summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/mp.web
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-01-17 21:41:51 +0000
committerKarl Berry <karl@freefriends.org>2006-01-17 21:41:51 +0000
commit487ca4806cc046076293cf6cc5fbba0db282bac7 (patch)
tree847b412ab5158dd7bdd7ed7e5a4cc3fbca94be32 /Build/source/texk/web2c/mp.web
parenta3d3111bfe26b8e5f5bc6049dfb2a4ca2edc7881 (diff)
texk 1
git-svn-id: svn://tug.org/texlive/trunk@1485 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/texk/web2c/mp.web')
-rw-r--r--Build/source/texk/web2c/mp.web23247
1 files changed, 23247 insertions, 0 deletions
diff --git a/Build/source/texk/web2c/mp.web b/Build/source/texk/web2c/mp.web
new file mode 100644
index 00000000000..93481bc1598
--- /dev/null
+++ b/Build/source/texk/web2c/mp.web
@@ -0,0 +1,23247 @@
+% $Id: mp.web,v 1.5 2005/06/22 17:06:28 olaf Exp $
+% MetaPost, by John Hobby. Public domain.
+
+% Much of this program was copied with permission from MF.web Version 1.9
+% It interprets a language very similar to D.E. Knuth's METAFONT, but with
+% changes designed to make it more suitable for PostScript output.
+
+% TeX is a trademark of the American Mathematical Society.
+% METAFONT is a trademark of Addison-Wesley Publishing Company.
+% PostScript is a trademark of Adobe Systems Incorporated.
+
+% Here is TeX material that gets inserted after \input webmac
+\def\hang{\hangindent 3em\noindent\ignorespaces}
+\def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
+\def\PASCAL{Pascal}
+\def\ps{PostScript}
+\def\ph{\hbox{Pascal-H}}
+\def\psqrt#1{\sqrt{\mathstrut#1}}
+\def\k{_{k+1}}
+\def\pct!{{\char`\%}} % percent sign in ordinary text
+\font\tenlogo=logo10 % font used for the METAFONT logo
+\font\logos=logosl10
+\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
+\def\MP{{\tenlogo META}\-{\tenlogo POST}}
+\def\<#1>{$\langle#1\rangle$}
+\def\section{\mathhexbox278}
+\let\swap=\leftrightarrow
+\def\round{\mathop{\rm round}\nolimits}
+\mathchardef\vb="026A % synonym for `\|'
+
+\def\(#1){} % this is used to make section names sort themselves better
+\def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
+
+\outer\def\N#1. \[#2]#3.{\MN#1.\vfil\eject % begin starred section
+ \def\rhead{PART #2:\uppercase{#3}} % define running headline
+ \message{*\modno} % progress report
+ \edef\next{\write\cont{\Z{\?#2]#3}{\modno}{\the\pageno}}}\next
+ \ifon\startsection{\bf\ignorespaces#3.\quad}\ignorespaces}
+\let\?=\relax % we want to be able to \write a \?
+
+\def\title{MetaPost}
+\def\topofcontents{\hsize 5.5in
+ \vglue -30pt plus 1fil minus 1.5in
+ \def\?##1]{\hbox to 1in{\hfil##1.\ }}
+ }
+\def\botofcontents{\vskip 0pt plus 1fil minus 1.5in}
+\pageno=3
+\def\glob{13} % this should be the section number of "<Global...>"
+\def\gglob{20, 26} % this should be the next two sections of "<Global...>"
+
+@* \[1] Introduction.
+This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
+The \PASCAL\ program that follows defines a standard version
+@:PASCAL}{\PASCAL@>
+of \MP\ that is designed to be highly portable so that identical output
+will be obtainable on a great variety of computers.
+
+The main purpose of the following program is to explain the algorithms of \MP\
+as clearly as possible. As a result, the program will not necessarily be very
+efficient when a particular \PASCAL\ compiler has translated it into a
+particular machine language. However, the program has been written so that it
+can be tuned to run efficiently in a wide variety of operating environments
+by making comparatively few changes. Such flexibility is possible because
+the documentation that follows is written in the \.{WEB} language, which is
+at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
+to \PASCAL\ is able to introduce most of the necessary refinements.
+Semi-automatic translation to other languages is also feasible, because the
+program below does not make extensive use of features that are peculiar to
+\PASCAL.
+
+A large piece of software like \MP\ has inherent complexity that cannot
+be reduced below a certain level of difficulty, although each individual
+part is fairly simple by itself. The \.{WEB} language is intended to make
+the algorithms as readable as possible, by reflecting the way the
+individual program pieces fit together and by providing the
+cross-references that connect different parts. Detailed comments about
+what is going on, and about why things were done in certain ways, have
+been liberally sprinkled throughout the program. These comments explain
+features of the implementation, but they rarely attempt to explain the
+\MP\ language itself, since the reader is supposed to be familiar with
+{\sl The {\logos METAFONT\/}book} as well as the manual
+@.WEB@>
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+{\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
+AT\AM T Bell Laboratories.
+
+@ The present implementation is a preliminary version, but the possibilities
+for new features are limited by the desire to remain as nearly compatible
+with \MF\ as possible.
+
+On the other hand, the \.{WEB} description can be extended without changing
+the core of the program, and it has been designed so that such
+extensions are not extremely difficult to make.
+The |banner| string defined here should be changed whenever \MP\
+undergoes any modifications, so that it will be clear which version of
+\MP\ might be the guilty party when a problem arises.
+@^extensions to \MP@>
+@^system dependencies@>
+
+@d banner=='This is MetaPost, Version 0.901' {printed when \MP\ starts}
+@d metapost_version=="0.901"
+
+@ Different \PASCAL s have slightly different conventions, and the present
+@!@:PASCAL H}{\ph@>
+program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
+Constructions that apply to
+this particular compiler, which we shall call \ph, should help the
+reader see how to make an appropriate interface for other systems
+if necessary. (\ph\ is Charles Hedrick's modification of a compiler
+@^Hedrick, Charles Locke@>
+for the DECsystem-10 that was originally developed at the University of
+Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
+29--42. The \MP\ program below is intended to be adaptable, without
+extensive changes, to most other versions of \PASCAL\ and commonly used
+\PASCAL-to-C translators, so it does not fully
+@!@:C@>
+use the admirable features of \ph. Indeed, a conscious effort has been
+made here to avoid using several idiosyncratic features of standard
+\PASCAL\ itself, so that most of the code can be translated mechanically
+into other high-level languages. For example, the `\&{with}' and `\\{new}'
+features are not used, nor are pointer types, set types, or enumerated
+scalar types; there are no `\&{var}' parameters, except in the case of files;
+there are no tag fields on variant records; there are no |real| variables;
+no procedures are declared local to other procedures.)
+
+The portions of this program that involve system-dependent code, where
+changes might be necessary because of differences between \PASCAL\ compilers
+and/or differences between
+operating systems, can be identified by looking at the sections whose
+numbers are listed under `system dependencies' in the index. Furthermore,
+the index entries for `dirty \PASCAL' list all places where the restrictions
+of \PASCAL\ have not been followed perfectly, for one reason or another.
+@!@^system dependencies@>
+@!@^dirty \PASCAL@>
+
+@ The program begins with a normal \PASCAL\ program heading, whose
+components will be filled in later, using the conventions of \.{WEB}.
+@.WEB@>
+For example, the portion of the program called `\X\glob:Global
+variables\X' below will be replaced by a sequence of variable declarations
+that starts in $\section\glob$ of this documentation. In this way, we are able
+to define each individual global variable when we are prepared to
+understand what it means; we do not have to define all of the globals at
+once. Cross references in $\section\glob$, where it says ``See also
+sections \gglob, \dots,'' also make it possible to look at the set of
+all global variables, if desired. Similar remarks apply to the other
+portions of the program heading.
+
+Actually the heading shown here is not quite normal: The |program| line
+does not mention any |output| file, because \ph\ would ask the \MP\ user
+to specify a file name if |output| were specified here.
+@^system dependencies@>
+
+@d mtype==t@&y@&p@&e {this is a \.{WEB} coding trick:}
+@f mtype==type {`\&{mtype}' will be equivalent to `\&{type}'}
+@f type==true {but `|type|' will not be treated as a reserved word}
+
+@p @t\4@>@<Compiler directives@>@/
+program MP; {all file names are defined dynamically}
+label @<Labels in the outer block@>@/
+const @<Constants in the outer block@>@/
+mtype @<Types in the outer block@>@/
+var @<Global variables@>@/
+@#
+procedure initialize; {this procedure gets things started properly}
+ var @<Local variables for initialization@>@/
+ begin @<Set initial values of key variables@>@/
+ end;@#
+@t\4@>@<Basic printing procedures@>@/
+@t\4@>@<Error handling procedures@>@/
+
+@ The overall \MP\ program begins with the heading just shown, after which
+comes a bunch of procedure declarations and function declarations.
+Finally we will get to the main program, which begins with the
+comment `|start_here|'. If you want to skip down to the
+main program now, you can look up `|start_here|' in the index.
+But the author suggests that the best way to understand this program
+is to follow pretty much the order of \MP's components as they appear in the
+\.{WEB} description you are now reading, since the present ordering is
+intended to combine the advantages of the ``bottom up'' and ``top down''
+approaches to the problem of understanding a somewhat complicated system.
+
+@ Three labels must be declared in the main program, so we give them
+symbolic names.
+
+@d start_of_MP=1 {go here when \MP's variables are initialized}
+@d end_of_MP=9998 {go here to close files and terminate gracefully}
+@d final_end=9999 {this label marks the ending of the program}
+
+@<Labels in the out...@>=
+start_of_MP@t\hskip-2pt@>, end_of_MP@t\hskip-2pt@>,@,final_end;
+ {key control points}
+
+@ Some of the code below is intended to be used only when diagnosing the
+strange behavior that sometimes occurs when \MP\ is being installed or
+when system wizards are fooling around with \MP\ without quite knowing
+what they are doing. Such code will not normally be compiled; it is
+delimited by the codewords `$|debug|\ldots|gubed|$', with apologies
+to people who wish to preserve the purity of English.
+
+Similarly, there is some conditional code delimited by
+`$|stat|\ldots|tats|$' that is intended for use when statistics are to be
+kept about \MP's memory usage.
+@^debugging@>
+
+@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
+@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
+@f debug==begin
+@f gubed==end
+@#
+@d stat==@{ {change this to `$\\{stat}\equiv\null$' when gathering
+ usage statistics}
+@d tats==@t@>@} {change this to `$\\{tats}\equiv\null$' when gathering
+ usage statistics}
+@f stat==begin
+@f tats==end
+
+@ This program has two important variations: (1) There is a long and slow
+version called \.{INIMP}, which does the extra calculations needed to
+@.INIMP@>
+initialize \MP's internal tables; and (2)~there is a shorter and faster
+production version, which cuts the initialization to a bare minimum.
+Parts of the program that are needed in (1) but not in (2) are delimited by
+the codewords `$|init|\ldots|tini|$'.
+
+@d init== {change this to `$\\{init}\equiv\.{@@\{}$' in the production version}
+@d tini== {change this to `$\\{tini}\equiv\.{@@\}}$' in the production version}
+@f init==begin
+@f tini==end
+
+@ If the first character of a \PASCAL\ comment is a dollar sign,
+\ph\ treats the comment as a list of ``compiler directives'' that will
+affect the translation of this program into machine language. The
+directives shown below specify full checking and inclusion of the \PASCAL\
+debugger when \MP\ is being debugged, but they cause range checking and other
+redundant code to be eliminated when the production system is being generated.
+Arithmetic overflow will be detected in all cases.
+@^system dependencies@>
+@^Overflow in arithmetic@>
+
+@<Compiler directives@>=
+@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
+@!debug @{@&$C+,D+@}@+ gubed {but turn everything on when debugging}
+
+@ This \MP\ implementation conforms to the rules of the {\sl Pascal User
+@:PASCAL}{\PASCAL@>
+@^system dependencies@>
+Manual} published by Jensen and Wirth in 1975, except where system-dependent
+@^Wirth, Niklaus@>
+@^Jensen, Kathleen@>
+code is necessary to make a useful system program, and except in another
+respect where such conformity would unnecessarily obscure the meaning
+and clutter up the code: We assume that |case| statements may include a
+default case that applies if no matching label is found. Thus, we shall use
+constructions like
+$$\vbox{\halign{\ignorespaces#\hfil\cr
+|case x of|\cr
+1: $\langle\,$code for $x=1\,\rangle$;\cr
+3: $\langle\,$code for $x=3\,\rangle$;\cr
+|othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr
+|endcases|\cr}}$$
+since most \PASCAL\ compilers have plugged this hole in the language by
+incorporating some sort of default mechanism. For example, the \ph\
+compiler allows `|others|:' as a default label, and other \PASCAL s allow
+syntaxes like `\&{else}' or `\&{otherwise}' or `\\{otherwise}:', etc. The
+definitions of |othercases| and |endcases| should be changed to agree with
+local conventions. Note that no semicolon appears before |endcases| in
+this program, so the definition of |endcases| should include a semicolon
+if the compiler wants one. (Of course, if no default mechanism is
+available, the |case| statements of \MP\ will have to be laboriously
+extended by listing all remaining cases. People who are stuck with such
+\PASCAL s have, in fact, done this, successfully but not happily!)
+
+@d othercases == others: {default for cases not listed explicitly}
+@d endcases == @+end {follows the default case in an extended |case| statement}
+@f othercases == else
+@f endcases == end
+
+@ The following parameters can be changed at compile time to extend or
+reduce \MP's capacity. They may have different values in \.{INIMP} and
+in production versions of \MP.
+@.INIMP@>
+@^system dependencies@>
+
+@<Constants...@>=
+@!mem_max=30000; {greatest index in \MP's internal |mem| array;
+ must be strictly less than |max_halfword|;
+ must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top|}
+@!max_internal=100; {maximum number of internal quantities}
+@!buf_size=500; {maximum number of characters simultaneously present in
+ current lines of open files; must not exceed |max_halfword|}
+@!error_line=72; {width of context lines on terminal error messages}
+@!half_error_line=42; {width of first lines of contexts in terminal
+ error messages; should be between 30 and |error_line-15|}
+@!max_print_line=79; {width of longest text lines output; should be at least 60}
+@!emergency_line_length=255;
+ {\ps\ output lines can be this long in unusual circumstances}
+@!stack_size=30; {maximum number of simultaneous input sources}
+@!max_read_files=4; {maximum number of simultaneously open \&{readfrom} files}
+@!max_strings=2500; {maximum number of strings; must not exceed |max_halfword|}
+@!string_vacancies=9000; {the minimum number of characters that should be
+ available for the user's identifier names and strings,
+ after \MP's own error messages are stored}
+@!strings_vacant=1000; {the minimum number of strings that should be available}
+@!pool_size=32000; {maximum number of characters in strings, including all
+ error messages and help texts, and the names of all identifiers;
+ must exceed |string_vacancies| by the total
+ length of \MP's own strings, which is currently about 22000}
+@!font_max=50; {maximum font number for included text fonts}
+@!font_mem_size=10000; {number of words for \.{TFM} information for text fonts}
+@!file_name_size=40; {file names shouldn't be longer than this}
+@!pool_name='MPlib:MP.POOL ';
+ {string of length |file_name_size|; tells where the string pool appears}
+@.MPlib@>
+@!ps_tab_name='MPlib:PSFONTS.MAP ';
+ {string of length |file_name_size|; locates font name translation table}
+@!path_size=300; {maximum number of knots between breakpoints of a path}
+@!bistack_size=785; {size of stack for bisection algorithms;
+ should probably be left at this value}
+@!header_size=100; {maximum number of \.{TFM} header words, times~4}
+@!lig_table_size=5000; {maximum number of ligature/kern steps, must be
+ at least 255 and at most 32510}
+@!max_kerns=500; {maximum number of distinct kern amounts}
+@!max_font_dimen=50; {maximum number of \&{fontdimen} parameters}
+
+@ Like the preceding parameters, the following quantities can be changed
+at compile time to extend or reduce \MP's capacity. But if they are changed,
+it is necessary to rerun the initialization program \.{INIMP}
+@.INIMP@>
+to generate new tables for the production \MP\ program.
+One can't simply make helter-skelter changes to the following constants,
+since certain rather complex initialization
+numbers are computed from them. They are defined here using
+\.{WEB} macros, instead of being put into \PASCAL's |const| list, in order to
+emphasize this distinction.
+
+@d mem_min=0 {smallest index in the |mem| array, must not be less
+ than |min_halfword|}
+@d mem_top==30000 {largest index in the |mem| array dumped by \.{INIMP};
+ must be substantially larger than |mem_min|
+ and not greater than |mem_max|}
+@d hash_size=2100 {maximum number of symbolic tokens,
+ must be less than |max_halfword-3*param_size|}
+@d hash_prime=1777 {a prime number equal to about 85\pct! of |hash_size|}
+@d max_in_open=6 {maximum number of input files and error insertions that
+ can be going on simultaneously}
+@d param_size=150 {maximum number of simultaneous macro parameters}
+@d max_write_files=4 {maximum number of simultaneously open \&{write} files}
+@^system dependencies@>
+
+@ In case somebody has inadvertently made bad settings of the ``constants,''
+\MP\ checks them using a global variable called |bad|.
+
+This is the first of many sections of \MP\ where global variables are
+defined.
+
+@<Glob...@>=
+@!bad:integer; {is some ``constant'' wrong?}
+
+@ Later on we will say `\ignorespaces|if mem_max>=max_halfword then bad:=10|',
+or something similar. (We can't do that until |max_halfword| has been defined.)
+
+@<Check the ``constant'' values for consistency@>=
+bad:=0;
+if (half_error_line<30)or(half_error_line>error_line-15) then bad:=1;
+if max_print_line<60 then bad:=2;
+if emergency_line_length<max_print_line then bad:=3;
+if mem_min+1100>mem_top then bad:=4;
+if hash_prime>hash_size then bad:=5;
+if header_size mod 4 <> 0 then bad:=6;
+if(lig_table_size<255)or(lig_table_size>32510)then bad:=7;
+
+@ Labels are given symbolic names by the following definitions, so that
+occasional |goto| statements will be meaningful. We insert the label
+`|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
+which we have used the `|return|' statement defined below; the label
+`|restart|' is occasionally used at the very beginning of a procedure; and
+the label `|reswitch|' is occasionally used just prior to a |case|
+statement in which some cases change the conditions and we wish to branch
+to the newly applicable case. Loops that are set up with the |loop|
+construction defined below are commonly exited by going to `|done|' or to
+`|found|' or to `|not_found|', and they are sometimes repeated by going to
+`|continue|'. If two or more parts of a subroutine start differently but
+end up the same, the shared code may be gathered together at
+`|common_ending|'.
+
+Incidentally, this program never declares a label that isn't actually used,
+because some fussy \PASCAL\ compilers will complain about redundant labels.
+
+@d exit=10 {go here to leave a procedure}
+@d restart=20 {go here to start a procedure again}
+@d reswitch=21 {go here to start a case statement again}
+@d continue=22 {go here to resume a loop}
+@d done=30 {go here to exit a loop}
+@d done1=31 {like |done|, when there is more than one loop}
+@d done2=32 {for exiting the second loop in a long block}
+@d done3=33 {for exiting the third loop in a very long block}
+@d done4=34 {for exiting the fourth loop in an extremely long block}
+@d done5=35 {for exiting the fifth loop in an immense block}
+@d done6=36 {for exiting the sixth loop in a block}
+@d found=40 {go here when you've found it}
+@d found1=41 {like |found|, when there's more than one per routine}
+@d found2=42 {like |found|, when there's more than two per routine}
+@d not_found=45 {go here when you've found nothing}
+@d common_ending=50 {go here when you want to merge with another branch}
+
+@ Here are some macros for common programming idioms.
+
+@d incr(#) == #:=#+1 {increase a variable by unity}
+@d decr(#) == #:=#-1 {decrease a variable by unity}
+@d negate(#) == #:=-# {change the sign of a variable}
+@d double(#) == #:=#+# {multiply a variable by two}
+@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
+@f loop == xclause
+ {\.{WEB}'s |xclause| acts like `\ignorespaces|while true do|\unskip'}
+@d do_nothing == {empty statement}
+@d return == goto exit {terminate a procedure call}
+@f return == nil {\.{WEB} will henceforth say |return| instead of \\{return}}
+
+@* \[2] The character set.
+In order to make \MP\ readily portable to a wide variety of
+computers, all of its input text is converted to an internal eight-bit
+code that includes standard ASCII, the ``American Standard Code for
+Information Interchange.'' This conversion is done immediately when each
+character is read in. Conversely, characters are converted from ASCII to
+the user's external representation just before they are output to a
+text file.
+@^ASCII code@>
+
+Such an internal code is relevant to users of \MP\ only with respect to
+the \&{char} and \&{ASCII} operations, and the comparison of strings.
+
+@ Characters of text that have been converted to \MP's internal form
+are said to be of type |ASCII_code|, which is a subrange of the integers.
+
+@<Types...@>=
+@!ASCII_code=0..255; {eight-bit numbers}
+
+@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
+character sets were common, so it did not make provision for lowercase
+letters. Nowadays, of course, we need to deal with both capital and small
+letters in a convenient way, especially in a program for font design;
+so the present specification of \MP\ has been written under the assumption
+that the \PASCAL\ compiler and run-time system permit the use of text files
+with more than 64 distinguishable characters. More precisely, we assume that
+the character set contains at least the letters and symbols associated
+with ASCII codes @'40 through @'176; all of these characters are now
+available on most computer terminals.
+
+Since we are dealing with more characters than were present in the first
+\PASCAL\ compilers, we have to decide what to call the associated data
+type. Some \PASCAL s use the original name |char| for the
+characters in text files, even though there now are more than 64 such
+characters, while other \PASCAL s consider |char| to be a 64-element
+subrange of a larger data type that has some other name.
+
+In order to accommodate this difference, we shall use the name |text_char|
+to stand for the data type of the characters that are converted to and
+from |ASCII_code| when they are input and output. We shall also assume
+that |text_char| consists of the elements |chr(first_text_char)| through
+|chr(last_text_char)|, inclusive. The following definitions should be
+adjusted if necessary.
+@^system dependencies@>
+
+@d text_char == char {the data type of characters in text files}
+@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
+@d last_text_char=255 {ordinal number of the largest element of |text_char|}
+
+@<Local variables for init...@>=
+@!i:integer;
+
+@ The \MP\ processor converts between ASCII code and
+the user's external character set by means of arrays |xord| and |xchr|
+that are analogous to \PASCAL's |ord| and |chr| functions.
+
+@<Glob...@>=
+@!xord: array [text_char] of ASCII_code;
+ {specifies conversion of input characters}
+@!xchr: array [ASCII_code] of text_char;
+ {specifies conversion of output characters}
+
+@ Since we are assuming that our \PASCAL\ system is able to read and
+write the visible characters of standard ASCII (although not
+necessarily using the ASCII codes to represent them), the following
+assignment statements initialize the standard part of the |xchr| array
+properly, without needing any system-dependent changes. On the other
+hand, it is possible to implement \MP\ with less complete character
+sets, and in such cases it will be necessary to change something here.
+@^system dependencies@>
+
+@<Set init...@>=
+xchr[@'40]:=' ';
+xchr[@'41]:='!';
+xchr[@'42]:='"';
+xchr[@'43]:='#';
+xchr[@'44]:='$';
+xchr[@'45]:='%';
+xchr[@'46]:='&';
+xchr[@'47]:='''';@/
+xchr[@'50]:='(';
+xchr[@'51]:=')';
+xchr[@'52]:='*';
+xchr[@'53]:='+';
+xchr[@'54]:=',';
+xchr[@'55]:='-';
+xchr[@'56]:='.';
+xchr[@'57]:='/';@/
+xchr[@'60]:='0';
+xchr[@'61]:='1';
+xchr[@'62]:='2';
+xchr[@'63]:='3';
+xchr[@'64]:='4';
+xchr[@'65]:='5';
+xchr[@'66]:='6';
+xchr[@'67]:='7';@/
+xchr[@'70]:='8';
+xchr[@'71]:='9';
+xchr[@'72]:=':';
+xchr[@'73]:=';';
+xchr[@'74]:='<';
+xchr[@'75]:='=';
+xchr[@'76]:='>';
+xchr[@'77]:='?';@/
+xchr[@'100]:='@@';
+xchr[@'101]:='A';
+xchr[@'102]:='B';
+xchr[@'103]:='C';
+xchr[@'104]:='D';
+xchr[@'105]:='E';
+xchr[@'106]:='F';
+xchr[@'107]:='G';@/
+xchr[@'110]:='H';
+xchr[@'111]:='I';
+xchr[@'112]:='J';
+xchr[@'113]:='K';
+xchr[@'114]:='L';
+xchr[@'115]:='M';
+xchr[@'116]:='N';
+xchr[@'117]:='O';@/
+xchr[@'120]:='P';
+xchr[@'121]:='Q';
+xchr[@'122]:='R';
+xchr[@'123]:='S';
+xchr[@'124]:='T';
+xchr[@'125]:='U';
+xchr[@'126]:='V';
+xchr[@'127]:='W';@/
+xchr[@'130]:='X';
+xchr[@'131]:='Y';
+xchr[@'132]:='Z';
+xchr[@'133]:='[';
+xchr[@'134]:='\';
+xchr[@'135]:=']';
+xchr[@'136]:='^';
+xchr[@'137]:='_';@/
+xchr[@'140]:='`';
+xchr[@'141]:='a';
+xchr[@'142]:='b';
+xchr[@'143]:='c';
+xchr[@'144]:='d';
+xchr[@'145]:='e';
+xchr[@'146]:='f';
+xchr[@'147]:='g';@/
+xchr[@'150]:='h';
+xchr[@'151]:='i';
+xchr[@'152]:='j';
+xchr[@'153]:='k';
+xchr[@'154]:='l';
+xchr[@'155]:='m';
+xchr[@'156]:='n';
+xchr[@'157]:='o';@/
+xchr[@'160]:='p';
+xchr[@'161]:='q';
+xchr[@'162]:='r';
+xchr[@'163]:='s';
+xchr[@'164]:='t';
+xchr[@'165]:='u';
+xchr[@'166]:='v';
+xchr[@'167]:='w';@/
+xchr[@'170]:='x';
+xchr[@'171]:='y';
+xchr[@'172]:='z';
+xchr[@'173]:='{';
+xchr[@'174]:='|';
+xchr[@'175]:='}';
+xchr[@'176]:='~';@/
+
+@ The ASCII code is ``standard'' only to a certain extent, since many
+computer installations have found it advantageous to have ready access
+to more than 94 printing characters. If \MP\ is being used
+on a garden-variety \PASCAL\ for which only standard ASCII
+codes will appear in the input and output files, it doesn't really matter
+what codes are specified in |xchr[0..@'37]|, but the safest policy is to
+blank everything out by using the code shown below.
+
+However, other settings of |xchr| will make \MP\ more friendly on
+computers that have an extended character set, so that users can type things
+like `\.^^Z' instead of `\.{<>}'.
+People with extended character sets can
+assign codes arbitrarily, giving an |xchr| equivalent to whatever
+characters the users of \MP\ are allowed to have in their input files.
+Appropriate changes to \MP's |char_class| table should then be made.
+(Unlike \TeX, each installation of \MP\ has a fixed assignment of category
+codes, called the |char_class|.) Such changes make portability of programs
+more difficult, so they should be introduced cautiously if at all.
+@^character set dependencies@>
+@^system dependencies@>
+
+@<Set init...@>=
+for i:=0 to @'37 do xchr[i]:=' ';
+for i:=@'177 to @'377 do xchr[i]:=' ';
+
+@ The following system-independent code makes the |xord| array contain a
+suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
+where |i<j<@'177|, the value of |xord[xchr[i]]| will turn out to be
+|j| or more; hence, standard ASCII code numbers will be used instead of
+codes below @'40 in case there is a coincidence.
+
+@<Set init...@>=
+for i:=first_text_char to last_text_char do xord[chr(i)]:=@'177;
+for i:=@'200 to @'377 do xord[xchr[i]]:=i;
+for i:=0 to @'176 do xord[xchr[i]]:=i;
+
+@* \[3] Input and output.
+The bane of portability is the fact that different operating systems treat
+input and output quite differently, perhaps because computer scientists
+have not given sufficient attention to this problem. People have felt somehow
+that input and output are not part of ``real'' programming. Well, it is true
+that some kinds of programming are more fun than others. With existing
+input/output conventions being so diverse and so messy, the only sources of
+joy in such parts of the code are the rare occasions when one can find a
+way to make the program a little less bad than it might have been. We have
+two choices, either to attack I/O now and get it over with, or to postpone
+I/O until near the end. Neither prospect is very attractive, so let's
+get it over with.
+
+The basic operations we need to do are (1)~inputting and outputting of
+text, to or from a file or the user's terminal; (2)~inputting and
+outputting of eight-bit bytes, to or from a file; (3)~instructing the
+operating system to initiate (``open'') or to terminate (``close'') input or
+output from a specified file; (4)~testing whether the end of an input
+file has been reached; (5)~display of bits on the user's screen.
+The bit-display operation will be discussed in a later section; we shall
+deal here only with more traditional kinds of I/O.
+
+\MP\ needs to deal with two kinds of files.
+We shall use the term |alpha_file| for a file that contains textual data,
+and the term |byte_file| for a file that contains eight-bit binary information.
+These two types turn out to be the same on many computers, but
+sometimes there is a significant distinction, so we shall be careful to
+distinguish between them. Standard protocols for transferring
+such files from computer to computer, via high-speed networks, are
+now becoming available to more and more communities of users.
+
+The program actually makes use also of a third kind of file, called a
+|word_file|, when dumping and reloading mem information for its own
+initialization. We shall define a word file later; but it will be possible
+for us to specify simple operations on word files before they are defined.
+
+@<Types...@>=
+@!eight_bits=0..255; {unsigned one-byte quantity}
+@!alpha_file=packed file of text_char; {files that contain textual data}
+@!byte_file=packed file of eight_bits; {files that contain binary data}
+
+@ Most of what we need to do with respect to input and output can be handled
+by the I/O facilities that are standard in \PASCAL, i.e., the routines
+called |get|, |put|, |eof|, and so on. But
+standard \PASCAL\ does not allow file variables to be associated with file
+names that are determined at run time, so it cannot be used to implement
+\MP; some sort of extension to \PASCAL's ordinary |reset| and |rewrite|
+is crucial for our purposes. We shall assume that |name_of_file| is a variable
+of an appropriate type such that the \PASCAL\ run-time system being used to
+implement \MP\ can open a file whose external name is specified by
+|name_of_file|.
+@^system dependencies@>
+
+@<Glob...@>=
+@!name_of_file:packed array[1..file_name_size] of char;@;@/
+ {on some systems this may be a \&{record} variable}
+@!name_length:0..file_name_size;@/{this many characters are actually
+ relevant in |name_of_file| (the rest are blank)}
+
+@ The \ph\ compiler with which the original version of \MF\ was prepared
+extends the rules of \PASCAL\ in a very convenient way. To open file~|f|,
+we can write
+$$\vbox{\halign{#\hfil\qquad&#\hfil\cr
+|reset(f,@t\\{name}@>,'/O')|&for input;\cr
+|rewrite(f,@t\\{name}@>,'/O')|&for output.\cr}}$$
+The `\\{name}' parameter, which is of type `\ignorespaces|packed
+array[@t\<\\{any}>@>] of text_char|', stands for the name of
+the external file that is being opened for input or output.
+Blank spaces that might appear in \\{name} are ignored.
+
+The `\.{/O}' parameter tells the operating system not to issue its own
+error messages if something goes wrong. If a file of the specified name
+cannot be found, or if such a file cannot be opened for some other reason
+(e.g., someone may already be trying to write the same file), we will have
+|@!erstat(f)<>0| after an unsuccessful |reset| or |rewrite|. This allows
+\MP\ to undertake appropriate corrective action.
+@:PASCAL H}{\ph@>
+@^system dependencies@>
+
+\MP's file-opening procedures return |false| if no file identified by
+|name_of_file| could be opened.
+
+@d reset_OK(#)==erstat(#)=0
+@d rewrite_OK(#)==erstat(#)=0
+
+@p function a_open_in(var @!f:alpha_file):boolean;
+ {open a text file for input}
+begin reset(f,name_of_file,'/O'); a_open_in:=reset_OK(f);
+end;
+@#
+function a_open_out(var @!f:alpha_file):boolean;
+ {open a text file for output}
+begin rewrite(f,name_of_file,'/O'); a_open_out:=rewrite_OK(f);
+end;
+@#
+function b_open_in(var @!f:byte_file):boolean;
+ {open a binary file for input}
+begin reset(f,name_of_file,'/O'); b_open_in:=reset_OK(f);
+end;
+@#
+function b_open_out(var @!f:byte_file):boolean;
+ {open a binary file for output}
+begin rewrite(f,name_of_file,'/O'); b_open_out:=rewrite_OK(f);
+end;
+@#
+function w_open_in(var @!f:word_file):boolean;
+ {open a word file for input}
+begin reset(f,name_of_file,'/O'); w_open_in:=reset_OK(f);
+end;
+@#
+function w_open_out(var @!f:word_file):boolean;
+ {open a word file for output}
+begin rewrite(f,name_of_file,'/O'); w_open_out:=rewrite_OK(f);
+end;
+
+@ Files can be closed with the \ph\ routine `|close(f)|', which
+@^system dependencies@>
+should be used when all input or output with respect to |f| has been completed.
+This makes |f| available to be opened again, if desired; and if |f| was used for
+output, the |close| operation makes the corresponding external file appear
+on the user's area, ready to be read.
+
+@p procedure a_close(var @!f:alpha_file); {close a text file}
+begin close(f);
+end;
+@#
+procedure b_close(var @!f:byte_file); {close a binary file}
+begin close(f);
+end;
+@#
+procedure w_close(var @!f:word_file); {close a word file}
+begin close(f);
+end;
+
+@ Binary input and output are done with \PASCAL's ordinary |get| and |put|
+procedures, so we don't have to make any other special arrangements for
+binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
+The treatment of text input is more difficult, however, because
+of the necessary translation to |ASCII_code| values.
+\MP's conventions should be efficient, and they should
+blend nicely with the user's operating environment.
+
+@ Input from text files is read one line at a time, using a routine called
+|input_ln|. This function is defined in terms of global variables called
+|buffer|, |first|, and |last| that will be described in detail later; for
+now, it suffices for us to know that |buffer| is an array of |ASCII_code|
+values, and that |first| and |last| are indices into this array
+representing the beginning and ending of a line of text.
+
+@<Glob...@>=
+@!buffer:array[0..buf_size] of ASCII_code; {lines of characters being read}
+@!first:0..buf_size; {the first unused position in |buffer|}
+@!last:0..buf_size; {end of the line just input to |buffer|}
+@!max_buf_stack:0..buf_size; {largest index used in |buffer|}
+
+@ The |input_ln| function brings the next line of input from the specified
+field into available positions of the buffer array and returns the value
+|true|, unless the file has already been entirely read, in which case it
+returns |false| and sets |last:=first|. In general, the |ASCII_code|
+numbers that represent the next line of the file are input into
+|buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
+global variable |last| is set equal to |first| plus the length of the
+line. Trailing blanks are removed from the line; thus, either |last=first|
+(in which case the line was entirely blank) or |buffer[last-1]<>" "|.
