summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/knot.cc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2009-05-16 00:19:13 +0000
committerKarl Berry <karl@freefriends.org>2009-05-16 00:19:13 +0000
commitbab45528d65eaafe68a705dbb2a57075c7b7cbd8 (patch)
tree10b4ae2b5195c8dede153ab89359ec00f55f325f /Build/source/utils/asymptote/knot.cc
parent8643d90372e9c31e0f461c15c596b60a545bd7d3 (diff)
asymptote 1.72 sources (not integrated into build yet)
git-svn-id: svn://tug.org/texlive/trunk@13110 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/utils/asymptote/knot.cc')
-rw-r--r--Build/source/utils/asymptote/knot.cc840
1 files changed, 840 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/knot.cc b/Build/source/utils/asymptote/knot.cc
new file mode 100644
index 00000000000..0180c4c6b2d
--- /dev/null
+++ b/Build/source/utils/asymptote/knot.cc
@@ -0,0 +1,840 @@
+/*****
+ * knot.cc
+ * Andy Hammerlindl 2005/02/10
+ *
+ * Describes a knot, a point and its neighbouring specifiers, used as an
+ * intermediate structure in solving paths.
+ *****/
+
+#include "knot.h"
+#include "util.h"
+
+#include "angle.h"
+#include "settings.h"
+
+namespace camp {
+
+/***** Debugging *****/
+//bool tracing_solving=false;
+
+template <typename T>
+ostream& info(ostream& o, string name, cvector<T>& v)
+{
+ if (settings::verbose > 3) {
+ o << name << ":\n\n";
+
+ for(Int i=0; i < (Int) v.size(); ++i)
+ o << v[i] << endl;
+
+ o << endl;
+ }
+ return o;
+}
+
+ostream& info(ostream& o, string name, knotlist& l)
+{
+ if (settings::verbose > 3) {
+ o << name << ":\n\n";
+
+ for(Int i=0; i < (Int) l.size(); ++i)
+ o << l[i] << endl;
+
+ if (l.cyclic())
+ o << "cyclic" << endl;
+
+ o << endl;
+ }
+ return o;
+}
+
+#define INFO(x) info(cerr,#x,x)
+
+/***** Auxillary computation functions *****/
+
+// Computes the relative distance of a control point given the angles.
+// The name is somewhat misleading as the velocity (with respect to the
+// variable that parameterizes the path) is relative to the distance
+// between the knots and even then, is actually three times this.
+// The routine is based on the velocity function in Section 131 of the MetaPost
+// code, but differs in that it automatically accounts for the tension and
+// bounding with tension atleast.
+double velocity(double theta, double phi, tension t)
+{
+ static const double VELOCITY_BOUND = 4.0;
+ static const double a = sqrt(2.0);
+ static const double b = 1.0/16.0;
+ static const double c = 1.5*(sqrt(5.0)-1.0);
+ static const double d = 1.5*(3.0-sqrt(5.0));
+
+ double st = sin(theta), ct = cos(theta),
+ sf = sin(phi), cf = cos(phi);
+
+ double denom = t.val * (3.0 + c*ct + d*cf);
+
+ double r = denom != 0.0 ? (2.0 + a*(st - b*sf)*(sf - b*st)*(ct-cf)) / denom
+ : VELOCITY_BOUND;
+
+ //cerr << " velocity(" << theta << "," << phi <<")= " << r << endl;
+ if (r > VELOCITY_BOUND)
+ r = VELOCITY_BOUND;
+
+ // Apply boundedness condition for tension atleast cases.
+ if (t.atleast)
+ {
+ double sine = sin(theta + phi);
+ if ((st >= 0.0 && sf >= 0.0 && sine > 0.0) ||
+ (st <= 0.0 && sf <= 0.0 && sine < 0.0))
+ {
+ double rmax = sf / sine;
+ if (r > rmax)
+ r = rmax;
+ }
+ }
+
+ return r;
+}
+
+double niceAngle(pair z)
+{
+ return z.gety() == 0 ? z.getx() >= 0 ? 0 : PI
+ : angle(z);
+}
+
+// Ensures an angle is in the range between -PI and PI.
