*<asyxml></code><documentation>Draw the vector v (from the origin of its coordinate system).</documentation></function></asyxml>*/
+ coordsys R = v.v.coordsys;
+ draw(L, R.O--v.v, p, arrow);
+}
+
+/*<asyxml><function type="vector" signature="changecoordsys(coordsys,vector)"><code></asyxml>*/
+vector changecoordsys(coordsys R, vector v)
+{/*<asyxml></code><documentation>Return the vector 'v' relatively to coordinate system 'R'.</documentation></function></asyxml>*/
+ vector ov;
+ ov.v = point(R, (locate(v) + R.O)/R);
+ return ov;
+}
+
+/*<asyxml><operator type = "vector" signature="*(real,explicit vector)"><code></asyxml>*/
+vector operator *(real x, explicit vector v)
+{/*<asyxml></code><documentation>Provide real * vector.</documentation></operator></asyxml>*/
+ return x * v.v;
+}
+
+/*<asyxml><operator type = "vector" signature="/(explicit vector,real)"><code></asyxml>*/
+vector operator /(explicit vector v, real x)
+{/*<asyxml></code><documentation>Provide vector/real</documentation></operator></asyxml>*/
+ return v.v/x;
+}
+
+/*<asyxml><operator type = "vector" signature="*(transform t,explicit vector)"><code></asyxml>*/
+vector operator *(transform t, explicit vector v)
+{/*<asyxml></code><documentation>Provide transform * vector.</documentation></operator></asyxml>*/
+ return t * v.v;
+}
+
+/*<asyxml><operator type = "vector" signature="*(explicit point,explicit vector)"><code></asyxml>*/
+vector operator *(explicit point M, explicit vector v)
+{/*<asyxml></code><documentation>Provide point * vector</documentation></operator></asyxml>*/
+ return M * v.v;
+}
+
+/*<asyxml><operator type = "point" signature="+(explicit point,explicit vector)"><code></asyxml>*/
+point operator +(point M, explicit vector v)
+{/*<asyxml></code><documentation>Return 'M' shifted by 'v'.</documentation></operator></asyxml>*/
+ return shift(locate(v)) * M;
+}
+
+/*<asyxml><operator type = "point" signature="-(explicit point,explicit vector)"><code></asyxml>*/
+point operator -(point M, explicit vector v)
+{/*<asyxml></code><documentation>Return 'M' shifted by '-v'.</documentation></operator></asyxml>*/
+ return shift(-locate(v)) * M;
+}
+
+/*<asyxml><operator type = "vector" signature="-(explicit vector)"><code></asyxml>*/
+vector operator -(explicit vector v)
+{/*<asyxml></code><documentation>Provide -v.</documentation></operator></asyxml>*/
+ return -v.v;
+}
+
+/*<asyxml><operator type = "point" signature="+(explicit pair,explicit vector)"><code></asyxml>*/
+point operator +(explicit pair m, explicit vector v)
+{/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of
+ a point in the current coordinates system 'currentcoordsys'.
+ Return this point shifted by the vector 'v'.</documentation></operator></asyxml>*/
+ return locate(m) + v;
+}
+
+/*<asyxml><operator type = "point" signature="-(explicit pair,explicit vector)"><code></asyxml>*/
+point operator -(explicit pair m, explicit vector v)
+{/*<asyxml></code><documentation>The pair 'm' is supposed to be the coordinates of
+ a point in the current coordinates system 'currentcoordsys'.
+ Return this point shifted by the vector '-v'.</documentation></operator></asyxml>*/
+ return m + (-v);
+}
+
+/*<asyxml><operator type = "vector" signature="+(explicit vector,explicit vector)"><code></asyxml>*/
+vector operator +(explicit vector v1, explicit vector v2)
+{/*<asyxml></code><documentation>Provide vector + vector.
+ If the two vector haven't the same coordinate system, the returned
+ vector is relative to the default coordinate system (without warning).</documentation></operator></asyxml>*/
+ coordsys R = v1.v.coordsys;
+ if(samecoordsys(false, v1, v2)){R = defaultcoordsys;}
+ return vector(R, (locate(v1) + locate(v2))/R);
+}
+
+/*<asyxml><operator type = "vector" signature="-(explicit vector, explicit vector)"><code></asyxml>*/
+vector operator -(explicit vector v1, explicit vector v2)
+{/*<asyxml></code><documentation>Provide vector - vector.
+ If the two vector haven't the same coordinate system, the returned
+ vector is relative to the default coordinate system (without warning).</documentation></operator></asyxml>*/
+ return v1 + (-v2);
+}
+
+/*<asyxml><operator type = "bool" signature="==(explicit vector,explicit vector)"><code></asyxml>*/
+bool operator ==(explicit vector u, explicit vector v)
+{/*<asyxml></code><documentation>Return true iff |u - v|<EPS.</documentation></operator></asyxml>*/
+ return abs(u - v) < EPS;
+}
+
+/*<asyxml><function type="bool" signature="collinear(vector,vector)"><code></asyxml>*/
+bool collinear(vector u, vector v)
+{/*<asyxml></code><documentation>Return 'true' iff the vectors 'u' and 'v' are collinear.</documentation></function></asyxml>*/
+ return abs(ypart((conj((pair)u) * (pair)v))) < EPS;
+}
+
+/*<asyxml><function type="vector" signature="unit(point)"><code></asyxml>*/
+vector unit(point M)
+{/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/
+ return M/abs(M);
+}
+
+/*<asyxml><function type="vector" signature="unit(vector)"><code></asyxml>*/
+vector unit(vector u)
+{/*<asyxml></code><documentation>Return the unit vector according to the modulus of its coordinate system.</documentation></function></asyxml>*/
+ return u.v/abs(u.v);
+}
+
+/*<asyxml><function type="real" signature="degrees(vector,coordsys,bool)"><code></asyxml>*/
+real degrees(vector v,
+ coordsys R = v.v.coordsys,
+ bool warn = true)
+{/*<asyxml></code><documentation>Return the angle of 'v' (in degrees) relatively to 'R'.</documentation></function></asyxml>*/
+ return (degrees(locate(v), warn) - degrees(R.i))%360;
+}
+
+/*<asyxml><function type="real" signature="angle(vector,coordsys,bool)"><code></asyxml>*/
+real angle(explicit vector v,
+ coordsys R = v.v.coordsys,
+ bool warn = true)
+{/*<asyxml></code><documentation>Return the angle of 'v' (in radians) relatively to 'R'.</documentation></function></asyxml>*/
+ return radians(degrees(v, R, warn));
+}
+
+/*<asyxml><function type="vector" signature="conj(explicit vector)"><code></asyxml>*/
+vector conj(explicit vector u)
+{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
+ return conj(u.v);
+}
+
+/*<asyxml><function type="transform" signature="rotate(explicit vector)"><code></asyxml>*/
+transform rotate(explicit vector dir)
+{/*<asyxml></code><documentation>A rotation in the direction 'dir' limited to [-90, 90]
+ This is useful for rotating text along a line in the direction dir.
+ rotate(explicit point dir) is also defined.
+ </documentation></function></asyxml>*/
+ return rotate(locate(dir));
+}
+transform rotate(explicit point dir){return rotate(locate(vector(dir)));}
+// *......................COORDINATES......................*
+// *=======================================================*
+
+// *=======================================================*
+// *.........................BASES.........................*
+/*<asyxml><variable type="point" signature="origin"><code></asyxml>*/
+point origin = point(defaultcoordsys, (0, 0));/*<asyxml></code><documentation>The origin of the current coordinate system.</documentation></variable></asyxml>*/
+
+/*<asyxml><function type="point" signature="origin(coordsys)"><code></asyxml>*/
+point origin(coordsys R = currentcoordsys)
+{/*<asyxml></code><documentation>Return the origin of the coordinate system 'R'.</documentation></function></asyxml>*/
+ return point(R, (0, 0)); //use automatic casting;
+}
+
+/*<asyxml><variable type="real" signature="linemargin"><code></asyxml>*/
+real linemargin = 0;/*<asyxml></code><documentation>Margin used to draw lines.</documentation></variable></asyxml>*/
+/*<asyxml><function type="real" signature="linemargin()"><code></asyxml>*/
+real linemargin()
+{/*<asyxml></code><documentation>Return the margin used to draw lines.</documentation></function></asyxml>*/
+ return linemargin;
+}
+
+/*<asyxml><variable type="pen" signature="addpenline"><code></asyxml>*/
+pen addpenline = squarecap;/*<asyxml></code><documentation>Add this property to the drawing pen of "finish" lines.</documentation></variable></asyxml>*/
+pen addpenline(pen p) {
+ return addpenline + p;
+}
+
+/*<asyxml><variable type="pen" signature="addpenarc"><code></asyxml>*/
+pen addpenarc = squarecap;/*<asyxml></code><documentation>Add this property to the drawing pen of arcs.</documentation></variable></asyxml>*/
+pen addpenarc(pen p) {return addpenarc + p;}
+
+/*<asyxml><variable type="string" signature="defaultmassformat"><code></asyxml>*/
+string defaultmassformat = "$\left(%L;%.4g\right)$";/*<asyxml></code><documentation>Format used to construct the default label of masses.</documentation></variable></asyxml>*/
+
+/*<asyxml><function type="int" signature="sgnd(real)"><code></asyxml>*/
+int sgnd(real x)
+{/*<asyxml></code><documentation>Return the -1 if x < 0, 1 if x >= 0.</documentation></function></asyxml>*/
+ return (x == 0) ? 1 : sgn(x);
+}
+int sgnd(int x)
+{
+ return (x == 0) ? 1 : sgn(x);
+}
+
+/*<asyxml><function type="bool" signature="defined(pair)"><code></asyxml>*/
+bool defined(point P)
+{/*<asyxml></code><documentation>Return true iff the coordinates of 'P' are finite.</documentation></function></asyxml>*/
+ return finite(P.coordinates);
+}
+
+/*<asyxml><function type="bool" signature="onpath(picture,path,point,pen)"><code></asyxml>*/
+bool onpath(picture pic = currentpicture, path g, point M, pen p = currentpen)
+{/*<asyxml></code><documentation>Return true iff 'M' is on the path drawn with the pen 'p' in 'pic'.</documentation></function></asyxml>*/
+ transform t = inverse(pic.calculateTransform());
+ return intersect(g, shift(locate(M)) * scale(linewidth(p)/2) * t * unitcircle).length > 0;
+}
+
+/*<asyxml><function type="bool" signature="sameside(point,point,point)"><code></asyxml>*/
+bool sameside(point M, point N, point O)
+{/*<asyxml></code><documentation>Return 'true' iff 'M' and 'N' are same side of the point 'O'.</documentation></function></asyxml>*/
+ pair m = M, n = N, o = O;
+ return dot(m - o, n - o) >= -epsgeo;
+}
+
+/*<asyxml><function type="bool" signature="between(point,point,point)"><code></asyxml>*/
+bool between(point M, point O, point N)
+{/*<asyxml></code><documentation>Return 'true' iff 'O' is between 'M' and 'N'.</documentation></function></asyxml>*/
+ return (!sameside(N, M, O) || M == O || N == O);
+}
+
+
+typedef path pathModifier(path);
+pathModifier NoModifier = new path(path g){return g;};
+
+private void Drawline(picture pic = currentpicture, Label L = "", pair P, bool dirP = true, pair Q, bool dirQ = true,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None,
+ Label legend = "", marker marker = nomarker,
+ pathModifier pathModifier = NoModifier)
+{/* Add the two parameters 'dirP' and 'dirQ' to the native routine
+ 'drawline' of the module 'math'.
+ Segment [PQ] will be prolonged in direction of P if 'dirP = true', in
+ direction of Q if 'dirQ = true'.
+ If 'dirP = dirQ = true', the behavior is that of the native 'drawline'.
+ Add all the other parameters of 'Draw'.*/
+ pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
+ picture opic;
+ // Reduce the bounds by the size of the pen.
+ m -= min(p) - (linemargin(), linemargin()); M -= max(p) + (linemargin(), linemargin());
+
+ // Calculate the points and direction vector in the transformed space.
+ t = t * T;
+ pair z = t * P;
+ pair q = t * Q;
+ pair v = q - z;
+ // path g;
+ pair ptp, ptq;
+ real cp = dirP ? 1:0;
+ real cq = dirQ ? 1:0;
+ // Handle horizontal and vertical lines.
+ if(v.x == 0) {
+ if(m.x <= z.x && z.x <= M.x)
+ if (dot(v, m - z) < 0) {
+ ptp = (z.x, z.y + cp * (m.y - z.y));
+ ptq = (z.x, q.y + cq * (M.y - q.y));
+ } else {
+ ptq = (z.x, q.y + cq * (m.y - q.y));
+ ptp = (z.x, z.y + cp * (M.y - z.y));
+ }
+ } else if(v.y == 0) {
+ if (dot(v, m - z) < 0) {
+ ptp = (z.x + cp * (m.x - z.x), z.y);
+ ptq = (q.x + cq * (M.x - q.x), z.y);
+ } else {
+ ptq = (q.x + cq * (m.x - q.x), z.y);
+ ptp = (z.x + cp * (M.x - z.x), z.y);
+ }
+ } else {
+ // Calculate the maximum and minimum t values allowed for the
+ // parametric equation z + t * v
+ real mx = (m.x - z.x)/v.x, Mx = (M.x - z.x)/v.x;
+ real my = (m.y - z.y)/v.y, My = (M.y - z.y)/v.y;
+ real tmin = max(v.x > 0 ? mx : Mx, v.y > 0 ? my : My);
+ real tmax = min(v.x > 0 ? Mx : mx, v.y > 0 ? My : my);
+ pair pmin = z + tmin * v;
+ pair pmax = z + tmax * v;
+ if(tmin <= tmax) {
+ ptp = z + cp * tmin * v;
+ ptq = z + (cq == 0 ? v:tmax * v);
+ }
+ }
+ path g = ptp--ptq;
+ if (length(g)>0)
+ {
+ if(L.s != "") {
+ Label lL = L.copy();
+ if(L.defaultposition) lL.position(Relative(.9));
+ lL.p(p);
+ lL.out(opic, g);
+ }
+ g = pathModifier(g);
+ if(linetype(p).length == 0){
+ pair m = midpoint(g);
+ pen tp;
+ tp = dirP ? p : addpenline(p);
+ draw(opic, pathModifier(m--ptp), tp);
+ tp = dirQ ? p : addpenline(p);
+ draw(opic, pathModifier(m--ptq), tp);
+ } else {
+ draw(opic, g, p);
+ }
+ marker.markroutine(opic, marker.f, g);
+ arrow(opic, g, p, NoMargin);
+ add(f, opic.fit());
+ }
+ });
+}
+
+/*<asyxml><function type="void" signature="clipdraw(picture,Label,path,align,pen,arrowbar,arrowbar,real,real,Label,marker)"><code></asyxml>*/
+void clipdraw(picture pic = currentpicture, Label L = "", path g,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ real xmargin = 0, real ymargin = xmargin,
+ Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw the path 'g' on 'pic' clipped to the bounding box of 'pic'.</documentation></function></asyxml>*/
+ if(L.s != "") {
+ picture tmp;
+ label(tmp, L, g, p);
+ add(pic, tmp);
+ }
+ pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
+ // Reduce the bounds by the size of the pen and the margins.
+ m += min(p) + (xmargin, ymargin); M -= max(p) + (xmargin, ymargin);
+ path bound = box(m, M);
+ picture tmp;
+ draw(tmp, "", t * T * g, align, p, arrow, bar, NoMargin, legend, marker);
+ clip(tmp, bound);
+ add(f, tmp.fit());
+ });
+}
+
+/*<asyxml><function type="void" signature="distance(picture pic,Label,point,point,bool,real,pen,pen,arrow)"><code></asyxml>*/
+void distance(picture pic = currentpicture, Label L = "", point A, point B,
+ bool rotated = true, real offset = 3mm,
+ pen p = currentpen, pen joinpen = invisible,
+ arrowbar arrow = Arrows(NoFill))
+{/*<asyxml></code><documentation>Draw arrow between A and B (from FAQ).</documentation></function></asyxml>*/
+ pair A = A, B = B;
+ path g = A--B;
+ transform Tp = shift(-offset * unit(B - A) * I);
+ pic.add(new void(frame f, transform t) {
+ picture opic;
+ path G = Tp * t * g;
+ transform id = identity();
+ transform T = rotated ? rotate(B - A) : id;
+ Label L = L.copy();
+ L.align(L.align, Center);
+ if(abs(ypart((conj(A - B) * L.align.dir))) < epsgeo && L.filltype == NoFill)
+ L.filltype = UnFill(1);
+ draw(opic, T * L, G, p, arrow, Bars, PenMargins);
+ pair Ap = t * A, Bp = t * B;
+ draw(opic, (Ap--Tp * Ap)^^(Bp--Tp * Bp), joinpen);
+ add(f, opic.fit());
+ }, true);
+ pic.addBox(min(g), max(g), Tp * min(p), Tp * max(p));
+}
+
+/*<asyxml><variable type="real" signature="perpfactor"><code></asyxml>*/
+real perpfactor = 1;/*<asyxml></code><documentation>Factor for drawing perpendicular symbol.</documentation></variable></asyxml>*/
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,explicit pair,explicit pair,real,pen,margin,filltype)"><code></asyxml>*/
+void perpendicularmark(picture pic = currentpicture, point z,
+ explicit pair align,
+ explicit pair dir = E, real size = 0,
+ pen p = currentpen,
+ margin margin = NoMargin,
+ filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw a perpendicular symbol at z aligned in the direction align
+ relative to the path z--z + dir.
+ dir(45 + n * 90), where n in N*, are common values for 'align'.</documentation></function></asyxml>*/
+ p = squarecap + p;
+ if(size == 0) size = perpfactor * 3mm + sqrt(1 + linewidth(p)) - 1;
+ frame apic;
+ pair d1 = size * align * unit(dir) * dir(-45);
+ pair d2 = I * d1;
+ path g = d1--d1 + d2--d2;
+ g = margin(g, p).g;
+ draw(apic, g, p);
+ if(filltype != NoFill) filltype.fill(apic, (relpoint(g, 0) - relpoint(g, 0.5)+
+ relpoint(g, 1))--g--cycle, p + solid);
+ add(pic, apic, locate(z));
+}
+
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,vector,vector,real,pen,margin,filltype)"><code></asyxml>*/
+void perpendicularmark(picture pic = currentpicture, point z,
+ vector align,
+ vector dir = E, real size = 0,
+ pen p = currentpen,
+ margin margin = NoMargin,
+ filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw a perpendicular symbol at z aligned in the direction align
+ relative to the path z--z + dir.
+ dir(45 + n * 90), where n in N, are common values for 'align'.</documentation></function></asyxml>*/
+ perpendicularmark(pic, z, (pair)align, (pair)dir, size,
+ p, margin, filltype);
+}
+
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,explicit pair,path,real,pen,margin,filltype)"><code></asyxml>*/
+void perpendicularmark(picture pic = currentpicture, point z, explicit pair align, path g,
+ real size = 0, pen p = currentpen,
+ margin margin = NoMargin,
+ filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw a perpendicular symbol at z aligned in the direction align
+ relative to the path z--z + dir(g, 0).
+ dir(45 + n * 90), where n in N, are common values for 'align'.</documentation></function></asyxml>*/
+ perpendicularmark(pic, z, align, dir(g, 0), size, p, margin, filltype);
+}
+
+/*<asyxml><function type="void" signature="perpendicularmark(picture,point,vector,path,real,pen,margin,filltype)"><code></asyxml>*/
+void perpendicularmark(picture pic = currentpicture, point z, vector align, path g,
+ real size = 0, pen p = currentpen,
+ margin margin = NoMargin,
+ filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw a perpendicular symbol at z aligned in the direction align
+ relative to the path z--z + dir(g, 0).
+ dir(45 + n * 90), where n in N, are common values for 'align'.</documentation></function></asyxml>*/
+ perpendicularmark(pic, z, (pair)align, dir(g, 0), size, p, margin, filltype);
+}
+
+/*<asyxml><function type="void" signature="markrightangle(picture,point,point,point,real,pen,margin,filltype)"><code></asyxml>*/
+void markrightangle(picture pic = currentpicture, point A, point O,
+ point B, real size = 0, pen p = currentpen,
+ margin margin = NoMargin,
+ filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Mark the angle AOB with a perpendicular symbol.</documentation></function></asyxml>*/
+ pair Ap = A, Bp = B, Op = O;
+ pair dir = Ap - Op;
+ real a1 = degrees(dir);
+ pair align = rotate(-a1) * unit(dir(Op--Ap, Op--Bp));
+ if (margin == NoMargin)
+ margin = TrueMargin(linewidth(currentpen)/2, linewidth(currentpen)/2);
+ perpendicularmark(pic = pic, z = O, align = align,
+ dir = dir, size = size, p = p,
+ margin = margin, filltype = filltype);
+}
+
+/*<asyxml><function type="bool" signature="simeq(point,point,real)"><code></asyxml>*/
+bool simeq(point A, point B, real fuzz = epsgeo)
+{/*<asyxml></code><documentation>Return true iff abs(A - B) < fuzz.
+ This routine is used internally to know if two points are equal, in particular by the operator == in 'point == point'.</documentation></function></asyxml>*/
+ return (abs(A - B) < fuzz);
+}
+bool simeq(point a, real b, real fuzz = epsgeo)
+{
+ coordsys R = a.coordsys;
+ return (abs(a - point(R, ((pair)b)/R)) < fuzz);
+}
+
+/*<asyxml><function type="pair" signature="attract(pair,path,real)"><code></asyxml>*/
+pair attract(pair m, path g, real fuzz = 0)
+{/*<asyxml></code><documentation>Return the nearest point (A PAIR) of 'm' which is on the path g.
+ 'fuzz' is the argument 'fuzz' of 'intersect'.</documentation></function></asyxml>*/
+ if(intersect(m, g, fuzz).length > 0) return m;
+ pair p;
+ real step = 1, r = 0;
+ real[] t;
+ static real eps = sqrt(realEpsilon);
+ do {// Find a radius for intersection
+ r += step;
+ t = intersect(shift(m) * scale(r) * unitcircle, g);
+ } while(t.length <= 0);
+ p = point(g, t[1]);
+ real rm = 0, rM = r;
+ while(rM - rm > eps) {
+ r = (rm + rM)/2;
+ t = intersect(shift(m) * scale(r) * unitcircle, g, fuzz);
+ if(t.length <= 0) {
+ rm = r;
+ } else {
+ rM = r;
+ p = point(g, t[1]);
+ }
+ }
+ return p;
+}
+
+/*<asyxml><function type="point" signature="attract(point,path,real)"><code></asyxml>*/
+point attract(point M, path g, real fuzz = 0)
+{/*<asyxml></code><documentation>Return the nearest point (A POINT) of 'M' which is on the path g.
+ 'fuzz' is the argument 'fuzz' of 'intersect'.</documentation></function></asyxml>*/
+ return point(M.coordsys, attract(locate(M), g)/M.coordsys);
+}
+
+/*<asyxml><function type="real[]" signature="intersect(path,explicit pair)"><code></asyxml>*/
+real[] intersect(path g, explicit pair p, real fuzz = 0)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ fuzz = fuzz <= 0 ? sqrt(realEpsilon) : fuzz;
+ real[] or;
+ real r = realEpsilon;
+ do{
+ or = intersect(g, shift(p) * scale(r) * unitcircle, fuzz);
+ r *= 2;
+ } while(or.length == 0);
+ return or;
+}
+
+/*<asyxml><function type="real[]" signature="intersect(path,explicit point)"><code></asyxml>*/
+real[] intersect(path g, explicit point P, real fuzz = epsgeo)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersect(g, locate(P), fuzz);
+}
+// *.........................BASES.........................*
+// *=======================================================*
+
+// *=======================================================*
+// *.........................LINES.........................*
+/*<asyxml><struct signature="line"><code></asyxml>*/
+struct line
+{/*<asyxml></code><documentation>This structure provides the objects line, semi - line and segment oriented from A to B.
+ All the calculus with this structure will be as exact as Asymptote can do.
+ For a full precision, you must not cast 'line' to 'path' excepted for drawing routines.</documentation></asyxml>*/
+ /*<asyxml><property type = "point" signature="A,B"><code></asyxml>*/
+ restricted point A,B;/*<asyxml></code><documentation>Two line's points with same coordinate system.</documentation></property><property type = "bool" signature="extendA,extendB"><code></asyxml>*/
+ bool extendA,extendB;/*<asyxml></code><documentation>If true,extend 'l' in direction of A (resp. B).</documentation></property><property type = "vector" signature="u,v"><code></asyxml>*/
+ restricted vector u,v;/*<asyxml></code><documentation>u = unit(AB) = direction vector,v = normal vector.</documentation></property><property type = "real" signature="a,b,c"><code></asyxml>*/
+ restricted real a,b,c;/*<asyxml></code><documentation>Coefficients of the equation ax + by + c = 0 in the coordinate system of 'A'.</documentation></property><property type = "real" signature="slope,origin"><code></asyxml>*/
+ restricted real slope, origin;/*<asyxml></code><documentation>Slope and ordinate at the origin.</documentation></property></asyxml>*/
+ /*<asyxml><method type = "line" signature="copy()"><code></asyxml>*/
+ line copy()
+ {/*<asyxml></code><documentation>Copy a line in a new instance.</documentation></method></asyxml>*/
+ line l = new line;
+ l.A = A;
+ l.B = B;
+ l.a = a;
+ l.b = b;
+ l.c = c;
+ l.slope = slope;
+ l.origin = origin;
+ l.u = u;
+ l.v = v;
+ l.extendA = extendA;
+ l.extendB = extendB;
+ return l;
+ }
+
+ /*<asyxml><method type = "void" signature="init(point,bool,point,bool)"><code></asyxml>*/
+ void init(point A, bool extendA = true, point B, bool extendB = true)
+ {/*<asyxml></code><documentation>Initialize line.
+ If 'extendA' is true, the "line" is infinite in the direction of A.</documentation></method></asyxml>*/
+ point[] P = standardizecoordsys(A, B);
+ this.A = P[0];
+ this.B = P[1];
+ this.a = B.y - A.y;
+ this.b = A.x - B.x;
+ this.c = A.y * B.x - A.x * B.y;
+ this.slope= (this.b == 0) ? infinity : -this.a/this.b;
+ this.origin = (this.b == 0) ? (this.c == 0) ? 0:infinity : -this.c/this.b;
+ this.u = unit(P[1]-P[0]);
+ // int tmp = sgnd(this.slope);
+ // this.u = (dot((pair)this.u, N) >= 0) ? tmp * this.u : -tmp * this.u;
+ this.v = rotate(90, point(P[0].coordsys, (0, 0))) * this.u;
+ this.extendA = extendA;
+ this.extendB = extendB;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="line" signature="line(point,bool,point,bool)"><code></asyxml>*/
+line line(point A, bool extendA = true, point B, bool extendB = true)
+{/*<asyxml></code><documentation>Return the line passing through 'A' and 'B'.
+ If 'extendA' is true, the "line" is infinite in the direction of A.
+ A "line" can be half-line or segment.</documentation></function></asyxml>*/
+ if (A == B) abort("line: the points must be distinct.");
+ line l;
+ l.init(A, extendA, B, extendB);
+ return l;
+}
+
+/*<asyxml><struct signature="segment"><code></asyxml>*/
+struct segment
+{/*<asyxml></code><documentation><look href = "struct line"/>.</documentation></asyxml>*/
+ restricted point A, B;// Extremity.
+ restricted vector u, v;// u = direction vector, v = normal vector.
+ restricted real a, b, c;// Coefficients of the équation ax + by + c = 0
+ restricted real slope, origin;
+ segment copy()
+ {
+ segment s = new segment;
+ s.A = A;
+ s.B = B;
+ s.a = a;
+ s.b = b;
+ s.c = c;
+ s.slope = slope;
+ s.origin = origin;
+ s.u = u;
+ s.v = v;
+ return s;
+ }
+
+ void init(point A, point B)
+ {
+ line l;
+ l.init(A, B);
+ this.A = l.A; this.B = l.B;
+ this.a = l.a; this.b = l.b; this.c = l.c;
+ this.slope = l.slope; this.origin = l.origin;
+ this.u = l.u; this.v = l.v;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="segment" signature="segment(point,point)"><code></asyxml>*/
+segment segment(point A, point B)
+{/*<asyxml></code><documentation>Return the segment whose the extremities are A and B.</documentation></function></asyxml>*/
+ segment s;
+ s.init(A, B);
+ return s;
+}
+
+/*<asyxml><function type="real" signature="length(segment)"><code></asyxml>*/
+real length(segment s)
+{/*<asyxml></code><documentation>Return the length of 's'.</documentation></function></asyxml>*/
+ return abs(s.A - s.B);
+}
+
+/*<asyxml><operator type = "line" signature="cast(segment)"><code></asyxml>*/
+line operator cast(segment s)
+{/*<asyxml></code><documentation>A segment is casted to a "finite line".</documentation></operator></asyxml>*/
+ return line(s.A, false, s.B, false);
+}
+
+/*<asyxml><operator type = "segment" signature="cast(line)"><code></asyxml>*/
+segment operator cast(line l)
+{/*<asyxml></code><documentation>Cast line 'l' to segment [l.A l.B].</documentation></operator></asyxml>*/
+ return segment(l.A, l.B);
+}
+
+/*<asyxml><operator type = "line" signature="*(transform,line)"><code></asyxml>*/
+line operator *(transform t, line l)
+{/*<asyxml></code><documentation>Provide transform * line</documentation></operator></asyxml>*/
+ return line(t * l.A, l.extendA, t * l.B, l.extendB);
+}
+/*<asyxml><operator type = "line" signature="/(line,real)"><code></asyxml>*/
+line operator /(line l, real x)
+{/*<asyxml></code><documentation>Provide l/x.
+ Return the line passing through l.A/x and l.B/x.</documentation></operator></asyxml>*/
+ return line(l.A/x, l.extendA, l.B/x, l.extendB);
+}
+line operator /(line l, int x){return line(l.A/x, l.B/x);}
+/*<asyxml><operator type = "line" signature="*(real,line)"><code></asyxml>*/
+line operator *(real x, line l)
+{/*<asyxml></code><documentation>Provide x * l.
+ Return the line passing through x * l.A and x * l.B.</documentation></operator></asyxml>*/
+ return line(x * l.A, l.extendA, x * l.B, l.extendB);
+}
+line operator *(int x, line l){return line(x * l.A, l.extendA, x * l.B, l.extendB);}
+
+/*<asyxml><operator type = "line" signature="*(point,line)"><code></asyxml>*/
+line operator *(point M, line l)
+{/*<asyxml></code><documentation>Provide point * line.
+ Return the line passing through unit(M) * l.A and unit(M) * l.B.</documentation></operator></asyxml>*/
+ return line(unit(M) * l.A, l.extendA, unit(M) * l.B, l.extendB);
+}
+/*<asyxml><operator type = "line" signature="+(line,point)"><code></asyxml>*/
+line operator +(line l, vector u)
+{/*<asyxml></code><documentation>Provide line + vector (and so line + point).
+ Return the line 'l' shifted by 'u'.</documentation></operator></asyxml>*/
+ return line(l.A + u, l.extendA, l.B + u, l.extendB);
+}
+/*<asyxml><operator type = "line" signature="-(line,vector)"><code></asyxml>*/
+line operator -(line l, vector u)
+{/*<asyxml></code><documentation>Provide line - vector (and so line - point).
+ Return the line 'l' shifted by '-u'.</documentation></operator></asyxml>*/
+ return line(l.A - u, l.extendA, l.B - u, l.extendB);
+}
+
+/*<asyxml><operator type = "line[]" signature="^^(line,line)"><code></asyxml>*/
+line[] operator ^^(line l1, line l2)
+{/*<asyxml></code><documentation>Provide line^^line.
+ Return the line array {l1, l2}.</documentation></operator></asyxml>*/
+ line[] ol;
+ ol.push(l1); ol.push(l2);
+ return ol;
+}
+
+/*<asyxml><operator type = "line[]" signature="^^(line,line[])"><code></asyxml>*/
+line[] operator ^^(line l1, line[] l2)
+{/*<asyxml></code><documentation>Provide line^^line[].
+ Return the line array {l1, l2[0], l2[1]...}.
+ line[]^^line is also defined.</documentation></operator></asyxml>*/
+ line[] ol;
+ ol.push(l1);
+ for (int i = 0; i < l2.length; ++i) {
+ ol.push(l2[i]);
+ }
+ return ol;
+}
+line[] operator ^^(line[] l2, line l1)
+{
+ line[] ol = l2;
+ ol.push(l1);
+ return ol;
+}
+
+/*<asyxml><operator type = "line[]" signature="^^(line,line[])"><code></asyxml>*/
+line[] operator ^^(line l1[], line[] l2)
+{/*<asyxml></code><documentation>Provide line[]^^line[].
+ Return the line array {l1[0], l1[1], ..., l2[0], l2[1], ...}.</documentation></operator></asyxml>*/
+ line[] ol = l1;
+ for (int i = 0; i < l2.length; ++i) {
+ ol.push(l2[i]);
+ }
+ return ol;
+}
+
+/*<asyxml><function type="bool" signature="sameside(point,point,line)"><code></asyxml>*/
+bool sameside(point M, point P, line l)
+{/*<asyxml></code><documentation>Return 'true' iff 'M' and 'N' are same side of the line (or on the line) 'l'.</documentation></function></asyxml>*/
+ pair A = l.A, B = l.B, m = M, p = P;
+ pair mil = (A + B)/2;
+ pair mA = rotate(90, mil) * A;
+ pair mB = rotate(-90, mil) * A;
+ return (abs(m - mA) <= abs(m - mB)) == (abs(p - mA) <= abs(p - mB));
+ // transform proj = projection(l.A, l.B);
+ // point Mp = proj * M;
+ // point Pp = proj * P;
+ // dot(Mp);dot(Pp);
+ // return dot(locate(Mp - M), locate(Pp - P)) >= 0;
+}
+
+/*<asyxml><function type="line" signature="line(segment)"><code></asyxml>*/
+line line(segment s)
+{/*<asyxml></code><documentation>Return the line passing through 's.A'
+ and 's.B'.</documentation></function></asyxml>*/
+ return line(s.A, s.B);
+}
+/*<asyxml><function type="segment" signature="segment(line)"><code></asyxml>*/
+segment segment(line l)
+{/*<asyxml></code><documentation>Return the segment whose extremities
+ are 'l.A' and 'l.B'.</documentation></function></asyxml>*/
+ return segment(l.A, l.B);
+}
+
+/*<asyxml><function type="point" signature="midpoint(segment)"><code></asyxml>*/
+point midpoint(segment s)
+{/*<asyxml></code><documentation>Return the midpoint of 's'.</documentation></function></asyxml>*/
+ return 0.5 * (s.A + s.B);
+}
+
+/*<asyxml><function type="void" signature="write(line)"><code></asyxml>*/
+void write(explicit line l)
+{/*<asyxml></code><documentation>Write some informations about 'l'.</documentation></function></asyxml>*/
+ write("A = "+(string)((pair)l.A));
+ write("Extend A = "+(l.extendA ? "true" : "false"));
+ write("B = "+(string)((pair)l.B));
+ write("Extend B = "+(l.extendB ? "true" : "false"));
+ write("u = "+(string)((pair)l.u));
+ write("v = "+(string)((pair)l.v));
+ write("a = "+(string) l.a);
+ write("b = "+(string) l.b);
+ write("c = "+(string) l.c);
+ write("slope = "+(string) l.slope);
+ write("origin = "+(string) l.origin);
+}
+
+/*<asyxml><function type="void" signature="write(explicit segment)"><code></asyxml>*/
+void write(explicit segment s)
+{/*<asyxml></code><documentation>Write some informations about 's'.</documentation></function></asyxml>*/
+ write("A = "+(string)((pair)s.A));
+ write("B = "+(string)((pair)s.B));
+ write("u = "+(string)((pair)s.u));
+ write("v = "+(string)((pair)s.v));
+ write("a = "+(string) s.a);
+ write("b = "+(string) s.b);
+ write("c = "+(string) s.c);
+ write("slope = "+(string) s.slope);
+ write("origin = "+(string) s.origin);
+}
+
+/*<asyxml><operator type = "bool" signature="==(line,line)"><code></asyxml>*/
+bool operator ==(line l1, line l2)
+{/*<asyxml></code><documentation>Provide the test 'line == line'.</documentation></operator></asyxml>*/
+ return (collinear(l1.u, l2.u) &&
+ abs(ypart((locate(l1.A) - locate(l1.B))/(locate(l1.A) - locate(l2.B)))) < epsgeo &&
+ l1.extendA == l2.extendA && l1.extendB == l2.extendB);
+}
+
+/*<asyxml><operator type = "bool" signature="!=(line,line)"><code></asyxml>*/
+bool operator !=(line l1, line l2)
+{/*<asyxml></code><documentation>Provide the test 'line != line'.</documentation></operator></asyxml>*/
+ return !(l1 == l2);
+}
+
+/*<asyxml><operator type = "bool" signature="@(point,line)"><code></asyxml>*/
+bool operator @(point m, line l)
+{/*<asyxml></code><documentation>Provide the test 'point @ line'.