+@^inner loop@>
+
+An overflow error is given, however, if the normal actions of |input_ln|
+would make |last>=buf_size|; this is done so that other parts of \MP\
+can safely look at the contents of |buffer[last+1]| without overstepping
+the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
+|first<buf_size| will always hold, so that there is always room for an
+``empty'' line.
+
+The variable |max_buf_stack|, which is used to keep track of how large
+the |buf_size| parameter must be to accommodate the present job, is
+also kept up to date by |input_ln|.
+
+If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
+before looking at the first character of the line; this skips over
+an |eoln| that was in |f^|. The procedure does not do a |get| when it
+reaches the end of the line; therefore it can be used to acquire input
+from the user's terminal as well as from ordinary text files.
+
+Standard \PASCAL\ says that a file should have |eoln| immediately
+before |eof|, but \MP\ needs only a weaker restriction: If |eof|
+occurs in the middle of a line, the system function |eoln| should return
+a |true| result (even though |f^| will be undefined).
+
+@p function input_ln(var @!f:alpha_file;@!bypass_eoln:boolean):boolean;
+ {inputs the next line or returns |false|}
+var @!last_nonblank:0..buf_size; {|last| with trailing blanks removed}
+begin if bypass_eoln then if not eof(f) then get(f);
+ {input the first character of the line into |f^|}
+last:=first; {cf.\ Matthew 19\thinspace:\thinspace30}
+if eof(f) then input_ln:=false
+else begin last_nonblank:=first;
+ while not eoln(f) do
+ begin if last>=max_buf_stack then
+ begin max_buf_stack:=last+1;
+ if max_buf_stack=buf_size then
+ @<Report overflow of the input buffer, and abort@>;
+ end;
+ buffer[last]:=xord[f^]; get(f); incr(last);
+ if buffer[last-1]<>" " then last_nonblank:=last;
+ end;
+ last:=last_nonblank; input_ln:=true;
+ end;
+end;
+
+@ The user's terminal acts essentially like other files of text, except
+that it is used both for input and for output. When the terminal is
+considered an input file, the file variable is called |term_in|, and when it
+is considered an output file the file variable is |term_out|.
+@^system dependencies@>
+
+@<Glob...@>=
+@!term_in:alpha_file; {the terminal as an input file}
+@!term_out:alpha_file; {the terminal as an output file}
+
+@ Here is how to open the terminal files
+in \ph. The `\.{/I}' switch suppresses the first |get|.
+@^system dependencies@>
+
+@d t_open_in==reset(term_in,'TTY:','/O/I') {open the terminal for text input}
+@d t_open_out==rewrite(term_out,'TTY:','/O') {open the terminal for text output}
+
+@ Sometimes it is necessary to synchronize the input/output mixture that
+happens on the user's terminal, and three system-dependent
+procedures are used for this
+purpose. The first of these, |update_terminal|, is called when we want
+to make sure that everything we have output to the terminal so far has
+actually left the computer's internal buffers and been sent.
+The second, |clear_terminal|, is called when we wish to cancel any
+input that the user may have typed ahead (since we are about to
+issue an unexpected error message). The third, |wake_up_terminal|,
+is supposed to revive the terminal if the user has disabled it by
+some instruction to the operating system. The following macros show how
+these operations can be specified in \ph:
+@^system dependencies@>
+
+@d update_terminal == break(term_out) {empty the terminal output buffer}
+@d clear_terminal == break_in(term_in,true) {clear the terminal input buffer}
+@d wake_up_terminal == do_nothing {cancel the user's cancellation of output}
+
+@ We need a special routine to read the first line of \MP\ input from
+the user's terminal. This line is different because it is read before we
+have opened the transcript file; there is sort of a ``chicken and
+egg'' problem here. If the user types `\.{input cmr10}' on the first
+line, or if some macro invoked by that line does such an \.{input},
+the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
+commands are performed during the first line of terminal input, the transcript
+file will acquire its default name `\.{mpout.log}'. (The transcript file
+will not contain error messages generated by the first line before the
+first \.{input} command.)
+
+The first line is even more special if we are lucky enough to have an operating
+system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
+program. It's nice to let the user start running a \MP\ job by typing
+a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
+as if the first line of input were `\.{cmr10}', i.e., the first line will
+consist of the remainder of the command line, after the part that invoked \MP.
+
+The first line is special also because it may be read before \MP\ has
+input a mem file. In such cases, normal error messages cannot yet
+be given. The following code uses concepts that will be explained later.
+
+@<Report overflow of the input buffer, and abort@>=
+if mem_ident=0 then
+ begin write_ln(term_out,'Buffer size exceeded!'); goto final_end;
+@.Buffer size exceeded@>
+ end
+else begin cur_input.loc_field:=first; cur_input.limit_field:=last-1;
+ overflow("buffer size",buf_size);
+@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
+ end
+
+@ Different systems have different ways to get started. But regardless of
+what conventions are adopted, the routine that initializes the terminal
+should satisfy the following specifications:
+
+\yskip\textindent{1)}It should open file |term_in| for input from the
+ terminal. (The file |term_out| will already be open for output to the
+ terminal.)
+
+\textindent{2)}If the user has given a command line, this line should be
+ considered the first line of terminal input. Otherwise the
+ user should be prompted with `\.{**}', and the first line of input
+ should be whatever is typed in response.
+
+\textindent{3)}The first line of input, which might or might not be a
+ command line, should appear in locations |first| to |last-1| of the
+ |buffer| array.
+
+\textindent{4)}The global variable |loc| should be set so that the
+ character to be read next by \MP\ is in |buffer[loc]|. This
+ character should not be blank, and we should have |loc<last|.
+
+\yskip\noindent(It may be necessary to prompt the user several times
+before a non-blank line comes in. The prompt is `\.{**}' instead of the
+later `\.*' because the meaning is slightly different: `\.{input}' need
+not be typed immediately after~`\.{**}'.)
+
+@d loc==cur_input.loc_field {location of first unread character in |buffer|}
+
+@ The following program does the required initialization
+without retrieving a possible command line.
+It should be clear how to modify this routine to deal with command lines,
+if the system permits them.
+@^system dependencies@>
+
+@p function init_terminal:boolean; {gets the terminal input started}
+label exit;
+begin t_open_in;
+loop@+begin wake_up_terminal; write(term_out,'**'); update_terminal;
+@.**@>
+ if not input_ln(term_in,true) then {this shouldn't happen}
+ begin write_ln(term_out);
+ write(term_out,'! End of file on the terminal... why?');
+@.End of file on the terminal@>
+ init_terminal:=false; return;
+ end;
+ loc:=first;
+ while (loc<last)and(buffer[loc]=" ") do incr(loc);
+ if loc<last then
+ begin init_terminal:=true;
+ return; {return unless the line was all blank}
+ end;
+ write_ln(term_out,'Please type the name of your input file.');
+ end;
+exit:end;
+
+@* \[4] String handling.
+Symbolic token names and diagnostic messages are variable-length strings
+of eight-bit characters. Since \PASCAL\ does not have a well-developed string
+mechanism, \MP\ does all of its string processing by homegrown methods.
+
+\MP\ uses strings more extensively than \MF\ does, but the necessary
+operations can still be handled with a fairly simple data structure.
+The array |str_pool| contains all of the (eight-bit) ASCII codes in all
+of the strings, and the array |str_start| contains indices of the starting
+points of each string. Strings are referred to by integer numbers, so that
+string number |s| comprises the characters |str_pool[j]| for
+|str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
+is allocated sequentially and |str_pool[pool_ptr]| is the next unused
+location. The first string number not currently in use is |str_ptr|
+and |next_str[str_ptr]| begins a list of free string numbers. String
+pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
+string currently being constructed.
+
+String numbers 0 to 255 are reserved for strings that correspond to single
+ASCII characters. This is in accordance with the conventions of \.{WEB},
+@.WEB@>
+which converts single-character strings into the ASCII code number of the
+single character involved, while it converts other strings into integers
+and builds a string pool file. Thus, when the string constant \.{"."} appears
+in the program below, \.{WEB} converts it into the integer 46, which is the
+ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
+into some integer greater than~255. String number 46 will presumably be the
+single character `\..'\thinspace; but some ASCII codes have no standard visible
+representation, and \MP\ may need to be able to print an arbitrary
+ASCII character, so the first 256 strings are used to specify exactly what
+should be printed for each of the 256 possibilities.
+
+Elements of the |str_pool| array must be ASCII codes that can actually be
+printed; i.e., they must have an |xchr| equivalent in the local
+character set. (This restriction applies only to preloaded strings,
+not to those generated dynamically by the user.)
+
+Some \PASCAL\ compilers won't pack integers into a single byte unless the
+integers lie in the range |-128..127|. To accommodate such systems
+we access the string pool via macros that can easily be redefined.
+When accessing character dimensions for the \&{infont} operator, an explicit
+offset is used to convert from |pool_ASCII_code| to |ASCII_code|.
+
+@d si(#) == # {convert from |ASCII_code| to |pool_ASCII_code|}
+@d so(#) == # {convert from |pool_ASCII_code| to |ASCII_code|}
+@d min_pool_ASCII=0 {added to an |ASCII_code| to make a |pool_ASCII_code|}
+
+@<Types...@>=
+@!pool_pointer = 0..pool_size; {for variables that point into |str_pool|}
+@!str_number = 0..max_strings; {for variables that point into |str_start|}
+@!pool_ASCII_code = 0..255; {elements of |str_pool| array}
+
+@ @<Glob...@>=
+@!str_pool:packed array[pool_pointer] of pool_ASCII_code; {the characters}
+@!str_start : array[str_number] of pool_pointer; {the starting pointers}
+@!next_str : array[str_number] of str_number; {for linking strings in order}
+@!pool_ptr : pool_pointer; {first unused position in |str_pool|}
+@!str_ptr : str_number; {number of the current string being created}
+@!init_pool_ptr : pool_pointer; {the starting value of |pool_ptr|}
+@!init_str_use : str_number; {the initial number of strings in use}
+@!max_pool_ptr : pool_pointer; {the maximum so far of |pool_ptr|}
+@!max_str_ptr : str_number; {the maximum so far of |str_ptr|}
+
+@ Except for |strs_used_up|, the following string statistics are only
+maintained when code between |stat| $\ldots$ |tats| delimiters is not
+commented out:
+
+@<Glob...@>=
+@!strs_used_up:integer; {strings in use or unused but not reclaimed}
+@!pool_in_use:integer; {total number of cells of |str_pool| actually in use}
+@!strs_in_use:integer; {total number of strings actually in use}
+@!max_pl_used:integer; {maximum |pool_in_use| so far}
+@!max_strs_used:integer; {maximum |strs_in_use| so far}
+
+@ Several of the elementary string operations are performed using \.{WEB}
+macros instead of \PASCAL\ procedures, because many of the
+operations are done quite frequently and we want to avoid the
+overhead of procedure calls. For example, here is
+a simple macro that computes the length of a string.
+@.WEB@>
+
+@d str_stop(#)==str_start[next_str[#]] {one cell past the end of string
+ number \#}
+@d length(#)==(str_stop(#)-str_start[#]) {the number of characters in string \#}
+
+@ The length of the current string is called |cur_length|. If we decide that
+the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
+|cur_length| becomes zero.
+
+@d cur_length == (pool_ptr - str_start[str_ptr])
+@d flush_cur_string == pool_ptr:=str_start[str_ptr]
+
+@ Strings are created by appending character codes to |str_pool|.
+The |append_char| macro, defined here, does not check to see if the
+value of |pool_ptr| has gotten too high; this test is supposed to be
+made before |append_char| is used.
+
+To test if there is room to append |l| more characters to |str_pool|,
+we shall write |str_room(l)|, which tries to make sure there is enough room
+by compacting the string pool if necessary. If this does not work,
+|do_compaction| aborts \MP\ and gives an apologetic error message.
+
+@d append_char(#) == {put |ASCII_code| \# at the end of |str_pool|}
+begin str_pool[pool_ptr]:=si(#); incr(pool_ptr);
+end
+@d str_room(#) == {make sure that the pool hasn't overflowed}
+ begin if pool_ptr+# > max_pool_ptr then
+ if pool_ptr+# > pool_size then do_compaction(#)
+ else max_pool_ptr:=pool_ptr+#;
+ end
+
+@ The following routine is similar to |str_room(1)| but it uses the
+argument |pool_size| to prevent |do_compaction| from aborting when
+string space is exhausted.
+
+@<Declare the procedure called |unit_str_room|@>=
+procedure unit_str_room;
+begin if pool_ptr>=pool_size then do_compaction(pool_size);
+if pool_ptr>=max_pool_ptr then max_pool_ptr:=pool_ptr+1;
+end;
+
+@ \MP's string expressions are implemented in a brute-force way: Every
+new string or substring that is needed is simply copied into the string pool.
+Space is eventually reclaimed by a procedure called |do_compaction| with
+the aid of a simple system system of reference counts.
+@^reference counts@>
+
+The number of references to string number |s| will be |str_ref[s]|. The
+special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
+positive number of references; such strings will never be recycled. If
+a string is ever referred to more than 126 times, simultaneously, we
+put it in this category. Hence a single byte suffices to store each |str_ref|.
+
+@d max_str_ref=127 {``infinite'' number of references}
+@d add_str_ref(#)==begin if str_ref[#]<max_str_ref then incr(str_ref[#]);
+ end
+
+@<Glob...@>=
+@!str_ref:array[str_number] of 0..max_str_ref;
+
+@ Here's what we do when a string reference disappears:
+
+@d delete_str_ref(#)== begin if str_ref[#]<max_str_ref then
+ if str_ref[#]>1 then decr(str_ref[#])@+else flush_string(#);
+ end
+
+@<Declare the procedure called |flush_string|@>=
+procedure flush_string(@!s:str_number);
+begin stat pool_in_use:=pool_in_use-length(s);
+ decr(strs_in_use);
+ tats@;
+if next_str[s]<>str_ptr then str_ref[s]:=0
+else begin str_ptr:=s;
+ decr(strs_used_up);
+ end;
+pool_ptr:=str_start[str_ptr];
+end;
+
+@ Once a sequence of characters has been appended to |str_pool|, it
+officially becomes a string when the function |make_string| is called.
+This function returns the identification number of the new string as its
+value.
+
+When getting the next unused string number from the linked list, we pretend
+that
+$$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |max_strings|} $$
+are linked sequentially even though the |next_str| entries have not been
+initialized yet. We never allow |str_ptr| to reach |max_strings|;
+|do_compaction| is responsible for making sure of this.
+
+@p @t\4@>@<Declare the procedure called |do_compaction|@>@;
+@t\4@>@<Declare the procedure called |unit_str_room|@>@;
+function make_string : str_number; {current string enters the pool}
+label restart;
+var @!s:str_number; {the new string}
+begin restart: s:=str_ptr;
+str_ptr:=next_str[s];
+if str_ptr>max_str_ptr then
+ if str_ptr=max_strings then
+ begin str_ptr:=s;
+ do_compaction(0);
+ goto restart;
+ end
+ else begin debug if strs_used_up<>max_str_ptr then confusion("s");@+gubed@/
+@:this can't happen s}{\quad \.s@>
+ max_str_ptr:=str_ptr;
+ next_str[str_ptr]:=max_str_ptr+1;
+ end;
+str_ref[s]:=1;
+str_start[str_ptr]:=pool_ptr;
+incr(strs_used_up);
+stat incr(strs_in_use);
+ pool_in_use:=pool_in_use+length(s);
+ if pool_in_use>max_pl_used then max_pl_used:=pool_in_use;
+ if strs_in_use>max_strs_used then max_strs_used:=strs_in_use;
+tats@;
+make_string:=s;
+end;
+
+@ On rare occasions, we might decide after calling |make_string| that some
+characters should be removed from the end of the last string and transferred
+to the beginning of a string under construction. This basically a matter of
+resetting |str_start[str_ptr]|. It is not practical to ensure that the new
+value for this pointer is in range, so this procedure should be used carefully.
+
+@p procedure chop_last_string(@!p:pool_pointer);
+begin stat pool_in_use:=pool_in_use-(str_start[str_ptr]-p); @+tats;
+str_start[str_ptr]:=p;
+end;
+
+@ The most interesting string operation is string pool compaction. The idea
+is to recover unused space in the |str_pool| array by recopying the strings
+to close the gaps created when some strings become unused. All string
+numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
+numbers after |str_ptr|. If this fails to free enough pool space we issue an
+|overflow| error unless |needed=pool_size|. Calling |do_compaction|
+with |needed=pool_size| supresses all overflow tests.
+
+The compaction process starts with |last_fixed_str| because all lower numbered
+strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
+
+@<Glob...@>=
+@!last_fixed_str:str_number; {last permanently allocated string}
+@!fixed_str_use:str_number; {number of permanently allocated strings}
+
+@ @<Declare the procedure called |do_compaction|@>=
+procedure do_compaction(@!needed:pool_pointer);
+label done;
+var @!str_use:str_number; {a count of strings in use}
+@!r,@!s,@!t:str_number; {strings being manipulated}
+@!p,@!q:pool_pointer; {destination and source for copying string characters}
+begin @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
+r:=last_fixed_str;
+s:=next_str[r];
+p:=str_start[s];
+while s<>str_ptr do
+ begin while str_ref[s]=0 do
+ @<Advance |s| and add the old |s| to the list of free string numbers;
+ then |goto done| if |s=str_ptr|@>;
+ r:=s; s:=next_str[s];
+ incr(str_use);
+ @<Move string |r| back so that |str_start[r]=p|; make |p| the location
+ after the end of the string@>;
+ end;
+done: @<Move the current string back so that it starts at |p|@>;
+if needed<pool_size then
+ @<Make sure that there is room for another string with |needed| characters@>;
+stat @<Account for the compaction and make sure the statistics agree with the
+ global versions@>;
+tats@;
+strs_used_up:=str_use;
+end;
+
+@ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
+t:=next_str[last_fixed_str];
+while (str_ref[t]=max_str_ref)and(t<>str_ptr) do
+ begin incr(fixed_str_use);
+ last_fixed_str:=t;
+ t:=next_str[t];
+ end;
+str_use:=fixed_str_use
+
+@ Because of the way |flush_string| has been written, it should never be
+necessary to |goto done| here. The extra line of code seems worthwhile to
+preserve the generality of |do_compaction|.
+
+@<Advance |s| and add the old |s| to the list of free string numbers;...@>=
+begin t:=s;
+s:=next_str[s];
+next_str[r]:=s;
+next_str[t]:=next_str[str_ptr];
+next_str[str_ptr]:=t;
+if s=str_ptr then goto done;
+end
+
+@ The string currently starts at |str_start[r]| and ends just before
+|str_start[s]|. We don't change |str_start[s]| because it might be needed
+to locate the next string.
+
+@<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
+q:=str_start[r];
+str_start[r]:=p;
+while q<str_start[s] do
+ begin str_pool[p]:=str_pool[q];
+ incr(p); incr(q);
+ end
+
+@ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
+we do this, anything between them should be moved.
+
+@ @<Move the current string back so that it starts at |p|@>=
+q:=str_start[str_ptr];
+str_start[str_ptr]:=p;
+while q<pool_ptr do
+ begin str_pool[p]:=str_pool[q];
+ incr(p); incr(q);
+ end;
+pool_ptr:=p
+
+@ We must remember that |str_ptr| is not allowed to reach |max_strings|.
+
+@<Make sure that there is room for another string with |needed| char...@>=
+begin if str_use>=max_strings-1 then
+ begin str_overflowed:=true;
+ overflow("number of strings", max_strings-1-init_str_use);
+@:MetaPost capacity exceeded number of strings}{\quad number of strings@>
+ end;
+if pool_ptr+needed>max_pool_ptr then
+ if pool_ptr+needed>pool_size then
+ begin str_overflowed:=true;
+ overflow("pool size", pool_size-init_pool_ptr);
+@:MetaPost capacity exceeded pool size}{\quad pool size@>
+ end
+ else max_pool_ptr:=pool_ptr+needed;
+end
+
+@ Routines that can be called after string overflow need a way of checking
+whether it is safe to use |str_room|, |make_string|, or |do_compaction|.
+
+@<Glob...@>=
+@!str_overflowed:boolean; {is \MP\ aborting due to pool size of number of
+ strings?}
+
+@ @<Account for the compaction and make sure the statistics agree with...@>=
+if (str_start[str_ptr]<>pool_in_use)or(str_use<>strs_in_use) then
+ confusion("string");
+@:this can't happen string}{\quad string@>
+incr(pact_count);
+pact_chars:=pact_chars+pool_ptr-str_stop(last_fixed_str);
+pact_strs:=pact_strs+str_use-fixed_str_use;
+debug s:=str_ptr; t:=str_use;
+ while s<=max_str_ptr do
+ begin if t>max_str_ptr then confusion("""");
+ incr(t); s:=next_str[s];
+ end;
+ if t<=max_str_ptr then confusion("""");
+gubed
+
+@ A few more global variables are needed to keep track of statistics when
+|stat| $\ldots$ |tats| blocks are not commented out.
+
+@<Glob...@>=
+@!pact_count:integer; {number of string pool compactions so far}
+@!pact_chars:integer; {total number of characters moved during compactions}
+@!pact_strs:integer; {total number of strings moved during compactions}
+
+@ @<Initialize compaction statistics@>=
+pact_count:=0;
+pact_chars:=0;
+pact_strs:=0@;
+
+@ The following subroutine compares string |s| with another string of the
+same length that appears in |buffer| starting at position |k|;
+the result is |true| if and only if the strings are equal.
+
+@p function str_eq_buf(@!s:str_number;@!k:integer):boolean;
+ {test equality of strings}
+label not_found; {loop exit}
+var @!j: pool_pointer; {running index}
+@!result: boolean; {result of comparison}
+begin j:=str_start[s];
+while j<str_stop(s) do
+ begin if so(str_pool[j])<>buffer[k] then
+ begin result:=false; goto not_found;
+ end;
+ incr(j); incr(k);
+ end;
+result:=true;
+not_found: str_eq_buf:=result;
+end;
+
+@ Here is a similar routine, but it compares two strings in the string pool,
+and it does not assume that they have the same length. If the first string
+is lexicographically greater than, less than, or equal to the second,
+the result is respectively positive, negative, or zero.
+
+@p function str_vs_str(@!s,@!t:str_number):integer;
+ {test equality of strings}
+label exit;
+var @!j,@!k: pool_pointer; {running indices}
+@!ls,@!lt:integer; {lengths}
+@!l:integer; {length remaining to test}
+begin ls:=length(s); lt:=length(t);
+if ls<=lt then l:=ls@+else l:=lt;
+j:=str_start[s]; k:=str_start[t];
+while l>0 do
+ begin if str_pool[j]<>str_pool[k] then
+ begin str_vs_str:=str_pool[j]-str_pool[k]; return;
+ end;
+ incr(j); incr(k); decr(l);
+ end;
+str_vs_str:=ls-lt;
+exit:end;
+
+@ The initial values of |str_pool|, |str_start|, |pool_ptr|,
+and |str_ptr| are computed by the \.{INIMP} program, based in part
+on the information that \.{WEB} has output while processing \MP.
+@.INIMP@>
+@^string pool@>
+
+@p @!init function get_strings_started:boolean; {initializes the string pool,
+ but returns |false| if something goes wrong}
+label done,exit;
+var @!k,@!l:0..255; {small indices or counters}
+@!m,@!n:text_char; {characters input from |pool_file|}
+@!g:str_number; {garbage}
+@!a:integer; {accumulator for check sum}
+@!c:boolean; {check sum has been checked}
+begin pool_ptr:=0; str_ptr:=0; max_pool_ptr:=0; max_str_ptr:=0;
+str_start[0]:=0;
+next_str[0]:=1;
+str_overflowed:=false;
+stat pool_in_use:=0; strs_in_use:=0;
+ max_pl_used:=0; max_strs_used:=0;
+ @<Initialize compaction statistics@>;
+tats@;
+strs_used_up:=0;
+@<Make the first 256 strings@>;
+@<Read the other strings from the \.{MP.POOL} file and return |true|,
+ or give an error message and return |false|@>;
+last_fixed_str:=str_ptr-1;
+fixed_str_use:=str_ptr;
+exit:end;
+tini
+
+@ The first 256 strings will consist of a single character only.
+
+@<Make the first 256...@>=
+for k:=0 to 255 do
+ begin append_char(k);
+ g:=make_string; str_ref[g]:=max_str_ref;
+ end;
+
+@ The first 128 strings will contain 95 standard ASCII characters, and the
+other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
+unless a system-dependent change is made here. Installations that have
+an extended character set, where for example |xchr[@'32]=@t\.{\'^^Z\'}@>|,
+would like string @'32 to be printed as the single character @'32 instead
+of the three characters @'136, @'136, @'132 (\.{\^\^Z}). On the other hand,
+even people with an extended character set will want to represent string
+@'15 by \.{\^\^M}, since @'15 is ASCII's ``carriage return'' code; the idea is
+to produce visible strings instead of tabs or line-feeds or carriage-returns
+or bell-rings or characters that are treated anomalously in text files.
+
+Unprintable characters of codes 128--255 are, similarly, rendered
+\.{\^\^80}--\.{\^\^ff}.
+
+The boolean expression defined here should be |true| unless \MP\ internal
+code number~|k| corresponds to a non-troublesome visible symbol in the
+local character set.
+If character |k| cannot be printed, and |k<@'200|, then character |k+@'100| or
+|k-@'100| must be printable; moreover, ASCII codes |[@'60..@'71, @'141..@'146]|
+must be printable.
+@^character set dependencies@>
+@^system dependencies@>
+
+@<Character |k| cannot be printed@>=
+ (k<" ")or(k>"~")
+
+@ When the \.{WEB} system program called \.{TANGLE} processes the \.{MP.WEB}
+description that you are now reading, it outputs the \PASCAL\ program
+\.{MP.PAS} and also a string pool file called \.{MP.POOL}. The \.{INIMP}
+@.WEB@>@.INIMP@>
+program reads the latter file, where each string appears as a two-digit decimal
+length followed by the string itself, and the information is recorded in
+\MP's string memory.
+
+@<Glob...@>=
+@!init @!pool_file:alpha_file; {the string-pool file output by \.{TANGLE}}
+tini
+
+@ @d bad_pool(#)==begin wake_up_terminal; write_ln(term_out,#);
+ a_close(pool_file); get_strings_started:=false; return;
+ end
+@<Read the other strings...@>=
+name_of_file:=pool_name; {we needn't set |name_length|}
+if a_open_in(pool_file) then
+ begin c:=false;
+ repeat @<Read one string, but return |false| if the
+ string memory space is getting too tight for comfort@>;
+ until c;
+ a_close(pool_file); get_strings_started:=true;
+ end
+else bad_pool('! I can''t read MP.POOL.')
+@.I can't read MP.POOL@>
+
+@ @<Read one string...@>=
+begin if eof(pool_file) then bad_pool('! MP.POOL has no check sum.');
+@.MP.POOL has no check sum@>
+read(pool_file,m,n); {read two digits of string length}
+if m='*' then @<Check the pool check sum@>
+else begin if (xord[m]<"0")or(xord[m]>"9")or@|
+ (xord[n]<"0")or(xord[n]>"9") then
+ bad_pool('! MP.POOL line doesn''t begin with two digits.');
+@.MP.POOL line doesn't...@>
+ l:=xord[m]*10+xord[n]-"0"*11; {compute the length}
+ if pool_ptr+l+string_vacancies>pool_size then
+ bad_pool('! You have to increase POOLSIZE.');
+@.You have to increase POOLSIZE@>
+ if str_ptr+strings_vacant>=max_strings then
+ bad_pool('! You have to increase MAXSTRINGS.');
+@.You have to increase MAXSTRINGS@>
+ for k:=1 to l do
+ begin if eoln(pool_file) then m:=' '@+else read(pool_file,m);
+ append_char(xord[m]);
+ end;
+ read_ln(pool_file); g:=make_string; str_ref[g]:=max_str_ref;
+ end;
+end
+
+@ The \.{WEB} operation \.{@@\$} denotes the value that should be at the
+end of this \.{MP.POOL} file; any other value means that the wrong pool
+file has been loaded.
+@^check sum@>
+
+@<Check the pool check sum@>=
+begin a:=0; k:=1;
+loop@+ begin if (xord[n]<"0")or(xord[n]>"9") then
+ bad_pool('! MP.POOL check sum doesn''t have nine digits.');
+@.MP.POOL check sum...@>
+ a:=10*a+xord[n]-"0";
+ if k=9 then goto done;
+ incr(k); read(pool_file,n);
+ end;
+done: if a<>@$ then bad_pool('! MP.POOL doesn''t match; TANGLE me again.');
+@.MP.POOL doesn't match@>
+c:=true;
+end
+
+@* \[5] On-line and off-line printing.
+Messages that are sent to a user's terminal and to the transcript-log file
+are produced by several `|print|' procedures. These procedures will
+direct their output to a variety of places, based on the setting of
+the global variable |selector|, which has the following possible
+values:
+
+\yskip
+\hang |term_and_log|, the normal setting, prints on the terminal and on the
+ transcript file.
+
+\hang |log_only|, prints only on the transcript file.
+
+\hang |term_only|, prints only on the terminal.
+
+\hang |no_print|, doesn't print at all. This is used only in rare cases
+ before the transcript file is open.
+
+\hang |ps_file_only| prints only on the \ps\ output file.
+
+\hang |pseudo|, puts output into a cyclic buffer that is used
+ by the |show_context| routine; when we get to that routine we shall discuss
+ the reasoning behind this curious mode.
+
+\hang |new_string|, appends the output to the current string in the
+ string pool.
+
+\hang |0..max_write_files-1| prints on one of the files used for the \&{write}
+@:write_}{\&{write} primitive@>
+ command.
+
+\yskip
+\noindent The symbolic names `|term_and_log|', etc., have been assigned
+numeric codes that satisfy the convenient relations |no_print+1=term_only|,
+|no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
+relations are not used when |selector| could be |pseudo|, |new_string|,
+or |ps_file_only|. We need not check for unprintable characters when
+|selector<pseudo|.
+
+Four additional global variables, |tally|, |term_offset|, |file_offset|,
+and |ps_offset| record the number of characters that have been printed
+since they were most recently cleared to zero. We use |tally| to record
+the length of (possibly very long) stretches of printing; |term_offset|,
+|file_offset|, and |ps_offset|, on the other hand, keep track of how many
+characters have appeared so far on the current line that has been output
+to the terminal, the transcript file, or the \ps\ output file, respectively.
+
+@d new_string=max_write_files {printing is deflected to the string pool}
+@d ps_file_only=new_string+1 {printing goes to the \ps\ output file}
+@d pseudo=new_string+2 {special |selector| setting for |show_context|}
+@d no_print=new_string+3 {|selector| setting that makes data disappear}
+@d term_only=new_string+4 {printing is destined for the terminal only}
+@d log_only=new_string+5 {printing is destined for the transcript file only}
+@d term_and_log=new_string+6 {normal |selector| setting}
+@d max_selector=term_and_log {highest selector setting}
+
+@<Glob...@>=
+@!log_file : alpha_file; {transcript of \MP\ session}
+@!ps_file: alpha_file; {the generic font output goes here}
+@!selector : 0..max_selector; {where to print a message}
+@!dig : array[0..22] of 0..15; {digits in a number being output}
+@!tally : integer; {the number of characters recently printed}
+@!term_offset : 0..max_print_line;
+ {the number of characters on the current terminal line}
+@!file_offset : 0..max_print_line;
+ {the number of characters on the current file line}
+@!ps_offset : integer;
+ {the number of characters on the current \ps\ file line}
+@!trick_buf:array[0..error_line] of ASCII_code; {circular buffer for
+ pseudoprinting}
+@!trick_count: integer; {threshold for pseudoprinting, explained later}
+@!first_count: integer; {another variable for pseudoprinting}
+
+@ @<Initialize the output routines@>=
+selector:=term_only; tally:=0; term_offset:=0; file_offset:=0; ps_offset:=0;
+
+@ Macro abbreviations for output to the terminal and to the log file are
+defined here for convenience. Some systems need special conventions
+for terminal output, and it is possible to adhere to those conventions
+by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
+@^system dependencies@>
+
+@d wterm(#)==write(term_out,#)
+@d wterm_ln(#)==write_ln(term_out,#)
+@d wterm_cr==write_ln(term_out)
+@d wlog(#)==write(log_file,#)
+@d wlog_ln(#)==write_ln(log_file,#)
+@d wlog_cr==write_ln(log_file)
+@d wps(#)==write(ps_file,#)
+@d wps_ln(#)==write_ln(ps_file,#)
+@d wps_cr==write_ln(ps_file)
+
+@ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
+use an array |wr_file| that will be declared later.
+
+@<Basic print...@>=
+procedure print_ln; {prints an end-of-line}
+begin case selector of
+term_and_log: begin wterm_cr; wlog_cr;
+ term_offset:=0; file_offset:=0;
+ end;
+log_only: begin wlog_cr; file_offset:=0;
+ end;
+term_only: begin wterm_cr; term_offset:=0;
+ end;
+ps_file_only: begin wps_cr; ps_offset:=0;
+ end;
+no_print,pseudo,new_string: do_nothing;
+othercases write_ln(wr_file[selector])
+endcases;
+end; {note that |tally| is not affected}
+
+@ The |print_visible_char| procedure sends one character to the desired
+destination, using the |xchr| array to map it into an external character
+compatible with |input_ln|. (It assumes that it is always called with
+a visible ASCII character.) All printing comes through |print_ln| or
+|print_char|, which ultimately calls |print_visible_char|, hence these
+routines are the ones that limit lines to at most |max_print_line| characters.
+But we must make an exception for the \ps\ output file since it is not safe
+to cut up lines arbitrarily in \ps.
+
+Procedure |unit_str_room| needs to be declared |forward| here because it calls
+|do_compaction| and |do_compaction| can call the error routines. Actually,
+|unit_str_room| avoids |overflow| errors but it can call |confusion|.
+
+@<Basic printing...@>=
+procedure@?unit_str_room; forward;@t\2@>@/
+procedure print_visible_char(@!s:ASCII_code); {prints a single character}
+label done;
+begin case selector of
+term_and_log: begin wterm(xchr[s]); wlog(xchr[s]);
+ incr(term_offset); incr(file_offset);
+ if term_offset=max_print_line then
+ begin wterm_cr; term_offset:=0;
+ end;
+ if file_offset=max_print_line then
+ begin wlog_cr; file_offset:=0;
+ end;
+ end;
+log_only: begin wlog(xchr[s]); incr(file_offset);
+ if file_offset=max_print_line then print_ln;
+ end;
+term_only: begin wterm(xchr[s]); incr(term_offset);
+ if term_offset=max_print_line then print_ln;
+ end;
+ps_file_only: begin wps(xchr[s]); incr(ps_offset);
+ end;
+no_print: do_nothing;
+pseudo: if tally<trick_count then trick_buf[tally mod error_line]:=s;
+new_string: begin if pool_ptr>=max_pool_ptr then
+ begin unit_str_room;
+ if pool_ptr>=pool_size then goto done;
+ {drop characters if string space is full}
+ end;
+ append_char(s);
+ end;
+othercases write(wr_file[selector],xchr[s])
+endcases;
+done:incr(tally);
+end;
+
+@ The |print_char| procedure sends one character to the desired destination.