+double reduceAngle(double angle)
+{
+ return angle > PI ? angle - 2.0*PI :
+ angle < -PI ? angle + 2.0*PI :
+ angle;
+}
+
+
+bool interesting(tension t)
+{
+ return t.val!=1.0 || t.atleast==true;
+}
+
+bool interesting(spec *s)
+{
+ return !s->open();
+}
+
+ostream& operator<<(ostream& out, const knot& k)
+{
+ if (interesting(k.tin))
+ out << k.tin << " ";
+ if (interesting(k.in))
+ out << *k.in << " ";
+ out << k.z;
+ if (interesting(k.out))
+ out << " " << *k.out;
+ if (interesting(k.tout))
+ out << " " << k.tout;
+ return out;
+}
+
+
+eqn dirSpec::eqnOut(Int j, knotlist& l, cvector<double>&, cvector<double>&)
+{
+ // When choosing the control points, the path will come out the first knot
+ // going straight to the next knot rotated by the angle theta.
+ // Therefore, the angle theta we want is the difference between the
+ // specified heading given and the heading to the next knot.
+ double theta=reduceAngle(given-niceAngle(l[j+1].z-l[j].z));
+
+ // Give a simple linear equation to ensure this theta is picked.
+ return eqn(0.0,1.0,0.0,theta);
+}
+
+eqn dirSpec::eqnIn(Int j, knotlist& l, cvector<double>&, cvector<double>&)
+{
+ double theta=reduceAngle(given-niceAngle(l[j].z-l[j-1].z));
+ return eqn(0.0,1.0,0.0,theta);
+}
+
+eqn curlSpec::eqnOut(Int j, knotlist& l, cvector<double>&,
+ cvector<double>& psi)
+{
+ double alpha=l[j].alpha();
+ double beta=l[j+1].beta();
+
+ double chi=alpha*alpha*gamma/(beta*beta);
+
+ double C=alpha*chi+3-beta;
+ double D=(3.0-alpha)*chi+beta;
+
+ return eqn(0.0,C,D,-D*psi[j+1]);
+}
+
+eqn curlSpec::eqnIn(Int j, knotlist& l, cvector<double>&, cvector<double>&)
+{
+ double alpha=l[j-1].alpha();
+ double beta=l[j].beta();
+
+ double chi=beta*beta*gamma/(alpha*alpha);
+
+ double A=(3-beta)*chi+alpha;
+ double B=beta*chi+3-alpha;
+
+ return eqn(A,B,0.0,0.0);
+}
+
+spec *controlSpec::outPartner(pair z)
+{
+ static curlSpec curl;
+ return cz==z ? (spec *)&curl : (spec *)new dirSpec(z-cz);
+}
+
+spec *controlSpec::inPartner(pair z)
+{
+ static curlSpec curl;
+ return cz==z ? (spec *)&curl : (spec *)new dirSpec(cz-z);
+}
+
+// Compute the displacement between points. The j-th result is the distance
+// between knot j and knot j+1.
+struct dzprop : public knotprop<pair> {
+ dzprop(knotlist& l)
+ : knotprop<pair>(l) {}
+
+ pair solo(Int) { return pair(0,0); }
+ pair start(Int j) { return l[j+1].z - l[j].z; }
+ pair mid(Int j) { return l[j+1].z - l[j].z; }
+ pair end(Int) { return pair(0,0); }
+};
+
+// Compute the distance between points, using the already computed dz. This
+// doesn't use the infomation in the knots, but the knotprop class is useful as
+// it takes care of the iteration for us.
+struct dprop : public knotprop<double> {
+ cvector<pair>& dz;
+
+ dprop(knotlist &l, cvector<pair>& dz)
+ : knotprop<double>(l), dz(dz) {}
+
+ double solo(Int j) { return length(dz[j]); }
+ double start(Int j) { return length(dz[j]); }
+ double mid(Int j) { return length(dz[j]); }
+ double end(Int j) { return length(dz[j]); }
+};
+
+// Compute the turning angles (psi) between points, using the already computed
+// dz.
+struct psiprop : public knotprop<double> {
+ cvector<pair>& dz;
+
+ psiprop(knotlist &l, cvector<pair>& dz)
+ : knotprop<double>(l), dz(dz) {}
+
+ double solo(Int) { return 0; }
+
+ // We set the starting and ending psi to zero.
