summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/runarray.cc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2009-09-11 00:21:50 +0000
committerKarl Berry <karl@freefriends.org>2009-09-11 00:21:50 +0000
commitf06a2c99f2a8bbd8f641712c772179e8ed9ce14f (patch)
treefcf4f2b9d0492da04d9bf3761fbce51fb316024f /Build/source/utils/asymptote/runarray.cc
parentd4c54e52fe8e42b8ce9b160c70d897bb1d06eee7 (diff)
asymptote 1.86
git-svn-id: svn://tug.org/texlive/trunk@15218 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/utils/asymptote/runarray.cc')
-rw-r--r--Build/source/utils/asymptote/runarray.cc2351
1 files changed, 2351 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/runarray.cc b/Build/source/utils/asymptote/runarray.cc
new file mode 100644
index 00000000000..c67e69db6f5
--- /dev/null
+++ b/Build/source/utils/asymptote/runarray.cc
@@ -0,0 +1,2351 @@
+/***** Autogenerated from runarray.in; changes will be overwritten *****/
+
+#line 1 "runtimebase.in"
+/*****
+ * runtimebase.in
+ * Andy Hammerlindl 2009/07/28
+ *
+ * Common declarations needed for all code-generating .in files.
+ *
+ *****/
+
+
+#line 1 "runarray.in"
+/*****
+ * runarray.in
+ *
+ * Runtime functions for array operations.
+ *
+ *****/
+
+#line 1 "runtimebase.in"
+#include "stack.h"
+#include "types.h"
+#include "builtin.h"
+#include "entry.h"
+#include "errormsg.h"
+#include "array.h"
+#include "triple.h"
+#include "callable.h"
+
+using vm::stack;
+using vm::error;
+using vm::array;
+using vm::callable;
+using types::formal;
+using types::function;
+using camp::triple;
+
+#define PRIMITIVE(name,Name,asyName) using types::prim##Name;
+#include <primitives.h>
+#undef PRIMITIVE
+
+typedef double real;
+
+void unused(void *);
+
+namespace run {
+array *copyArray(array *a);
+array *copyArray2(array *a);
+array *copyArray3(array *a);
+
+double *copyArrayC(const array *a, size_t dim=0);
+double *copyArray2C(const array *a, bool square=true, size_t dim2=0);
+
+triple *copyTripleArrayC(const array *a, size_t dim=0);
+triple *copyTripleArray2C(const array *a, bool square=true, size_t dim2=0);
+double *copyTripleArray2Components(array *a, bool square=true, size_t dim2=0);
+}
+
+function *realRealFunction();
+
+// Return the component of vector v perpendicular to a unit vector u.
+inline triple perp(triple v, triple u)
+{
+ return v-dot(v,u)*u;
+}
+
+#define CURRENTPEN processData().currentpen
+
+#line 20 "runarray.in"
+#include "array.h"
+#include "arrayop.h"
+#include "triple.h"
+#include "path3.h"
+#include "Delaunay.h"
+
+#ifdef HAVE_LIBFFTW3
+#include "fftw++.h"
+#endif
+
+using namespace camp;
+using namespace vm;
+
+typedef array boolarray;
+typedef array Intarray;
+typedef array Intarray2;
+typedef array realarray;
+typedef array realarray2;
+typedef array pairarray;
+typedef array triplearray2;
+
+using types::booleanArray;
+using types::IntArray;
+using types::IntArray2;
+using types::realArray;
+using types::realArray2;
+using types::pairArray;
+using types::tripleArray2;
+
+typedef callable callableReal;
+
+void outOfBounds(const char *op, size_t len, Int n)
+{
+ ostringstream buf;
+ buf << op << " array of length " << len << " with out-of-bounds index " << n;
+ error(buf);
+}
+
+inline item& arrayRead(array *a, Int n)
+{
+ size_t len=checkArray(a);
+ bool cyclic=a->cyclic();
+ if(cyclic && len > 0) n=imod(n,len);
+ else if(n < 0 || n >= (Int) len) outOfBounds("reading",len,n);
+ return (*a)[(unsigned) n];
+}
+
+// Helper function to create deep arrays.
+static array* deepArray(Int depth, Int *dims)
+{
+ assert(depth > 0);
+
+ if (depth == 1) {
+ return new array(dims[0]);
+ } else {
+ Int length = dims[0];
+ depth--; dims++;
+
+ array *a = new array(length);
+
+ for (Int index = 0; index < length; index++) {
+ (*a)[index] = deepArray(depth, dims);
+ }
+ return a;
+ }
+}
+
+namespace run {
+array *Identity(Int n)
+{
+ size_t N=(size_t) n;
+ array *c=new array(N);
+ for(size_t i=0; i < N; ++i) {
+ array *ci=new array(N);
+ (*c)[i]=ci;
+ for(size_t j=0; j < N; ++j)
+ (*ci)[j]=0.0;
+ (*ci)[i]=1.0;
+ }
+ return c;
+}
+}
+
+static const char *incommensurate="Incommensurate matrices";
+static const char *singular="Singular matrix";
+static size_t *pivot,*Row,*Col;
+
+namespace run {
+
+array *copyArray(array *a)
+{
+ size_t size=checkArray(a);
+ array *c=new array(size);
+ for(size_t i=0; i < size; i++)
+ (*c)[i]=(*a)[i];
+ return c;
+}
+
+inline size_t checkdimension(const array *a, size_t dim)
+{
+ size_t size=checkArray(a);
+ if(dim && size != dim) {
+ ostringstream buf;
+ buf << "array of length " << dim << " expected";
+ error(buf);
+ }
+ return size;
+}
+
+double *copyArrayC(const array *a, size_t dim)
+{
+ size_t size=checkdimension(a,dim);
+ double *c=new double[size];
+ for(size_t i=0; i < size; i++)
+ c[i]=read<double>(a,i);
+ return c;
+}
+
+triple *copyTripleArrayC(const array *a, size_t dim)
+{
+ size_t size=checkdimension(a,dim);
+ triple *c=new triple[size];
+ for(size_t i=0; i < size; i++)
+ c[i]=read<triple>(a,i);
+ return c;
+}
+
+array *copyArray2(array *a)
+{
+ size_t size=checkArray(a);
+ array *c=new array(size);
+ for(size_t i=0; i < size; i++) {
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ array *ci=new array(aisize);
+ (*c)[i]=ci;
+ for(size_t j=0; j < aisize; j++)
+ (*ci)[j]=(*ai)[j];
+ }
+ return c;
+}
+
+array *copyArray3(array *a)
+{
+ size_t size=checkArray(a);
+ array *c=new array(size);
+ for(size_t i=0; i < size; i++) {
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ array *ci=new array(aisize);
+ (*c)[i]=ci;
+ for(size_t j=0; j < aisize; j++) {
+ array *aij=read<array*>(ai,j);
+ size_t aijsize=checkArray(aij);
+ array *cij=new array(aijsize);
+ (*ci)[j]=cij;
+ for(size_t k=0; k < aijsize; k++)
+ (*cij)[k]=(*aij)[k];
+ }
+ }
+ return c;
+}
+
+double *copyArray2C(const array *a, bool square, size_t dim2)
+{
+ size_t n=checkArray(a);
+ size_t m=(square || n == 0) ? n : checkArray(read<array*>(a,0));
+ if(n > 0 && dim2 && m != dim2) {
+ ostringstream buf;
+ buf << "second matrix dimension must be " << dim2;
+ error(buf);
+ }
+
+ double *c=new double[n*m];
+ for(size_t i=0; i < n; i++) {
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ if(aisize == m) {
+ double *ci=c+i*m;
+ for(size_t j=0; j < m; j++)
+ ci[j]=read<double>(ai,j);
+ } else
+ error(square ? "matrix must be square" : "matrix must be rectangular");
+ }
+ return c;
+}
+
+triple *copyTripleArray2C(const array *a, bool square, size_t dim2)
+{
+ size_t n=checkArray(a);
+ size_t m=(square || n == 0) ? n : checkArray(read<array*>(a,0));
+ if(n > 0 && dim2 && m != dim2) {
+ ostringstream buf;
+ buf << "second matrix dimension must be " << dim2;
+ error(buf);
+ }
+
+ triple *c=new triple[n*m];
+ for(size_t i=0; i < n; i++) {
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ if(aisize == m) {
+ triple *ci=c+i*m;
+ for(size_t j=0; j < m; j++)
+ ci[j]=read<triple>(ai,j);
+ } else
+ error(square ? "matrix must be square" : "matrix must be rectangular");
+ }
+ return c;
+}
+
+double *copyTripleArray2Components(array *a, bool square, size_t dim2)
+{
+ size_t n=checkArray(a);
+ size_t m=(square || n == 0) ? n : checkArray(read<array*>(a,0));
+ if(n > 0 && dim2 && m != dim2) {
+ ostringstream buf;
+ buf << "second matrix dimension must be " << dim2;
+ error(buf);
+ }
+
+ size_t nm=n*m;
+ double *cx=new double[3*nm];
+ double *cy=cx+nm;
+ double *cz=cx+2*nm;
+ for(size_t i=0; i < n; i++) {
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ if(aisize == m) {
+ double *xi=cx+i*m;
+ double *yi=cy+i*m;
+ double *zi=cz+i*m;
+ for(size_t j=0; j < m; j++) {
+ triple v=read<triple>(ai,j);
+ xi[j]=v.getx();
+ yi[j]=v.gety();
+ zi[j]=v.getz();
+ }
+ } else
+ error(square ? "matrix must be square" : "matrix must be rectangular");
+ }
+ return cx;
+}
+
+triple operator *(const array& t, const triple& v)
+{
+ size_t n=checkArray(&t);
+ if(n != 4) error(incommensurate);
+ array *t0=read<array*>(t,0);
+ array *t1=read<array*>(t,1);
+ array *t2=read<array*>(t,2);
+ array *t3=read<array*>(t,3);
+
+ if(checkArray(t0) != 4 || checkArray(t1) != 4 ||
+ checkArray(t2) != 4 || checkArray(t3) != 4)
+ error(incommensurate);
+
+ double x=v.getx();
+ double y=v.gety();
+ double z=v.getz();
+
+ double f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
+ read<real>(t3,3);
+ if(f == 0.0) run::dividebyzero();
+ f=1.0/f;
+
+ return triple((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
+ read<real>(t0,3))*f,
+ (read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
+ read<real>(t1,3))*f,
+ (read<real>(t2,0)*x+read<real>(t2,1)*y+read<real>(t2,2)*z+
+ read<real>(t2,3))*f);
+}
+
+triple multshiftless(const array& t, const triple& v)
+{
+ size_t n=checkArray(&t);
+ if(n != 4) error(incommensurate);
+ array *t0=read<array*>(t,0);
+ array *t1=read<array*>(t,1);
+ array *t2=read<array*>(t,2);
+ array *t3=read<array*>(t,3);
+
+ if(checkArray(t0) != 4 || checkArray(t1) != 4 ||
+ checkArray(t2) != 4 || checkArray(t3) != 4)
+ error(incommensurate);
+
+ double x=v.getx();
+ double y=v.gety();
+ double z=v.getz();
+
+ double f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
+ read<real>(t3,3);
+ if(f == 0.0) run::dividebyzero();
+ f=1.0/f;
+
+ return triple((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z)*f,
+ (read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z)*f,
+ (read<real>(t2,0)*x+read<real>(t2,1)*y+read<real>(t2,2)*z)*f);
+}
+
+double norm(double *a, size_t n)
+{
+ if(n == 0) return 0.0;
+ double M=fabs(a[0]);
+ for(size_t i=1; i < n; ++i)
+ M=::max(M,fabs(a[i]));
+ return M;
+}
+
+double norm(triple *a, size_t n)
+{
+ if(n == 0) return 0.0;
+ double M=a[0].abs2();
+ for(size_t i=1; i < n; ++i)
+ M=::max(M,a[i].abs2());
+ return sqrt(M);
+}
+
+}
+
+static inline void inverseAllocate(size_t n)
+{
+ pivot=new size_t[n];
+ Row=new size_t[n];
+ Col=new size_t[n];
+}
+
+static inline void inverseDeallocate()
+{
+ delete[] pivot;
+ delete[] Row;
+ delete[] Col;
+}
+
+callable *Func;
+stack *FuncStack;
+double wrapFunction(double x)
+{
+ FuncStack->push(x);
+ Func->call(FuncStack);
+ return pop<double>(FuncStack);
+}
+
+callable *compareFunc;
+bool compareFunction(const vm::item& i, const vm::item& j)
+{
+ FuncStack->push(i);
+ FuncStack->push(j);
+ compareFunc->call(FuncStack);
+ return pop<bool>(FuncStack);
+}
+
+void checkSquare(array *a)
+{
+ size_t n=checkArray(a);
+ for(size_t i=0; i < n; i++)
+ if(checkArray(read<array*>(a,i)) != n)
+ error("matrix a must be square");
+}
+
+// Crout's algorithm for computing the LU decomposition of a square matrix.