+ Return true iff 'm' is on the 'l'.</documentation></operator></asyxml>*/
+ point M = changecoordsys(l.A.coordsys, m);
+ if (abs(l.a * M.x + l.b * M.y + l.c) >= epsgeo) return false;
+ if (l.extendA && l.extendB) return true;
+ if (!l.extendA && !l.extendB) return between(l.A, M, l.B);
+ if (l.extendA) return sameside(M, l.A, l.B);
+ return sameside(M, l.B, l.A);
+}
+
+/*<asyxml><function type="coordsys" signature="coordsys(line)"><code></asyxml>*/
+coordsys coordsys(line l)
+{/*<asyxml></code><documentation>Return the coordinate system in which 'l' is defined.</documentation></function></asyxml>*/
+ return l.A.coordsys;
+}
+
+/*<asyxml><function type="line" signature="reverse(line)"><code></asyxml>*/
+line reverse(line l)
+{/*<asyxml></code><documentation>Permute the points 'A' and 'B' of 'l' and so its orientation.</documentation></function></asyxml>*/
+ return line(l.B, l.extendB, l.A, l.extendA);
+}
+
+/*<asyxml><function type="line" signature="extend(line)"><code></asyxml>*/
+line extend(line l)
+{/*<asyxml></code><documentation>Return the infinite line passing through 'l.A' and 'l.B'.</documentation></function></asyxml>*/
+ line ol = l.copy();
+ ol.extendA = true;
+ ol.extendB = true;
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="complementary(explicit line)"><code></asyxml>*/
+line complementary(explicit line l)
+{/*<asyxml></code><documentation>Return the complementary of a half-line with respect of
+ the full line 'l'.</documentation></function></asyxml>*/
+ if (l.extendA && l.extendB)
+ abort("complementary: the parameter is not a half-line.");
+ point origin = l.extendA ? l.B : l.A;
+ point ptdir = l.extendA ?
+ rotate(180, l.B) * l.A : rotate(180, l.A) * l.B;
+ return line(origin, false, ptdir);
+}
+
+/*<asyxml><function type="line[]" signature="complementary(explicit segment)"><code></asyxml>*/
+line[] complementary(explicit segment s)
+{/*<asyxml></code><documentation>Return the two half-lines of origin 's.A' and 's.B' respectively.</documentation></function></asyxml>*/
+ line[] ol = new line[2];
+ ol[0] = complementary(line(s.A, false, s.B));
+ ol[1] = complementary(line(s.A, s.B, false));
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="Ox(coordsys)"><code></asyxml>*/
+line Ox(coordsys R = currentcoordsys)
+{/*<asyxml></code><documentation>Return the x-axis of 'R'.</documentation></function></asyxml>*/
+ return line(point(R, (0, 0)), point(R, E));
+}
+/*<asyxml><constant type = "line" signature="Ox"><code></asyxml>*/
+restricted line Ox = Ox();/*<asyxml></code><documentation>the x-axis of
+ the default coordinate system.</documentation></constant></asyxml>*/
+
+/*<asyxml><function type="line" signature="Oy(coordsys)"><code></asyxml>*/
+line Oy(coordsys R = currentcoordsys)
+{/*<asyxml></code><documentation>Return the y-axis of 'R'.</documentation></function></asyxml>*/
+ return line(point(R, (0, 0)), point(R, N));
+}
+/*<asyxml><constant type = "line" signature="Oy"><code></asyxml>*/
+restricted line Oy = Oy();/*<asyxml></code><documentation>the y-axis of
+ the default coordinate system.</documentation></constant></asyxml>*/
+
+/*<asyxml><function type="line" signature="line(real,point)"><code></asyxml>*/
+line line(real a, point A = point(currentcoordsys, (0, 0)))
+{/*<asyxml></code><documentation>Return the line passing through 'A' with an
+ angle (in the coordinate system of A) 'a' in degrees.
+ line(point, real) is also defined.</documentation></function></asyxml>*/
+ return line(A, A + point(A.coordsys, A.coordsys.polar(1, radians(a))));
+}
+line line(point A = point(currentcoordsys, (0, 0)), real a)
+{
+ return line(a, A);
+}
+line line(int a, point A = point(currentcoordsys, (0, 0)))
+{
+ return line((real)a, A);
+}
+
+/*<asyxml><function type="line" signature="line(coordsys,real,real)"><code></asyxml>*/
+line line(coordsys R = currentcoordsys, real slope, real origin)
+{/*<asyxml></code><documentation>Return the line defined by slope and y-intercept relative to 'R'.</documentation></function></asyxml>*/
+ if (slope == infinity || slope == -infinity)
+ abort("The slope is infinite. Please, use the routine 'vline'.");
+ return line(point(R, (0, origin)), point(R, (1, origin + slope)));
+}
+
+/*<asyxml><function type="line" signature="line(coordsys,real,real,real)"><code></asyxml>*/
+line line(coordsys R = currentcoordsys, real a, real b, real c)
+{/*<asyxml></code><documentation>Retrun the line defined by equation relative to 'R'.</documentation></function></asyxml>*/
+ if (a == 0 && b == 0) abort("line: inconsistent equation...");
+ pair M;
+ M = (a == 0) ? (0, -c/b) : (-c/a, 0);
+ return line(point(R, M), point(R, M + (-b, a)));
+}
+
+/*<asyxml><function type="line" signature="vline(coordsys)"><code></asyxml>*/
+line vline(coordsys R = currentcoordsys)
+{/*<asyxml></code><documentation>Return a vertical line in 'R' passing through the origin of 'R'.</documentation></function></asyxml>*/
+ point P = point(R, (0, 0));
+ point PP = point(R, (R.O + N)/R);
+ return line(P, PP);
+}
+/*<asyxml><constant type = "line" signature="vline"><code></asyxml>*/
+restricted line vline = vline();/*<asyxml></code><documentation>The vertical line in the current coordinate system passing
+ through the origin of this system.</documentation></constant></asyxml>*/
+
+/*<asyxml><function type="line" signature="hline(coordsys)"><code></asyxml>*/
+line hline(coordsys R = currentcoordsys)
+{/*<asyxml></code><documentation>Return a horizontal line in 'R' passing through the origin of 'R'.</documentation></function></asyxml>*/
+ point P = point(R, (0, 0));
+ point PP = point(R, (R.O + E)/R);
+ return line(P, PP);
+}
+/*<asyxml><constant type = "line" signature="hline"><code></asyxml>*/
+line hline = hline();/*<asyxml></code><documentation>The horizontal line in the current coordinate system passing
+ through the origin of this system.</documentation></constant></asyxml>*/
+
+/*<asyxml><function type="line" signature="changecoordsys(coordsys,line)"><code></asyxml>*/
+line changecoordsys(coordsys R, line l)
+{/*<asyxml></code><documentation>Return the line 'l' in the coordinate system 'R'.</documentation></function></asyxml>*/
+ point A = changecoordsys(R, l.A);
+ point B = changecoordsys(R, l.B);
+ return line(A, B);
+}
+
+/*<asyxml><function type="transform" signature="scale(real,line,line,bool)"><code></asyxml>*/
+transform scale(real k, line l1, line l2, bool safe = false)
+{/*<asyxml></code><documentation>Return the dilatation with respect to
+ 'l1' in the direction of 'l2'.</documentation></function></asyxml>*/
+ return scale(k, l1.A, l1.B, l2.A, l2.B, safe);
+}
+
+/*<asyxml><function type="transform" signature="reflect(line)"><code></asyxml>*/
+transform reflect(line l)
+{/*<asyxml></code><documentation>Return the reflect about the line 'l'.</documentation></function></asyxml>*/
+ return reflect((pair)l.A, (pair)l.B);
+}
+
+/*<asyxml><function type="transform" signature="reflect(line,line)"><code></asyxml>*/
+transform reflect(line l1, line l2, bool safe = false)
+{/*<asyxml></code><documentation>Return the reflect about the line
+ 'l1' in the direction of 'l2'.</documentation></function></asyxml>*/
+ return scale(-1.0, l1, l2, safe);
+}
+
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,path)"><code></asyxml>*/
+point[] intersectionpoints(line l, path g)
+{/*<asyxml></code><documentation>Return all points of intersection of the line 'l' with the path 'g'.</documentation></function></asyxml>*/
+ // TODO utiliser la version 1.44 de intersections(path g, pair p, pair q)
+ // real [] t = intersections(g, l.A, l.B);
+ // coordsys R = coordsys(l);
+ // return sequence(new point(int n){return point(R, point(g, t[n])/R);}, t.length);
+ real [] t;
+ pair[] op;
+ pair A = l.A;
+ pair B = l.B;
+ real dy = B.y - A.y,
+ dx = A.x - B.x,
+ lg = length(g);
+
+ for (int i = 0; i < lg; ++i)
+ {
+ pair z0 = point(g, i),
+ z1 = point(g, i + 1),
+ c0 = postcontrol(g, i),
+ c1 = precontrol(g, i + 1),
+ t3 = z1 - z0 - 3 * c1 + 3 * c0,
+ t2 = 3 * z0 + 3 * c1 - 6 * c0,
+ t1 = 3 * c0 - 3z0;
+ real a = dy * t3.x + dx * t3.y,
+ b = dy * t2.x + dx * t2.y,
+ c = dy * t1.x + dx * t1.y,
+ d = dy * z0.x + dx * z0.y + A.y * B.x - A.x * B.y;
+
+ t = cubicroots(a, b, c, d);
+ for (int j = 0; j < t.length; ++j)
+ if (
+ t[j]>=0
+ && (
+ t[j]<1
+ || (
+ t[j] == 1
+ && (i == lg - 1)
+ && !cyclic(g)
+ )
+ )
+ ) {
+ op.push(point(g, i + t[j]));
+ }
+ }
+
+ point[] opp;
+ for (int i = 0; i < op.length; ++i)
+ opp.push(point(coordsys(l), op[i]/coordsys(l)));
+ return opp;
+}
+
+/*<asyxml><function type="point" signature="intersectionpoint(line,line)"><code></asyxml>*/
+point intersectionpoint(line l1, line l2)
+{/*<asyxml></code><documentation>Return the point of intersection of line 'l1' with 'l2'.
+ If 'l1' and 'l2' have an infinity or none point of intersection,
+ this routine return (infinity, infinity).</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(l1.A, l1.B, l2.A, l2.B);
+ coordsys R = P[0].coordsys;
+ pair p = extension(P[0], P[1], P[2], P[3]);
+ if(finite(p)){
+ point p = point(R, p/R);
+ if (p @ l1 && p @ l2) return p;
+ }
+ return point(R, (infinity, infinity));
+}
+
+/*<asyxml><function type="line" signature="parallel(point,line)"><code></asyxml>*/
+line parallel(point M, line l)
+{/*<asyxml></code><documentation>Return the line parallel to 'l' passing through 'M'.</documentation></function></asyxml>*/
+ point A, B;
+ if (M.coordsys != coordsys(l))
+ {
+ A = changecoordsys(M.coordsys, l.A);
+ B = changecoordsys(M.coordsys, l.B);
+ } else {A = l.A;B = l.B;}
+ return line(M, M - A + B);
+}
+
+/*<asyxml><function type="line" signature="parallel(point,explicit vector)"><code></asyxml>*/
+line parallel(point M, explicit vector dir)
+{/*<asyxml></code><documentation>Return the line of direction 'dir' and passing through 'M'.</documentation></function></asyxml>*/
+ return line(M, M + locate(dir));
+}
+
+/*<asyxml><function type="line" signature="parallel(point,explicit pair)"><code></asyxml>*/
+line parallel(point M, explicit pair dir)
+{/*<asyxml></code><documentation>Return the line of direction 'dir' and passing through 'M'.</documentation></function></asyxml>*/
+ return line(M, M + vector(currentcoordsys, dir));
+}
+
+/*<asyxml><function type="bool" signature="parallel(line,line)"><code></asyxml>*/
+bool parallel(line l1, line l2, bool strictly = false)
+{/*<asyxml></code><documentation>Return 'true' if 'l1' and 'l2' are (strictly ?) parallel.</documentation></function></asyxml>*/
+ bool coll = collinear(l1.u, l2.u);
+ return strictly ? coll && (l1 != l2) : coll;
+}
+
+/*<asyxml><function type="bool" signature="concurrent(...line[])"><code></asyxml>*/
+bool concurrent(... line[] l)
+{/*<asyxml></code><documentation>Returns true if all the lines 'l' are concurrent.</documentation></function></asyxml>*/
+ if (l.length < 3) abort("'concurrent' needs at least for three lines ...");
+ pair point = intersectionpoint(l[0], l[1]);
+ bool conc;
+ for (int i = 2; i < l.length; ++i) {
+ pair pt = intersectionpoint(l[i - 1], l[i]);
+ conc = simeq(pt, point);
+ if (!conc) break;
+ }
+ return conc;
+}
+
+/*<asyxml><function type="transform" signature="projection(line)"><code></asyxml>*/
+transform projection(line l)
+{/*<asyxml></code><documentation>Return the orthogonal projection on 'l'.</documentation></function></asyxml>*/
+ return projection(l.A, l.B);
+}
+
+/*<asyxml><function type="transform" signature="projection(line,line,bool)"><code></asyxml>*/
+transform projection(line l1, line l2, bool safe = false)
+{/*<asyxml></code><documentation>Return the projection on (AB) in parallel of (CD).
+ If 'safe = true' and (l1)//(l2) return the identity.
+ If 'safe = false' and (l1)//(l2) return a infinity scaling.</documentation></function></asyxml>*/
+ return projection(l1.A, l1.B, l2.A, l2.B, safe);
+}
+
+/*<asyxml><function type="transform" signature="vprojection(line,bool)"><code></asyxml>*/
+transform vprojection(line l, bool safe = false)
+{/*<asyxml></code><documentation>Return the projection on 'l' in parallel of N--S.
+ If 'safe' is 'true' the projected point keeps the same place if 'l'
+ is vertical.</documentation></function></asyxml>*/
+ coordsys R = defaultcoordsys;
+ return projection(l, line(point(R, N), point(R, S)), safe);
+}
+
+/*<asyxml><function type="transform" signature="hprojection(line,bool)"><code></asyxml>*/
+transform hprojection(line l, bool safe = false)
+{/*<asyxml></code><documentation>Return the projection on 'l' in parallel of E--W.
+ If 'safe' is 'true' the projected point keeps the same place if 'l'
+ is horizontal.</documentation></function></asyxml>*/
+ coordsys R = defaultcoordsys;
+ return projection(l, line(point(R, E), point(R, W)), safe);
+}
+
+/*<asyxml><function type="line" signature="perpendicular(point,line)"><code></asyxml>*/
+line perpendicular(point M, line l)
+{/*<asyxml></code><documentation>Return the perpendicular line of 'l' passing through 'M'.</documentation></function></asyxml>*/
+ point Mp = projection(l) * M;
+ point A = Mp == l.A ? l.B : l.A;
+ return line(Mp, rotate(90, Mp) * A);
+}
+
+/*<asyxml><function type="line" signature="perpendicular(point,explicit vector)"><code></asyxml>*/
+line perpendicular(point M, explicit vector normal)
+{/*<asyxml></code><documentation>Return the line passing through 'M'
+ whose normal is \param{normal}.</documentation></function></asyxml>*/
+ return perpendicular(M, line(M, M + locate(normal)));
+}
+
+/*<asyxml><function type="line" signature="perpendicular(point,explicit pair)"><code></asyxml>*/
+line perpendicular(point M, explicit pair normal)
+{/*<asyxml></code><documentation>Return the line passing through 'M'
+ whose normal is \param{normal} (given in the currentcoordsys).</documentation></function></asyxml>*/
+ return perpendicular(M, line(M, M + vector(currentcoordsys, normal)));
+}
+
+/*<asyxml><function type="bool" signature="perpendicular(line,line)"><code></asyxml>*/
+bool perpendicular(line l1, line l2)
+{/*<asyxml></code><documentation>Return 'true' if 'l1' and 'l2' are perpendicular.</documentation></function></asyxml>*/
+ return abs(dot(locate(l1.u), locate(l2.u))) < epsgeo ;
+}
+
+/*<asyxml><function type="real" signature="angle(line,coordsys)"><code></asyxml>*/
+real angle(line l, coordsys R = coordsys(l))
+{/*<asyxml></code><documentation>Return the angle of the oriented line 'l',
+ in radian, in the interval ]-pi, pi] and relatively to 'R'.</documentation></function></asyxml>*/
+ return angle(l.u, R, false);
+}
+
+/*<asyxml><function type="real" signature="degrees(line,coordsys,bool)"><code></asyxml>*/
+real degrees(line l, coordsys R = coordsys(l))
+{/*<asyxml></code><documentation>Returns the angle of the oriented line 'l' in degrees,
+ in the interval [0, 360[ and relatively to 'R'.</documentation></function></asyxml>*/
+ return degrees(angle(l, R));
+}
+
+/*<asyxml><function type="real" signature="sharpangle(line,line)"><code></asyxml>*/
+real sharpangle(line l1, line l2)
+{/*<asyxml></code><documentation>Return the measure in radians of the sharp angle formed by 'l1' and 'l2'.</documentation></function></asyxml>*/
+ vector u1 = l1.u;
+ vector u2 = (dot(l1.u, l2.u) < 0) ? -l2.u : l2.u;
+ real a12 = angle(locate(u2)) - angle(locate(u1));
+ a12 = a12%(sgnd(a12) * pi);
+ if (a12 <= -pi/2) {
+ a12 += pi;
+ } else if (a12 > pi/2) {
+ a12 -= pi;
+ }
+ return a12;
+}
+
+/*<asyxml><function type="real" signature="angle(line,line)"><code></asyxml>*/
+real angle(line l1, line l2)
+{/*<asyxml></code><documentation>Return the measure in radians of oriented angle (l1.u, l2.u).</documentation></function></asyxml>*/
+ return angle(locate(l2.u)) - angle(locate(l1.u));
+}
+
+/*<asyxml><function type="real" signature="degrees(line,line)"><code></asyxml>*/
+real degrees(line l1, line l2)
+{/*<asyxml></code><documentation>Return the measure in degrees of the
+ angle formed by the oriented lines 'l1' and 'l2'.</documentation></function></asyxml>*/
+ return degrees(angle(l1, l2));
+}
+
+/*<asyxml><function type="real" signature="sharpdegrees(line,line)"><code></asyxml>*/
+real sharpdegrees(line l1, line l2)
+{/*<asyxml></code><documentation>Return the measure in degrees of the sharp angle formed by 'l1' and 'l2'.</documentation></function></asyxml>*/
+ return degrees(sharpangle(l1, l2));
+}
+
+/*<asyxml><function type="line" signature="bisector(line,line,real,bool)"><code></asyxml>*/
+line bisector(line l1, line l2, real angle = 0, bool sharp = true)
+{/*<asyxml></code><documentation>Return the bisector of the angle formed by 'l1' and 'l2'
+ rotated by the angle 'angle' (in degrees) around intersection point of 'l1' with 'l2'.
+ If 'sharp' is true (the default), this routine returns the bisector of the sharp angle.
+ Note that the returned line inherit of coordinate system of 'l1'.</documentation></function></asyxml>*/
+ line ol;
+ if (l1 == l2) return l1;
+ point A = intersectionpoint(l1, l2);
+ if (finite(A)) {
+ if(sharp) ol = rotate(sharpdegrees(l1, l2)/2 + angle, A) * l1;
+ else {
+ coordsys R = coordsys(l1);
+ pair a = A, b = A + l1.u, c = A + l2.u;
+ pair pp = extension(a, a + dir(a--b, a--c), b, b + dir(b--a, b--c));
+ return rotate(angle, A) * line(A, point(R, pp/R));
+ }
+ } else {
+ ol = l1;
+ }
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="sector(int,int,line,line,real,bool)"><code></asyxml>*/
+line sector(int n = 2, int p = 1, line l1, line l2, real angle = 0, bool sharp = true)
+{/*<asyxml></code><documentation>Return the p-th nth-sector of the angle
+ formed by the oriented line 'l1' and 'l2'
+ rotated by the angle 'angle' (in degrees) around the intersection point of 'l1' with 'l2'.
+ If 'sharp' is true (the default), this routine returns the bisector of the sharp angle.
+ Note that the returned line inherit of coordinate system of 'l1'.</documentation></function></asyxml>*/
+ line ol;
+ if (l1 == l2) return l1;
+ point A = intersectionpoint(l1, l2);
+ if (finite(A)) {
+ if(sharp) ol = rotate(p * sharpdegrees(l1, l2)/n + angle, A) * l1;
+ else {
+ ol = rotate(p * degrees(l1, l2)/n + angle, A) * l1;
+ }
+ } else {
+ ol = l1;
+ }
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="bisector(point,point,point,point,real)"><code></asyxml>*/
+line bisector(point A, point B, point C, point D, real angle = 0, bool sharp = true)
+{/*<asyxml></code><documentation>Return the bisector of the angle formed by the lines (AB) and (CD).
+ <look href = "#bisector(line, line, real, bool)"/>.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C, D);
+ return bisector(line(P[0], P[1]), line(P[2], P[3]), angle, sharp);
+}
+
+/*<asyxml><function type="line" signature="bisector(segment,real)"><code></asyxml>*/
+line bisector(segment s, real angle = 0)
+{/*<asyxml></code><documentation>Return the bisector of the segment line 's' rotated by 'angle' (in degrees) around the
+ midpoint of 's'.</documentation></function></asyxml>*/
+ coordsys R = coordsys(s);
+ point m = midpoint(s);
+ vector dir = rotateO(90) * unit(s.A - m);
+ return rotate(angle, m) * line(m + dir, m - dir);
+}
+
+/*<asyxml><function type="line" signature="bisector(point,point,real)"><code></asyxml>*/
+line bisector(point A, point B, real angle = 0)
+{/*<asyxml></code><documentation>Return the bisector of the segment line [AB] rotated by 'angle' (in degrees) around the
+ midpoint of [AB].</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B);
+ return bisector(segment(P[0], P[1]), angle);
+}
+
+/*<asyxml><function type="real" signature="distance(point,line)"><code></asyxml>*/
+real distance(point M, line l)
+{/*<asyxml></code><documentation>Return the distance from 'M' to 'l'.
+ distance(line, point) is also defined.</documentation></function></asyxml>*/
+ point A = changecoordsys(defaultcoordsys, l.A);
+ point B = changecoordsys(defaultcoordsys, l.B);
+ line ll = line(A, B);
+ pair m = locate(M);
+ return abs(ll.a * m.x + ll.b * m.y + ll.c)/sqrt(ll.a^2 + ll.b^2);
+}
+
+real distance(line l, point M)
+{
+ return distance(M, l);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,line,bool,bool,align,pen,arrowbar,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "",
+ line l, bool dirA = l.extendA, bool dirB = l.extendB,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None,
+ Label legend = "", marker marker = nomarker,
+ pathModifier pathModifier = NoModifier)
+{/*<asyxml></code><documentation>Draw the line 'l' without altering the size of picture pic.
+ The boolean parameters control the infinite section.
+ The global variable 'linemargin' (default value is 0) allows to modify
+ the bounding box in which the line must be drawn.</documentation></function></asyxml>*/
+ if(!(dirA || dirB)) draw(l.A--l.B, invisible);// l is a segment.
+ Drawline(pic, L, l.A, dirP = dirA, l.B, dirQ = dirB,
+ align, p, arrow,
+ legend, marker, pathModifier);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label[], line[], align,pen[], arrowbar,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
+ align align = NoAlign, pen[] p = new pen[],
+ arrowbar arrow = None,
+ Label[] legend = new Label[], marker marker = nomarker,
+ pathModifier pathModifier = NoModifier)
+{/*<asyxml></code><documentation>Draw each lines with the corresponding pen.</documentation></function></asyxml>*/
+ for (int i = 0; i < l.length; ++i) {
+ draw(pic, L.length>0 ? L[i] : "", l[i],
+ align, p = p.length>0 ? p[i] : currentpen,
+ arrow, legend.length>0 ? legend[i] : "", marker,
+ pathModifier);
+ }
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label[], line[], align,pen,arrowbar,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
+ align align = NoAlign, pen p,
+ arrowbar arrow = None,
+ Label[] legend = new Label[], marker marker = nomarker,
+ pathModifier pathModifier = NoModifier)
+{/*<asyxml></code><documentation>Draw each lines with the same pen 'p'.</documentation></function></asyxml>*/
+ pen[] tp = sequence(new pen(int i){return p;}, l.length);
+ draw(pic, L, l, align, tp, arrow, legend, marker, pathModifier);
+}
+
+/*<asyxml><function type="void" signature="show(picture,line,pen)"><code></asyxml>*/
+void show(picture pic = currentpicture, line l, pen p = red)
+{/*<asyxml></code><documentation>Draw some informations of 'l'.</documentation></function></asyxml>*/
+ dot("$A$", (pair)l.A, align = -locate(l.v), p);
+ dot("$B$", (pair)l.B, align = -locate(l.v), p);
+ draw(l, dotted);
+ draw("$\vec{u}$", locate(l.A)--locate(l.A + l.u), p, Arrow);
+ draw("$\vec{v}$", locate(l.A)--locate(l.A + l.v), p, Arrow);
+}
+
+/*<asyxml><function type="point[]" signature="sameside(point,line,line)"><code></asyxml>*/
+point[] sameside(point M, line l1, line l2)
+{/*<asyxml></code><documentation>Return two points on 'l1' and 'l2' respectively.
+ The first point is from the same side of M relatively to 'l2',
+ the second point is from the same side of M relatively to 'l1'.</documentation></function></asyxml>*/
+ point[] op;
+ coordsys R1 = coordsys(l1);
+ coordsys R2 = coordsys(l2);
+ if (parallel(l1, l2)) {
+ op.push(projection(l1) * M);
+ op.push(projection(l2) * M);
+ } else {
+ point O = intersectionpoint(l1, l2);
+ if (M @ l2) op.push((sameside(M, O + l1.u, l2)) ? O + l1.u : rotate(180, O) * (O + l1.u));
+ else op.push(projection(l1, l2) * M);
+ if (M @ l1) op.push((sameside(M, O + l2.u, l1)) ? O + l2.u : rotate(180, O) * (O + l2.u));
+ else {op.push(projection(l2, l1) * M);}
+ }
+ return op;
+}
+
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,explicit line,explicit line,explicit pair,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
+void markangle(picture pic = currentpicture,
+ Label L = "", int n = 1, real radius = 0, real space = 0,
+ explicit line l1, explicit line l2, explicit pair align = dir(1),
+ arrowbar arrow = None, pen p = currentpen,
+ filltype filltype = NoFill,
+ margin margin = NoMargin, marker marker = nomarker)
+{/*<asyxml></code><documentation>Mark the angle (l1, l2) aligned in the direction 'align' relative to 'l1'.
+ Commune values for 'align' are dir(real).</documentation></function></asyxml>*/
+ if (parallel(l1, l2, true)) return;
+ real al = degrees(l1, defaultcoordsys);
+ pair O, A, B;
+ if (radius == 0) radius = markangleradius(p);
+ real d = degrees(locate(l1.u));
+ align = rotate(d) * align;
+ if (l1 == l2) {
+ O = midpoint(segment(l1.A, l1.B));
+ A = l1.A;B = l1.B;
+ if (sameside(rotate(sgn(angle(B-A)) * 45, O) * A, O + align, l1)) {radius = -radius;}
+ } else {
+ O = intersectionpoint(extend(l1), extend(l2));
+ pair R = O + align;
+ point [] ss = sameside(point(coordsys(l1), R/coordsys(l1)), l1, l2);
+ A = ss[0];
+ B = ss[1];
+ }
+ markangle(pic = pic, L = L, n = n, radius = radius, space = space,
+ O = O, A = A, B = B,
+ arrow = arrow, p = p, filltype = filltype,
+ margin = margin, marker = marker);
+}
+
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,explicit line,explicit line,explicit vector,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
+void markangle(picture pic = currentpicture,
+ Label L = "", int n = 1, real radius = 0, real space = 0,
+ explicit line l1, explicit line l2, explicit vector align,
+ arrowbar arrow = None, pen p = currentpen,
+ filltype filltype = NoFill,
+ margin margin = NoMargin, marker marker = nomarker)
+{/*<asyxml></code><documentation>Mark the angle (l1, l2) in the direction 'dir' given relatively to 'l1'.</documentation></function></asyxml>*/
+ markangle(pic, L, n, radius, space, l1, l2, (pair)align, arrow,
+ p, filltype, margin, marker);
+}
+
+/*<asyxml><function type="void" signature="markangle(picture,Label,int,real,real,line,line,arrowbar,pen,filltype,margin,marker)"><code></asyxml>*/
+// void markangle(picture pic = currentpicture,
+// Label L = "", int n = 1, real radius = 0, real space = 0,
+// explicit line l1, explicit line l2,
+// arrowbar arrow = None, pen p = currentpen,
+// filltype filltype = NoFill,
+// margin margin = NoMargin, marker marker = nomarker)
+// {/*<asyxml></code><documentation>Mark the oriented angle (l1, l2).</documentation></function></asyxml>*/
+// if (parallel(l1, l2, true)) return;
+// real al = degrees(l1, defaultcoordsys);
+// pair O, A, B;
+// if (radius == 0) radius = markangleradius(p);
+// real d = degrees(locate(l1.u));
+// if (l1 == l2) {
+// O = midpoint(segment(l1.A, l1.B));
+// } else {
+// O = intersectionpoint(extend(l1), extend(l2));
+// }
+// A = O + locate(l1.u);
+// B = O + locate(l2.u);
+// markangle(pic = pic, L = L, n = n, radius = radius, space = space,
+// O = O, A = A, B = B,
+// arrow = arrow, p = p, filltype = filltype,
+// margin = margin, marker = marker);
+// }
+
+/*<asyxml><function type="void" signature="perpendicularmark(picture,line,line,real,pen,int,margin,filltype)"><code></asyxml>*/
+void perpendicularmark(picture pic = currentpicture, line l1, line l2,
+ real size = 0, pen p = currentpen, int quarter = 1,
+ margin margin = NoMargin, filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw a right angle at the intersection point of lines and
+ aligned in the 'quarter' nth quarter of circle formed by 'l1.u' and
+ 'l2.u'.</documentation></function></asyxml>*/
+ point P = intersectionpoint(l1, l2);
+ pair align = rotate(90 * (quarter - 1)) * dir(45);
+ perpendicularmark(P, align, locate(l1.u), size, p, margin, filltype);
+}
+// *.........................LINES.........................*
+// *=======================================================*
+
+// *=======================================================*
+// *........................CONICS.........................*
+/*<asyxml><struct signature="bqe"><code></asyxml>*/
+struct bqe
+{/*<asyxml></code><documentation>Bivariate Quadratic Equation.</documentation></asyxml>*/
+ /*<asyxml><property type = "real[]" signature="a"><code></asyxml>*/
+ real[] a;/*<asyxml></code><documentation>a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0</documentation></property><property type = "coordsys" signature="coordsys"><code></asyxml>*/
+ coordsys coordsys;/*<asyxml></code></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="bqe" signature="bqe(coordsys,real,real,real,real,real,real)"><code></asyxml>*/
+bqe bqe(coordsys R = currentcoordsys,
+ real a, real b, real c, real d, real e, real f)
+{/*<asyxml></code><documentation>Return the bivariate quadratic equation
+ a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
+ relatively to the coordinate system R.</documentation></function></asyxml>*/
+ bqe obqe;
+ obqe.coordsys = R;
+ obqe.a = new real[] {a, b, c, d, e, f};
+ return obqe;
+}
+
+/*<asyxml><function type="bqe" signature="changecoordsys(coordsys,bqe)"><code></asyxml>*/
+bqe changecoordsys(coordsys R, bqe bqe)
+{/*<asyxml></code><documentation>Returns the bivariate quadratic equation relatively to 'R'.</documentation></function></asyxml>*/
+ pair i = coordinates(changecoordsys(R, vector(defaultcoordsys,
+ bqe.coordsys.i)));
+ pair j = coordinates(changecoordsys(R, vector(defaultcoordsys,
+ bqe.coordsys.j)));
+ pair O = coordinates(changecoordsys(R, point(defaultcoordsys,
+ bqe.coordsys.O)));
+ real a = bqe.a[0], b = bqe.a[1], c = bqe.a[2], d = bqe.a[3], f = bqe.a[4], g = bqe.a[5];
+ real ux = i.x, uy = i.y;
+ real vx = j.x, vy = j.y;
+ real ox = O.x, oy = O.y;
+ real D = ux * vy - uy * vx;
+ real ap = (a * vy^2 - b * uy * vy + c * uy^2)/D^2;
+ real bpp = (-2 * a * vx * vy + b * ux * vy + b * uy * vx - 2 * c * ux * uy)/D^2;
+ real cp = (a * vx^2 - b * ux * vx + c * ux^2)/D^2;
+ real dp = (-2a * ox * vy^2 + 2a * oy * vx * vy + 2b * ox * uy * vy-
+ b * oy * ux * vy - b * oy * uy * vx - 2c * ox * uy^2 + 2c * oy * uy * ux)/D^2+
+ (d * vy - f * uy)/D;
+ real fp = (2a * ox * vx * vy - b * ox * ux * vy - 2a * oy * vx^2-
+ b * ox * uy * vx + 2 * b * oy * ux * vx + 2c * ox * ux * uy - 2c * oy * ux^2)/D^2+
+ (f * ux - d * vx)/D;
+ g = (a * ox^2 * vy^2 - 2a * ox * oy * vx * vy - b * ox^2 * uy * vy + b * ox * oy * ux * vy+
+ a * oy^2 * vx^2 + b * ox * oy * uy * vx - b * oy^2 * ux * vx + c * ox^2 * uy^2-
+ 2 * c * ox * oy * ux * uy + c * oy^2 * ux^2)/D^2+
+ (d * oy * vx + f * ox * uy - d * ox * vy - f * oy * ux)/D + g;
+ bqe obqe;
+ obqe.a = approximate(new real[] {ap, bpp, cp, dp, fp, g});
+ obqe.coordsys = R;
+ return obqe;
+}
+
+/*<asyxml><function type="bqe" signature="bqe(point,point,point,point,point)"><code></asyxml>*/
+bqe bqe(point M1, point M2, point M3, point M4, point M5)
+{/*<asyxml></code><documentation>Return the bqe of conic passing through the five points (if possible).</documentation></function></asyxml>*/
+ coordsys R;
+ pair[] pts;
+ if (samecoordsys(M1, M2, M3, M4, M5)) {
+ R = M1.coordsys;
+ pts= new pair[] {M1.coordinates, M2.coordinates, M3.coordinates, M4.coordinates, M5.coordinates};
+ } else {
+ R = defaultcoordsys;
+ pts= new pair[] {M1, M2, M3, M4, M5};
+ }
+ real[][] M;
+ real[] x;
+ bqe bqe;
+ bqe.coordsys = R;
+ for (int i = 0; i < 5; ++i) {// Try a = -1
+ M[i] = new real[] {pts[i].x * pts[i].y, pts[i].y^2, pts[i].x, pts[i].y, 1};
+ x[i] = pts[i].x^2;
+ }
+ if(abs(determinant(M)) < 1e-5) {// Try c = -1
+ for (int i = 0; i < 5; ++i) {
+ M[i] = new real[] {pts[i].x^2, pts[i].x * pts[i].y, pts[i].x, pts[i].y, 1};
+ x[i] = pts[i].y^2;
+ }
+ real[] coef = solve(M, x);
+ bqe.a = new real[] {coef[0], coef[1], -1, coef[2], coef[3], coef[4]};
+ } else {
+ real[] coef = solve(M, x);
+ bqe.a = new real[] {-1, coef[0], coef[1], coef[2], coef[3], coef[4]};
+ }
+ bqe.a = approximate(bqe.a);
+ return bqe;
+}
+
+/*<asyxml><function type="bool" signature="samecoordsys(bool...bqe[])"><code></asyxml>*/
+bool samecoordsys(bool warn = true ... bqe[] bqes)
+{/*<asyxml></code><documentation>Return true if all the bivariate quadratic equations have the same coordinate system.</documentation></function></asyxml>*/
+ bool ret = true;
+ coordsys t = bqes[0].coordsys;
+ for (int i = 1; i < bqes.length; ++i) {
+ ret = (t == bqes[i].coordsys);
+ if(!ret) break;
+ t = bqes[i].coordsys;
+ }
+ if(warn && !ret)
+ warning("coodinatesystem",
+ "the coordinate system of two bivariate quadratic equations are not
+the same. The operation will be done relatively to the default coordinate
+system.");
+ return ret;
+}
+
+/*<asyxml><function type="real[]" signature="realquarticroots(real,real,real,real,real)"><code></asyxml>*/
+real[] realquarticroots(real a, real b, real c, real d, real e)
+{/*<asyxml></code><documentation>Return the real roots of the quartic equation ax^4 + b^x3 + cx^2 + dx = 0.</documentation></function></asyxml>*/
+ static real Fuzz = sqrt(realEpsilon);
+ pair[] zroots = quarticroots(a, b, c, d, e);
+ real[] roots;
+ real p(real x){return a * x^4 + b * x^3 + c * x^2 + d * x + e;}
+ real prime(real x){return 4 * a * x^3 + 3 * b * x^2 + 2 * c * x + d;}
+ real x;
+ bool search = true;
+ int n;
+ void addroot(real x)
+ {
+ bool exist = false;
+ for (int i = 0; i < roots.length; ++i) {
+ if(abs(roots[i]-x) < 1e-5) {exist = true; break;}
+ }
+ if(!exist) roots.push(x);
+ }
+ for(int i = 0; i < zroots.length; ++i) {
+ if(zroots[i].y == 0 || abs(p(zroots[i].x)) < Fuzz) addroot(zroots[i].x);
+ else {
+ if(abs(zroots[i].y) < 1e-3) {
+ x = zroots[i].x;
+ search = true;
+ n = 200;
+ while(search) {
+ real tx = abs(p(x)) < Fuzz ? x : newton(iterations = n, p, prime, x);
+ if(tx < realMax) {
+ if(abs(p(tx)) < Fuzz) {
+ addroot(tx);
+ search = false;
+ } else if(n < 200) n *=2;
+ else {
+ search = false;
+ }
+ } else search = false; //It's not a real root.