+ double start(Int) { return 0; }
+ double end(Int) { return 0; }
+
+ double mid(Int j) { return niceAngle(dz[j]/dz[j-1]); }
+};
+
+struct eqnprop : public knotprop<eqn> {
+ cvector<double>& d;
+ cvector<double>& psi;
+
+ eqnprop(knotlist &l, cvector<double>& d, cvector<double>& psi)
+ : knotprop<eqn>(l), d(d), psi(psi) {}
+
+ eqn solo(Int) {
+ assert(False);
+ return eqn(0.0,1.0,0.0,0.0);
+ }
+
+ eqn start(Int j) {
+ // Defer to the specifier, as it knows the specifics.
+ return dynamic_cast<endSpec *>(l[j].out)->eqnOut(j,l,d,psi);
+ }
+
+ eqn end(Int j) {
+ return dynamic_cast<endSpec *>(l[j].in)->eqnIn(j,l,d,psi);
+ }
+
+ eqn mid(Int j) {
+ double lastAlpha = l[j-1].alpha();
+ double thisAlpha = l[j].alpha();
+ double thisBeta = l[j].beta();
+ double nextBeta = l[j+1].beta();
+
+ // Values based on the linear approximation of the curvature coming
+ // into the knot with respect to theta[j-1] and theta[j].
+ double inFactor = 1.0/(thisBeta*thisBeta*d[j-1]);
+ double A = lastAlpha*inFactor;
+ double B = (3.0 - lastAlpha)*inFactor;
+
+ // Values based on the linear approximation of the curvature going out of
+ // the knot with respect to theta[j] and theta[j+1].
+ double outFactor = 1.0/(thisAlpha*thisAlpha*d[j]);
+ double C = (3.0 - nextBeta)*outFactor;
+ double D = nextBeta*outFactor;
+
+ return eqn(A,B+C,D,-B*psi[j]-D*psi[j+1]);
+ }
+};
+
+// If the system of equations is homogeneous (ie. we are solving for x in
+// Ax=0), there is no need to solve for theta; we can just use zeros for the
+// thetas. In fact, our general solving method may not work in this case.
+// A common example of this is
+//
+// a{curl 1}..{curl 1}b
+//
+// which arises when solving a one-length path a..b or in a larger path a
+// section a--b.
+bool homogeneous(cvector<eqn>& e)
+{
+ for(cvector<eqn>::iterator p=e.begin(); p!=e.end(); ++p)
+ if (p->aug != 0)
+ return false;
+ return true;
+}
+
+// Checks whether the equation being solved will be solved as a straight
+// path from the first point to the second.
+bool straightSection(cvector<eqn>& e)
+{
+ return e.size()==2 && e.front().aug==0 && e.back().aug==0;
+}
+
+struct weqn : public eqn {
+ double w;
+ weqn(double pre, double piv, double post, double aug, double w=0)
+ : eqn(pre,piv,post,aug), w(w) {}
+
+ friend ostream& operator<< (ostream& out, const weqn we)
+ {
+ return out << (eqn &)we << " + " << we.w << " * theta[0]";
+ }
+};
+
+weqn scale(weqn q) {
+ assert(q.pre == 0 && q.piv != 0);
+ return weqn(0,1,q.post/q.piv,q.aug/q.piv,q.w/q.piv);
+}
+
+/* Recalculate the equations in the form:
+ * theta[j] + post * theta[j+1] = aug + w * theta[0]
+ *
+ * Used as the first step in solve cyclic equations.
+ */
+cvector<weqn> recalc(cvector<eqn>& e)
+{
+ Int n=(Int) e.size();
+ cvector<weqn> we;
+ weqn lasteqn(0,1,0,0,1);
+ we.push_back(lasteqn); // As a placeholder.
+ for (Int j=1; j < n; j++) {
+ // Subtract a factor of the last equation so that the first entry is
+ // zero, then procede to scale it.