+// cf. routine ludcmp (Press et al., Numerical Recipes, 1991).
+Int LUdecompose(double *a, size_t n, size_t* index, bool warn=true)
+{
+ double *vv=new double[n];
+ Int swap=1;
+ for(size_t i=0; i < n; ++i) {
+ double big=0.0;
+ double *ai=a+i*n;
+ for(size_t j=0; j < n; ++j) {
+ double temp=fabs(ai[j]);
+ if(temp > big) big=temp;
+ }
+ if(big == 0.0) {
+ delete[] vv;
+ if(warn) error(singular);
+ else return 0;
+ }
+ vv[i]=1.0/big;
+ }
+ for(size_t j=0; j < n; ++j) {
+ for(size_t i=0; i < j; ++i) {
+ double *ai=a+i*n;
+ double sum=ai[j];
+ for(size_t k=0; k < i; ++k) {
+ sum -= ai[k]*a[k*n+j];
+ }
+ ai[j]=sum;
+ }
+ double big=0.0;
+ size_t imax=j;
+ for(size_t i=j; i < n; ++i) {
+ double *ai=a+i*n;
+ double sum=ai[j];
+ for(size_t k=0; k < j; ++k)
+ sum -= ai[k]*a[k*n+j];
+ ai[j]=sum;
+ double temp=vv[i]*fabs(sum);
+ if(temp >= big) {
+ big=temp;
+ imax=i;
+ }
+ }
+ double *aj=a+j*n;
+ double *aimax=a+imax*n;
+ if(j != imax) {
+ for(size_t k=0; k < n; ++k) {
+ double temp=aimax[k];
+ aimax[k]=aj[k];
+ aj[k]=temp;
+ }
+ swap *= -1;
+ vv[imax]=vv[j];
+ }
+ if(index)
+ index[j]=imax;
+ if(j != n) {
+ double denom=aj[j];
+ if(denom == 0.0) {
+ delete[] vv;
+ if(warn) error(singular);
+ else return 0;
+ }
+ for(size_t i=j+1; i < n; ++i)
+ a[i*n+j] /= denom;
+ }
+ }
+ delete[] vv;
+ return swap;
+}
+
+namespace run {
+void dividebyzero(size_t i)
+{
+ ostringstream buf;
+ if(i > 0) buf << "array element " << i << ": ";
+ buf << "Divide by zero";
+ error(buf);
+}
+
+void integeroverflow(size_t i)
+{
+ ostringstream buf;
+ if(i > 0) buf << "array element " << i << ": ";
+ buf << "Integer overflow";
+ error(buf);
+}
+}
+
+// Autogenerated routines:
+
+
+
+namespace run {
+// Create an empty array.
+#line 474 "runarray.in"
+void emptyArray(stack *Stack)
+{
+#line 475 "runarray.in"
+ {Stack->push<array*>(new array(0)); return;}
+}
+
+// Create a new array (technically a vector).
+// This array will be multidimensional. First the number of dimensions
+// is popped off the stack, followed by each dimension in reverse order.
+// The array itself is technically a one dimensional array of one
+// dimension arrays and so on.
+#line 484 "runarray.in"
+void newDeepArray(stack *Stack)
+{
+ Int depth=vm::pop<Int>(Stack);
+#line 485 "runarray.in"
+ assert(depth > 0);
+
+ Int *dims = new Int[depth];
+
+ for (Int index = depth-1; index >= 0; index--) {
+ Int i=pop<Int>(Stack);
+ if(i < 0) error("cannot create a negative length array");
+ dims[index]=i;
+ }
+
+ array *a=deepArray(depth, dims);
+ delete[] dims;
+ {Stack->push<array*>(a); return;}
+}
+
+// Creates an array with elements already specified. First, the number
+// of elements is popped off the stack, followed by each element in
+// reverse order.
+#line 504 "runarray.in"
+void newInitializedArray(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+#line 505 "runarray.in"
+ assert(n >= 0);
+
+ array *a = new array(n);
+
+ for (Int index = n-1; index >= 0; index--)
+ (*a)[index] = pop(Stack);
+
+ {Stack->push<array*>(a); return;}
+}
+
+// Similar to newInitializedArray, but after the n elements, append another
+// array to it.
+#line 518 "runarray.in"
+void newAppendedArray(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ array* tail=vm::pop<array*>(Stack);
+#line 519 "runarray.in"
+ assert(n >= 0);
+
+ array *a = new array(n);
+
+ for (Int index = n-1; index >= 0; index--)
+ (*a)[index] = pop(Stack);
+
+ copy(tail->begin(), tail->end(), back_inserter(*a));
+
+ {Stack->push<array*>(a); return;}
+}
+
+// The function T[] array(int n, T value, int depth=0) produces a array of n
+// copies of x, where each copy is copied up to depth.
+#line 534 "runarray.in"
+void newDuplicateArray(stack *Stack)
+{
+ Int depth=vm::pop<Int>(Stack,Int_MAX);
+ item value=vm::pop(Stack);
+ Int n=vm::pop<Int>(Stack);
+#line 535 "runarray.in"
+ if(n < 0) error("cannot create a negative length array");
+ if(depth < 0) error("cannot copy to a negative depth");
+
+ {Stack->push<array*>(new array(n, value, depth)); return;}
+}
+
+// Read an element from an array. Checks for initialization & bounds.
+#line 543 "runarray.in"
+void arrayRead(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 544 "runarray.in"
+ item& i=arrayRead(a,n);
+ if (i.empty()) {
+ ostringstream buf;
+ buf << "read uninitialized value from array at index " << n;
+ error(buf);
+ }
+ {Stack->push(i); return;}
+}
+
+// Slice a substring from an array.
+#line 555 "runarray.in"
+void arraySliceRead(stack *Stack)
+{
+ Int right=vm::pop<Int>(Stack);
+ Int left=vm::pop<Int>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 556 "runarray.in"
+ checkArray(a);
+ {Stack->push(a->slice(left, right)); return;}
+}
+
+// Slice a substring from an array. This implements the cases a[i:] and a[:]
+// where the endpoint is not given, and assumed to be the length of the array.
+#line 563 "runarray.in"
+void arraySliceReadToEnd(stack *Stack)
+{
+ Int left=vm::pop<Int>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 564 "runarray.in"
+ size_t len=checkArray(a);
+ {Stack->push(a->slice(left, (Int)len)); return;}
+}
+
+// Read an element from an array of arrays. Check bounds and initialize
+// as necessary.
+#line 571 "runarray.in"
+void arrayArrayRead(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 572 "runarray.in"
+ item& i=arrayRead(a,n);
+ if (i.empty()) i=new array(0);
+ {Stack->push(i); return;}
+}
+
+// Write an element to an array. Increase size if necessary.
+#line 579 "runarray.in"
+void arrayWrite(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ array * a=vm::pop<array *>(Stack);
+ item value=vm::pop(Stack);
+#line 580 "runarray.in"
+ size_t len=checkArray(a);
+ bool cyclic=a->cyclic();
+ if(cyclic && len > 0) n=imod(n,len);
+ else {
+ if(cyclic) outOfBounds("writing cyclic",len,n);
+ if(n < 0) outOfBounds("writing",len,n);
+ if(len <= (size_t) n)
+ a->resize(n+1);
+ }
+ (*a)[n] = value;
+ {Stack->push(value); return;}
+}
+
+#line 594 "runarray.in"
+void arraySliceWrite(stack *Stack)
+{
+ Int right=vm::pop<Int>(Stack);
+ Int left=vm::pop<Int>(Stack);
+ array * dest=vm::pop<array *>(Stack);
+ array * src=vm::pop<array *>(Stack);
+#line 595 "runarray.in"
+ checkArray(src);
+ checkArray(dest);
+ dest->setSlice(left, right, src);
+ {Stack->push<array*>(src); return;}
+}
+
+#line 602 "runarray.in"
+void arraySliceWriteToEnd(stack *Stack)
+{
+ Int left=vm::pop<Int>(Stack);
+ array * dest=vm::pop<array *>(Stack);
+ array * src=vm::pop<array *>(Stack);
+#line 603 "runarray.in"
+ checkArray(src);
+ size_t len=checkArray(dest);
+ dest->setSlice(left, (Int) len, src);
+ {Stack->push<array*>(src); return;}
+}
+
+// Returns the length of an array.