+ }
+ }
+ }
+ }
+ return roots;
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(bqe,bqe)"><code></asyxml>*/
+point[] intersectionpoints(bqe bqe1, bqe bqe2)
+{/*<asyxml></code><documentation>Return the interscetion of the two conic sections whose equations are 'bqe1' and 'bqe2'.</documentation></function></asyxml>*/
+ coordsys R = bqe1.coordsys;
+ bqe lbqe1, lbqe2;
+ real[] a, b;
+ if(R != bqe2.coordsys) {
+ R = currentcoordsys;
+ a = changecoordsys(R, bqe1).a;
+ b = changecoordsys(R, bqe2).a;
+ } else {
+ a = bqe1.a;
+ b = bqe2.a;
+ }
+ static real e = 100 * sqrt(realEpsilon);
+ real[] x, y, c;
+ point[] P;
+ if(abs(a[0]-b[0]) > e || abs(a[1]-b[1]) > e || abs(a[2]-b[2]) > e) {
+ c = new real[] {-2 * a[0]*a[2]*b[0]*b[2]+a[0]*a[2]*b[1]^2 - a[0]*a[1]*b[2]*b[1]+a[1]^2 * b[0]*b[2]-
+ a[2]*a[1]*b[0]*b[1]+a[0]^2 * b[2]^2 + a[2]^2 * b[0]^2,
+ -a[2]*a[1]*b[0]*b[4]-a[2]*a[4]*b[0]*b[1]-a[1]*a[3]*b[2]*b[1]+2 * a[0]*a[2]*b[1]*b[4]-
+ a[0]*a[1]*b[2]*b[4]+a[1]^2 * b[2]*b[3]-2 * a[2]*a[3]*b[0]*b[2]-2 * a[0]*a[2]*b[2]*b[3]+
+ a[2]*a[3]*b[1]^2 - a[2]*a[1]*b[1]*b[3]+2 * a[1]*a[4]*b[0]*b[2]+2 * a[2]^2 * b[0]*b[3]-
+ a[0]*a[4]*b[2]*b[1]+2 * a[0]*a[3]*b[2]^2,
+ -a[3]*a[4]*b[2]*b[1]+a[2]*a[5]*b[1]^2 - a[1]*a[5]*b[2]*b[1]-a[1]*a[3]*b[2]*b[4]+
+ a[1]^2 * b[2]*b[5]-2 * a[2]*a[3]*b[2]*b[3]+2 * a[2]^2 * b[0]*b[5]+2 * a[0]*a[5]*b[2]^2 + a[3]^2 * b[2]^2-
+ 2 * a[2]*a[5]*b[0]*b[2]+2 * a[1]*a[4]*b[2]*b[3]-a[2]*a[4]*b[1]*b[3]-2 * a[0]*a[2]*b[2]*b[5]+
+ a[2]^2 * b[3]^2 + 2 * a[2]*a[3]*b[1]*b[4]-a[2]*a[4]*b[0]*b[4]+a[4]^2 * b[0]*b[2]-a[2]*a[1]*b[3]*b[4]-
+ a[2]*a[1]*b[1]*b[5]-a[0]*a[4]*b[2]*b[4]+a[0]*a[2]*b[4]^2,
+ -a[4]*a[5]*b[2]*b[1]+a[2]*a[3]*b[4]^2 + 2 * a[3]*a[5]*b[2]^2 - a[2]*a[1]*b[4]*b[5]-
+ a[2]*a[4]*b[3]*b[4]+2 * a[2]^2 * b[3]*b[5]-2 * a[2]*a[3]*b[2]*b[5]-a[3]*a[4]*b[2]*b[4]-
+ 2 * a[2]*a[5]*b[2]*b[3]-a[2]*a[4]*b[1]*b[5]+2 * a[1]*a[4]*b[2]*b[5]-a[1]*a[5]*b[2]*b[4]+
+ a[4]^2 * b[2]*b[3]+2 * a[2]*a[5]*b[1]*b[4],
+ -2 * a[2]*a[5]*b[2]*b[5]+a[4]^2 * b[2]*b[5]+a[5]^2 * b[2]^2 - a[4]*a[5]*b[2]*b[4]+a[2]*a[5]*b[4]^2+
+ a[2]^2 * b[5]^2 - a[2]*a[4]*b[4]*b[5]};
+ x = realquarticroots(c[0], c[1], c[2], c[3], c[4]);
+ } else {
+ if(abs(b[4]-a[4]) > e){
+ real D = (b[4]-a[4])^2;
+ c = new real[] {(a[0]*b[4]^2 + (-a[1]*b[3]-2 * a[0]*a[4]+a[1]*a[3]) * b[4]+a[2]*b[3]^2+
+ (a[1]*a[4]-2 * a[2]*a[3]) * b[3]+a[0]*a[4]^2 - a[1]*a[3]*a[4]+a[2]*a[3]^2)/D,
+ -((a[1]*b[4]-2 * a[2]*b[3]-a[1]*a[4]+2 * a[2]*a[3]) * b[5]-a[3]*b[4]^2 + (a[4]*b[3]-a[1]*a[5]+a[3]*a[4]) * b[4]+(2 * a[2]*a[5]-a[4]^2) * b[3]+(a[1]*a[4]-2 * a[2]*a[3]) * a[5])/D,
+ a[2]*(a[5]-b[5])^2/D + a[4]*(a[5]-b[5])/(b[4]-a[4]) + a[5]};
+ x = quadraticroots(c[0], c[1], c[2]);
+ } else {
+ if(abs(a[3]-b[3]) > e) {
+ real D = b[3]-a[3];
+ c = new real[] {a[2], (-a[1]*b[5] + a[4]*b[3] + a[1]*a[5] - a[3]*a[4])/D,
+ a[0]*(a[5]-b[5])^2/D^2 + a[3]*(a[5]-b[5])/D + a[5]};
+ y = quadraticroots(c[0], c[1], c[2]);
+ for (int i = 0; i < y.length; ++i) {
+ c = new real[] {a[0], a[1]*y[i]+a[3], a[2]*y[i]^2 + a[4]*y[i]+a[5]};
+ x = quadraticroots(c[0], c[1], c[2]);
+ for (int j = 0; j < x.length; ++j) {
+ if(abs(b[0]*x[j]^2 + b[1]*x[j]*y[i]+b[2]*y[i]^2 + b[3]*x[j]+b[4]*y[i]+b[5]) < 1e-5)
+ P.push(point(R, (x[j], y[i])));
+ }
+ }
+ return P;
+ } else {
+ if(abs(a[5]-b[5]) < e) abort("intersectionpoints: intersection of identical conics.");
+ }
+ }
+ }
+ for (int i = 0; i < x.length; ++i) {
+ c = new real[] {a[2], a[1]*x[i]+a[4], a[0]*x[i]^2 + a[3]*x[i]+a[5]};
+ y = quadraticroots(c[0], c[1], c[2]);
+ for (int j = 0; j < y.length; ++j) {
+ if(abs(b[0]*x[i]^2 + b[1]*x[i]*y[j]+b[2]*y[j]^2 + b[3]*x[i]+b[4]*y[j]+b[5]) < 1e-5)
+ P.push(point(R, (x[i], y[j])));
+ }
+ }
+ return P;
+}
+
+/*<asyxml><struct signature="conic"><code></asyxml>*/
+struct conic
+{/*<asyxml></code><documentation></documentation><property type = "real" signature="e,p,h"><code></asyxml>*/
+ real e, p, h;/*<asyxml></code><documentation>BE CAREFUL: h = distance(F, D) and p = h * e (http://en.wikipedia.org/wiki/Ellipse)
+ While http://mathworld.wolfram.com/ takes p = distance(F,D).</documentation></property><property type = "point" signature="F"><code></asyxml>*/
+ point F;/*<asyxml></code><documentation>Focus.</documentation></property><property type = "line" signature="D"><code></asyxml>*/
+ line D;/*<asyxml></code><documentation>Directrix.</documentation></property><property type = "line" signature="l"><code></asyxml>*/
+ line[] l;/*<asyxml></code><documentation>Case of degenerated conic (not yet implemented !).</documentation></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+bool degenerate(conic c)
+{
+ return !finite(c.p) || !finite(c.h);
+}
+
+/*ANCconic conic(point, line, real)ANC*/
+conic conic(point F, line l, real e)
+{/*DOC
+ The conic section define by the eccentricity 'e', the focus 'F'
+ and the directrix 'l'.
+ Note that an eccentricity equal to 0 defines a circle centered at F,
+ with a radius equal at the distance from 'F' to 'l'.
+ If the coordinate system of 'F' and 'l' are not identical, the conic is
+ attached to 'defaultcoordsys'.
+ DOC*/
+ if(e < 0) abort("conic: 'e' can't be negative.");
+ conic oc;
+ point[] P = standardizecoordsys(F, l.A, l.B);
+ line ll;
+ ll = line(P[1], P[2]);
+ oc.e = e < epsgeo ? 0 : e; // Handle case of circle.
+ oc.F = P[0];
+ oc.D = ll;
+ oc.h = distance(P[0], ll);
+ oc.p = abs(e) < epsgeo ? oc.h : e * oc.h;
+ return oc;
+}
+
+/*<asyxml><struct signature="circle"><code></asyxml>*/
+struct circle
+{/*<asyxml></code><documentation>All the calculus with this structure will be as exact as Asymptote can do.
+ For a full precision, you must not cast 'circle' to 'path' excepted for drawing routines.</documentation></asyxml>*/
+ /*<asyxml><property type = "point" signature="C"><code></asyxml>*/
+ point C;/*<asyxml></code><documentation>Center</documentation></property><property><code></asyxml>*/
+ real r;/*<asyxml></code><documentation>Radius</documentation></property><property><code></asyxml>*/
+ line l;/*<asyxml></code><documentation>If the radius is infinite, this line is used instead of circle.</documentation></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+bool degenerate(circle c)
+{
+ return !finite(c.r);
+}
+
+line line(circle c){
+ if(finite(c.r)) abort("Circle can not be casted to line here.");
+ return c.l;
+}
+
+/*<asyxml><struct signature="ellipse"><code></asyxml>*/
+struct ellipse
+{/*<asyxml></code><documentation>Look at <html><a href = "http://mathworld.wolfram.com/Ellipse.html">http://mathworld.wolfram.com/Ellipse.html</a></html></documentation></asyxml>*/
+ /*<asyxml><property type = "point" signature="F1,F2,C"><code></asyxml>*/
+ restricted point F1,F2,C;/*<asyxml></code><documentation>Foci and center.</documentation></property><property type = "real" signature="a,b,c,e,p"><code></asyxml>*/
+ restricted real a,b,c,e,p;/*<asyxml></code></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Value is degrees(F1 - F2).</documentation></property><property type = "line" signature="D1,D2"><code></asyxml>*/
+ restricted line D1,D2;/*<asyxml></code><documentation>Directrices.</documentation></property><property type = "line" signature="l"><code></asyxml>*/
+ line l;/*<asyxml></code><documentation>If one axis is infinite, this line is used instead of ellipse.</documentation></property></asyxml>*/
+ /*<asyxml><method type = "void" signature="init(point,point,real)"><code></asyxml>*/
+ void init(point f1, point f2, real a)
+ {/*<asyxml></code><documentation>Ellipse given by foci and semimajor axis</documentation></method></asyxml>*/
+ point[] P = standardizecoordsys(f1, f2);
+ this.F1 = P[0];
+ this.F2 = P[1];
+ this.angle = abs(P[1]-P[0]) < 10 * epsgeo ? 0 : degrees(P[1]-P[0]);
+ this.C = (P[0] + P[1])/2;
+ this.a = a;
+ if(!finite(a)) {
+ this.l = line(P[0], P[1]);
+ this.b = infinity;
+ this.e = 0;
+ this.c = 0;
+ } else {
+ this.c = abs(C - P[0]);
+ this.b = this.c < epsgeo ? a : sqrt(a^2 - c^2); // Handle case of circle.
+ this.e = this.c < epsgeo ? 0 : this.c/a; // Handle case of circle.
+ if(this.e >= 1) abort("ellipse.init: wrong parameter: e >= 1.");
+ this.p = a * (1 - this.e^2);
+ if (this.c != 0) {// directrix is not set for a circle.
+ point A = this.C + (a^2/this.c) * unit(P[0]-this.C);
+ this.D1 = line(A, A + rotateO(90) * unit(A - this.C));
+ this.D2 = reverse(rotate(180, C) * D1);
+ }
+ }
+ }
+}/*<asyxml></struct></asyxml>*/
+
+bool degenerate(ellipse el)
+{
+ return (!finite(el.a) || !finite(el.b));
+}
+
+/*<asyxml><struct signature="parabola"><code></asyxml>*/
+struct parabola
+{/*<asyxml></code><documentation>Look at <html><a href = "http://mathworld.wolfram.com/Parabola.html">http://mathworld.wolfram.com/Parabola.html</a></html></documentation><property type = "point" signature="F,V"><code></asyxml>*/
+ restricted point F,V;/*<asyxml></code><documentation>Focus and vertex</documentation></property><property type = "real" signature="a,p,e = 1"><code></asyxml>*/
+ restricted real a,p,e = 1;/*<asyxml></code></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Angle, in degrees, of the line (FV).</documentation></property><property type = "line" signature="D"><code></asyxml>*/
+ restricted line D;/*<asyxml></code><documentation>Directrix</documentation></property><property type = "pair" signature="bmin,bmax"><code></asyxml>*/
+ pair bmin, bmax;/*<asyxml></code><documentation>The (left, bottom) and (right, top) coordinates of region bounding box for drawing the parabola.
+ If unset the current picture bounding box is used instead.</documentation></property></asyxml>*/
+
+ /*<asyxml><method type = "void" signature="init(point,line)"><code></asyxml>*/
+ void init(point F, line directrix)
+ {/*<asyxml></code><documentation>Parabola given by focus and directrix.</documentation></method></asyxml>*/
+ point[] P = standardizecoordsys(F, directrix.A, directrix.B);
+ line l = line(P[1], P[2]);
+ this.F = P[0];
+ this.D = l;
+ this.a = distance(P[0], l)/2;
+ this.p = 2 * a;
+ this.V = 0.5 * (F + projection(D) * P[0]);
+ this.angle = degrees(F - V);
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><struct signature="hyperbola"><code></asyxml>*/
+struct hyperbola
+{/*<asyxml></code><documentation><html>Look at <a href = "http://mathworld.wolfram.com/Hyperbola.html">http://mathworld.wolfram.com/Hyperbola.html</a></html></documentation><property type = "point" signature="F1,F2"><code></asyxml>*/
+ restricted point F1,F2;/*<asyxml></code><documentation>Foci.</documentation></property><property type = "point" signature="C,V1,V2"><code></asyxml>*/
+ restricted point C,V1,V2;/*<asyxml></code><documentation>Center and vertices.</documentation></property><property type = "real" signature="a,b,c,e,p"><code></asyxml>*/
+ restricted real a,b,c,e,p;/*<asyxml></code><documentation></documentation></property><property type = "real" signature="angle"><code></asyxml>*/
+ restricted real angle;/*<asyxml></code><documentation>Angle,in degrees,of the line (F1F2).</documentation></property><property type = "line" signature="D1,D2,A1,A2"><code></asyxml>*/
+ restricted line D1,D2,A1,A2;/*<asyxml></code><documentation>Directrices and asymptotes.</documentation></property><property type = "pair" signature="bmin,bmax"><code></asyxml>*/
+ pair bmin, bmax; /*<asyxml></code><documentation>The (left, bottom) and (right, top) coordinates of region bounding box for drawing the hyperbola.
+ If unset the current picture bounding box is used instead.</documentation></property></asyxml>*/
+
+ /*<asyxml><method type = "void" signature="init(point,point,real)"><code></asyxml>*/
+ void init(point f1, point f2, real a)
+ {/*<asyxml></code><documentation>Hyperbola given by foci and semimajor axis.</documentation></method></asyxml>*/
+ point[] P = standardizecoordsys(f1, f2);
+ this.F1 = P[0];
+ this.F2 = P[1];
+ this.angle = degrees(F2 - F1);
+ this.a = a;
+ this.C = (P[0] + P[1])/2;
+ this.c = abs(C - P[0]);
+ this.e = this.c/a;
+ if(this.e <= 1) abort("hyperbola.init: wrong parameter: e <= 1.");
+ this.b = a * sqrt(this.e^2 - 1);
+ this.p = a * (this.e^2 - 1);
+ point A = this.C + (a^2/this.c) * unit(P[0]-this.C);
+ this.D1 = line(A, A + rotateO(90) * unit(A - this.C));
+ this.D2 = reverse(rotate(180, C) * D1);
+ this.V1 = C + a * unit(F1 - C);
+ this.V2 = C + a * unit(F2 - C);
+ this.A1 = line(C, V1 + b * unit(rotateO(-90) * (C - V1)));
+ this.A2 = line(C, V1 + b * unit(rotateO(90) * (C - V1)));
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><variable type="int" signature="conicnodesfactor"><code></asyxml>*/
+int conicnodesfactor = 1;/*<asyxml></code><documentation>Factor for the node number of all conics.</documentation></variable></asyxml>*/
+
+/*<asyxml><variable type="int" signature="circlenodesnumberfactor"><code></asyxml>*/
+int circlenodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the node number of circles.</documentation></variable></asyxml>*/
+/*<asyxml><function type="int" signature="circlenodesnumber(real)"><code></asyxml>*/
+int circlenodesnumber(real r)
+{/*<asyxml></code><documentation>Return the number of nodes for drawing a circle of radius 'r'.</documentation></function></asyxml>*/
+ if (circlenodesnumberfactor < 100)
+ warning("circlenodesnumberfactor",
+ "variable 'circlenodesnumberfactor' may be too small.");
+ int oi = ceil(circlenodesnumberfactor * abs(r)^0.1);
+ oi = 45 * floor(oi/45);
+ return oi == 0 ? 4 : conicnodesfactor * oi;
+}
+
+/*<asyxml><function type="int" signature="circlenodesnumber(real,real,real)"><code></asyxml>*/
+int circlenodesnumber(real r, real angle1, real angle2)
+{/*<asyxml></code><documentation>Return the number of nodes to draw a circle arc.</documentation></function></asyxml>*/
+ return (r > 0) ?
+ ceil(circlenodesnumber(r) * abs(angle1 - angle2)/360) :
+ ceil(circlenodesnumber(r) * abs((1 - abs(angle1 - angle2)/360)));
+}
+
+/*<asyxml><variable type="int" signature="ellispenodesnumberfactor"><code></asyxml>*/
+int ellipsenodesnumberfactor = 250;/*<asyxml></code><documentation>Factor for the node number of ellispe (non-circle).</documentation></variable></asyxml>*/
+/*<asyxml><function type="int" signature="ellipsenodesnumber(real,real)"><code></asyxml>*/
+int ellipsenodesnumber(real a, real b)
+{/*<asyxml></code><documentation>Return the number of nodes to draw a ellipse of axis 'a' and 'b'.</documentation></function></asyxml>*/
+ if (ellipsenodesnumberfactor < 250)
+ write("ellipsenodesnumberfactor",
+ "variable 'ellipsenodesnumberfactor' maybe too small.");
+ int tmp = circlenodesnumberfactor;
+ circlenodesnumberfactor = ellipsenodesnumberfactor;
+ int oi = circlenodesnumber(max(abs(a), abs(b))/min(abs(a), abs(b)));
+ circlenodesnumberfactor = tmp;
+ return conicnodesfactor * oi;
+}
+
+/*<asyxml><function type="int" signature="ellipsenodesnumber(real,real,real)"><code></asyxml>*/
+int ellipsenodesnumber(real a, real b, real angle1, real angle2, bool dir)
+{/*<asyxml></code><documentation>Return the number of nodes to draw an ellipse arc.</documentation></function></asyxml>*/
+ real d;
+ real da = angle2 - angle1;
+ if(dir) {
+ d = angle1 < angle2 ? da : 360 + da;
+ } else {
+ d = angle1 < angle2 ? -360 + da : da;
+ }
+ int n = floor(ellipsenodesnumber(a, b) * abs(d)/360);
+ return n < 5 ? 5 : n;
+}
+
+/*<asyxml><variable type="int" signature="parabolanodesnumberfactor"><code></asyxml>*/
+int parabolanodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the number of nodes of parabolas.</documentation></variable></asyxml>*/
+/*<asyxml><function type="int" signature="parabolanodesnumber(parabola,real,real)"><code></asyxml>*/
+int parabolanodesnumber(parabola p, real angle1, real angle2)
+{/*<asyxml></code><documentation>Return the number of nodes for drawing a parabola.</documentation></function></asyxml>*/
+ return conicnodesfactor * floor(0.01 * parabolanodesnumberfactor * abs(angle1 - angle2));
+}
+
+/*<asyxml><variable type="int" signature="hyperbolanodesnumberfactor"><code></asyxml>*/
+int hyperbolanodesnumberfactor = 100;/*<asyxml></code><documentation>Factor for the number of nodes of hyperbolas.</documentation></variable></asyxml>*/
+/*<asyxml><function type="int" signature="hyperbolanodesnumber(hyperbola,real,real)"><code></asyxml>*/
+int hyperbolanodesnumber(hyperbola h, real angle1, real angle2)
+{/*<asyxml></code><documentation>Return the number of nodes for drawing an hyperbola.</documentation></function></asyxml>*/
+ return conicnodesfactor * floor(0.01 * hyperbolanodesnumberfactor * abs(angle1 - angle2)/h.e);
+}
+
+/*<asyxml><operator type = "conic" signature="+(conic,explicit point)"><code></asyxml>*/
+conic operator +(conic c, explicit point M)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return conic(c.F + M, c.D + M, c.e);
+}
+/*<asyxml><operator type = "conic" signature="-(conic,explicit point)"><code></asyxml>*/
+conic operator -(conic c, explicit point M)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return conic(c.F - M, c.D - M, c.e);
+}
+/*<asyxml><operator type = "conic" signature="+(conic,explicit pair)"><code></asyxml>*/
+conic operator +(conic c, explicit pair m)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ point M = point(c.F.coordsys, m);
+ return conic(c.F + M, c.D + M, c.e);
+}
+/*<asyxml><operator type = "conic" signature="-(conic,explicit pair)"><code></asyxml>*/
+conic operator -(conic c, explicit pair m)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ point M = point(c.F.coordsys, m);
+ return conic(c.F - M, c.D - M, c.e);
+}
+/*<asyxml><operator type = "conic" signature="+(conic,vector)"><code></asyxml>*/
+conic operator +(conic c, vector v)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return conic(c.F + v, c.D + v, c.e);
+}
+/*<asyxml><operator type = "conic" signature="-(conic,vector)"><code></asyxml>*/
+conic operator -(conic c, vector v)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return conic(c.F - v, c.D - v, c.e);
+}
+
+/*<asyxml><function type="coordsys" signature="coordsys(conic)"><code></asyxml>*/
+coordsys coordsys(conic co)
+{/*<asyxml></code><documentation>Return the coordinate system of 'co'.</documentation></function></asyxml>*/
+ return co.F.coordsys;
+}
+
+/*<asyxml><function type="conic" signature="changecoordsys(coordsys,conic)"><code></asyxml>*/
+conic changecoordsys(coordsys R, conic co)
+{/*<asyxml></code><documentation>Change the coordinate system of 'co' to 'R'</documentation></function></asyxml>*/
+ line l = changecoordsys(R, co.D);
+ point F = changecoordsys(R, co.F);
+ return conic(F, l, co.e);
+}
+
+/*<asyxml><typedef type = "polarconicroutine" return = "path" params = "conic, real, real, int, bool"><code></asyxml>*/
+typedef path polarconicroutine(conic co, real angle1, real angle2, int n, bool direction);/*<asyxml></code><documentation>Routine type used to draw conics from 'angle1' to 'angle2'</documentation></typedef></asyxml>*/
+
+/*<asyxml><function type="path" signature="arcfromfocus(conic,real,real,int,bool)"><code></asyxml>*/
+path arcfromfocus(conic co, real angle1, real angle2, int n = 400, bool direction = CCW)
+{/*<asyxml></code><documentation>Return the path of the conic section 'co' from angle1 to angle2 in degrees,
+ drawing in the given direction, with n nodes.</documentation></function></asyxml>*/
+ guide op;
+ if (n < 1) return op;
+ if (angle1 > angle2) {
+ path g = arcfromfocus(co, angle2, angle1, n, !direction);
+ return g == nullpath ? g : reverse(g);
+ }
+ point O = projection(co.D) * co.F;
+ pair i = unit(locate(co.F) - locate(O));
+ pair j = rotate(90) * i;
+ coordsys Rp = cartesiansystem(co.F, i, j);
+ real a1 = direction ? radians(angle1) : radians(angle2);
+ real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
+ real step = n == 1 ? 0 : (a2 - a1)/(n - 1);
+ real a, r;
+ for (int i = 0; i < n; ++i) {
+ a = a1 + i * step;
+ if(co.e >= 1) {
+ r = 1 - co.e * cos(a);
+ if(r > epsgeo) {
+ r = co.p/r;
+ op = op--Rp * Rp.polar(r, a);
+ }
+ } else {
+ r = co.p/(1 - co.e * cos(a));
+ op = op..Rp * Rp.polar(r, a);
+ }
+ }
+ if(co.e < 1 && abs(abs(a2 - a1) - 2 * pi) < epsgeo) op = (path)op..cycle;
+
+ return (direction ? op : op == nullpath ? op :reverse(op));
+}
+
+/*<asyxml><variable type="polarconicroutine" signature="currentpolarconicroutine"><code></asyxml>*/
+polarconicroutine currentpolarconicroutine = arcfromfocus;/*<asyxml></code><documentation>Default routine used to cast conic section to path.</documentation></variable></asyxml>*/
+
+/*<asyxml><function type="point" signature="angpoint(conic,real)"><code></asyxml>*/
+point angpoint(conic co, real angle)
+{/*<asyxml></code><documentation>Return the point of 'co' whose the angular (in degrees)
+ coordinate is 'angle' (mesured from the focus of 'co', relatively
+ to its 'natural coordinate system').</documentation></function></asyxml>*/
+ coordsys R = coordsys(co);
+ return point(R, point(arcfromfocus(co, angle, angle, 1, CCW), 0)/R);
+}
+
+/*<asyxml><operator type = "bool" signature="@(point,conic)"><code></asyxml>*/
+bool operator @(point M, conic co)
+{/*<asyxml></code><documentation>Return true iff 'M' on 'co'.</documentation></operator></asyxml>*/
+ if(co.e == 0) return abs(abs(co.F - M) - co.p) < 10 * epsgeo;
+ return abs(co.e * distance(M, co.D) - abs(co.F - M)) < 10 * epsgeo;
+}
+
+/*<asyxml><function type="coordsys" signature="coordsys(ellipse)"><code></asyxml>*/
+coordsys coordsys(ellipse el)
+{/*<asyxml></code><documentation>Return the coordinate system of 'el'.</documentation></function></asyxml>*/
+ return el.F1.coordsys;
+}
+
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(ellipse)"><code></asyxml>*/
+coordsys canonicalcartesiansystem(ellipse el)
+{/*<asyxml></code><documentation>Return the canonical cartesian system of the ellipse 'el'.</documentation></function></asyxml>*/
+ if(degenerate(el)) return cartesiansystem(el.l.A, el.l.u, el.l.v);
+ pair O = locate(el.C);
+ pair i = el.e == 0 ? el.C.coordsys.i : unit(locate(el.F1) - O);
+ pair j = rotate(90) * i;
+ return cartesiansystem(O, i, j);
+}
+
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(parabola)"><code></asyxml>*/
+coordsys canonicalcartesiansystem(parabola p)
+{/*<asyxml></code><documentation>Return the canonical cartesian system of a parabola,
+ so that Origin = vertex of 'p' and directrix: x = -a.</documentation></function></asyxml>*/
+ point A = projection(p.D) * p.F;
+ pair O = locate((A + p.F)/2);
+ pair i = unit(locate(p.F) - O);
+ pair j = rotate(90) * i;
+ return cartesiansystem(O, i, j);
+}
+
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
+coordsys canonicalcartesiansystem(hyperbola h)
+{/*<asyxml></code><documentation>Return the canonical cartesian system of an hyperbola.</documentation></function></asyxml>*/
+ pair O = locate(h.C);
+ pair i = unit(locate(h.F2) - O);
+ pair j = rotate(90) * i;
+ return cartesiansystem(O, i, j);
+}
+
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,real)"><code></asyxml>*/
+ellipse ellipse(point F1, point F2, real a)
+{/*<asyxml></code><documentation>Return the ellipse whose the foci are 'F1' and 'F2'
+ and the semimajor axis is 'a'.</documentation></function></asyxml>*/
+ ellipse oe;
+ oe.init(F1, F2, a);
+ return oe;
+}
+
+/*<asyxml><constant type = "bool" signature="byfoci,byvertices"><code></asyxml>*/
+restricted bool byfoci = true, byvertices = false;/*<asyxml></code><documentation>Constants useful for the routine 'hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)'</documentation></constant></asyxml>*/
+
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,point,real,bool)"><code></asyxml>*/
+hyperbola hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)
+{/*<asyxml></code><documentation>if 'byfoci = true':
+ return the hyperbola whose the foci are 'P1' and 'P2'
+ and the semimajor axis is 'ae'.
+ else return the hyperbola whose vertexes are 'P1' and 'P2' with eccentricity 'ae'.</documentation></function></asyxml>*/
+ hyperbola oh;
+ point[] P = standardizecoordsys(P1, P2);
+ if(byfoci) {
+ oh.init(P[0], P[1], ae);
+ } else {
+ real a = abs(P[0]-P[1])/2;
+ vector V = unit(P[0]-P[1]);
+ point F1 = P[0] + a * (ae - 1) * V;
+ point F2 = P[1]-a * (ae - 1) * V;
+ oh.init(F1, F2, a);
+ }
+ return oh;
+}
+
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,point)"><code></asyxml>*/
+ellipse ellipse(point F1, point F2, point M)
+{/*<asyxml></code><documentation>Return the ellipse passing through 'M' whose the foci are 'F1' and 'F2'.</documentation></function></asyxml>*/
+ point P[] = standardizecoordsys(false, F1, F2, M);
+ real a = abs(F1 - M) + abs(F2 - M);
+ return ellipse(F1, F2, finite(a) ? a/2 : a);
+}
+
+/*<asyxml><function type="ellipse" signature="ellipse(point,real,real,real)"><code></asyxml>*/
+ellipse ellipse(point C, real a, real b, real angle = 0)
+{/*<asyxml></code><documentation>Return the ellipse centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
+ semiminor axis 'b' along the perpendicular.</documentation></function></asyxml>*/
+ ellipse oe;
+ coordsys R = C.coordsys;
+ angle += degrees(R.i);
+ if(a < b) {angle += 90; real tmp = a; a = b; b = tmp;}
+ if(finite(a) && finite(b)) {
+ real c = sqrt(abs(a^2 - b^2));
+ point f1, f2;
+ if(abs(a - b) < epsgeo) {
+ f1 = C; f2 = C;
+ } else {
+ f1 = point(R, (locate(C) + rotate(angle) * (-c, 0))/R);
+ f2 = point(R, (locate(C) + rotate(angle) * (c, 0))/R);
+ }
+ oe.init(f1, f2, a);
+ } else {
+ if(finite(b) || !finite(a)) oe.init(C, C + R.polar(1, angle), infinity);
+ else oe.init(C, C + R.polar(1, 90 + angle), infinity);
+ }
+ return oe;
+}
+
+/*<asyxml><function type="ellipse" signature="ellipse(bqe)"><code></asyxml>*/
+ellipse ellipse(bqe bqe)
+{/*<asyxml></code><documentation>Return the ellipse a[0] * x^2 + a[1] * xy + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
+ given in the coordinate system of 'bqe' with a[i] = bque.a[i].