+ eqn& q=e[j];
+ lasteqn=scale(weqn(0,q.piv-q.pre*lasteqn.post,q.post,
+ q.aug-q.pre*lasteqn.aug,-q.pre*lasteqn.w));
+ we.push_back(lasteqn);
+ }
+ // To keep all of the infomation enocoded in the linear equations, we need
+ // to augment the computation to replace our trivial start weqn with a
+ // real one. To do this, we take one more step in the iteration and
+ // compute the weqn for j=n, since n=0 (mod n).
+ {
+ eqn& q=e[0];
+ we.front()=scale(weqn(0,q.piv-q.pre*lasteqn.post,q.post,
+ q.aug-q.pre*lasteqn.aug,-q.pre*lasteqn.w));
+ }
+ return we;
+}
+
+double solveForTheta0(cvector<weqn>& we)
+{
+ // Solve for theta[0]=theta[n].
+ // How we do this is essentially to write out the first equation as:
+ //
+ // theta[n] = aug[0] + w[0]*theta[0] - post[0]*theta[1]
+ //
+ // and then use the next equation to substitute in for theta[1]:
+ //
+ // theta[1] = aug[1] + w[1]*theta[0] - post[1]*theta[2]
+ //
+ // and so on until we have an equation just in terms of theta[0] and
+ // theta[n] (which are the same theta).
+ //
+ // The loop invariant maintained is that after j iterations, we have
+ // theta[n]= a + b*theta[0] + c*theta[j]
+ Int n=(Int) we.size();
+ double a=0,b=0,c=1;
+ for (Int j=0;j<n;++j) {
+ weqn& q=we[j];
+ a+=c*q.aug;
+ b+=c*q.w;
+ c=-c*q.post;
+ }
+
+ // After the iteration we have
+ //
+ // theta[n] = a + b*theta[0] + c*theta[n]
+ //
+ // where theta[n]=theta[0], so
+ return a/(1.0-(b+c));
+}
+
+cvector<double> backsubCyclic(cvector<weqn>& we, double theta0)
+{
+ Int n=(Int) we.size();
+ cvector<double> thetas;
+ double lastTheta=theta0;
+ for (Int j=1;j<=n;++j)
+ {
+ weqn& q=we[n-j];
+ assert(q.pre == 0 && q.piv == 1);
+ double theta=-q.post*lastTheta+q.aug+q.w*theta0;
+ thetas.push_back(theta);
+ lastTheta=theta;
+ }
+ reverse(thetas.begin(),thetas.end());
+ return thetas;
+}
+
+// For the non-cyclic equations, do row operation to put the matrix into
+// reduced echelon form, ie. calculates equivalent equations but with pre=0 and
+// piv=1 for each eqn.
+struct ref : public knotprop<eqn> {
+ cvector<eqn>& e;
+ eqn lasteqn;
+
+ ref(knotlist& l, cvector<eqn>& e)
+ : knotprop<eqn>(l), e(e), lasteqn(0,1,0,0) {}
+
+ // Scale the equation so that the pivot (diagonal) entry is one, and save
+ // the new equation as lasteqn.
+ eqn scale(eqn q) {
+ assert(q.pre == 0 && q.piv != 0);
+ return lasteqn = eqn(0,1,q.post/q.piv,q.aug/q.piv);
+ }
+
+ eqn start(Int j) {
+ return scale(e[j]);
+ }
+ eqn mid(Int j) {
+ // Subtract a factor of the last equation so that the first entry is
+ // zero, then procede to scale it.
+ eqn& q=e[j];
+ return scale(eqn(0,q.piv-q.pre*lasteqn.post,q.post,
+ q.aug-q.pre*lasteqn.aug));
+ }
+ // The end case is the same as the middle case.
+};
+
+// Once the matrix is in reduced echelon form, we can solve for the values by
+// back-substitution. This algorithm works from the bottom-up, so backCompute
+// must be used to get the answer.
+struct backsub : public knotprop<double> {
+ cvector<eqn>& e;
+ double lastTheta;
+
+ backsub(knotlist& l, cvector<eqn>& e)
+ : knotprop<double>(l), e(e) {}
+
+ double end(Int j) {
+ eqn& q=e[j];
+ assert(q.pre == 0 && q.piv == 1 && q.post == 0);
+ double theta=q.aug;
+ lastTheta=theta;
+ return theta;
+ }
+
+ double mid(Int j) {
+ eqn& q=e[j];
+ assert(q.pre == 0 && q.piv == 1);
+ double theta=-q.post*lastTheta+q.aug;
+ lastTheta=theta;
+ return theta;
+ }
+
+ // start is the same as mid.