+#line 611 "runarray.in"
+void arrayLength(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 612 "runarray.in"
+ {Stack->push<Int>((Int) checkArray(a)); return;}
+}
+
+// Returns an array of integers representing the keys of the array.
+#line 617 "runarray.in"
+void arrayKeys(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 618 "runarray.in"
+ size_t size=checkArray(a);
+
+ array *keys=new array();
+ for (size_t i=0; i<size; ++i) {
+ item& cell = (*a)[i];
+ if (!cell.empty())
+ keys->push((Int)i);
+ }
+
+ {Stack->push<array*>(keys); return;}
+}
+
+// Return the cyclic flag for an array.
+#line 632 "runarray.in"
+void arrayCyclicFlag(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 633 "runarray.in"
+ checkArray(a);
+ {Stack->push<bool>(a->cyclic()); return;}
+}
+
+#line 638 "runarray.in"
+void arraySetCyclicFlag(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ bool b=vm::pop<bool>(Stack);
+#line 639 "runarray.in"
+ checkArray(a);
+ a->cyclic(b);
+ {Stack->push<bool>(b); return;}
+}
+
+// Check to see if an array element is initialized.
+#line 646 "runarray.in"
+void arrayInitializedHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ Int n=vm::pop<Int>(Stack);
+#line 647 "runarray.in"
+ size_t len=checkArray(a);
+ bool cyclic=a->cyclic();
+ if(cyclic && len > 0) n=imod(n,len);
+ else if(n < 0 || n >= (Int) len) {Stack->push<bool>(false); return;}
+ item&i=(*a)[(unsigned) n];
+ {Stack->push<bool>(!i.empty()); return;}
+}
+
+// Returns the initialize method for an array.
+#line 657 "runarray.in"
+void arrayInitialized(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 658 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayInitializedHelper),a)); return;}
+}
+
+// The helper function for the cyclic method that sets the cyclic flag.
+#line 663 "runarray.in"
+void arrayCyclicHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ bool b=vm::pop<bool>(Stack);
+#line 664 "runarray.in"
+ checkArray(a);
+ a->cyclic(b);
+}
+
+// Set the cyclic flag for an array.
+#line 670 "runarray.in"
+void arrayCyclic(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 671 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayCyclicHelper),a)); return;}
+}
+
+// The helper function for the push method that does the actual operation.
+#line 676 "runarray.in"
+void arrayPushHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ item x=vm::pop(Stack);
+#line 677 "runarray.in"
+ checkArray(a);
+ a->push(x);
+ {Stack->push(x); return;}
+}
+
+// Returns the push method for an array.
+#line 684 "runarray.in"
+void arrayPush(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 685 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayPushHelper),a)); return;}
+}
+
+// The helper function for the append method that appends b to a.
+#line 690 "runarray.in"
+void arrayAppendHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ array * b=vm::pop<array *>(Stack);
+#line 691 "runarray.in"
+ checkArray(a);
+ size_t size=checkArray(b);
+ for(size_t i=0; i < size; i++)
+ a->push((*b)[i]);
+}
+
+// Returns the append method for an array.
+#line 699 "runarray.in"
+void arrayAppend(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 700 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayAppendHelper),a)); return;}
+}
+
+// The helper function for the pop method.
+#line 705 "runarray.in"
+void arrayPopHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 706 "runarray.in"
+ size_t asize=checkArray(a);
+ if(asize == 0)
+ error("cannot pop element from empty array");
+ {Stack->push(a->pop()); return;}
+}
+
+// Returns the pop method for an array.
+#line 714 "runarray.in"
+void arrayPop(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 715 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayPopHelper),a)); return;}
+}
+
+// The helper function for the insert method.
+#line 720 "runarray.in"
+void arrayInsertHelper(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ array * x=vm::pop<array *>(Stack);
+ Int i=vm::pop<Int>(Stack);
+#line 721 "runarray.in"
+ size_t asize=checkArray(a);
+ checkArray(x);
+ if(a->cyclic() && asize > 0) i=imod(i,asize);
+ if(i < 0 || i > (Int) asize)
+ outOfBounds("inserting",asize,i);
+ (*a).insert((*a).begin()+i,(*x).begin(),(*x).end());
+}
+
+// Returns the insert method for an array.
+#line 731 "runarray.in"
+void arrayInsert(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 732 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayInsertHelper),a)); return;}
+}
+
+// Returns the delete method for an array.
+#line 737 "runarray.in"
+void arrayDelete(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 738 "runarray.in"
+ {Stack->push<callable*>(new thunk(new bfunc(arrayDeleteHelper),a)); return;}
+}
+
+#line 742 "runarray.in"
+void arrayAlias(stack *Stack)
+{
+ array * b=vm::pop<array *>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 743 "runarray.in"
+ {Stack->push<bool>(a==b); return;}
+}
+
+// Return array formed by indexing array a with elements of integer array b
+#line 748 "runarray.in"
+void arrayIntArray(stack *Stack)
+{
+ array * b=vm::pop<array *>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 749 "runarray.in"
+ size_t asize=checkArray(a);
+ size_t bsize=checkArray(b);
+ array *r=new array(bsize);
+ bool cyclic=a->cyclic();
+ for(size_t i=0; i < bsize; i++) {
+ Int index=read<Int>(b,i);
+ if(cyclic && asize > 0) index=imod(index,asize);
+ else
+ if(index < 0 || index >= (Int) asize)
+ outOfBounds("reading",asize,index);
+ (*r)[i]=(*a)[index];
+ }
+ {Stack->push<array*>(r); return;}
+}
+
+// returns the complement of the integer array a in {0,2,...,n-1},
+// so that b[complement(a,b.length)] yields the complement of b[a].
+#line 767 "runarray.in"
+// Intarray* complement(Intarray *a, Int n);
+void gen_runarray31(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ Intarray * a=vm::pop<Intarray *>(Stack);
+#line 768 "runarray.in"
+ size_t asize=checkArray(a);
+ array *r=new array(0);
+ bool *keep=new bool[n];
+ for(Int i=0; i < n; ++i) keep[i]=true;
+ for(size_t i=0; i < asize; ++i) {
+ Int j=read<Int>(a,i);
+ if(j >= 0 && j < n) keep[j]=false;
+ }
+ for(Int i=0; i < n; i++)
+ if(keep[i]) r->push(i);
+
+ delete[] keep;
+ {Stack->push<Intarray*>(r); return;}
+}
+
+// Generate the sequence {f(i) : i=0,1,...n-1} given a function f and integer n
+#line 785 "runarray.in"
+void arraySequence(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+ callable * f=vm::pop<callable *>(Stack);
+#line 786 "runarray.in"
+ if(n < 0) n=0;
+ array *a=new array(n);
+ for(Int i=0; i < n; ++i) {
+ Stack->push(i);
+ f->call(Stack);
+ (*a)[i]=pop(Stack);
+ }
+ {Stack->push<Intarray*>(a); return;}
+}
+
+// Return the array {0,1,...n-1}
+#line 798 "runarray.in"
+// Intarray* sequence(Int n);
+void gen_runarray33(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+#line 799 "runarray.in"
+ if(n < 0) n=0;
+ array *a=new array(n);
+ for(Int i=0; i < n; ++i) {
+ (*a)[i]=i;
+ }
+ {Stack->push<Intarray*>(a); return;}
+}
+
+// Apply a function to each element of an array
+#line 809 "runarray.in"
+void arrayFunction(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+ callable * f=vm::pop<callable *>(Stack);
+#line 810 "runarray.in"
+ size_t size=checkArray(a);
+ array *b=new array(size);
+ for(size_t i=0; i < size; ++i) {
+ Stack->push((*a)[i]);
+ f->call(Stack);
+ (*b)[i]=pop(Stack);
+ }
+ {Stack->push<array*>(b); return;}
+}
+
+#line 821 "runarray.in"
+void arraySort(stack *Stack)
+{
+ callable * f=vm::pop<callable *>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 822 "runarray.in"
+ array *c=copyArray(a);
+ compareFunc=f;
+ FuncStack=Stack;
+ stable_sort(c->begin(),c->end(),compareFunction);
+ {Stack->push<array*>(c); return;}
+}
+
+#line 830 "runarray.in"
+// bool all(boolarray *a);
+void gen_runarray36(stack *Stack)
+{
+ boolarray * a=vm::pop<boolarray *>(Stack);
+#line 831 "runarray.in"
+ size_t size=checkArray(a);
+ bool c=true;
+ for(size_t i=0; i < size; i++)
+ if(!get<bool>((*a)[i])) {c=false; break;}
+ {Stack->push<bool>(c); return;}
+}
+
+#line 839 "runarray.in"
+// boolarray* !(boolarray* a);
+void gen_runarray37(stack *Stack)
+{
+ boolarray* a=vm::pop<boolarray*>(Stack);
+#line 840 "runarray.in"
+ size_t size=checkArray(a);
+ array *c=new array(size);
+ for(size_t i=0; i < size; i++)
+ (*c)[i]=!read<bool>(a,i);
+ {Stack->push<boolarray*>(c); return;}
+}
+
+#line 848 "runarray.in"
+// Int sum(boolarray *a);
+void gen_runarray38(stack *Stack)
+{
+ boolarray * a=vm::pop<boolarray *>(Stack);
+#line 849 "runarray.in"
+ size_t size=checkArray(a);
+ Int sum=0;
+ for(size_t i=0; i < size; i++)
+ sum += read<bool>(a,i) ? 1 : 0;
+ {Stack->push<Int>(sum); return;}
+}
+
+#line 857 "runarray.in"
+void arrayCopy(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 858 "runarray.in"
+ {Stack->push<array*>(copyArray(a)); return;}
+}
+
+#line 862 "runarray.in"
+void arrayConcat(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 863 "runarray.in"
+ // a is an array of arrays to be concatenated together.