+ <url href = "http://mathworld.wolfram.com/QuadraticCurve.html"/>
+ <url href = "http://mathworld.wolfram.com/Ellipse.html"/>.</documentation></function></asyxml>*/
+ bqe lbqe = changecoordsys(defaultcoordsys, bqe);
+ real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
+ coordsys R = bqe.coordsys;
+ string message = "ellipse: the given equation is not an equation of an ellipse.";
+ real u = b^2 * g + d^2 * c + f^2 * a;
+ real delta = a * c * g + b * f * d + d * b * f - u;
+ if(abs(delta) < epsgeo) abort(message);
+ real j = b^2 - a * c;
+ real i = a + c;
+ real dd = j * (sgnd(c - a) * sqrt((a - c)^2 + 4 * (b^2)) - c-a);
+ real ddd = j * (-sgnd(c - a) * sqrt((a - c)^2 + 4 * (b^2)) - c-a);
+
+ if(abs(ddd) < epsgeo || abs(dd) < epsgeo ||
+ j >= -epsgeo || delta/sgnd(i) > 0) abort(message);
+
+ real x = (c * d - b * f)/j, y = (a * f - b * d)/j;
+ // real dir = abs(b) < epsgeo ? 0 : pi/2-0.5 * acot(0.5 * (c-a)/b);
+ real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
+ if(dir * (c - a) * b < 0) dir = dir < 0 ? dir + pi/2 : dir - pi/2;
+ real cd = cos(dir), sd = sin(dir);
+ real t = a * cd^2 - 2 * b * cd * sd + c * sd^2;
+ real tt = a * sd^2 + 2 * b * cd * sd + c * cd^2;
+ real gg = -g + ((d * cd - f * sd)^2)/t + ((d * sd + f * cd)^2)/tt;
+ t = t/gg; tt = tt/gg;
+ // The equation of the ellipse is t * (x - center.x)^2 + tt * (y - center.y)^2 = 1;
+ real aa, bb;
+ aa = sqrt(2 * (u - 2 * b * d * f - a * c * g)/dd);
+ bb = sqrt(2 * (u - 2 * b * d * f - a * c * g)/ddd);
+ a = t > tt ? max(aa, bb) : min(aa, bb);
+ b = t > tt ? min(aa, bb) : max(aa, bb);
+ return ellipse(point(R, (x, y)/R),
+ a, b, degrees(pi/2 - dir - angle(R.i)));
+}
+
+/*<asyxml><function type="ellipse" signature="ellipse(point,point,point,point,point)"><code></asyxml>*/
+ellipse ellipse(point M1, point M2, point M3, point M4, point M5)
+{/*<asyxml></code><documentation>Return the ellipse passing through the five points (if possible)</documentation></function></asyxml>*/
+ return ellipse(bqe(M1, M2, M3, M4, M5));
+}
+
+/*<asyxml><function type="bool" signature="inside(ellipse,point)"><code></asyxml>*/
+bool inside(ellipse el, point M)
+{/*<asyxml></code><documentation>Return 'true' iff 'M' is inside 'el'.</documentation></function></asyxml>*/
+ return abs(el.F1 - M) + abs(el.F2 - M) - 2 * el.a < -epsgeo;
+}
+
+/*<asyxml><function type="bool" signature="inside(parabola,point)"><code></asyxml>*/
+bool inside(parabola p, point M)
+{/*<asyxml></code><documentation>Return 'true' if 'M' is inside 'p'.</documentation></function></asyxml>*/
+ return distance(p.D, M) - abs(p.F - M) > epsgeo;
+}
+
+/*<asyxml><function type="parabola" signature="parabola(point,line)"><code></asyxml>*/
+parabola parabola(point F, line l)
+{/*<asyxml></code><documentation>Return the parabola whose focus is 'F' and directrix is 'l'.</documentation></function></asyxml>*/
+ parabola op;
+ op.init(F, l);
+ return op;
+}
+
+/*<asyxml><function type="parabola" signature="parabola(point,point)"><code></asyxml>*/
+parabola parabola(point F, point vertex)
+{/*<asyxml></code><documentation>Return the parabola whose focus is 'F' and vertex is 'vertex'.</documentation></function></asyxml>*/
+ parabola op;
+ point[] P = standardizecoordsys(F, vertex);
+ point A = rotate(180, P[1]) * P[0];
+ point B = A + rotateO(90) * unit(P[1]-A);
+ op.init(P[0], line(A, B));
+ return op;
+}
+
+/*<asyxml><function type="parabola" signature="parabola(point,real,real)"><code></asyxml>*/
+parabola parabola(point F, real a, real angle)
+{/*<asyxml></code><documentation>Return the parabola whose focus is F, latus rectum is 4a and
+ the angle of the axis of symmetry (in the coordinate system of F) is 'angle'.</documentation></function></asyxml>*/
+ parabola op;
+ coordsys R = F.coordsys;
+ point A = F - point(R, R.polar(2a, radians(angle)));
+ point B = A + point(R, R.polar(1, radians(90 + angle)));
+ op.init(F, line(A, B));
+ return op;
+}
+
+/*<asyxml><function type="bool" signature="isparabola(bqe)"><code></asyxml>*/
+bool isparabola(bqe bqe)
+{/*<asyxml></code><documentation>Return true iff 'bqe' is the equation of a parabola.</documentation></function></asyxml>*/
+ bqe lbqe = changecoordsys(defaultcoordsys, bqe);
+ real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
+ real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
+ return (abs(delta) > epsgeo && abs(b^2 - a * c) < epsgeo);
+}
+
+/*<asyxml><function type="parabola" signature="parabola(bqe)"><code></asyxml>*/
+parabola parabola(bqe bqe)
+{/*<asyxml></code><documentation>Return the parabola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
+ <url href = "http://mathworld.wolfram.com/QuadraticCurve.html"/>
+ <url href = "http://mathworld.wolfram.com/Parabola.html"/></documentation></function></asyxml>*/
+ bqe lbqe = changecoordsys(defaultcoordsys, bqe);
+ real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
+ string message = "parabola: the given equation is not an equation of a parabola.";
+ real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
+ if(abs(delta) < 10 * epsgeo || abs(b^2 - a * c) > 10 * epsgeo) abort(message);
+ real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
+ if(dir * (c - a) * b < 0) dir = dir < 0 ? dir + pi/2 : dir - pi/2;
+ real cd = cos(dir), sd = sin(dir);
+ real ap = a * cd^2 - 2 * b * cd * sd + c * sd^2;
+ real cp = a * sd^2 + 2 * b * cd * sd + c * cd^2;
+ real dp = d * cd - f * sd;
+ real fp = d * sd + f * cd;
+ real gp = g;
+ parabola op;
+ coordsys R = bqe.coordsys;
+ // The equation of the parabola is ap * x'^2 + cp * y'^2 + 2dp * x'+2fp * y'+gp = 0
+ if (abs(ap) < epsgeo) {/* directrix parallel to the rotated(dir) y-axis
+ equation: (y-vertex.y)^2 = 4 * a * (x-vertex)
+ */
+ pair pvertex = rotate(degrees(-dir)) * (0.5(-gp + fp^2/cp)/dp, -fp/cp);
+ real a = -0.5 * dp/cp;
+ point vertex = point(R, pvertex/R);
+ point focus = point(R, (pvertex + a * expi(-dir))/R);
+ op = parabola(focus, vertex);
+
+ } else {/* directrix parallel to the rotated(dir) x-axis
+ equation: (x-vertex)^2 = 4 * a * (y-vertex.y)
+ */
+ pair pvertex = rotate(degrees(-dir)) * (-dp/ap, 0.5 * (-gp + dp^2/ap)/fp);
+ real a = -0.5 * fp/ap;
+ point vertex = point(R, pvertex/R);
+ point focus = point(R, (pvertex + a * expi(pi/2 - dir))/R);
+ op = parabola(focus, vertex);
+ }
+ return op;
+}
+
+/*<asyxml><function type="parabola" signature="parabola(point,point,point,line)"><code></asyxml>*/
+parabola parabola(point M1, point M2, point M3, line l)
+{/*<asyxml></code><documentation>Return the parabola passing through the three points with its directix
+ parallel to the line 'l'.</documentation></function></asyxml>*/
+ coordsys R;
+ pair[] pts;
+ if (samecoordsys(M1, M2, M3)) {
+ R = M1.coordsys;
+ } else {
+ R = defaultcoordsys;
+ }
+ real gle = degrees(l);
+ coordsys Rp = cartesiansystem(R.O, rotate(gle) * R.i, rotate(gle) * R.j);
+ pts = new pair[] {coordinates(changecoordsys(Rp, M1)),
+ coordinates(changecoordsys(Rp, M2)),
+ coordinates(changecoordsys(Rp, M3))};
+ real[][] M;
+ real[] x;
+ for (int i = 0; i < 3; ++i) {
+ M[i] = new real[] {pts[i].x, pts[i].y, 1};
+ x[i] = -pts[i].x^2;
+ }
+ real[] coef = solve(M, x);
+ return parabola(changecoordsys(R, bqe(Rp, 1, 0, 0, coef[0], coef[1], coef[2])));
+}
+
+/*<asyxml><function type="parabola" signature="parabola(point,point,point,point,point)"><code></asyxml>*/
+parabola parabola(point M1, point M2, point M3, point M4, point M5)
+{/*<asyxml></code><documentation>Return the parabola passing through the five points.</documentation></function></asyxml>*/
+ return parabola(bqe(M1, M2, M3, M4, M5));
+}
+
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,real,real,real)"><code></asyxml>*/
+hyperbola hyperbola(point C, real a, real b, real angle = 0)
+{/*<asyxml></code><documentation>Return the hyperbola centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
+ semiminor axis 'b' along the perpendicular.</documentation></function></asyxml>*/
+ hyperbola oh;
+ coordsys R = C.coordsys;
+ angle += degrees(R.i);
+ real c = sqrt(a^2 + b^2);
+ point f1 = point(R, (locate(C) + rotate(angle) * (-c, 0))/R);
+ point f2 = point(R, (locate(C) + rotate(angle) * (c, 0))/R);
+ oh.init(f1, f2, a);
+ return oh;
+}
+
+/*<asyxml><function type="hyperbola" signature="hyperbola(bqe)"><code></asyxml>*/
+hyperbola hyperbola(bqe bqe)
+{/*<asyxml></code><documentation>Return the hyperbola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
+ <url href = "http://mathworld.wolfram.com/QuadraticCurve.html"/>
+ <url href = "http://mathworld.wolfram.com/Hyperbola.html"/></documentation></function></asyxml>*/
+ bqe lbqe = changecoordsys(defaultcoordsys, bqe);
+ real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
+ string message = "hyperbola: the given equation is not an equation of a hyperbola.";
+ real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
+ if(abs(delta) < 10 * epsgeo || abs(b^2 - a * c) < 0) abort(message);
+ real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
+ real cd = cos(dir), sd = sin(dir);
+ real ap = a * cd^2 - 2 * b * cd * sd + c * sd^2;
+ real cp = a * sd^2 + 2 * b * cd * sd + c * cd^2;
+ real dp = d * cd - f * sd;
+ real fp = d * sd + f * cd;
+ real gp = -g + dp^2/ap + fp^2/cp;
+ hyperbola op;
+ coordsys R = bqe.coordsys;
+ real j = b^2 - a * c;
+ point C = point(R, ((c * d - b * f)/j, (a * f - b * d)/j)/R);
+ real aa = gp/ap, bb = gp/cp;
+ real a = sqrt(abs(aa)), b = sqrt(abs(bb));
+ if(aa < 0) {dir -= pi/2; aa = a; a = b; b = aa;}
+ return hyperbola(C, a, b, degrees(-dir - angle(R.i)));
+}
+
+/*<asyxml><function type="hyperbola" signature="hyperbola(point,point,point,point,point)"><code></asyxml>*/
+hyperbola hyperbola(point M1, point M2, point M3, point M4, point M5)
+{/*<asyxml></code><documentation>Return the hyperbola passing through the five points (if possible).</documentation></function></asyxml>*/
+ return hyperbola(bqe(M1, M2, M3, M4, M5));
+}
+
+/*<asyxml><function type="hyperbola" signature="conj(hyperbola)"><code></asyxml>*/
+hyperbola conj(hyperbola h)
+{/*<asyxml></code><documentation>Conjugate.</documentation></function></asyxml>*/
+ return hyperbola(h.C, h.b, h.a, 90 + h.angle);
+}
+
+/*<asyxml><function type="circle" signature="circle(explicit point,real)"><code></asyxml>*/
+circle circle(explicit point C, real r)
+{/*<asyxml></code><documentation>Circle given by center and radius.</documentation></function></asyxml>*/
+ circle oc = new circle;
+ oc.C = C;
+ oc.r = r;
+ if(!finite(r)) oc.l = line(C, C + vector(C.coordsys, (1, 0)));
+ return oc;
+}
+
+/*<asyxml><function type="circle" signature="circle(point,point)"><code></asyxml>*/
+circle circle(point A, point B)
+{/*<asyxml></code><documentation>Return the circle of diameter AB.</documentation></function></asyxml>*/
+ real r;
+ circle oc;
+ real a = abs(A), b = abs(B);
+ if(finite(a) && finite(b)) {
+ oc = circle((A + B)/2, abs(A - B)/2);
+ } else {
+ oc.r = infinity;
+ if(finite(abs(A))) oc.l = line(A, A + unit(B));
+ else {
+ if(finite(abs(B))) oc.l = line(B, B + unit(A));
+ else if(finite(abs(A - B)/2)) oc = circle((A + B)/2, abs(A - B)/2); else
+ oc.l = line(A, B);
+ }
+ }
+ return oc;
+}
+
+/*<asyxml><function type="circle" signature="circle(segment)"><code></asyxml>*/
+circle circle(segment s)
+{/*<asyxml></code><documentation>Return the circle of diameter 's'.</documentation></function></asyxml>*/
+ return circle(s.A, s.B);
+}
+
+/*<asyxml><function type="point" signature="circumcenter(point,point,point)"><code></asyxml>*/
+point circumcenter(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the circumcenter of triangle ABC.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C);
+ coordsys R = P[0].coordsys;
+ pair a = A, b = B, c = C;
+ pair mAB = (a + b)/2;
+ pair mAC = (a + c)/2;
+ pair pp = extension(mAB, rotate(90, mAB) * a, mAC, rotate(90, mAC) * c);
+ return point(R, pp/R);
+}
+
+/*<asyxml><function type="circle" signature="circle(point,point,point)"><code></asyxml>*/
+circle circle(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the circumcircle of the triangle ABC.</documentation></function></asyxml>*/
+ if(collinear(A - B, A - C)) {
+ circle oc;
+ oc.r = infinity;
+ oc.C = (A + B + C)/3;
+ oc.l = line(oc.C, oc.C == A ? B : A);
+ return oc;
+ }
+ point c = circumcenter(A, B, C);
+ return circle(c, abs(c - A));
+}
+
+/*<asyxml><function type="circle" signature="circumcircle(point,point,point)"><code></asyxml>*/
+circle circumcircle(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the circumcircle of the triangle ABC.</documentation></function></asyxml>*/
+ return circle(A, B, C);
+}
+
+/*<asyxml><operator type = "circle" signature="*(real,explicit circle)"><code></asyxml>*/
+circle operator *(real x, explicit circle c)
+{/*<asyxml></code><documentation>Multiply the radius of 'c'.</documentation></operator></asyxml>*/
+ return finite(c.r) ? circle(c.C, x * c.r) : c;
+}
+circle operator *(int x, explicit circle c)
+{
+ return finite(c.r) ? circle(c.C, x * c.r) : c;
+}
+/*<asyxml><operator type = "circle" signature="/(explicit circle,real)"><code></asyxml>*/
+circle operator /(explicit circle c, real x)
+{/*<asyxml></code><documentation>Divide the radius of 'c'</documentation></operator></asyxml>*/
+ return finite(c.r) ? circle(c.C, c.r/x) : c;
+}
+circle operator /(explicit circle c, int x)
+{
+ return finite(c.r) ? circle(c.C, c.r/x) : c;
+}
+/*<asyxml><operator type = "circle" signature="+(explicit circle,explicit point)"><code></asyxml>*/
+circle operator +(explicit circle c, explicit point M)
+{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
+ return circle(c.C + M, c.r);
+}
+/*<asyxml><operator type = "circle" signature="-(explicit circle,explicit point)"><code></asyxml>*/
+circle operator -(explicit circle c, explicit point M)
+{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
+ return circle(c.C - M, c.r);
+}
+/*<asyxml><operator type = "circle" signature="+(explicit circle,pair)"><code></asyxml>*/
+circle operator +(explicit circle c, pair m)
+{/*<asyxml></code><documentation>Translation of 'c'.
+ 'm' represent coordinates in the coordinate system where 'c' is defined.</documentation></operator></asyxml>*/
+ return circle(c.C + m, c.r);
+}
+/*<asyxml><operator type = "circle" signature="-(explicit circle,pair)"><code></asyxml>*/
+circle operator -(explicit circle c, pair m)
+{/*<asyxml></code><documentation>Translation of 'c'.
+ 'm' represent coordinates in the coordinate system where 'c' is defined.</documentation></operator></asyxml>*/
+ return circle(c.C - m, c.r);
+}
+/*<asyxml><operator type = "circle" signature="+(explicit circle,vector)"><code></asyxml>*/
+circle operator +(explicit circle c, vector m)
+{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
+ return circle(c.C + m, c.r);
+}
+/*<asyxml><operator type = "circle" signature="-(explicit circle,vector)"><code></asyxml>*/
+circle operator -(explicit circle c, vector m)
+{/*<asyxml></code><documentation>Translation of 'c'.</documentation></operator></asyxml>*/
+ return circle(c.C - m, c.r);
+}
+/*<asyxml><operator type = "real" signature="^(point,explicit circle)"><code></asyxml>*/
+real operator ^(point M, explicit circle c)
+{/*<asyxml></code><documentation>The power of 'M' with respect to the circle 'c'</documentation></operator></asyxml>*/
+ return xpart((abs(locate(M) - locate(c.C)), c.r)^2);
+}
+/*<asyxml><operator type = "bool" signature="@(point,explicit circle)"><code></asyxml>*/
+bool operator @(point M, explicit circle c)
+{/*<asyxml></code><documentation>Return true iff 'M' is on the circle 'c'.</documentation></operator></asyxml>*/
+ return finite(c.r) ?
+ abs(abs(locate(M) - locate(c.C)) - abs(c.r)) <= 10 * epsgeo :
+ M @ c.l;
+}
+
+/*<asyxml><operator type = "ellipse" signature="cast(circle)"><code></asyxml>*/
+ellipse operator cast(circle c)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ return finite(c.r) ? ellipse(c.C, c.r, c.r, 0) : ellipse(c.l.A, c.l.B, infinity);
+}
+
+/*<asyxml><operator type = "circle" signature="cast(ellipse)"><code></asyxml>*/
+circle operator cast(ellipse el)
+{/*<asyxml></code><documentation></documentation></operator></asyxml>*/
+ circle oc;
+ bool infb = (!finite(el.a) || !finite(el.b));
+ if(!infb && abs(el.a - el.b) > epsgeo)
+ abort("Can not cast ellipse with different axis values to circle");
+ oc = circle(el.C, infb ? infinity : el.a);
+ oc.l = el.l.copy();
+ return oc;
+}
+
+/*<asyxml><operator type = "ellipse" signature="cast(conic)"><code></asyxml>*/
+ellipse operator cast(conic co)
+{/*<asyxml></code><documentation>Cast a conic to an ellipse (can be a circle).</documentation></operator></asyxml>*/
+ if(degenerate(co) && co.e < 1) return ellipse(co.l[0].A, co.l[0].B, infinity);
+ ellipse oe;
+ if(co.e < 1) {
+ real a = co.p/(1 - co.e^2);
+ real c = co.e * a;
+ vector v = co.D.v;
+ if(!sameside(co.D.A + v, co.F, co.D)) v = -v;
+ point f2 = co.F + 2 * c * v;
+ f2 = changecoordsys(co.F.coordsys, f2);
+ oe = a == 0 ? ellipse(co.F, co.p, co.p, 0) : ellipse(co.F, f2, a);
+ } else
+ abort("casting: The conic section is not an ellipse.");
+ return oe;
+}
+
+/*<asyxml><operator type = "parabola" signature="cast(conic)"><code></asyxml>*/
+parabola operator cast(conic co)
+{/*<asyxml></code><documentation>Cast a conic to a parabola.</documentation></operator></asyxml>*/
+ parabola op;
+ if(abs(co.e - 1) > epsgeo) abort("casting: The conic section is not a parabola.");
+ op.init(co.F, co.D);
+ return op;
+}
+
+/*<asyxml><operator type = "conic" signature="cast(parabola)"><code></asyxml>*/
+conic operator cast(parabola p)
+{/*<asyxml></code><documentation>Cast a parabola to a conic section.</documentation></operator></asyxml>*/
+ return conic(p.F, p.D, 1);
+}
+
+/*<asyxml><operator type = "hyperbola" signature="cast(conic)"><code></asyxml>*/
+hyperbola operator cast(conic co)
+{/*<asyxml></code><documentation>Cast a conic section to an hyperbola.</documentation></operator></asyxml>*/
+ hyperbola oh;
+ if(co.e > 1) {
+ real a = co.p/(co.e^2 - 1);
+ real c = co.e * a;
+ vector v = co.D.v;
+ if(sameside(co.D.A + v, co.F, co.D)) v = -v;
+ point f2 = co.F + 2 * c * v;
+ f2 = changecoordsys(co.F.coordsys, f2);
+ oh = hyperbola(co.F, f2, a);
+ } else
+ abort("casting: The conic section is not an hyperbola.");
+ return oh;
+}
+
+/*<asyxml><operator type = "conic" signature="cast(hyperbola)"><code></asyxml>*/
+conic operator cast(hyperbola h)
+{/*<asyxml></code><documentation>Hyperbola to conic section.</documentation></operator></asyxml>*/
+ return conic(h.F1, h.D1, h.e);
+}
+
+/*<asyxml><operator type = "conic" signature="cast(ellipse)"><code></asyxml>*/
+conic operator cast(ellipse el)
+{/*<asyxml></code><documentation>Ellipse to conic section.</documentation></operator></asyxml>*/
+ conic oc;
+ if(abs(el.c) > epsgeo) {
+ real x = el.a^2/el.c;
+ point O = (el.F1 + el.F2)/2;
+ point A = O + x * unit(el.F1 - el.F2);
+ oc = conic(el.F1, perpendicular(A, line(el.F1, el.F2)), el.e);
+ } else {//The ellipse is a circle
+ coordsys R = coordsys(el);
+ point M = el.F1 + point(R, R.polar(el.a, 0));
+ line l = line(rotate(90, M) * el.F1, M);
+ oc = conic(el.F1, l, 0);
+ }
+ if(degenerate(el)) {
+ oc.p = infinity;
+ oc.h = infinity;
+ oc.l = new line[]{el.l};
+ }
+ return oc;
+}
+
+/*<asyxml><operator type = "conic" signature="cast(circle)"><code></asyxml>*/
+conic operator cast(circle c)
+{/*<asyxml></code><documentation>Circle to conic section.</documentation></operator></asyxml>*/
+ return (conic)((ellipse)c);
+}
+
+/*<asyxml><operator type = "circle" signature="cast(conic)"><code></asyxml>*/
+circle operator cast(conic c)
+{/*<asyxml></code><documentation>Conic section to circle.</documentation></operator></asyxml>*/
+ ellipse el = (ellipse)c;
+ circle oc;
+ if(abs(el.a - el.b) < epsgeo) {
+ oc = circle(el.C, el.a);
+ if(degenerate(c)) oc.l = c.l[0];
+ }
+ else abort("Can not cast this conic to a circle");
+ return oc;
+}
+
+/*<asyxml><operator type = "ellipse" signature="*(transform,ellipse)"><code></asyxml>*/
+ellipse operator *(transform t, ellipse el)
+{/*<asyxml></code><documentation>Provide transform * ellipse.</documentation></operator></asyxml>*/
+ if(!degenerate(el)) {
+ point[] ep;
+ for (int i = 0; i < 360; i += 72) {
+ ep.push(t * angpoint(el, i));
+ }
+ ellipse oe = ellipse(ep[0], ep[1], ep[2], ep[3], ep[4]);
+ if(angpoint(oe, 0) != ep[0]) return ellipse(oe.F2, oe.F1, oe.a);
+ return oe;
+ }
+ return ellipse(t * el.l.A, t * el.l.B, infinity);
+}
+
+/*<asyxml><operator type = "parabola" signature="*(transform,parabola)"><code></asyxml>*/
+parabola operator *(transform t, parabola p)
+{/*<asyxml></code><documentation>Provide transform * parabola.</documentation></operator></asyxml>*/
+ point[] P;
+ P.push(t * angpoint(p, 45));
+ P.push(t * angpoint(p, -45));
+ P.push(t * angpoint(p, 180));
+ parabola op = parabola(P[0], P[1], P[2], t * p.D);
+ op.bmin = p.bmin;
+ op.bmax = p.bmax;
+
+ return op;
+}
+
+/*<asyxml><operator type = "ellipse" signature="*(transform,circle)"><code></asyxml>*/
+ellipse operator *(transform t, circle c)
+{/*<asyxml></code><documentation>Provide transform * circle.
+ For example, 'circle C = scale(2) * circle' and 'ellipse E = xscale(2) * circle' are valid
+ but 'circle C = xscale(2) * circle' is invalid.</documentation></operator></asyxml>*/
+ return t * ((ellipse)c);
+}
+
+/*<asyxml><operator type = "hyperbola" signature="*(transform,hyperbola)"><code></asyxml>*/
+hyperbola operator *(transform t, hyperbola h)
+{/*<asyxml></code><documentation>Provide transform * hyperbola.</documentation></operator></asyxml>*/
+ if (t == identity()) {
+ return h;
+ }
+
+ point[] ep;
+ for (int i = 90; i <= 270; i += 45) {
+ ep.push(t * angpoint(h, i));
+ }
+
+ hyperbola oe = hyperbola(ep[0], ep[1], ep[2], ep[3], ep[4]);
+ if(angpoint(oe, 90) != ep[0]) {
+ oe = hyperbola(oe.F2, oe.F1, oe.a);
+ }
+
+ oe.bmin = h.bmin;
+ oe.bmax = h.bmax;
+
+ return oe;
+}
+
+/*<asyxml><operator type = "conic" signature="*(transform,conic)"><code></asyxml>*/
+conic operator *(transform t, conic co)
+{/*<asyxml></code><documentation>Provide transform * conic.</documentation></operator></asyxml>*/
+ if(co.e < 1) return (t * ((ellipse)co));
+ if(co.e == 1) return (t * ((parabola)co));
+ return (t * ((hyperbola)co));
+}
+
+/*<asyxml><operator type = "ellipse" signature="*(real,ellipse)"><code></asyxml>*/
+ellipse operator *(real x, ellipse el)
+{/*<asyxml></code><documentation>Identical but more efficient (rapid) than 'scale(x, el.C) * el'.</documentation></operator></asyxml>*/
+ return degenerate(el) ? el : ellipse(el.C, x * el.a, x * el.b, el.angle);
+}
+
+/*<asyxml><operator type = "ellipse" signature="/(ellipse,real)"><code></asyxml>*/
+ellipse operator /(ellipse el, real x)
+{/*<asyxml></code><documentation>Identical but more efficient (rapid) than 'scale(1/x, el.C) * el'.</documentation></operator></asyxml>*/
+ return degenerate(el) ? el : ellipse(el.C, el.a/x, el.b/x, el.angle);
+}
+
+/*<asyxml><function type="path" signature="arcfromcenter(ellipse,real,real,int,bool)"><code></asyxml>*/
+path arcfromcenter(ellipse el, real angle1, real angle2,
+ bool direction=CCW,
+ int n=ellipsenodesnumber(el.a,el.b,angle1,angle2,direction))
+{/*<asyxml></code><documentation>Return the path of the ellipse 'el' from angle1 to angle2 in degrees,
+ drawing in the given direction, with n nodes.
+ The angles are mesured relatively to the axis (C,x-axis) where C is
+ the center of the ellipse.</documentation></function></asyxml>*/
+ if(degenerate(el)) abort("arcfromcenter: can not convert degenerated ellipse to path.");
+ if (angle1 > angle2)
+ return reverse(arcfromcenter(el, angle2, angle1, !direction, n));
+
+ guide op;
+ coordsys Rp=coordsys(el);
+ if (n < 1) return op;
+
+ interpolate join = operator ..;
+ real stretch = max(el.a/el.b, el.b/el.a);
+
+ if (stretch > 10) {
+ n *= floor(stretch/5);
+ join = operator --;
+ }
+
+ real a1 = direction ? radians(angle1) : radians(angle2);
+ real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
+ real step=(a2 - a1)/(n != 1 ? n-1 : 1);
+ real a, r;
+ real da = radians(el.angle);
+
+ for (int i=0; i < n; ++i) {
+ a = a1 + i * step;
+ r = el.b/sqrt(1 - (el.e * cos(a))^2);
+ op = join(op, Rp*Rp.polar(r, da + a));
+ }
+
+ return shift(el.C.x*Rp.i + el.C.y*Rp.j) * (direction ? op : reverse(op));
+}
+
+/*<asyxml><function type="path" signature="arcfromcenter(hyperbola,real,real,int,bool)"><code></asyxml>*/
+path arcfromcenter(hyperbola h, real angle1, real angle2,
+ int n = hyperbolanodesnumber(h, angle1, angle2),
+ bool direction = CCW)
+{/*<asyxml></code><documentation>Return the path of the hyperbola 'h' from angle1 to angle2 in degrees,
+ drawing in the given direction, with n nodes.
+ The angles are mesured relatively to the axis (C, x-axis) where C is
+ the center of the hyperbola.</documentation></function></asyxml>*/
+ guide op;
+ coordsys Rp = coordsys(h);
+ if (n < 1) return op;
+ if (angle1 > angle2) {
+ path g = reverse(arcfromcenter(h, angle2, angle1, n, !direction));
+ return g == nullpath ? g : reverse(g);
+ }
+ real a1 = direction ? radians(angle1) : radians(angle2);
+ real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
+ real step = (a2 - a1)/(n != 1 ? n - 1 : 1);
+ real a, r;
+ typedef guide interpolate(... guide[]);
+ interpolate join = operator ..;
+ real da = radians(h.angle);
+ for (int i = 0; i < n; ++i) {
+ a = a1 + i * step;
+ r = (h.b * cos(a))^2 - (h.a * sin(a))^2;
+ if(r > epsgeo) {
+ r = sqrt(h.a^2 * h.b^2/r);
+ op = join(op, Rp * Rp.polar(r, a + da));
+ join = operator ..;
+ } else join = operator --;
+ }
+ return shift(h.C.x * Rp.i + h.C.y * Rp.j)*
+ (direction ? op : op == nullpath ? op : reverse(op));
+}
+
+/*<asyxml><function type="path" signature="arcfromcenter(explicit conic,real,real,int,bool)"><code></asyxml>*/
+path arcfromcenter(explicit conic co, real angle1, real angle2,
+ int n, bool direction = CCW)
+{/*<asyxml></code><documentation>Use arcfromcenter(ellipse, ...) or arcfromcenter(hyperbola, ...) depending of
+ the eccentricity of 'co'.</documentation></function></asyxml>*/
+ path g;
+ if(co.e < 1)
+ g = arcfromcenter((ellipse)co, angle1,
+ angle2, direction, n);
+ else if(co.e > 1)
+ g = arcfromcenter((hyperbola)co, angle1,
+ angle2, n, direction);
+ else abort("arcfromcenter: does not exist for a parabola.");
+ return g;
+}
+
+/*<asyxml><constant type = "polarconicroutine" signature="fromCenter"><code></asyxml>*/
+restricted polarconicroutine fromCenter = arcfromcenter;/*<asyxml></code><documentation></documentation></constant></asyxml>*/
+/*<asyxml><constant type = "polarconicroutine" signature="fromFocus"><code></asyxml>*/
+restricted polarconicroutine fromFocus = arcfromfocus;/*<asyxml></code><documentation></documentation></constant></asyxml>*/
+
+/*<asyxml><function type="bqe" signature="equation(ellipse)"><code></asyxml>*/
+bqe equation(ellipse el)
+{/*<asyxml></code><documentation>Return the coefficients of the equation of the ellipse in its coordinate system:
+ bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
+ One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.</documentation></function></asyxml>*/
+ pair[] pts;
+ for (int i = 0; i < 360; i += 72)
+ pts.push(locate(angpoint(el, i)));
+
+ real[][] M;
+ real[] x;
+ for (int i = 0; i < 5; ++i) {
+ M[i] = new real[] {pts[i].x * pts[i].y, pts[i].y^2, pts[i].x, pts[i].y, 1};
+ x[i] = -pts[i].x^2;
+ }
+ real[] coef = solve(M, x);
+ bqe bqe = changecoordsys(coordsys(el),
+ bqe(defaultcoordsys,
+ 1, coef[0], coef[1], coef[2], coef[3], coef[4]));
+ bqe.a = approximate(bqe.a);
+ return bqe;
+}
+
+/*<asyxml><function type="bqe" signature="equation(parabola)"><code></asyxml>*/
+bqe equation(parabola p)
+{/*<asyxml></code><documentation>Return the coefficients of the equation of the parabola in its coordinate system.
+ bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
+ One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.</documentation></function></asyxml>*/
+ coordsys R = canonicalcartesiansystem(p);
+ parabola tp = changecoordsys(R, p);
+ point A = projection(tp.D) * point(R, (0, 0));
+ real a = abs(A);
+ return changecoordsys(coordsys(p),
+ bqe(R, 0, 0, 1, -4 * a, 0, 0));
+}
+
+/*<asyxml><function type="bqe" signature="equation(hyperbola)"><code></asyxml>*/
+bqe equation(hyperbola h)
+{/*<asyxml></code><documentation>Return the coefficients of the equation of the hyperbola in its coordinate system.
+ bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
+ One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.</documentation></function></asyxml>*/
+ coordsys R = canonicalcartesiansystem(h);
+ return changecoordsys(coordsys(h),
+ bqe(R, 1/h.a^2, 0, -1/h.b^2, 0, 0, -1));
+}
+
+/*<asyxml><operator type = "path" signature="cast(ellipse)"><code></asyxml>*/
+path operator cast(ellipse el)
+{/*<asyxml></code><documentation>Cast ellipse to path.</documentation></operator></asyxml>*/
+ if(degenerate(el))
+ abort("Casting degenerated ellipse to path is not possible.");
+ int n = el.e == 0 ? circlenodesnumber(el.a) : ellipsenodesnumber(el.a, el.b);
+ return arcfromcenter(el, 0.0, 360, CCW, n)&cycle;
+}
+
+/*<asyxml><operator type = "path" signature="cast(circle)"><code></asyxml>*/
+path operator cast(circle c)
+{/*<asyxml></code><documentation>Cast circle to path.</documentation></operator></asyxml>*/
+ return (path)((ellipse)c);
+}
+
+/*<asyxml><function type="real[]" signature="bangles(picture,parabola)"><code></asyxml>*/
+real[] bangles(picture pic = currentpicture, parabola p)
+{/*<asyxml></code><documentation>Return the array {ma, Ma} where 'ma' and 'Ma' are respectively
+ the smaller and the larger angles for which the parabola 'p' is included
+ in the bounding box of the picture 'pic'.</documentation></function></asyxml>*/
+ pair bmin, bmax;
+ pair[] b;
+ if (p.bmin == p.bmax) {
+ bmin = pic.userMin();
+ bmax = pic.userMax();
+ } else {
+ bmin = p.bmin;bmax = p.bmax;
+ }
+ if(bmin.x == bmax.x || bmin.y == bmax.y || !finite(abs(bmin)) || !finite(abs(bmax)))
+ return new real[] {0, 0};
+ b[0] = bmin;
+ b[1] = (bmax.x, bmin.y);
+ b[2] = bmax;
+ b[3] = (bmin.x, bmax.y);
+ real[] eq = changecoordsys(defaultcoordsys, equation(p)).a;
+ pair[] inter;
+ for (int i = 0; i < 4; ++i) {
+ pair[] tmp = intersectionpoints(b[i], b[(i + 1)%4], eq);
+ for (int j = 0; j < tmp.length; ++j) {
+ if(dot(b[i]-tmp[j], b[(i + 1)%4]-tmp[j]) <= epsgeo)
+ inter.push(tmp[j]);
+ }
+ }
+ pair F = p.F, V = p.V;
+ real d = degrees(F - V);
+ real[] a = sequence(new real(int n){
+ return (360 - d + degrees(inter[n]-F))%360;
+ }, inter.length);
+ real ma = a.length != 0 ? min(a) : 0, Ma= a.length != 0 ? max(a) : 0;
+ return new real[] {ma, Ma};
+}
+
+/*<asyxml><function type="real[][]" signature="bangles(picture,hyperbola)"><code></asyxml>*/
+real[][] bangles(picture pic = currentpicture, hyperbola h)
+{/*<asyxml></code><documentation>Return the array {{ma1, Ma1}, {ma2, Ma2}} where 'maX' and 'MaX' are respectively
+ the smaller and the bigger angles (from h.FX) for which the hyperbola 'h' is included
+ in the bounding box of the picture 'pic'.</documentation></function></asyxml>*/
+ pair bmin, bmax;
+ pair[] b;
+ if (h.bmin == h.bmax) {
+ bmin = pic.userMin();
+ bmax = pic.userMax();
+ } else {
+ bmin = h.bmin;bmax = h.bmax;
+ }
+ if(bmin.x == bmax.x || bmin.y == bmax.y || !finite(abs(bmin)) || !finite(abs(bmax)))
+ return new real[][] {{0, 0}, {0, 0}};
+ b[0] = bmin;
+ b[1] = (bmax.x, bmin.y);
+ b[2] = bmax;
+ b[3] = (bmin.x, bmax.y);
+ real[] eq = changecoordsys(defaultcoordsys, equation(h)).a;
+ pair[] inter0, inter1;
+ pair C = locate(h.C);
+ pair F1 = h.F1;
+ for (int i = 0; i < 4; ++i) {
+ pair[] tmp = intersectionpoints(b[i], b[(i + 1)%4], eq);
+ for (int j = 0; j < tmp.length; ++j) {
+ if(dot(b[i]-tmp[j], b[(i + 1)%4]-tmp[j]) <= epsgeo) {
+ if(dot(F1 - C, tmp[j]-C) > 0) inter0.push(tmp[j]);
+ else inter1.push(tmp[j]);
+ }
+ }
+ }
+ real d = degrees(F1 - C);
+ real[] ma, Ma;
+ pair[][] inter = new pair[][] {inter0, inter1};
+ for (int i = 0; i < 2; ++i) {
+ real[] a = sequence(new real(int n){
+ return (360 - d + degrees(inter[i][n]-F1))%360;
+ }, inter[i].length);
+ ma[i] = a.length != 0 ? min(a) : 0;
+ Ma[i] = a.length != 0 ? max(a) : 0;
+ }
+ return new real[][] {{ma[0], Ma[0]}, {ma[1], Ma[1]}};
+}
+
+/*<asyxml><operator type = "path" signature="cast(parabola)"><code></asyxml>*/
+path operator cast(parabola p)
+{/*<asyxml></code><documentation>Cast parabola to path.
+ If possible, the returned path is restricted to the actual bounding box
+ of the current picture if the variables 'p.bmin' and 'p.bmax' are not set else
+ the bounding box of box(p.bmin, p.bmax) is used instead.</documentation></operator></asyxml>*/
+ real[] bangles = bangles(p);
+ int n = parabolanodesnumber(p, bangles[0], bangles[1]);
+ return arcfromfocus(p, bangles[0], bangles[1], n, CCW);
+}
+
+
+/*<asyxml><function type="void" signature="draw(picture,Label,circle,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", circle c,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ margin margin = NoMargin, Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ if(degenerate(c)) draw(pic, L, c.l, align, p, arrow, legend, marker);
+ else draw(pic, L, (path)c, align, p, arrow, bar, margin, legend, marker);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,ellipse,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", ellipse el,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ margin margin = NoMargin, Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation></documentation>Draw the ellipse 'el' if it is not degenerated else draw 'el.l'.</function></asyxml>*/
+ if(degenerate(el)) draw(pic, L, el.l, align, p, arrow, legend, marker);
+ else draw(pic, L, (path)el, align, p, arrow, bar, margin, legend, marker);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,parabola,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", parabola parabola,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ margin margin = NoMargin, Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw the parabola 'p' on 'pic' without (if possible) altering the
+ size of picture pic.</documentation></function></asyxml>*/
+ pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
+ // Reduce the bounds by the size of the pen and the margins.
+ m -= min(p); M -= max(p);
+ parabola.bmin = inverse(t) * m;
+ parabola.bmax = inverse(t) * M;
+ picture tmp;
+ path pp = t * ((path) (T * parabola));
+
+ if (pp != nullpath) {
+ draw(tmp, L, pp, align, p, arrow, bar, NoMargin, legend, marker);
+ add(f, tmp.fit());
+ }
+ }, true);
+
+ pair m = pic.userMin(), M = pic.userMax();
+ if(m != M) {
+ pic.addBox(truepoint(SW), truepoint(NE));
+ }
+}
+
+/*<asyxml><operator type = "path" signature="cast(hyperbola)"><code></asyxml>*/
+path operator cast(hyperbola h)
+{/*<asyxml></code><documentation>Cast hyperbola to path.
+ If possible, the returned path is restricted to the actual bounding box
+ of the current picture unless the variables 'h.bmin' and 'h.bmax'
+ are set; in this case the bounding box of box(h.bmin, h.bmax) is used instead.
+ Only the branch on the side of 'h.F1' is considered.</documentation></operator></asyxml>*/
+ real[][] bangles = bangles(h);
+ int n = hyperbolanodesnumber(h, bangles[0][0], bangles[0][1]);
+ return arcfromfocus(h, bangles[0][0], bangles[0][1], n, CCW);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,hyperbola,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", hyperbola h,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ margin margin = NoMargin, Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw the hyperbola 'h' on 'pic' without (if possible) altering the
+ size of the picture pic.</documentation></function></asyxml>*/
+ pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
+ // Reduce the bounds by the size of the pen and the margins.