+File names and string expressions might contain |ASCII_code| values that
+can't be printed using |print_visible_char|. These characters will be
+printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
+(This procedure assumes that it is safe to bypass all checks for unprintable
+characters when |selector| is in the range |0..max_write_files-1| or when
+|selector=ps_file_only|. In the former case the user might want to write
+unprintable characters, and in the latter case the \ps\ printing routines
+check their arguments themselves before calling |print_char| or |print|.)
+
+@d print_lc_hex(#)==l:=#;
+ if l<10 then print_visible_char(l+"0")@+else print_visible_char(l-10+"a")
+
+@<Basic printing...@>=
+procedure print_char(@!k:ASCII_code); {prints a single character}
+var l:0..255; {small index or counter}
+begin if selector<pseudo then print_visible_char(k)
+else if @<Character |k| cannot be printed@> then
+ begin print_visible_char("^"); print_visible_char("^");
+ if k<@'100 then print_visible_char(k+@'100)
+ else if k<@'200 then print_visible_char(k-@'100)
+ else begin print_lc_hex(k div 16); print_lc_hex(k mod 16);
+ end;
+ end
+else print_visible_char(k);
+end;
+
+@ An entire string is output by calling |print|. Note that if we are outputting
+the single standard ASCII character \.c, we could call |print("c")|, since
+|"c"=99| is the number of a single-character string, as explained above. But
+|print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
+routine when it knows that this is safe. (The present implementation
+assumes that it is always safe to print a visible ASCII character.)
+@^system dependencies@>
+
+@<Basic print...@>=
+procedure print(@!s:integer); {prints string |s|}
+var @!j:pool_pointer; {current character code position}
+begin if (s<0)or(s>max_str_ptr) then s:="???"; {this can't happen}
+@.???@>
+j:=str_start[s];
+while j<str_stop(s) do
+ begin print_char(so(str_pool[j])); incr(j);
+ end;
+end;
+
+@ By popular demand, \MP\ prints the banner line only on the transcript file.
+Thus there is nothing special to be printed here.
+
+@<Initialize the output...@>=
+update_terminal;
+
+@ The procedure |print_nl| is like |print|, but it makes sure that the
+string appears at the beginning of a new line.
+
+@<Basic print...@>=
+procedure print_nl(@!s:str_number); {prints string |s| at beginning of line}
+begin case selector of
+term_and_log: if (term_offset>0)or(file_offset>0) then print_ln;
+log_only: if file_offset>0 then print_ln;
+term_only: if term_offset>0 then print_ln;
+ps_file_only: if ps_offset>0 then print_ln;
+no_print,pseudo,new_string: do_nothing;
+end; {there are no other cases}
+print(s);
+end;
+
+@ An array of digits in the range |0..9| is printed by |print_the_digs|.
+
+@<Basic print...@>=
+procedure print_the_digs(@!k:eight_bits);
+ {prints |dig[k-1]|$\,\ldots\,$|dig[0]|}
+begin while k>0 do
+ begin decr(k); print_char("0"+dig[k]);
+ end;
+end;
+
+@ The following procedure, which prints out the decimal representation of a
+given integer |n|, has been written carefully so that it works properly
+if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
+to negative arguments, since such operations are not implemented consistently
+by all \PASCAL\ compilers.
+
+@<Basic print...@>=
+procedure print_int(@!n:integer); {prints an integer in decimal form}
+var k:0..23; {index to current digit; we assume that $|n|<10^{23}$}
+@!m:integer; {used to negate |n| in possibly dangerous cases}
+begin k:=0;
+if n<0 then
+ begin print_char("-");
+ if n>-100000000 then negate(n)
+ else begin m:=-1-n; n:=m div 10; m:=(m mod 10)+1; k:=1;
+ if m<10 then dig[0]:=m
+ else begin dig[0]:=0; incr(n);
+ end;
+ end;
+ end;
+repeat dig[k]:=n mod 10; n:=n div 10; incr(k);
+until n=0;
+print_the_digs(k);
+end;
+
+@ \MP\ also makes use of a trivial procedure to print two digits. The
+following subroutine is usually called with a parameter in the range |0<=n<=99|.
+
+@p procedure print_dd(@!n:integer); {prints two least significant digits}
+begin n:=abs(n) mod 100; print_char("0"+(n div 10));
+print_char("0"+(n mod 10));
+end;
+
+@ Here is a procedure that asks the user to type a line of input,
+assuming that the |selector| setting is either |term_only| or |term_and_log|.
+The input is placed into locations |first| through |last-1| of the
+|buffer| array, and echoed on the transcript file if appropriate.
+
+This procedure is never called when |interaction<scroll_mode|.
+
+@d prompt_input(#)==begin wake_up_terminal; print(#); term_input;
+ end {prints a string and gets a line of input}
+
+@p procedure term_input; {gets a line from the terminal}
+var @!k:0..buf_size; {index into |buffer|}
+begin update_terminal; {Now the user sees the prompt for sure}
+if not input_ln(term_in,true) then fatal_error("End of file on the terminal!");
+@.End of file on the terminal@>
+term_offset:=0; {the user's line ended with \<\rm return>}
+decr(selector); {prepare to echo the input}
+if last<>first then for k:=first to last-1 do print(buffer[k]);
+print_ln; buffer[last]:="%"; incr(selector); {restore previous status}
+end;
+
+@* \[6] Reporting errors.
+When something anomalous is detected, \MP\ typically does something like this:
+$$\vbox{\halign{#\hfil\cr
+|print_err("Something anomalous has been detected");|\cr
+|help3("This is the first line of my offer to help.")|\cr
+|("This is the second line. I'm trying to")|\cr
+|("explain the best way for you to proceed.");|\cr
+|error;|\cr}}$$
+A two-line help message would be given using |help2|, etc.; these informal
+helps should use simple vocabulary that complements the words used in the
+official error message that was printed. (Outside the U.S.A., the help
+messages should preferably be translated into the local vernacular. Each
+line of help is at most 60 characters long, in the present implementation,
+so that |max_print_line| will not be exceeded.)
+
+The |print_err| procedure supplies a `\.!' before the official message,
+and makes sure that the terminal is awake if a stop is going to occur.
+The |error| procedure supplies a `\..' after the official message, then it
+shows the location of the error; and if |interaction=error_stop_mode|,
+it also enters into a dialog with the user, during which time the help
+message may be printed.
+@^system dependencies@>
+
+@ The global variable |interaction| has four settings, representing increasing
+amounts of user interaction:
+
+@d batch_mode=0 {omits all stops and omits terminal output}
+@d nonstop_mode=1 {omits all stops}
+@d scroll_mode=2 {omits error stops}
+@d error_stop_mode=3 {stops at every opportunity to interact}
+@d print_err(#)==begin if interaction=error_stop_mode then wake_up_terminal;
+ print_nl("! "); print(#);
+@.!\relax@>
+ end
+
+@<Glob...@>=
+@!interaction:batch_mode..error_stop_mode; {current level of interaction}
+
+@ @<Set init...@>=interaction:=error_stop_mode;
+
+@ \MP\ is careful not to call |error| when the print |selector| setting
+might be unusual. The only possible values of |selector| at the time of
+error messages are
+
+\yskip\hang|no_print| (when |interaction=batch_mode|
+ and |log_file| not yet open);
+
+\hang|term_only| (when |interaction>batch_mode| and |log_file| not yet open);
+
+\hang|log_only| (when |interaction=batch_mode| and |log_file| is open);
+
+\hang|term_and_log| (when |interaction>batch_mode| and |log_file| is open).
+
+@<Initialize the print |selector| based on |interaction|@>=
+if interaction=batch_mode then selector:=no_print@+else selector:=term_only
+
+@ A global variable |deletions_allowed| is set |false| if the |get_next|
+routine is active when |error| is called; this ensures that |get_next|
+will never be called recursively.
+@^recursion@>
+
+The global variable |history| records the worst level of error that
+has been detected. It has four possible values: |spotless|, |warning_issued|,
+|error_message_issued|, and |fatal_error_stop|.
+
+Another global variable, |error_count|, is increased by one when an
+|error| occurs without an interactive dialog, and it is reset to zero at
+the end of every statement. If |error_count| reaches 100, \MP\ decides
+that there is no point in continuing further.
+
+@d spotless=0 {|history| value when nothing has been amiss yet}
+@d warning_issued=1 {|history| value when |begin_diagnostic| has been called}
+@d error_message_issued=2 {|history| value when |error| has been called}
+@d fatal_error_stop=3 {|history| value when termination was premature}
+
+@<Glob...@>=
+@!deletions_allowed:boolean; {is it safe for |error| to call |get_next|?}
+@!history:spotless..fatal_error_stop; {has the source input been clean so far?}
+@!error_count:-1..100; {the number of scrolled errors since the
+ last statement ended}
+
+@ The value of |history| is initially |fatal_error_stop|, but it will
+be changed to |spotless| if \MP\ survives the initialization process.
+
+@<Set init...@>=
+deletions_allowed:=true; error_count:=0; {|history| is initialized elsewhere}
+
+@ Since errors can be detected almost anywhere in \MP, we want to declare the
+error procedures near the beginning of the program. But the error procedures
+in turn use some other procedures, which need to be declared |forward|
+before we get to |error| itself.
+
+It is possible for |error| to be called recursively if some error arises
+when |get_next| is being used to delete a token, and/or if some fatal error
+occurs while \MP\ is trying to fix a non-fatal one. But such recursion
+@^recursion@>
+is never more than two levels deep.
+
+@<Error handling...@>=
+procedure@?normalize_selector; forward;@t\2@>@/
+procedure@?get_next; forward;@t\2@>@/
+procedure@?term_input; forward;@t\2@>@/
+procedure@?show_context; forward;@t\2@>@/
+procedure@?begin_file_reading; forward;@t\2@>@/
+procedure@?open_log_file; forward;@t\2@>@/
+procedure@?close_files_and_terminate; forward;@t\2@>@/
+procedure@?clear_for_error_prompt; forward;@t\2@>@/
+@t\4\hskip-\fontdimen2\font@>@;@+@!debug@+procedure@?debug_help;
+ forward;@;@+gubed@;@/
+@t\4@>@<Declare the procedure called |flush_string|@>
+
+@ Individual lines of help are recorded in the array |help_line|, which
+contains entries in positions |0..(help_ptr-1)|. They should be printed
+in reverse order, i.e., with |help_line[0]| appearing last.
+
+@d hlp1(#)==help_line[0]:=#;@+end
+@d hlp2(#)==help_line[1]:=#; hlp1
+@d hlp3(#)==help_line[2]:=#; hlp2
+@d hlp4(#)==help_line[3]:=#; hlp3
+@d hlp5(#)==help_line[4]:=#; hlp4
+@d hlp6(#)==help_line[5]:=#; hlp5
+@d help0==help_ptr:=0 {sometimes there might be no help}
+@d help1==@+begin help_ptr:=1; hlp1 {use this with one help line}
+@d help2==@+begin help_ptr:=2; hlp2 {use this with two help lines}
+@d help3==@+begin help_ptr:=3; hlp3 {use this with three help lines}
+@d help4==@+begin help_ptr:=4; hlp4 {use this with four help lines}
+@d help5==@+begin help_ptr:=5; hlp5 {use this with five help lines}
+@d help6==@+begin help_ptr:=6; hlp6 {use this with six help lines}
+
+@<Glob...@>=
+@!help_line:array[0..5] of str_number; {helps for the next |error|}
+@!help_ptr:0..6; {the number of help lines present}
+@!use_err_help:boolean; {should the |err_help| string be shown?}
+@!err_help:str_number; {a string set up by \&{errhelp}}
+
+@ @<Set init...@>=
+help_ptr:=0; use_err_help:=false; err_help:=0;
+
+@ The |jump_out| procedure just cuts across all active procedure levels and
+goes to |end_of_MP|. This is the only nonlocal |@!goto| statement in the
+whole program. It is used when there is no recovery from a particular error.
+
+Some \PASCAL\ compilers do not implement non-local |goto| statements.
+@^system dependencies@>
+In such cases the body of |jump_out| should simply be
+`|close_files_and_terminate|;\thinspace' followed by a call on some system
+procedure that quietly terminates the program.
+
+@<Error hand...@>=
+procedure jump_out;
+begin goto end_of_MP;
+end;
+
+@ Here now is the general |error| routine.
+
+@<Error hand...@>=
+procedure error; {completes the job of error reporting}
+label continue,exit;
+var @!c:ASCII_code; {what the user types}
+@!s1,@!s2,@!s3:integer; {used to save global variables when deleting tokens}
+@!j:pool_pointer; {character position being printed}
+begin if history<error_message_issued then history:=error_message_issued;
+print_char("."); show_context;
+if interaction=error_stop_mode then @<Get user's advice and |return|@>;
+incr(error_count);
+if error_count=100 then
+ begin print_nl("(That makes 100 errors; please try again.)");
+@.That makes 100 errors...@>
+ history:=fatal_error_stop; jump_out;
+ end;
+@<Put help message on the transcript file@>;
+exit:end;
+
+@ @<Get user's advice...@>=
+loop@+begin continue: clear_for_error_prompt; prompt_input("? ");
+@.?\relax@>
+ if last=first then return;
+ c:=buffer[first];
+ if c>="a" then c:=c+"A"-"a"; {convert to uppercase}
+ @<Interpret code |c| and |return| if done@>;
+ end
+
+@ It is desirable to provide an `\.E' option here that gives the user
+an easy way to return from \MP\ to the system editor, with the offending
+line ready to be edited. But such an extension requires some system
+wizardry, so the present implementation simply types out the name of the
+file that should be
+edited and the relevant line number.
+@^system dependencies@>
+
+There is a secret `\.D' option available when the debugging routines haven't
+been commented~out.
+@^debugging@>
+
+@<Interpret code |c| and |return| if done@>=
+case c of
+"0","1","2","3","4","5","6","7","8","9": if deletions_allowed then
+ @<Delete |c-"0"| tokens and |goto continue|@>;
+@t\4\4@>@;@+@!debug "D":begin debug_help;goto continue;@+end;@+gubed@/
+"E": if file_ptr>0 then
+ begin print_nl("You want to edit file ");
+@.You want to edit file x@>
+ print(input_stack[file_ptr].name_field);
+ print(" at line "); print_int(true_line);@/
+ interaction:=scroll_mode; jump_out;
+ end;
+"H": @<Print the help information and |goto continue|@>;
+"I":@<Introduce new material from the terminal and |return|@>;
+"Q","R","S":@<Change the interaction level and |return|@>;
+"X":begin interaction:=scroll_mode; jump_out;
+ end;
+othercases do_nothing
+endcases;@/
+@<Print the menu of available options@>
+
+@ @<Print the menu...@>=
+begin print("Type <return> to proceed, S to scroll future error messages,");@/
+@.Type <return> to proceed...@>
+print_nl("R to run without stopping, Q to run quietly,");@/
+print_nl("I to insert something, ");
+if file_ptr>0 then print("E to edit your file,");
+if deletions_allowed then
+ print_nl("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
+print_nl("H for help, X to quit.");
+end
+
+@ Here the author of \MP\ apologizes for making use of the numerical
+relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
+|batch_mode|, |nonstop_mode|, |scroll_mode|.
+@^Knuth, Donald Ervin@>
+
+@<Change the interaction...@>=
+begin error_count:=0; interaction:=batch_mode+c-"Q";
+print("OK, entering ");
+case c of
+"Q":begin print("batchmode"); decr(selector);
+ end;
+"R":print("nonstopmode");
+"S":print("scrollmode");
+end; {there are no other cases}
+print("..."); print_ln; update_terminal; return;
+end
+
+@ When the following code is executed, |buffer[(first+1)..(last-1)]| may
+contain the material inserted by the user; otherwise another prompt will
+be given. In order to understand this part of the program fully, you need
+to be familiar with \MP's input stacks.
+
+@<Introduce new material...@>=
+begin begin_file_reading; {enter a new syntactic level for terminal input}
+if last>first+1 then
+ begin loc:=first+1; buffer[first]:=" ";
+ end
+else begin prompt_input("insert>"); loc:=first;
+@.insert>@>
+ end;
+first:=last+1; cur_input.limit_field:=last; return;
+end
+
+@ We allow deletion of up to 99 tokens at a time.
+
+@<Delete |c-"0"| tokens...@>=
+begin s1:=cur_cmd; s2:=cur_mod; s3:=cur_sym; OK_to_interrupt:=false;
+if (last>first+1) and (buffer[first+1]>="0")and(buffer[first+1]<="9") then
+ c:=c*10+buffer[first+1]-"0"*11
+else c:=c-"0";
+while c>0 do
+ begin get_next; {one-level recursive call of |error| is possible}
+ @<Decrease the string reference count, if the current token is a string@>;
+ decr(c);
+ end;
+cur_cmd:=s1; cur_mod:=s2; cur_sym:=s3; OK_to_interrupt:=true;
+help2("I have just deleted some text, as you asked.")@/
+("You can now delete more, or insert, or whatever.");
+show_context; goto continue;
+end
+
+@ @<Print the help info...@>=
+begin if use_err_help then
+ begin @<Print the string |err_help|, possibly on several lines@>;
+ use_err_help:=false;
+ end
+else begin if help_ptr=0 then
+ help2("Sorry, I don't know how to help in this situation.")@/
+ @t\kern1em@>("Maybe you should try asking a human?");
+ repeat decr(help_ptr); print(help_line[help_ptr]); print_ln;
+ until help_ptr=0;
+ end;
+help4("Sorry, I already gave what help I could...")@/
+ ("Maybe you should try asking a human?")@/
+ ("An error might have occurred before I noticed any problems.")@/
+ ("``If all else fails, read the instructions.''");@/
+goto continue;
+end
+
+@ @<Print the string |err_help|, possibly on several lines@>=
+j:=str_start[err_help];
+while j<str_stop(err_help) do
+ begin if str_pool[j]<>si("%") then print(so(str_pool[j]))
+ else if j+1=str_stop(err_help) then print_ln
+ else if str_pool[j+1]<>si("%") then print_ln
+ else begin incr(j); print_char("%");
+ end;
+ incr(j);
+ end
+
+@ @<Put help message on the transcript file@>=
+if interaction>batch_mode then decr(selector); {avoid terminal output}
+if use_err_help then
+ begin print_nl("");
+ @<Print the string |err_help|, possibly on several lines@>;
+ end
+else while help_ptr>0 do
+ begin decr(help_ptr); print_nl(help_line[help_ptr]);
+ end;
+print_ln;
+if interaction>batch_mode then incr(selector); {re-enable terminal output}
+print_ln
+
+@ In anomalous cases, the print selector might be in an unknown state;
+the following subroutine is called to fix things just enough to keep
+running a bit longer.
+
+@p procedure normalize_selector;
+begin if log_opened then selector:=term_and_log
+else selector:=term_only;
+if job_name=0 then open_log_file;
+if interaction=batch_mode then decr(selector);
+end;
+
+@ The following procedure prints \MP's last words before dying.
+
+@d succumb==begin if interaction=error_stop_mode then
+ interaction:=scroll_mode; {no more interaction}
+ if log_opened then error;
+ @!debug if interaction>batch_mode then debug_help;@;@+gubed@;@/
+ history:=fatal_error_stop; jump_out; {irrecoverable error}
+ end
+
+@<Error hand...@>=
+procedure fatal_error(@!s:str_number); {prints |s|, and that's it}
+begin normalize_selector;@/
+print_err("Emergency stop"); help1(s); succumb;
+@.Emergency stop@>
+end;
+
+@ Here is the most dreaded error message.
+
+@<Error hand...@>=
+procedure overflow(@!s:str_number;@!n:integer); {stop due to finiteness}
+begin normalize_selector;
+print_err("MetaPost capacity exceeded, sorry [");
+@.MetaPost capacity exceeded ...@>
+print(s); print_char("="); print_int(n); print_char("]");
+help2("If you really absolutely need more capacity,")@/
+ ("you can ask a wizard to enlarge me.");
+succumb;
+end;
+
+@ The program might sometime run completely amok, at which point there is
+no choice but to stop. If no previous error has been detected, that's bad
+news; a message is printed that is really intended for the \MP\
+maintenance person instead of the user (unless the user has been
+particularly diabolical). The index entries for `this can't happen' may
+help to pinpoint the problem.
+@^dry rot@>
+
+@<Error hand...@>=
+procedure confusion(@!s:str_number);
+ {consistency check violated; |s| tells where}
+begin normalize_selector;
+if history<error_message_issued then
+ begin print_err("This can't happen ("); print(s); print_char(")");
+@.This can't happen@>
+ help1("I'm broken. Please show this to someone who can fix can fix");
+ end
+else begin print_err("I can't go on meeting you like this");
+@.I can't go on...@>
+ help2("One of your faux pas seems to have wounded me deeply...")@/
+ ("in fact, I'm barely conscious. Please fix it and try again.");
+ end;
+succumb;
+end;
+
+@ Users occasionally want to interrupt \MP\ while it's running.
+If the \PASCAL\ runtime system allows this, one can implement
+a routine that sets the global variable |interrupt| to some nonzero value
+when such an interrupt is signaled. Otherwise there is probably at least
+a way to make |interrupt| nonzero using the \PASCAL\ debugger.
+@^system dependencies@>
+@^debugging@>
+
+@d check_interrupt==begin if interrupt<>0 then pause_for_instructions;
+ end
+
+@<Global...@>=
+@!interrupt:integer; {should \MP\ pause for instructions?}
+@!OK_to_interrupt:boolean; {should interrupts be observed?}
+
+@ @<Set init...@>=
+interrupt:=0; OK_to_interrupt:=true;
+
+@ When an interrupt has been detected, the program goes into its
+highest interaction level and lets the user have the full flexibility of
+the |error| routine. \MP\ checks for interrupts only at times when it is
+safe to do this.
+
+@p procedure pause_for_instructions;
+begin if OK_to_interrupt then
+ begin interaction:=error_stop_mode;
+ if (selector=log_only)or(selector=no_print) then
+ incr(selector);
+ print_err("Interruption");
+@.Interruption@>
+ help3("You rang?")@/
+ ("Try to insert some instructions for me (e.g.,`I show x'),")@/
+ ("unless you just want to quit by typing `X'.");
+ deletions_allowed:=false; error; deletions_allowed:=true;
+ interrupt:=0;
+ end;
+end;
+
+@ Many of \MP's error messages state that a missing token has been
+inserted behind the scenes. We can save string space and program space
+by putting this common code into a subroutine.
+
+@p procedure missing_err(@!s:str_number);
+begin print_err("Missing `"); print(s); print("' has been inserted");
+@.Missing...inserted@>
+end;
+
+@* \[7] Arithmetic with scaled numbers.
+The principal computations performed by \MP\ are done entirely in terms of
+integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
+program can be carried out in exactly the same way on a wide variety of
+computers, including some small ones.
+@^small computers@>
+
+But \PASCAL\ does not define the @!|div|
+operation in the case of negative dividends; for example, the result of
+|(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
+There are two principal types of arithmetic: ``translation-preserving,''
+in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
+``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
+two \MP s, which can produce different results, although the differences
+should be negligible when the language is being used properly.
+The \TeX\ processor has been defined carefully so that both varieties
+of arithmetic will produce identical output, but it would be too
+inefficient to constrain \MP\ in a similar way.
+
+@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MP\ likes}
+
+@ One of \MP's most common operations is the calculation of
+$\lfloor{a+b\over2}\rfloor$,
+the midpoint of two given integers |a| and~|b|. The only decent way to do
+this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
+far more efficient to calculate `|(a+b)| right shifted one bit'.
+
+Therefore the midpoint operation will always be denoted by `|half(a+b)|'
+in this program. If \MP\ is being implemented with languages that permit
+binary shifting, the |half| macro should be changed to make this operation
+as efficient as possible. Since some languages have shift operators that can
+only be trusted to work on positive numbers, there is also a macro |halfp|
+that is used only when the quantity being halved is known to be positive
+or zero.
+
+@d half(#)==(#) div 2
+@d halfp(#)==(#) div 2
+
+@ A single computation might use several subroutine calls, and it is
+desirable to avoid producing multiple error messages in case of arithmetic
+overflow. So the routines below set the global variable |arith_error| to |true|
+instead of reporting errors directly to the user.
+
+@<Glob...@>=
+@!arith_error:boolean; {has arithmetic overflow occurred recently?}
+
+@ @<Set init...@>=
+arith_error:=false;
+
+@ At crucial points the program will say |check_arith|, to test if
+an arithmetic error has been detected.
+
+@d check_arith==begin if arith_error then clear_arith;@+end
+
+@p procedure clear_arith;
+begin print_err("Arithmetic overflow");
+@.Arithmetic overflow@>
+help4("Uh, oh. A little while ago one of the quantities that I was")@/
+ ("computing got too large, so I'm afraid your answers will be")@/
+ ("somewhat askew. You'll probably have to adopt different")@/
+ ("tactics next time. But I shall try to carry on anyway.");
+error; arith_error:=false;
+end;
+
+@ Addition is not always checked to make sure that it doesn't overflow,
+but in places where overflow isn't too unlikely the |slow_add| routine
+is used.
+
+@p function slow_add(@!x,@!y:integer):integer;
+begin if x>=0 then
+ if y<=el_gordo-x then slow_add:=x+y
+ else begin arith_error:=true; slow_add:=el_gordo;
+ end
+else if -y<=el_gordo+x then slow_add:=x+y
+ else begin arith_error:=true; slow_add:=-el_gordo;
+ end;
+end;
+
+@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
+of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
+positions from the right end of a binary computer word.
+
+@d quarter_unit == @'40000 {$2^{14}$, represents 0.250000}
+@d half_unit == @'100000 {$2^{15}$, represents 0.50000}
+@d three_quarter_unit == @'140000 {$3\cdot2^{14}$, represents 0.75000}
+@d unity == @'200000 {$2^{16}$, represents 1.00000}
+@d two == @'400000 {$2^{17}$, represents 2.00000}
+@d three == @'600000 {$2^{17}+2^{16}$, represents 3.00000}
+
+@<Types...@>=
+@!scaled = integer; {this type is used for scaled integers}
+@!small_number=0..63; {this type is self-explanatory}
+
+@ The following function is used to create a scaled integer from a given decimal
+fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
+given in |dig[i]|, and the calculation produces a correctly rounded result.
+
+@p function round_decimals(@!k:small_number) : scaled;
+ {converts a decimal fraction}
+var @!a:integer; {the accumulator}
+begin a:=0;
+while k>0 do
+ begin decr(k); a:=(a+dig[k]*two) div 10;
+ end;
+round_decimals:=halfp(a+1);
+end;
+
+@ Conversely, here is a procedure analogous to |print_int|. If the output
+of this procedure is subsequently read by \MP\ and converted by the
+|round_decimals| routine above, it turns out that the original value will
+be reproduced exactly. A decimal point is printed only if the value is
+not an integer. If there is more than one way to print the result with
+the optimum number of digits following the decimal point, the closest
+possible value is given.
+
+The invariant relation in the \&{repeat} loop is that a sequence of
+decimal digits yet to be printed will yield the original number if and only if
+they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
+We can stop if and only if $f=0$ satisfies this condition; the loop will
+terminate before $s$ can possibly become zero.
+
+@<Basic printing...@>=
+procedure print_scaled(@!s:scaled); {prints scaled real, rounded to five
+ digits}
+var @!delta:scaled; {amount of allowable inaccuracy}
+begin if s<0 then
+ begin print_char("-"); negate(s); {print the sign, if negative}
+ end;
+print_int(s div unity); {print the integer part}
+s:=10*(s mod unity)+5;
+if s<>5 then
+ begin delta:=10; print_char(".");
+ repeat if delta>unity then
+ s:=s+@'100000-(delta div 2); {round the final digit}
+ print_char("0"+(s div unity)); s:=10*(s mod unity); delta:=delta*10;
+ until s<=delta;
+ end;
+end;
+
+@ We often want to print two scaled quantities in parentheses,
+separated by a comma.
+
+@<Basic printing...@>=
+procedure print_two(@!x,@!y:scaled); {prints `|(x,y)|'}
+begin print_char("("); print_scaled(x); print_char(","); print_scaled(y);
+print_char(")");
+end;
+
+@ The |scaled| quantities in \MP\ programs are generally supposed to be
+less than $2^{12}$ in absolute value, so \MP\ does much of its internal
+arithmetic with 28~significant bits of precision. A |fraction| denotes
+a scaled integer whose binary point is assumed to be 28 bit positions
+from the right.
+
+@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000}
+@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000}
+@d fraction_two==@'4000000000 {$2^{29}$, represents 2.00000000}
+@d fraction_three==@'6000000000 {$3\cdot2^{28}$, represents 3.00000000}
+@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000}
+
+@<Types...@>=
+@!fraction=integer; {this type is used for scaled fractions}
+
+@ In fact, the two sorts of scaling discussed above aren't quite
+sufficient; \MP\ has yet another, used internally to keep track of angles
+in units of $2^{-20}$ degrees.
+
+@d forty_five_deg==@'264000000 {$45\cdot2^{20}$, represents $45^\circ$}
+@d ninety_deg==@'550000000 {$90\cdot2^{20}$, represents $90^\circ$}
+@d one_eighty_deg==@'1320000000 {$180\cdot2^{20}$, represents $180^\circ$}
+@d three_sixty_deg==@'2640000000 {$360\cdot2^{20}$, represents $360^\circ$}
+
+@<Types...@>=
+@!angle=integer; {this type is used for scaled angles}
+
+@ The |make_fraction| routine produces the |fraction| equivalent of
+|p/q|, given integers |p| and~|q|; it computes the integer
+$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
+positive. If |p| and |q| are both of the same scaled type |t|,
+the ``type relation'' |make_fraction(t,t)=fraction| is valid;
+and it's also possible to use the subroutine ``backwards,'' using
+the relation |make_fraction(t,fraction)=t| between scaled types.
+
+If the result would have magnitude $2^{31}$ or more, |make_fraction|
+sets |arith_error:=true|. Most of \MP's internal computations have
+been designed to avoid this sort of error.
+
+If this subroutine were programmed in assembly language on a typical
+machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
+double-precision product can often be input to a fixed-point division
+instruction. But when we are restricted to \PASCAL\ arithmetic it
+is necessary either to resort to multiple-precision maneuvering
+or to use a simple but slow iteration. The multiple-precision technique
+would be about three times faster than the code adopted here, but it
+would be comparatively long and tricky, involving about sixteen
+additional multiplications and divisions.
+
+This operation is part of \MP's ``inner loop''; indeed, it will
+consume nearly 10\pct! of the running time (exclusive of input and output)
+if the code below is left unchanged. A machine-dependent recoding
+will therefore make \MP\ run faster. The present implementation
+is highly portable, but slow; it avoids multiplication and division
+except in the initial stage. System wizards should be careful to
+replace it with a routine that is guaranteed to produce identical
+results in all cases.
+@^system dependencies@>
+
+As noted below, a few more routines should also be replaced by machine-dependent
+code, for efficiency. But when a procedure is not part of the ``inner loop,''
+such changes aren't advisable; simplicity and robustness are
+preferable to trickery, unless the cost is too high.
+@^inner loop@>
+
+@p function make_fraction(@!p,@!q:integer):fraction;
+var @!f:integer; {the fraction bits, with a leading 1 bit}
+@!n:integer; {the integer part of $\vert p/q\vert$}
+@!negative:boolean; {should the result be negated?}
+@!be_careful:integer; {disables certain compiler optimizations}
+begin if p>=0 then negative:=false
+else begin negate(p); negative:=true;
+ end;
+if q<=0 then
+ begin debug if q=0 then confusion("/");@;@+gubed@;@/
+@:this can't happen /}{\quad \./@>
+ negate(q); negative:=not negative;
+ end;
+n:=p div q; p:=p mod q;
+if n>=8 then
+ begin arith_error:=true;
+ if negative then make_fraction:=-el_gordo@+else make_fraction:=el_gordo;
+ end
+else begin n:=(n-1)*fraction_one;
+ @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
+ if negative then make_fraction:=-(f+n)@+else make_fraction:=f+n;
+ end;
+end;
+
+@ The |repeat| loop here preserves the following invariant relations
+between |f|, |p|, and~|q|:
+(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
+$p_0$ is the original value of~$p$.
+
+Notice that the computation specifies
+|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
+Let us hope that optimizing compilers do not miss this point; a
+special variable |be_careful| is used to emphasize the necessary
+order of computation. Optimizing compilers should keep |be_careful|
+in a register, not store it in memory.
+@^inner loop@>
+
+@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
+f:=1;
+repeat be_careful:=p-q; p:=be_careful+p;
+if p>=0 then f:=f+f+1
+else begin double(f); p:=p+q;
+ end;
+until f>=fraction_one;
+be_careful:=p-q;
+if be_careful+p>=0 then incr(f)
+
+@ The dual of |make_fraction| is |take_fraction|, which multiplies a
+given integer~|q| by a fraction~|f|. When the operands are positive, it
+computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
+of |q| and~|f|.
+
+This routine is even more ``inner loopy'' than |make_fraction|;
+the present implementation consumes almost 20\pct! of \MP's computation
+time during typical jobs, so a machine-language substitute is advisable.
+@^inner loop@> @^system dependencies@>
+
+@p function take_fraction(@!q:integer;@!f:fraction):integer;
+var @!p:integer; {the fraction so far}
+@!negative:boolean; {should the result be negated?}
+@!n:integer; {additional multiple of $q$}
+@!be_careful:integer; {disables certain compiler optimizations}
+begin @<Reduce to the case that |f>=0| and |q>0|@>;
+if f<fraction_one then n:=0
+else begin n:=f div fraction_one; f:=f mod fraction_one;
+ if q<=el_gordo div n then n:=n*q
+ else begin arith_error:=true; n:=el_gordo;
+ end;
+ end;
+f:=f+fraction_one;
+@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
+be_careful:=n-el_gordo;
+if be_careful+p>0 then
+ begin arith_error:=true; n:=el_gordo-p;
+ end;
+if negative then take_fraction:=-(n+p)
+else take_fraction:=n+p;
+end;
+
+@ @<Reduce to the case that |f>=0| and |q>0|@>=
+if f>=0 then negative:=false
+else begin negate(f); negative:=true;
+ end;
+if q<0 then
+ begin negate(q); negative:=not negative;
+ end;
+
+@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
+=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
+$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
+@^inner loop@>
+
+@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
+p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$}
+if q<fraction_four then
+ repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
+ f:=halfp(f);
+ until f=1
+else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
+ f:=halfp(f);
+ until f=1
+
+
+@ When we want to multiply something by a |scaled| quantity, we use a scheme
+analogous to |take_fraction| but with a different scaling.
+Given positive operands, |take_scaled|
+computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
+
+Once again it is a good idea to use a machine-language replacement if
+possible; otherwise |take_scaled| will use more than 2\pct! of the running time
+when the Computer Modern fonts are being generated.