+ // The signature is
+ // T[] concat(... T[][] a);
+
+ size_t numArgs=checkArray(a);
+ size_t resultSize=0;
+ for (size_t i=0; i < numArgs; ++i) {
+ resultSize += checkArray(a->read<array *>(i));
+ }
+
+ array *result=new array(resultSize);
+
+ size_t ri=0;
+ for (size_t i=0; i < numArgs; ++i) {
+ array *arg=a->read<array *>(i);
+ size_t size=checkArray(arg);
+
+ for (size_t j=0; j < size; ++j) {
+ (*result)[ri]=(*arg)[j];
+ ++ri;
+ }
+ }
+
+ {Stack->push<array*>(result); return;}
+}
+
+#line 890 "runarray.in"
+void array2Copy(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 891 "runarray.in"
+ {Stack->push<array*>(copyArray2(a)); return;}
+}
+
+#line 895 "runarray.in"
+void array3Copy(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 896 "runarray.in"
+ {Stack->push<array*>(copyArray3(a)); return;}
+}
+
+#line 900 "runarray.in"
+void array2Transpose(stack *Stack)
+{
+ array * a=vm::pop<array *>(Stack);
+#line 901 "runarray.in"
+ size_t asize=checkArray(a);
+ array *c=new array(0);
+ for(size_t i=0; i < asize; i++) {
+ size_t ip=i+1;
+ array *ai=read<array*>(a,i);
+ size_t aisize=checkArray(ai);
+ size_t csize=checkArray(c);
+ if(csize < aisize) {
+ c->resize(aisize);
+ for(size_t j=csize; j < aisize; j++) {
+ (*c)[j]=new array(ip);
+ }
+ }
+ for(size_t j=0; j < aisize; j++) {
+ array *cj=read<array*>(c,j);
+ if(checkArray(cj) < ip) cj->resize(ip);
+ (*cj)[i]=(*ai)[j];
+ }
+ }
+ {Stack->push<array*>(c); return;}
+}
+
+// a is a rectangular 3D array; perm is an Int array indicating the type of
+// permutation (021 or 120, etc; original is 012).
+// Transpose by sending respective members to the permutated locations:
+// return the array obtained by putting a[i][j][k] into position perm{ijk}.
+#line 928 "runarray.in"
+void array3Transpose(stack *Stack)
+{
+ array * perm=vm::pop<array *>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 929 "runarray.in"
+ const size_t DIM=3;
+
+ if(checkArray(perm) != DIM) {
+ ostringstream buf;
+ buf << "permutation array must have length " << DIM;
+ error(buf);
+ }
+
+ size_t* size=new size_t[DIM];
+ for(size_t i=0; i < DIM; ++i) size[i]=DIM;
+
+ for(size_t i=0; i < DIM; ++i) {
+ Int p=read<Int>(perm,i);
+ size_t P=(size_t) p;
+ if(p < 0 || P >= DIM) {
+ ostringstream buf;
+ buf << "permutation index out of range: " << p;
+ error(buf);
+ }
+ size[P]=P;
+ }
+
+ for(size_t i=0; i < DIM; ++i)
+ if(size[i] == DIM) error("permutation indices must be distinct");
+
+ static const char *rectangular=
+ "3D transpose implemented for rectangular matrices only";
+
+ size_t isize=size[0]=checkArray(a);
+ array *a0=read<array*>(a,0);
+ size[1]=checkArray(a0);
+ array *a00=read<array*>(a0,0);
+ size[2]=checkArray(a00);
+ for(size_t i=0; i < isize; i++) {
+ array *ai=read<array*>(a,i);
+ size_t jsize=checkArray(ai);
+ if(jsize != size[1]) error(rectangular);
+ for(size_t j=0; j < jsize; j++) {
+ array *aij=read<array*>(ai,j);
+ if(checkArray(aij) != size[2]) error(rectangular);
+ }
+ }
+
+ size_t perm0=(size_t) read<Int>(perm,0);
+ size_t perm1=(size_t) read<Int>(perm,1);
+ size_t perm2=(size_t) read<Int>(perm,2);
+
+ size_t sizep0=size[perm0];
+ size_t sizep1=size[perm1];
+ size_t sizep2=size[perm2];
+
+ array *c=new array(sizep0);
+ for(size_t i=0; i < sizep0; ++i) {
+ array *ci=new array(sizep1);
+ (*c)[i]=ci;
+ for(size_t j=0; j < sizep1; ++j) {
+ array *cij=new array(sizep2);
+ (*ci)[j]=cij;
+ }
+ }
+
+ size_t* i=new size_t[DIM];
+
+ for(i[0]=0; i[0] < size[0]; ++i[0]) {
+ array *a0=read<array*>(a,i[0]);
+ for(i[1]=0; i[1] < size[1]; ++i[1]) {
+ array *a1=read<array*>(a0,i[1]);
+ for(i[2]=0; i[2] < size[2]; ++i[2]) {
+ array *c0=read<array*>(c,i[perm0]);
+ array *c1=read<array*>(c0,i[perm1]);
+ (*c1)[i[perm2]]=read<real>(a1,i[2]);
+ }
+ }
+ }
+
+ delete [] i;
+ delete [] size;
+
+ {Stack->push<array*>(c); return;}
+}
+
+// In a boolean array, find the index of the nth true value or -1 if not found
+// If n is negative, search backwards.
+#line 1013 "runarray.in"
+// Int find(boolarray *a, Int n=1);
+void gen_runarray45(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack,1);
+ boolarray * a=vm::pop<boolarray *>(Stack);
+#line 1014 "runarray.in"
+ size_t size=checkArray(a);
+ Int j=-1;
+ if(n > 0)
+ for(size_t i=0; i < size; i++)
+ if(read<bool>(a,i)) {
+ n--; if(n == 0) {j=(Int) i; break;}
+ }
+ if(n < 0)
+ for(size_t i=size; i > 0;)
+ if(read<bool>(a,--i)) {
+ n++; if(n == 0) {j=(Int) i; break;}
+ }
+ {Stack->push<Int>(j); return;}
+}
+
+// construct vector obtained by replacing those elements of b for which the
+// corresponding elements of a are false by the corresponding element of c.
+#line 1032 "runarray.in"
+void arrayConditional(stack *Stack)
+{
+ array * c=vm::pop<array *>(Stack);
+ array * b=vm::pop<array *>(Stack);
+ array * a=vm::pop<array *>(Stack);
+#line 1033 "runarray.in"
+ size_t size=checkArray(a);
+ array *r=new array(size);
+ if(b && c) {
+ checkArrays(a,b);
+ checkArrays(b,c);
+ for(size_t i=0; i < size; i++)
+ (*r)[i]=read<bool>(a,i) ? (*b)[i] : (*c)[i];
+ } else {
+ r->clear();
+ if(b) {
+ checkArrays(a,b);
+ for(size_t i=0; i < size; i++)
+ if(read<bool>(a,i)) r->push((*b)[i]);
+ } else if(c) {
+ checkArrays(a,c);
+ for(size_t i=0; i < size; i++)
+ if(!read<bool>(a,i)) r->push((*c)[i]);
+ }
+ }
+ {Stack->push<array*>(r); return;}
+}
+
+// Return an n x n identity matrix.
+#line 1057 "runarray.in"
+// realarray2* identity(Int n);
+void gen_runarray47(stack *Stack)
+{
+ Int n=vm::pop<Int>(Stack);
+#line 1058 "runarray.in"
+ {Stack->push<realarray2*>(Identity(n)); return;}
+}
+
+// Return the diagonal matrix with diagonal entries given by a.
+#line 1063 "runarray.in"
+void diagonal(stack *Stack)
+{
+ realarray * a=vm::pop<realarray *>(Stack);
+#line 1064 "runarray.in"
+ size_t n=checkArray(a);
+ array *c=new array(n);
+ for(size_t i=0; i < n; ++i) {
+ array *ci=new array(n);
+ (*c)[i]=ci;
+ for(size_t j=0; j < i; ++j)
+ (*ci)[j]=0.0;
+ (*ci)[i]=read<real>(a,i);
+ for(size_t j=i+1; j < n; ++j)
+ (*ci)[j]=0.0;
+ }
+ {Stack->push<realarray2*>(c); return;}
+}
+
+// Return the inverse of an n x n matrix a using Gauss-Jordan elimination.
+#line 1080 "runarray.in"
+// realarray2* inverse(realarray2 *a);
+void gen_runarray49(stack *Stack)
+{
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1081 "runarray.in"
+ a=copyArray2(a);
+ size_t n=checkArray(a);
+ checkSquare(a);
+
+ inverseAllocate(n);
+
+ for(size_t i=0; i < n; i++)
+ pivot[i]=0;
+
+ size_t col=0, row=0;
+ // This is the main loop over the columns to be reduced.
+ for(size_t i=0; i < n; i++) {
+ real big=0.0;
+ // This is the outer loop of the search for a pivot element.
+ for(size_t j=0; j < n; j++) {
+ array *aj=read<array*>(a,j);
+ if(pivot[j] != 1) {
+ for(size_t k=0; k < n; k++) {
+ if(pivot[k] == 0) {
+ real temp=fabs(read<real>(aj,k));
+ if(temp >= big) {
+ big=temp;
+ row=j;
+ col=k;
+ }
+ } else if(pivot[k] > 1) {
+ inverseDeallocate();
+ error(singular);
+ }
+ }
+ }
+ }
+ ++(pivot[col]);
+
+ // Interchange rows, if needed, to put the pivot element on the diagonal.
+ array *acol=read<array*>(a,col);
+ if(row != col) {
+ array *arow=read<array*>(a,row);
+ for(size_t l=0; l < n; l++) {
+ real temp=read<real>(arow,l);
+ (*arow)[l]=read<real>(acol,l);
+ (*acol)[l]=temp;
+ }
+ }
+
+ Row[i]=row;
+ Col[i]=col;
+
+ // Divide the pivot row by the pivot element.