+ m -= min(p); M -= max(p);
+ h.bmin = inverse(t) * m;
+ h.bmax = inverse(t) * M;
+ path hp;
+
+ picture tmp;
+ hp = t * ((path) (T * h));
+ if (hp != nullpath) {
+ draw(tmp, L, hp, align, p, arrow, bar, NoMargin, legend, marker);
+ }
+
+ hyperbola ht = hyperbola(h.F2, h.F1, h.a);
+ ht.bmin = h.bmin;
+ ht.bmax = h.bmax;
+
+ hp = t * ((path) (T * ht));
+ if (hp != nullpath) {
+ draw(tmp, "", hp, align, p, arrow, bar, NoMargin, marker);
+ }
+
+ add(f, tmp.fit());
+ }, true);
+
+ pair m = pic.userMin(), M = pic.userMax();
+ if(m != M)
+ pic.addBox(truepoint(SW), truepoint(NE));
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,explicit conic,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", explicit conic co,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None,
+ margin margin = NoMargin, Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation>Use one of the routine 'draw(ellipse, ...)',
+ 'draw(parabola, ...)' or 'draw(hyperbola, ...)' depending of the value of eccentricity of 'co'.</documentation></function></asyxml>*/
+ if(co.e == 0)
+ draw(pic, L, (circle)co, align, p, arrow, bar, margin, legend, marker);
+ else
+ if(co.e < 1) draw(pic, L, (ellipse)co, align, p, arrow, bar, margin, legend, marker);
+ else
+ if(co.e == 1) draw(pic, L, (parabola)co, align, p, arrow, bar, margin, legend, marker);
+ else
+ if(co.e > 1) draw(pic, L, (hyperbola)co, align, p, arrow, bar, margin, legend, marker);
+ else abort("draw: unknown conic.");
+}
+
+/*<asyxml><function type="int" signature="conicnodesnumber(conic,real,real)"><code></asyxml>*/
+int conicnodesnumber(conic co, real angle1, real angle2, bool dir = CCW)
+{/*<asyxml></code><documentation>Return the number of node to draw a conic arc.</documentation></function></asyxml>*/
+ int oi;
+ if(co.e == 0) {
+ circle c = (circle)co;
+ oi = circlenodesnumber(c.r, angle1, angle2);
+ } else if(co.e < 1) {
+ ellipse el = (ellipse)co;
+ oi = ellipsenodesnumber(el.a, el.b, angle1, angle2, dir);
+ } else if(co.e == 1) {
+ parabola p = (parabola)co;
+ oi = parabolanodesnumber(p, angle1, angle2);
+ } else {
+ hyperbola h = (hyperbola)co;
+ oi = hyperbolanodesnumber(h, angle1, angle2);
+ }
+ return oi;
+}
+
+/*<asyxml><operator type = "path" signature="cast(conic)"><code></asyxml>*/
+path operator cast(conic co)
+{/*<asyxml></code><documentation>Cast conic section to path.</documentation></operator></asyxml>*/
+ if(co.e < 1) return (path)((ellipse)co);
+ if(co.e == 1) return (path)((parabola)co);
+ return (path)((hyperbola)co);
+}
+
+/*<asyxml><function type="bqe" signature="equation(explicit conic)"><code></asyxml>*/
+bqe equation(explicit conic co)
+{/*<asyxml></code><documentation>Return the coefficients of the equation of conic section in its coordinate system:
+ bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
+ One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.</documentation></function></asyxml>*/
+ bqe obqe;
+ if(co.e == 0)
+ obqe = equation((circle)co);
+ else
+ if(co.e < 1) obqe = equation((ellipse)co);
+ else
+ if(co.e == 1) obqe = equation((parabola)co);
+ else
+ if(co.e > 1) obqe = equation((hyperbola)co);
+ else abort("draw: unknown conic.");
+ return obqe;
+}
+
+/*<asyxml><function type="string" signature="conictype(bqe)"><code></asyxml>*/
+string conictype(bqe bqe)
+{/*<asyxml></code><documentation>Returned values are "ellipse" or "parabola" or "hyperbola"
+ depending of the conic section represented by 'bqe'.</documentation></function></asyxml>*/
+ bqe lbqe = changecoordsys(defaultcoordsys, bqe);
+ string os = "degenerated";
+ real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
+ real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
+ if(abs(delta) < 10 * epsgeo) return os;
+ real J = a * c - b^2;
+ real I = a + c;
+ if(J > epsgeo) {
+ if(delta/I < -epsgeo);
+ os = "ellipse";
+ } else {
+ if(abs(J) < epsgeo) os = "parabola"; else os = "hyperbola";
+ }
+ return os;
+}
+
+/*<asyxml><function type="conic" signature="conic(point,point,point,point,point)"><code></asyxml>*/
+conic conic(point M1, point M2, point M3, point M4, point M5)
+{/*<asyxml></code><documentation>Return the conic passing through 'M1', 'M2', 'M3', 'M4' and 'M5' if the conic is not degenerated.</documentation></function></asyxml>*/
+ bqe bqe = bqe(M1, M2, M3, M4, M5);
+ string ct = conictype(bqe);
+ if(ct == "degenerated") abort("conic: degenerated conic passing through five points.");
+ if(ct == "ellipse") return ellipse(bqe);
+ if(ct == "parabola") return parabola(bqe);
+ return hyperbola(bqe);
+}
+
+/*<asyxml><function type="coordsys" signature="canonicalcartesiansystem(hyperbola)"><code></asyxml>*/
+coordsys canonicalcartesiansystem(explicit conic co)
+{/*<asyxml></code><documentation>Return the canonical cartesian system of the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e < 1) return canonicalcartesiansystem((ellipse)co);
+ else if(co.e == 1) return canonicalcartesiansystem((parabola)co);
+ return canonicalcartesiansystem((hyperbola)co);
+}
+
+/*<asyxml><function type="bqe" signature="canonical(bqe)"><code></asyxml>*/
+bqe canonical(bqe bqe)
+{/*<asyxml></code><documentation>Return the bivariate quadratic equation relative to the
+ canonical coordinate system of the conic section represented by 'bqe'.</documentation></function></asyxml>*/
+ string type = conictype(bqe);
+ if(type == "") abort("canonical: the equation can not be performed.");
+ bqe obqe;
+ if(type == "ellipse") {
+ ellipse el = ellipse(bqe);
+ obqe = changecoordsys(canonicalcartesiansystem(el), equation(el));
+ } else {
+ if(type == "parabola") {
+ parabola p = parabola(bqe);
+ obqe = changecoordsys(canonicalcartesiansystem(p), equation(p));
+ } else {
+ hyperbola h = hyperbola(bqe);
+ obqe = changecoordsys(canonicalcartesiansystem(h), equation(h));
+ }
+ }
+ return obqe;
+}
+
+/*<asyxml><function type="conic" signature="conic(bqe)"><code></asyxml>*/
+conic conic(bqe bqe)
+{/*<asyxml></code><documentation>Return the conic section represented by the bivariate quartic equation 'bqe'.</documentation></function></asyxml>*/
+ string type = conictype(bqe);
+ if(type == "") abort("canonical: the equation can not be performed.");
+ conic oc;
+ if(type == "ellipse") {
+ oc = ellipse(bqe);
+ } else {
+ if(type == "parabola") oc = parabola(bqe); else oc = hyperbola(bqe);
+ }
+ return oc;
+}
+
+/*<asyxml><function type="real" signature="arclength(circle)"><code></asyxml>*/
+real arclength(circle c)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return c.r * 2 * pi;
+}
+
+/*<asyxml><function type="real" signature="focusToCenter(ellipse,real)"><code></asyxml>*/
+real focusToCenter(ellipse el, real a)
+{/*<asyxml></code><documentation>Return the angle relatively to the center of 'el' for the angle 'a'
+ given relatively to the focus of 'el'.</documentation></function></asyxml>*/
+ pair p = point(fromFocus(el, a, a, 1, CCW), 0);
+ pair c = locate(el.C);
+ real d = degrees(p - c) - el.angle;
+ d = abs(d) < epsgeo ? 0 : d; // Avoid -1e-15
+ return d%(sgnd(a) * 360);
+}
+
+/*<asyxml><function type="real" signature="centerToFocus(ellipse,real)"><code></asyxml>*/
+real centerToFocus(ellipse el, real a)
+{/*<asyxml></code><documentation>Return the angle relatively to the focus of 'el' for the angle 'a'
+ given relatively to the center of 'el'.</documentation></function></asyxml>*/
+ pair P = point(fromCenter(el, a, a, 1, CCW), 0);
+ pair F1 = locate(el.F1);
+ pair F2 = locate(el.F2);
+ real d = degrees(P - F1) - degrees(F2 - F1);
+ d = abs(d) < epsgeo ? 0 : d; // Avoid -1e-15
+ return d%(sgnd(a) * 360);
+}
+
+/*<asyxml><function type="real" signature="arclength(ellipse)"><code></asyxml>*/
+real arclength(ellipse el)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return degenerate(el) ? infinity : 4 * el.a * elle(pi/2, el.e);
+}
+
+/*<asyxml><function type="real" signature="arclength(ellipse,real,real,bool,polarconicroutine)"><code></asyxml>*/
+real arclength(ellipse el, real angle1, real angle2,
+ bool direction = CCW,
+ polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return the length of the arc of the ellipse between 'angle1'
+ and 'angle2'.
+ 'angle1' and 'angle2' must be in the interval ]-360;+oo[ if polarconicroutine = fromFocus,
+ ]-oo;+oo[ if polarconicroutine = fromCenter.</documentation></function></asyxml>*/
+ if(degenerate(el)) return infinity;
+ if(angle1 > angle2) return arclength(el, angle2, angle1, !direction, polarconicroutine);
+ // path g;int n = 1000;
+ // if(el.e == 0) g = arcfromcenter(el, angle1, angle2, n, direction);
+ // if(el.e != 1) g = polarconicroutine(el, angle1, angle2, n, direction);
+ // write("with path = ", arclength(g));
+ if(polarconicroutine == fromFocus) {
+ // dot(point(fromFocus(el, angle1, angle1, 1, CCW), 0), 2mm + blue);
+ // dot(point(fromFocus(el, angle2, angle2, 1, CCW), 0), 2mm + blue);
+ // write("fromfocus1 = ", angle1);
+ // write("fromfocus2 = ", angle2);
+ real gle1 = focusToCenter(el, angle1);
+ real gle2 = focusToCenter(el, angle2);
+ if((gle1 - gle2) * (angle1 - angle2) > 0) {
+ angle1 = gle1; angle2 = gle2;
+ } else {
+ angle1 = gle2; angle2 = gle1;
+ }
+ // dot(point(fromCenter(el, angle1, angle1, 1, CCW), 0), 1mm + red);
+ // dot(point(fromCenter(el, angle2, angle2, 1, CCW), 0), 1mm + red);
+ // write("fromcenter1 = ", angle1);
+ // write("fromcenter2 = ", angle2);
+ }
+ if(angle1 < 0 || angle2 < 0) return arclength(el, 180 + angle1, 180 + angle2, direction, fromCenter);
+ real a1 = direction ? angle1 : angle2;
+ real a2 = direction ? angle2 : angle1 + 360;
+ real elleq = el.a * elle(pi/2, el.e);
+ real S(real a)
+ {//Return the arclength from 0 to the angle 'a' (in degrees)
+ // given form the center of the ellipse.
+ real gle = atan(el.a * Tan(a)/el.b)+
+ pi * (((a%90 == 0 && a != 0) ? floor(a/90) - 1 : floor(a/90)) -
+ ((a%180 == 0) ? 0 : floor(a/180)) -
+ (a%360 == 0 ? floor(a/(360)) : 0));
+ /* // Uncomment to visualize the used branches
+ unitsize(2cm, 1cm);
+ import graph;
+
+ real xmin = 0, xmax = 3pi;
+
+ xlimits( xmin, xmax);
+ ylimits( 0, 10);
+ yaxis( "y" , LeftRight(), RightTicks(pTick=.8red, ptick = lightgrey, extend = true));
+ xaxis( "x - value", BottomTop(), Ticks(Label("$%.2f$", red), Step = pi/2, step = pi/4, pTick=.8red, ptick = lightgrey, extend = true));
+
+ real p2 = pi/2;
+ real f(real t)
+ {
+ return atan(0.6 * tan(t))+
+ pi * ((t%p2 == 0 && t != 0) ? floor(t/p2) - 1 : floor(t/p2)) -
+ ((t%pi == 0) ? 0 : pi * floor(t/pi)) - (t%(2pi) == 0 ? pi * floor(t/(2 * pi)) : 0);
+ }
+
+ draw(graph(f, xmin, xmax, 100));
+ write(degrees(f(pi/2)));
+ write(degrees(f(pi)));
+ write(degrees(f(3pi/2)));
+ write(degrees(f(2pi)));
+ draw(graph(new real(real t){return t;}, xmin, xmax, 3));
+ */
+ return elleq - el.a * elle(pi/2 - gle, el.e);
+ }
+ return S(a2) - S(a1);
+}
+
+/*<asyxml><function type="real" signature="arclength(parabola,real)"><code></asyxml>*/
+real arclength(parabola p, real angle)
+{/*<asyxml></code><documentation>Return the arclength from 180 to 'angle' given from focus in the
+ canonical coordinate system of 'p'.</documentation></function></asyxml>*/
+ real a = p.a; /* In canonicalcartesiansystem(p) the equation of p
+ is x = y^2/(4a) */
+ // integrate(sqrt(1 + (x/(2 * a))^2), x);
+ real S(real t){return 0.5 * t * sqrt(1 + t^2/(4 * a^2)) + a * asinh(t/(2 * a));}
+ real R(real gle){return 2 * a/(1 - Cos(gle));}
+ real t = Sin(angle) * R(angle);
+ return S(t);
+}
+
+/*<asyxml><function type="real" signature="arclength(parabola,real,real)"><code></asyxml>*/
+real arclength(parabola p, real angle1, real angle2)
+{/*<asyxml></code><documentation>Return the arclength from 'angle1' to 'angle2' given from
+ focus in the canonical coordinate system of 'p'</documentation></function></asyxml>*/
+ return arclength(p, angle1) - arclength(p, angle2);
+}
+
+/*<asyxml><function type="real" signature="arclength(parabola p)"><code></asyxml>*/
+real arclength(parabola p)
+{/*<asyxml></code><documentation>Return the length of the arc of the parabola bounded to the bounding
+ box of the current picture.</documentation></function></asyxml>*/
+ real[] b = bangles(p);
+ return arclength(p, b[0], b[1]);
+}
+// *........................CONICS.........................*
+// *=======================================================*
+
+// *=======================================================*
+// *.......................ABSCISSA........................*
+/*<asyxml><struct signature="abscissa"><code></asyxml>*/
+struct abscissa
+{/*<asyxml></code><documentation>Provide abscissa structure on a curve used in the routine-like 'point(object, abscissa)'
+ where object can be 'line','segment','ellipse','circle','conic'...</documentation><property type = "real" signature="x"><code></asyxml>*/
+ real x;/*<asyxml></code><documentation>The abscissa value.</documentation></property><property type = "int" signature="system"><code></asyxml>*/
+ int system;/*<asyxml></code><documentation>0 = relativesystem; 1 = curvilinearsystem; 2 = angularsystem; 3 = nodesystem</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/
+ polarconicroutine polarconicroutine = fromCenter;/*<asyxml></code><documentation>The routine used with angular system and two foci conic section.
+ Possible values are 'formCenter' and 'formFocus'.</documentation></property></asyxml>*/
+ /*<asyxml><method type = "abscissa" signature="copy()"><code></asyxml>*/
+ abscissa copy()
+ {/*<asyxml></code><documentation>Return a copy of this abscissa.</documentation></method></asyxml>*/
+ abscissa oa = new abscissa;
+ oa.x = this.x;
+ oa.system = this.system;
+ oa.polarconicroutine = this.polarconicroutine;
+ return oa;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><constant type = "int" signature="relativesystem,curvilinearsystem,angularsystem,nodesystem"><code></asyxml>*/
+restricted int relativesystem = 0, curvilinearsystem = 1, angularsystem = 2, nodesystem = 3;/*<asyxml></code><documentation>Constant used to set the abscissa system.</documentation></constant></asyxml>*/
+
+/*<asyxml><operator type = "abscissa" signature="cast(explicit position)"><code></asyxml>*/
+abscissa operator cast(explicit position position)
+{/*<asyxml></code><documentation>Cast position to abscissa.
+ If 'position' is relative, the abscissa is relative else it's a curvilinear abscissa.</documentation></operator></asyxml>*/
+ abscissa oarcc;
+ oarcc.x = position.position.x;
+ oarcc.system = position.relative ? relativesystem : curvilinearsystem;
+ return oarcc;
+}
+
+/*<asyxml><operator type = "abscissa" signature="+(real,explicit abscissa)"><code></asyxml>*/
+abscissa operator +(real x, explicit abscissa a)
+{/*<asyxml></code><documentation>Provide 'real + abscissa'.
+ Return abscissa b so that b.x = a.x + x.
+ +(explicit abscissa, real), -(real, explicit abscissa) and -(explicit abscissa, real) are also defined.</documentation></operator></asyxml>*/
+ abscissa oa = a.copy();
+ oa.x = a.x + x;
+ return oa;
+}
+
+abscissa operator +(explicit abscissa a, real x)
+{
+ return x + a;
+}
+abscissa operator +(int x, explicit abscissa a)
+{
+ return ((real)x) + a;
+}
+
+/*<asyxml><operator type = "abscissa" signature="-(explicit abscissa a)"><code></asyxml>*/
+abscissa operator -(explicit abscissa a)
+{/*<asyxml></code><documentation>Return the abscissa b so that b.x = -a.x.</documentation></operator></asyxml>*/
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = -a.x;
+ return oa;
+}
+
+abscissa operator -(real x, explicit abscissa a)
+{
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = x - a.x;
+ return oa;
+}
+abscissa operator -(explicit abscissa a, real x)
+{
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = a.x - x;
+ return oa;
+}
+abscissa operator -(int x, explicit abscissa a)
+{
+ return ((real)x) - a;
+}
+
+/*<asyxml><operator type = "abscissa" signature="*(real,abscissa)"><code></asyxml>*/
+abscissa operator *(real x, explicit abscissa a)
+{/*<asyxml></code><documentation>Provide 'real * abscissa'.
+ Return abscissa b so that b.x = x * a.x.
+ *(explicit abscissa, real), /(real, explicit abscissa) and /(explicit abscissa, real) are also defined.</documentation></operator></asyxml>*/
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = a.x * x;
+ return oa;
+}
+abscissa operator *(explicit abscissa a, real x)
+{
+ return x * a;
+}
+
+abscissa operator /(real x, explicit abscissa a)
+{
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = x/a.x;
+ return oa;
+}
+abscissa operator /(explicit abscissa a, real x)
+{
+ abscissa oa;
+ oa.system = a.system;
+ oa.x = a.x/x;
+ return oa;
+}
+
+abscissa operator /(int x, explicit abscissa a)
+{
+ return ((real)x)/a;
+}
+
+/*<asyxml><function type="abscissa" signature="relabscissa(real)"><code></asyxml>*/
+abscissa relabscissa(real x)
+{/*<asyxml></code><documentation>Return a relative abscissa.</documentation></function></asyxml>*/
+ return (abscissa)(Relative(x));
+}
+abscissa relabscissa(int x)
+{
+ return (abscissa)(Relative(x));
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(real)"><code></asyxml>*/
+abscissa curabscissa(real x)
+{/*<asyxml></code><documentation>Return a curvilinear abscissa.</documentation></function></asyxml>*/
+ return (abscissa)((position)x);
+}
+abscissa curabscissa(int x)
+{
+ return (abscissa)((position)x);
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(real,polarconicroutine)"><code></asyxml>*/
+abscissa angabscissa(real x, polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return a angular abscissa.</documentation></function></asyxml>*/
+ abscissa oarcc;
+ oarcc.x = x;
+ oarcc.polarconicroutine = polarconicroutine;
+ oarcc.system = angularsystem;
+ return oarcc;
+}
+abscissa angabscissa(int x, polarconicroutine polarconicroutine = currentpolarconicroutine)
+{
+ return angabscissa((real)x, polarconicroutine);
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(real)"><code></asyxml>*/
+abscissa nodabscissa(real x)
+{/*<asyxml></code><documentation>Return an abscissa as time on the path.</documentation></function></asyxml>*/
+ abscissa oarcc;
+ oarcc.x = x;
+ oarcc.system = nodesystem;
+ return oarcc;
+}
+abscissa nodabscissa(int x)
+{
+ return nodabscissa((real)x);
+}
+
+/*<asyxml><operator type = "abscissa" signature="cast(real)"><code></asyxml>*/
+abscissa operator cast(real x)
+{/*<asyxml></code><documentation>Cast real to abscissa, precisely 'nodabscissa'.</documentation></operator></asyxml>*/
+ return nodabscissa(x);
+}
+abscissa operator cast(int x)
+{
+ return nodabscissa((real)x);
+}
+
+/*<asyxml><function type="point" signature="point(circle,abscissa)"><code></asyxml>*/
+point point(circle c, abscissa l)
+{/*<asyxml></code><documentation>Return the point of 'c' which has the abscissa 'l.x'
+ according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
+ coordsys R = c.C.coordsys;
+ if (l.system == nodesystem)
+ return point(R, point((path)c, l.x)/R);
+ if (l.system == relativesystem)
+ return c.C + point(R, R.polar(c.r, 2 * pi * l.x));
+ if (l.system == curvilinearsystem)
+ return c.C + point(R, R.polar(c.r, l.x/c.r));
+ if (l.system == angularsystem)
+ return c.C + point(R, R.polar(c.r, radians(l.x)));
+ abort("point: bad abscissa system.");
+ return (0, 0);
+}
+
+/*<asyxml><function type="point" signature="point(ellipse,abscissa)"><code></asyxml>*/
+point point(ellipse el, abscissa l)
+{/*<asyxml></code><documentation>Return the point of 'el' which has the abscissa 'l.x'
+ according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
+ if(el.e == 0) return point((circle)el, l);
+ coordsys R = coordsys(el);
+ if (l.system == nodesystem)
+ return point(R, point((path)el, l.x)/R);
+ if (l.system == relativesystem) {
+ return point(el, curabscissa((l.x%1) * arclength(el)));
+ }
+ if (l.system == curvilinearsystem) {
+ real a1 = 0, a2 = 360, cx = 0;
+ real aout = a1;
+ real x = abs(l.x)%arclength(el);
+ while (abs(cx - x) > epsgeo) {
+ aout = (a1 + a2)/2;
+ cx = arclength(el, 0, aout, CCW, fromCenter); //fromCenter is speeder
+ if(cx > x) a2 = (a1 + a2)/2; else a1 = (a1 + a2)/2;
+ }
+ path pel = fromCenter(el, sgn(l.x) * aout, sgn(l.x) * aout, 1, CCW);
+ return point(R, point(pel, 0)/R);
+ }
+ if (l.system == angularsystem) {
+ return point(R, point(l.polarconicroutine(el, l.x, l.x, 1, CCW), 0)/R);
+ }
+ abort("point: bad abscissa system.");
+ return (0, 0);
+}
+
+/*<asyxml><function type="point" signature="point(parabola,abscissa)"><code></asyxml>*/
+point point(parabola p, abscissa l)
+{/*<asyxml></code><documentation>Return the point of 'p' which has the abscissa 'l.x'
+ according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
+ coordsys R = coordsys(p);
+ if (l.system == nodesystem)
+ return point(R, point((path)p, l.x)/R);
+ if (l.system == relativesystem) {
+ real[] b = bangles(p);
+ real al = sgn(l.x) > 0 ? arclength(p, 180, b[1]) : arclength(p, 180, b[0]);
+ return point(p, curabscissa(abs(l.x) * al));
+ }
+ if (l.system == curvilinearsystem) {
+ real a1 = 1e-3, a2 = 360 - 1e-3, cx = infinity;
+ while (abs(cx - l.x) > epsgeo) {
+ cx = arclength(p, 180, (a1 + a2)/2);
+ if(cx > l.x) a2 = (a1 + a2)/2; else a1 = (a1 + a2)/2;
+ }
+ path pp = fromFocus(p, a1, a1, 1, CCW);
+ return point(R, point(pp, 0)/R);
+ }
+ if (l.system == angularsystem) {
+ return point(R, point(fromFocus(p, l.x, l.x, 1, CCW), 0)/R);
+ }
+ abort("point: bad abscissa system.");
+ return (0, 0);
+}
+
+/*<asyxml><function type="point" signature="point(hyperbola,abscissa)"><code></asyxml>*/
+point point(hyperbola h, abscissa l)
+{/*<asyxml></code><documentation>Return the point of 'h' which has the abscissa 'l.x'
+ according to the abscissa system 'l.system'.</documentation></function></asyxml>*/
+ coordsys R = coordsys(h);
+ if (l.system == nodesystem)
+ return point(R, point((path)h, l.x)/R);
+ if (l.system == relativesystem) {
+ abort("point(hyperbola, relativeSystem) is not implemented...
+Try relpoint((path)your_hyperbola, x);");
+ }
+ if (l.system == curvilinearsystem) {
+ abort("point(hyperbola, curvilinearSystem) is not implemented...");
+ }
+ if (l.system == angularsystem) {
+ return point(R, point(l.polarconicroutine(h, l.x, l.x, 1, CCW), 0)/R);
+ }
+ abort("point: bad abscissa system.");
+ return (0, 0);
+}
+
+/*<asyxml><function type="abscissa" signature="point(conic,point)"><code></asyxml>*/
+point point(explicit conic co, abscissa l)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e == 0) return point((circle)co, l);
+ if(co.e < 1) return point((ellipse)co, l);
+ if(co.e == 1) return point((parabola)co, l);
+ return point((hyperbola)co, l);
+}
+
+
+/*<asyxml><function type="point" signature="point(line,abscissa)"><code></asyxml>*/
+point point(line l, abscissa x)
+{/*<asyxml></code><documentation>Return the point of 'l' which has the abscissa 'l.x' according to the abscissa system 'l.system'.
+ Note that the origin is l.A, and point(l, relabscissa(x)) returns l.A + x.x * vector(l.B - l.A).</documentation></function></asyxml>*/
+ coordsys R = l.A.coordsys;
+ if (x.system == nodesystem)
+ return l.A + (x.x < 0 ? 0 : x.x > 1 ? 1 : x.x) * vector(l.B - l.A);
+ if (x.system == relativesystem)
+ return l.A + x.x * vector(l.B - l.A);
+ if (x.system == curvilinearsystem)
+ return l.A + x.x * l.u;
+ if (x.system == angularsystem)
+ abort("point: what the meaning of angular abscissa on line ?.");
+ abort("point: bad abscissa system.");
+ return (0, 0);
+}
+
+/*<asyxml><function type="point" signature="point(line,real)"><code></asyxml>*/
+point point(line l, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node l.A and l.B (x <= 0 means l.A, x >=1 means l.B).</documentation></function></asyxml>*/
+ return point(l, nodabscissa(x));
+}
+point point(line l, explicit int x)
+{
+ return point(l, nodabscissa(x));
+}
+
+/*<asyxml><function type="circle" signature="point(explicit circle,explicit real)"><code></asyxml>*/
+point point(explicit circle c, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
+ return point(c, nodabscissa(x));
+}
+point point(explicit circle c, explicit int x)
+{
+ return point(c, nodabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="point(explicit ellipse,explicit real)"><code></asyxml>*/
+point point(explicit ellipse el, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
+ return point(el, nodabscissa(x));
+}
+point point(explicit ellipse el, explicit int x)
+{
+ return point(el, nodabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="point(explicit parabola,explicit real)"><code></asyxml>*/
+point point(explicit parabola p, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
+ return point(p, nodabscissa(x));
+}
+point point(explicit parabola p, explicit int x)
+{
+ return point(p, nodabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="point(explicit hyperbola,explicit real)"><code></asyxml>*/
+point point(explicit hyperbola h, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
+ return point(h, nodabscissa(x));
+}
+point point(explicit hyperbola h, explicit int x)
+{
+ return point(h, nodabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="point(explicit conic,explicit real)"><code></asyxml>*/
+point point(explicit conic co, explicit real x)
+{/*<asyxml></code><documentation>Return the point between node floor(x) and floor(x) + 1.</documentation></function></asyxml>*/
+ point op;
+ if(co.e == 0) op = point((circle)co, nodabscissa(x));
+ else if(co.e < 1) op = point((ellipse)co, nodabscissa(x));
+ else if(co.e == 1) op = point((parabola)co, nodabscissa(x));
+ else op = point((hyperbola)co, nodabscissa(x));
+ return op;
+}
+point point(explicit conic co, explicit int x)
+{
+ return point(co, (real)x);
+}
+
+/*<asyxml><function type="point" signature="relpoint(line,real)"><code></asyxml>*/
+point relpoint(line l, real x)
+{/*<asyxml></code><documentation>Return the relative point of 'l' (0 means l.A,
+ 1 means l.B, x means l.A + x * vector(l.B - l.A) ).</documentation></function></asyxml>*/
+ return point(l, Relative(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(explicit circle,real)"><code></asyxml>*/
+point relpoint(explicit circle c, real x)
+{/*<asyxml></code><documentation>Return the relative point of 'c' (0 means origin, 1 means end).
+ Origin is c.center + c.r * (1, 0).</documentation></function></asyxml>*/
+ return point(c, Relative(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(explicit ellipse,real)"><code></asyxml>*/
+point relpoint(explicit ellipse el, real x)
+{/*<asyxml></code><documentation>Return the relative point of 'el' (0 means origin, 1 means end).</documentation></function></asyxml>*/
+ return point(el, Relative(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(explicit parabola,real)"><code></asyxml>*/
+point relpoint(explicit parabola p, real x)
+{/*<asyxml></code><documentation>Return the relative point of the path of the parabola
+ bounded by the bounding box of the current picture.
+ 0 means origin, 1 means end, where the origin is the vertex of 'p'.</documentation></function></asyxml>*/
+ return point(p, Relative(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(explicit hyperbola,real)"><code></asyxml>*/
+point relpoint(explicit hyperbola h, real x)
+{/*<asyxml></code><documentation>Not yet implemented... <look href = "point(hyperbola, abscissa)"/></documentation></function></asyxml>*/
+ return point(h, Relative(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(explicit conic,explicit real)"><code></asyxml>*/
+point relpoint(explicit conic co, explicit real x)
+{/*<asyxml></code><documentation>Return the relative point of 'co' (0 means origin, 1 means end).</documentation></function></asyxml>*/
+ point op;
+ if(co.e == 0) op = point((circle)co, Relative(x));
+ else if(co.e < 1) op = point((ellipse)co, Relative(x));
+ else if(co.e == 1) op = point((parabola)co, Relative(x));
+ else op = point((hyperbola)co, Relative(x));
+ return op;
+}
+point relpoint(explicit conic co, explicit int x)
+{
+ return relpoint(co, (real)x);
+}
+
+/*<asyxml><function type="point" signature="angpoint(explicit circle,real)"><code></asyxml>*/
+point angpoint(explicit circle c, real x)
+{/*<asyxml></code><documentation>Return the point of 'c' in the direction 'x' measured in degrees.</documentation></function></asyxml>*/
+ return point(c, angabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="angpoint(explicit ellipse,real,polarconicroutine)"><code></asyxml>*/
+point angpoint(explicit ellipse el, real x,
+ polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return the point of 'el' in the direction 'x'
+ measured in degrees according to 'polarconicroutine'.</documentation></function></asyxml>*/
+ return el.e == 0 ? angpoint((circle) el, x) : point(el, angabscissa(x, polarconicroutine));
+}
+
+/*<asyxml><function type="point" signature="angpoint(explicit parabola,real)"><code></asyxml>*/
+point angpoint(explicit parabola p, real x)
+{/*<asyxml></code><documentation>Return the point of 'p' in the direction 'x' measured in degrees.</documentation></function></asyxml>*/
+ return point(p, angabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="angpoint(explicit hyperbola,real,polarconicroutine)"><code></asyxml>*/
+point angpoint(explicit hyperbola h, real x,
+ polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return the point of 'h' in the direction 'x'
+ measured in degrees according to 'polarconicroutine'.</documentation></function></asyxml>*/
+ return point(h, angabscissa(x, polarconicroutine));
+}
+
+/*<asyxml><function type="point" signature="curpoint(line,real)"><code></asyxml>*/
+point curpoint(line l, real x)
+{/*<asyxml></code><documentation>Return the point of 'l' which has the curvilinear abscissa 'x'.
+ Origin is l.A.</documentation></function></asyxml>*/
+ return point(l, curabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="curpoint(explicit circle,real)"><code></asyxml>*/
+point curpoint(explicit circle c, real x)
+{/*<asyxml></code><documentation>Return the point of 'c' which has the curvilinear abscissa 'x'.
+ Origin is c.center + c.r * (1, 0).</documentation></function></asyxml>*/
+ return point(c, curabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="curpoint(explicit ellipse,real)"><code></asyxml>*/
+point curpoint(explicit ellipse el, real x)
+{/*<asyxml></code><documentation>Return the point of 'el' which has the curvilinear abscissa 'el'.</documentation></function></asyxml>*/
+ return point(el, curabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="curpoint(explicit parabola,real)"><code></asyxml>*/
+point curpoint(explicit parabola p, real x)
+{/*<asyxml></code><documentation>Return the point of 'p' which has the curvilinear abscissa 'x'.
+ Origin is the vertex of 'p'.</documentation></function></asyxml>*/
+ return point(p, curabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="curpoint(conic,real)"><code></asyxml>*/
+point curpoint(conic co, real x)
+{/*<asyxml></code><documentation>Return the point of 'co' which has the curvilinear abscissa 'x'.</documentation></function></asyxml>*/
+ point op;
+ if(co.e == 0) op = point((circle)co, curabscissa(x));
+ else if(co.e < 1) op = point((ellipse)co, curabscissa(x));
+ else if(co.e == 1) op = point((parabola)co, curabscissa(x));
+ else op = point((hyperbola)co, curabscissa(x));
+ return op;
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(circle,point)"><code></asyxml>*/
+abscissa angabscissa(circle c, point M)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
+ if(!(M @ c)) abort("angabscissa: the point is not on the circle.");
+ abscissa oa;
+ oa.system = angularsystem;
+ oa.x = degrees(M - c.C);
+ if(oa.x < 0) oa.x+=360;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(ellipse,point,polarconicroutine)"><code></asyxml>*/
+abscissa angabscissa(ellipse el, point M,
+ polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the ellipse 'el' according to 'polarconicroutine'.</documentation></function></asyxml>*/
+ if(!(M @ el)) abort("angabscissa: the point is not on the ellipse.");
+ abscissa oa;
+ oa.system = angularsystem;
+ oa.polarconicroutine = polarconicroutine;
+ oa.x = polarconicroutine == fromCenter ? degrees(M - el.C) : degrees(M - el.F1);
+ oa.x -= el.angle;
+ if(oa.x < 0) oa.x += 360;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(hyperbola,point,polarconicroutine)"><code></asyxml>*/
+abscissa angabscissa(hyperbola h, point M,
+ polarconicroutine polarconicroutine = currentpolarconicroutine)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the hyperbola 'h' according to 'polarconicroutine'.</documentation></function></asyxml>*/
+ if(!(M @ h)) abort("angabscissa: the point is not on the hyperbola.");
+ abscissa oa;
+ oa.system = angularsystem;
+ oa.polarconicroutine = polarconicroutine;
+ oa.x = polarconicroutine == fromCenter ? degrees(M - h.C) : degrees(M - h.F1) + 180;
+ oa.x -= h.angle;
+ if(oa.x < 0) oa.x += 360;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(parabola,point)"><code></asyxml>*/
+abscissa angabscissa(parabola p, point M)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the parabola 'p'.</documentation></function></asyxml>*/
+ if(!(M @ p)) abort("angabscissa: the point is not on the parabola.");
+ abscissa oa;
+ oa.system = angularsystem;
+ oa.polarconicroutine = fromFocus;// Not used
+ oa.x = degrees(M - p.F);
+ oa.x -= p.angle;
+ if(oa.x < 0) oa.x += 360;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(conic,point)"><code></asyxml>*/
+abscissa angabscissa(explicit conic co, point M)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e == 0) return angabscissa((circle)co, M);
+ if(co.e < 1) return angabscissa((ellipse)co, M);
+ if(co.e == 1) return angabscissa((parabola)co, M);
+ return angabscissa((hyperbola)co, M);
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(line,point)"><code></asyxml>*/
+abscissa curabscissa(line l, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
+ if(!(M @ extend(l))) abort("curabscissa: the point is not on the line.");
+ abscissa oa;
+ oa.system = curvilinearsystem;
+ oa.x = sgn(dot(M - l.A, l.B - l.A)) * abs(M - l.A);
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(circle,point)"><code></asyxml>*/
+abscissa curabscissa(circle c, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
+ if(!(M @ c)) abort("curabscissa: the point is not on the circle.");
+ abscissa oa;
+ oa.system = curvilinearsystem;
+ oa.x = pi * angabscissa(c, M).x * c.r/180;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(ellipse,point)"><code></asyxml>*/
+abscissa curabscissa(ellipse el, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
+ if(!(M @ el)) abort("curabscissa: the point is not on the ellipse.");
+ abscissa oa;
+ oa.system = curvilinearsystem;
+ real a = angabscissa(el, M, fromCenter).x;
+ oa.x = arclength(el, 0, a, fromCenter);
+ oa.polarconicroutine = fromCenter;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(parabola,point)"><code></asyxml>*/
+abscissa curabscissa(parabola p, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the parabola 'p'.</documentation></function></asyxml>*/
+ if(!(M @ p)) abort("curabscissa: the point is not on the parabola.");
+ abscissa oa;
+ oa.system = curvilinearsystem;
+ real a = angabscissa(p, M).x;
+ oa.x = arclength(p, 180, a);
+ oa.polarconicroutine = fromFocus; // Not used.
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(conic,point)"><code></asyxml>*/
+abscissa curabscissa(conic co, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e > 1) abort("curabscissa: not implemented for this hyperbola.");
+ if(co.e == 0) return curabscissa((circle)co, M);
+ if(co.e < 1) return curabscissa((ellipse)co, M);
+ return curabscissa((parabola)co, M);
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(line,point)"><code></asyxml>*/
+abscissa nodabscissa(line l, point M)
+{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
+ if(!(M @ (segment)l)) abort("nodabscissa: the point is not on the segment.");
+ abscissa oa;
+ oa.system = nodesystem;
+ oa.x = abs(M - l.A)/abs(l.A - l.B);
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(circle,point)"><code></asyxml>*/
+abscissa nodabscissa(circle c, point M)
+{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
+ if(!(M @ c)) abort("nodabscissa: the point is not on the circle.");
+ abscissa oa;
+ oa.system = nodesystem;
+ oa.x = intersect((path)c, locate(M))[0];
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(ellipse,point)"><code></asyxml>*/
+abscissa nodabscissa(ellipse el, point M)
+{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
+ if(!(M @ el)) abort("nodabscissa: the point is not on the ellipse.");
+ abscissa oa;
+ oa.system = nodesystem;
+ oa.x = intersect((path)el, M)[0];
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(parabola,point)"><code></asyxml>*/
+abscissa nodabscissa(parabola p, point M)
+{/*<asyxml></code><documentation>Return the node abscissa OF 'M' on the parabola 'p'.</documentation></function></asyxml>*/
+ if(!(M @ p)) abort("nodabscissa: the point is not on the parabola.");
+ abscissa oa;
+ oa.system = nodesystem;
+ path pg = p;
+ real[] t = intersect(pg, M, 1e-5);
+ if(t.length == 0) abort("nodabscissa: the point is not on the path of the parabola.");
+ oa.x = t[0];
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(conic,point)"><code></asyxml>*/
+abscissa nodabscissa(conic co, point M)
+{/*<asyxml></code><documentation>Return the node abscissa of 'M' on the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e > 1) abort("nodabscissa: not implemented for hyperbola.");
+ if(co.e == 0) return nodabscissa((circle)co, M);
+ if(co.e < 1) return nodabscissa((ellipse)co, M);
+ return nodabscissa((parabola)co, M);
+}
+
+
+/*<asyxml><function type="abscissa" signature="relabscissa(line,point)"><code></asyxml>*/
+abscissa relabscissa(line l, point M)
+{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the line 'l'.</documentation></function></asyxml>*/
+ if(!(M @ extend(l))) abort("relabscissa: the point is not on the line.");
+ abscissa oa;
+ oa.system = relativesystem;
+ oa.x = sgn(dot(M - l.A, l.B - l.A)) * abs(M - l.A)/abs(l.A - l.B);
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="relabscissa(circle,point)"><code></asyxml>*/
+abscissa relabscissa(circle c, point M)
+{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the circle 'c'.</documentation></function></asyxml>*/
+ if(!(M @ c)) abort("relabscissa: the point is not on the circle.");
+ abscissa oa;
+ oa.system = relativesystem;
+ oa.x = angabscissa(c, M).x/360;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="relabscissa(ellipse,point)"><code></asyxml>*/
+abscissa relabscissa(ellipse el, point M)
+{/*<asyxml></code><documentation>Return the relative abscissa of 'M' on the ellipse 'el'.</documentation></function></asyxml>*/
+ if(!(M @ el)) abort("relabscissa: the point is not on the ellipse.");
+ abscissa oa;
+ oa.system = relativesystem;
+ oa.x = curabscissa(el, M).x/arclength(el);
+ oa.polarconicroutine = fromFocus;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="relabscissa(conic,point)"><code></asyxml>*/
+abscissa relabscissa(conic co, point M)
+{/*<asyxml></code><documentation>Return the relative abscissa of 'M'
+ on the conic 'co'.</documentation></function></asyxml>*/
+ if(co.e > 1) abort("relabscissa: not implemented for hyperbola and parabola.");
+ if(co.e == 1) return relabscissa((parabola)co, M);
+ if(co.e == 0) return relabscissa((circle)co, M);
+ return relabscissa((ellipse)co, M);
+}
+// *.......................ABSCISSA........................*
+// *=======================================================*
+
+// *=======================================================*
+// *.........................ARCS..........................*
+/*<asyxml><struct signature="arc"><code></asyxml>*/
+struct arc {
+ /*<asyxml></code><documentation>Implement oriented ellipse (included circle) arcs.