+@^inner loop@>
+
+@p function take_scaled(@!q:integer;@!f:scaled):integer;
+var @!p:integer; {the fraction so far}
+@!negative:boolean; {should the result be negated?}
+@!n:integer; {additional multiple of $q$}
+@!be_careful:integer; {disables certain compiler optimizations}
+begin @<Reduce to the case that |f>=0| and |q>0|@>;
+if f<unity then n:=0
+else begin n:=f div unity; f:=f mod unity;
+ if q<=el_gordo div n then n:=n*q
+ else begin arith_error:=true; n:=el_gordo;
+ end;
+ end;
+f:=f+unity;
+@<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
+be_careful:=n-el_gordo;
+if be_careful+p>0 then
+ begin arith_error:=true; n:=el_gordo-p;
+ end;
+if negative then take_scaled:=-(n+p)
+else take_scaled:=n+p;
+end;
+
+@ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
+p:=half_unit; {that's $2^{15}$; the invariants hold now with $k=16$}
+@^inner loop@>
+if q<fraction_four then
+ repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
+ f:=halfp(f);
+ until f=1
+else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
+ f:=halfp(f);
+ until f=1
+
+@ For completeness, there's also |make_scaled|, which computes a
+quotient as a |scaled| number instead of as a |fraction|.
+In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
+operands are positive. \ (This procedure is not used especially often,
+so it is not part of \MP's inner loop.)
+
+@p function make_scaled(@!p,@!q:integer):scaled;
+var @!f:integer; {the fraction bits, with a leading 1 bit}
+@!n:integer; {the integer part of $\vert p/q\vert$}
+@!negative:boolean; {should the result be negated?}
+@!be_careful:integer; {disables certain compiler optimizations}
+begin if p>=0 then negative:=false
+else begin negate(p); negative:=true;
+ end;
+if q<=0 then
+ begin debug if q=0 then confusion("/");@+gubed@;@/
+@:this can't happen /}{\quad \./@>
+ negate(q); negative:=not negative;
+ end;
+n:=p div q; p:=p mod q;
+if n>=@'100000 then
+ begin arith_error:=true;
+ if negative then make_scaled:=-el_gordo@+else make_scaled:=el_gordo;
+ end
+else begin n:=(n-1)*unity;
+ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
+ if negative then make_scaled:=-(f+n)@+else make_scaled:=f+n;
+ end;
+end;
+
+@ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
+f:=1;
+repeat be_careful:=p-q; p:=be_careful+p;
+if p>=0 then f:=f+f+1
+else begin double(f); p:=p+q;
+ end;
+until f>=unity;
+be_careful:=p-q;
+if be_careful+p>=0 then incr(f)
+
+@ Here is a typical example of how the routines above can be used.
+It computes the function
+$${1\over3\tau}f(\theta,\phi)=
+{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
+ (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
+3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
+where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
+fudge factor for placing the first control point of a curve that starts
+at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
+(Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
+
+The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
+(It's a sum of eight terms whose absolute values can be bounded using
+relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
+is positive; and since the tension $\tau$ is constrained to be at least
+$3\over4$, the numerator is less than $16\over3$. The denominator is
+nonnegative and at most~6. Hence the fixed-point calculations below
+are guaranteed to stay within the bounds of a 32-bit computer word.
+
+The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
+arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
+$\sin\phi$, and $\cos\phi$, respectively.
+
+@p function velocity(@!st,@!ct,@!sf,@!cf:fraction;@!t:scaled):fraction;
+var @!acc,@!num,@!denom:integer; {registers for intermediate calculations}
+begin acc:=take_fraction(st-(sf div 16), sf-(st div 16));
+acc:=take_fraction(acc,ct-cf);
+num:=fraction_two+take_fraction(acc,379625062);
+ {$2^{28}\sqrt2\approx379625062.497$}
+denom:=fraction_three+take_fraction(ct,497706707)+take_fraction(cf,307599661);
+ {$3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
+ $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$}
+if t<>unity then num:=make_scaled(num,t);
+ {|make_scaled(fraction,scaled)=fraction|}
+if num div 4>=denom then velocity:=fraction_four
+else velocity:=make_fraction(num,denom);
+end;
+
+@ The following somewhat different subroutine tests rigorously if $ab$ is
+greater than, equal to, or less than~$cd$,
+given integers $(a,b,c,d)$. In most cases a quick decision is reached.
+The result is $+1$, 0, or~$-1$ in the three respective cases.
+
+@d return_sign(#)==begin ab_vs_cd:=#; return;
+ end
+
+@p function ab_vs_cd(@!a,b,c,d:integer):integer;
+label exit;
+var @!q,@!r:integer; {temporary registers}
+begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
+loop@+ begin q := a div d; r := c div b;
+ if q<>r then
+ if q>r then return_sign(1)@+else return_sign(-1);
+ q := a mod d; r := c mod b;
+ if r=0 then
+ if q=0 then return_sign(0)@+else return_sign(1);
+ if q=0 then return_sign(-1);
+ a:=b; b:=q; c:=d; d:=r;
+ end; {now |a>d>0| and |c>b>0|}
+exit:end;
+
+@ @<Reduce to the case that |a...@>=
+if a<0 then
+ begin negate(a); negate(b);
+ end;
+if c<0 then
+ begin negate(c); negate(d);
+ end;
+if d<=0 then
+ begin if b>=0 then
+ if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0)
+ else return_sign(1);
+ if d=0 then
+ if a=0 then return_sign(0)@+else return_sign(-1);
+ q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q;
+ end
+else if b<=0 then
+ begin if b<0 then if a>0 then return_sign(-1);
+ if c=0 then return_sign(0) else return_sign(-1);
+ end
+
+@ We conclude this set of elementary routines with some simple rounding
+and truncation operations that are coded in a machine-independent fashion.
+The routines are slightly complicated because we want them to work
+without overflow whenever $-2^{31}\L x<2^{31}$.
+
+@p function floor_scaled(@!x:scaled):scaled;
+ {$2^{16}\lfloor x/2^{16}\rfloor$}
+var @!be_careful:integer; {temporary register}
+begin if x>=0 then floor_scaled:=x-(x mod unity)
+else begin be_careful:=x+1;
+ floor_scaled:=x+((-be_careful) mod unity)+1-unity;
+ end;
+end;
+@#
+function round_unscaled(@!x:scaled):integer;
+ {$\lfloor x/2^{16}+.5\rfloor$}
+var @!be_careful:integer; {temporary register}
+begin if x>=half_unit then round_unscaled:=1+((x-half_unit) div unity)
+else if x>=-half_unit then round_unscaled:=0
+else begin be_careful:=x+1;
+ round_unscaled:=-(1+((-be_careful-half_unit) div unity));
+ end;
+end;
+@#
+function round_fraction(@!x:fraction):scaled;
+ {$\lfloor x/2^{12}+.5\rfloor$}
+var @!be_careful:integer; {temporary register}
+begin if x>=2048 then round_fraction:=1+((x-2048) div 4096)
+else if x>=-2048 then round_fraction:=0
+else begin be_careful:=x+1;
+ round_fraction:=-(1+((-be_careful-2048) div 4096));
+ end;
+end;
+
+@* \[8] Algebraic and transcendental functions.
+\MP\ computes all of the necessary special functions from scratch, without
+relying on |real| arithmetic or system subroutines for sines, cosines, etc.
+
+@ To get the square root of a |scaled| number |x|, we want to calculate
+$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
+integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
+determines $s$ by an iterative method that maintains the invariant
+relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
+-s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
+might, however, be zero at the start of the first iteration.
+
+@p function square_rt(@!x:scaled):scaled;
+var @!k:small_number; {iteration control counter}
+@!y,@!q:integer; {registers for intermediate calculations}
+begin if x<=0 then @<Handle square root of zero or negative argument@>
+else begin k:=23; q:=2;
+ while x<fraction_two do {i.e., |while x<@t$2^{29}$@>|\unskip}
+ begin decr(k); x:=x+x+x+x;
+ end;
+ if x<fraction_four then y:=0
+ else begin x:=x-fraction_four; y:=1;
+ end;
+ repeat @<Decrease |k| by 1, maintaining the invariant
+ relations between |x|, |y|, and~|q|@>;
+ until k=0;
+ square_rt:=halfp(q);
+ end;
+end;
+
+@ @<Handle square root of zero...@>=
+begin if x<0 then
+ begin print_err("Square root of ");
+@.Square root...replaced by 0@>
+ print_scaled(x); print(" has been replaced by 0");
+ help2("Since I don't take square roots of negative numbers,")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+ error;
+ end;
+square_rt:=0;
+end
+
+@ @<Decrease |k| by 1, maintaining...@>=
+double(x); double(y);
+if x>=fraction_four then {note that |fraction_four=@t$2^{30}$@>|}
+ begin x:=x-fraction_four; incr(y);
+ end;
+double(x); y:=y+y-q; double(q);
+if x>=fraction_four then
+ begin x:=x-fraction_four; incr(y);
+ end;
+if y>q then
+ begin y:=y-q; q:=q+2;
+ end
+else if y<=0 then
+ begin q:=q-2; y:=y+q;
+ end;
+decr(k)
+
+@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
+iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
+@^Moler, Cleve Barry@>
+@^Morrison, Donald Ross@>
+of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
+in such a way that their Pythagorean sum remains invariant, while the
+smaller argument decreases.
+
+@p function pyth_add(@!a,@!b:integer):integer;
+label done;
+var @!r:fraction; {register used to transform |a| and |b|}
+@!big:boolean; {is the result dangerously near $2^{31}$?}
+begin a:=abs(a); b:=abs(b);
+if a<b then
+ begin r:=b; b:=a; a:=r;
+ end; {now |0<=b<=a|}
+if b>0 then
+ begin if a<fraction_two then big:=false
+ else begin a:=a div 4; b:=b div 4; big:=true;
+ end; {we reduced the precision to avoid arithmetic overflow}
+ @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
+ if big then
+ if a<fraction_two then a:=a+a+a+a
+ else begin arith_error:=true; a:=el_gordo;
+ end;
+ end;
+pyth_add:=a;
+end;
+
+@ The key idea here is to reflect the vector $(a,b)$ about the
+line through $(a,b/2)$.
+
+@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
+loop@+ begin r:=make_fraction(b,a);
+ r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
+ if r=0 then goto done;
+ r:=make_fraction(r,fraction_four+r);
+ a:=a+take_fraction(a+a,r); b:=take_fraction(b,r);
+ end;
+done:
+
+@ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
+It converges slowly when $b$ is near $a$, but otherwise it works fine.
+
+@p function pyth_sub(@!a,@!b:integer):integer;
+label done;
+var @!r:fraction; {register used to transform |a| and |b|}
+@!big:boolean; {is the input dangerously near $2^{31}$?}
+begin a:=abs(a); b:=abs(b);
+if a<=b then @<Handle erroneous |pyth_sub| and set |a:=0|@>
+else begin if a<fraction_four then big:=false
+ else begin a:=halfp(a); b:=halfp(b); big:=true;
+ end;
+ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
+ if big then a:=a+a;
+ end;
+pyth_sub:=a;
+end;
+
+@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
+loop@+ begin r:=make_fraction(b,a);
+ r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
+ if r=0 then goto done;
+ r:=make_fraction(r,fraction_four-r);
+ a:=a-take_fraction(a+a,r); b:=take_fraction(b,r);
+ end;
+done:
+
+@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
+begin if a<b then
+ begin print_err("Pythagorean subtraction "); print_scaled(a);
+ print("+-+"); print_scaled(b); print(" has been replaced by 0");
+@.Pythagorean...@>
+ help2("Since I don't take square roots of negative numbers,")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+ error;
+ end;
+a:=0;
+end
+
+@ The subroutines for logarithm and exponential involve two tables.
+The first is simple: |two_to_the[k]| equals $2^k$. The second involves
+a bit more calculation, which the author claims to have done correctly:
+|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
+2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
+nearest integer.
+
+@<Glob...@>=
+@!two_to_the:array[0..30] of integer; {powers of two}
+@!spec_log:array[1..28] of integer; {special logarithms}
+
+@ @<Local variables for initialization@>=
+@!k:integer; {all-purpose loop index}
+
+@ @<Set init...@>=
+two_to_the[0]:=1;
+for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1];
+spec_log[1]:=93032640;
+spec_log[2]:=38612034;
+spec_log[3]:=17922280;
+spec_log[4]:=8662214;
+spec_log[5]:=4261238;
+spec_log[6]:=2113709;
+spec_log[7]:=1052693;
+spec_log[8]:=525315;
+spec_log[9]:=262400;
+spec_log[10]:=131136;
+spec_log[11]:=65552;
+spec_log[12]:=32772;
+spec_log[13]:=16385;
+for k:=14 to 27 do spec_log[k]:=two_to_the[27-k];
+spec_log[28]:=1;
+
+@ Here is the routine that calculates $2^8$ times the natural logarithm
+of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
+when |x| is a given positive integer.
+
+The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
+Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
+and the logarithm of $2^{30}x$ remains to be added to an accumulator
+register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
+during the calculation, and sixteen auxiliary bits to extend |y| are
+kept in~|z| during the initial argument reduction. (We add
+$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
+not become negative; also, the actual amount subtracted from~|y| is~96,
+not~100, because we want to add~4 for rounding before the final division by~8.)
+
+@p function m_log(@!x:scaled):scaled;
+var @!y,@!z:integer; {auxiliary registers}
+@!k:integer; {iteration counter}
+begin if x<=0 then @<Handle non-positive logarithm@>
+else begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$}
+ z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$}
+ while x<fraction_four do
+ begin double(x); y:=y-93032639; z:=z-48782;
+ end; {$2^{27}\ln2\approx 93032639.74436163$
+ and $2^{16}\times.74436163\approx 48782$}
+ y:=y+(z div unity); k:=2;
+ while x>fraction_four+4 do
+ @<Increase |k| until |x| can be multiplied by a
+ factor of $2^{-k}$, and adjust $y$ accordingly@>;
+ m_log:=y div 8;
+ end;
+end;
+
+@ @<Increase |k| until |x| can...@>=
+begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$}
+while x<fraction_four+z do
+ begin z:=halfp(z+1); k:=k+1;
+ end;
+y:=y+spec_log[k]; x:=x-z;
+end
+
+@ @<Handle non-positive logarithm@>=
+begin print_err("Logarithm of ");
+@.Logarithm...replaced by 0@>
+print_scaled(x); print(" has been replaced by 0");
+help2("Since I don't take logs of non-positive numbers,")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+error; m_log:=0;
+end
+
+@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
+when |x| is |scaled|. The result is an integer approximation to
+$2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
+
+@p function m_exp(@!x:scaled):scaled;
+var @!k:small_number; {loop control index}
+@!y,@!z:integer; {auxiliary registers}
+begin if x>174436200 then
+ {$2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$}
+ begin arith_error:=true; m_exp:=el_gordo;
+ end
+else if x<-197694359 then m_exp:=0
+ {$2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$}
+else begin if x<=0 then
+ begin z:=-8*x; y:=@'4000000; {$y=2^{20}$}
+ end
+ else begin if x<=127919879 then z:=1023359037-8*x
+ {$2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$}
+ else z:=8*(174436200-x); {|z| is always nonnegative}
+ y:=el_gordo;
+ end;
+ @<Multiply |y| by $\exp(-z/2^{27})$@>;
+ if x<=127919879 then m_exp:=(y+8) div 16@+else m_exp:=y;
+ end;
+end;
+
+@ The idea here is that subtracting |spec_log[k]| from |z| corresponds
+to multiplying |y| by $1-2^{-k}$.
+
+A subtle point (which had to be checked) was that if $x=127919879$, the
+value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
+$z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
+and by~16 when |k=27|.
+
+@<Multiply |y| by...@>=
+k:=1;
+while z>0 do
+ begin while z>=spec_log[k] do
+ begin z:=z-spec_log[k];
+ y:=y-1-((y-two_to_the[k-1]) div two_to_the[k]);
+ end;
+ incr(k);
+ end
+
+@ The trigonometric subroutines use an auxiliary table such that
+|spec_atan[k]| contains an approximation to the |angle| whose tangent
+is~$1/2^k$.
+
+@<Glob...@>=
+@!spec_atan:array[1..26] of angle; {$\arctan2^{-k}$ times $2^{20}\cdot180/\pi$}
+
+@ @<Set init...@>=
+spec_atan[1]:=27855475;
+spec_atan[2]:=14718068;
+spec_atan[3]:=7471121;
+spec_atan[4]:=3750058;
+spec_atan[5]:=1876857;
+spec_atan[6]:=938658;
+spec_atan[7]:=469357;
+spec_atan[8]:=234682;
+spec_atan[9]:=117342;
+spec_atan[10]:=58671;
+spec_atan[11]:=29335;
+spec_atan[12]:=14668;
+spec_atan[13]:=7334;
+spec_atan[14]:=3667;
+spec_atan[15]:=1833;
+spec_atan[16]:=917;
+spec_atan[17]:=458;
+spec_atan[18]:=229;
+spec_atan[19]:=115;
+spec_atan[20]:=57;
+spec_atan[21]:=29;
+spec_atan[22]:=14;
+spec_atan[23]:=7;
+spec_atan[24]:=4;
+spec_atan[25]:=2;
+spec_atan[26]:=1;
+
+@ Given integers |x| and |y|, not both zero, the |n_arg| function
+returns the |angle| whose tangent points in the direction $(x,y)$.
+This subroutine first determines the correct octant, then solves the
+problem for |0<=y<=x|, then converts the result appropriately to
+return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
+(The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
+|-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
+
+The octants are represented in a ``Gray code,'' since that turns out
+to be computationally simplest.
+
+@d negate_x=1
+@d negate_y=2
+@d switch_x_and_y=4
+@d first_octant=1
+@d second_octant=first_octant+switch_x_and_y
+@d third_octant=first_octant+switch_x_and_y+negate_x
+@d fourth_octant=first_octant+negate_x
+@d fifth_octant=first_octant+negate_x+negate_y
+@d sixth_octant=first_octant+switch_x_and_y+negate_x+negate_y
+@d seventh_octant=first_octant+switch_x_and_y+negate_y
+@d eighth_octant=first_octant+negate_y
+
+@p function n_arg(@!x,@!y:integer):angle;
+var @!z:angle; {auxiliary register}
+@!t:integer; {temporary storage}
+@!k:small_number; {loop counter}
+@!octant:first_octant..sixth_octant; {octant code}
+begin if x>=0 then octant:=first_octant
+else begin negate(x); octant:=first_octant+negate_x;
+ end;
+if y<0 then
+ begin negate(y); octant:=octant+negate_y;
+ end;
+if x<y then
+ begin t:=y; y:=x; x:=t; octant:=octant+switch_x_and_y;
+ end;
+if x=0 then @<Handle undefined arg@>
+else begin @<Set variable |z| to the arg of $(x,y)$@>;
+ @<Return an appropriate answer based on |z| and |octant|@>;
+ end;
+end;
+
+@ @<Handle undefined arg@>=
+begin print_err("angle(0,0) is taken as zero");
+@.angle(0,0)...zero@>
+help2("The `angle' between two identical points is undefined.")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+error; n_arg:=0;
+end
+
+@ @<Return an appropriate answer...@>=
+case octant of
+first_octant:n_arg:=z;
+second_octant:n_arg:=ninety_deg-z;
+third_octant:n_arg:=ninety_deg+z;
+fourth_octant:n_arg:=one_eighty_deg-z;
+fifth_octant:n_arg:=z-one_eighty_deg;
+sixth_octant:n_arg:=-z-ninety_deg;
+seventh_octant:n_arg:=z-ninety_deg;
+eighth_octant:n_arg:=-z;
+end {there are no other cases}
+
+@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
+or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
+will be made.
+
+@<Set variable |z| to the arg...@>=
+while x>=fraction_two do
+ begin x:=halfp(x); y:=halfp(y);
+ end;
+z:=0;
+if y>0 then
+ begin while x<fraction_one do
+ begin double(x); double(y);
+ end;
+ @<Increase |z| to the arg of $(x,y)$@>;
+ end
+
+@ During the calculations of this section, variables |x| and~|y|
+represent actual coordinates $(x,2^{-k}y)$. We will maintain the
+condition |x>=y|, so that the tangent will be at most $2^{-k}$.
+If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
+$(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
+coordinates whose angle has decreased by~$\phi$; in the special case
+$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
+to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
+@^Meggitt, John E.@>
+{\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
+
+The initial value of |x| will be multiplied by at most
+$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
+there is no chance of integer overflow.
+
+@<Increase |z|...@>=
+k:=0;
+repeat double(y); incr(k);
+if y>x then
+ begin z:=z+spec_atan[k]; t:=x; x:=x+(y div two_to_the[k+k]); y:=y-t;
+ end;
+until k=15;
+repeat double(y); incr(k);
+if y>x then
+ begin z:=z+spec_atan[k]; y:=y-x;
+ end;
+until k=26
+
+@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
+and cosine of that angle. The results of this routine are
+stored in global integer variables |n_sin| and |n_cos|.
+
+@<Glob...@>=
+@!n_sin,@!n_cos:fraction; {results computed by |n_sin_cos|}
+
+@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
+the purpose of |n_sin_cos(z)| is to set
+|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
+for some rather large number~|r|. The maximum of |x| and |y|
+will be between $2^{28}$ and $2^{30}$, so that there will be hardly
+any loss of accuracy. Then |x| and~|y| are divided by~|r|.
+
+@p procedure n_sin_cos(@!z:angle); {computes a multiple of the sine and cosine}
+var @!k:small_number; {loop control variable}
+@!q:0..7; {specifies the quadrant}
+@!r:fraction; {magnitude of |(x,y)|}
+@!x,@!y,@!t:integer; {temporary registers}
+begin while z<0 do z:=z+three_sixty_deg;
+z:=z mod three_sixty_deg; {now |0<=z<three_sixty_deg|}
+q:=z div forty_five_deg; z:=z mod forty_five_deg;
+x:=fraction_one; y:=x;
+if not odd(q) then z:=forty_five_deg-z;
+@<Subtract angle |z| from |(x,y)|@>;
+@<Convert |(x,y)| to the octant determined by~|q|@>;
+r:=pyth_add(x,y); n_cos:=make_fraction(x,r); n_sin:=make_fraction(y,r);
+end;
+
+@ In this case the octants are numbered sequentially.
+
+@<Convert |(x,...@>=
+case q of
+0:do_nothing;
+1:begin t:=x; x:=y; y:=t;
+ end;
+2:begin t:=x; x:=-y; y:=t;
+ end;
+3:negate(x);
+4:begin negate(x); negate(y);
+ end;
+5:begin t:=x; x:=-y; y:=-t;
+ end;
+6:begin t:=x; x:=y; y:=-t;
+ end;
+7:negate(y);
+end {there are no other cases}
+
+@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
+applied in reverse. The values of |spec_atan[k]| decrease slowly enough
+that this loop is guaranteed to terminate before the (nonexistent) value
+|spec_atan[27]| would be required.
+
+@<Subtract angle |z|...@>=
+k:=1;
+while z>0 do
+ begin if z>=spec_atan[k] then
+ begin z:=z-spec_atan[k]; t:=x;@/
+ x:=t+y div two_to_the[k];
+ y:=y-t div two_to_the[k];
+ end;
+ incr(k);
+ end;
+if y<0 then y:=0 {this precaution may never be needed}
+
+@ And now let's complete our collection of numeric utility routines
+by considering random number generation.
+\MP\ generates pseudo-random numbers with the additive scheme recommended
+in Section 3.6 of {\sl The Art of Computer Programming}; however, the
+results are random fractions between 0 and |fraction_one-1|, inclusive.
+
+There's an auxiliary array |randoms| that contains 55 pseudo-random
+fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
+we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
+The global variable |j_random| tells which element has most recently
+been consumed.
+The global variable |sys_random_seed| was introduced in version 0.9,
+for the sole reason of stressing the fact that the initial value of the
+random seed is system-dependant. The pascal code below will initialize
+this variable to |(internal[time] div unity)+internal[day]|, but this is
+not good enough on modern fast machines that are capable of running
+multiple MetaPost processes within the same second.
+@^system dependencies@>
+
+@<Glob...@>=
+@!randoms:array[0..54] of fraction; {the last 55 random values generated}
+@!j_random:0..54; {the number of unused |randoms|}
+@!sys_random_seed:scaled; {the default random seed}
+
+@ To consume a random fraction, the program below will say `|next_random|'
+and then it will fetch |randoms[j_random]|.
+
+@d next_random==if j_random=0 then new_randoms
+ else decr(j_random)
+
+@p procedure new_randoms;
+var @!k:0..54; {index into |randoms|}
+@!x:fraction; {accumulator}
+begin for k:=0 to 23 do
+ begin x:=randoms[k]-randoms[k+31];
+ if x<0 then x:=x+fraction_one;
+ randoms[k]:=x;
+ end;
+for k:=24 to 54 do
+ begin x:=randoms[k]-randoms[k-24];
+ if x<0 then x:=x+fraction_one;
+ randoms[k]:=x;
+ end;
+j_random:=54;
+end;
+
+@ To initialize the |randoms| table, we call the following routine.
+
+@p procedure init_randoms(@!seed:scaled);
+var @!j,@!jj,@!k:fraction; {more or less random integers}
+@!i:0..54; {index into |randoms|}
+begin j:=abs(seed);
+while j>=fraction_one do j:=halfp(j);
+k:=1;
+for i:=0 to 54 do
+ begin jj:=k; k:=j-k; j:=jj;
+ if k<0 then k:=k+fraction_one;
+ randoms[(i*21)mod 55]:=j;
+ end;
+new_randoms; new_randoms; new_randoms; {``warm up'' the array}
+end;
+
+@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
+or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
+
+Note that the call of |take_fraction| will produce the values 0 and~|x|
+with about half the probability that it will produce any other particular
+values between 0 and~|x|, because it rounds its answers.
+
+@p function unif_rand(@!x:scaled):scaled;
+var @!y:scaled; {trial value}
+begin next_random; y:=take_fraction(abs(x),randoms[j_random]);
+if y=abs(x) then unif_rand:=0
+else if x>0 then unif_rand:=y
+else unif_rand:=-y;
+end;
+
+@ Finally, a normal deviate with mean zero and unit standard deviation
+can readily be obtained with the ratio method (Algorithm 3.4.1R in
+{\sl The Art of Computer Programming\/}).
+
+@p function norm_rand:scaled;
+var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$,
+ and $-2^{24}\ln U$}
+begin repeat
+ repeat next_random;
+ x:=take_fraction(112429,randoms[j_random]-fraction_half);
+ {$2^{16}\sqrt{8/e}\approx 112428.82793$}
+ next_random; u:=randoms[j_random];
+ until abs(x)<u;
+x:=make_fraction(x,u);
+l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$}
+until ab_vs_cd(1024,l,x,x)>=0;
+norm_rand:=x;
+end;
+
+@* \[9] Packed data.
+In order to make efficient use of storage space, \MP\ bases its major data
+structures on a |memory_word|, which contains either a (signed) integer,
+possibly scaled, or a small number of fields that are one half or one
+quarter of the size used for storing integers.
+
+If |x| is a variable of type |memory_word|, it contains up to four
+fields that can be referred to as follows:
+$$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
+|x|&.|int|&(an |integer|)\cr
+|x|&.|sc|\qquad&(a |scaled| integer)\cr
+|x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
+|x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
+ field)\cr
+|x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
+ &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
+This is somewhat cumbersome to write, and not very readable either, but
+macros will be used to make the notation shorter and more transparent.
+The \PASCAL\ code below gives a formal definition of |memory_word| and
+its subsidiary types, using packed variant records. \MP\ makes no
+assumptions about the relative positions of the fields within a word.
+
+Since we are assuming 32-bit integers, a halfword must contain at least
+16 bits, and a quarterword must contain at least 8 bits.
+@^system dependencies@>
+But it doesn't hurt to have more bits; for example, with enough 36-bit
+words you might be able to have |mem_max| as large as 262142.
+
+N.B.: Valuable memory space will be dreadfully wasted unless \MP\ is compiled
+by a \PASCAL\ that packs all of the |memory_word| variants into
+the space of a single integer. Some \PASCAL\ compilers will pack an
+integer whose subrange is `|0..255|' into an eight-bit field, but others
+insist on allocating space for an additional sign bit; on such systems you
+can get 256 values into a quarterword only if the subrange is `|-128..127|'.
+
+The present implementation tries to accommodate as many variations as possible,
+so it makes few assumptions. If integers having the subrange
+`|min_quarterword..max_quarterword|' can be packed into a quarterword,
+and if integers having the subrange `|min_halfword..max_halfword|'
+can be packed into a halfword, everything should work satisfactorily.
+
+It is usually most efficient to have |min_quarterword=min_halfword=0|,
+so one should try to achieve this unless it causes a severe problem.
+The values defined here are recommended for most 32-bit computers.
+
+@d min_quarterword=0 {smallest allowable value in a |quarterword|}
+@d max_quarterword=255 {largest allowable value in a |quarterword|}
+@d min_halfword==0 {smallest allowable value in a |halfword|}
+@d max_halfword==65535 {largest allowable value in a |halfword|}
+
+@ Here are the inequalities that the quarterword and halfword values
+must satisfy (or rather, the inequalities that they mustn't satisfy):
+
+@<Check the ``constant''...@>=
+init if mem_max<>mem_top then bad:=8;@+tini@;@/
+if mem_max<mem_top then bad:=8;
+if (min_quarterword>0)or(max_quarterword<127) then bad:=9;
+if (min_halfword>0)or(max_halfword<32767) then bad:=10;
+if (min_quarterword<min_halfword)or@|
+ (max_quarterword>max_halfword) then bad:=11;
+if (mem_min<min_halfword)or(mem_max>=max_halfword) then bad:=12;
+if max_strings>max_halfword then bad:=13;
+if buf_size>max_halfword then bad:=14;
+if font_max>max_halfword then bad:=15;
+if (max_quarterword-min_quarterword<255)or@|
+ (max_halfword-min_halfword<65535) then bad:=16;
+
+@ The operation of subtracting |min_halfword| occurs rather frequently in
+\MP, so it is convenient to abbreviate this operation by using the macro
+|ho| defined here. \MP\ will run faster with respect to compilers that
+don't optimize the expression `|x-0|', if this macro is simplified in the
+obvious way when |min_halfword=0|. Similarly, |qi| and |qo| are used for
+input to and output from quarterwords.
+@^system dependencies@>
+
+@d ho(#)==#-min_halfword
+ {to take a sixteen-bit item from a halfword}
+@d qo(#)==#-min_quarterword {to read eight bits from a quarterword}
+@d qi(#)==#+min_quarterword {to store eight bits in a quarterword}
+
+@ The reader should study the following definitions closely:
+@^system dependencies@>
+
+@d sc==int {|scaled| data is equivalent to |integer|}
+
+@<Types...@>=
+@!quarterword = min_quarterword..max_quarterword; {1/4 of a word}
+@!halfword=min_halfword..max_halfword; {1/2 of a word}
+@!two_choices = 1..2; {used when there are two variants in a record}
+@!three_choices = 1..3; {used when there are three variants in a record}
+@!two_halves = packed record@;@/
+ @!rh:halfword;
+ case two_choices of
+ 1: (@!lh:halfword);
+ 2: (@!b0:quarterword; @!b1:quarterword);
+ end;
+@!four_quarters = packed record@;@/
+ @!b0:quarterword;
+ @!b1:quarterword;
+ @!b2:quarterword;
+ @!b3:quarterword;
+ end;
+@!memory_word = record@;@/
+ case three_choices of
+ 1: (@!int:integer);
+ 2: (@!hh:two_halves);
+ 3: (@!qqqq:four_quarters);
+ end;
+@!word_file = file of memory_word;
+
+@ When debugging, we may want to print a |memory_word| without knowing
+what type it is; so we print it in all modes.
+@^dirty \PASCAL@>@^debugging@>
+
+@p @!debug procedure print_word(@!w:memory_word);
+ {prints |w| in all ways}
+begin print_int(w.int); print_char(" ");@/
+print_scaled(w.sc); print_char(" "); print_scaled(w.sc div @'10000); print_ln;@/
+print_int(w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":");
+print_int(w.hh.b1); print_char(";"); print_int(w.hh.rh); print_char(" ");@/
+print_int(w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":");
+print_int(w.qqqq.b2); print_char(":"); print_int(w.qqqq.b3);
+end;
+gubed
+
+@* \[10] Dynamic memory allocation.
+The \MP\ system does nearly all of its own memory allocation, so that it
+can readily be transported into environments that do not have automatic
+facilities for strings, garbage collection, etc., and so that it can be in
+control of what error messages the user receives. The dynamic storage
+requirements of \MP\ are handled by providing a large array |mem| in
+which consecutive blocks of words are used as nodes by the \MP\ routines.
+
+Pointer variables are indices into this array, or into another array
+called |eqtb| that will be explained later. A pointer variable might
+also be a special flag that lies outside the bounds of |mem|, so we
+allow pointers to assume any |halfword| value. The minimum memory
+index represents a null pointer.
+
+@d pointer==halfword {a flag or a location in |mem| or |eqtb|}
+@d null==mem_min {the null pointer}
+
+@ The |mem| array is divided into two regions that are allocated separately,
+but the dividing line between these two regions is not fixed; they grow
+together until finding their ``natural'' size in a particular job.
+Locations less than or equal to |lo_mem_max| are used for storing
+variable-length records consisting of two or more words each. This region
+is maintained using an algorithm similar to the one described in exercise
+2.5--19 of {\sl The Art of Computer Programming}. However, no size field
+appears in the allocated nodes; the program is responsible for knowing the
+relevant size when a node is freed. Locations greater than or equal to
+|hi_mem_min| are used for storing one-word records; a conventional
+\.{AVAIL} stack is used for allocation in this region.
+
+Locations of |mem| between |mem_min| and |mem_top| may be dumped as part
+of preloaded format files, by the \.{INIMP} preprocessor.
+@.INIMP@>
+Production versions of \MP\ may extend the memory at the top end in order to
+provide more space; these locations, between |mem_top| and |mem_max|,
+are always used for single-word nodes.
+
+The key pointers that govern |mem| allocation have a prescribed order:
+$$\hbox{|null=mem_min<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
+
+@<Glob...@>=
+@!mem : array[mem_min..mem_max] of memory_word; {the big dynamic storage area}
+@!lo_mem_max : pointer; {the largest location of variable-size memory in use}
+@!hi_mem_min : pointer; {the smallest location of one-word memory in use}
+
+@ Users who wish to study the memory requirements of particular applications can
+can use optional special features that keep track of current and
+maximum memory usage. When code between the delimiters |@!stat| $\ldots$
+|tats| is not ``commented out,'' \MP\ will run a bit slower but it will
+report these statistics when |tracing_stats| is positive.
+
+@<Glob...@>=
+@!var_used, @!dyn_used : integer; {how much memory is in use}
+
+@ Let's consider the one-word memory region first, since it's the
+simplest. The pointer variable |mem_end| holds the highest-numbered location
+of |mem| that has ever been used. The free locations of |mem| that
+occur between |hi_mem_min| and |mem_end|, inclusive, are of type
+|two_halves|, and we write |info(p)| and |link(p)| for the |lh|
+and |rh| fields of |mem[p]| when it is of this type. The single-word
+free locations form a linked list
+$$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
+terminated by |null|.
+
+@d link(#) == mem[#].hh.rh {the |link| field of a memory word}
+@d info(#) == mem[#].hh.lh {the |info| field of a memory word}
+
+@<Glob...@>=
+@!avail : pointer; {head of the list of available one-word nodes}
+@!mem_end : pointer; {the last one-word node used in |mem|}
+
+@ If one-word memory is exhausted, it might mean that the user has forgotten
+a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
+later that try to help pinpoint the trouble.