+ real denom=read<real>(acol,col);
+ if(denom == 0.0) {
+ inverseDeallocate();
+ error(singular);
+ }
+ real pivinv=1.0/denom;
+ (*acol)[col]=1.0;
+ for(size_t l=0; l < n; l++)
+ (*acol)[l]=read<real>(acol,l)*pivinv;
+
+ // Reduce all rows except for the pivoted one.
+ for(size_t k=0; k < n; k++) {
+ if(k != col) {
+ array *ak=read<array*>(a,k);
+ real akcol=read<real>(ak,col);
+ (*ak)[col]=0.0;
+ for(size_t l=0; l < n; l++)
+ (*ak)[l]=read<real>(ak,l)-read<real>(acol,l)*akcol;
+ }
+ }
+ }
+
+ // Unscramble the inverse matrix in view of the column interchanges.
+ for(size_t l=n; l > 0;) {
+ l--;
+ size_t r=Row[l];
+ size_t c=Col[l];
+ if(r != c) {
+ for(size_t k=0; k < n; k++) {
+ array *ak=read<array*>(a,k);
+ real temp=read<real>(ak,r);
+ (*ak)[r]=read<real>(ak,c);
+ (*ak)[c]=temp;
+ }
+ }
+ }
+ inverseDeallocate();
+ {Stack->push<realarray2*>(a); return;}
+}
+
+// Solve the linear equation ax=b by LU decomposition, returning the
+// solution x, where a is an n x n matrix and b is an array of length n.
+// If no solution exists, return an empty array.
+#line 1174 "runarray.in"
+// realarray* solve(realarray2 *a, realarray *b, bool warn=true);
+void gen_runarray50(stack *Stack)
+{
+ bool warn=vm::pop<bool>(Stack,true);
+ realarray * b=vm::pop<realarray *>(Stack);
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1175 "runarray.in"
+ size_t n=checkArray(a);
+
+ if(n == 0) {Stack->push<realarray*>(new array(0)); return;}
+
+ size_t m=checkArray(b);
+ if(m != n) error(incommensurate);
+
+ real *A=copyArray2C(a);
+ size_t *index=new size_t[n];
+
+ if(LUdecompose(A,n,index,warn) == 0)
+ {Stack->push<realarray*>(new array(0)); return;}
+
+ array *x=new array(n);
+
+ real *B=copyArrayC(b);
+
+ for(size_t i=0; i < n; ++i) {
+ size_t ip=index[i];
+ real sum=B[ip];
+ B[ip]=B[i];
+ real *Ai=A+i*n;
+ for(size_t j=0; j < i; ++j)
+ sum -= Ai[j]*B[j];
+ B[i]=sum;
+ }
+
+ for(size_t i=n; i > 0;) {
+ --i;
+ real sum=B[i];
+ real *Ai=A+i*n;
+ for(size_t j=i+1; j < n; ++j)
+ sum -= Ai[j]*B[j];
+ B[i]=sum/Ai[i];
+ }
+
+ for(size_t i=0; i < n; ++i)
+ (*x)[i]=B[i];
+
+ delete[] index;
+ delete[] B;
+ delete[] A;
+
+ {Stack->push<realarray*>(x); return;}
+}
+
+// Solve the linear equation ax=b by LU decomposition, returning the
+// solution x, where a is an n x n matrix and b is an n x m matrix.
+// If no solution exists, return an empty array.
+#line 1225 "runarray.in"
+// realarray2* solve(realarray2 *a, realarray2 *b, bool warn=true);
+void gen_runarray51(stack *Stack)
+{
+ bool warn=vm::pop<bool>(Stack,true);
+ realarray2 * b=vm::pop<realarray2 *>(Stack);
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1226 "runarray.in"
+ size_t n=checkArray(a);
+
+ if(n == 0) {Stack->push<realarray2*>(new array(0)); return;}
+
+ if(checkArray(b) != n) error(incommensurate);
+ size_t m=checkArray(read<array*>(b,0));
+
+ real *A=copyArray2C(a);
+ real *B=copyArray2C(b,false);
+
+ size_t *index=new size_t[n];
+
+ if(LUdecompose(A,n,index,warn) == 0)
+ {Stack->push<realarray2*>(new array(0)); return;}
+
+ array *x=new array(n);
+
+ for(size_t i=0; i < n; ++i) {
+ real *Ai=A+i*n;
+ real *Bi=B+i*m;
+ real *Bip=B+index[i]*m;
+ for(size_t k=0; k < m; ++k) {
+ real sum=Bip[k];
+ Bip[k]=Bi[k];
+ size_t jk=k;
+ for(size_t j=0; j < i; ++j, jk += m)
+ sum -= Ai[j]*B[jk];
+ Bi[k]=sum;
+ }
+ }
+
+ for(size_t i=n; i > 0;) {
+ --i;
+ real *Ai=A+i*n;
+ real *Bi=B+i*m;
+ for(size_t k=0; k < m; ++k) {
+ real sum=Bi[k];
+ size_t jk=(i+1)*m+k;
+ for(size_t j=i+1; j < n; ++j, jk += m)
+ sum -= Ai[j]*B[jk];
+ Bi[k]=sum/Ai[i];
+ }
+ }
+
+ for(size_t i=0; i < n; ++i) {
+ real *Bi=B+i*m;
+ array *xi=new array(m);
+ (*x)[i]=xi;
+ for(size_t j=0; j < m; ++j)
+ (*xi)[j]=Bi[j];
+ }
+
+ delete[] index;
+ delete[] B;
+ delete[] A;
+
+ {Stack->push<realarray2*>(x); return;}
+}
+
+// Compute the determinant of an n x n matrix.
+#line 1287 "runarray.in"
+// real determinant(realarray2 *a);
+void gen_runarray52(stack *Stack)
+{
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1288 "runarray.in"
+ real *A=copyArray2C(a);
+ size_t n=checkArray(a);
+
+ real det=LUdecompose(A,n,NULL,false);
+ size_t n1=n+1;
+ for(size_t i=0; i < n; ++i)
+ det *= A[i*n1];
+
+ delete[] A;
+
+ {Stack->push<real>(det); return;}
+}
+
+#line 1302 "runarray.in"
+// realarray* *(realarray2 *a, realarray *b);
+void gen_runarray53(stack *Stack)
+{
+ realarray * b=vm::pop<realarray *>(Stack);
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1303 "runarray.in"
+ size_t n=checkArray(a);
+ size_t m=checkArray(b);
+ array *c=new array(n);
+ real *B=copyArrayC(b);
+ for(size_t i=0; i < n; ++i) {
+ array *ai=read<array*>(a,i);
+ if(checkArray(ai) != m) error(incommensurate);
+ real sum=0.0;
+ for(size_t j=0; j < m; ++j)
+ sum += read<real>(ai,j)*B[j];
+ (*c)[i]=sum;
+ }
+ delete[] B;
+ {Stack->push<realarray*>(c); return;}
+}
+
+#line 1320 "runarray.in"
+// realarray* *(realarray *a, realarray2 *b);
+void gen_runarray54(stack *Stack)
+{
+ realarray2 * b=vm::pop<realarray2 *>(Stack);
+ realarray * a=vm::pop<realarray *>(Stack);
+#line 1321 "runarray.in"
+ size_t n=checkArray(a);
+ if(n != checkArray(b)) error(incommensurate);
+ real *A=copyArrayC(a);
+
+ array **B=new array*[n];
+ array *bk=read<array *>(b,0);
+ B[0]=bk;
+ size_t m=bk->size();
+ for(size_t k=1; k < n; k++) {
+ array *bk=read<array *>(b,k);
+ if(bk->size() != m) error(incommensurate);
+ B[k]=bk;
+ }
+ array *c=new array(m);
+
+ for(size_t i=0; i < m; ++i) {
+ real sum=0.0;
+ for(size_t k=0; k < n; ++k)
+ sum += A[k]*read<real>(B[k],i);
+ (*c)[i]=sum;
+ }
+ delete[] B;
+ delete[] A;
+ {Stack->push<realarray*>(c); return;}
+}
+
+#line 1348 "runarray.in"
+// realarray2* *(realarray2 *a, realarray2 *b);
+void gen_runarray55(stack *Stack)
+{
+ realarray2 * b=vm::pop<realarray2 *>(Stack);
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1349 "runarray.in"
+ size_t n=checkArray(a);
+
+ size_t nb=checkArray(b);
+ size_t na0=n == 0 ? 0 : checkArray(read<array*>(a,0));
+ if(na0 != nb)
+ error(incommensurate);
+
+ size_t nb0=nb == 0 ? 0 : checkArray(read<array*>(b,0));
+
+ array *c=new array(n);
+
+ real *A=copyArray2C(a,false);
+ real *B=copyArray2C(b,false);
+
+ for(size_t i=0; i < n; ++i) {
+ real *Ai=A+i*nb;
+ array *ci=new array(nb0);
+ (*c)[i]=ci;
+ for(size_t j=0; j < nb0; ++j) {
+ real sum=0.0;
+ size_t kj=j;
+ for(size_t k=0; k < nb; ++k, kj += nb0)
+ sum += Ai[k]*B[kj];
+ (*ci)[j]=sum;
+ }
+ }
+
+ delete[] B;
+ delete[] A;
+
+ {Stack->push<realarray2*>(c); return;}
+}
+
+#line 1383 "runarray.in"
+// triple *(realarray2 *t, triple v);
+void gen_runarray56(stack *Stack)
+{
+ triple v=vm::pop<triple>(Stack);
+ realarray2 * t=vm::pop<realarray2 *>(Stack);
+#line 1384 "runarray.in"
+ {Stack->push<triple>(*t*v); return;}
+}
+
+#line 1388 "runarray.in"
+// pair project(triple v, realarray2 *t);
+void gen_runarray57(stack *Stack)
+{
+ realarray2 * t=vm::pop<realarray2 *>(Stack);
+ triple v=vm::pop<triple>(Stack);
+#line 1389 "runarray.in"
+ size_t n=checkArray(t);
+ if(n != 4) error(incommensurate);
+ array *t0=read<array*>(t,0);
+ array *t1=read<array*>(t,1);
+ array *t3=read<array*>(t,3);
+ if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t3) != 4)
+ error(incommensurate);
+
+ real x=v.getx();
+ real y=v.gety();
+ real z=v.getz();
+
+ real f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
+ read<real>(t3,3);
+ if(f == 0.0) dividebyzero();
+ f=1.0/f;
+
+ {Stack->push<pair>(pair((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
+ read<real>(t0,3))*f,
+ (read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
+ read<real>(t1,3))*f)); return;}
+}
+
+// Compute the dot product of vectors a and b.