+ All the calculus with this structure will be as exact as Asymptote can do.
+ For a full precision, you must not cast 'arc' to 'path' excepted for drawing routines.
+ </documentation><property type = "ellipse" signature="el"><code></asyxml>*/
+ ellipse el;/*<asyxml></code><documentation>The support of the arc.</documentation></property><property type = "real" signature="angle0"><code></asyxml>*/
+ restricted real angle0 = 0;/*<asyxml></code><documentation>Internal use: rotating a circle does not modify the origin point,this variable stocks the eventual angle rotation. This value is not used for ellipses which are not circles.</documentation></property><property type = "real" signature="angle1,angle2"><code></asyxml>*/
+ restricted real angle1, angle2;/*<asyxml></code><documentation>Values (in degrees) in ]-360, 360[.</documentation></property><property type = "bool" signature="direction"><code></asyxml>*/
+ bool direction = CCW;/*<asyxml></code><documentation>The arc will be drawn from 'angle1' to 'angle2' rotating in the direction 'direction'.</documentation></property><property type = "polarconicroutine" signature="polarconicroutine"><code></asyxml>*/
+ polarconicroutine polarconicroutine = currentpolarconicroutine;/*<asyxml></code><documentation>The routine to which the angles refer.
+ If 'el' is a circle 'fromCenter' is always used.</documentation></property></asyxml>*/
+
+ /*<asyxml><method type = "void" signature="setangles(real,real,real)"><code></asyxml>*/
+ void setangles(real a0, real a1, real a2)
+ {/*<asyxml></code><documentation>Set the angles.</documentation></method></asyxml>*/
+ if (a1 < 0 && a2 < 0) {
+ a1 += 360;
+ a2 += 360;
+ }
+ this.angle0 = a0%(sgnd(a0) * 360);
+ this.angle1 = a1%(sgnd(a1) * 360);
+ this.angle2 = a2%(sgnd(2) * 360);
+ }
+
+ /*<asyxml><method type = "void" signature="init(ellipse,real,real,real,polarconicroutine,bool)"><code></asyxml>*/
+ void init(ellipse el, real angle0 = 0, real angle1, real angle2,
+ polarconicroutine polarconicroutine,
+ bool direction = CCW)
+ {/*<asyxml></code><documentation>Constructor.</documentation></method></asyxml>*/
+ if(abs(angle1 - angle2) > 360) abort("arc: |angle1 - angle2| > 360.");
+ this.el = el;
+ this.setangles(angle0, angle1, angle2);
+ this.polarconicroutine = polarconicroutine;
+ this.direction = direction;
+ }
+
+ /*<asyxml><method type = "arc" signature="copy()"><code></asyxml>*/
+ arc copy()
+ {/*<asyxml></code><documentation>Copy the arc.</documentation></method></asyxml>*/
+ arc oa = new arc;
+ oa.el = this.el;
+ oa.direction = this.direction;
+ oa.polarconicroutine = this.polarconicroutine;
+ oa.angle1 = this.angle1;
+ oa.angle2 = this.angle2;
+ oa.angle0 = this.angle0;
+ return oa;
+ }
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="polarconicroutine" signature="polarconicroutine(ellipse)"><code></asyxml>*/
+polarconicroutine polarconicroutine(conic co)
+{/*<asyxml></code><documentation>Return the default routine used to draw a conic.</documentation></function></asyxml>*/
+ if(co.e == 0) return fromCenter;
+ if(co.e == 1) return fromFocus;
+ return currentpolarconicroutine;
+}
+
+/*<asyxml><function type="arc" signature="arc(ellipse,real,real,polarconicroutine,bool)"><code></asyxml>*/
+arc arc(ellipse el, real angle1, real angle2,
+ polarconicroutine polarconicroutine = polarconicroutine(el),
+ bool direction = CCW)
+{/*<asyxml></code><documentation>Return the ellipse arc from 'angle1' to 'angle2' with respect to 'polarconicroutine' and rotating in the direction 'direction'.</documentation></function></asyxml>*/
+ arc oa;
+ oa.init(el, 0, angle1, angle2, polarconicroutine, direction);
+ return oa;
+}
+
+/*<asyxml><function type="arc" signature="complementary(arc)"><code></asyxml>*/
+arc complementary(arc a)
+{/*<asyxml></code><documentation>Return the complementary of 'a'.</documentation></function></asyxml>*/
+ arc oa;
+ oa.init(a.el, a.angle0, a.angle2, a.angle1, a.polarconicroutine, a.direction);
+ return oa;
+}
+
+/*<asyxml><function type="arc" signature="reverse(arc)"><code></asyxml>*/
+arc reverse(arc a)
+{/*<asyxml></code><documentation>Return arc 'a' oriented in reverse direction.</documentation></function></asyxml>*/
+ arc oa;
+ oa.init(a.el, a.angle0, a.angle2, a.angle1, a.polarconicroutine, !a.direction);
+ return oa;
+}
+
+/*<asyxml><function type="real" signature="degrees(arc)"><code></asyxml>*/
+real degrees(arc a)
+{/*<asyxml></code><documentation>Return the measure in degrees of the oriented arc 'a'.</documentation></function></asyxml>*/
+ real or;
+ real da = a.angle2 - a.angle1;
+ if(a.direction) {
+ or = a.angle1 < a.angle2 ? da : 360 + da;
+ } else {
+ or = a.angle1 < a.angle2 ? -360 + da : da;
+ }
+ return or;
+}
+
+/*<asyxml><function type="real" signature="angle(a)"><code></asyxml>*/
+real angle(arc a)
+{/*<asyxml></code><documentation>Return the measure in radians of the oriented arc 'a'.</documentation></function></asyxml>*/
+ return radians(degrees(a));
+}
+
+/*<asyxml><function type="int" signature="arcnodesnumber(explicit arc)"><code></asyxml>*/
+int arcnodesnumber(explicit arc a)
+{/*<asyxml></code><documentation>Return the number of nodes to draw the arc 'a'.</documentation></function></asyxml>*/
+ return ellipsenodesnumber(a.el.a, a.el.b, a.angle1, a.angle2, a.direction);
+}
+
+private path arctopath(arc a, int n)
+{
+ if(a.el.e == 0) return arcfromcenter(a.el, a.angle0 + a.angle1, a.angle0 + a.angle2, a.direction, n);
+ if(a.el.e != 1) return a.polarconicroutine(a.el, a.angle1, a.angle2, n, a.direction);
+ return arcfromfocus(a.el, a.angle1, a.angle2, n, a.direction);
+}
+
+/*<asyxml><function type="point" signature="angpoint(arc,real)"><code></asyxml>*/
+point angpoint(arc a, real angle)
+{/*<asyxml></code><documentation>Return the point given by its angular position (in degrees) relative to the arc 'a'.
+ If 'angle > degrees(a)' or 'angle < 0' the returned point is on the extended arc.</documentation></function></asyxml>*/
+ pair p;
+ if(a.el.e == 0) {
+ real gle = a.angle0 + a.angle1 + (a.direction ? angle : -angle);
+ p = point(arcfromcenter(a.el, gle, gle, CCW, 1), 0);
+ }
+ else {
+ real gle = a.angle1 + (a.direction ? angle : -angle);
+ p = point(a.polarconicroutine(a.el, gle, gle, 1, CCW), 0);
+ }
+ return point(coordsys(a.el), p/coordsys(a.el));
+}
+
+/*<asyxml><operator type = "path" signature="cast(explicit arc)"><code></asyxml>*/
+path operator cast(explicit arc a)
+{/*<asyxml></code><documentation>Cast arc to path.</documentation></operator></asyxml>*/
+ return arctopath(a, arcnodesnumber(a));
+}
+
+/*<asyxml><operator type = "guide" signature="cast(explicit arc)"><code></asyxml>*/
+guide operator cast(explicit arc a)
+{/*<asyxml></code><documentation>Cast arc to guide.</documentation></operator></asyxml>*/
+ return arctopath(a, arcnodesnumber(a));
+}
+
+/*<asyxml><operator type = "arc" signature="*(transform,explicit arc)"><code></asyxml>*/
+arc operator *(transform t, explicit arc a)
+{/*<asyxml></code><documentation>Provide transform * arc.</documentation></operator></asyxml>*/
+ pair[] P, PP;
+ path g = arctopath(a, 3);
+ real a0, a1 = a.angle1, a2 = a.angle2, ap1, ap2;
+ bool dir = a.direction;
+ P[0] = t * point(g, 0);
+ P[1] = t * point(g, 2);
+ ellipse el = t * a.el;
+ arc oa;
+ a0 = (a.angle0 + angle(shiftless(t)))%360;
+ pair C;
+ if(a.polarconicroutine == fromCenter) C = el.C; else C = el.F1;
+ real d = abs(locate(el.F2 - el.F1)) > epsgeo ?
+ degrees(locate(el.F2 - el.F1)) : a0 + degrees(el.C.coordsys.i);
+ ap1 = (degrees(P[0]-C, false) - d)%360;
+ ap2 = (degrees(P[1]-C, false) - d)%360;
+ oa.init(el, a0, ap1, ap2, a.polarconicroutine, dir);
+ g = arctopath(oa, 3);
+ PP[0] = point(g, 0);
+ PP[1] = point(g, 2);
+ if((a1 - a2) * (ap1 - ap2) < 0) {// Handle reflection.
+ dir=!a.direction;
+ oa.init(el, a0, ap1, ap2, a.polarconicroutine, dir);
+ }
+ return oa;
+}
+
+/*<asyxml><operator type = "arc" signature="*(real,explicit arc)"><code></asyxml>*/
+arc operator *(real x, explicit arc a)
+{/*<asyxml></code><documentation>Provide real * arc.
+ Return the arc subtracting and adding '(x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.</documentation></operator></asyxml>*/
+ real a1, a2, gle;
+ gle = (x - 1) * degrees(a)/2;
+ a1 = a.angle1 - gle;
+ a2 = a.angle2 + gle;
+ arc oa;
+ oa.init(a.el, a.angle0, a1, a2, a.polarconicroutine, a.direction);
+ return oa;
+}
+arc operator *(int x, explicit arc a){return (real)x * a;}
+/*<asyxml><operator type = "arc" signature="/(real,explicit arc)"><code></asyxml>*/
+arc operator /(explicit arc a, real x)
+{/*<asyxml></code><documentation>Provide arc/real.
+ Return the arc subtracting and adding '(1/x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.</documentation></operator></asyxml>*/
+ return (1/x) * a;
+}
+/*<asyxml><operator type = "arc" signature="+(explicit arc,point)"><code></asyxml>*/
+arc operator +(explicit arc a, point M)
+{/*<asyxml></code><documentation>Provide arc + point.
+ Return shifted arc.
+ 'operator +(explicit arc, point)', 'operator +(explicit arc, vector)' and 'operator -(explicit arc, vector)' are also defined.</documentation></operator></asyxml>*/
+ return shift(M) * a;
+}
+arc operator -(explicit arc a, point M){return a + (-M);}
+arc operator +(explicit arc a, vector v){return shift(locate(v)) * a;}
+arc operator -(explicit arc a, vector v){return a + (-v);}
+
+
+/*<asyxml><operator type = "bool" signature="@(point,arc)"><code></asyxml>*/
+bool operator @(point M, arc a)
+{/*<asyxml></code><documentation>Return true iff 'M' is on the arc 'a'.</documentation></operator></asyxml>*/
+ if (!(M @ a.el)) return false;
+ coordsys R = defaultcoordsys;
+ path ap = arctopath(a, 3);
+ line l = line(point(R, point(ap, 0)), point(R, point(ap, 2)));
+ return sameside(M, point(R, point(ap, 1)), l);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,Label,arc,align,pen,arrowbar,arrowbar,margin,Label,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, Label L = "", arc a,
+ align align = NoAlign, pen p = currentpen,
+ arrowbar arrow = None, arrowbar bar = None, margin margin = NoMargin,
+ Label legend = "", marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw 'arc' adding the pen returned by 'addpenarc(p)' to the pen 'p'.
+ <look href = "#addpenarc"/></documentation></function></asyxml>*/
+ draw(pic, L, (path)a, align, addpenarc(p), arrow, bar, margin, legend, marker);
+}
+
+/*<asyxml><function type="real" signature="arclength(arc)"><code></asyxml>*/
+real arclength(arc a)
+{/*<asyxml></code><documentation>The arc length of 'a'.</documentation></function></asyxml>*/
+ return arclength(a.el, a.angle1, a.angle2, a.direction, a.polarconicroutine);
+}
+
+private point ppoint(arc a, real x)
+{// Return the point of the arc proportionally to its length.
+ point oP;
+ if(a.el.e == 0) { // Case of circle.
+ oP = angpoint(a, x * abs(degrees(a)));
+ } else { // Ellipse and not circle.
+ if(!a.direction) {
+ transform t = reflect(line(a.el.F1, a.el.F2));
+ return t * ppoint(t * a, x);
+ }
+
+ real angle1 = a.angle1, angle2 = a.angle2;
+ if(a.polarconicroutine == fromFocus) {
+ // dot(point(fromFocus(a.el, angle1, angle1, 1, CCW), 0), 2mm + blue);
+ // dot(point(fromFocus(a.el, angle2, angle2, 1, CCW), 0), 2mm + blue);
+ // write("fromfocus1 = ", angle1);
+ // write("fromfocus2 = ", angle2);
+ real gle1 = focusToCenter(a.el, angle1);
+ real gle2 = focusToCenter(a.el, angle2);
+ if((gle1 - gle2) * (angle1 - angle2) > 0) {
+ angle1 = gle1; angle2 = gle2;
+ } else {
+ angle1 = gle2; angle2 = gle1;
+ }
+ // write("fromcenter1 = ", angle1);
+ // write("fromcenter2 = ", angle2);
+ // dot(point(fromCenter(a.el, angle1, angle1, 1, CCW), 0), 1mm + red);
+ // dot(point(fromCenter(a.el, angle2, angle2, 1, CCW), 0), 1mm + red);
+ }
+
+ if(angle1 > angle2) {
+ arc ta = a.copy();
+ ta.polarconicroutine = fromCenter;
+ ta.setangles(a0 = a.angle0, a1 = angle1 - 360, a2 = angle2);
+ return ppoint(ta, x);
+ }
+ ellipse co = a.el;
+ real gle, a1, a2, cx = 0;
+ bool direction;
+ if(x >= 0) {
+ a1 = angle1;
+ a2 = a1 + 360;
+ direction = CCW;
+ } else {
+ a1 = angle1 - 360;
+ a2 = a1 - 360;
+ direction = CW;
+ }
+ gle = a1;
+ real L = arclength(co, angle1, angle2, a.direction, fromCenter);
+ real tx = L * abs(x)%arclength(co);
+ real aout = a1;
+ while(abs(cx - tx) > epsgeo) {
+ aout = (a1 + a2)/2;
+ cx = abs(arclength(co, gle, aout, direction, fromCenter));
+ if(cx > tx) a2 = (a1 + a2)/2 ; else a1 = (a1 + a2)/2;
+ }
+ pair p = point(arcfromcenter(co, aout, aout, CCW, 1), 0);
+ oP = point(coordsys(co), p/coordsys(co));
+ }
+ return oP;
+}
+
+/*<asyxml><function type="point" signature="point(arc,abscissa)"><code></asyxml>*/
+point point(arc a, abscissa l)
+{/*<asyxml></code><documentation>Return the point of 'a' which has the abscissa 'l.x'
+ according to the abscissa system 'l.system'.
+ Note that 'a.polarconicroutine' is used instead of 'l.polarconicroutine'.
+ <look href = "#struct abscissa"/></documentation></function></asyxml>*/
+ real posx;
+ arc ta = a.copy();
+ ellipse co = a.el;
+ if (l.system == relativesystem) {
+ posx = l.x;
+ } else
+ if (l.system == curvilinearsystem) {
+ real tl;
+ if(co.e == 0) {
+ tl = curabscissa(a.el, angpoint(a.el, a.angle0 + a.angle1)).x;
+ return curpoint(a.el, tl + (a.direction ? l.x : -l.x));
+ } else {
+ tl = curabscissa(a.el, angpoint(a.el, a.angle1, a.polarconicroutine)).x;
+ return curpoint(a.el, tl + (a.direction ? l.x : -l.x));
+ }
+ } else
+ if (l.system == nodesystem) {
+ coordsys R = coordsys(co);
+ return point(R, point((path)a, l.x)/R);
+ } else
+ if (l.system == angularsystem) {
+ return angpoint(a, l.x);
+ } else abort("point: bad abscissa system.");
+ return ppoint(ta, posx);
+}
+
+
+/*<asyxml><function type="point" signature="point(arc,real)"><code></asyxml>*/
+point point(arc a, real x)
+{/*<asyxml></code><documentation>Return the point between node floor(t) and floor(t) + 1.</documentation></function></asyxml>*/
+ return point(a, nodabscissa(x));
+}
+pair point(explicit arc a, int x)
+{
+ return point(a, nodabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="relpoint(arc,real)"><code></asyxml>*/
+point relpoint(arc a, real x)
+{/*<asyxml></code><documentation>Return the relative point of 'a'.
+ If x > 1 or x < 0, the returned point is on the extended arc.</documentation></function></asyxml>*/
+ return point(a, relabscissa(x));
+}
+
+/*<asyxml><function type="point" signature="curpoint(arc,real)"><code></asyxml>*/
+point curpoint(arc a, real x)
+{/*<asyxml></code><documentation>Return the point of 'a' which has the curvilinear abscissa 'x'.
+ If x < 0 or x > arclength(a), the returned point is on the extended arc.</documentation></function></asyxml>*/
+ return point(a, curabscissa(x));
+}
+
+/*<asyxml><function type="abscissa" signature="angabscissa(arc,point)"><code></asyxml>*/
+abscissa angabscissa(arc a, point M)
+{/*<asyxml></code><documentation>Return the angular abscissa of 'M' according to the arc 'a'.</documentation></function></asyxml>*/
+ if(!(M @ a.el))
+ abort("angabscissa: the point is not on the extended arc.");
+ abscissa oa;
+ oa.system = angularsystem;
+ oa.polarconicroutine = a.polarconicroutine;
+ real am = angabscissa(a.el, M, a.polarconicroutine).x;
+ oa.x = (am - a.angle1 - (a.el.e == 0 ? a.angle0 : 0))%360;
+ oa.x = a.direction ? oa.x : 360 - oa.x;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="curabscissa(arc,point)"><code></asyxml>*/
+abscissa curabscissa(arc a, point M)
+{/*<asyxml></code><documentation>Return the curvilinear abscissa according to the arc 'a'.</documentation></function></asyxml>*/
+ ellipse el = a.el;
+ if(!(M @ el))
+ abort("angabscissa: the point is not on the extended arc.");
+ abscissa oa;
+ oa.system = curvilinearsystem;
+ real xm = curabscissa(el, M).x;
+ real a0 = el.e == 0 ? a.angle0 : 0;
+ real am = curabscissa(el, angpoint(el, a.angle1 + a0, a.polarconicroutine)).x;
+ real l = arclength(el);
+ oa.x = (xm - am)%l;
+ oa.x = a.direction ? oa.x : l - oa.x;
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="nodabscissa(arc,point)"><code></asyxml>*/
+abscissa nodabscissa(arc a, point M)
+{/*<asyxml></code><documentation>Return the node abscissa according to the arc 'a'.</documentation></function></asyxml>*/
+ if(!(M @ a))
+ abort("nodabscissa: the point is not on the arc.");
+ abscissa oa;
+ oa.system = nodesystem;
+ oa.x = intersect((path)a, M)[0];
+ return oa;
+}
+
+/*<asyxml><function type="abscissa" signature="relabscissa(arc,point)"><code></asyxml>*/
+abscissa relabscissa(arc a, point M)
+{/*<asyxml></code><documentation>Return the relative abscissa according to the arc 'a'.</documentation></function></asyxml>*/
+ ellipse el = a.el;
+ if(!( M @ el))
+ abort("relabscissa: the point is not on the prolonged arc.");
+ abscissa oa;
+ oa.system = relativesystem;
+ oa.x = curabscissa(a, M).x/arclength(a);
+ return oa;
+}
+
+/*<asyxml><function type="void" signature="markarc(picture,Label,int,real,real,arc,arrowbar,pen,pen,margin,marker)"><code></asyxml>*/
+void markarc(picture pic = currentpicture,
+ Label L = "",
+ int n = 1, real radius = 0, real space = 0,
+ arc a,
+ pen sectorpen = currentpen,
+ pen markpen = sectorpen,
+ margin margin = NoMargin,
+ arrowbar arrow = None,
+ marker marker = nomarker)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ real Da = degrees(a);
+ pair p1 = point(a, 0);
+ pair p2 = relpoint(a, 1);
+ pair c = a.polarconicroutine == fromCenter ? locate(a.el.C) : locate(a.el.F1);
+ if(radius == 0) radius = markangleradius(markpen);
+ if(abs(Da) > 180) radius = -radius;
+ radius = (a.direction ? 1 : -1) * sgnd(Da) * radius;
+ draw(c--p1^^c--p2, sectorpen);
+ markangle(pic = pic, L = L, n = n, radius = radius, space = space,
+ A = p1, O = c, B = p2,
+ arrow = arrow, p = markpen, margin = margin,
+ marker = marker);
+}
+// *.........................ARCS..........................*
+// *=======================================================*
+
+// *=======================================================*
+// *........................MASSES.........................*
+/*<asyxml><struct signature="mass"><code></asyxml>*/
+struct mass {/*<asyxml></code><documentation></documentation><property type = "point" signature="M"><code></asyxml>*/
+ point M;/*<asyxml></code><documentation></documentation></property><property type = "real" signature="m"><code></asyxml>*/
+ real m;/*<asyxml></code><documentation></documentation></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="mass" signature="mass(point,real)"><code></asyxml>*/
+mass mass(point M, real m)
+{/*<asyxml></code><documentation>Constructor of mass point.</documentation></function></asyxml>*/
+ mass om;
+ om.M = M;
+ om.m = m;
+ return om;
+}
+
+/*<asyxml><operator type = "point" signature="cast(mass)"><code></asyxml>*/
+point operator cast(mass m)
+{/*<asyxml></code><documentation>Cast mass point to point.</documentation></operator></asyxml>*/
+ point op;
+ op = m.M;
+ op.m = m.m;
+ return op;
+}
+/*<asyxml><function type="point" signature="point(explicit mass)"><code></asyxml>*/
+point point(explicit mass m){return m;}/*<asyxml></code><documentation>Cast
+ 'm' to point</documentation></function></asyxml>*/
+
+/*<asyxml><operator type = "mass" signature="cast(point)"><code></asyxml>*/
+mass operator cast(point M)
+{/*<asyxml></code><documentation>Cast point to mass point.</documentation></operator></asyxml>*/
+ mass om;
+ om.M = M;
+ om.m = M.m;
+ return om;
+}
+/*<asyxml><function type="mass" signature="mass(explicit point)"><code></asyxml>*/
+mass mass(explicit point P)
+{/*<asyxml></code><documentation>Cast 'P' to mass.</documentation></function></asyxml>*/
+ return mass(P, P.m);
+}
+
+/*<asyxml><operator type = "point[]" signature="cast(mass[])"><code></asyxml>*/
+point[] operator cast(mass[] m)
+{/*<asyxml></code><documentation>Cast mass[] to point[].</documentation></operator></asyxml>*/
+ point[] op;
+ for(mass am : m) op.push(point(am));
+ return op;
+}
+
+/*<asyxml><operator type = "mass[]" signature="cast(point[])"><code></asyxml>*/
+mass[] operator cast(point[] P)
+{/*<asyxml></code><documentation>Cast point[] to mass[].</documentation></operator></asyxml>*/
+ mass[] om;
+ for(point op : P) om.push(mass(op));
+ return om;
+}
+
+/*<asyxml><function type="mass" signature="mass(coordsys,explicit pair,real)"><code></asyxml>*/
+mass mass(coordsys R, explicit pair p, real m)
+{/*<asyxml></code><documentation>Return the mass which has coordinates
+ 'p' with respect to 'R' and weight 'm'.</documentation></function></asyxml>*/
+ return point(R, p, m);// Using casting.
+}
+
+/*<asyxml><operator type = "mass" signature="cast(pair)"><code></asyxml>*/
+mass operator cast(pair m){return mass((point)m, 1);}/*<asyxml></code><documentation>Cast pair to mass point.</documentation></operator></asyxml>*/
+/*<asyxml><operator type = "path" signature="cast(mass)"><code></asyxml>*/
+path operator cast(mass M){return M.M;}/*<asyxml></code><documentation>Cast mass point to path.</documentation></operator></asyxml>*/
+/*<asyxml><operator type = "guide" signature="cast(mass)"><code></asyxml>*/
+guide operator cast(mass M){return M.M;}/*<asyxml></code><documentation>Cast mass to guide.</documentation></operator></asyxml>*/
+
+/*<asyxml><operator type = "mass" signature="+(mass,mass)"><code></asyxml>*/
+mass operator +(mass M1, mass M2)
+{/*<asyxml></code><documentation>Provide mass + mass.
+ mass - mass is also defined.</documentation></operator></asyxml>*/
+ return mass(M1.M + M2.M, M1.m + M2.m);
+}
+mass operator -(mass M1, mass M2)
+{
+ return mass(M1.M - M2.M, M1.m - M2.m);
+}
+
+/*<asyxml><operator type = "mass" signature="*(real,mass)"><code></asyxml>*/
+mass operator *(real x, explicit mass M)
+{/*<asyxml></code><documentation>Provide real * mass.
+ The resulted mass is the mass of 'M' multiplied by 'x' .
+ mass/real, mass + real and mass - real are also defined.</documentation></operator></asyxml>*/
+ return mass(M.M, x * M.m);
+}
+mass operator *(int x, explicit mass M){return mass(M.M, x * M.m);}
+mass operator /(explicit mass M, real x){return mass(M.M, M.m/x);}
+mass operator /(explicit mass M, int x){return mass(M.M, M.m/x);}
+mass operator +(explicit mass M, real x){return mass(M.M, M.m + x);}
+mass operator +(explicit mass M, int x){return mass(M.M, M.m + x);}
+mass operator -(explicit mass M, real x){return mass(M.M, M.m - x);}
+mass operator -(explicit mass M, int x){return mass(M.M, M.m - x);}
+/*<asyxml><operator type = "mass" signature="*(transform,mass)"><code></asyxml>*/
+mass operator *(transform t, mass M)
+{/*<asyxml></code><documentation>Provide transform * mass.</documentation></operator></asyxml>*/
+ return mass(t * M.M, M.m);
+}
+
+/*<asyxml><function type="mass" signature="masscenter(... mass[])"><code></asyxml>*/
+mass masscenter(... mass[] M)
+{/*<asyxml></code><documentation>Return the center of the masses 'M'.</documentation></function></asyxml>*/
+ point[] P;
+ for (int i = 0; i < M.length; ++i)
+ P.push(M[i].M);
+ P = standardizecoordsys(currentcoordsys, true ... P);
+ real m = M[0].m;
+ point oM = M[0].m * P[0];
+ for (int i = 1; i < M.length; ++i) {
+ oM += M[i].m * P[i];
+ m += M[i].m;
+ }
+ if (m == 0) abort("masscenter: the sum of masses is null.");
+ return mass(oM/m, m);
+}
+
+/*<asyxml><function type="string" signature="massformat(string,string,mass)"><code></asyxml>*/
+string massformat(string format = defaultmassformat,
+ string s, mass M)
+{/*<asyxml></code><documentation>Return the string formated by 'format' with the mass value.
+ In the parameter 'format', %L will be replaced by 's'.
+ <look href = "#defaultmassformat"/>.</documentation></function></asyxml>*/
+ return format == "" ? s :
+ format(replace(format, "%L", replace(s, "$", "")), M.m);
+}
+
+/*<asyxml><function type="void" signature="label(picture,Label,explicit mass,align,string,pen,filltype)"><code></asyxml>*/
+void label(picture pic = currentpicture, Label L, explicit mass M,
+ align align = NoAlign, string format = defaultmassformat,
+ pen p = nullpen, filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw label returned by massformat(format, L, M) at coordinates of M.
+ <look href = "#massformat(string, string, mass)"/>.</documentation></function></asyxml>*/
+ Label lL = L.copy();
+ lL.s = massformat(format, lL.s, M);
+ Label L = Label(lL, M.M, align, p, filltype);
+ add(pic, L);
+}
+
+/*<asyxml><function type="void" signature="dot(picture,Label,explicit mass,align,string,pen)"><code></asyxml>*/
+void dot(picture pic = currentpicture, Label L, explicit mass M, align align = NoAlign,
+ string format = defaultmassformat, pen p = currentpen)
+{/*<asyxml></code><documentation>Draw a dot with label 'L' as
+ label(picture, Label, explicit mass, align, string, pen, filltype) does.
+ <look href = "#label(picture, Label, mass, align, string, pen, filltype)"/>.</documentation></function></asyxml>*/
+ Label lL = L.copy();
+ lL.s = massformat(format, lL.s, M);
+ lL.position(locate(M.M));
+ lL.align(align, E);
+ lL.p(p);
+ dot(pic, M.M, p);
+ add(pic, lL);
+}
+// *........................MASSES.........................*
+// *=======================================================*
+
+// *=======================================================*
+// *.......................TRIANGLES.......................*
+/*<asyxml><function type="point" signature="orthocentercenter(point,point,point)"><code></asyxml>*/
+point orthocentercenter(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the orthocenter of the triangle ABC.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C);
+ coordsys R = P[0].coordsys;
+ pair pp = extension(A, projection(P[1], P[2]) * P[0], B, projection(P[0], P[2]) * P[1]);
+ return point(R, pp/R);
+}
+
+/*<asyxml><function type="point" signature="centroid(point,point,point)"><code></asyxml>*/
+point centroid(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the centroid of the triangle ABC.</documentation></function></asyxml>*/
+ return (A + B + C)/3;
+}
+
+/*<asyxml><function type="point" signature="incenter(point,point,point)"><code></asyxml>*/
+point incenter(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the center of the incircle of the triangle ABC.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C);
+ coordsys R = P[0].coordsys;
+ pair a = A, b = B, c = C;
+ pair pp = extension(a, a + dir(a--b, a--c), b, b + dir(b--a, b--c));
+ return point(R, pp/R);
+}
+
+/*<asyxml><function type="real" signature="inradius(point,point,point)"><code></asyxml>*/
+real inradius(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the radius of the incircle of the triangle ABC.</documentation></function></asyxml>*/
+ point IC = incenter(A, B, C);
+ return abs(IC - projection(A, B) * IC);
+}
+
+/*<asyxml><function type="circle" signature="incircle(point,point,point)"><code></asyxml>*/
+circle incircle(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the incircle of the triangle ABC.</documentation></function></asyxml>*/
+ point IC = incenter(A, B, C);
+ return circle(IC, abs(IC - projection(A, B) * IC));
+}
+
+/*<asyxml><function type="point" signature="excenter(point,point,point)"><code></asyxml>*/
+point excenter(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the center of the excircle of the triangle tangent with (AB).</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C);
+ coordsys R = P[0].coordsys;
+ pair a = A, b = B, c = C;
+ pair pp = extension(a, a + rotate(90) * dir(a--b, a--c), b, b + rotate(90) * dir(b--a, b--c));
+ return point(R, pp/R);
+}
+
+/*<asyxml><function type="real" signature="exradius(point,point,point)"><code></asyxml>*/
+real exradius(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the radius of the excircle of the triangle ABC with (AB).</documentation></function></asyxml>*/
+ point EC = excenter(A, B, C);
+ return abs(EC - projection(A, B) * EC);
+}
+
+/*<asyxml><function type="circle" signature="excircle(point,point,point)"><code></asyxml>*/
+circle excircle(point A, point B, point C)
+{/*<asyxml></code><documentation>Return the excircle of the triangle ABC tangent with (AB).</documentation></function></asyxml>*/
+ point center = excenter(A, B, C);
+ real radius = abs(center - projection(B, C) * center);
+ return circle(center, radius);
+}
+
+private int[] numarray = {1, 2, 3};
+numarray.cyclic = true;
+
+/*<asyxml><struct signature="triangle"><code></asyxml>*/
+struct triangle {/*<asyxml></code><documentation></documentation></asyxml>*/
+
+ /*<asyxml><struct signature="vertex"><code></asyxml>*/
+ struct vertex {/*<asyxml></code><documentation>Structure used to communicate the vertex of a triangle.</documentation><property type = "int" signature="n"><code></asyxml>*/
+ int n;/*<asyxml></code><documentation>1 means VA,2 means VB,3 means VC,4 means VA etc...</documentation></property><property type = "triangle" signature="triangle"><code></asyxml>*/
+ triangle t;/*<asyxml></code><documentation>The triangle to which the vertex refers.</documentation></property></asyxml>*/
+ }/*<asyxml></struct></asyxml>*/
+
+ /*<asyxml><property type = "point" signature="A,B,C"><code></asyxml>*/
+ restricted point A, B, C;/*<asyxml></code><documentation>The vertices of the triangle (as point).</documentation></property><property type = "vertex" signature="VA, VB, VC"><code></asyxml>*/
+ restricted vertex VA, VB, VC;/*<asyxml></code><documentation>The vertices of the triangle (as vertex).
+ Note that the vertex structure contains the triangle to wish it refers.</documentation></property></asyxml>*/
+ VA.n = 1;VB.n = 2;VC.n = 3;
+
+ /*<asyxml><method type = "vertex" signature="vertex(int)"><code></asyxml>*/
+ vertex vertex(int n)
+ {/*<asyxml></code><documentation>Return numbered vertex.
+ 'n' is 1 means VA, 2 means VB, 3 means VC, 4 means VA etc...</documentation></method></asyxml>*/
+ n = numarray[n - 1];
+ if(n == 1) return VA;
+ else if(n == 2) return VB;
+ return VC;
+ }
+
+ /*<asyxml><method type = "point" signature="point(int)"><code></asyxml>*/
+ point point(int n)
+ {/*<asyxml></code><documentation>Return numbered point.
+ n is 1 means A, 2 means B, 3 means C, 4 means A etc...</documentation></method></asyxml>*/
+ n = numarray[n - 1];
+ if(n == 1) return A;
+ else if(n == 2) return B;
+ return C;
+ }
+
+ /*<asyxml><method type = "void" signature="init(point,point,point)"><code></asyxml>*/
+ void init(point A, point B, point C)
+ {/*<asyxml></code><documentation>Constructor.</documentation></method></asyxml>*/
+ point[] P = standardizecoordsys(A, B, C);
+ this.A = P[0];
+ this.B = P[1];
+ this.C = P[2];
+ VA.t = this; VB.t = this; VC.t = this;
+ }
+
+ /*<asyxml><method type = "void" signature="operator init(point,point,point)"><code></asyxml>*/
+ void operator init(point A, point B, point C)
+ {/*<asyxml></code><documentation>For backward compatibility.
+ Provide the routine 'triangle(point A, point B, point C)'.</documentation></method></asyxml>*/
+ this.init(A, B, C);
+ }
+
+ /*<asyxml><method type = "void" signature="init(real,real,real,real,point)"><code></asyxml>*/
+ void operator init(real b, real alpha, real c, real angle = 0, point A = (0, 0))
+ {/*<asyxml></code><documentation>For backward compatibility.
+ Provide the routine 'triangle(real b, real alpha, real c, real angle = 0, point A = (0, 0))
+ which returns the triangle ABC rotated by 'angle' (in degrees) and where b = AC, degrees(A) = alpha, AB = c.</documentation></method></asyxml>*/
+ coordsys R = A.coordsys;
+ this.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle + alpha)));
+ }
+
+ /*<asyxml><method type = "real" signature="a(),b(),c()"><code></asyxml>*/
+ real a()
+ {/*<asyxml></code><documentation>Return the length BC.