+};
+
+// Once the equations have been determined, solve for the thetas.
+cvector<double> solveThetas(knotlist& l, cvector<eqn>& e)
+{
+ if (homogeneous(e))
+ // We are solving Ax=0, so a solution is zero for every theta.
+ return cvector<double>(e.size(),0);
+ else if (l.cyclic()) {
+ // The knotprop template is unusually unhelpful in this case, so I
+ // won't use it here. The algorithm breaks into three passes on the
+ // object. The old Asymptote code used a two-pass method, but I
+ // implemented this to stay closer to the MetaPost source code.
+ // This might be something to look at for optimization.
+ cvector<weqn> we=recalc(e);
+ INFO(we);
+ double theta0=solveForTheta0(we);
+ return backsubCyclic(we, theta0);
+ }
+ else { /* Non-cyclic case. */
+ /* First do row operations to get it into reduced echelon form. */
+ cvector<eqn> el=ref(l,e).compute();
+
+ /* Then, do back substitution. */
+ return backsub(l,el).backCompute();
+ }
+}
+
+// Once thetas have been solved, determine the first control point of every
+// join.
+struct postcontrolprop : public knotprop<pair> {
+ cvector<pair>& dz;
+ cvector<double>& psi;
+ cvector<double>& theta;
+
+ postcontrolprop(knotlist& l, cvector<pair>& dz,
+ cvector<double>& psi, cvector<double>& theta)
+ : knotprop<pair>(l), dz(dz), psi(psi), theta(theta) {}
+
+ double phi(Int j) {
+ /* The third angle: psi + theta + phi = 0 */
+ return -psi[j] - theta[j];
+ }
+
+ double vel(Int j) {
+ /* Use the standard velocity function. */
+ return velocity(theta[j],phi(j+1),l[j].tout);
+ }
+
+ // start is the same as mid.
+
+ pair mid(Int j) {
+ // Put a control point at the relative distance determined by the velocity,
+ // and at an angle determined by theta.
+ return l[j].z + vel(j)*expi(theta[j])*dz[j];
+ }
+
+ // The end postcontrol is the same as the last knot.
+ pair end(Int j) {
+ return l[j].z;
+ }
+};
+
+// Determine the first control point of every join.
+struct precontrolprop : public knotprop<pair> {
+ cvector<pair>& dz;
+ cvector<double>& psi;
+ cvector<double>& theta;
+
+ precontrolprop(knotlist& l, cvector<pair>& dz,
+ cvector<double>& psi, cvector<double>& theta)
+ : knotprop<pair>(l), dz(dz), psi(psi), theta(theta) {}
+
+ double phi(Int j) {
+ return -psi[j] - theta[j];
+ }
+
+ double vel(Int j) {
+ return velocity(phi(j),theta[j-1],l[j].tin);
+ }
+
+ // The start precontrol is the same as the first knot.
+ pair start(Int j) {
+ return l[j].z;
+ }
+ pair mid(Int j) {
+ return l[j].z - vel(j)*expi(-phi(j))*dz[j-1];
+ }
+
+ // end is the same as mid.
+};
+
+// Puts solved controls into a protopath starting at the given index.
+// By convention, the first knot is not coded, as it is assumed to be coded by
+// the previous section (or it is the first breakpoint and encoded as a special
+// case).