+#line 1414 "runarray.in"
+// real dot(realarray *a, realarray *b);
+void gen_runarray58(stack *Stack)
+{
+ realarray * b=vm::pop<realarray *>(Stack);
+ realarray * a=vm::pop<realarray *>(Stack);
+#line 1415 "runarray.in"
+ size_t n=checkArrays(a,b);
+ real sum=0.0;
+ for(size_t i=0; i < n; ++i)
+ sum += read<real>(a,i)*read<real>(b,i);
+ {Stack->push<real>(sum); return;}
+}
+
+// Solve the problem L\inv f, where f is an n vector and L is the n x n matrix
+//
+// [ b[0] c[0] a[0] ]
+// [ a[1] b[1] c[1] ]
+// [ a[2] b[2] c[2] ]
+// [ ... ]
+// [ c[n-1] a[n-1] b[n-1] ]
+#line 1430 "runarray.in"
+// realarray* tridiagonal(realarray *a, realarray *b, realarray *c, realarray *f);
+void gen_runarray59(stack *Stack)
+{
+ realarray * f=vm::pop<realarray *>(Stack);
+ realarray * c=vm::pop<realarray *>(Stack);
+ realarray * b=vm::pop<realarray *>(Stack);
+ realarray * a=vm::pop<realarray *>(Stack);
+#line 1431 "runarray.in"
+ size_t n=checkArrays(a,b);
+ checkEqual(n,checkArray(c));
+ checkEqual(n,checkArray(f));
+
+ array *up=new array(n);
+ array& u=*up;
+
+ if(n == 0) {Stack->push<realarray*>(up); return;}
+
+ // Special case: zero Dirichlet boundary conditions
+ if(read<real>(a,0) == 0.0 && read<real>(c,n-1) == 0.0) {
+ real temp=read<real>(b,0);
+ if(temp == 0.0) dividebyzero();
+ temp=1.0/temp;
+
+ real *work=new real[n];
+ u[0]=read<real>(f,0)*temp;
+ work[0]=-read<real>(c,0)*temp;
+
+ for(size_t i=1; i < n; i++) {
+ real temp=(read<real>(b,i)+read<real>(a,i)*work[i-1]);
+ if(temp == 0.0) {delete[] work; dividebyzero();}
+ temp=1.0/temp;
+ u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*temp;
+ work[i]=-read<real>(c,i)*temp;
+ }
+
+ for(size_t i=n-1; i >= 1; i--)
+ u[i-1]=read<real>(u,i-1)+work[i-1]*read<real>(u,i);
+
+ delete[] work;
+ {Stack->push<realarray*>(up); return;}
+ }
+
+ real binv=read<real>(b,0);
+ if(binv == 0.0) dividebyzero();
+ binv=1.0/binv;
+
+ if(n == 1) {u[0]=read<real>(f,0)*binv; {Stack->push<realarray*>(up); return;}}
+ if(n == 2) {
+ real factor=(read<real>(b,0)*read<real>(b,1)-
+ read<real>(a,0)*read<real>(c,1));
+ if(factor== 0.0) dividebyzero();
+ factor=1.0/factor;
+ real temp=(read<real>(b,0)*read<real>(f,1)-
+ read<real>(c,1)*read<real>(f,0))*factor;
+ u[0]=(read<real>(b,1)*read<real>(f,0)-
+ read<real>(a,0)*read<real>(f,1))*factor;
+ u[1]=temp;
+ {Stack->push<realarray*>(up); return;}
+ }
+
+ real *gamma=new real[n-2];
+ real *delta=new real[n-2];
+
+ gamma[0]=read<real>(c,0)*binv;
+ delta[0]=read<real>(a,0)*binv;
+ u[0]=read<real>(f,0)*binv;
+ real beta=read<real>(c,n-1);
+ real fn=read<real>(f,n-1)-beta*read<real>(u,0);
+ real alpha=read<real>(b,n-1)-beta*delta[0];
+
+ for(size_t i=1; i <= n-3; i++) {
+ real alphainv=read<real>(b,i)-read<real>(a,i)*gamma[i-1];
+ if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
+ alphainv=1.0/alphainv;
+ beta *= -gamma[i-1];
+ gamma[i]=read<real>(c,i)*alphainv;
+ u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*alphainv;
+ fn -= beta*read<real>(u,i);
+ delta[i]=-read<real>(a,i)*delta[i-1]*alphainv;
+ alpha -= beta*delta[i];
+ }
+
+ real alphainv=read<real>(b,n-2)-read<real>(a,n-2)*gamma[n-3];
+ if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
+ alphainv=1.0/alphainv;
+ u[n-2]=(read<real>(f,n-2)-read<real>(a,n-2)*read<real>(u,n-3))
+ *alphainv;
+ beta=read<real>(a,n-1)-beta*gamma[n-3];
+ real dnm1=(read<real>(c,n-2)-read<real>(a,n-2)*delta[n-3])*alphainv;
+ real temp=alpha-beta*dnm1;
+ if(temp == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
+ u[n-1]=temp=(fn-beta*read<real>(u,n-2))/temp;
+ u[n-2]=read<real>(u,n-2)-dnm1*temp;
+
+ for(size_t i=n-2; i >= 1; i--)
+ u[i-1]=read<real>(u,i-1)-gamma[i-1]*read<real>(u,i)-delta[i-1]*temp;
+
+ delete[] delta;
+ delete[] gamma;
+
+ {Stack->push<realarray*>(up); return;}
+}
+
+// Root solve by Newton-Raphson
+#line 1528 "runarray.in"
+// real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x, bool verbose=false);
+void gen_runarray60(stack *Stack)
+{
+ bool verbose=vm::pop<bool>(Stack,false);
+ real x=vm::pop<real>(Stack);
+ callableReal * fprime=vm::pop<callableReal *>(Stack);
+ callableReal * f=vm::pop<callableReal *>(Stack);
+ Int iterations=vm::pop<Int>(Stack,100);
+#line 1530 "runarray.in"
+ static const real fuzz=1000.0*DBL_EPSILON;
+ Int i=0;
+ size_t oldPrec=0;
+ if(verbose)
+ oldPrec=cout.precision(DBL_DIG);
+
+ real diff=DBL_MAX;
+ real lastdiff;
+ do {
+ real x0=x;
+
+ Stack->push(x);
+ fprime->call(Stack);
+ real dfdx=pop<real>(Stack);
+
+ if(dfdx == 0.0) {
+ x=DBL_MAX;
+ break;
+ }
+
+ Stack->push(x);
+ f->call(Stack);
+ real fx=pop<real>(Stack);
+
+ x -= fx/dfdx;
+
+ lastdiff=diff;
+
+ if(verbose)
+ cout << "Newton-Raphson: " << x << endl;
+
+ diff=fabs(x-x0);
+ if(++i == iterations) {
+ x=DBL_MAX;
+ break;
+ }
+ } while (diff != 0.0 && (diff < lastdiff || diff > fuzz*fabs(x)));
+
+ if(verbose)
+ cout.precision(oldPrec);
+ {Stack->push<real>(x); return;}
+}
+
+// Root solve by Newton-Raphson bisection
+// cf. routine rtsafe (Press et al., Numerical Recipes, 1991).
+#line 1576 "runarray.in"
+// real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x1, real x2, bool verbose=false);
+void gen_runarray61(stack *Stack)
+{
+ bool verbose=vm::pop<bool>(Stack,false);
+ real x2=vm::pop<real>(Stack);
+ real x1=vm::pop<real>(Stack);
+ callableReal * fprime=vm::pop<callableReal *>(Stack);
+ callableReal * f=vm::pop<callableReal *>(Stack);
+ Int iterations=vm::pop<Int>(Stack,100);
+#line 1578 "runarray.in"
+ static const real fuzz=1000.0*DBL_EPSILON;
+ size_t oldPrec=0;
+ if(verbose)
+ oldPrec=cout.precision(DBL_DIG);
+
+ Stack->push(x1);
+ f->call(Stack);
+ real f1=pop<real>(Stack);
+ if(f1 == 0.0) {Stack->push<real>(x1); return;}
+
+ Stack->push(x2);
+ f->call(Stack);
+ real f2=pop<real>(Stack);
+ if(f2 == 0.0) {Stack->push<real>(x2); return;}
+
+ if((f1 > 0.0 && f2 > 0.0) || (f1 < 0.0 && f2 < 0.0)) {
+ ostringstream buf;
+ buf << "root not bracketed, f(x1)=" << f1 << ", f(x2)=" << f2 << endl;
+ error(buf);
+ }
+
+ real x=0.5*(x1+x2);
+ real dxold=fabs(x2-x1);
+ if(f1 > 0.0) {
+ real temp=x1;
+ x1=x2;
+ x2=temp;
+ }
+
+ if(verbose)
+ cout << "midpoint: " << x << endl;
+
+ real dx=dxold;
+ Stack->push(x);
+ f->call(Stack);
+ real y=pop<real>(Stack);
+
+ Stack->push(x);
+ fprime->call(Stack);
+ real dy=pop<real>(Stack);
+
+ Int j;
+ for(j=0; j < iterations; j++) {
+ if(((x-x2)*dy-y)*((x-x1)*dy-y) >= 0.0 || fabs(2.0*y) > fabs(dxold*dy)) {
+ dxold=dx;
+ dx=0.5*(x2-x1);
+ x=x1+dx;
+ if(verbose)
+ cout << "bisection: " << x << endl;
+ if(x1 == x) {Stack->push<real>(x); return;}
+ } else {
+ dxold=dx;
+ dx=y/dy;
+ real temp=x;
+ x -= dx;
+ if(verbose)
+ cout << "Newton-Raphson: " << x << endl;
+ if(temp == x) {Stack->push<real>(x); return;}
+ }
+ if(fabs(dx) < fuzz*fabs(x)) {Stack->push<real>(x); return;}
+
+ Stack->push(x);
+ f->call(Stack);
+ y=pop<real>(Stack);
+
+ Stack->push(x);
+ fprime->call(Stack);
+ dy=pop<real>(Stack);
+
+ if(y < 0.0) x1=x;
+ else x2=x;
+ }
+ if(verbose)
+ cout.precision(oldPrec);
+ {Stack->push<real>((j == iterations) ? DBL_MAX : x); return;}
+}
+
+#line 1656 "runarray.in"
+// real simpson(callableReal *f, real a, real b, real acc=DBL_EPSILON, real dxmax=0);
+void gen_runarray62(stack *Stack)
+{
+ real dxmax=vm::pop<real>(Stack,0);
+ real acc=vm::pop<real>(Stack,DBL_EPSILON);
+ real b=vm::pop<real>(Stack);
+ real a=vm::pop<real>(Stack);
+ callableReal * f=vm::pop<callableReal *>(Stack);
+#line 1658 "runarray.in"
+ real integral;
+ if(dxmax == 0) dxmax=b-a;
+ Func=f;
+ FuncStack=Stack;
+ if(!simpson(integral,wrapFunction,a,b,acc,dxmax))
+ error("nesting capacity exceeded in simpson");
+ {Stack->push<real>(integral); return;}
+}
+
+// Compute the fast Fourier transform of a pair array
+#line 1669 "runarray.in"
+void pairArrayFFT(stack *Stack)
+{
+ Int sign=vm::pop<Int>(Stack,1);
+ pairarray * a=vm::pop<pairarray *>(Stack);
+#line 1670 "runarray.in"
+ unsigned n=(unsigned) checkArray(a);
+#ifdef HAVE_LIBFFTW3
+ array *c=new array(n);
+ if(n) {
+ Complex *f=FFTWComplex(n);
+ fft1d Forward(n,intcast(sign),f);
+
+ for(size_t i=0; i < n; i++) {
+ pair z=read<pair>(a,i);
+ f[i]=Complex(z.getx(),z.gety());
+ }
+ Forward.fft(f);
+
+ for(size_t i=0; i < n; i++) {
+ Complex z=f[i];
+ (*c)[i]=pair(z.real(),z.imag());
+ }
+ FFTWdelete(f);
+ }
+#else
+ unused(&n);
+ unused(&sign);
+ array *c=new array(0);
+#endif // HAVE_LIBFFTW3
+ {Stack->push<pairarray*>(c); return;}
+}
+
+#line 1698 "runarray.in"
+// Intarray2* triangulate(pairarray *z);
+void gen_runarray64(stack *Stack)
+{
+ pairarray * z=vm::pop<pairarray *>(Stack);
+#line 1699 "runarray.in"
+ size_t nv=checkArray(z);
+// Call robust version of Gilles Dumoulin's port of Paul Bourke's
+// triangulation code.