+ b() and c() are also defined and return the length AC and AB respectively.</documentation></method></asyxml>*/
+ return length(C - B);
+ }
+ real b() {return length(A - C);}
+ real c() {return length(B - A);}
+
+ private real det(pair a, pair b) {return a.x * b.y - a.y * b.x;}
+
+ /*<asyxml><method type = "real" signature="area()"><code></asyxml>*/
+ real area()
+ {/*<asyxml></code><documentation></documentation></method></asyxml>*/
+ pair a = locate(A), b = locate(B), c = locate(C);
+ return 0.5 * abs(det(a, b) + det(b, c) + det(c, a));
+ }
+
+ /*<asyxml><method type = "real" signature="alpha(),beta(),gamma()"><code></asyxml>*/
+ real alpha()
+ {/*<asyxml></code><documentation>Return the measure (in degrees) of the angle A.
+ beta() and gamma() are also defined and return the measure of the angles B and C respectively.</documentation></method></asyxml>*/
+ return degrees(acos((b()^2 + c()^2 - a()^2)/(2b() * c())));
+ }
+ real beta() {return degrees(acos((c()^2 + a()^2 - b()^2)/(2c() * a())));}
+ real gamma() {return degrees(acos((a()^2 + b()^2 - c()^2)/(2a() * b())));}
+
+ /*<asyxml><method type = "path" signature="Path()"><code></asyxml>*/
+ path Path()
+ {/*<asyxml></code><documentation>The path of the triangle.</documentation></method></asyxml>*/
+ return A--C--B--cycle;
+ }
+
+ /*<asyxml><struct signature="side"><code></asyxml>*/
+ struct side
+ {/*<asyxml></code><documentation>Structure used to communicate the side of a triangle.</documentation><property type = "int" signature="n"><code></asyxml>*/
+ int n;/*<asyxml></code><documentation>1 or 0 means [AB],-1 means [BA],2 means [BC],-2 means [CB] etc.</documentation></property><property type = "triangle" signature="triangle"><code></asyxml>*/
+ triangle t;/*<asyxml></code><documentation>The triangle to which the side refers.</documentation></property></asyxml>*/
+ }/*<asyxml></struct></asyxml>*/
+
+ /*<asyxml><property type = "side" signature="AB"><code></asyxml>*/
+ side AB;/*<asyxml></code><documentation>For the routines using the structure 'side', triangle.AB means 'side AB'.
+ BA, AC, CA etc are also defined.</documentation></property></asyxml>*/
+ AB.n = 1; AB.t = this;
+ side BA; BA.n = -1; BA.t = this;
+ side BC; BC.n = 2; BC.t = this;
+ side CB; CB.n = -2; CB.t = this;
+ side CA; CA.n = 3; CA.t = this;
+ side AC; AC.n = -3; AC.t = this;
+
+ /*<asyxml><method type = "side" signature="side(int)"><code></asyxml>*/
+ side side(int n)
+ {/*<asyxml></code><documentation>Return numbered side.
+ n is 1 means AB, -1 means BA, 2 means BC, -2 means CB, etc.</documentation></method></asyxml>*/
+ if(n == 0) abort('Invalid side number.');
+ int an = numarray[abs(n)-1];
+ if(an == 1) return n > 0 ? AB : BA;
+ else if(an == 2) return n > 0 ? BC : CB;
+ return n > 0 ? CA : AC;
+ }
+
+ /*<asyxml><method type = "line" signature="line(int)"><code></asyxml>*/
+ line line(int n)
+ {/*<asyxml></code><documentation>Return the numbered line.</documentation></method></asyxml>*/
+ if(n == 0) abort('Invalid line number.');
+ int an = numarray[abs(n)-1];
+ if(an == 1) return n > 0 ? line(A, B) : line(B, A);
+ else if(an == 2) return n > 0 ? line(B, C) : line(C, B);
+ return n > 0 ? line(C, A) : line(A, C);
+ }
+
+}/*<asyxml></struct></asyxml>*/
+
+from triangle unravel side; // The structure 'side' is now available outside the triangle structure.
+from triangle unravel vertex; // The structure 'vertex' is now available outside the triangle structure.
+
+triangle[] operator ^^(triangle[] t1, triangle t2)
+{
+ triangle[] T;
+ for (int i = 0; i < t1.length; ++i) T.push(t1[i]);
+ T.push(t2);
+ return T;
+}
+
+triangle[] operator ^^(... triangle[] t)
+{
+ triangle[] T;
+ for (int i = 0; i < t.length; ++i) {
+ T.push(t[i]);
+ }
+ return T;
+}
+
+/*<asyxml><operator type = "line" signature="cast(side)"><code></asyxml>*/
+line operator cast(side side)
+{/*<asyxml></code><documentation>Cast side to (infinite) line.
+ Most routine with line parameters works with side parameters.
+ One can use the code 'segment(a_side)' to obtain a line segment.</documentation></operator></asyxml>*/
+ triangle t = side.t;
+ return t.line(side.n);
+}
+
+/*<asyxml><function type="line" signature="line(explicit side)"><code></asyxml>*/
+line line(explicit side side)
+{/*<asyxml></code><documentation>Return 'side' as line.</documentation></function></asyxml>*/
+ return (line)side;
+}
+
+/*<asyxml><function type="segment" signature="segment(explicit side)"><code></asyxml>*/
+segment segment(explicit side side)
+{/*<asyxml></code><documentation>Return 'side' as segment.</documentation></function></asyxml>*/
+ return (segment)(line)side;
+}
+
+/*<asyxml><operator type = "point" signature="cast(vertex)"><code></asyxml>*/
+point operator cast(vertex V)
+{/*<asyxml></code><documentation>Cast vertex to point.
+ Most routine with point parameters works with vertex parameters.</documentation></operator></asyxml>*/
+ return V.t.point(V.n);
+}
+
+/*<asyxml><function type="point" signature="point(explicit vertex)"><code></asyxml>*/
+point point(explicit vertex V)
+{/*<asyxml></code><documentation>Return the point corresponding to the vertex 'V'.</documentation></function></asyxml>*/
+ return (point)V;
+}
+
+/*<asyxml><function type="side" signature="opposite(vertex)"><code></asyxml>*/
+side opposite(vertex V)
+{/*<asyxml></code><documentation>Return the opposite side of vertex 'V'.</documentation></function></asyxml>*/
+ return V.t.side(numarray[abs(V.n)]);
+}
+
+/*<asyxml><function type="vertex" signature="opposite(side)"><code></asyxml>*/
+vertex opposite(side side)
+{/*<asyxml></code><documentation>Return the opposite vertex of side 'side'.</documentation></function></asyxml>*/
+ return side.t.vertex(numarray[abs(side.n) + 1]);
+}
+
+/*<asyxml><function type="point" signature="midpoint(side)"><code></asyxml>*/
+point midpoint(side side)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return midpoint(segment(side));
+}
+
+/*<asyxml><operator type = "triangle" signature="*(transform,triangle)"><code></asyxml>*/
+triangle operator *(transform T, triangle t)
+{/*<asyxml></code><documentation>Provide transform * triangle.</documentation></operator></asyxml>*/
+ return triangle(T * t.A, T * t.B, T * t.C);
+}
+
+/*<asyxml><function type="triangle" signature="triangleAbc(real,real,real,real,point)"><code></asyxml>*/
+triangle triangleAbc(real alpha, real b, real c, real angle = 0, point A = (0, 0))
+{/*<asyxml></code><documentation>Return the triangle ABC rotated by 'angle' with BAC = alpha, AC = b and AB = c.</documentation></function></asyxml>*/
+ triangle T;
+ coordsys R = A.coordsys;
+ T.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle + alpha)));
+ return T;
+}
+
+/*<asyxml><function type="triangle" signature="triangleabc(real,real,real,real,point)"><code></asyxml>*/
+triangle triangleabc(real a, real b, real c, real angle = 0, point A = (0, 0))
+{/*<asyxml></code><documentation>Return the triangle ABC rotated by 'angle' with BC = a, AC = b and AB = c.</documentation></function></asyxml>*/
+ triangle T;
+ coordsys R = A.coordsys;
+ T.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle) + acos((b^2 + c^2 - a^2)/(2 * b * c))));
+ return T;
+}
+
+/*<asyxml><function type="triangle" signature="triangle(line,line,line)"><code></asyxml>*/
+triangle triangle(line l1, line l2, line l3)
+{/*<asyxml></code><documentation>Return the triangle defined by three line.</documentation></function></asyxml>*/
+ point P1, P2, P3;
+ P1 = intersectionpoint(l1, l2);
+ P2 = intersectionpoint(l1, l3);
+ P3 = intersectionpoint(l2, l3);
+ if(!(defined(P1) && defined(P2) && defined(P3))) abort("triangle: two lines are parallel.");
+ return triangle(P1, P2, P3);
+}
+
+/*<asyxml><function type="point" signature="foot(vertex)"><code></asyxml>*/
+point foot(vertex V)
+{/*<asyxml></code><documentation>Return the endpoint of the altitude from V.</documentation></function></asyxml>*/
+ return projection((line)opposite(V)) * ((point)V);
+}
+
+/*<asyxml><function type="point" signature="foot(side)"><code></asyxml>*/
+point foot(side side)
+{/*<asyxml></code><documentation>Return the endpoint of the altitude on 'side'.</documentation></function></asyxml>*/
+ return projection((line)side) * point(opposite(side));
+}
+
+/*<asyxml><function type="line" signature="altitude(vertex)"><code></asyxml>*/
+line altitude(vertex V)
+{/*<asyxml></code><documentation>Return the altitude passing through 'V'.</documentation></function></asyxml>*/
+ return line(point(V), foot(V));
+}
+
+/*<asyxml><function type="line" signature="altitude(vertex)"><code></asyxml>*/
+line altitude(side side)
+{/*<asyxml></code><documentation>Return the altitude cutting 'side'.</documentation></function></asyxml>*/
+ return altitude(opposite(side));
+}
+
+/*<asyxml><function type="point" signature="orthocentercenter(triangle)"><code></asyxml>*/
+point orthocentercenter(triangle t)
+{/*<asyxml></code><documentation>Return the orthocenter of the triangle t.</documentation></function></asyxml>*/
+ return orthocentercenter(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="point" signature="centroid(triangle)"><code></asyxml>*/
+point centroid(triangle t)
+{/*<asyxml></code><documentation>Return the centroid of the triangle 't'.</documentation></function></asyxml>*/
+ return (t.A + t.B + t.C)/3;
+}
+
+/*<asyxml><function type="point" signature="circumcenter(triangle)"><code></asyxml>*/
+point circumcenter(triangle t)
+{/*<asyxml></code><documentation>Return the circumcenter of the triangle 't'.</documentation></function></asyxml>*/
+ return circumcenter(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="circle" signature="circle(triangle)"><code></asyxml>*/
+circle circle(triangle t)
+{/*<asyxml></code><documentation>Return the circumcircle of the triangle 't'.</documentation></function></asyxml>*/
+ return circle(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="circle" signature="circumcircle(triangle)"><code></asyxml>*/
+circle circumcircle(triangle t)
+{/*<asyxml></code><documentation>Return the circumcircle of the triangle 't'.</documentation></function></asyxml>*/
+ return circle(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="point" signature="incenter(triangle)"><code></asyxml>*/
+point incenter(triangle t)
+{/*<asyxml></code><documentation>Return the center of the incircle of the triangle 't'.</documentation></function></asyxml>*/
+ return incenter(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="real" signature="inradius(triangle)"><code></asyxml>*/
+real inradius(triangle t)
+{/*<asyxml></code><documentation>Return the radius of the incircle of the triangle 't'.</documentation></function></asyxml>*/
+ return inradius(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="circle" signature="incircle(triangle)"><code></asyxml>*/
+circle incircle(triangle t)
+{/*<asyxml></code><documentation>Return the the incircle of the triangle 't'.</documentation></function></asyxml>*/
+ return incircle(t.A, t.B, t.C);
+}
+
+/*<asyxml><function type="point" signature="excenter(side,triangle)"><code></asyxml>*/
+point excenter(side side)
+{/*<asyxml></code><documentation>Return the center of the excircle tangent with the side 'side' of its triangle.
+ side = 0 means AB, 1 means AC, other means BC.
+ One must use the predefined sides t.AB, t.AC where 't' is a triangle....</documentation></function></asyxml>*/
+ point op;
+ triangle t = side.t;
+ int n = numarray[abs(side.n) - 1];
+ if(n == 1) op = excenter(t.A, t.B, t.C);
+ else if(n == 2) op = excenter(t.B, t.C, t.A);
+ else op = excenter(t.C, t.A, t.B);
+ return op;
+}
+
+/*<asyxml><function type="real" signature="exradius(side,triangle)"><code></asyxml>*/
+real exradius(side side)
+{/*<asyxml></code><documentation>Return radius of the excircle tangent with the side 'side' of its triangle.
+ side = 0 means AB, 1 means BC, other means CA.
+ One must use the predefined sides t.AB, t.AC where 't' is a triangle....</documentation></function></asyxml>*/
+ real or;
+ triangle t = side.t;
+ int n = numarray[abs(side.n) - 1];
+ if(n == 1) or = exradius(t.A, t.B, t.C);
+ else if(n == 2) or = exradius(t.B, t.C, t.A);
+ else or = exradius(t.A, t.C, t.B);
+ return or;
+}
+
+/*<asyxml><function type="circle" signature="excircle(side,triangle)"><code></asyxml>*/
+circle excircle(side side)
+{/*<asyxml></code><documentation>Return the excircle tangent with the side 'side' of its triangle.
+ side = 0 means AB, 1 means AC, other means BC.
+ One must use the predefined sides t.AB, t.AC where 't' is a triangle....</documentation></function></asyxml>*/
+ circle oc;
+ int n = numarray[abs(side.n) - 1];
+ triangle t = side.t;
+ if(n == 1) oc = excircle(t.A, t.B, t.C);
+ else if(n == 2) oc = excircle(t.B, t.C, t.A);
+ else oc = excircle(t.A, t.C, t.B);
+ return oc;
+}
+
+/*<asyxml><struct signature="trilinear"><code></asyxml>*/
+struct trilinear
+{/*<asyxml></code><documentation>Trilinear coordinates 'a:b:c' relative to triangle 't'.
+ <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation><property type = "real" signature="a,b,c"><code></asyxml>*/
+ real a,b,c;/*<asyxml></code><documentation>The trilinear coordinates.</documentation></property><property type = "triangle" signature="t"><code></asyxml>*/
+ triangle t;/*<asyxml></code><documentation>The reference triangle.</documentation></property></asyxml>*/
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,real,real,real)"><code></asyxml>*/
+trilinear trilinear(triangle t, real a, real b, real c)
+{/*<asyxml></code><documentation>Return the trilinear coordinates relative to 't'.
+ <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
+ trilinear ot;
+ ot.a = a; ot.b = b; ot.c = c;
+ ot.t = t;
+ return ot;
+}
+
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,point)"><code></asyxml>*/
+trilinear trilinear(triangle t, point M)
+{/*<asyxml></code><documentation>Return the trilinear coordinates of 'M' relative to 't'.
+ <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
+ trilinear ot;
+ pair m = locate(M);
+ int sameside(pair A, pair B, pair m, pair p)
+ {// Return 1 if 'm' and 'p' are same side of line (AB) else return -1.
+ pair mil = (A + B)/2;
+ pair mA = rotate(90, mil) * A;
+ pair mB = rotate(-90, mil) * A;
+ return (abs(m - mA) <= abs(m - mB)) == (abs(p - mA) <= abs(p - mB)) ? 1 : -1;
+ }
+ real det(pair a, pair b) {return a.x * b.y - a.y * b.x;}
+ real area(pair a, pair b, pair c){return 0.5 * abs(det(a, b) + det(b, c) + det(c, a));}
+ pair A = t.A, B = t.B, C = t.C;
+ real t1 = area(B, C, m), t2 = area(C, A, m), t3 = area(A, B, m);
+ ot.a = sameside(B, C, A, m) * t1/t.a();
+ ot.b = sameside(A, C, B, m) * t2/t.b();
+ ot.c = sameside(A, B, C, m) * t3/t.c();
+ ot.t = t;
+ return ot;
+}
+
+/*<asyxml><function type="void" signature="write(trilinear)"><code></asyxml>*/
+void write(trilinear tri)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ write(format("%f : ", tri.a) + format("%f : ", tri.b) + format("%f", tri.c));
+}
+
+/*<asyxml><function type="point" signature="trilinear(triangle,real,real,real)"><code></asyxml>*/
+point point(trilinear tri)
+{/*<asyxml></code><documentation>Return the trilinear coordinates relative to 't'.
+ <url href = "http://mathworld.wolfram.com/TrilinearCoordinates.html"/></documentation></function></asyxml>*/
+ triangle t = tri.t;
+ return masscenter(0.5 * t.a() * mass(t.A, tri.a),
+ 0.5 * t.b() * mass(t.B, tri.b),
+ 0.5 * t.c() * mass(t.C, tri.c));
+}
+
+/*<asyxml><function type="int[]" signature="tricoef(side)"><code></asyxml>*/
+int[] tricoef(side side)
+{/*<asyxml></code><documentation>Return an array of integer (values are 0 or 1) which represents 'side'.
+ For example, side = t.BC will be represented by {0, 1, 1}.</documentation></function></asyxml>*/
+ int[] oi;
+ int n = numarray[abs(side.n) - 1];
+ oi.push((n == 1 || n == 3) ? 1 : 0);
+ oi.push((n == 1 || n == 2) ? 1 : 0);
+ oi.push((n == 2 || n == 3) ? 1 : 0);
+ return oi;
+}
+
+/*<asyxml><operator type = "point" signature="cast(trilinear)"><code></asyxml>*/
+point operator cast(trilinear tri)
+{/*<asyxml></code><documentation>Cast trilinear to point.
+ One may use the routine 'point(trilinear)' to force the casting.</documentation></operator></asyxml>*/
+ return point(tri);
+}
+
+/*<asyxml><typedef type = "centerfunction" return = "real" params = "real, real, real"><code></asyxml>*/
+typedef real centerfunction(real, real, real);/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/TriangleCenterFunction.html"/></documentation></typedef></asyxml>*/
+
+/*<asyxml><function type="trilinear" signature="trilinear(triangle,centerfunction,real,real,real)"><code></asyxml>*/
+trilinear trilinear(triangle t, centerfunction f, real a = t.a(), real b = t.b(), real c = t.c())
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/TriangleCenterFunction.html"/></documentation></function></asyxml>*/
+ return trilinear(t, f(a, b, c), f(b, c, a), f(c, a, b));
+}
+
+/*<asyxml><function type="point" signature="symmedian(triangle)"><code></asyxml>*/
+point symmedian(triangle t)
+{/*<asyxml></code><documentation>Return the symmedian point of 't'.</documentation></function></asyxml>*/
+ point A, B, C;
+ real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, 0, b, c);
+ B = trilinear(t, a, 0, c);
+ return intersectionpoint(line(t.A, A), line(t.B, B));
+}
+
+/*<asyxml><function type="point" signature="symmedian(side)"><code></asyxml>*/
+point symmedian(side side)
+{/*<asyxml></code><documentation>The symmedian point on the side 'side'.</documentation></function></asyxml>*/
+ triangle t = side.t;
+ int n = numarray[abs(side.n) - 1];
+ if(n == 1) return trilinear(t, t.a(), t.b(), 0);
+ if(n == 2) return trilinear(t, 0, t.b(), t.c());
+ return trilinear(t, t.a(), 0, t.c());
+}
+
+/*<asyxml><function type="line" signature="symmedian(vertex)"><code></asyxml>*/
+line symmedian(vertex V)
+{/*<asyxml></code><documentation>Return the symmedian passing through 'V'.</documentation></function></asyxml>*/
+ return line(point(V), symmedian(V.t));
+}
+
+/*<asyxml><function type="triangle" signature="cevian(triangle,point)"><code></asyxml>*/
+triangle cevian(triangle t, point P)
+{/*<asyxml></code><documentation>Return the Cevian triangle with respect of 'P'
+ <url href = "http://mathworld.wolfram.com/CevianTriangle.html"/>.</documentation></function></asyxml>*/
+ trilinear tri = trilinear(t, locate(P));
+ point A = point(trilinear(t, 0, tri.b, tri.c));
+ point B = point(trilinear(t, tri.a, 0, tri.c));
+ point C = point(trilinear(t, tri.a, tri.b, 0));
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="point" signature="cevian(side,point)"><code></asyxml>*/
+point cevian(side side, point P)
+{/*<asyxml></code><documentation>Return the Cevian point on 'side' with respect of 'P'.</documentation></function></asyxml>*/
+ triangle t = side.t;
+ trilinear tri = trilinear(t, locate(P));
+ int[] s = tricoef(side);
+ return point(trilinear(t, s[0] * tri.a, s[1] * tri.b, s[2] * tri.c));
+}
+
+/*<asyxml><function type="line" signature="cevian(vertex,point)"><code></asyxml>*/
+line cevian(vertex V, point P)
+{/*<asyxml></code><documentation>Return line passing through 'V' and its Cevian image with respect of 'P'.</documentation></function></asyxml>*/
+ return line(point(V), cevian(opposite(V), P));
+}
+
+/*<asyxml><function type="point" signature="gergonne(triangle)"><code></asyxml>*/
+point gergonne(triangle t)
+{/*<asyxml></code><documentation>Return the Gergonne point of 't'.</documentation></function></asyxml>*/
+ real f(real a, real b, real c){return 1/(a * (b + c - a));}
+ return point(trilinear(t, f));
+}
+
+/*<asyxml><function type="point[]" signature="fermat(triangle)"><code></asyxml>*/
+point[] fermat(triangle t)
+{/*<asyxml></code><documentation>Return the Fermat points of 't'.</documentation></function></asyxml>*/
+ point[] P;
+ real A = t.alpha(), B = t.beta(), C = t.gamma();
+ P.push(point(trilinear(t, 1/Sin(A + 60), 1/Sin(B + 60), 1/Sin(C + 60))));
+ P.push(point(trilinear(t, 1/Sin(A - 60), 1/Sin(B - 60), 1/Sin(C - 60))));
+ return P;
+}
+
+/*<asyxml><function type="point" signature="isotomicconjugate(triangle,point)"><code></asyxml>*/
+point isotomicconjugate(triangle t, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
+ if(!inside(t.Path(), locate(M))) abort("isotomic: the point must be inside the triangle.");
+ trilinear tr = trilinear(t, M);
+ return point(trilinear(t, 1/(t.a()^2 * tr.a), 1/(t.b()^2 * tr.b), 1/(t.c()^2 * tr.c)));
+}
+
+/*<asyxml><function type="line" signature="isotomic(vertex,point)"><code></asyxml>*/
+line isotomic(vertex V, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/>.</documentation></function></asyxml>*/
+ side op = opposite(V);
+ return line(V, rotate(180, midpoint(op)) * cevian(op, M));
+}
+
+/*<asyxml><function type="point" signature="isotomic(side,point)"><code></asyxml>*/
+point isotomic(side side, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
+ return intersectionpoint(isotomic(opposite(side), M), side);
+}
+
+/*<asyxml><function type="triangle" signature="isotomic(triangle,point)"><code></asyxml>*/
+triangle isotomic(triangle t, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsotomicConjugate.html"/></documentation></function></asyxml>*/
+ return triangle(isotomic(t.BC, M), isotomic(t.CA, M), isotomic(t.AB, M));
+}
+
+/*<asyxml><function type="point" signature="isogonalconjugate(triangle,point)"><code></asyxml>*/
+point isogonalconjugate(triangle t, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
+ trilinear tr = trilinear(t, M);
+ return point(trilinear(t, 1/tr.a, 1/tr.b, 1/tr.c));
+}
+
+/*<asyxml><function type="point" signature="isogonal(side,point)"><code></asyxml>*/
+point isogonal(side side, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
+ return cevian(side, isogonalconjugate(side.t, M));
+}
+
+/*<asyxml><function type="line" signature="isogonal(vertex,point)"><code></asyxml>*/
+line isogonal(vertex V, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
+ return line(V, isogonal(opposite(V), M));
+}
+
+/*<asyxml><function type="triangle" signature="isogonal(triangle,point)"><code></asyxml>*/
+triangle isogonal(triangle t, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/IsogonalConjugate.html"/></documentation></function></asyxml>*/
+ return triangle(isogonal(t.BC, M), isogonal(t.CA, M), isogonal(t.AB, M));
+}
+
+/*<asyxml><function type="triangle" signature="pedal(triangle,point)"><code></asyxml>*/
+triangle pedal(triangle t, point M)
+{/*<asyxml></code><documentation>Return the pedal triangle of 'M' in 't'.
+ <url href = "http://mathworld.wolfram.com/PedalTriangle.html"/></documentation></function></asyxml>*/
+ return triangle(projection(t.BC) * M, projection(t.AC) * M, projection(t.AB) * M);
+}
+
+/*<asyxml><function type="triangle" signature="pedal(triangle,point)"><code></asyxml>*/
+line pedal(side side, point M)
+{/*<asyxml></code><documentation>Return the pedal line of 'M' cutting 'side'.
+ <url href = "http://mathworld.wolfram.com/PedalTriangle.html"/></documentation></function></asyxml>*/
+ return line(M, projection(side) * M);
+}
+
+/*<asyxml><function type="triangle" signature="antipedal(triangle,point)"><code></asyxml>*/
+triangle antipedal(triangle t, point M)
+{/*<asyxml></code><documentation><url href = "http://mathworld.wolfram.com/AntipedalTriangle.html"/></documentation></function></asyxml>*/
+ trilinear Tm = trilinear(t, M);
+ real a = Tm.a, b = Tm.b, c = Tm.c;
+ real CA = Cos(t.alpha()), CB = Cos(t.beta()), CC = Cos(t.gamma());
+ point A = trilinear(t, -(b + a * CC) * (c + a * CB), (c + a * CB) * (a + b * CC), (b + a * CC) * (a + c * CB));
+ point B = trilinear(t, (c + b * CA) * (b + a * CC), -(c + b * CA) * (a + b * CC), (a + b * CC) * (b + c * CA));
+ point C = trilinear(t, (b + c * CA) * (c + a * CB), (a + c * CB) * (c + b * CA), -(a + c * CB) * (b + c * CA));
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="extouch(triangle)"><code></asyxml>*/
+triangle extouch(triangle t)
+{/*<asyxml></code><documentation>Return the extouch triangle of the triangle 't'.
+ The extouch triangle of 't' is the triangle formed by the points
+ of tangency of a triangle 't' with its excircles.</documentation></function></asyxml>*/
+ point A, B, C;
+ real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, 0, (a - b + c)/b, (a + b - c)/c);
+ B = trilinear(t, (-a + b + c)/a, 0, (a + b - c)/c);
+ C = trilinear(t, (-a + b + c)/a, (a - b + c)/b, 0);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="extouch(triangle)"><code></asyxml>*/
+triangle incentral(triangle t)
+{/*<asyxml></code><documentation>Return the incentral triangle of the triangle 't'.
+ It is the triangle whose vertices are determined by the intersections of the
+ reference triangle's angle bisectors with the respective opposite sides.</documentation></function></asyxml>*/
+ point A, B, C;
+ // real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, 0, 1, 1);
+ B = trilinear(t, 1, 0, 1);
+ C = trilinear(t, 1, 1, 0);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="extouch(side)"><code></asyxml>*/
+triangle extouch(side side)
+{/*<asyxml></code><documentation>Return the triangle formed by the points of tangency of the triangle referenced by 'side' with its excircles.
+ One vertex of the returned triangle is on the segment 'side'.</documentation></function></asyxml>*/
+ triangle t = side.t;
+ transform p1 = projection((line)t.AB);
+ transform p2 = projection((line)t.AC);
+ transform p3 = projection((line)t.BC);
+ point EP = excenter(side);
+ return triangle(p3 * EP, p2 * EP, p1 * EP);
+}
+
+/*<asyxml><function type="point" signature="bisectorpoint(side)"><code></asyxml>*/
+point bisectorpoint(side side)
+{/*<asyxml></code><documentation>The intersection point of the angle bisector from the
+ opposite point of 'side' with the side 'side'.</documentation></function></asyxml>*/
+ triangle t = side.t;
+ int n = numarray[abs(side.n) - 1];
+ if(n == 1) return trilinear(t, 1, 1, 0);
+ if(n == 2) return trilinear(t, 0, 1, 1);
+ return trilinear(t, 1, 0, 1);
+}
+
+/*<asyxml><function type="line" signature="bisector(vertex,real)"><code></asyxml>*/
+line bisector(vertex V, real angle = 0)
+{/*<asyxml></code><documentation>Return the interior bisector passing through 'V' rotated by angle (in degrees)
+ around 'V'.</documentation></function></asyxml>*/
+ return rotate(angle, point(V)) * line(point(V), incenter(V.t));
+}
+
+/*<asyxml><function type="line" signature="bisector(side)"><code></asyxml>*/
+line bisector(side side)
+{/*<asyxml></code><documentation>Return the bisector of the line segment 'side'.</documentation></function></asyxml>*/
+ return bisector(segment(side));
+}
+
+/*<asyxml><function type="point" signature="intouch(side)"><code></asyxml>*/
+point intouch(side side)
+{/*<asyxml></code><documentation>The point of tangency on the side 'side' of its incircle.</documentation></function></asyxml>*/
+ triangle t = side.t;
+ real a = t.a(), b = t.b(), c = t.c();
+ int n = numarray[abs(side.n) - 1];
+ if(n == 1) return trilinear(t, b * c/(-a + b + c), a * c/(a - b + c), 0);
+ if(n == 2) return trilinear(t, 0, a * c/(a - b + c), a * b/(a + b - c));
+ return trilinear(t, b * c/(-a + b + c), 0, a * b/(a + b - c));
+}
+
+/*<asyxml><function type="triangle" signature="intouch(triangle)"><code></asyxml>*/
+triangle intouch(triangle t)
+{/*<asyxml></code><documentation>Return the intouch triangle of the triangle 't'.
+ The intouch triangle of 't' is the triangle formed by the points
+ of tangency of a triangle 't' with its incircles.</documentation></function></asyxml>*/
+ point A, B, C;
+ real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, 0, a * c/(a - b + c), a * b/(a + b - c));
+ B = trilinear(t, b * c/(-a + b + c), 0, a * b/(a + b - c));
+ C = trilinear(t, b * c/(-a + b + c), a * c/(a - b + c), 0);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="tangential(triangle)"><code></asyxml>*/
+triangle tangential(triangle t)
+{/*<asyxml></code><documentation>Return the tangential triangle of the triangle 't'.
+ The tangential triangle of 't' is the triangle formed by the lines
+ tangent to the circumcircle of the given triangle 't' at its vertices.</documentation></function></asyxml>*/
+ point A, B, C;
+ real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, -a, b, c);
+ B = trilinear(t, a, -b, c);
+ C = trilinear(t, a, b, -c);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="medial(triangle t)"><code></asyxml>*/
+triangle medial(triangle t)
+{/*<asyxml></code><documentation>Return the triangle whose vertices are midpoints of the sides of 't'.</documentation></function></asyxml>*/
+ return triangle(midpoint(t.BC), midpoint(t.AC), midpoint(t.AB));
+}
+
+/*<asyxml><function type="line" signature="median(vertex)"><code></asyxml>*/
+line median(vertex V)
+{/*<asyxml></code><documentation>Return median from 'V'.</documentation></function></asyxml>*/
+ return line(point(V), midpoint(segment(opposite(V))));
+}
+
+/*<asyxml><function type="line" signature="median(side)"><code></asyxml>*/
+line median(side side)
+{/*<asyxml></code><documentation>Return median from the opposite vertex of 'side'.</documentation></function></asyxml>*/
+ return median(opposite(side));
+}
+
+/*<asyxml><function type="triangle" signature="orthic(triangle)"><code></asyxml>*/
+triangle orthic(triangle t)
+{/*<asyxml></code><documentation>Return the triangle whose vertices are endpoints of the altitudes from each of the vertices of 't'.</documentation></function></asyxml>*/
+ return triangle(foot(t.BC), foot(t.AC), foot(t.AB));
+}
+
+/*<asyxml><function type="triangle" signature="symmedial(triangle)"><code></asyxml>*/
+triangle symmedial(triangle t)
+{/*<asyxml></code><documentation>Return the symmedial triangle of 't'.</documentation></function></asyxml>*/
+ point A, B, C;
+ real a = t.a(), b = t.b(), c = t.c();
+ A = trilinear(t, 0, b, c);
+ B = trilinear(t, a, 0, c);
+ C = trilinear(t, a, b, 0);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="triangle" signature="anticomplementary(triangle)"><code></asyxml>*/
+triangle anticomplementary(triangle t)
+{/*<asyxml></code><documentation>Return the triangle which has the given triangle 't' as its medial triangle.</documentation></function></asyxml>*/
+ real a = t.a(), b = t.b(), c = t.c();
+ real ab = a * b, bc = b * c, ca = c * a;
+ point A = trilinear(t, -bc, ca, ab);
+ point B = trilinear(t, bc, -ca, ab);
+ point C = trilinear(t, bc, ca, -ab);
+ return triangle(A, B, C);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(triangle,line,bool)"><code></asyxml>*/
+point[] intersectionpoints(triangle t, line l, bool extended = false)
+{/*<asyxml></code><documentation>Return the intersection points.
+ If 'extended' is true, the sides are lines else the sides are segments.
+ intersectionpoints(line, triangle, bool) is also defined.</documentation></function></asyxml>*/
+ point[] OP;
+ void addpoint(point P)
+ {
+ if(defined(P)) {
+ bool exist = false;
+ for (int i = 0; i < OP.length; ++i) {
+ if(P == OP[i]) {exist = true; break;}
+ }
+ if(!exist) OP.push(P);
+ }
+ }
+ if(extended) {
+ for (int i = 1; i <= 3; ++i) {
+ addpoint(intersectionpoint(t.line(i), l));
+ }
+ } else {
+ for (int i = 1; i <= 3; ++i) {
+ addpoint(intersectionpoint((segment)t.line(i), l));
+ }
+ }
+ return OP;
+}
+
+point[] intersectionpoints(line l, triangle t, bool extended = false)
+{
+ return intersectionpoints(t, l, extended);
+}
+
+/*<asyxml><function type="vector" signature="dir(vertex)"><code></asyxml>*/
+vector dir(vertex V)
+{/*<asyxml></code><documentation>The direction (towards the outside of the triangle) of the interior angle bisector of 'V'.</documentation></function></asyxml>*/
+ triangle t = V.t;
+ if(V.n == 1) return vector(defaultcoordsys, (-dir(t.A--t.B, t.A--t.C)));
+ if(V.n == 2) return vector(defaultcoordsys, (-dir(t.B--t.A, t.B--t.C)));
+ return vector(defaultcoordsys, (-dir(t.C--t.A, t.C--t.B)));
+}
+
+/*<asyxml><function type="void" signature="lvoid label(picture,Label,vertex,pair,real,pen,filltype)"><code></asyxml>*/
+void label(picture pic = currentpicture, Label L, vertex V,
+ pair align = dir(V),
+ real alignFactor = 1,
+ pen p = nullpen, filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw 'L' on picture 'pic' at vertex 'V' aligned by 'alignFactor * align'.</documentation></function></asyxml>*/
+ label(pic, L, locate(point(V)), alignFactor * align, p, filltype);
+}
+
+/*<asyxml><function type="void" signature="label(picture,Label,Label,Label,triangle,real,real,pen,filltype)"><code></asyxml>*/
+void label(picture pic = currentpicture, Label LA = "$A$",
+ Label LB = "$B$", Label LC = "$C$",
+ triangle t,
+ real alignAngle = 0,
+ real alignFactor = 1,
+ pen p = nullpen, filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw labels LA, LB and LC aligned in the rotated (by 'alignAngle' in degrees) direction
+ (towards the outside of the triangle) of the interior angle bisector of vertices.