+struct encodeControls : public knoteffect {
+ protopath& p;
+ Int k;
+ cvector<pair>& pre;
+ cvector<pair>& post;
+
+ encodeControls(protopath& p, Int k,
+ cvector<pair>& pre, knotlist& l, cvector<pair>& post)
+ : knoteffect(l), p(p), k(k), pre(pre), post(post) {}
+
+ void encodePre(Int j) {
+ p.pre(k+j)=pre[j];
+ }
+ void encodePoint(Int j) {
+ p.point(k+j)=l[j].z;
+ }
+ void encodePost(Int j) {
+ p.post(k+j)=post[j];
+ }
+
+ void solo(Int) {
+#if 0
+ encodePoint(j);
+#endif
+ }
+ void start(Int j) {
+#if 0
+ encodePoint(j);
+#endif
+ encodePost(j);
+ }
+ void mid(Int j) {
+ encodePre(j);
+ encodePoint(j);
+ encodePost(j);
+ }
+ void end(Int j) {
+ encodePre(j);
+ encodePoint(j);
+ }
+};
+
+void encodeStraight(protopath& p, Int k, knotlist& l)
+{
+ pair a=l.front().z;
+ double at=l.front().tout.val;
+ pair b=l.back().z;
+ double bt=l.back().tin.val;
+ pair step=(b-a)/3.0;
+
+ if (at==1.0 && bt==1.0) {
+ p.straight(k)=true;
+ p.post(k)=a+step;
+ p.pre(k+1)=b-step;
+ p.point(k+1)=b;
+ }
+ else {
+ p.post(k)=a+step/at;
+ p.pre(k+1)=b-step/bt;
+ p.point(k+1)=b;
+ }
+}
+
+void solveSection(protopath& p, Int k, knotlist& l)
+{
+ if (l.length()>0) {
+ info(cerr, "solving section", l);
+
+ // Calculate useful properties.
+ cvector<pair> dz = dzprop(l) .compute();
+ cvector<double> d = dprop(l,dz).compute();
+ cvector<double> psi = psiprop(l,dz).compute();
+
+ INFO(dz); INFO(d); INFO(psi);
+
+ // Build and solve the linear equations for theta.
+ cvector<eqn> e = eqnprop(l,d,psi).compute();
+ INFO(e);
+
+ if (straightSection(e))
+ // Handle straight section as special case.
+ encodeStraight(p,k,l);
+ else {
+ cvector<double> theta = solveThetas(l,e);
+ INFO(theta);
+
+ // Calculate the control points.
+ cvector<pair> post = postcontrolprop(l,dz,psi,theta).compute();
+ cvector<pair> pre = precontrolprop(l,dz,psi,theta).compute();
+
+ // Encode the results into the protopath.
+ encodeControls(p,k,pre,l,post).exec();
+ }
+ }
+}
+
+// Find the first breakpoint in the knotlist, ie. where we can start solving a
+// non-cyclic section. If the knotlist is fully cyclic, then this returns
+// NOBREAK.
+// This must be called with a knot that has all of its implicit specifiers in
+// place.
+const Int NOBREAK=-1;
+Int firstBreakpoint(knotlist& l)
+{
+ for (Int j=0;j<l.size();++j)
+ if (!l[j].out->open())
+ return j;
+ return NOBREAK;
+}
+
+// Once a breakpoint, a, is found, find where the next breakpoint after it is.
+// This must be called with a knot that has all of its implicit specifiers in
+// place, so that breakpoint can be identified by either an in or out specifier
+// that is not open.
+Int nextBreakpoint(knotlist& l, Int a)
+{
+ // This is guaranteed to terminate if a is the index of a breakpoint. If the
+ // path is non-cyclic it will stop at or before the last knot which must be a
+ // breakpoint. If the path is cyclic, it will stop at or before looping back
+ // around to a which is a breakpoint.
+ Int j=a+1;
+ while (l[j].in->open())
+ ++j;
+ return j;
+}
+
+// Write out the controls for section of the form
+// a.. control b and c ..d
+void writeControls(protopath& p, Int a, knotlist& l)
+{
+ // By convention, the first point will already be encoded.
+ p.straight(a)=dynamic_cast<controlSpec *>(l[a].out)->straight;
+ p.post(a)=dynamic_cast<controlSpec *>(l[a].out)->cz;
+ p.pre(a+1)=dynamic_cast<controlSpec *>(l[a+1].in)->cz;
+ p.point(a+1)=l[a+1].z;
+}
+
+// Solves a path that has all of its specifiers laid out explicitly.
+path solveSpecified(knotlist& l)
+{
+ protopath p(l.size(),l.cyclic());
+
+ Int first=firstBreakpoint(l);
+ if (first==NOBREAK)
+ /* We are solving a fully cyclic path, so do it in one swoop. */
+ solveSection(p,0,l);
+ else {
+ // Encode the first point.