+
+ XYZ *pxyz=new XYZ[nv+3];
+ ITRIANGLE *V=new ITRIANGLE[4*nv];
+
+ for(size_t i=0; i < nv; ++i) {
+ pair w=read<pair>(z,i);
+ pxyz[i].p[0]=w.getx();
+ pxyz[i].p[1]=w.gety();
+ pxyz[i].i=(Int) i;
+ }
+
+ Int ntri;
+ Triangulate((Int) nv,pxyz,V,ntri,true,false);
+
+ size_t nt=(size_t) ntri;
+ array *t=new array(nt);
+ for(size_t i=0; i < nt; ++i) {
+ array *ti=new array(3);
+ (*t)[i]=ti;
+ ITRIANGLE *Vi=V+i;
+ (*ti)[0]=pxyz[Vi->p1].i;
+ (*ti)[1]=pxyz[Vi->p2].i;
+ (*ti)[2]=pxyz[Vi->p3].i;
+ }
+
+ delete[] V;
+ delete[] pxyz;
+ {Stack->push<Intarray2*>(t); return;}
+}
+
+#line 1733 "runarray.in"
+// real norm(realarray *a);
+void gen_runarray65(stack *Stack)
+{
+ realarray * a=vm::pop<realarray *>(Stack);
+#line 1734 "runarray.in"
+ size_t n=checkArray(a);
+ real M=0.0;
+ for(size_t i=0; i < n; ++i) {
+ real x=fabs(vm::read<real>(a,i));
+ if(x > M) M=x;
+ }
+ {Stack->push<real>(M); return;}
+}
+
+#line 1744 "runarray.in"
+// real norm(realarray2 *a);
+void gen_runarray66(stack *Stack)
+{
+ realarray2 * a=vm::pop<realarray2 *>(Stack);
+#line 1745 "runarray.in"
+ size_t n=checkArray(a);
+ real M=0.0;
+ for(size_t i=0; i < n; ++i) {
+ vm::array *ai=vm::read<vm::array*>(a,i);
+ size_t m=checkArray(ai);
+ for(size_t j=0; j < m; ++j) {
+ real a=fabs(vm::read<real>(ai,j));
+ if(a > M) M=a;
+ }
+ }
+ {Stack->push<real>(M); return;}
+}
+
+#line 1759 "runarray.in"
+// real norm(triplearray2 *a);
+void gen_runarray67(stack *Stack)
+{
+ triplearray2 * a=vm::pop<triplearray2 *>(Stack);
+#line 1760 "runarray.in"
+ size_t n=checkArray(a);
+ real M=0.0;
+ for(size_t i=0; i < n; ++i) {
+ vm::array *ai=vm::read<vm::array*>(a,i);
+ size_t m=checkArray(ai);
+ for(size_t j=0; j < m; ++j) {
+ real a=vm::read<triple>(ai,j).abs2();
+ if(a > M) M=a;
+ }
+ }
+ {Stack->push<real>(sqrt(M)); return;}
+}
+
+#line 1774 "runarray.in"
+// real change2(triplearray2 *a);
+void gen_runarray68(stack *Stack)
+{
+ triplearray2 * a=vm::pop<triplearray2 *>(Stack);
+#line 1775 "runarray.in"
+ size_t n=checkArray(a);
+ if(n == 0) {Stack->push<real>(0.0); return;}
+
+ vm::array *a0=vm::read<vm::array*>(a,0);
+ size_t m=checkArray(a0);
+ if(m == 0) {Stack->push<real>(0.0); return;}
+ triple a00=vm::read<triple>(a0,0);
+ real M=0.0;
+
+ for(size_t i=0; i < n; ++i) {
+ vm::array *ai=vm::read<vm::array*>(a,i);
+ size_t m=checkArray(ai);
+ for(size_t j=0; j < m; ++j) {
+ real a=(vm::read<triple>(ai,j)-a00).abs2();
+ if(a > M) M=a;
+ }
+ }
+ {Stack->push<real>(M); return;}
+}
+
+#line 1796 "runarray.in"
+// triple minbezier(triplearray2 *P, triple b);
+void gen_runarray69(stack *Stack)
+{
+ triple b=vm::pop<triple>(Stack);
+ triplearray2 * P=vm::pop<triplearray2 *>(Stack);
+#line 1797 "runarray.in"
+ real *A=copyTripleArray2Components(P,true,4);
+ b=triple(bound(A,::min,b.getx(),sqrtFuzz*norm(A,16)),
+ bound(A+16,::min,b.gety(),sqrtFuzz*norm(A+16,16)),
+ bound(A+32,::min,b.getz(),sqrtFuzz*norm(A+32,16)));
+ delete[] A;
+ {Stack->push<triple>(b); return;}
+}
+
+#line 1806 "runarray.in"
+// triple maxbezier(triplearray2 *P, triple b);
+void gen_runarray70(stack *Stack)
+{
+ triple b=vm::pop<triple>(Stack);
+ triplearray2 * P=vm::pop<triplearray2 *>(Stack);
+#line 1807 "runarray.in"
+ real *A=copyTripleArray2Components(P,true,4);
+ b=triple(bound(A,::max,b.getx(),sqrtFuzz*norm(A,16)),
+ bound(A+16,::max,b.gety(),sqrtFuzz*norm(A+16,16)),
+ bound(A+32,::max,b.getz(),sqrtFuzz*norm(A+32,16)));
+ delete[] A;
+ {Stack->push<triple>(b); return;}
+}
+
+#line 1816 "runarray.in"
+// pair minratio(triplearray2 *P, pair b);
+void gen_runarray71(stack *Stack)
+{
+ pair b=vm::pop<pair>(Stack);
+ triplearray2 * P=vm::pop<triplearray2 *>(Stack);
+#line 1817 "runarray.in"
+ triple *A=copyTripleArray2C(P,true,4);
+ real fuzz=sqrtFuzz*norm(A,16);
+ b=pair(bound(A,::min,xratio,b.getx(),fuzz),
+ bound(A,::min,yratio,b.gety(),fuzz));
+ delete[] A;
+ {Stack->push<pair>(b); return;}
+}
+
+#line 1826 "runarray.in"
+// pair maxratio(triplearray2 *P, pair b);
+void gen_runarray72(stack *Stack)
+{
+ pair b=vm::pop<pair>(Stack);
+ triplearray2 * P=vm::pop<triplearray2 *>(Stack);
+#line 1827 "runarray.in"
+ triple *A=copyTripleArray2C(P,true,4);
+ real fuzz=sqrtFuzz*norm(A,16);
+ b=pair(bound(A,::max,xratio,b.getx(),fuzz),
+ bound(A,::max,yratio,b.gety(),fuzz));
+ delete[] A;
+ {Stack->push<pair>(b); return;}
+}
+
+} // namespace run
+
+namespace trans {
+
+void gen_runarray_venv(venv &ve)
+{
+#line 473 "runarray.in"
+ REGISTER_BLTIN(run::emptyArray,"emptyArray");
+#line 479 "runarray.in"
+ REGISTER_BLTIN(run::newDeepArray,"newDeepArray");
+#line 501 "runarray.in"
+ REGISTER_BLTIN(run::newInitializedArray,"newInitializedArray");
+#line 516 "runarray.in"
+ REGISTER_BLTIN(run::newAppendedArray,"newAppendedArray");
+#line 532 "runarray.in"
+ REGISTER_BLTIN(run::newDuplicateArray,"newDuplicateArray");
+#line 542 "runarray.in"
+ REGISTER_BLTIN(run::arrayRead,"arrayRead");
+#line 554 "runarray.in"
+ REGISTER_BLTIN(run::arraySliceRead,"arraySliceRead");
+#line 561 "runarray.in"
+ REGISTER_BLTIN(run::arraySliceReadToEnd,"arraySliceReadToEnd");
+#line 569 "runarray.in"
+ REGISTER_BLTIN(run::arrayArrayRead,"arrayArrayRead");
+#line 578 "runarray.in"
+ REGISTER_BLTIN(run::arrayWrite,"arrayWrite");
+#line 594 "runarray.in"
+ REGISTER_BLTIN(run::arraySliceWrite,"arraySliceWrite");
+#line 602 "runarray.in"
+ REGISTER_BLTIN(run::arraySliceWriteToEnd,"arraySliceWriteToEnd");
+#line 610 "runarray.in"
+ REGISTER_BLTIN(run::arrayLength,"arrayLength");
+#line 616 "runarray.in"
+ REGISTER_BLTIN(run::arrayKeys,"arrayKeys");
+#line 631 "runarray.in"
+ REGISTER_BLTIN(run::arrayCyclicFlag,"arrayCyclicFlag");
+#line 638 "runarray.in"
+ REGISTER_BLTIN(run::arraySetCyclicFlag,"arraySetCyclicFlag");
+#line 645 "runarray.in"
+ REGISTER_BLTIN(run::arrayInitializedHelper,"arrayInitializedHelper");
+#line 656 "runarray.in"
+ REGISTER_BLTIN(run::arrayInitialized,"arrayInitialized");
+#line 662 "runarray.in"
+ REGISTER_BLTIN(run::arrayCyclicHelper,"arrayCyclicHelper");
+#line 669 "runarray.in"
+ REGISTER_BLTIN(run::arrayCyclic,"arrayCyclic");
+#line 675 "runarray.in"
+ REGISTER_BLTIN(run::arrayPushHelper,"arrayPushHelper");
+#line 683 "runarray.in"
+ REGISTER_BLTIN(run::arrayPush,"arrayPush");
+#line 689 "runarray.in"
+ REGISTER_BLTIN(run::arrayAppendHelper,"arrayAppendHelper");
+#line 698 "runarray.in"
+ REGISTER_BLTIN(run::arrayAppend,"arrayAppend");
+#line 704 "runarray.in"
+ REGISTER_BLTIN(run::arrayPopHelper,"arrayPopHelper");
+#line 713 "runarray.in"