+
+@p @t\4@>@<Declare the procedure called |show_token_list|@>@;
+@t\4@>@<Declare the procedure called |runaway|@>
+
+@ The function |get_avail| returns a pointer to a new one-word node whose
+|link| field is null. However, \MP\ will halt if there is no more room left.
+@^inner loop@>
+
+@p function get_avail : pointer; {single-word node allocation}
+var @!p:pointer; {the new node being got}
+begin p:=avail; {get top location in the |avail| stack}
+if p<>null then avail:=link(avail) {and pop it off}
+else if mem_end<mem_max then {or go into virgin territory}
+ begin incr(mem_end); p:=mem_end;
+ end
+else begin decr(hi_mem_min); p:=hi_mem_min;
+ if hi_mem_min<=lo_mem_max then
+ begin runaway; {if memory is exhausted, display possible runaway text}
+ overflow("main memory size",mem_max+1-mem_min);
+ {quit; all one-word nodes are busy}
+@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
+ end;
+ end;
+link(p):=null; {provide an oft-desired initialization of the new node}
+@!stat incr(dyn_used);@+tats@;{maintain statistics}
+get_avail:=p;
+end;
+
+@ Conversely, a one-word node is recycled by calling |free_avail|.
+
+@d free_avail(#)== {single-word node liberation}
+ begin link(#):=avail; avail:=#;
+ @!stat decr(dyn_used);@+tats@/
+ end
+
+@ There's also a |fast_get_avail| routine, which saves the procedure-call
+overhead at the expense of extra programming. This macro is used in
+the places that would otherwise account for the most calls of |get_avail|.
+@^inner loop@>
+
+@d fast_get_avail(#)==@t@>@;@/
+ begin #:=avail; {avoid |get_avail| if possible, to save time}
+ if #=null then #:=get_avail
+ else begin avail:=link(#); link(#):=null;
+ @!stat incr(dyn_used);@+tats@/
+ end;
+ end
+
+@ The available-space list that keeps track of the variable-size portion
+of |mem| is a nonempty, doubly-linked circular list of empty nodes,
+pointed to by the roving pointer |rover|.
+
+Each empty node has size 2 or more; the first word contains the special
+value |max_halfword| in its |link| field and the size in its |info| field;
+the second word contains the two pointers for double linking.
+
+Each nonempty node also has size 2 or more. Its first word is of type
+|two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
+Otherwise there is complete flexibility with respect to the contents
+of its other fields and its other words.
+
+(We require |mem_max<max_halfword| because terrible things can happen
+when |max_halfword| appears in the |link| field of a nonempty node.)
+
+@d empty_flag == max_halfword {the |link| of an empty variable-size node}
+@d is_empty(#) == (link(#)=empty_flag) {tests for empty node}
+@d node_size == info {the size field in empty variable-size nodes}
+@d llink(#) == info(#+1) {left link in doubly-linked list of empty nodes}
+@d rlink(#) == link(#+1) {right link in doubly-linked list of empty nodes}
+
+@<Glob...@>=
+@!rover : pointer; {points to some node in the list of empties}
+
+@ A call to |get_node| with argument |s| returns a pointer to a new node
+of size~|s|, which must be 2~or more. The |link| field of the first word
+of this new node is set to null. An overflow stop occurs if no suitable
+space exists.
+
+If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
+areas and returns the value |max_halfword|.
+
+@p function get_node(@!s:integer):pointer; {variable-size node allocation}
+label found,exit,restart;
+var @!p:pointer; {the node currently under inspection}
+@!q:pointer; {the node physically after node |p|}
+@!r:integer; {the newly allocated node, or a candidate for this honor}
+@!t,@!tt:integer; {temporary registers}
+@^inner loop@>
+begin restart: p:=rover; {start at some free node in the ring}
+repeat @<Try to allocate within node |p| and its physical successors,
+ and |goto found| if allocation was possible@>;
+p:=rlink(p); {move to the next node in the ring}
+until p=rover; {repeat until the whole list has been traversed}
+if s=@'10000000000 then
+ begin get_node:=max_halfword; return;
+ end;
+if lo_mem_max+2<hi_mem_min then if lo_mem_max+2<=mem_min+max_halfword then
+ @<Grow more variable-size memory and |goto restart|@>;
+overflow("main memory size",mem_max+1-mem_min);
+ {sorry, nothing satisfactory is left}
+@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
+found: link(r):=null; {this node is now nonempty}
+@!stat var_used:=var_used+s; {maintain usage statistics}
+tats@;@/
+get_node:=r;
+exit:end;
+
+@ The lower part of |mem| grows by 1000 words at a time, unless
+we are very close to going under. When it grows, we simply link
+a new node into the available-space list. This method of controlled
+growth helps to keep the |mem| usage consecutive when \MP\ is
+implemented on ``virtual memory'' systems.
+@^virtual memory@>
+
+@<Grow more variable-size memory and |goto restart|@>=
+begin if hi_mem_min-lo_mem_max>=1998 then t:=lo_mem_max+1000
+else t:=lo_mem_max+1+(hi_mem_min-lo_mem_max) div 2;
+ {|lo_mem_max+2<=t<hi_mem_min|}
+if t>mem_min+max_halfword then t:=mem_min+max_halfword;
+p:=llink(rover); q:=lo_mem_max; rlink(p):=q; llink(rover):=q;@/
+rlink(q):=rover; llink(q):=p; link(q):=empty_flag; node_size(q):=t-lo_mem_max;@/
+lo_mem_max:=t; link(lo_mem_max):=null; info(lo_mem_max):=null;
+rover:=q; goto restart;
+end
+
+@ @<Try to allocate...@>=
+q:=p+node_size(p); {find the physical successor}
+while is_empty(q) do {merge node |p| with node |q|}
+ begin t:=rlink(q); tt:=llink(q);
+@^inner loop@>
+ if q=rover then rover:=t;
+ llink(t):=tt; rlink(tt):=t;@/
+ q:=q+node_size(q);
+ end;
+r:=q-s;
+if r>p+1 then @<Allocate from the top of node |p| and |goto found|@>;
+if r=p then if rlink(p)<>p then
+ @<Allocate entire node |p| and |goto found|@>;
+node_size(p):=q-p {reset the size in case it grew}
+
+@ @<Allocate from the top...@>=
+begin node_size(p):=r-p; {store the remaining size}
+rover:=p; {start searching here next time}
+goto found;
+end
+
+@ Here we delete node |p| from the ring, and let |rover| rove around.
+
+@<Allocate entire...@>=
+begin rover:=rlink(p); t:=llink(p);
+llink(rover):=t; rlink(t):=rover;
+goto found;
+end
+
+@ Conversely, when some variable-size node |p| of size |s| is no longer needed,
+the operation |free_node(p,s)| will make its words available, by inserting
+|p| as a new empty node just before where |rover| now points.
+
+@p procedure free_node(@!p:pointer; @!s:halfword); {variable-size node
+ liberation}
+var @!q:pointer; {|llink(rover)|}
+begin node_size(p):=s; link(p):=empty_flag;
+@^inner loop@>
+q:=llink(rover); llink(p):=q; rlink(p):=rover; {set both links}
+llink(rover):=p; rlink(q):=p; {insert |p| into the ring}
+@!stat var_used:=var_used-s;@+tats@;{maintain statistics}
+end;
+
+@ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
+available space list. The list is probably very short at such times, so a
+simple insertion sort is used. The smallest available location will be
+pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
+
+@p @!init procedure sort_avail; {sorts the available variable-size nodes
+ by location}
+var @!p,@!q,@!r: pointer; {indices into |mem|}
+@!old_rover:pointer; {initial |rover| setting}
+begin p:=get_node(@'10000000000); {merge adjacent free areas}
+p:=rlink(rover); rlink(rover):=max_halfword; old_rover:=rover;
+while p<>old_rover do @<Sort |p| into the list starting at |rover|
+ and advance |p| to |rlink(p)|@>;
+p:=rover;
+while rlink(p)<>max_halfword do
+ begin llink(rlink(p)):=p; p:=rlink(p);
+ end;
+rlink(p):=rover; llink(rover):=p;
+end;
+tini
+
+@ The following |while| loop is guaranteed to
+terminate, since the list that starts at
+|rover| ends with |max_halfword| during the sorting procedure.
+
+@<Sort |p|...@>=
+if p<rover then
+ begin q:=p; p:=rlink(q); rlink(q):=rover; rover:=q;
+ end
+else begin q:=rover;
+ while rlink(q)<p do q:=rlink(q);
+ r:=rlink(p); rlink(p):=rlink(q); rlink(q):=p; p:=r;
+ end
+
+@* \[11] Memory layout.
+Some areas of |mem| are dedicated to fixed usage, since static allocation is
+more efficient than dynamic allocation when we can get away with it. For
+example, locations |mem_min| to |mem_min+1| are always used to store a
+two-word dummy token whose second word is zero.
+The following macro definitions accomplish the static allocation by giving
+symbolic names to the fixed positions. Static variable-size nodes appear
+in locations |mem_min| through |lo_mem_stat_max|, and static single-word nodes
+appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
+
+@d null_dash==mem_min+2 {the first two words are reserved for a null value}
+@d dep_head==null_dash+3 {we will define |dash_node_size=3|}
+@d zero_val==dep_head+2 {two words for a permanently zero value}
+@d temp_val==zero_val+2 {two words for a temporary value node}
+@d end_attr==temp_val {we use |end_attr+2| only}
+@d inf_val==end_attr+2 {and |inf_val+1| only}
+@d test_pen==inf_val+2
+ {nine words for a pen used when testing the turning number}
+@d bad_vardef==test_pen+9 {two words for \&{vardef} error recovery}
+@d lo_mem_stat_max==bad_vardef+1 {largest statically
+ allocated word in the variable-size |mem|}
+@#
+@d sentinel==mem_top {end of sorted lists}
+@d temp_head==mem_top-1 {head of a temporary list of some kind}
+@d hold_head==mem_top-2 {head of a temporary list of another kind}
+@d spec_head==mem_top-3 {head of a list of unprocessed \&{special} items}
+@d hi_mem_stat_min==mem_top-3 {smallest statically allocated word in
+ the one-word |mem|}
+
+@ The following code gets the dynamic part of |mem| off to a good start,
+when \MP\ is initializing itself the slow way.
+
+@<Initialize table entries (done by \.{INIMP} only)@>=
+@^data structure assumptions@>
+rover:=lo_mem_stat_max+1; {initialize the dynamic memory}
+link(rover):=empty_flag;
+node_size(rover):=1000; {which is a 1000-word available node}
+llink(rover):=rover; rlink(rover):=rover;@/
+lo_mem_max:=rover+1000; link(lo_mem_max):=null; info(lo_mem_max):=null;@/
+for k:=hi_mem_stat_min to mem_top do
+ mem[k]:=mem[lo_mem_max]; {clear list heads}
+avail:=null; mem_end:=mem_top;
+hi_mem_min:=hi_mem_stat_min; {initialize the one-word memory}
+var_used:=lo_mem_stat_max+1-mem_min; dyn_used:=mem_top+1-(hi_mem_stat_min);
+ {initialize statistics}
+@<Initialize a pen at |test_pen| so that it fits in nine words@>;
+
+@ The procedure |flush_list(p)| frees an entire linked list of one-word
+nodes that starts at a given position, until coming to |sentinel| or a
+pointer that is not in the one-word region. Another procedure,
+|flush_node_list|, frees an entire linked list of one-word and two-word
+nodes, until coming to a |null| pointer.
+@^inner loop@>
+
+@p procedure flush_list(@!p:pointer); {makes list of single-word nodes
+ available}
+label done;
+var @!q,@!r:pointer; {list traversers}
+begin if p>=hi_mem_min then if p<>sentinel then
+ begin r:=p;
+ repeat q:=r; r:=link(r); @!stat decr(dyn_used);@+tats@/
+ if r<hi_mem_min then goto done;
+ until r=sentinel;
+ done: {now |q| is the last node on the list}
+ link(q):=avail; avail:=p;
+ end;
+end;
+@#
+procedure flush_node_list(@!p:pointer);
+var @!q:pointer; {the node being recycled}
+begin while p<>null do
+ begin q:=p; p:=link(p);
+ if q<hi_mem_min then free_node(q,2)@+else free_avail(q);
+ end;
+end;
+
+@ If \MP\ is extended improperly, the |mem| array might get screwed up.
+For example, some pointers might be wrong, or some ``dead'' nodes might not
+have been freed when the last reference to them disappeared. Procedures
+|check_mem| and |search_mem| are available to help diagnose such
+problems. These procedures make use of two arrays called |free| and
+|was_free| that are present only if \MP's debugging routines have
+been included. (You may want to decrease the size of |mem| while you
+@^debugging@>
+are debugging.)
+
+@<Glob...@>=
+@!debug @!free: packed array [mem_min..mem_max] of boolean; {free cells}
+@t\hskip1em@>@!was_free: packed array [mem_min..mem_max] of boolean;
+ {previously free cells}
+@t\hskip1em@>@!was_mem_end,@!was_lo_max,@!was_hi_min: pointer;
+ {previous |mem_end|, |lo_mem_max|,and |hi_mem_min|}
+@t\hskip1em@>@!panicking:boolean; {do we want to check memory constantly?}
+gubed
+
+@ @<Set initial...@>=
+@!debug was_mem_end:=mem_min; {indicate that everything was previously free}
+was_lo_max:=mem_min; was_hi_min:=mem_max;
+panicking:=false;
+gubed
+
+@ Procedure |check_mem| makes sure that the available space lists of
+|mem| are well formed, and it optionally prints out all locations
+that are reserved now but were free the last time this procedure was called.
+
+@p @!debug procedure check_mem(@!print_locs : boolean);
+label done1,done2,done3; {loop exits}
+var @!p,@!q,@!r:pointer; {current locations of interest in |mem|}
+@!clobbered:boolean; {is something amiss?}
+begin for p:=mem_min to lo_mem_max do free[p]:=false; {you can probably
+ do this faster}
+for p:=hi_mem_min to mem_end do free[p]:=false; {ditto}
+@<Check single-word |avail| list@>;
+@<Check variable-size |avail| list@>;
+@<Check flags of unavailable nodes@>;
+@<Check the list of linear dependencies@>;
+if print_locs then @<Print newly busy locations@>;
+for p:=mem_min to lo_mem_max do was_free[p]:=free[p];
+for p:=hi_mem_min to mem_end do was_free[p]:=free[p];
+ {|was_free:=free| might be faster}
+was_mem_end:=mem_end; was_lo_max:=lo_mem_max; was_hi_min:=hi_mem_min;
+end;
+gubed
+
+@ @<Check single-word...@>=
+p:=avail; q:=null; clobbered:=false;
+while p<>null do
+ begin if (p>mem_end)or(p<hi_mem_min) then clobbered:=true
+ else if free[p] then clobbered:=true;
+ if clobbered then
+ begin print_nl("AVAIL list clobbered at ");
+@.AVAIL list clobbered...@>
+ print_int(q); goto done1;
+ end;
+ free[p]:=true; q:=p; p:=link(q);
+ end;
+done1:
+
+@ @<Check variable-size...@>=
+p:=rover; q:=null; clobbered:=false;
+repeat if (p>=lo_mem_max)or(p<mem_min) then clobbered:=true
+ else if (rlink(p)>=lo_mem_max)or(rlink(p)<mem_min) then clobbered:=true
+ else if not(is_empty(p))or(node_size(p)<2)or@|
+ (p+node_size(p)>lo_mem_max)or@| (llink(rlink(p))<>p) then clobbered:=true;
+ if clobbered then
+ begin print_nl("Double-AVAIL list clobbered at ");
+@.Double-AVAIL list clobbered...@>
+ print_int(q); goto done2;
+ end;
+for q:=p to p+node_size(p)-1 do {mark all locations free}
+ begin if free[q] then
+ begin print_nl("Doubly free location at ");
+@.Doubly free location...@>
+ print_int(q); goto done2;
+ end;
+ free[q]:=true;
+ end;
+q:=p; p:=rlink(p);
+until p=rover;
+done2:
+
+@ @<Check flags...@>=
+p:=mem_min;
+while p<=lo_mem_max do {node |p| should not be empty}
+ begin if is_empty(p) then
+ begin print_nl("Bad flag at "); print_int(p);
+@.Bad flag...@>
+ end;
+ while (p<=lo_mem_max) and not free[p] do incr(p);
+ while (p<=lo_mem_max) and free[p] do incr(p);
+ end
+
+@ @<Print newly busy...@>=
+begin @<Do intialization required before printing new busy locations@>;
+print_nl("New busy locs:");
+@.New busy locs@>
+for p:=mem_min to lo_mem_max do
+ if not free[p] and ((p>was_lo_max) or was_free[p]) then
+ @<Indicate that |p| is a new busy location@>;
+for p:=hi_mem_min to mem_end do
+ if not free[p] and
+ ((p<was_hi_min) or (p>was_mem_end) or was_free[p]) then
+ @<Indicate that |p| is a new busy location@>;
+@<Finish printing new busy locations@>;
+end
+
+@ There might be many new busy locations so we are careful to print contiguous
+blocks compactly. During this operation |q| is the last new busy location and
+|r| is the start of the block containing |q|.
+
+@<Indicate that |p| is a new busy location@>=
+begin if p>q+1 then
+ begin if q>r then
+ begin print(".."); print_int(q);
+ end;
+ print_char(" "); print_int(p);
+ r:=p;
+ end;
+q:=p;
+end
+
+@ @<Do intialization required before printing new busy locations@>=
+q:=mem_max; r:=mem_max
+
+@ @<Finish printing new busy locations@>=
+if q>r then
+ begin print(".."); print_int(q);
+ end
+
+@ The |search_mem| procedure attempts to answer the question ``Who points
+to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
+that might not be of type |two_halves|. Strictly speaking, this is
+@^dirty \PASCAL@>
+undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
+point to |p| purely by coincidence). But for debugging purposes, we want
+to rule out the places that do {\sl not\/} point to |p|, so a few false
+drops are tolerable.
+
+@p @!debug procedure search_mem(@!p:pointer); {look for pointers to |p|}
+var @!q:integer; {current position being searched}
+begin for q:=mem_min to lo_mem_max do
+ begin if link(q)=p then
+ begin print_nl("LINK("); print_int(q); print_char(")");
+ end;
+ if info(q)=p then
+ begin print_nl("INFO("); print_int(q); print_char(")");
+ end;
+ end;
+for q:=hi_mem_min to mem_end do
+ begin if link(q)=p then
+ begin print_nl("LINK("); print_int(q); print_char(")");
+ end;
+ if info(q)=p then
+ begin print_nl("INFO("); print_int(q); print_char(")");
+ end;
+ end;
+@<Search |eqtb| for equivalents equal to |p|@>;
+end;
+gubed
+
+@* \[12] The command codes.
+Before we can go much further, we need to define symbolic names for the internal
+code numbers that represent the various commands obeyed by \MP. These codes
+are somewhat arbitrary, but not completely so. For example,
+some codes have been made adjacent so that |case| statements in the
+program need not consider cases that are widely spaced, or so that |case|
+statements can be replaced by |if| statements. A command can begin an
+expression if and only if its code lies between |min_primary_command| and
+|max_primary_command|, inclusive. The first token of a statement that doesn't
+begin with an expression has a command code between |min_command| and
+|max_statement_command|, inclusive. Anything less than |min_command| is
+eliminated during macro expansions, and anything no more than |max_pre_command|
+is eliminated when expanding \TeX\ material. Ranges such as
+|min_secondary_command..max_secondary_command| are used when parsing
+expressions, but the relative ordering within such a range is generally not
+critical.
+
+The ordering of the highest-numbered commands
+(|comma<semicolon<end_group<stop|) is crucial for the parsing and
+error-recovery methods of this program as is the ordering |if_test<fi_or_else|
+for the smallest two commands. The ordering is also important in the ranges
+|numeric_token..plus_or_minus| and |left_brace..ampersand|.
+
+At any rate, here is the list, for future reference.
+
+@d start_tex=1 {begin \TeX\ material (\&{btex}, \&{verbatimtex})}
+@d etex_marker=2 {end \TeX\ material (\&{etex})}
+@d mpx_break=3 {stop reading an \.{MPX} file (\&{mpxbreak})}
+@d max_pre_command=mpx_break
+@d if_test=4 {conditional text (\&{if})}
+@d fi_or_else=5 {delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}}
+@d input=6 {input a source file (\&{input}, \&{endinput})}
+@d iteration=7 {iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor})}
+@d repeat_loop=8 {special command substituted for \&{endfor}}
+@d exit_test=9 {premature exit from a loop (\&{exitif})}
+@d relax=10 {do nothing (\.{\char`\\})}
+@d scan_tokens=11 {put a string into the input buffer}
+@d expand_after=12 {look ahead one token}
+@d defined_macro=13 {a macro defined by the user}
+@d min_command=defined_macro+1
+@d save_command=14 {save a list of tokens (\&{save})}
+@d interim_command=15 {save an internal quantity (\&{interim})}
+@d let_command=16 {redefine a symbolic token (\&{let})}
+@d new_internal=17 {define a new internal quantity (\&{newinternal})}
+@d macro_def=18 {define a macro (\&{def}, \&{vardef}, etc.)}
+@d ship_out_command=19 {output a character (\&{shipout})}
+@d add_to_command=20 {add to edges (\&{addto})}
+@d bounds_command=21 {add bounding path to edges (\&{setbounds}, \&{clip})}
+@d tfm_command=22 {command for font metric info (\&{ligtable}, etc.)}
+@d protection_command=23 {set protection flag (\&{outer}, \&{inner})}
+@d show_command=24 {diagnostic output (\&{show}, \&{showvariable}, etc.)}
+@d mode_command=25 {set interaction level (\&{batchmode}, etc.)}
+@d random_seed=26 {initialize random number generator (\&{randomseed})}
+@d message_command=27 {communicate to user (\&{message}, \&{errmessage})}
+@d every_job_command=28 {designate a starting token (\&{everyjob})}
+@d delimiters=29 {define a pair of delimiters (\&{delimiters})}
+@d special_command=30 {output special info (\&{special})}
+@d write_command=31 {write text to a file (\&{write})}
+@d type_name=32 {declare a type (\&{numeric}, \&{pair}, etc.}
+@d max_statement_command=type_name
+@d min_primary_command=type_name
+@d left_delimiter=33 {the left delimiter of a matching pair}
+@d begin_group=34 {beginning of a group (\&{begingroup})}
+@d nullary=35 {an operator without arguments (e.g., \&{normaldeviate})}
+@d unary=36 {an operator with one argument (e.g., \&{sqrt})}
+@d str_op=37 {convert a suffix to a string (\&{str})}
+@d cycle=38 {close a cyclic path (\&{cycle})}
+@d primary_binary=39 {binary operation taking `\&{of}' (e.g., \&{point})}
+@d capsule_token=40 {a value that has been put into a token list}
+@d string_token=41 {a string constant (e.g., |"hello"|)}
+@d internal_quantity=42 {internal numeric parameter (e.g., \&{pausing})}
+@d min_suffix_token=internal_quantity
+@d tag_token=43 {a symbolic token without a primitive meaning}
+@d numeric_token=44 {a numeric constant (e.g., \.{3.14159})}
+@d max_suffix_token=numeric_token
+@d plus_or_minus=45 {either `\.+' or `\.-'}
+@d max_primary_command=plus_or_minus {should also be |numeric_token+1|}
+@d min_tertiary_command=plus_or_minus
+@d tertiary_secondary_macro=46 {a macro defined by \&{secondarydef}}
+@d tertiary_binary=47 {an operator at the tertiary level (e.g., `\.{++}')}
+@d max_tertiary_command=tertiary_binary
+@d left_brace=48 {the operator `\.{\char`\{}'}
+@d min_expression_command=left_brace
+@d path_join=49 {the operator `\.{..}'}
+@d ampersand=50 {the operator `\.\&'}
+@d expression_tertiary_macro=51 {a macro defined by \&{tertiarydef}}
+@d expression_binary=52 {an operator at the expression level (e.g., `\.<')}
+@d equals=53 {the operator `\.='}
+@d max_expression_command=equals
+@d and_command=54 {the operator `\&{and}'}
+@d min_secondary_command=and_command
+@d secondary_primary_macro=55 {a macro defined by \&{primarydef}}
+@d slash=56 {the operator `\./'}
+@d secondary_binary=57 {an operator at the binary level (e.g., \&{shifted})}
+@d max_secondary_command=secondary_binary
+@d param_type=58 {type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.)}
+@d controls=59 {specify control points explicitly (\&{controls})}
+@d tension=60 {specify tension between knots (\&{tension})}
+@d at_least=61 {bounded tension value (\&{atleast})}
+@d curl_command=62 {specify curl at an end knot (\&{curl})}
+@d macro_special=63 {special macro operators (\&{quote}, \.{\#\AT!}, etc.)}
+@d right_delimiter=64 {the right delimiter of a matching pair}
+@d left_bracket=65 {the operator `\.['}
+@d right_bracket=66 {the operator `\.]'}
+@d right_brace=67 {the operator `\.{\char`\}}'}
+@d with_option=68 {option for filling (\&{withpen}, \&{withweight}, etc.)}
+@d thing_to_add=69
+ {variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also})}
+@d of_token=70 {the operator `\&{of}'}
+@d to_token=71 {the operator `\&{to}'}
+@d step_token=72 {the operator `\&{step}'}
+@d until_token=73 {the operator `\&{until}'}
+@d within_token=74 {the operator `\&{within}'}
+@d lig_kern_token=75
+ {the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc.}
+@d assignment=76 {the operator `\.{:=}'}
+@d skip_to=77 {the operation `\&{skipto}'}
+@d bchar_label=78 {the operator `\.{\char'174\char'174:}'}
+@d double_colon=79 {the operator `\.{::}'}
+@d colon=80 {the operator `\.:'}
+@#
+@d comma=81 {the operator `\.,', must be |colon+1|}
+@d end_of_statement==cur_cmd>comma
+@d semicolon=82 {the operator `\.;', must be |comma+1|}
+@d end_group=83 {end a group (\&{endgroup}), must be |semicolon+1|}
+@d stop=84 {end a job (\&{end}, \&{dump}), must be |end_group+1|}
+@d max_command_code=stop
+@d outer_tag=max_command_code+1 {protection code added to command code}
+
+@<Types...@>=
+@!command_code=1..max_command_code;
+
+@ Variables and capsules in \MP\ have a variety of ``types,''
+distinguished by the code numbers defined here. These numbers are also
+not completely arbitrary. Things that get expanded must have types
+|>independent|; a type remaining after expansion is numeric if and only if
+its code number is at least |numeric_type|; objects containing numeric
+parts must have types between |transform_type| and |pair_type|;
+all other types must be smaller than |transform_type|; and among the types
+that are not unknown or vacuous, the smallest two must be |boolean_type|
+and |string_type| in that order.
+
+@d undefined=0 {no type has been declared}
+@d unknown_tag=1 {this constant is added to certain type codes below}
+@d vacuous=1 {no expression was present}
+@d boolean_type=2 {\&{boolean} with a known value}
+@d unknown_boolean=boolean_type+unknown_tag
+@d string_type=4 {\&{string} with a known value}
+@d unknown_string=string_type+unknown_tag
+@d pen_type=6 {\&{pen} with a known value}
+@d unknown_pen=pen_type+unknown_tag
+@d path_type=8 {\&{path} with a known value}
+@d unknown_path=path_type+unknown_tag
+@d picture_type=10 {\&{picture} with a known value}
+@d unknown_picture=picture_type+unknown_tag
+@d transform_type=12 {\&{transform} variable or capsule}
+@d color_type=13 {\&{color} variable or capsule}
+@d pair_type=14 {\&{pair} variable or capsule}
+@d numeric_type=15 {variable that has been declared \&{numeric} but not used}
+@d known=16 {\&{numeric} with a known value}
+@d dependent=17 {a linear combination with |fraction| coefficients}
+@d proto_dependent=18 {a linear combination with |scaled| coefficients}
+@d independent=19 {\&{numeric} with unknown value}
+@d token_list=20 {variable name or suffix argument or text argument}
+@d structured=21 {variable with subscripts and attributes}
+@d unsuffixed_macro=22 {variable defined with \&{vardef} but no \.{\AT!\#}}
+@d suffixed_macro=23 {variable defined with \&{vardef} and \.{\AT!\#}}
+@#
+@d unknown_types==unknown_boolean,unknown_string,
+ unknown_pen,unknown_picture,unknown_path
+
+@<Basic printing procedures@>=
+procedure print_type(@!t:small_number);
+begin case t of
+vacuous:print("vacuous");
+boolean_type:print("boolean");
+unknown_boolean:print("unknown boolean");
+string_type:print("string");
+unknown_string:print("unknown string");
+pen_type:print("pen");
+unknown_pen:print("unknown pen");
+path_type:print("path");
+unknown_path:print("unknown path");
+picture_type:print("picture");
+unknown_picture:print("unknown picture");
+transform_type:print("transform");
+color_type:print("color");
+pair_type:print("pair");
+known:print("known numeric");
+dependent:print("dependent");
+proto_dependent:print("proto-dependent");
+numeric_type:print("numeric");
+independent:print("independent");
+token_list:print("token list");
+structured:print("structured");
+unsuffixed_macro:print("unsuffixed macro");
+suffixed_macro:print("suffixed macro");
+othercases print("undefined")
+endcases;
+end;
+
+@ Values inside \MP\ are stored in two-word nodes that have a |name_type|
+as well as a |type|. The possibilities for |name_type| are defined
+here; they will be explained in more detail later.
+
+@d root=0 {|name_type| at the top level of a variable}
+@d saved_root=1 {same, when the variable has been saved}
+@d structured_root=2 {|name_type| where a |structured| branch occurs}
+@d subscr=3 {|name_type| in a subscript node}
+@d attr=4 {|name_type| in an attribute node}
+@d x_part_sector=5 {|name_type| in the \&{xpart} of a node}
+@d y_part_sector=6 {|name_type| in the \&{ypart} of a node}
+@d xx_part_sector=7 {|name_type| in the \&{xxpart} of a node}
+@d xy_part_sector=8 {|name_type| in the \&{xypart} of a node}
+@d yx_part_sector=9 {|name_type| in the \&{yxpart} of a node}
+@d yy_part_sector=10 {|name_type| in the \&{yypart} of a node}
+@d red_part_sector=11 {|name_type| in the \&{redpart} of a node}
+@d green_part_sector=12 {|name_type| in the \&{greenpart} of a node}
+@d blue_part_sector=13 {|name_type| in the \&{bluepart} of a node}
+@d capsule=14 {|name_type| in stashed-away subexpressions}
+@d token=15 {|name_type| in a numeric token or string token}
+
+@ Primitive operations that produce values have a secondary identification
+code in addition to their command code; it's something like genera and species.
+For example, `\.*' has the command code |primary_binary|, and its
+secondary identification is |times|. The secondary codes start at 30 so that
+they don't overlap with the type codes; some type codes (e.g., |string_type|)
+are used as operators as well as type identifications. The relative values
+are not critical, except for |true_code..false_code|, |or_op..and_op|,
+and |filled_op..bounded_op|. The restrictions are that
+|and_op-false_code=or_op-true_code|, that the ordering of
+|x_part...blue_part| must match that of |x_part_sector..blue_part_sector|,
+and the ordering of |filled_op..bounded_op| must match that of the code
+values they test for.