+ p.point(first)=l[first].z;
+
+ // If the path is cyclic, we should stop where we started (modulo the
+ // length of the path); otherwise, just stop at the end.
+ Int last=l.cyclic() ? first+l.length()
+ : l.length();
+ Int a=first;
+ while (a!=last) {
+ if (l[a].out->controlled()) {
+ assert(l[a+1].in->controlled());
+
+ // Controls are already picked, just write them out.
+ writeControls(p,a,l);
+ ++a;
+ }
+ else {
+ // Find the section a to b and solve it, putting the result (starting
+ // from index a into our protopath.
+ Int b=nextBreakpoint(l,a);
+ subknotlist section(l,a,b);
+ solveSection(p,a,section);
+ a=b;
+ }
+ }
+
+ // For a non-cyclic path, the end control points need to be set.
+ p.controlEnds();
+ }
+
+ return p.fix();
+}
+
+/* If a knot is open on one side and restricted on the other, this replaces the
+ * open side with a restriction determined by the restriction on the other
+ * side. After this, any knot will either have two open specs or two
+ * restrictions.
+ */
+struct partnerUp : public knoteffect {
+ partnerUp(knotlist& l)
+ : knoteffect(l) {}
+
+ void mid(Int j) {
+ knot& k=l[j];
+ if (k.in->open() && !k.out->open())
+ k.in=k.out->inPartner(k.z);
+ else if (!k.in->open() && k.out->open())
+ k.out=k.in->outPartner(k.z);
+ }
+};
+
+/* Ensures a non-cyclic path has direction specifiers at the ends, adding curls
+ * if there are none.
+ */
+void curlEnds(knotlist& l)
+{
+ static curlSpec endSpec;
+
+ if (!l.cyclic()) {
+ if (l.front().in->open())
+ l.front().in=&endSpec;
+ if (l.back().out->open())
+ l.back().out=&endSpec;
+ }
+}
+
+/* If a point occurs twice in a row in a knotlist, write in controls
+ * between the two knots at that point (unless it already has controls).
+ */
+struct controlDuplicates : public knoteffect {
+ controlDuplicates(knotlist& l)
+ : knoteffect(l) {}
+
+ void solo(Int) { /* One point ==> no duplicates */ }
+ // start is the same as mid.
+ void mid(Int j) {
+ knot &k1=l[j];
+ knot &k2=l[j+1];
+ if (!k1.out->controlled() && k1.z==k2.z) {
+ k1.out=k2.in=new controlSpec(k1.z,true);
+ }
+ }
+ void end(Int) { /* No next point to compare with. */ }
+};
+
+path solve(knotlist& l)
+{
+ if (l.empty())
+ return path();
+ else {
+ info(cerr, "input knotlist", l);
+ curlEnds(l);
+ controlDuplicates(l).exec();
+ partnerUp(l).exec();
+ info(cerr, "specified knotlist", l);
+ return solveSpecified(l);
+ }
+}
+
+// Code for Testing
+#if 0
+path solveSimple(cvector<pair>& z)
+{
+ // The two specifiers used: an open spec and a curl spec for the ends.
+ spec open;
+
+// curlSpec curl;
+// curlSpec curly(2.0);
+// dirSpec E(0);
+// dirSpec N(PI/2.0);
+
+ controlSpec here(pair(150,150));
+
+ // Encode the knots as open in the knotlist.
+ cvector<knot> nodes;
+ for (cvector<pair>::iterator p=z.begin(); p!=z.end(); ++p) {
+ knot k;
+ k.z=*p;
+ k.in=k.out=&open;
+
+ nodes.push_back(k);
+ }
+
+ // Substitute in a curl spec for the ends.
+ //nodes.front().out=nodes.back().in=&curl;
+
+ // Test direction specifiers.
+ //nodes.front().tout=2;
+ //nodes.front().out=nodes.back().in=&curly;
+
+ //nodes[0].out=nodes[0].in=&E;
+ nodes[1].out=nodes[2].in=&here;
+
+ simpleknotlist l(nodes,false);
+ return solve(l);
+}
+#endif
+
+} // namespace camp