+ One can individually modify the alignment by setting the Label parameter 'align'.</documentation></function></asyxml>*/
+ Label lla = LA.copy();
+ lla.align(lla.align, rotate(alignAngle) * locate(dir(t.VA)));
+ label(pic, LA, t.VA, align = lla.align.dir, alignFactor = alignFactor, p, filltype);
+ Label llb = LB.copy();
+ llb.align(llb.align, rotate(alignAngle) * locate(dir(t.VB)));
+ label(pic, llb, t.VB, align = llb.align.dir, alignFactor = alignFactor, p, filltype);
+ Label llc = LC.copy();
+ llc.align(llc.align, rotate(alignAngle) * locate(dir(t.VC)));
+ label(pic, llc, t.VC, align = llc.align.dir, alignFactor = alignFactor, p, filltype);
+}
+
+/*<asyxml><function type="void" signature="show(picture,Label,Label,Label,Label,Label,Label,triangle,pen,filltype)"><code></asyxml>*/
+void show(picture pic = currentpicture,
+ Label LA = "$A$", Label LB = "$B$", Label LC = "$C$",
+ Label La = "$a$", Label Lb = "$b$", Label Lc = "$c$",
+ triangle t, pen p = currentpen, filltype filltype = NoFill)
+{/*<asyxml></code><documentation>Draw triangle and labels of sides and vertices.</documentation></function></asyxml>*/
+ pair a = locate(t.A), b = locate(t.B), c = locate(t.C);
+ draw(pic, a--b--c--cycle, p);
+ label(pic, LA, a, -dir(a--b, a--c), p, filltype);
+ label(pic, LB, b, -dir(b--a, b--c), p, filltype);
+ label(pic, LC, c, -dir(c--a, c--b), p, filltype);
+ pair aligna = I * unit(c - b), alignb = I * unit(c - a), alignc = I * unit(b - a);
+ pair mAB = locate(midpoint(t.AB)), mAC = locate(midpoint(t.AC)), mBC = locate(midpoint(t.BC));
+ label(pic, La, b--c, align = rotate(dot(a - mBC, aligna) > 0 ? 180 :0) * aligna, p);
+ label(pic, Lb, a--c, align = rotate(dot(b - mAC, alignb) > 0 ? 180 :0) * alignb, p);
+ label(pic, Lc, a--b, align = rotate(dot(c - mAB, alignc) > 0 ? 180 :0) * alignc, p);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,triangle,pen,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, triangle t, pen p = currentpen, marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw sides of the triangle 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
+ draw(pic, t.Path(), p, marker);
+}
+
+/*<asyxml><function type="void" signature="draw(picture,triangle[],pen,marker)"><code></asyxml>*/
+void draw(picture pic = currentpicture, triangle[] t, pen p = currentpen, marker marker = nomarker)
+{/*<asyxml></code><documentation>Draw sides of the triangles 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
+ for(int i = 0; i < t.length; ++i) draw(pic, t[i], p, marker);
+}
+
+/*<asyxml><function type="void" signature="drawline(picture,triangle,pen)"><code></asyxml>*/
+void drawline(picture pic = currentpicture, triangle t, pen p = currentpen)
+{/*<asyxml></code><documentation>Draw lines of the triangle 't' on picture 'pic' using pen 'p'.</documentation></function></asyxml>*/
+ draw(t, p);
+ draw(pic, line(t.A, t.B), p);
+ draw(pic, line(t.A, t.C), p);
+ draw(pic, line(t.B, t.C), p);
+}
+
+/*<asyxml><function type="void" signature="dot(picture,triangle,pen)"><code></asyxml>*/
+void dot(picture pic = currentpicture, triangle t, pen p = currentpen)
+{/*<asyxml></code><documentation>Draw a dot at each vertex of 't'.</documentation></function></asyxml>*/
+ dot(pic, t.A^^t.B^^t.C, p);
+}
+// *.......................TRIANGLES.......................*
+// *=======================================================*
+
+// *=======================================================*
+// *.......................INVERSIONS......................*
+/*<asyxml><function type="point" signature="inverse(real k,point,point)"><code></asyxml>*/
+point inverse(real k, point A, point M)
+{/*<asyxml></code><documentation>Return the inverse point of 'M' with respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
+ return A + k/conj(M - A);
+}
+
+/*<asyxml><function type="point" signature="radicalcenter(circle,circle)"><code></asyxml>*/
+point radicalcenter(circle c1, circle c2)
+{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(c1.C, c2.C);
+ real k = c1.r^2 - c2.r^2;
+ pair C1 = locate(c1.C);
+ pair C2 = locate(c2.C);
+ pair oop = C2 - C1;
+ pair K = (abs(oop) == 0) ?
+ (infinity, infinity) :
+ midpoint(C1--C2) + 0.5 * k * oop/dot(oop, oop);
+ return point(P[0].coordsys, K/P[0].coordsys);
+}
+
+/*<asyxml><function type="line" signature="radicalline(circle,circle)"><code></asyxml>*/
+line radicalline(circle c1, circle c2)
+{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
+ if (c1.C == c2.C) abort("radicalline: the centers must be distinct");
+ return perpendicular(radicalcenter(c1, c2), line(c1.C, c2.C));
+}
+
+/*<asyxml><function type="point" signature="radicalcenter(circle,circle,circle)"><code></asyxml>*/
+point radicalcenter(circle c1, circle c2, circle c3)
+{/*<asyxml></code><documentation><url href = "http://fr.wikipedia.org/wiki/Puissance_d'un_point_par_rapport_%C3%A0_un_cercle"/></documentation></function></asyxml>*/
+ return intersectionpoint(radicalline(c1, c2), radicalline(c1, c3));
+}
+
+/*<asyxml><struct signature="inversion"><code></asyxml>*/
+struct inversion
+{/*<asyxml></code><documentation>http://mathworld.wolfram.com/Inversion.html</documentation></asyxml>*/
+ point C;
+ real k;
+}/*<asyxml></struct></asyxml>*/
+
+/*<asyxml><function type="inversion" signature="inversion(real,point)"><code></asyxml>*/
+inversion inversion(real k, point C)
+{/*<asyxml></code><documentation>Return the inversion with respect to 'C' having inversion radius 'k'.</documentation></function></asyxml>*/
+ inversion oi;
+ oi.k = k;
+ oi.C = C;
+ return oi;
+}
+/*<asyxml><function type="inversion" signature="inversion(real,point)"><code></asyxml>*/
+inversion inversion(point C, real k)
+{/*<asyxml></code><documentation>Return the inversion with respect to 'C' having inversion radius 'k'.</documentation></function></asyxml>*/
+ return inversion(k, C);
+}
+
+/*<asyxml><function type="inversion" signature="inversion(circle,circle)"><code></asyxml>*/
+inversion inversion(circle c1, circle c2, real sgn = 1)
+{/*<asyxml></code><documentation>Return the inversion which transforms 'c1' to
+ . 'c2' and positive inversion radius if 'sgn > 0';
+ . 'c2' and negative inversion radius if 'sgn < 0';
+ . 'c1' and 'c2' to 'c2' if 'sgn = 0'.</documentation></function></asyxml>*/
+ if(sgn == 0) {
+ point O = radicalcenter(c1, c2);
+ return inversion(O^c1, O);
+ }
+ real a = abs(c1.r/c2.r);
+ if(sgn > 0) {
+ point O = c1.C + a/abs(1 - a) * (c2.C - c1.C);
+ return inversion(a * abs(abs(O - c2.C)^2 - c2.r^2), O);
+ }
+ point O = c1.C + a/abs(1 + a) * (c2.C - c1.C);
+ return inversion(-a * abs(abs(O - c2.C)^2 - c2.r^2), O);
+}
+
+/*<asyxml><function type="inversion" signature="inversion(circle,circle,circle)"><code></asyxml>*/
+inversion inversion(circle c1, circle c2, circle c3)
+{/*<asyxml></code><documentation>Return the inversion which transform 'c1' to 'c1', 'c2' to 'c2' and 'c3' to 'c3'.</documentation></function></asyxml>*/
+ point Rc = radicalcenter(c1, c2, c3);
+ return inversion(Rc, Rc^c1);
+}
+
+circle operator cast(inversion i){return circle(i.C, sgn(i.k) * sqrt(abs(i.k)));}
+/*<asyxml><function type="circle" signature="circle(inversion)"><code></asyxml>*/
+circle circle(inversion i)
+{/*<asyxml></code><documentation>Return the inversion circle of 'i'.</documentation></function></asyxml>*/
+ return i;
+}
+
+inversion operator cast(circle c)
+{
+ return inversion(sgn(c.r) * c.r^2, c.C);
+}
+/*<asyxml><function type="inversion" signature="inversion(circle)"><code></asyxml>*/
+inversion inversion(circle c)
+{/*<asyxml></code><documentation>Return the inversion represented by the circle of 'c'.</documentation></function></asyxml>*/
+ return c;
+}
+
+/*<asyxml><operator type = "point" signature="*(inversion,point)"><code></asyxml>*/
+point operator *(inversion i, point P)
+{/*<asyxml></code><documentation>Provide inversion * point.</documentation></operator></asyxml>*/
+ return inverse(i.k, i.C, P);
+}
+
+void lineinversion()
+{
+ warning("lineinversion", "the inversion of the line is not a circle.
+The returned circle has an infinite radius, circle.l has been set.");
+}
+
+
+/*<asyxml><function type="circle" signature="inverse(real,point,line)"><code></asyxml>*/
+circle inverse(real k, point A, line l)
+{/*<asyxml></code><documentation>Return the inverse circle of 'l' with
+ respect to point 'A' and inversion radius 'k'.</documentation></function></asyxml>*/
+ if(A @ l) {
+ lineinversion();
+ circle C = circle(A, infinity);
+ C.l = l;
+ return C;
+ }
+ point Ap = inverse(k, A, l.A), Bp = inverse(k, A, l.B);
+ return circle(A, Ap, Bp);
+}
+
+/*<asyxml><operator type = "circle" signature="*(inversion,line)"><code></asyxml>*/
+circle operator *(inversion i, line l)
+{/*<asyxml></code><documentation>Provide inversion * line for lines that don't pass through the inversion center.</documentation></operator></asyxml>*/
+ return inverse(i.k, i.C, l);
+}
+
+/*<asyxml><function type="circle" signature="inverse(real,point,circle)"><code></asyxml>*/
+circle inverse(real k, point A, circle c)
+{/*<asyxml></code><documentation>Return the inverse circle of 'c' with
+ respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
+ if(degenerate(c)) return inverse(k, A, c.l);
+ if(A @ c) {
+ lineinversion();
+ point M = rotate(180, c.C) * A, Mp = rotate(90, c.C) * A;
+ circle oc = circle(A, infinity);
+ oc.l = line(inverse(k, A, M), inverse(k, A, Mp));
+ return oc;
+ }
+ point[] P = standardizecoordsys(A, c.C);
+ real s = k/((P[1].x - P[0].x)^2 + (P[1].y - P[0].y)^2 - c.r^2);
+ return circle(P[0] + s * (P[1]-P[0]), abs(s) * c.r);
+}
+
+/*<asyxml><operator type = "circle" signature="*(inversion,circle)"><code></asyxml>*/
+circle operator *(inversion i, circle c)
+{/*<asyxml></code><documentation>Provide inversion * circle.</documentation></operator></asyxml>*/
+ return inverse(i.k, i.C, c);
+}
+// *.......................INVERSIONS......................*
+// *=======================================================*
+
+// *=======================================================*
+// *........................FOOTER.........................*
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,circle)"><code></asyxml>*/
+point[] intersectionpoints(line l, circle c)
+{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
+ intersectionpoints(circle, line) is also defined.</documentation></function></asyxml>*/
+ if(degenerate(c)) return new point[]{intersectionpoint(l, c.l)};
+ point[] op;
+ coordsys R = samecoordsys(l.A, c.C) ?
+ l.A.coordsys : defaultcoordsys;
+ coordsys Rp = defaultcoordsys;
+ circle cc = circle(changecoordsys(Rp, c.C), c.r);
+ point proj = projection(l) * c.C;
+ if(proj @ cc) { // The line is a tangente of the circle.
+ if(proj @ l) op.push(proj);// line may be a segement...
+ } else {
+ coordsys Rc = cartesiansystem(c.C, (1, 0), (0, 1));
+ line ll = changecoordsys(Rc, l);
+ pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates,
+ 1, 0, 1, 0, 0, -c.r^2);
+ for (int i = 0; i < P.length; ++i) {
+ point inter = changecoordsys(R, point(Rc, P[i]));
+ if(inter @ l) op.push(inter);
+ }
+ }
+ return op;
+}
+
+point[] intersectionpoints(circle c, line l)
+{
+ return intersectionpoints(l, c);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,ellipse)"><code></asyxml>*/
+point[] intersectionpoints(line l, ellipse el)
+{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
+ intersectionpoints(ellipse, line) is also defined.</documentation></function></asyxml>*/
+ if(el.e == 0) return intersectionpoints(l, (circle)el);
+ if(degenerate(el)) return new point[]{intersectionpoint(l, el.l)};
+ point[] op;
+ coordsys R = samecoordsys(l.A, el.C) ? l.A.coordsys : defaultcoordsys;
+ coordsys Rp = defaultcoordsys;
+ line ll = changecoordsys(Rp, l);
+ ellipse ell = changecoordsys(Rp, el);
+ circle C = circle(ell.C, ell.a);
+ point[] Ip = intersectionpoints(ll, C);
+ if (Ip.length > 0 &&
+ (perpendicular(ll, line(ell.F1, Ip[0])) ||
+ perpendicular(ll, line(ell.F2, Ip[0])))) {
+ // http://www.mathcurve.com/courbes2d/ellipse/ellipse.shtml
+ // Définition tangentielle par antipodaire de cercle.
+ // 'l' is a tangent of 'el'
+ transform t = scale(el.a/el.b, el.F1, el.F2, el.C, rotate(90, el.C) * el.F1);
+ point inter = inverse(t) * intersectionpoints(C, t * ll)[0];
+ if(inter @ l) op.push(inter);
+ } else {
+ coordsys Rc = canonicalcartesiansystem(el);
+ line ll = changecoordsys(Rc, l);
+ pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates,
+ 1/el.a^2, 0, 1/el.b^2, 0, 0, -1);
+ for (int i = 0; i < P.length; ++i) {
+ point inter = changecoordsys(R, point(Rc, P[i]));
+ if(inter @ l) op.push(inter);
+ }
+ }
+ return op;
+}
+
+point[] intersectionpoints(ellipse el, line l)
+{
+ return intersectionpoints(l, el);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,parabola)"><code></asyxml>*/
+point[] intersectionpoints(line l, parabola p)
+{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
+ intersectionpoints(parabola, line) is also defined.</documentation></function></asyxml>*/
+ point[] op;
+ coordsys R = coordsys(p);
+ bool tgt = false;
+ line ll = changecoordsys(R, l),
+ lv = parallel(p.V, p.D);
+ point M = intersectionpoint(lv, ll), tgtp;
+ if(finite(M)) {// Test if 'l' is tangent to 'p'
+ line l1 = bisector(line(M, p.F));
+ line l2 = rotate(90, M) * lv;
+ point P = intersectionpoint(l1, l2);
+ tgtp = rotate(180, P) * p.F;
+ tgt = (tgtp @ l);
+ }
+ if(tgt) {
+ if(tgtp @ l) op.push(tgtp);
+ } else {
+ real[] eq = changecoordsys(defaultcoordsys, equation(p)).a;
+ pair[] tp = intersectionpoints(locate(l.A), locate(l.B), eq);
+ point inter;
+ for (int i = 0; i < tp.length; ++i) {
+ inter = point(R, tp[i]/R);
+ if(inter @ l) op.push(inter);
+ }
+ }
+ return op;
+}
+
+point[] intersectionpoints(parabola p, line l)
+{
+ return intersectionpoints(l, p);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,hyperbola)"><code></asyxml>*/
+point[] intersectionpoints(line l, hyperbola h)
+{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
+ intersectionpoints(hyperbola, line) is also defined.</documentation></function></asyxml>*/
+ point[] op;
+ coordsys R = coordsys(h);
+ point A = intersectionpoint(l, h.A1), B = intersectionpoint(l, h.A2);
+ point M = midpoint(segment(A, B));
+ bool tgt = M @ h;
+ if(tgt) {
+ if(M @ l) op.push(M);
+ } else {
+ real[] eq = changecoordsys(defaultcoordsys, equation(h)).a;
+ pair[] tp = intersectionpoints(locate(l.A), locate(l.B), eq);
+ point inter;
+ for (int i = 0; i < tp.length; ++i) {
+ inter = point(R, tp[i]/R);
+ if(inter @ l) op.push(inter);
+ }
+ }
+ return op;
+}
+
+point[] intersectionpoints(hyperbola h, line l)
+{
+ return intersectionpoints(l, h);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,conic)"><code></asyxml>*/
+point[] intersectionpoints(line l, conic co)
+{/*<asyxml></code><documentation>Note that the line 'l' may be a segment by casting.
+ intersectionpoints(conic, line) is also defined.</documentation></function></asyxml>*/
+ point[] op;
+ if(co.e < 1) op = intersectionpoints((ellipse)co, l);
+ else
+ if(co.e == 1) op = intersectionpoints((parabola)co, l);
+ else op = intersectionpoints((hyperbola)co, l);
+ return op;
+}
+
+point[] intersectionpoints(conic co, line l)
+{
+ return intersectionpoints(l, co);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(conic,conic)"><code></asyxml>*/
+point[] intersectionpoints(conic co1, conic co2)
+{/*<asyxml></code><documentation>Return the intersection points of the two conics.</documentation></function></asyxml>*/
+ if(degenerate(co1)) return intersectionpoints(co1.l[0], co2);
+ if(degenerate(co2)) return intersectionpoints(co1, co2.l[0]);
+ return intersectionpoints(equation(co1), equation(co2));
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(triangle,conic,bool)"><code></asyxml>*/
+point[] intersectionpoints(triangle t, conic co, bool extended = false)
+{/*<asyxml></code><documentation>Return the intersection points.
+ If 'extended' is true, the sides are lines else the sides are segments.
+ intersectionpoints(conic, triangle, bool) is also defined.</documentation></function></asyxml>*/
+ if(degenerate(co)) return intersectionpoints(t, co.l[0], extended);
+ point[] OP;
+ void addpoint(point P[])
+ {
+ for (int i = 0; i < P.length; ++i) {
+ if(defined(P[i])) {
+ bool exist = false;
+ for (int j = 0; j < OP.length; ++j) {
+ if(P[i] == OP[j]) {exist = true; break;}
+ }
+ if(!exist) OP.push(P[i]);
+ }}}
+ if(extended) {
+ for (int i = 1; i <= 3; ++i) {
+ addpoint(intersectionpoints(t.line(i), co));
+ }
+ } else {
+ for (int i = 1; i <= 3; ++i) {
+ addpoint(intersectionpoints((segment)t.line(i), co));
+ }
+ }
+ return OP;
+}
+
+point[] intersectionpoints(conic co, triangle t, bool extended = false)
+{
+ return intersectionpoints(t, co, extended);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,ellipse)"><code></asyxml>*/
+point[] intersectionpoints(ellipse a, ellipse b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ // if(degenerate(a)) return intersectionpoints(a.l, b);
+ // if(degenerate(b)) return intersectionpoints(a, b.l);;
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,circle)"><code></asyxml>*/
+point[] intersectionpoints(ellipse a, circle b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ // if(degenerate(a)) return intersectionpoints(a.l, b);
+ // if(degenerate(b)) return intersectionpoints(a, b.l);;
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,ellipse)"><code></asyxml>*/
+point[] intersectionpoints(circle a, ellipse b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints(b, a);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,parabola)"><code></asyxml>*/
+point[] intersectionpoints(ellipse a, parabola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ // if(degenerate(a)) return intersectionpoints(a.l, b);
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,ellipse)"><code></asyxml>*/
+point[] intersectionpoints(parabola a, ellipse b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints(b, a);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(ellipse,hyperbola)"><code></asyxml>*/
+point[] intersectionpoints(ellipse a, hyperbola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ // if(degenerate(a)) return intersectionpoints(a.l, b);
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,ellipse)"><code></asyxml>*/
+point[] intersectionpoints(hyperbola a, ellipse b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints(b, a);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,parabola)"><code></asyxml>*/
+point[] intersectionpoints(circle a, parabola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,circle)"><code></asyxml>*/
+point[] intersectionpoints(parabola a, circle b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,hyperbola)"><code></asyxml>*/
+point[] intersectionpoints(circle a, hyperbola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,circle)"><code></asyxml>*/
+point[] intersectionpoints(hyperbola a, circle b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,parabola)"><code></asyxml>*/
+point[] intersectionpoints(parabola a, parabola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(parabola,hyperbola)"><code></asyxml>*/
+point[] intersectionpoints(parabola a, hyperbola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,parabola)"><code></asyxml>*/
+point[] intersectionpoints(hyperbola a, parabola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+/*<asyxml><function type="point[]" signature="intersectionpoints(hyperbola,hyperbola)"><code></asyxml>*/
+point[] intersectionpoints(hyperbola a, hyperbola b)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ return intersectionpoints((conic)a, (conic)b);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(circle,circle)"><code></asyxml>*/
+point[] intersectionpoints(circle c1, circle c2)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ if(degenerate(c1))
+ return degenerate(c2) ?
+ new point[]{intersectionpoint(c1.l, c2.l)} : intersectionpoints(c1.l, c2);
+ if(degenerate(c2)) return intersectionpoints(c1, c2.l);
+ return (c1.C == c2.C) ?
+ new point[] :
+ intersectionpoints(radicalline(c1, c2), c1);
+}
+
+/*<asyxml><function type="line" signature="tangent(circle,abscissa)"><code></asyxml>*/
+line tangent(circle c, abscissa x)
+{/*<asyxml></code><documentation>Return the tangent of 'c' at 'point(c, x)'.</documentation></function></asyxml>*/
+ if(c.r == 0) abort("tangent: a circle with a radius equals zero has no tangent.");
+ point M = point(c, x);
+ return line(rotate(90, M) * c.C, M);
+}
+
+/*<asyxml><function type="line[]" signature="tangents(circle,point)"><code></asyxml>*/
+line[] tangents(circle c, point M)
+{/*<asyxml></code><documentation>Return the tangents of 'c' passing through 'M'.</documentation></function></asyxml>*/
+ line[] ol;
+ if(inside(c, M)) return ol;
+ if(M @ c) {
+ ol.push(tangent(c, relabscissa(c, M)));
+ } else {
+ circle cc = circle(c.C, M);
+ point[] inter = intersectionpoints(c, cc);
+ for (int i = 0; i < inter.length; ++i)
+ ol.push(tangents(c, inter[i])[0]);
+ }
+ return ol;
+}
+
+/*<asyxml><function type="point" signature="point(circle,point)"><code></asyxml>*/
+point point(circle c, point M)
+{/*<asyxml></code><documentation>Return the intersection point of 'c'
+ with the half-line '[c.C M)'.</documentation></function></asyxml>*/
+ return intersectionpoints(c, line(c.C, false, M))[0];
+}
+
+/*<asyxml><function type="line" signature="tangent(circle,point)"><code></asyxml>*/
+line tangent(circle c, point M)
+{/*<asyxml></code><documentation>Return the tangent of 'c' at the
+ intersection point of the half-line'[c.C M)'.</documentation></function></asyxml>*/
+ return tangents(c, point(c, M))[0];
+}
+
+/*<asyxml><function type="point" signature="point(circle,explicit vector)"><code></asyxml>*/
+point point(circle c, explicit vector v)
+{/*<asyxml></code><documentation>Return the intersection point of 'c'
+ with the half-line '[c.C v)'.</documentation></function></asyxml>*/
+ return point(c, c.C + v);
+}
+
+/*<asyxml><function type="line" signature="tangent(circle,explicit vector)"><code></asyxml>*/
+line tangent(circle c, explicit vector v)
+{/*<asyxml></code><documentation>Return the tangent of 'c' at the
+ point M so that vec(c.C M) is collinear to 'v' with the same sense.</documentation></function></asyxml>*/
+ line ol = tangent(c, c.C + v);
+ return dot(ol.v, v) > 0 ? ol : reverse(ol);
+}
+
+/*<asyxml><function type="line" signature="tangent(ellipse,abscissa)"><code></asyxml>*/
+line tangent(ellipse el, abscissa x)
+{/*<asyxml></code><documentation>Return the tangent of 'el' at 'point(el, x)'.</documentation></function></asyxml>*/
+ point M = point(el, x);
+ line l1 = line(el.F1, M);
+ line l2 = line(el.F2, M);
+ line ol = (l1 == l2) ? perpendicular(M, l1) : bisector(l1, l2, 90, false);
+ return ol;
+}
+
+/*<asyxml><function type="line[]" signature="tangents(ellipse,point)"><code></asyxml>*/
+line[] tangents(ellipse el, point M)
+{/*<asyxml></code><documentation>Return the tangents of 'el' passing through 'M'.</documentation></function></asyxml>*/
+ line[] ol;
+ if(inside(el, M)) return ol;
+ if(M @ el) {
+ ol.push(tangent(el, relabscissa(el, M)));
+ } else {
+ point Mp = samecoordsys(M, el.F2) ?
+ M : changecoordsys(el.F2.coordsys, M);
+ circle c = circle(Mp, abs(el.F1 - Mp));
+ circle cc = circle(el.F2, 2 * el.a);
+ point[] inter = intersectionpoints(c, cc);
+ for (int i = 0; i < inter.length; ++i) {
+ line tl = line(inter[i], el.F2, false);
+ point[] P = intersectionpoints(tl, el);
+ ol.push(line(Mp, P[0]));
+ }
+ }
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="tangent(parabola,abscissa)"><code></asyxml>*/
+line tangent(parabola p, abscissa x)
+{/*<asyxml></code><documentation>Return the tangent of 'p' at 'point(p, x)' (use the Wells method).</documentation></function></asyxml>*/
+ line lt = rotate(90, p.V) * line(p.V, p.F);
+ point P = point(p, x);
+ if(P == p.V) return lt;
+ point M = midpoint(segment(P, p.F));
+ line l = rotate(90, M) * line(P, p.F);
+ return line(P, projection(lt) * M);
+}
+
+/*<asyxml><function type="line[]" signature="tangents(parabola,point)"><code></asyxml>*/
+line[] tangents(parabola p, point M)
+{/*<asyxml></code><documentation>Return the tangent of 'p' at 'M' (use the Wells method).</documentation></function></asyxml>*/
+ line[] ol;
+ if(inside(p, M)) return ol;
+ if(M @ p) {
+ ol.push(tangent(p, angabscissa(p, M)));
+ }
+ else {
+ point Mt = changecoordsys(coordsys(p), M);
+ circle c = circle(Mt, p.F);
+ line l = rotate(90, p.V) * line(p.V, p.F);
+ point[] R = intersectionpoints(l, c);
+ for (int i = 0; i < R.length; ++i) {
+ ol.push(line(Mt, R[i]));
+ }
+ // An other method: http://www.du.edu/~jcalvert/math/parabola.htm
+ // point[] R = intersectionpoints(p.directrix, c);
+ // for (int i = 0; i < R.length; ++i) {
+ // ol.push(bisector(segment(p.F, R[i])));
+ // }
+ }
+ return ol;
+}
+
+/*<asyxml><function type="line" signature="tangent(hyperbola,abscissa)"><code></asyxml>*/
+line tangent(hyperbola h, abscissa x)
+{/*<asyxml></code><documentation>Return the tangent of 'h' at 'point(p, x)'.</documentation></function></asyxml>*/
+ point M = point(h, x);
+ line ol = bisector(line(M, h.F1), line(M, h.F2));
+ if(sameside(h.F1, h.F2, ol) || ol == line(h.F1, h.F2)) ol = rotate(90, M) * ol;
+ return ol;
+}
+
+/*<asyxml><function type="line[]" signature="tangents(hyperbola,point)"><code></asyxml>*/
+line[] tangents(hyperbola h, point M)
+{/*<asyxml></code><documentation>Return the tangent of 'h' at 'M'.</documentation></function></asyxml>*/
+ line[] ol;
+ if(M @ h) {
+ ol.push(tangent(h, angabscissa(h, M, fromCenter)));
+ } else {
+ coordsys cano = canonicalcartesiansystem(h);
+ bqe bqe = changecoordsys(cano, equation(h));
+ real a = abs(1/(bqe.a[5] * bqe.a[0])), b = abs(1/(bqe.a[5] * bqe.a[2]));
+ point Mp = changecoordsys(cano, M);
+ real x0 = Mp.x, y0 = Mp.y;
+ if(abs(x0) > epsgeo) {
+ real c0 = a * y0^2/(b * x0)^2 - 1/b,
+ c1 = 2 * a * y0/(b * x0^2), c2 = a/x0^2 - 1;
+ real[] sol = quadraticroots(c0, c1, c2);
+ for (real y:sol) {
+ point tmp = changecoordsys(coordsys(h), point(cano, (a * (1 + y * y0/b)/x0, y)));
+ ol.push(line(M, tmp));
+ }
+ } else if(abs(y0) > epsgeo) {
+ real y = -b/y0, x = sqrt(a * (1 + b/y0^2));
+ ol.push(line(M, changecoordsys(coordsys(h), point(cano, (x, y)))));
+ ol.push(line(M, changecoordsys(coordsys(h), point(cano, (-x, y)))));
+ }}
+ return ol;
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(conic,arc)"><code></asyxml>*/
+point[] intersectionpoints(conic co, arc a)
+{/*<asyxml></code><documentation>intersectionpoints(arc, circle) is also defined.</documentation></function></asyxml>*/
+ point[] op;
+ point[] tp = intersectionpoints(co, (conic)a.el);
+ for (int i = 0; i < tp.length; ++i)
+ if(tp[i] @ a) op.push(tp[i]);
+ return op;
+}
+
+point[] intersectionpoints(arc a, conic co)
+{
+ return intersectionpoints(co, a);
+}
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(arc,arc)"><code></asyxml>*/
+point[] intersectionpoints(arc a1, arc a2)
+{/*<asyxml></code><documentation></documentation></function></asyxml>*/
+ point[] op;
+ point[] tp = intersectionpoints(a1.el, a2.el);
+ for (int i = 0; i < tp.length; ++i)
+ if(tp[i] @ a1 && tp[i] @ a2) op.push(tp[i]);
+ return op;
+}
+
+
+/*<asyxml><function type="point[]" signature="intersectionpoints(line,arc)"><code></asyxml>*/
+point[] intersectionpoints(line l, arc a)
+{/*<asyxml></code><documentation>intersectionpoints(arc, line) is also defined.</documentation></function></asyxml>*/
+ point[] op;
+ point[] tp = intersectionpoints(a.el, l);
+ for (int i = 0; i < tp.length; ++i)
+ if(tp[i] @ a && tp[i] @ l) op.push(tp[i]);
+ return op;
+}
+
+point[] intersectionpoints(arc a, line l)
+{
+ return intersectionpoints(l, a);
+}
+
+/*<asyxml><function type="point" signature="arcsubtendedcenter(point,point,real)"><code></asyxml>*/
+point arcsubtendedcenter(point A, point B, real angle)
+{/*<asyxml></code><documentation>Return the center of the arc retuned
+ by the 'arcsubtended' routine.</documentation></function></asyxml>*/
+ point OM;
+ point[] P = standardizecoordsys(A, B);
+ angle = angle%(sgnd(angle) * 180);
+ line bis = bisector(P[0], P[1]);
+ line AB = line(P[0], P[1]);
+ return intersectionpoint(bis, rotate(90 - angle, A) * AB);
+}
+
+/*<asyxml><function type="arc" signature="arcsubtended(point,point,real)"><code></asyxml>*/
+arc arcsubtended(point A, point B, real angle)
+{/*<asyxml></code><documentation>Return the arc circle from which the segment AB is saw with
+ the angle 'angle'.
+ If the point 'M' is on this arc, the oriented angle (MA, MB) is
+ equal to 'angle'.</documentation></function></asyxml>*/
+ point[] P = standardizecoordsys(A, B);
+ line AB = line(P[0], P[1]);
+ angle = angle%(sgnd(angle) * 180);
+ point C = arcsubtendedcenter(P[0], P[1], angle);
+ real BC = degrees(B - C)%360;
+ real AC = degrees(A - C)%360;
+ return arc(circle(C, abs(B - C)), BC, AC, angle > 0 ? CCW : CW);
+}
+
+/*<asyxml><function type="arc" signature="arccircle(point,point,point)"><code></asyxml>*/
+arc arccircle(point A, point M, point B)
+{/*<asyxml></code><documentation>Return the CCW arc circle 'AB' passing through 'M'.</documentation></function></asyxml>*/
+ circle tc = circle(A, M, B);
+ real a = degrees(A - tc.C);
+ real b = degrees(B - tc.C);
+ real m = degrees(M - tc.C);
+
+ arc oa = arc(tc, a, b);
+ // TODO : use cross product to determine CWW or CW
+ if (!(M @ oa)) {
+ oa.direction = !oa.direction;
+ }
+
+ return oa;
+}
+
+/*<asyxml><function type="arc" signature="arc(ellipse,abscissa,abscissa,bool)"><code></asyxml>*/
+arc arc(ellipse el, explicit abscissa x1, explicit abscissa x2, bool direction = CCW)
+{/*<asyxml></code><documentation>Return the arc from 'point(c, x1)' to 'point(c, x2)' in the direction 'direction'.</documentation></function></asyxml>*/
+ real a = degrees(point(el, x1) - el.C);
+ real b = degrees(point(el, x2) - el.C);
+ arc oa = arc(el, a - el.angle, b - el.angle, fromCenter, direction);
+ return oa;
+}
+
+/*<asyxml><function type="arc" signature="arc(ellipse,point,point,bool)"><code></asyxml>*/
+arc arc(ellipse el, point M, point N, bool direction = CCW)
+{/*<asyxml></code><documentation>Return the arc from 'M' to 'N' in the direction 'direction'.
+ The points 'M' and 'N' must belong to the ellipse 'el'.</documentation></function></asyxml>*/
+ return arc(el, relabscissa(el, M), relabscissa(el, N), direction);
+}
+
+/*<asyxml><function type="arc" signature="arccircle(point,point,real,bool)"><code></asyxml>*/
+arc arccircle(point A, point B, real angle, bool direction = CCW)
+{/*<asyxml></code><documentation>Return the arc circle centered on A
+ from B to rotate(angle, A) * B in the direction 'direction'.</documentation></function></asyxml>*/
+ point M = rotate(angle, A) * B;
+ return arc(circle(A, abs(A - B)), B, M, direction);
+}
+
+/*<asyxml><function type="arc" signature="arc(explicit arc,abscissa,abscissa)"><code></asyxml>*/
+arc arc(explicit arc a, abscissa x1, abscissa x2)
+{/*<asyxml></code><documentation>Return the arc from 'point(a, x1)' to 'point(a, x2)' traversed in the direction of the arc direction.</documentation></function></asyxml>*/
+ real a1 = angabscissa(a.el, point(a, x1), a.polarconicroutine).x;
+ real a2 = angabscissa(a.el, point(a, x2), a.polarconicroutine).x;
+ return arc(a.el, a1, a2, a.polarconicroutine, a.direction);
+}
+
+/*<asyxml><function type="arc" signature="arc(explicit arc,point,point)"><code></asyxml>*/
+arc arc(explicit arc a, point M, point N)
+{/*<asyxml></code><documentation>Return the arc from 'M' to 'N'.
+ The points 'M' and 'N' must belong to the arc 'a'.</documentation></function></asyxml>*/
+ return arc(a, relabscissa(a, M), relabscissa(a, N));
+}
+
+/*<asyxml><function type="arc" signature="inverse(real,point,segment)"><code></asyxml>*/
+arc inverse(real k, point A, segment s)
+{/*<asyxml></code><documentation>Return the inverse arc circle of 's'
+ with respect to point A and inversion radius 'k'.</documentation></function></asyxml>*/
+ point Ap = inverse(k, A, s.A), Bp = inverse(k, A, s.B),
+ M = inverse(k, A, midpoint(s));
+ return arccircle(Ap, M, Bp);
+}
+
+/*<asyxml><operator type = "arc" signature="*(inversion,segment)"><code></asyxml>*/
+arc operator *(inversion i, segment s)
+{/*<asyxml></code><documentation>Provide
+ inversion * segment.</documentation></operator></asyxml>*/
+ return inverse(i.k, i.C, s);
+}
+
+/*<asyxml><operator type = "path" signature="*(inversion,triangle)"><code></asyxml>*/
+path operator *(inversion i, triangle t)
+{/*<asyxml></code><documentation>Provide inversion * triangle.</documentation></operator></asyxml>*/
+ return (path)(i * segment(t.AB))--
+ (path)(i * segment(t.BC))--
+ (path)(i * segment(t.CA))&cycle;
+}
+
+/*<asyxml><function type="path" signature="compassmark(pair,pair,real,real)"><code></asyxml>*/
+path compassmark(pair O, pair A, real position, real angle = 10)
+{/*<asyxml></code><documentation>Return an arc centered on O with the angle 'angle' so that the position
+ of 'A' on this arc makes an angle 'position * angle'.</documentation></function></asyxml>*/
+ real a = degrees(A - O);
+ real pa = (a - position * angle)%360,
+ pb = (a - (position - 1) * angle)%360;
+ real t1 = intersect(unitcircle, (0, 0)--2 * dir(pa))[0];
+ real t2 = intersect(unitcircle, (0, 0)--2 * dir(pb))[0];
+ int n = length(unitcircle);
+ if(t1 >= t2) t1 -= n;
+ return shift(O) * scale(abs(O - A)) * subpath(unitcircle, t1, t2);
+}
+
+/*<asyxml><function type="line" signature="tangent(explicit arc,abscissa)"><code></asyxml>*/
+line tangent(explicit arc a, abscissa x)
+{/*<asyxml></code><documentation>Return the tangent of 'a' at 'point(a, x)'.</documentation></function></asyxml>*/
+ abscissa ag = angabscissa(a, point(a, x));
+ return tangent(a.el, ag + a.angle1 + (a.el.e == 0 ? a.angle0 : 0));
+}
+
+/*<asyxml><function type="line" signature="tangent(explicit arc,point)"><code></asyxml>*/
+line tangent(explicit arc a, point M)
+{/*<asyxml></code><documentation>Return the tangent of 'a' at 'M'.
+ The points 'M' must belong to the arc 'a'.</documentation></function></asyxml>*/
+ return tangent(a, angabscissa(a, M));
+}
+
+// *=======================================================*
+// *.......Routines for compatibility with original geometry module........*
+
+path square(pair z1, pair z2)
+{
+ pair v = z2 - z1;
+ pair z3 = z2 + I * v;
+ pair z4 = z3 - v;
+ return z1--z2--z3--z4--cycle;
+}
+
+// Draw a perpendicular symbol at z aligned in the direction align
+// relative to the path z--z + dir.
+void perpendicular(picture pic = currentpicture, pair z, pair align,
+ pair dir = E, real size = 0, pen p = currentpen,
+ margin margin = NoMargin, filltype filltype = NoFill)
+{
+ perpendicularmark(pic, (point) z, align, dir, size, p, margin, filltype);
+}
+
+
+// Draw a perpendicular symbol at z aligned in the direction align
+// relative to the path z--z + dir(g, 0)
+void perpendicular(picture pic = currentpicture, pair z, pair align, path g,
+ real size = 0, pen p = currentpen, margin margin = NoMargin,
+ filltype filltype = NoFill)
+{
+ perpendicularmark(pic, (point) z, align, dir(g, 0), size, p, margin, filltype);
+}
+
+// Return an interior arc BAC of triangle ABC, given a radius r > 0.
+// If r < 0, return the corresponding exterior arc of radius |r|.
+path arc(explicit pair B, explicit pair A, explicit pair C, real r)
+{
+ return arc(A, r, degrees(B - A), degrees(C - A));
+}
+
+// *.......End of compatibility routines........*
+// *=======================================================*
+
+// *........................FOOTER.........................*
+// *=======================================================*