+
+@d true_code=30 {operation code for \.{true}}
+@d false_code=31 {operation code for \.{false}}
+@d null_picture_code=32 {operation code for \.{nullpicture}}
+@d null_pen_code=33 {operation code for \.{nullpen}}
+@d job_name_op=34 {operation code for \.{jobname}}
+@d read_string_op=35 {operation code for \.{readstring}}
+@d pen_circle=36 {operation code for \.{pencircle}}
+@d normal_deviate=37 {operation code for \.{normaldeviate}}
+@d read_from_op=38 {operation code for \.{readfrom}}
+@d close_from_op=39 {operation code for \.{closefrom}}
+@d odd_op=40 {operation code for \.{odd}}
+@d known_op=41 {operation code for \.{known}}
+@d unknown_op=42 {operation code for \.{unknown}}
+@d not_op=43 {operation code for \.{not}}
+@d decimal=44 {operation code for \.{decimal}}
+@d reverse=45 {operation code for \.{reverse}}
+@d make_path_op=46 {operation code for \.{makepath}}
+@d make_pen_op=47 {operation code for \.{makepen}}
+@d oct_op=48 {operation code for \.{oct}}
+@d hex_op=49 {operation code for \.{hex}}
+@d ASCII_op=50 {operation code for \.{ASCII}}
+@d char_op=51 {operation code for \.{char}}
+@d length_op=52 {operation code for \.{length}}
+@d turning_op=53 {operation code for \.{turningnumber}}
+@d x_part=54 {operation code for \.{xpart}}
+@d y_part=55 {operation code for \.{ypart}}
+@d xx_part=56 {operation code for \.{xxpart}}
+@d xy_part=57 {operation code for \.{xypart}}
+@d yx_part=58 {operation code for \.{yxpart}}
+@d yy_part=59 {operation code for \.{yypart}}
+@d red_part=60 {operation code for \.{redpart}}
+@d green_part=61 {operation code for \.{greenpart}}
+@d blue_part=62 {operation code for \.{bluepart}}
+@d font_part=63 {operation code for \.{fontpart}}
+@d text_part=64 {operation code for \.{textpart}}
+@d path_part=65 {operation code for \.{pathpart}}
+@d pen_part=66 {operation code for \.{penpart}}
+@d dash_part=67 {operation code for \.{dashpart}}
+@d sqrt_op=68 {operation code for \.{sqrt}}
+@d m_exp_op=69 {operation code for \.{mexp}}
+@d m_log_op=70 {operation code for \.{mlog}}
+@d sin_d_op=71 {operation code for \.{sind}}
+@d cos_d_op=72 {operation code for \.{cosd}}
+@d floor_op=73 {operation code for \.{floor}}
+@d uniform_deviate=74 {operation code for \.{uniformdeviate}}
+@d char_exists_op=75 {operation code for \.{charexists}}
+@d font_size=76 {operation code for \.{fontsize}}
+@d ll_corner_op=77 {operation code for \.{llcorner}}
+@d lr_corner_op=78 {operation code for \.{lrcorner}}
+@d ul_corner_op=79 {operation code for \.{ulcorner}}
+@d ur_corner_op=80 {operation code for \.{urcorner}}
+@d arc_length=81 {operation code for \.{arclength}}
+@d angle_op=82 {operation code for \.{angle}}
+@d cycle_op=83 {operation code for \.{cycle}}
+@d filled_op=84 {operation code for \.{filled}}
+@d stroked_op=85 {operation code for \.{stroked}}
+@d textual_op=86 {operation code for \.{textual}}
+@d clipped_op=87 {operation code for \.{clipped}}
+@d bounded_op=88 {operation code for \.{bounded}}
+@d plus=89 {operation code for \.+}
+@d minus=90 {operation code for \.-}
+@d times=91 {operation code for \.*}
+@d over=92 {operation code for \./}
+@d pythag_add=93 {operation code for \.{++}}
+@d pythag_sub=94 {operation code for \.{+-+}}
+@d or_op=95 {operation code for \.{or}}
+@d and_op=96 {operation code for \.{and}}
+@d less_than=97 {operation code for \.<}
+@d less_or_equal=98 {operation code for \.{<=}}
+@d greater_than=99 {operation code for \.>}
+@d greater_or_equal=100 {operation code for \.{>=}}
+@d equal_to=101 {operation code for \.=}
+@d unequal_to=102 {operation code for \.{<>}}
+@d concatenate=103 {operation code for \.\&}
+@d rotated_by=104 {operation code for \.{rotated}}
+@d slanted_by=105 {operation code for \.{slanted}}
+@d scaled_by=106 {operation code for \.{scaled}}
+@d shifted_by=107 {operation code for \.{shifted}}
+@d transformed_by=108 {operation code for \.{transformed}}
+@d x_scaled=109 {operation code for \.{xscaled}}
+@d y_scaled=110 {operation code for \.{yscaled}}
+@d z_scaled=111 {operation code for \.{zscaled}}
+@d in_font=112 {operation code for \.{infont}}
+@d intersect=113 {operation code for \.{intersectiontimes}}
+@d double_dot=114 {operation code for improper \.{..}}
+@d substring_of=115 {operation code for \.{substring}}
+@d min_of=substring_of
+@d subpath_of=116 {operation code for \.{subpath}}
+@d direction_time_of=117 {operation code for \.{directiontime}}
+@d point_of=118 {operation code for \.{point}}
+@d precontrol_of=119 {operation code for \.{precontrol}}
+@d postcontrol_of=120 {operation code for \.{postcontrol}}
+@d pen_offset_of=121 {operation code for \.{penoffset}}
+@d arc_time_of=122 {operation code for \.{arctime}}
+@d mp_version=123 {operation code for \.{mpversion}}
+
+@p procedure print_op(@!c:quarterword);
+begin if c<=numeric_type then print_type(c)
+else case c of
+true_code:print("true");
+false_code:print("false");
+null_picture_code:print("nullpicture");
+null_pen_code:print("nullpen");
+job_name_op:print("jobname");
+read_string_op:print("readstring");
+pen_circle:print("pencircle");
+normal_deviate:print("normaldeviate");
+read_from_op:print("readfrom");
+close_from_op:print("closefrom");
+odd_op:print("odd");
+known_op:print("known");
+unknown_op:print("unknown");
+not_op:print("not");
+decimal:print("decimal");
+reverse:print("reverse");
+make_path_op:print("makepath");
+make_pen_op:print("makepen");
+oct_op:print("oct");
+hex_op:print("hex");
+ASCII_op:print("ASCII");
+char_op:print("char");
+length_op:print("length");
+turning_op:print("turningnumber");
+x_part:print("xpart");
+y_part:print("ypart");
+xx_part:print("xxpart");
+xy_part:print("xypart");
+yx_part:print("yxpart");
+yy_part:print("yypart");
+red_part:print("redpart");
+green_part:print("greenpart");
+blue_part:print("bluepart");
+font_part:print("fontpart");
+text_part:print("textpart");
+path_part:print("pathpart");
+pen_part:print("penpart");
+dash_part:print("dashpart");
+sqrt_op:print("sqrt");
+m_exp_op:print("mexp");
+m_log_op:print("mlog");
+sin_d_op:print("sind");
+cos_d_op:print("cosd");
+floor_op:print("floor");
+uniform_deviate:print("uniformdeviate");
+char_exists_op:print("charexists");
+font_size:print("fontsize");
+ll_corner_op:print("llcorner");
+lr_corner_op:print("lrcorner");
+ul_corner_op:print("ulcorner");
+ur_corner_op:print("urcorner");
+arc_length:print("arclength");
+angle_op:print("angle");
+cycle_op:print("cycle");
+filled_op:print("filled");
+stroked_op:print("stroked");
+textual_op:print("textual");
+clipped_op:print("clipped");
+bounded_op:print("bounded");
+plus:print_char("+");
+minus:print_char("-");
+times:print_char("*");
+over:print_char("/");
+pythag_add:print("++");
+pythag_sub:print("+-+");
+or_op:print("or");
+and_op:print("and");
+less_than:print_char("<");
+less_or_equal:print("<=");
+greater_than:print_char(">");
+greater_or_equal:print(">=");
+equal_to:print_char("=");
+unequal_to:print("<>");
+concatenate:print("&");
+rotated_by:print("rotated");
+slanted_by:print("slanted");
+scaled_by:print("scaled");
+shifted_by:print("shifted");
+transformed_by:print("transformed");
+x_scaled:print("xscaled");
+y_scaled:print("yscaled");
+z_scaled:print("zscaled");
+in_font:print("infont");
+intersect:print("intersectiontimes");
+substring_of:print("substring");
+subpath_of:print("subpath");
+direction_time_of:print("directiontime");
+point_of:print("point");
+precontrol_of:print("precontrol");
+postcontrol_of:print("postcontrol");
+pen_offset_of:print("penoffset");
+arc_time_of:print("arctime");
+mp_version:print("mpversion");
+othercases print("..")
+endcases;
+end;
+
+@ \MP\ also has a bunch of internal parameters that a user might want to
+fuss with. Every such parameter has an identifying code number, defined here.
+
+@d tracing_titles=1 {show titles online when they appear}
+@d tracing_equations=2 {show each variable when it becomes known}
+@d tracing_capsules=3 {show capsules too}
+@d tracing_choices=4 {show the control points chosen for paths}
+@d tracing_specs=5 {show path subdivision prior to filling with polygonal a pen}
+@d tracing_commands=6 {show commands and operations before they are performed}
+@d tracing_restores=7 {show when a variable or internal is restored}
+@d tracing_macros=8 {show macros before they are expanded}
+@d tracing_output=9 {show digitized edges as they are output}
+@d tracing_stats=10 {show memory usage at end of job}
+@d tracing_lost_chars=11 {show characters that aren't \&{infont}}
+@d tracing_online=12 {show long diagnostics on terminal and in the log file}
+@d year=13 {the current year (e.g., 1984)}
+@d month=14 {the current month (e.g, 3 $\equiv$ March)}
+@d day=15 {the current day of the month}
+@d time=16 {the number of minutes past midnight when this job started}
+@d char_code=17 {the number of the next character to be output}
+@d char_ext=18 {the extension code of the next character to be output}
+@d char_wd=19 {the width of the next character to be output}
+@d char_ht=20 {the height of the next character to be output}
+@d char_dp=21 {the depth of the next character to be output}
+@d char_ic=22 {the italic correction of the next character to be output}
+@d design_size=23 {the unit of measure used for |char_wd..char_ic|, in points}
+@d pausing=24 {positive to display lines on the terminal before they are read}
+@d showstopping=25 {positive to stop after each \&{show} command}
+@d fontmaking=26 {positive if font metric output is to be produced}
+@d linejoin=27 {as in \ps: 0 for mitered, 1 for round, 2 for beveled}
+@d linecap=28 {as in \ps: 0 for butt, 1 for round, 2 for square}
+@d miterlimit=29 {controls miter length as in \ps}
+@d warning_check=30 {controls error message when variable value is large}
+@d boundary_char=31 {the right boundary character for ligatures}
+@d prologues=32 {positive to output conforming PostScript using built-in fonts}
+@d true_corners=33 {positive to make \&{llcorner} etc. ignore \&{setbounds}}
+@d max_given_internal=33
+
+@<Glob...@>=
+@!internal:array[1..max_internal] of scaled;
+ {the values of internal quantities}
+@!int_name:array[1..max_internal] of str_number;
+ {their names}
+@!int_ptr:max_given_internal..max_internal;
+ {the maximum internal quantity defined so far}
+
+@ @<Set init...@>=
+for k:=1 to max_given_internal do internal[k]:=0;
+int_ptr:=max_given_internal;
+
+@ The symbolic names for internal quantities are put into \MP's hash table
+by using a routine called |primitive|, which will be defined later. Let us
+enter them now, so that we don't have to list all those names again
+anywhere else.
+
+@<Put each of \MP's primitives into the hash table@>=
+primitive("tracingtitles",internal_quantity,tracing_titles);@/
+@!@:tracingtitles_}{\&{tracingtitles} primitive@>
+primitive("tracingequations",internal_quantity,tracing_equations);@/
+@!@:tracing_equations_}{\&{tracingequations} primitive@>
+primitive("tracingcapsules",internal_quantity,tracing_capsules);@/
+@!@:tracing_capsules_}{\&{tracingcapsules} primitive@>
+primitive("tracingchoices",internal_quantity,tracing_choices);@/
+@!@:tracing_choices_}{\&{tracingchoices} primitive@>
+primitive("tracingspecs",internal_quantity,tracing_specs);@/
+@!@:tracing_specs_}{\&{tracingspecs} primitive@>
+primitive("tracingcommands",internal_quantity,tracing_commands);@/
+@!@:tracing_commands_}{\&{tracingcommands} primitive@>
+primitive("tracingrestores",internal_quantity,tracing_restores);@/
+@!@:tracing_restores_}{\&{tracingrestores} primitive@>
+primitive("tracingmacros",internal_quantity,tracing_macros);@/
+@!@:tracing_macros_}{\&{tracingmacros} primitive@>
+primitive("tracingoutput",internal_quantity,tracing_output);@/
+@!@:tracing_output_}{\&{tracingoutput} primitive@>
+primitive("tracingstats",internal_quantity,tracing_stats);@/
+@!@:tracing_stats_}{\&{tracingstats} primitive@>
+primitive("tracinglostchars",internal_quantity,tracing_lost_chars);@/
+@!@:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
+primitive("tracingonline",internal_quantity,tracing_online);@/
+@!@:tracing_online_}{\&{tracingonline} primitive@>
+primitive("year",internal_quantity,year);@/
+@!@:year_}{\&{year} primitive@>
+primitive("month",internal_quantity,month);@/
+@!@:month_}{\&{month} primitive@>
+primitive("day",internal_quantity,day);@/
+@!@:day_}{\&{day} primitive@>
+primitive("time",internal_quantity,time);@/
+@!@:time_}{\&{time} primitive@>
+primitive("charcode",internal_quantity,char_code);@/
+@!@:char_code_}{\&{charcode} primitive@>
+primitive("charext",internal_quantity,char_ext);@/
+@!@:char_ext_}{\&{charext} primitive@>
+primitive("charwd",internal_quantity,char_wd);@/
+@!@:char_wd_}{\&{charwd} primitive@>
+primitive("charht",internal_quantity,char_ht);@/
+@!@:char_ht_}{\&{charht} primitive@>
+primitive("chardp",internal_quantity,char_dp);@/
+@!@:char_dp_}{\&{chardp} primitive@>
+primitive("charic",internal_quantity,char_ic);@/
+@!@:char_ic_}{\&{charic} primitive@>
+primitive("designsize",internal_quantity,design_size);@/
+@!@:design_size_}{\&{designsize} primitive@>
+primitive("pausing",internal_quantity,pausing);@/
+@!@:pausing_}{\&{pausing} primitive@>
+primitive("showstopping",internal_quantity,showstopping);@/
+@!@:showstopping_}{\&{showstopping} primitive@>
+primitive("fontmaking",internal_quantity,fontmaking);@/
+@!@:fontmaking_}{\&{fontmaking} primitive@>
+primitive("linejoin",internal_quantity,linejoin);@/
+@!@:linejoin_}{\&{linejoin} primitive@>
+primitive("linecap",internal_quantity,linecap);@/
+@!@:linecap_}{\&{linecap} primitive@>
+primitive("miterlimit",internal_quantity,miterlimit);@/
+@!@:miterlimit_}{\&{miterlimit} primitive@>
+primitive("warningcheck",internal_quantity,warning_check);@/
+@!@:warning_check_}{\&{warningcheck} primitive@>
+primitive("boundarychar",internal_quantity,boundary_char);@/
+@!@:boundary_char_}{\&{boundarychar} primitive@>
+primitive("prologues",internal_quantity,prologues);@/
+@!@:prologues_}{\&{prologues} primitive@>
+primitive("truecorners",internal_quantity,true_corners);@/
+@!@:true_corners_}{\&{truecorners} primitive@>
+
+@ Well, we do have to list the names one more time, for use in symbolic
+printouts.
+
+@<Initialize table...@>=
+int_name[tracing_titles]:="tracingtitles";
+int_name[tracing_equations]:="tracingequations";
+int_name[tracing_capsules]:="tracingcapsules";
+int_name[tracing_choices]:="tracingchoices";
+int_name[tracing_specs]:="tracingspecs";
+int_name[tracing_commands]:="tracingcommands";
+int_name[tracing_restores]:="tracingrestores";
+int_name[tracing_macros]:="tracingmacros";
+int_name[tracing_output]:="tracingoutput";
+int_name[tracing_stats]:="tracingstats";
+int_name[tracing_lost_chars]:="tracinglostchars";
+int_name[tracing_online]:="tracingonline";
+int_name[year]:="year";
+int_name[month]:="month";
+int_name[day]:="day";
+int_name[time]:="time";
+int_name[char_code]:="charcode";
+int_name[char_ext]:="charext";
+int_name[char_wd]:="charwd";
+int_name[char_ht]:="charht";
+int_name[char_dp]:="chardp";
+int_name[char_ic]:="charic";
+int_name[design_size]:="designsize";
+int_name[pausing]:="pausing";
+int_name[showstopping]:="showstopping";
+int_name[fontmaking]:="fontmaking";
+int_name[linejoin]:="linejoin";
+int_name[linecap]:="linecap";
+int_name[miterlimit]:="miterlimit";
+int_name[warning_check]:="warningcheck";
+int_name[boundary_char]:="boundarychar";
+int_name[prologues]:="prologues";
+int_name[true_corners]:="truecorners";
+
+@ The following procedure, which is called just before \MP\ initializes its
+input and output, establishes the initial values of the date and time.
+@^system dependencies@>
+Since standard \PASCAL\ cannot provide such information, something special
+is needed. The program here simply specifies July 4, 1776, at noon; but
+users probably want a better approximation to the truth.
+
+Note that the values are |scaled| integers. Hence \MP\ can no longer
+be used after the year 32767.
+
+@p procedure fix_date_and_time;
+begin internal[time]:=12*60*unity; {minutes since midnight}
+internal[day]:=4*unity; {fourth day of the month}
+internal[month]:=7*unity; {seventh month of the year}
+internal[year]:=1776*unity; {Anno Domini}
+end;
+
+@ \MP\ is occasionally supposed to print diagnostic information that
+goes only into the transcript file, unless |tracing_online| is positive.
+Now that we have defined |tracing_online| we can define
+two routines that adjust the destination of print commands:
+
+@<Basic printing...@>=
+@<Declare a function called |true_line|@>@;
+procedure begin_diagnostic; {prepare to do some tracing}
+begin old_setting:=selector;
+if selector=ps_file_only then selector:=non_ps_setting;
+if(internal[tracing_online]<=0)and(selector=term_and_log) then
+ begin decr(selector);
+ if history=spotless then history:=warning_issued;
+ end;
+end;
+@#
+procedure end_diagnostic(@!blank_line:boolean);
+ {restore proper conditions after tracing}
+begin print_nl("");
+if blank_line then print_ln;
+selector:=old_setting;
+end;
+
+@ The global variable |non_ps_setting| is initialized when it is time to print
+on |ps_file|.
+
+@<Glob...@>=
+@!old_setting,@!non_ps_setting:0..max_selector;
+
+@ We will occasionally use |begin_diagnostic| in connection with line-number
+printing, as follows. (The parameter |s| is typically |"Path"| or
+|"Cycle spec"|, etc.)
+
+@<Basic printing...@>=
+procedure print_diagnostic(@!s,@!t:str_number;@!nuline:boolean);
+begin begin_diagnostic;
+if nuline then print_nl(s)@+else print(s);
+print(" at line "); print_int(true_line);
+print(t); print_char(":");
+end;
+
+@ The 256 |ASCII_code| characters are grouped into classes by means of
+the |char_class| table. Individual class numbers have no semantic
+or syntactic significance, except in a few instances defined here.
+There's also |max_class|, which can be used as a basis for additional
+class numbers in nonstandard extensions of \MP.
+
+@d digit_class=0 {the class number of \.{0123456789}}
+@d period_class=1 {the class number of `\..'}
+@d space_class=2 {the class number of spaces and nonstandard characters}
+@d percent_class=3 {the class number of `\.\%'}
+@d string_class=4 {the class number of `\."'}
+@d right_paren_class=8 {the class number of `\.)'}
+@d isolated_classes==5,6,7,8 {characters that make length-one tokens only}
+@d letter_class=9 {letters and the underline character}
+@d left_bracket_class=17 {`\.['}
+@d right_bracket_class=18 {`\.]'}
+@d invalid_class=20 {bad character in the input}
+@d max_class=20 {the largest class number}
+
+@<Glob...@>=
+@!char_class:array[ASCII_code] of 0..max_class; {the class numbers}
+
+@ If changes are made to accommodate non-ASCII character sets, they should
+follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+@^system dependencies@>
+
+@<Set init...@>=
+for k:="0" to "9" do char_class[k]:=digit_class;
+char_class["."]:=period_class;
+char_class[" "]:=space_class;
+char_class["%"]:=percent_class;
+char_class[""""]:=string_class;@/
+char_class[","]:=5;
+char_class[";"]:=6;
+char_class["("]:=7;
+char_class[")"]:=right_paren_class;
+for k:="A" to "Z" do char_class[k]:=letter_class;
+for k:="a" to "z" do char_class[k]:=letter_class;
+char_class["_"]:=letter_class;@/
+char_class["<"]:=10;
+char_class["="]:=10;
+char_class[">"]:=10;
+char_class[":"]:=10;
+char_class["|"]:=10;@/
+char_class["`"]:=11;
+char_class["'"]:=11;@/
+char_class["+"]:=12;
+char_class["-"]:=12;@/
+char_class["/"]:=13;
+char_class["*"]:=13;
+char_class["\"]:=13;@/
+char_class["!"]:=14;
+char_class["?"]:=14;@/
+char_class["#"]:=15;
+char_class["&"]:=15;
+char_class["@@"]:=15;
+char_class["$"]:=15;@/
+char_class["^"]:=16;
+char_class["~"]:=16;@/
+char_class["["]:=left_bracket_class;
+char_class["]"]:=right_bracket_class;@/
+char_class["{"]:=19;
+char_class["}"]:=19;@/
+for k:=0 to " "-1 do char_class[k]:=invalid_class;
+for k:=127 to 255 do char_class[k]:=invalid_class;
+
+@* \[13] The hash table.
+Symbolic tokens are stored and retrieved by means of a fairly standard hash
+table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
+in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
+table, it is never removed.
+
+The actual sequence of characters forming a symbolic token is
+stored in the |str_pool| array together with all the other strings. An
+auxiliary array |hash| consists of items with two halfword fields per
+word. The first of these, called |next(p)|, points to the next identifier
+belonging to the same coalesced list as the identifier corresponding to~|p|;
+and the other, called |text(p)|, points to the |str_start| entry for
+|p|'s identifier. If position~|p| of the hash table is empty, we have
+|text(p)=0|; if position |p| is either empty or the end of a coalesced
+hash list, we have |next(p)=0|.
+
+An auxiliary pointer variable called |hash_used| is maintained in such a
+way that all locations |p>=hash_used| are nonempty. The global variable
+|st_count| tells how many symbolic tokens have been defined, if statistics
+are being kept.
+
+The first 256 locations of |hash| are reserved for symbols of length one.
+
+There's a parallel array called |eqtb| that contains the current equivalent
+values of each symbolic token. The entries of this array consist of
+two halfwords called |eq_type| (a command code) and |equiv| (a secondary
+piece of information that qualifies the |eq_type|).
+
+@d next(#) == hash[#].lh {link for coalesced lists}
+@d text(#) == hash[#].rh {string number for symbolic token name}
+@d eq_type(#) == eqtb[#].lh {the current ``meaning'' of a symbolic token}
+@d equiv(#) == eqtb[#].rh {parametric part of a token's meaning}
+@d hash_base=257 {hashing actually starts here}
+@d hash_is_full == (hash_used=hash_base) {are all positions occupied?}
+
+@<Glob...@>=
+@!hash_used:pointer; {allocation pointer for |hash|}
+@!st_count:integer; {total number of known identifiers}
+
+@ Certain entries in the hash table are ``frozen'' and not redefinable,
+since they are used in error recovery.
+
+@d hash_top==hash_base+hash_size {the first location of the frozen area}
+@d frozen_inaccessible==hash_top {|hash| location to protect the frozen area}
+@d frozen_repeat_loop==hash_top+1 {|hash| location of a loop-repeat token}
+@d frozen_right_delimiter==hash_top+2 {|hash| location of a permanent `\.)'}
+@d frozen_left_bracket==hash_top+3 {|hash| location of a permanent `\.['}
+@d frozen_slash==hash_top+4 {|hash| location of a permanent `\./'}
+@d frozen_colon==hash_top+5 {|hash| location of a permanent `\.:'}
+@d frozen_semicolon==hash_top+6 {|hash| location of a permanent `\.;'}
+@d frozen_end_for==hash_top+7 {|hash| location of a permanent \&{endfor}}
+@d frozen_end_def==hash_top+8 {|hash| location of a permanent \&{enddef}}
+@d frozen_fi==hash_top+9 {|hash| location of a permanent \&{fi}}
+@d frozen_end_group==hash_top+10
+ {|hash| location of a permanent `\.{endgroup}'}
+@d frozen_etex==hash_top+11 {|hash| location of a permanent \&{etex}}
+@d frozen_mpx_break==hash_top+12 {|hash| location of a permanent \&{mpxbreak}}
+@d frozen_bad_vardef==hash_top+13 {|hash| location of `\.{a bad variable}'}
+@d frozen_undefined==hash_top+14 {|hash| location that never gets defined}
+@d hash_end==hash_top+14 {the actual size of the |hash| and |eqtb| arrays}
+
+@<Glob...@>=
+@!hash: array[1..hash_end] of two_halves; {the hash table}
+@!eqtb: array[1..hash_end] of two_halves; {the equivalents}
+
+@ @<Set init...@>=
+next(1):=0; text(1):=0; eq_type(1):=tag_token; equiv(1):=null;
+for k:=2 to hash_end do
+ begin hash[k]:=hash[1]; eqtb[k]:=eqtb[1];
+ end;
+
+@ @<Initialize table entries...@>=
+hash_used:=frozen_inaccessible; {nothing is used}
+st_count:=0;@/
+text(frozen_bad_vardef):="a bad variable";
+text(frozen_etex):="etex";
+text(frozen_mpx_break):="mpxbreak";
+text(frozen_fi):="fi";
+text(frozen_end_group):="endgroup";
+text(frozen_end_def):="enddef";
+text(frozen_end_for):="endfor";@/
+text(frozen_semicolon):=";";
+text(frozen_colon):=":";
+text(frozen_slash):="/";
+text(frozen_left_bracket):="[";
+text(frozen_right_delimiter):=")";@/
+text(frozen_inaccessible):=" INACCESSIBLE";@/
+eq_type(frozen_right_delimiter):=right_delimiter;
+
+@ @<Check the ``constant'' values...@>=
+if hash_end+max_internal>max_halfword then bad:=17;
+
+@ Here is the subroutine that searches the hash table for an identifier
+that matches a given string of length~|l| appearing in |buffer[j..
+(j+l-1)]|. If the identifier is not found, it is inserted; hence it
+will always be found, and the corresponding hash table address
+will be returned.
+
+@p function id_lookup(@!j,@!l:integer):pointer; {search the hash table}
+label found; {go here when you've found it}
+var @!h:integer; {hash code}
+@!p:pointer; {index in |hash| array}
+@!k:pointer; {index in |buffer| array}
+begin if l=1 then @<Treat special case of length 1 and |goto found|@>;
+@<Compute the hash code |h|@>;
+p:=h+hash_base; {we start searching here; note that |0<=h<hash_prime|}
+loop@+ begin if text(p)>0 then if length(text(p))=l then
+ if str_eq_buf(text(p),j) then goto found;
+ if next(p)=0 then
+ @<Insert a new symbolic token after |p|, then
+ make |p| point to it and |goto found|@>;
+ p:=next(p);
+ end;
+found: id_lookup:=p;
+end;
+
+@ @<Treat special case of length 1...@>=
+begin p:=buffer[j]+1; text(p):=p-1; goto found;
+end
+
+@ @<Insert a new symbolic...@>=
+begin if text(p)>0 then
+ begin repeat if hash_is_full then
+ overflow("hash size",hash_size);
+@:MetaPost capacity exceeded hash size}{\quad hash size@>
+ decr(hash_used);
+ until text(hash_used)=0; {search for an empty location in |hash|}
+ next(p):=hash_used; p:=hash_used;
+ end;
+str_room(l);
+for k:=j to j+l-1 do append_char(buffer[k]);
+text(p):=make_string; str_ref[text(p)]:=max_str_ref;
+@!stat incr(st_count);@+tats@;@/
+goto found;
+end
+
+@ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
+should be a prime number. The theory of hashing tells us to expect fewer
+than two table probes, on the average, when the search is successful.
+[See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
+@^Vitter, Jeffrey Scott@>
+
+@<Compute the hash code |h|@>=
+h:=buffer[j];
+for k:=j+1 to j+l-1 do
+ begin h:=h+h+buffer[k];
+ while h>=hash_prime do h:=h-hash_prime;
+ end
+
+@ @<Search |eqtb| for equivalents equal to |p|@>=
+for q:=1 to hash_end do
+ begin if equiv(q)=p then
+ begin print_nl("EQUIV("); print_int(q); print_char(")");
+ end;
+ end
+
+@ We need to put \MP's ``primitive'' symbolic tokens into the hash
+table, together with their command code (which will be the |eq_type|)
+and an operand (which will be the |equiv|). The |primitive| procedure
+does this, in a way that no \MP\ user can. The global value |cur_sym|
+contains the new |eqtb| pointer after |primitive| has acted.
+
+@p @!init procedure primitive(@!s:str_number;@!c:halfword;@!o:halfword);
+var @!k:pool_pointer; {index into |str_pool|}
+@!j:small_number; {index into |buffer|}
+@!l:small_number; {length of the string}
+begin k:=str_start[s]; l:=str_stop(s)-k;
+ {we will move |s| into the (empty) |buffer|}
+for j:=0 to l-1 do buffer[j]:=so(str_pool[k+j]);
+cur_sym:=id_lookup(0,l);@/
+if s>=256 then {we don't want to have the string twice}
+ begin flush_string(text(cur_sym)); text(cur_sym):=s;
+ end;
+eq_type(cur_sym):=c; equiv(cur_sym):=o;
+end;
+tini
+
+@ Many of \MP's primitives need no |equiv|, since they are identifiable
+by their |eq_type| alone. These primitives are loaded into the hash table
+as follows:
+
+@<Put each of \MP's primitives into the hash table@>=
+primitive("..",path_join,0);@/
+@!@:.._}{\.{..} primitive@>
+primitive("[",left_bracket,0); eqtb[frozen_left_bracket]:=eqtb[cur_sym];@/
+@!@:[ }{\.{[} primitive@>
+primitive("]",right_bracket,0);@/
+@!@:] }{\.{]} primitive@>
+primitive("}",right_brace,0);@/
+@!@:]]}{\.{\char`\}} primitive@>
+primitive("{",left_brace,0);@/
+@!@:][}{\.{\char`\{} primitive@>
+primitive(":",colon,0); eqtb[frozen_colon]:=eqtb[cur_sym];@/
+@!@:: }{\.{:} primitive@>
+primitive("::",double_colon,0);@/
+@!@::: }{\.{::} primitive@>
+primitive("||:",bchar_label,0);@/
+@!@:::: }{\.{\char'174\char'174:} primitive@>
+primitive(":=",assignment,0);@/
+@!@::=_}{\.{:=} primitive@>
+primitive(",",comma,0);@/
+@!@:, }{\., primitive@>
+primitive(";",semicolon,0); eqtb[frozen_semicolon]:=eqtb[cur_sym];@/
+@!@:; }{\.; primitive@>
+primitive("\",relax,0);@/
+@!@:]]\\}{\.{\char`\\} primitive@>
+@#
+primitive("addto",add_to_command,0);@/
+@!@:add_to_}{\&{addto} primitive@>
+primitive("atleast",at_least,0);@/
+@!@:at_least_}{\&{atleast} primitive@>
+primitive("begingroup",begin_group,0); bg_loc:=cur_sym;@/
+@!@:begin_group_}{\&{begingroup} primitive@>
+primitive("controls",controls,0);@/
+@!@:controls_}{\&{controls} primitive@>
+primitive("curl",curl_command,0);@/
+@!@:curl_}{\&{curl} primitive@>
+primitive("delimiters",delimiters,0);@/
+@!@:delimiters_}{\&{delimiters} primitive@>
+primitive("endgroup",end_group,0);
+ eqtb[frozen_end_group]:=eqtb[cur_sym]; eg_loc:=cur_sym;@/
+@!@:endgroup_}{\&{endgroup} primitive@>
+primitive("everyjob",every_job_command,0);@/
+@!@:every_job_}{\&{everyjob} primitive@>
+primitive("exitif",exit_test,0);@/
+@!@:exit_if_}{\&{exitif} primitive@>
+primitive("expandafter",expand_after,0);@/
+@!@:expand_after_}{\&{expandafter} primitive@>
+primitive("interim",interim_command,0);@/
+@!@:interim_}{\&{interim} primitive@>
+primitive("let",let_command,0);@/
+@!@:let_}{\&{let} primitive@>
+primitive("newinternal",new_internal,0);@/
+@!@:new_internal_}{\&{newinternal} primitive@>
+primitive("of",of_token,0);@/
+@!@:of_}{\&{of} primitive@>
+primitive("randomseed",random_seed,0);@/
+@!@:random_seed_}{\&{randomseed} primitive@>
+primitive("save",save_command,0);@/
+@!@:save_}{\&{save} primitive@>
+primitive("scantokens",scan_tokens,0);@/
+@!@:scan_tokens_}{\&{scantokens} primitive@>
+primitive("shipout",ship_out_command,0);@/
+@!@:ship_out_}{\&{shipout} primitive@>
+primitive("skipto",skip_to,0);@/
+@!@:skip_to_}{\&{skipto} primitive@>
+primitive("special",special_command,0);
+@!@:special}{\&{special} primitive@>
+primitive("step",step_token,0);@/
+@!@:step_}{\&{step} primitive@>
+primitive("str",str_op,0);@/
+@!@:str_}{\&{str} primitive@>
+primitive("tension",tension,0);@/
+@!@:tension_}{\&{tension} primitive@>
+primitive("to",to_token,0);@/
+@!@:to_}{\&{to} primitive@>
+primitive("until",until_token,0);@/
+@!@:until_}{\&{until} primitive@>
+primitive("within",within_token,0);@/
+@!@:within_}{\&{within} primitive@>
+primitive("write",write_command,0);@/
+@!@:write_}{\&{write} primitive@>
+
+@ Each primitive has a corresponding inverse, so that it is possible to
+display the cryptic numeric contents of |eqtb| in symbolic form.
+Every call of |primitive| in this program is therefore accompanied by some
+straightforward code that forms part of the |print_cmd_mod| routine
+explained below.
+
+@<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
+add_to_command:print("addto");
+assignment:print(":=");
+at_least:print("atleast");
+bchar_label:print("||:");
+begin_group:print("begingroup");
+colon:print(":");
+comma:print(",");
+controls:print("controls");
+curl_command:print("curl");
+delimiters:print("delimiters");
+double_colon:print("::");
+end_group:print("endgroup");
+every_job_command:print("everyjob");
+exit_test:print("exitif");
+expand_after:print("expandafter");
+interim_command:print("interim");
+left_brace:print("{");
+left_bracket:print("[");
+let_command:print("let");
+new_internal:print("newinternal");
+of_token:print("of");
+path_join:print("..");
+random_seed:print("randomseed");
+relax:print_char("\");
+right_brace:print("}");
+right_bracket:print("]");
+save_command:print("save");
+scan_tokens:print("scantokens");
+semicolon:print(";");
+ship_out_command:print("shipout");
+skip_to:print("skipto");
+special_command: print("special");
+step_token:print("step");
+str_op:print("str");
+tension:print("tension");
+to_token:print("to");
+until_token:print("until");
+within_token:print("within");
+write_command:print("write");
+
+@ We will deal with the other primitives later, at some point in the program
+where their |eq_type| and |equiv| values are more meaningful. For example,
+the primitives for macro definitions will be loaded when we consider the
+routines that define macros.
+It is easy to find where each particular
+primitive was treated by looking in the index at the end; for example, the
+section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
+
+@* \[14] Token lists.
+A \MP\ token is either symbolic or numeric or a string, or it denotes
+a macro parameter or capsule; so there are five corresponding ways to encode it
+@^token@>
+internally: (1)~A symbolic token whose hash code is~|p|
+is represented by the number |p|, in the |info| field of a single-word
+node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
+represented in a two-word node of~|mem|; the |type| field is |known|,
+the |name_type| field is |token|, and the |value| field holds~|v|.
+The fact that this token appears in a two-word node rather than a
+one-word node is, of course, clear from the node address.
+(3)~A string token is also represented in a two-word node; the |type|
+field is |string_type|, the |name_type| field is |token|, and the
+|value| field holds the corresponding |str_number|. (4)~Capsules have
+|name_type=capsule|, and their |type| and |value| fields represent
+arbitrary values (in ways to be explained later). (5)~Macro parameters
+are like symbolic tokens in that they appear in |info| fields of
+one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
+is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
+by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
+Actual values of these parameters are kept in a separate stack, as we will
+see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
+of course, chosen so that there will be no confusion between symbolic
+tokens and parameters of various types.
+
+Note that
+the `\\{type}' field of a node has nothing to do with ``type'' in a
+printer's sense. It's curious that the same word is used in such different ways.
+
+@d type(#) == mem[#].hh.b0 {identifies what kind of value this is}
+@d name_type(#) == mem[#].hh.b1 {a clue to the name of this value}
+@d token_node_size=2 {the number of words in a large token node}
+@d value_loc(#)==#+1 {the word that contains the |value| field}
+@d value(#)==mem[value_loc(#)].int {the value stored in a large token node}
+@d expr_base==hash_end+1 {code for the zeroth \&{expr} parameter}
+@d suffix_base==expr_base+param_size {code for the zeroth \&{suffix} parameter}
+@d text_base==suffix_base+param_size {code for the zeroth \&{text} parameter}
+
+@<Check the ``constant''...@>=
+if text_base+param_size>max_halfword then bad:=18;
+
+@ We have set aside a two word node beginning at |null| so that we can have
+|value(null)=0|. We will make use of this coincidence later.
+
+@<Initialize table entries...@>=
+link(null):=null;
+value(null):=0;
+
+@ A numeric token is created by the following trivial routine.
+
+@p function new_num_tok(@!v:scaled):pointer;
+var @!p:pointer; {the new node}
+begin p:=get_node(token_node_size); value(p):=v;
+type(p):=known; name_type(p):=token; new_num_tok:=p;
+end;
+
+@ A token list is a singly linked list of nodes in |mem|, where
+each node contains a token and a link. Here's a subroutine that gets rid
+of a token list when it is no longer needed.