+ REGISTER_BLTIN(run::arrayPop,"arrayPop");
+#line 719 "runarray.in"
+ REGISTER_BLTIN(run::arrayInsertHelper,"arrayInsertHelper");
+#line 730 "runarray.in"
+ REGISTER_BLTIN(run::arrayInsert,"arrayInsert");
+#line 736 "runarray.in"
+ REGISTER_BLTIN(run::arrayDelete,"arrayDelete");
+#line 742 "runarray.in"
+ REGISTER_BLTIN(run::arrayAlias,"arrayAlias");
+#line 747 "runarray.in"
+ REGISTER_BLTIN(run::arrayIntArray,"arrayIntArray");
+#line 765 "runarray.in"
+ addFunc(ve, run::gen_runarray31, IntArray(), "complement", formal(IntArray(), "a", false, false), formal(primInt(), "n", false, false));
+#line 784 "runarray.in"
+ REGISTER_BLTIN(run::arraySequence,"arraySequence");
+#line 797 "runarray.in"
+ addFunc(ve, run::gen_runarray33, IntArray(), "sequence", formal(primInt(), "n", false, false));
+#line 808 "runarray.in"
+ REGISTER_BLTIN(run::arrayFunction,"arrayFunction");
+#line 821 "runarray.in"
+ REGISTER_BLTIN(run::arraySort,"arraySort");
+#line 830 "runarray.in"
+ addFunc(ve, run::gen_runarray36, primBoolean(), "all", formal(booleanArray(), "a", false, false));
+#line 839 "runarray.in"
+ addFunc(ve, run::gen_runarray37, booleanArray(), "!", formal(booleanArray(), "a", false, false));
+#line 848 "runarray.in"
+ addFunc(ve, run::gen_runarray38, primInt(), "sum", formal(booleanArray(), "a", false, false));
+#line 857 "runarray.in"
+ REGISTER_BLTIN(run::arrayCopy,"arrayCopy");
+#line 862 "runarray.in"
+ REGISTER_BLTIN(run::arrayConcat,"arrayConcat");
+#line 890 "runarray.in"
+ REGISTER_BLTIN(run::array2Copy,"array2Copy");
+#line 895 "runarray.in"
+ REGISTER_BLTIN(run::array3Copy,"array3Copy");
+#line 900 "runarray.in"
+ REGISTER_BLTIN(run::array2Transpose,"array2Transpose");
+#line 924 "runarray.in"
+ REGISTER_BLTIN(run::array3Transpose,"array3Transpose");
+#line 1011 "runarray.in"
+ addFunc(ve, run::gen_runarray45, primInt(), "find", formal(booleanArray(), "a", false, false), formal(primInt(), "n", true, false));
+#line 1030 "runarray.in"
+ REGISTER_BLTIN(run::arrayConditional,"arrayConditional");
+#line 1056 "runarray.in"
+ addFunc(ve, run::gen_runarray47, realArray2(), "identity", formal(primInt(), "n", false, false));
+#line 1062 "runarray.in"
+ REGISTER_BLTIN(run::diagonal,"diagonal");
+#line 1079 "runarray.in"
+ addFunc(ve, run::gen_runarray49, realArray2(), "inverse", formal(realArray2(), "a", false, false));
+#line 1171 "runarray.in"
+ addFunc(ve, run::gen_runarray50, realArray(), "solve", formal(realArray2(), "a", false, false), formal(realArray(), "b", false, false), formal(primBoolean(), "warn", true, false));
+#line 1222 "runarray.in"
+ addFunc(ve, run::gen_runarray51, realArray2(), "solve", formal(realArray2(), "a", false, false), formal(realArray2(), "b", false, false), formal(primBoolean(), "warn", true, false));
+#line 1286 "runarray.in"
+ addFunc(ve, run::gen_runarray52, primReal(), "determinant", formal(realArray2(), "a", false, false));
+#line 1302 "runarray.in"
+ addFunc(ve, run::gen_runarray53, realArray(), "*", formal(realArray2(), "a", false, false), formal(realArray(), "b", false, false));
+#line 1320 "runarray.in"
+ addFunc(ve, run::gen_runarray54, realArray(), "*", formal(realArray(), "a", false, false), formal(realArray2(), "b", false, false));
+#line 1348 "runarray.in"
+ addFunc(ve, run::gen_runarray55, realArray2(), "*", formal(realArray2(), "a", false, false), formal(realArray2(), "b", false, false));
+#line 1383 "runarray.in"
+ addFunc(ve, run::gen_runarray56, primTriple(), "*", formal(realArray2(), "t", false, false), formal(primTriple(), "v", false, false));
+#line 1388 "runarray.in"
+ addFunc(ve, run::gen_runarray57, primPair(), "project", formal(primTriple(), "v", false, false), formal(realArray2(), "t", false, false));
+#line 1413 "runarray.in"
+ addFunc(ve, run::gen_runarray58, primReal(), "dot", formal(realArray(), "a", false, false), formal(realArray(), "b", false, false));
+#line 1423 "runarray.in"
+ addFunc(ve, run::gen_runarray59, realArray(), "tridiagonal", formal(realArray(), "a", false, false), formal(realArray(), "b", false, false), formal(realArray(), "c", false, false), formal(realArray(), "f", false, false));
+#line 1527 "runarray.in"
+ addFunc(ve, run::gen_runarray60, primReal(), "newton", formal(primInt(), "iterations", true, false), formal(realRealFunction(), "f", false, false), formal(realRealFunction(), "fprime", false, false), formal(primReal(), "x", false, false), formal(primBoolean(), "verbose", true, false));
+#line 1574 "runarray.in"
+ addFunc(ve, run::gen_runarray61, primReal(), "newton", formal(primInt(), "iterations", true, false), formal(realRealFunction(), "f", false, false), formal(realRealFunction(), "fprime", false, false), formal(primReal(), "x1", false, false), formal(primReal(), "x2", false, false), formal(primBoolean(), "verbose", true, false));
+#line 1656 "runarray.in"
+ addFunc(ve, run::gen_runarray62, primReal(), "simpson", formal(realRealFunction(), "f", false, false), formal(primReal(), "a", false, false), formal(primReal(), "b", false, false), formal(primReal(), "acc", true, false), formal(primReal(), "dxmax", true, false));
+#line 1668 "runarray.in"
+ REGISTER_BLTIN(run::pairArrayFFT,"pairArrayFFT");
+#line 1698 "runarray.in"
+ addFunc(ve, run::gen_runarray64, IntArray2(), "triangulate", formal(pairArray(), "z", false, false));
+#line 1733 "runarray.in"
+ addFunc(ve, run::gen_runarray65, primReal(), "norm", formal(realArray(), "a", false, false));
+#line 1744 "runarray.in"
+ addFunc(ve, run::gen_runarray66, primReal(), "norm", formal(realArray2(), "a", false, false));
+#line 1759 "runarray.in"
+ addFunc(ve, run::gen_runarray67, primReal(), "norm", formal(tripleArray2(), "a", false, false));
+#line 1774 "runarray.in"
+ addFunc(ve, run::gen_runarray68, primReal(), "change2", formal(tripleArray2(), "a", false, false));
+#line 1796 "runarray.in"
+ addFunc(ve, run::gen_runarray69, primTriple(), "minbezier", formal(tripleArray2(), "p", false, false), formal(primTriple(), "b", false, false));
+#line 1806 "runarray.in"
+ addFunc(ve, run::gen_runarray70, primTriple(), "maxbezier", formal(tripleArray2(), "p", false, false), formal(primTriple(), "b", false, false));
+#line 1816 "runarray.in"
+ addFunc(ve, run::gen_runarray71, primPair(), "minratio", formal(tripleArray2(), "p", false, false), formal(primPair(), "b", false, false));
+#line 1826 "runarray.in"
+ addFunc(ve, run::gen_runarray72, primPair(), "maxratio", formal(tripleArray2(), "p", false, false), formal(primPair(), "b", false, false));
+}
+
+} // namespace trans