+
+@p procedure@?token_recycle; forward;@t\2@>@;@/
+procedure flush_token_list(@!p:pointer);
+var @!q:pointer; {the node being recycled}
+begin while p<>null do
+ begin q:=p; p:=link(p);
+ if q>=hi_mem_min then free_avail(q)
+ else begin case type(q) of
+ vacuous,boolean_type,known:do_nothing;
+ string_type:delete_str_ref(value(q));
+ unknown_types,pen_type,path_type,picture_type,pair_type,color_type,
+ transform_type,dependent,proto_dependent,independent:
+ begin g_pointer:=q; token_recycle;
+ end;
+ othercases confusion("token")
+@:this can't happen token}{\quad token@>
+ endcases;@/
+ free_node(q,token_node_size);
+ end;
+ end;
+end;
+
+@ The procedure |show_token_list|, which prints a symbolic form of
+the token list that starts at a given node |p|, illustrates these
+conventions. The token list being displayed should not begin with a reference
+count. However, the procedure is intended to be fairly robust, so that if the
+memory links are awry or if |p| is not really a pointer to a token list,
+almost nothing catastrophic can happen.
+
+An additional parameter |q| is also given; this parameter is either null
+or it points to a node in the token list where a certain magic computation
+takes place that will be explained later. (Basically, |q| is non-null when
+we are printing the two-line context information at the time of an error
+message; |q| marks the place corresponding to where the second line
+should begin.)
+
+The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
+of printing exceeds a given limit~|l|; the length of printing upon entry is
+assumed to be a given amount called |null_tally|. (Note that
+|show_token_list| sometimes uses itself recursively to print
+variable names within a capsule.)
+@^recursion@>
+
+Unusual entries are printed in the form of all-caps tokens
+preceded by a space, e.g., `\.{\char`\ BAD}'.
+
+@<Declare the procedure called |show_token_list|@>=
+procedure@?print_capsule; forward; @t\2@>@;@/
+procedure show_token_list(@!p,@!q:integer;@!l,@!null_tally:integer);
+label exit;
+var @!class,@!c:small_number; {the |char_class| of previous and new tokens}
+@!r,@!v:integer; {temporary registers}
+begin class:=percent_class;
+tally:=null_tally;
+while (p<>null) and (tally<l) do
+ begin if p=q then @<Do magic computation@>;
+ @<Display token |p| and set |c| to its class;
+ but |return| if there are problems@>;
+ class:=c; p:=link(p);
+ end;
+if p<>null then print(" ETC.");
+@.ETC@>
+exit:
+end;
+
+@ @<Display token |p| and set |c| to its class...@>=
+c:=letter_class; {the default}
+if (p<mem_min)or(p>mem_end) then
+ begin print(" CLOBBERED"); return;
+@.CLOBBERED@>
+ end;
+if p<hi_mem_min then @<Display two-word token@>
+else begin r:=info(p);
+ if r>=expr_base then @<Display a parameter token@>
+ else if r<1 then
+ if r=0 then @<Display a collective subscript@>
+ else print(" IMPOSSIBLE")
+@.IMPOSSIBLE@>
+ else begin r:=text(r);
+ if (r<0)or(r>max_str_ptr) then print(" NONEXISTENT")
+@.NONEXISTENT@>
+ else @<Print string |r| as a symbolic token
+ and set |c| to its class@>;
+ end;
+ end
+
+@ @<Display two-word token@>=
+if name_type(p)=token then
+ if type(p)=known then @<Display a numeric token@>
+ else if type(p)<>string_type then print(" BAD")
+@.BAD@>
+ else begin print_char(""""); print(value(p)); print_char("""");
+ c:=string_class;
+ end
+else if (name_type(p)<>capsule)or(type(p)<vacuous)or(type(p)>independent) then
+ print(" BAD")
+else begin g_pointer:=p; print_capsule; c:=right_paren_class;
+ end
+
+@ @<Display a numeric token@>=
+begin if class=digit_class then print_char(" ");
+v:=value(p);
+if v<0 then
+ begin if class=left_bracket_class then print_char(" ");
+ print_char("["); print_scaled(v); print_char("]");
+ c:=right_bracket_class;
+ end
+else begin print_scaled(v); c:=digit_class;
+ end;
+end
+
+@ Strictly speaking, a genuine token will never have |info(p)=0|.
+But we will see later (in the |print_variable_name| routine) that
+it is convenient to let |info(p)=0| stand for `\.{[]}'.
+
+@<Display a collective subscript@>=
+begin if class=left_bracket_class then print_char(" ");
+print("[]"); c:=right_bracket_class;
+end
+
+@ @<Display a parameter token@>=
+begin if r<suffix_base then
+ begin print("(EXPR"); r:=r-(expr_base);
+@.EXPR@>
+ end
+else if r<text_base then
+ begin print("(SUFFIX"); r:=r-(suffix_base);
+@.SUFFIX@>
+ end
+else begin print("(TEXT"); r:=r-(text_base);
+@.TEXT@>
+ end;
+print_int(r); print_char(")"); c:=right_paren_class;
+end
+
+@ @<Print string |r| as a symbolic token...@>=
+begin c:=char_class[so(str_pool[str_start[r]])];
+if c=class then
+ case c of
+ letter_class:print_char(".");
+ isolated_classes:do_nothing;
+ othercases print_char(" ")
+ endcases;
+print(r);
+end
+
+@ The following procedures have been declared |forward| with no parameters,
+because the author dislikes \PASCAL's convention about |forward| procedures
+with parameters. It was necessary to do something, because |show_token_list|
+is recursive (although the recursion is limited to one level), and because
+|flush_token_list| is syntactically (but not semantically) recursive.
+@^recursion@>
+
+@<Declare miscellaneous procedures that were declared |forward|@>=
+procedure print_capsule;
+begin print_char("("); print_exp(g_pointer,0); print_char(")");
+end;
+@#
+procedure token_recycle;
+begin recycle_value(g_pointer);
+end;
+
+@ @<Glob...@>=
+@!g_pointer:pointer; {(global) parameter to the |forward| procedures}
+
+@ Macro definitions are kept in \MP's memory in the form of token lists
+that have a few extra one-word nodes at the beginning.
+
+The first node contains a reference count that is used to tell when the
+list is no longer needed. To emphasize the fact that a reference count is
+present, we shall refer to the |info| field of this special node as the
+|ref_count| field.
+@^reference counts@>
+
+The next node or nodes after the reference count serve to describe the
+formal parameters. They either contain a code word that specifies all
+of the parameters, or they contain zero or more parameter tokens followed
+by the code `|general_macro|'.
+
+@d ref_count==info
+ {reference count preceding a macro definition or picture header}
+@d add_mac_ref(#)==incr(ref_count(#)) {make a new reference to a macro list}
+@d general_macro=0 {preface to a macro defined with a parameter list}
+@d primary_macro=1 {preface to a macro with a \&{primary} parameter}
+@d secondary_macro=2 {preface to a macro with a \&{secondary} parameter}
+@d tertiary_macro=3 {preface to a macro with a \&{tertiary} parameter}
+@d expr_macro=4 {preface to a macro with an undelimited \&{expr} parameter}
+@d of_macro=5 {preface to a macro with
+ undelimited `\&{expr} |x| \&{of}~|y|' parameters}
+@d suffix_macro=6 {preface to a macro with an undelimited \&{suffix} parameter}
+@d text_macro=7 {preface to a macro with an undelimited \&{text} parameter}
+
+@p procedure delete_mac_ref(@!p:pointer);
+ {|p| points to the reference count of a macro list that is
+ losing one reference}
+begin if ref_count(p)=null then flush_token_list(p)
+else decr(ref_count(p));
+end;
+
+@ The following subroutine displays a macro, given a pointer to its
+reference count.
+
+@p @t\4@>@<Declare the procedure called |print_cmd_mod|@>@;
+procedure show_macro(@!p:pointer;@!q,@!l:integer);
+label exit;
+var @!r:pointer; {temporary storage}
+begin p:=link(p); {bypass the reference count}
+while info(p)>text_macro do
+ begin r:=link(p); link(p):=null;
+ show_token_list(p,null,l,0); link(p):=r; p:=r;
+ if l>0 then l:=l-tally@+else return;
+ end; {control printing of `\.{ETC.}'}
+@.ETC@>
+tally:=0;
+case info(p) of
+general_macro:print("->");
+@.->@>
+primary_macro,secondary_macro,tertiary_macro:begin print_char("<");
+ print_cmd_mod(param_type,info(p)); print(">->");
+ end;
+expr_macro:print("<expr>->");
+of_macro:print("<expr>of<primary>->");
+suffix_macro:print("<suffix>->");
+text_macro:print("<text>->");
+end; {there are no other cases}
+show_token_list(link(p),q,l-tally,0);
+exit:end;
+
+@* \[15] Data structures for variables.
+The variables of \MP\ programs can be simple, like `\.x', or they can
+combine the structural properties of arrays and records, like `\.{x20a.b}'.
+A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
+example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
+things are represented inside of the computer.
+
+Each variable value occupies two consecutive words, either in a two-word
+node called a value node, or as a two-word subfield of a larger node. One
+of those two words is called the |value| field; it is an integer,
+containing either a |scaled| numeric value or the representation of some
+other type of quantity. (It might also be subdivided into halfwords, in
+which case it is referred to by other names instead of |value|.) The other
+word is broken into subfields called |type|, |name_type|, and |link|. The
+|type| field is a quarterword that specifies the variable's type, and
+|name_type| is a quarterword from which \MP\ can reconstruct the
+variable's name (sometimes by using the |link| field as well). Thus, only
+1.25 words are actually devoted to the value itself; the other
+three-quarters of a word are overhead, but they aren't wasted because they
+allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
+
+In this section we shall be concerned only with the structural aspects of
+variables, not their values. Later parts of the program will change the
+|type| and |value| fields, but we shall treat those fields as black boxes
+whose contents should not be touched.
+
+However, if the |type| field is |structured|, there is no |value| field,
+and the second word is broken into two pointer fields called |attr_head|
+and |subscr_head|. Those fields point to additional nodes that
+contain structural information, as we shall see.
+
+@d subscr_head_loc(#) == #+1 {where |value|, |subscr_head| and |attr_head| are}
+@d attr_head(#) == info(subscr_head_loc(#)) {pointer to attribute info}
+@d subscr_head(#) == link(subscr_head_loc(#)) {pointer to subscript info}
+@d value_node_size=2 {the number of words in a value node}
+
+@ An attribute node is three words long. Two of these words contain |type|
+and |value| fields as described above, and the third word contains
+additional information: There is an |attr_loc| field, which contains the
+hash address of the token that names this attribute; and there's also a
+|parent| field, which points to the value node of |structured| type at the
+next higher level (i.e., at the level to which this attribute is
+subsidiary). The |name_type| in an attribute node is `|attr|'. The
+|link| field points to the next attribute with the same parent; these are
+arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
+final attribute node links to the constant |end_attr|, whose |attr_loc|
+field is greater than any legal hash address. The |attr_head| in the
+parent points to a node whose |name_type| is |structured_root|; this
+node represents the null attribute, i.e., the variable that is relevant
+when no attributes are attached to the parent. The |attr_head| node is either
+a value node, a subscript node, or an attribute node, depending on what
+the parent would be if it were not structured; but the subscript and
+attribute fields are ignored, so it effectively contains only the data of
+a value node. The |link| field in this special node points to an attribute
+node whose |attr_loc| field is zero; the latter node represents a collective
+subscript `\.{[]}' attached to the parent, and its |link| field points to
+the first non-special attribute node (or to |end_attr| if there are none).
+
+A subscript node likewise occupies three words, with |type| and |value| fields
+plus extra information; its |name_type| is |subscr|. In this case the
+third word is called the |subscript| field, which is a |scaled| integer.
+The |link| field points to the subscript node with the next larger
+subscript, if any; otherwise the |link| points to the attribute node
+for collective subscripts at this level. We have seen that the latter node
+contains an upward pointer, so that the parent can be deduced.
+
+The |name_type| in a parent-less value node is |root|, and the |link|
+is the hash address of the token that names this value.
+
+In other words, variables have a hierarchical structure that includes
+enough threads running around so that the program is able to move easily
+between siblings, parents, and children. An example should be helpful:
+(The reader is advised to draw a picture while reading the following
+description, since that will help to firm up the ideas.)
+Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
+and `\.{x20b}' have been mentioned in a user's program, where
+\.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
+and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
+|eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
+node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=structured|,
+|attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
+node and |r| to a subscript node. (Are you still following this? Use
+a pencil to draw a diagram.) The lone variable `\.x' is represented by
+|type(q)| and |value(q)|; furthermore
+|name_type(q)=structured_root| and |link(q)=q1|, where |q1| points
+to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
+|attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
+|type(q1)=structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
+|qq| is a value node with |type(qq)=numeric_type| (assuming that \.{x5} is
+numeric, because |qq| represents `\.{x[]}' with no further attributes),
+|name_type(qq)=structured_root|, and
+|link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
+an attribute node representing `\.{x[][]}', which has never yet
+occurred; its |type| field is |undefined|, and its |value| field is
+undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
+|parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
+`\.{x[]b}', |type(qq2)=unknown_boolean|; also |attr_loc(qq2)=h(b)|,
+|parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
+(Maybe colored lines will help untangle your picture.)
+ Node |r| is a subscript node with |type| and |value|
+representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
+and |link(r)=r1| is another subscript node. To complete the picture,
+see if you can guess what |link(r1)| is; give up? It's~|q1|.
+Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
+|type(r1)=structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
+and we finish things off with three more nodes
+|qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
+with a larger sheet of paper.) The value of variable \.{x20b}
+appears in node~|qqq2|, as you can well imagine.
+
+If the example in the previous paragraph doesn't make things crystal
+clear, a glance at some of the simpler subroutines below will reveal how
+things work out in practice.
+
+The only really unusual thing about these conventions is the use of
+collective subscript attributes. The idea is to avoid repeating a lot of
+type information when many elements of an array are identical macros
+(for which distinct values need not be stored) or when they don't have
+all of the possible attributes. Branches of the structure below collective
+subscript attributes do not carry actual values except for macro identifiers;
+branches of the structure below subscript nodes do not carry significant
+information in their collective subscript attributes.
+
+@d attr_loc_loc(#)==#+2 {where the |attr_loc| and |parent| fields are}
+@d attr_loc(#)==info(attr_loc_loc(#)) {hash address of this attribute}
+@d parent(#)==link(attr_loc_loc(#)) {pointer to |structured| variable}
+@d subscript_loc(#)==#+2 {where the |subscript| field lives}
+@d subscript(#)==mem[subscript_loc(#)].sc {subscript of this variable}
+@d attr_node_size=3 {the number of words in an attribute node}
+@d subscr_node_size=3 {the number of words in a subscript node}
+@d collective_subscript=0 {code for the attribute `\.{[]}'}
+
+@<Initialize table...@>=
+attr_loc(end_attr):=hash_end+1; parent(end_attr):=null;
+
+@ Variables of type \&{pair} will have values that point to four-word
+nodes containing two numeric values. The first of these values has
+|name_type=x_part_sector| and the second has |name_type=y_part_sector|;
+the |link| in the first points back to the node whose |value| points
+to this four-word node.
+
+Variables of type \&{transform} are similar, but in this case their
+|value| points to a 12-word node containing six values, identified by
+|x_part_sector|, |y_part_sector|, |xx_part_sector|, |xy_part_sector|,
+|yx_part_sector|, and |yy_part_sector|.
+Finally, variables of type \&{color} have three values in six words
+identified by |red_part_sector|, |green_part_sector|, and |blue_part_sector|.
+
+When an entire structured variable is saved, the |root| indication
+is temporarily replaced by |saved_root|.
+
+Some variables have no name; they just are used for temporary storage
+while expressions are being evaluated. We call them {\sl capsules}.
+
+@d x_part_loc(#)==# {where the \&{xpart} is found in a pair or transform node}
+@d y_part_loc(#)==#+2 {where the \&{ypart} is found in a pair or transform node}
+@d xx_part_loc(#)==#+4 {where the \&{xxpart} is found in a transform node}
+@d xy_part_loc(#)==#+6 {where the \&{xypart} is found in a transform node}
+@d yx_part_loc(#)==#+8 {where the \&{yxpart} is found in a transform node}
+@d yy_part_loc(#)==#+10 {where the \&{yypart} is found in a transform node}
+@d red_part_loc(#)==# {where the \&{redpart} is found in a color node}
+@d green_part_loc(#)==#+2 {where the \&{greenpart} is found in a color node}
+@d blue_part_loc(#)==#+4 {where the \&{bluepart} is found in a color node}
+@#
+@d pair_node_size=4 {the number of words in a pair node}
+@d transform_node_size=12 {the number of words in a transform node}
+@d color_node_size=6 {the number of words in a color node}
+
+@<Glob...@>=
+@!big_node_size:array[transform_type..pair_type] of small_number;
+@!sector0:array[transform_type..pair_type] of small_number;
+@!sector_offset:array[x_part_sector..blue_part_sector] of small_number;
+
+@ The |sector0| array gives for each big node type, |name_type| values
+for its first subfield; the |sector_offset| array gives for each
+|name_type| value, the offset from the first subfield in words;
+and the |big_node_size| array gives the size in words for each type of
+big node.
+
+@<Set init...@>=
+big_node_size[transform_type]:=transform_node_size;
+big_node_size[pair_type]:=pair_node_size;
+big_node_size[color_type]:=color_node_size;
+sector0[transform_type]:=x_part_sector;
+sector0[pair_type]:=x_part_sector;
+sector0[color_type]:=red_part_sector;
+for k:=x_part_sector to yy_part_sector do
+ sector_offset[k]:=2*(k-x_part_sector);
+for k:=red_part_sector to blue_part_sector do
+ sector_offset[k]:=2*(k-red_part_sector);
+
+@ If |type(p)=pair_type| or |transform_type| and if |value(p)=null|, the
+procedure call |init_big_node(p)| will allocate a pair or transform node
+for~|p|. The individual parts of such nodes are initially of type
+|independent|.
+
+@p procedure init_big_node(@!p:pointer);
+var @!q:pointer; {the new node}
+@!s:small_number; {its size}
+begin s:=big_node_size[type(p)]; q:=get_node(s);
+repeat s:=s-2; @<Make variable |q+s| newly independent@>;
+name_type(q+s):=halfp(s)+sector0[type(p)]; link(q+s):=null;
+until s=0;
+link(q):=p; value(p):=q;
+end;
+
+@ The |id_transform| function creates a capsule for the
+identity transformation.
+
+@p function id_transform:pointer;
+var @!p,@!q,@!r:pointer; {list manipulation registers}
+begin p:=get_node(value_node_size); type(p):=transform_type;
+name_type(p):=capsule; value(p):=null; init_big_node(p); q:=value(p);
+r:=q+transform_node_size;
+repeat r:=r-2;
+type(r):=known; value(r):=0;
+until r=q;
+value(xx_part_loc(q)):=unity; value(yy_part_loc(q)):=unity;
+id_transform:=p;
+end;
+
+@ Tokens are of type |tag_token| when they first appear, but they point
+to |null| until they are first used as the root of a variable.
+The following subroutine establishes the root node on such grand occasions.
+
+@p procedure new_root(@!x:pointer);
+var @!p:pointer; {the new node}
+begin p:=get_node(value_node_size); type(p):=undefined; name_type(p):=root;
+link(p):=x; equiv(x):=p;
+end;
+
+@ These conventions for variable representation are illustrated by the
+|print_variable_name| routine, which displays the full name of a
+variable given only a pointer to its two-word value packet.
+
+@p procedure print_variable_name(@!p:pointer);
+label found,exit;
+var @!q:pointer; {a token list that will name the variable's suffix}
+@!r:pointer; {temporary for token list creation}
+begin while name_type(p)>=x_part_sector do
+ @<Preface the output with a part specifier; |return| in the
+ case of a capsule@>;
+q:=null;
+while name_type(p)>saved_root do
+ @<Ascend one level, pushing a token onto list |q|
+ and replacing |p| by its parent@>;
+r:=get_avail; info(r):=link(p); link(r):=q;
+if name_type(p)=saved_root then print("(SAVED)");
+@.SAVED@>
+show_token_list(r,null,el_gordo,tally); flush_token_list(r);
+exit:end;
+
+@ @<Ascend one level, pushing a token onto list |q|...@>=
+begin if name_type(p)=subscr then
+ begin r:=new_num_tok(subscript(p));
+ repeat p:=link(p);
+ until name_type(p)=attr;
+ end
+else if name_type(p)=structured_root then
+ begin p:=link(p); goto found;
+ end
+else begin if name_type(p)<>attr then confusion("var");
+@:this can't happen var}{\quad var@>
+ r:=get_avail; info(r):=attr_loc(p);
+ end;
+link(r):=q; q:=r;
+found: p:=parent(p);
+end
+
+@ @<Preface the output with a part specifier...@>=
+begin case name_type(p) of
+x_part_sector: print_char("x");
+y_part_sector: print_char("y");
+xx_part_sector: print("xx");
+xy_part_sector: print("xy");
+yx_part_sector: print("yx");
+yy_part_sector: print("yy");
+red_part_sector: print("red");
+green_part_sector: print("green");
+blue_part_sector: print("blue");
+capsule: begin print("%CAPSULE"); print_int(p-null); return;
+@.CAPSULE@>
+ end;
+end; {there are no other cases}
+print("part "); p:=link(p-sector_offset[name_type(p)]);
+end
+
+@ The |interesting| function returns |true| if a given variable is not
+in a capsule, or if the user wants to trace capsules.
+
+@p function interesting(@!p:pointer):boolean;
+var @!t:small_number; {a |name_type|}
+begin if internal[tracing_capsules]>0 then interesting:=true
+else begin t:=name_type(p);
+ if t>=x_part_sector then if t<>capsule then
+ t:=name_type(link(p-sector_offset[t]));
+ interesting:=(t<>capsule);
+ end;
+end;
+
+@ Now here is a subroutine that converts an unstructured type into an
+equivalent structured type, by inserting a |structured| node that is
+capable of growing. This operation is done only when |name_type(p)=root|,
+|subscr|, or |attr|.
+
+The procedure returns a pointer to the new node that has taken node~|p|'s
+place in the structure. Node~|p| itself does not move, nor are its
+|value| or |type| fields changed in any way.
+
+@p function new_structure(@!p:pointer):pointer;
+var @!q,@!r:pointer; {list manipulation registers}
+begin case name_type(p) of
+root: begin q:=link(p); r:=get_node(value_node_size); equiv(q):=r;
+ end;
+subscr: @<Link a new subscript node |r| in place of node |p|@>;
+attr: @<Link a new attribute node |r| in place of node |p|@>;
+othercases confusion("struct")
+@:this can't happen struct}{\quad struct@>
+endcases;@/
+link(r):=link(p); type(r):=structured; name_type(r):=name_type(p);
+attr_head(r):=p; name_type(p):=structured_root;@/
+q:=get_node(attr_node_size); link(p):=q; subscr_head(r):=q;
+parent(q):=r; type(q):=undefined; name_type(q):=attr; link(q):=end_attr;
+attr_loc(q):=collective_subscript; new_structure:=r;
+end;
+
+@ @<Link a new subscript node |r| in place of node |p|@>=
+begin q:=p;
+repeat q:=link(q);
+until name_type(q)=attr;
+q:=parent(q); r:=subscr_head_loc(q); {|link(r)=subscr_head(q)|}
+repeat q:=r; r:=link(r);
+until r=p;
+r:=get_node(subscr_node_size);
+link(q):=r; subscript(r):=subscript(p);
+end
+
+@ If the attribute is |collective_subscript|, there are two pointers to
+node~|p|, so we must change both of them.
+
+@<Link a new attribute node |r| in place of node |p|@>=
+begin q:=parent(p); r:=attr_head(q);
+repeat q:=r; r:=link(r);
+until r=p;
+r:=get_node(attr_node_size); link(q):=r;@/
+mem[attr_loc_loc(r)]:=mem[attr_loc_loc(p)]; {copy |attr_loc| and |parent|}
+if attr_loc(p)=collective_subscript then
+ begin q:=subscr_head_loc(parent(p));
+ while link(q)<>p do q:=link(q);
+ link(q):=r;
+ end;
+end
+
+@ The |find_variable| routine is given a pointer~|t| to a nonempty token
+list of suffixes; it returns a pointer to the corresponding two-word
+value. For example, if |t| points to token \.x followed by a numeric
+token containing the value~7, |find_variable| finds where the value of
+\.{x7} is stored in memory. This may seem a simple task, and it
+usually is, except when \.{x7} has never been referenced before.
+Indeed, \.x may never have even been subscripted before; complexities
+arise with respect to updating the collective subscript information.
+
+If a macro type is detected anywhere along path~|t|, or if the first
+item on |t| isn't a |tag_token|, the value |null| is returned.
+Otherwise |p| will be a non-null pointer to a node such that
+|undefined<type(p)<structured|.
+
+@d abort_find==begin find_variable:=null; return;@+end
+
+@p function find_variable(@!t:pointer):pointer;
+label exit;
+var @!p,@!q,@!r,@!s:pointer; {nodes in the ``value'' line}
+@!pp,@!qq,@!rr,@!ss:pointer; {nodes in the ``collective'' line}
+@!n:integer; {subscript or attribute}
+@!save_word:memory_word; {temporary storage for a word of |mem|}
+@^inner loop@>
+begin p:=info(t); t:=link(t);
+if eq_type(p) mod outer_tag<>tag_token then abort_find;
+if equiv(p)=null then new_root(p);
+p:=equiv(p); pp:=p;
+while t<>null do
+ begin @<Make sure that both nodes |p| and |pp| are of |structured| type@>;
+ if t<hi_mem_min then
+ @<Descend one level for the subscript |value(t)|@>
+ else @<Descend one level for the attribute |info(t)|@>;
+ t:=link(t);
+ end;
+if type(pp)>=structured then
+ if type(pp)=structured then pp:=attr_head(pp)@+else abort_find;
+if type(p)=structured then p:=attr_head(p);
+if type(p)=undefined then
+ begin if type(pp)=undefined then
+ begin type(pp):=numeric_type; value(pp):=null;
+ end;
+ type(p):=type(pp); value(p):=null;
+ end;
+find_variable:=p;
+exit:end;
+
+@ Although |pp| and |p| begin together, they diverge when a subscript occurs;
+|pp|~stays in the collective line while |p|~goes through actual subscript
+values.
+
+@<Make sure that both nodes |p| and |pp|...@>=
+if type(pp)<>structured then
+ begin if type(pp)>structured then abort_find;
+ ss:=new_structure(pp);
+ if p=pp then p:=ss;
+ pp:=ss;
+ end; {now |type(pp)=structured|}
+if type(p)<>structured then {it cannot be |>structured|}
+ p:=new_structure(p) {now |type(p)=structured|}
+
+@ We want this part of the program to be reasonably fast, in case there are
+@^inner loop@>
+lots of subscripts at the same level of the data structure. Therefore
+we store an ``infinite'' value in the word that appears at the end of the
+subscript list, even though that word isn't part of a subscript node.
+
+@<Descend one level for the subscript |value(t)|@>=
+begin n:=value(t);
+pp:=link(attr_head(pp)); {now |attr_loc(pp)=collective_subscript|}
+q:=link(attr_head(p)); save_word:=mem[subscript_loc(q)];
+subscript(q):=el_gordo; s:=subscr_head_loc(p); {|link(s)=subscr_head(p)|}
+repeat r:=s; s:=link(s);
+until n<=subscript(s);
+if n=subscript(s) then p:=s
+else begin p:=get_node(subscr_node_size); link(r):=p; link(p):=s;
+ subscript(p):=n; name_type(p):=subscr; type(p):=undefined;
+ end;
+mem[subscript_loc(q)]:=save_word;
+end
+
+@ @<Descend one level for the attribute |info(t)|@>=
+begin n:=info(t);
+ss:=attr_head(pp);
+repeat rr:=ss; ss:=link(ss);
+until n<=attr_loc(ss);
+if n<attr_loc(ss) then
+ begin qq:=get_node(attr_node_size); link(rr):=qq; link(qq):=ss;
+ attr_loc(qq):=n; name_type(qq):=attr; type(qq):=undefined;
+ parent(qq):=pp; ss:=qq;
+ end;
+if p=pp then
+ begin p:=ss; pp:=ss;
+ end
+else begin pp:=ss; s:=attr_head(p);
+ repeat r:=s; s:=link(s);
+ until n<=attr_loc(s);
+ if n=attr_loc(s) then p:=s
+ else begin q:=get_node(attr_node_size); link(r):=q; link(q):=s;
+ attr_loc(q):=n; name_type(q):=attr; type(q):=undefined;
+ parent(q):=p; p:=q;
+ end;
+ end;
+end
+
+@ Variables lose their former values when they appear in a type declaration,
+or when they are defined to be macros or \&{let} equal to something else.
+A subroutine will be defined later that recycles the storage associated
+with any particular |type| or |value|; our goal now is to study a higher
+level process called |flush_variable|, which selectively frees parts of a
+variable structure.
+
+This routine has some complexity because of examples such as
+`\hbox{\tt numeric x[]a[]b}'
+which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
+`\hbox{\tt vardef x[]a[]=...}'
+discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
+suffix, except for the collective node \.{x[]a[]} itself. The obvious way
+to handle such examples is to use recursion; so that's what we~do.
+@^recursion@>
+
+Parameter |p| points to the root information of the variable;
+parameter |t| points to a list of one-word nodes that represent
+suffixes, with |info=collective_subscript| for subscripts.
+
+@p @t\4@>@<Declare subroutines for printing expressions@>@;@/
+@t\4@>@<Declare basic dependency-list subroutines@>@;
+@t\4@>@<Declare the recycling subroutines@>@;
+@t\4@>@<Declare the procedure called |flush_cur_exp|@>@;
+@t\4@>@<Declare the procedure called |flush_below_variable|@>@;
+procedure flush_variable(@!p,@!t:pointer;@!discard_suffixes:boolean);
+label exit;
+var @!q,@!r:pointer; {list manipulation}
+@!n:halfword; {attribute to match}
+begin while t<>null do
+ begin if type(p)<>structured then return;
+ n:=info(t); t:=link(t);
+ if n=collective_subscript then
+ begin r:=subscr_head_loc(p); q:=link(r); {|q=subscr_head(p)|}
+ while name_type(q)=subscr do
+ begin flush_variable(q,t,discard_suffixes);
+ if t=null then
+ if type(q)=structured then r:=q
+ else begin link(r):=link(q); free_node(q,subscr_node_size);
+ end
+ else r:=q;
+ q:=link(r);
+ end;
+ end;
+ p:=attr_head(p);
+ repeat r:=p; p:=link(p);
+ until attr_loc(p)>=n;
+ if attr_loc(p)<>n then return;
+ end;
+if discard_suffixes then flush_below_variable(p)
+else begin if type(p)=structured then p:=attr_head(p);
+ recycle_value(p);
+ end;
+exit:end;
+
+@ The next procedure is simpler; it wipes out everything but |p| itself,
+which becomes undefined.
+
+@<Declare the procedure called |flush_below_variable|@>=
+procedure flush_below_variable(@!p:pointer);
+var @!q,@!r:pointer; {list manipulation registers}
+begin if type(p)<>structured then
+ recycle_value(p) {this sets |type(p)=undefined|}
+else begin q:=subscr_head(p);
+ while name_type(q)=subscr do
+ begin flush_below_variable(q); r:=q; q:=link(q);
+ free_node(r,subscr_node_size);
+ end;
+ r:=attr_head(p); q:=link(r); recycle_value(r);
+ if name_type(p)<=saved_root then free_node(r,value_node_size)
+ else free_node(r,subscr_node_size);
+ {we assume that |subscr_node_size=attr_node_size|}
+ repeat flush_below_variable(q); r:=q; q:=link(q); free_node(r,attr_node_size);
+ until q=end_attr;
+ type(p):=undefined;
+ end;
+end;
+
+@ Just before assigning a new value to a variable, we will recycle the
+old value and make the old value undefined. The |und_type| routine
+determines what type of undefined value should be given, based on
+the current type before recycling.
+
+@p function und_type(@!p:pointer):small_number;
+begin case type(p) of
+undefined,vacuous:und_type:=undefined;
+boolean_type,unknown_boolean:und_type:=unknown_boolean;
+string_type,unknown_string:und_type:=unknown_string;
+pen_type,unknown_pen:und_type:=unknown_pen;
+path_type,unknown_path:und_type:=unknown_path;
+picture_type,unknown_picture:und_type:=unknown_picture;
+transform_type,color_type,pair_type,numeric_type:und_type:=type(p);
+known,dependent,proto_dependent,independent:und_type:=numeric_type;
+end; {there are no other cases}
+end;
+
+@ The |clear_symbol| routine is used when we want to redefine the equivalent
+of a symbolic token. It must remove any variable structure or macro
+definition that is currently attached to that symbol. If the |saving|
+parameter is true, a subsidiary structure is saved instead of destroyed.
+
+@p procedure clear_symbol(@!p:pointer;@!saving:boolean);
+var @!q:pointer; {|equiv(p)|}
+begin q:=equiv(p);
+case eq_type(p) mod outer_tag of
+defined_macro,secondary_primary_macro,tertiary_secondary_macro,
+ expression_tertiary_macro: if not saving then delete_mac_ref(q);
+tag_token:if q<>null then
+ if saving then name_type(q):=saved_root
+ else begin flush_below_variable(q); free_node(q,value_node_size);
+ end;
+othercases do_nothing
+endcases;@/
+eqtb[p]:=eqtb[frozen_undefined];
+end;
+
+@* \[16] Saving and restoring equivalents.
+The nested structure given by \&{begingroup} and \&{endgroup}
+allows |eqtb| entries to be saved and restored, so that temporary changes
+can be made without difficulty. When the user requests a current value to
+be saved, \MP\ puts that value into its ``save stack.'' An appearance of
+\&{endgroup} ultimately causes the old values to be removed from the save
+stack and put back in their former places.
+
+The save stack is a linked list containing three kinds of entries,
+distinguished by their |info| fields. If |p| points to a saved item,
+then
+
+\smallskip\hang
+|info(p)=0| stands for a group boundary; each \&{begingroup} contributes
+such an item to the save stack and each \&{endgroup} cuts back the stack
+until the most recent such entry has been removed.
+
+\smallskip\hang
+|info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
+contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
+commands or suitable \&{interim} commands.
+
+\smallskip\hang
+|info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
+integer to be restored to internal parameter number~|q|. Such entries
+are generated by \&{interim} commands.
+
+\smallskip\noindent
+The global variable |save_ptr| points to the top item on the save stack.
+
+@d save_node_size=2 {number of words per non-boundary save-stack node}
+@d saved_equiv(#)==mem[#+1].hh {where an |eqtb| entry gets saved}
+@d save_boundary_item(#)==begin #:=get_avail; info(#):=0;
+ link(#):=save_ptr; save_ptr:=#;
+ end
+
+@<Glob...@>=@!save_ptr:pointer; {the most recently saved item}
+
+@ @<Set init...@>=save_ptr:=null;
+
+@ The |save_variable| routine is given a hash address |q|; it salts this
+address in the save stack, together with its current equivalent,
+then makes token~|q| behave as though it were brand new.
+
+Nothing is stacked when |save_ptr=null|, however; there's no way to remove
+things from the stack when the program is not inside a group, so there's
+no point in wasting the space.
+
+@p procedure save_variable(@!q:pointer);
+var @!p:pointer; {temporary register}
+begin if save_ptr<>null then
+ begin p:=get_node(save_node_size); info(p):=q; link(p):=save_ptr;
+ saved_equiv(p):=eqtb[q]; save_ptr:=p;
+ end;
+clear_symbol(q,(save_ptr<>null));
+end;
+
+@ Similarly, |save_internal| is given the location |q| of an internal
+quantity like |tracing_pens|. It creates a save stack entry of the
+third kind.
+
+@p procedure save_internal(@!q:halfword);
+var @!p:pointer; {new item for the save stack}
+begin if save_ptr<>null then
+ begin p:=get_node(save_node_size); info(p):=hash_end+q;
+ link(p):=save_ptr; value(p):=internal[q]; save_ptr:=p;
+ end;
+end;
+
+@ At the end of a group, the |unsave| routine restores all of the saved
+equivalents in reverse order. This routine will be called only when there
+is at least one boundary item on the save stack.
+
+@p procedure unsave;
+var @!q:pointer; {index to saved item}
+@!p:pointer; {temporary register}
+begin while info(save_ptr)<>0 do
+ begin q:=info(save_ptr);
+ if q>hash_end then
+ begin if internal[tracing_restores]>0 then
+ begin begin_diagnostic; print_nl("{restoring ");
+ print(int_name[q-(hash_end)]); print_char("=");
+ print_scaled(value(save_ptr)); print_char("}");
+ end_diagnostic(false);
+ end;
+ internal[q-(hash_end)]:=value(save_ptr);
+ end
+ else begin if internal[tracing_restores]>0 then
+ begin begin_diagnostic; print_nl("{restoring ");
+ print(text(q)); print_char("}");
+ end_diagnostic(false);
+ end;
+ clear_symbol(q,false);
+ eqtb[q]:=saved_equiv(save_ptr);
+ if eq_type(q) mod outer_tag=tag_token then
+ begin p:=equiv(q);
+ if p<>null then name_type(p):=root;
+ end;
+ end;
+ p:=link(save_ptr); free_node(save_ptr,save_node_size); save_ptr:=p;
+ end;
+p:=link(save_ptr); free_avail(save_ptr); save_ptr:=p;
+end;
+
+@* \[17] Data structures for paths.
+When a \MP\ user specifies a path, \MP\ will create a list of knots
+and control points for the associated cubic spline curves. If the
+knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
+$z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
+$z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
+@:Bezier}{B\'ezier, Pierre Etienne@>
+$$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
+&=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
+for |0<=t<=1|.
+
+There is a 8-word node for each knot $z_k$, containing one word of
+control information and six words for the |x| and |y| coordinates of
+$z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
+|left_type| and |right_type| fields, which each occupy a quarter of
+the first word in the node; they specify properties of the curve as it
+enters and leaves the knot. There's also a halfword |link| field,
+which points to the following knot, and a final supplementary word (of
+which only a quarter is used).
+
+If the path is a closed contour, knots 0 and |n| are identical;
+i.e., the |link| in knot |n-1| points to knot~0. But if the path
+is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
+are equal to |endpoint|. In the latter case the |link| in knot~|n| points
+to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
+
+@d left_type(#) == mem[#].hh.b0 {characterizes the path entering this knot}
+@d right_type(#) == mem[#].hh.b1 {characterizes the path leaving this knot}
+@d endpoint=0 {|left_type| at path beginning and |right_type| at path end}
+@d x_coord(#) == mem[#+1].sc {the |x| coordinate of this knot}
+@d y_coord(#) == mem[#+2].sc {the |y| coordinate of this knot}
+@d left_x(#) == mem[#+3].sc {the |x| coordinate of previous control point}
+@d left_y(#) == mem[#+4].sc {the |y| coordinate of previous control point}
+@d right_x(#) == mem[#+5].sc {the |x| coordinate of next control point}
+@d right_y(#) == mem[#+6].sc {the |y| coordinate of next control point}
+@d x_loc(#) == #+1 {where the |x| coordinate is stored in a knot}
+@d y_loc(#) == #+2 {where the |y| coordinate is stored in a knot}
+@d knot_coord(#) == mem[#].sc {|x| or |y| coordinate given |x_loc| or |y_loc|}
+@d left_coord(#) == mem[#+2].sc
+ {coordinate of previous control point given |x_loc| or |y_loc|}
+@d right_coord(#) == mem[#+4].sc
+ {coordinate of next control point given |x_loc| or |y_loc|}
+@d knot_node_size=8 {number of words in a knot node}
+
+@ Before the B\'ezier control points have been calculated, the memory
+space they will ultimately occupy is taken up by information that can be
+used to compute them. There are four cases:
+
+\yskip
+\textindent{$\bullet$} If |right_type=open|, the curve should leave
+the knot in the same direction it entered; \MP\ will figure out a
+suitable direction.
+
+\yskip
+\textindent{$\bullet$} If |right_type=curl|, the curve should leave the
+knot in a direction depending on the angle at which it enters the next
+knot and on the curl parameter stored in |right_curl|.
+
+\yskip
+\textindent{$\bullet$} If |right_type=given|, the curve should leave the
+knot in a nonzero direction stored as an |angle| in |right_given|.
+
+\yskip
+\textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
+point for leaving this knot has already been computed; it is in the
+|right_x| and |right_y| fields.
+
+\yskip\noindent
+The rules for |left_type| are similar, but they refer to the curve entering
+the knot, and to \\{left} fields instead of \\{right} fields.
+
+Non-|explicit| control points will be chosen based on ``tension'' parameters
+in the |left_tension| and |right_tension| fields. The
+`\&{atleast}' option is represented by negative tension values.
+@!@:at_least_}{\&{atleast} primitive@>
+
+For example, the \MP\ path specification
+$$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
+ 3 and 4..p},$$
+where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
+by the six knots
+\def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
+$$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
+|left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
+\noalign{\yskip}
+|endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
+|open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
+|curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
+|given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
+|open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
+|explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
+Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
+Of course, this example is more complicated than anything a normal user
+would ever write.
+
+These types must satisfy certain restrictions because of the form of \MP's
+path syntax:
+(i)~|open| type never appears in the same node together with |endpoint|,
+|given|, or |curl|.
+(ii)~The |right_type| of a node is |explicit| if and only if the
+|left_type| of the following node is |explicit|.
+(iii)~|endpoint| types occur only at the ends, as mentioned above.
+
+@d left_curl==left_x {curl information when entering this knot}
+@d left_given==left_x {given direction when entering this knot}
+@d left_tension==left_y {tension information when entering this knot}
+@d right_curl==right_x {curl information when leaving this knot}
+@d right_given==right_x {given direction when leaving this knot}
+@d right_tension==right_y {tension information when leaving this knot}
+@d explicit=1 {|left_type| or |right_type| when control points are known}
+@d given=2 {|left_type| or |right_type| when a direction is given}
+@d curl=3 {|left_type| or |right_type| when a curl is desired}
+@d open=4 {|left_type| or |right_type| when \MP\ should choose the direction}
+
+@ Knots can be user-supplied, or they can be created by program code,
+like the |split_cubic| function, or |copy_path|. The distinction is
+needed for the cleanup routine that runs after |split_cubic|, because
+it should only delete knots it has previously inserted, and never
+anything that was user-supplied. In order to be able to differentiate
+one knot from another, we will set |originator(p):=metapost_user| when
+it appeared in the actual metapost program, and
+|originator(p):=program_code| in all other cases.
+
+@d originator(#) == mem[#+7].hh.b0 {the creator of this knot}
+@d program_code=0 {not created by a user}
+@d metapost_user=1 {created by a user}
+
+@ Here is a routine that prints a given knot list
+in symbolic form. It illustrates the conventions discussed above,
+and checks for anomalies that might arise while \MP\ is being debugged.
+
+@<Declare subroutines for printing expressions@>=
+procedure pr_path(@!h:pointer);
+label done,done1;
+var @!p,@!q:pointer; {for list traversal}
+begin p:=h;
+repeat q:=link(p);
+if (p=null)or(q=null) then
+ begin print_nl("???"); goto done; {this won't happen}
+@.???@>
+ end;
+@<Print information for adjacent knots |p| and |q|@>;
+p:=q;
+if (p<>h)or(left_type(h)<>endpoint) then
+ @<Print two dots, followed by |given| or |curl| if present@>;
+until p=h;
+if left_type(h)<>endpoint then print("cycle");
+done:end;
+
+@ @<Print information for adjacent knots...@>=
+print_two(x_coord(p),y_coord(p));
+case right_type(p) of
+endpoint: begin if left_type(p)=open then print("{open?}"); {can't happen}
+@.open?@>
+ if (left_type(q)<>endpoint)or(q<>h) then q:=null; {force an error}
+ goto done1;
+ end;
+explicit: @<Print control points between |p| and |q|, then |goto done1|@>;
+open: @<Print information for a curve that begins |open|@>;
+curl,given: @<Print information for a curve that begins |curl| or |given|@>;
+othercases print("???") {can't happen}
+@.???@>
+endcases;@/
+if left_type(q)<=explicit then print("..control?") {can't happen}
+@.control?@>
+else if (right_tension(p)<>unity)or(left_tension(q)<>unity) then
+ @<Print tension between |p| and |q|@>;
+done1:
+
+@ Since |n_sin_cos| produces |fraction| results, which we will print as if they
+were |scaled|, the magnitude of a |given| direction vector will be~4096.
+
+@<Print two dots...@>=
+begin print_nl(" ..");
+if left_type(p)=given then
+ begin n_sin_cos(left_given(p)); print_char("{");
+ print_scaled(n_cos); print_char(",");
+ print_scaled(n_sin); print_char("}");
+ end
+else if left_type(p)=curl then
+ begin print("{curl "); print_scaled(left_curl(p)); print_char("}");
+ end;
+end
+
+@ @<Print tension between |p| and |q|@>=
+begin print("..tension ");
+if right_tension(p)<0 then print("atleast");
+print_scaled(abs(right_tension(p)));
+if right_tension(p)<>left_tension(q) then
+ begin print(" and ");
+ if left_tension(q)<0 then print("atleast");
+ print_scaled(abs(left_tension(q)));
+ end;
+end
+
+@ @<Print control points between |p| and |q|, then |goto done1|@>=
+begin print("..controls "); print_two(right_x(p),right_y(p)); print(" and ");
+if left_type(q)<>explicit then print("??") {can't happen}
+@.??@>
+else print_two(left_x(q),left_y(q));
+goto done1;
+end
+
+@ @<Print information for a curve that begins |open|@>=
+if (left_type(p)<>explicit)and(left_type(p)<>open) then
+ print("{open?}") {can't happen}
+@.open?@>
+
+@ A curl of 1 is shown explicitly, so that the user sees clearly that
+\MP's default curl is present.
+
+The code here uses the fact that |left_curl==left_given| and
+|right_curl==right_given|.
+
+@<Print information for a curve that begins |curl|...@>=
+begin if left_type(p)=open then print("??"); {can't happen}
+@.??@>
+if right_type(p)=curl then
+ begin print("{curl "); print_scaled(right_curl(p));
+ end
+else begin n_sin_cos(right_given(p)); print_char("{");
+ print_scaled(n_cos); print_char(","); print_scaled(n_sin);
+ end;
+print_char("}");
+end
+
+@ It is convenient to have another version of |pr_path| that prints the path
+as a diagnostic message.
+
+@<Declare subroutines for printing expressions@>=
+procedure print_path(@!h:pointer;@!s:str_number;@!nuline:boolean);
+begin print_diagnostic("Path",s,nuline); print_ln;
+@.Path at line...@>
+pr_path(h);
+end_diagnostic(true);
+end;
+
+@ If we want to duplicate a knot node, we can say |copy_knot|:
+
+@p function copy_knot(@!p:pointer):pointer;
+var @!q:pointer; {the copy}
+@!k:0..knot_node_size-1; {runs through the words of a knot node}
+begin q:=get_node(knot_node_size);
+for k:=0 to knot_node_size-1 do mem[q+k]:=mem[p+k];
+originator(q):=originator(p);
+copy_knot:=q;
+end;
+
+@ The |copy_path| routine makes a clone of a given path.
+
+@p function copy_path(@!p:pointer):pointer;
+var @!q,@!pp,@!qq:pointer; {for list manipulation}
+begin q:=copy_knot(p);
+qq:=q; pp:=link(p);
+while pp<>p do
+ begin link(qq):=copy_knot(pp);@/
+ qq:=link(qq);
+ pp:=link(pp);
+ end;
+link(qq):=q;
+copy_path:=q;
+end;
+
+@ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
+returns a pointer to the first node of the copy, if the path is a cycle,
+but to the final node of a non-cyclic copy. The global
+variable |path_tail| will point to the final node of the original path;
+this trick makes it easier to implement `\&{doublepath}'.
+
+All node types are assumed to be |endpoint| or |explicit| only.
+
+@p function htap_ypoc(@!p:pointer):pointer;
+label exit;
+var @!q,@!pp,@!qq,@!rr:pointer; {for list manipulation}
+begin q:=get_node(knot_node_size); {this will correspond to |p|}
+qq:=q; pp:=p;
+loop@+ begin right_type(qq):=left_type(pp); left_type(qq):=right_type(pp);@/
+ x_coord(qq):=x_coord(pp); y_coord(qq):=y_coord(pp);@/
+ right_x(qq):=left_x(pp); right_y(qq):=left_y(pp);@/
+ left_x(qq):=right_x(pp); left_y(qq):=right_y(pp);@/
+ originator(qq):=originator(pp);@/
+ if link(pp)=p then
+ begin link(q):=qq; path_tail:=pp; htap_ypoc:=q; return;
+ end;
+ rr:=get_node(knot_node_size); link(rr):=qq; qq:=rr; pp:=link(pp);
+ end;
+exit:end;
+
+@ @<Glob...@>=
+@!path_tail:pointer; {the node that links to the beginning of a path}
+
+@ When a cyclic list of knot nodes is no longer needed, it can be recycled by
+calling the following subroutine.
+
+@<Declare the recycling subroutines@>=
+procedure toss_knot_list(@!p:pointer);
+var @!q:pointer; {the node being freed}
+@!r:pointer; {the next node}
+begin q:=p;
+repeat r:=link(q); free_node(q,knot_node_size); q:=r;
+until q=p;
+end;
+
+@* \[18] Choosing control points.
+Now we must actually delve into one of \MP's more difficult routines,
+the |make_choices| procedure that chooses angles and control points for
+the splines of a curve when the user has not specified them explicitly.
+The parameter to |make_choices| points to a list of knots and
+path information, as described above.
+
+A path decomposes into independent segments at ``breakpoint'' knots,
+which are knots whose left and right angles are both prespecified in
+some way (i.e., their |left_type| and |right_type| aren't both open).
+
+@p @t\4@>@<Declare the procedure called |solve_choices|@>@;
+procedure make_choices(@!knots:pointer);
+label done;
+var @!h:pointer; {the first breakpoint}
+@!p,@!q:pointer; {consecutive breakpoints being processed}
+@<Other local variables for |make_choices|@>@;
+begin check_arith; {make sure that |arith_error=false|}
+if internal[tracing_choices]>0 then
+ print_path(knots,", before choices",true);
+@<If consecutive knots are equal, join them explicitly@>;
+@<Find the first breakpoint, |h|, on the path;
+ insert an artificial breakpoint if the path is an unbroken cycle@>;
+p:=h;
+repeat @<Fill in the control points between |p| and the next breakpoint,
+ then advance |p| to that breakpoint@>;
+until p=h;
+if internal[tracing_choices]>0 then
+ print_path(knots,", after choices",true);
+if arith_error then @<Report an unexpected problem during the choice-making@>;
+end;
+
+@ @<Report an unexpected problem during the choice...@>=
+begin print_err("Some number got too big");
+@.Some number got too big@>
+help2("The path that I just computed is out of range.")@/
+ ("So it will probably look funny. Proceed, for a laugh.");
+put_get_error; arith_error:=false;
+end
+
+@ Two knots in a row with the same coordinates will always be joined
+by an explicit ``curve'' whose control points are identical with the
+knots.
+
+@<If consecutive knots are equal, join them explicitly@>=
+p:=knots;
+repeat q:=link(p);
+if x_coord(p)=x_coord(q) then if y_coord(p)=y_coord(q) then
+ if right_type(p)>explicit then
+ begin right_type(p):=explicit;
+ if left_type(p)=open then
+ begin left_type(p):=curl; left_curl(p):=unity;
+ end;
+ left_type(q):=explicit;
+ if right_type(q)=open then
+ begin right_type(q):=curl; right_curl(q):=unity;
+ end;
+ right_x(p):=x_coord(p); left_x(q):=x_coord(p);@/
+ right_y(p):=y_coord(p); left_y(q):=y_coord(p);
+ end;
+p:=q;
+until p=knots
+
+@ If there are no breakpoints, it is necessary to compute the direction
+angles around an entire cycle. In this case the |left_type| of the first
+node is temporarily changed to |end_cycle|.
+
+@d end_cycle=open+1
+
+@<Find the first breakpoint, |h|, on the path...@>=
+h:=knots;
+loop@+ begin if left_type(h)<>open then goto done;
+ if right_type(h)<>open then goto done;
+ h:=link(h);
+ if h=knots then
+ begin left_type(h):=end_cycle; goto done;
+ end;
+ end;
+done:
+
+@ If |right_type(p)<given| and |q=link(p)|, we must have
+|right_type(p)=left_type(q)=explicit| or |endpoint|.
+
+@<Fill in the control points between |p| and the next breakpoint...@>=
+q:=link(p);
+if right_type(p)>=given then
+ begin while (left_type(q)=open)and(right_type(q)=open) do q:=link(q);
+ @<Fill in the control information between
+ consecutive breakpoints |p| and |q|@>;
+ end
+else if right_type(p)=endpoint then
+ @<Give reasonable values for the unused control points between |p| and~|q|@>;
+p:=q
+
+@ This step makes it possible to transform an explicitly computed path without
+checking the |left_type| and |right_type| fields.
+
+@<Give reasonable values for the unused control points between |p| and~|q|@>=
+begin right_x(p):=x_coord(p); right_y(p):=y_coord(p);@/
+left_x(q):=x_coord(q); left_y(q):=y_coord(q);
+end
+
+@ Before we can go further into the way choices are made, we need to
+consider the underlying theory. The basic ideas implemented in |make_choices|
+are due to John Hobby, who introduced the notion of ``mock curvature''
+@^Hobby, John Douglas@>
+at a knot. Angles are chosen so that they preserve mock curvature when
+a knot is passed, and this has been found to produce excellent results.
+
+It is convenient to introduce some notations that simplify the necessary
+formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
+between knots |k| and |k+1|; and let
+$${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
+so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
+through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
+The control points for the spline from $z_k$ to $z\k$ will be denoted by
+$$\eqalign{z_k^+&=z_k+
+ \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
+ z\k^-&=z\k-
+ \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
+where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
+beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
+corresponding ``offset angles.'' These angles satisfy the condition
+$$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
+whenever the curve leaves an intermediate knot~|k| in the direction that
+it enters.
+
+@ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
+the curve at its beginning and ending points. This means that
+$\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
+where $f(\theta,\phi)$ is \MP's standard velocity function defined in
+the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
+z\k^-,z\k^{\phantom+};t)$
+has curvature
+@^curvature@>
+$${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
+\qquad{\rm and}\qquad
+{2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
+at |t=0| and |t=1|, respectively. The mock curvature is the linear
+@^mock curvature@>
+approximation to this true curvature that arises in the limit for
+small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
+The standard velocity function satisfies
+$$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
+hence the mock curvatures are respectively
+$${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
+\qquad{\rm and}\qquad
+{2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
+
+@ The turning angles $\psi_k$ are given, and equation $(*)$ above
+determines $\phi_k$ when $\theta_k$ is known, so the task of
+angle selection is essentially to choose appropriate values for each
+$\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
+from $(**)$, we obtain a system of linear equations of the form
+$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
+where
+$$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
+\qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
+\qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
+\qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
+The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
+will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
+$C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
+hence they have a unique solution. Moreover, in most cases the tensions
+are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
+solution numerically stable, and there is an exponential damping
+effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
+a factor of~$O(2^{-j})$.
+
+@ However, we still must consider the angles at the starting and ending
+knots of a non-cyclic path. These angles might be given explicitly, or
+they might be specified implicitly in terms of an amount of ``curl.''
+
+Let's assume that angles need to be determined for a non-cyclic path
+starting at $z_0$ and ending at~$z_n$. Then equations of the form
+$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
+have been given for $0<k<n$, and it will be convenient to introduce
+equations of the same form for $k=0$ and $k=n$, where
+$$A_0=B_0=C_n=D_n=0.$$
+If $\theta_0$ is supposed to have a given value $E_0$, we simply
+define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
+parameter, $\gamma_0$, has been specified at~$z_0$; this means
+that the mock curvature at $z_0$ should be $\gamma_0$ times the
+mock curvature at $z_1$; i.e.,
+$${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
+=\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
+This equation simplifies to
+$$(\alpha_0\chi_0+3-\beta_1)\theta_0+
+ \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
+ -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
+where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
+\chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
+It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
+hence the linear equations remain nonsingular.
+
+Similar considerations apply at the right end, when the final angle $\phi_n$
+may or may not need to be determined. It is convenient to let $\psi_n=0$,
+hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
+or we have
+$$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
+(\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
+ \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
+
+When |make_choices| chooses angles, it must compute the coefficients of
+these linear equations, then solve the equations. To compute the coefficients,
+it is necessary to compute arctangents of the given turning angles~$\psi_k$.
+When the equations are solved, the chosen directions $\theta_k$ are put
+back into the form of control points by essentially computing sines and
+cosines.
+
+@ OK, we are ready to make the hard choices of |make_choices|.
+Most of the work is relegated to an auxiliary procedure
+called |solve_choices|, which has been introduced to keep
+|make_choices| from being extremely long.
+
+@<Fill in the control information between...@>=
+@<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
+ set $n$ to the length of the path@>;
+@<Remove |open| types at the breakpoints@>;
+solve_choices(p,q,n)
+
+@ It's convenient to precompute quantities that will be needed several
+times later. The values of |delta_x[k]| and |delta_y[k]| will be the
+coordinates of $z\k-z_k$, and the magnitude of this vector will be
+|delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
+and $z\k-z_k$ will be stored in |psi[k]|.
+
+@<Glob...@>=
+@!delta_x,@!delta_y,@!delta:array[0..path_size] of scaled; {knot differences}
+@!psi:array[1..path_size] of angle; {turning angles}
+
+@ @<Other local variables for |make_choices|@>=
+@!k,@!n:0..path_size; {current and final knot numbers}
+@!s,@!t:pointer; {registers for list traversal}
+@!delx,@!dely:scaled; {directions where |open| meets |explicit|}
+@!sine,@!cosine:fraction; {trig functions of various angles}
+
+@ @<Calculate the turning angles...@>=
+k:=0; s:=p; n:=path_size;
+repeat t:=link(s);
+delta_x[k]:=x_coord(t)-x_coord(s);
+delta_y[k]:=y_coord(t)-y_coord(s);
+delta[k]:=pyth_add(delta_x[k],delta_y[k]);
+if k>0 then
+ begin sine:=make_fraction(delta_y[k-1],delta[k-1]);
+ cosine:=make_fraction(delta_x[k-1],delta[k-1]);
+ psi[k]:=n_arg(take_fraction(delta_x[k],cosine)+
+ take_fraction(delta_y[k],sine),
+ take_fraction(delta_y[k],cosine)-
+ take_fraction(delta_x[k],sine));
+ end;
+@:MetaPost capacity exceeded path size}{\quad path size@>
+incr(k); s:=t;
+if k=path_size then overflow("path size",path_size);
+if s=q then n:=k;
+until (k>=n)and(left_type(s)<>end_cycle);
+if k=n then psi[n]:=0@+else psi[k]:=psi[1]
+
+@ When we get to this point of the code, |right_type(p)| is either
+|given| or |curl| or |open|. If it is |open|, we must have
+|left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
+case, the |open| type is converted to |given|; however, if the
+velocity coming into this knot is zero, the |open| type is
+converted to a |curl|, since we don't know the incoming direction.
+
+Similarly, |left_type(q)| is either |given| or |curl| or |open| or
+|end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
+
+@<Remove |open| types at the breakpoints@>=
+if left_type(q)=open then
+ begin delx:=right_x(q)-x_coord(q); dely:=right_y(q)-y_coord(q);
+ if (delx=0)and(dely=0) then
+ begin left_type(q):=curl; left_curl(q):=unity;
+ end
+ else begin left_type(q):=given; left_given(q):=n_arg(delx,dely);
+ end;
+ end;
+if (right_type(p)=open)and(left_type(p)=explicit) then
+ begin delx:=x_coord(p)-left_x(p); dely:=y_coord(p)-left_y(p);
+ if (delx=0)and(dely=0) then
+ begin right_type(p):=curl; right_curl(p):=unity;
+ end
+ else begin right_type(p):=given; right_given(p):=n_arg(delx,dely);
+ end;
+ end
+
+@ Linear equations need to be solved whenever |n>1|; and also when |n=1|
+and exactly one of the breakpoints involves a curl. The simplest case occurs
+when |n=1| and there is a curl at both breakpoints; then we simply draw
+a straight line.
+
+But before coding up the simple cases, we might as well face the general case,
+since we must deal with it sooner or later, and since the general case
+is likely to give some insight into the way simple cases can be handled best.
+
+When there is no cycle, the linear equations to be solved form a tridiagonal
+system, and we can apply the standard technique of Gaussian elimination
+to convert that system to a sequence of equations of the form
+$$\theta_0+u_0\theta_1=v_0,\quad
+\theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
+\theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
+\theta_n=v_n.$$
+It is possible to do this diagonalization while generating the equations.
+Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
+$\theta_1$, $\theta_0$; thus, the equations will be solved.
+
+The procedure is slightly more complex when there is a cycle, but the
+basic idea will be nearly the same. In the cyclic case the right-hand
+sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
+the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
+$\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
+ending routine will take account of the fact that $\theta_n=\theta_0$ and
+eliminate the $w$'s from the system, after which the solution can be
+obtained as before.
+
+When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
+variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
+and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
+of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
+
+@<Glob...@>=
+@!theta:array[0..path_size] of angle; {values of $\theta_k$}
+@!uu:array[0..path_size] of fraction; {values of $u_k$}
+@!vv:array[0..path_size] of angle; {values of $v_k$}
+@!ww:array[0..path_size] of fraction; {values of $w_k$}
+
+@ Our immediate problem is to get the ball rolling by setting up the
+first equation or by realizing that no equations are needed, and to fit
+this initialization into a framework suitable for the overall computation.
+
+@<Declare the procedure called |solve_choices|@>=
+@t\4@>@<Declare subroutines needed by |solve_choices|@>@;
+procedure solve_choices(@!p,@!q:pointer;@!n:halfword);
+label found,exit;
+var @!k:0..path_size; {current knot number}
+@!r,@!s,@!t:pointer; {registers for list traversal}
+@<Other local variables for |solve_choices|@>@;
+begin k:=0; s:=p;
+loop@+ begin t:=link(s);
+ if k=0 then @<Get the linear equations started; or |return|
+ with the control points in place, if linear equations
+ needn't be solved@>
+ else case left_type(s) of
+ end_cycle,open:@<Set up equation to match mock curvatures
+ at $z_k$; then |goto found| with $\theta_n$
+ adjusted to equal $\theta_0$, if a cycle has ended@>;
+ curl:@<Set up equation for a curl at $\theta_n$
+ and |goto found|@>;
+ given:@<Calculate the given value of $\theta_n$
+ and |goto found|@>;
+ end; {there are no other cases}
+ r:=s; s:=t; incr(k);
+ end;
+found:@<Finish choosing angles and assigning control points@>;
+exit:end;
+
+@ On the first time through the loop, we have |k=0| and |r| is not yet
+defined. The first linear equation, if any, will have $A_0=B_0=0$.
+
+@<Get the linear equations started...@>=
+case right_type(s) of
+given: if left_type(t)=given then @<Reduce to simple case of two givens
+ and |return|@>
+ else @<Set up the equation for a given value of $\theta_0$@>;
+curl: if left_type(t)=curl then @<Reduce to simple case of straight line
+ and |return|@>
+ else @<Set up the equation for a curl at $\theta_0$@>;
+open: begin uu[0]:=0; vv[0]:=0; ww[0]:=fraction_one;
+ end; {this begins a cycle}
+end {there are no other cases}
+
+@ The general equation that specifies equality of mock curvature at $z_k$ is
+$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
+as derived above. We want to combine this with the already-derived equation
+$\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
+a new equation
+$\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
+equation
+$$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
+ -A_kw_{k-1}\theta_0$$
+by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
+fixed-point arithmetic, avoiding the chance of overflow while retaining
+suitable precision.
+
+The calculations will be performed in several registers that
+provide temporary storage for intermediate quantities.
+
+@<Other local variables for |solve_choices|@>=
+@!aa,@!bb,@!cc,@!ff,@!acc:fraction; {temporary registers}
+@!dd,@!ee:scaled; {likewise, but |scaled|}
+@!lt,@!rt:scaled; {tension values}
+
+@ @<Set up equation to match mock curvatures...@>=
+begin @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
+ $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
+ and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
+@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
+uu[k]:=take_fraction(ff,bb);
+@<Calculate the values of $v_k$ and $w_k$@>;
+if left_type(s)=end_cycle then
+ @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
+end
+
+@ Since tension values are never less than 3/4, the values |aa| and
+|bb| computed here are never more than 4/5.
+
+@<Calculate the values $\\{aa}=...@>=
+if abs(right_tension(r))=unity then
+ begin aa:=fraction_half; dd:=2*delta[k];
+ end
+else begin aa:=make_fraction(unity,3*abs(right_tension(r))-unity);
+ dd:=take_fraction(delta[k],
+ fraction_three-make_fraction(unity,abs(right_tension(r))));
+ end;
+if abs(left_tension(t))=unity then
+ begin bb:=fraction_half; ee:=2*delta[k-1];
+ end
+else begin bb:=make_fraction(unity,3*abs(left_tension(t))-unity);
+ ee:=take_fraction(delta[k-1],
+ fraction_three-make_fraction(unity,abs(left_tension(t))));
+ end;
+cc:=fraction_one-take_fraction(uu[k-1],aa)
+
+@ The ratio to be calculated in this step can be written in the form
+$$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
+ \\{cc}\cdot\\{dd},$$
+because of the quantities just calculated. The values of |dd| and |ee|
+will not be needed after this step has been performed.
+
+@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
+dd:=take_fraction(dd,cc); lt:=abs(left_tension(s)); rt:=abs(right_tension(s));
+if lt<>rt then {$\beta_k^{-1}\ne\alpha_k^{-1}$}
+ if lt<rt then
+ begin ff:=make_fraction(lt,rt);
+ ff:=take_fraction(ff,ff); {$\alpha_k^2/\beta_k^2$}
+ dd:=take_fraction(dd,ff);
+ end
+ else begin ff:=make_fraction(rt,lt);
+ ff:=take_fraction(ff,ff); {$\beta_k^2/\alpha_k^2$}
+ ee:=take_fraction(ee,ff);
+ end;
+ff:=make_fraction(ee,ee+dd)
+
+@ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
+equation was specified by a curl. In that case we must use a special
+method of computation to prevent overflow.
+
+Fortunately, the calculations turn out to be even simpler in this ``hard''
+case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
+$-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
+
+@<Calculate the values of $v_k$ and $w_k$@>=
+acc:=-take_fraction(psi[k+1],uu[k]);
+if right_type(r)=curl then
+ begin ww[k]:=0;
+ vv[k]:=acc-take_fraction(psi[1],fraction_one-ff);
+ end
+else begin ff:=make_fraction(fraction_one-ff,cc); {this is
+ $B_k/(C_k+B_k-u_{k-1}A_k)<5$}
+ acc:=acc-take_fraction(psi[k],ff);
+ ff:=take_fraction(ff,aa); {this is $A_k/(C_k+B_k-u_{k-1}A_k)$}
+ vv[k]:=acc-take_fraction(vv[k-1],ff);
+ if ww[k-1]=0 then ww[k]:=0
+ else ww[k]:=-take_fraction(ww[k-1],ff);
+ end
+
+@ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
+v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
+$\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
+for |0<=k<n|, so that the cyclic case can be finished up just as if there
+were no cycle.
+
+The idea in the following code is to observe that
+$$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
+&=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
+ -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
+so we can solve for $\theta_n=\theta_0$.
+
+@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
+begin aa:=0; bb:=fraction_one; {we have |k=n|}
+repeat decr(k);
+if k=0 then k:=n;
+aa:=vv[k]-take_fraction(aa,uu[k]);
+bb:=ww[k]-take_fraction(bb,uu[k]);
+until k=n; {now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$}
+aa:=make_fraction(aa,fraction_one-bb);
+theta[n]:=aa; vv[0]:=aa;
+for k:=1 to n-1 do vv[k]:=vv[k]+take_fraction(aa,ww[k]);
+goto found;
+end
+
+@ @d reduce_angle(#)==if abs(#)>one_eighty_deg then
+ if #>0 then #:=#-three_sixty_deg@+else #:=#+three_sixty_deg
+
+@<Calculate the given value of $\theta_n$...@>=
+begin theta[n]:=left_given(s)-n_arg(delta_x[n-1],delta_y[n-1]);
+reduce_angle(theta[n]);
+goto found;
+end
+
+@ @<Set up the equation for a given value of $\theta_0$@>=
+begin vv[0]:=right_given(s)-n_arg(delta_x[0],delta_y[0]);
+reduce_angle(vv[0]);
+uu[0]:=0; ww[0]:=0;
+end
+
+@ @<Set up the equation for a curl at $\theta_0$@>=
+begin cc:=right_curl(s); lt:=abs(left_tension(t)); rt:=abs(right_tension(s));
+if (rt=unity)and(lt=unity) then
+ uu[0]:=make_fraction(cc+cc+unity,cc+two)
+else uu[0]:=curl_ratio(cc,rt,lt);
+vv[0]:=-take_fraction(psi[1],uu[0]); ww[0]:=0;
+end
+
+@ @<Set up equation for a curl at $\theta_n$...@>=
+begin cc:=left_curl(s); lt:=abs(left_tension(s)); rt:=abs(right_tension(r));
+if (rt=unity)and(lt=unity) then
+ ff:=make_fraction(cc+cc+unity,cc+two)
+else ff:=curl_ratio(cc,lt,rt);
+theta[n]:=-make_fraction(take_fraction(vv[n-1],ff),
+ fraction_one-take_fraction(ff,uu[n-1]));
+goto found;
+end
+
+@ The |curl_ratio| subroutine has three arguments, which our previous notation
+encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
+a somewhat tedious program to calculate
+$${(3-\alpha)\alpha^2\gamma+\beta^3\over
+ \alpha^3\gamma+(3-\beta)\beta^2},$$
+with the result reduced to 4 if it exceeds 4. (This reduction of curl
+is necessary only if the curl and tension are both large.)
+The values of $\alpha$ and $\beta$ will be at most~4/3.
+
+@<Declare subroutines needed by |solve_choices|@>=
+function curl_ratio(@!gamma,@!a_tension,@!b_tension:scaled):fraction;
+var @!alpha,@!beta,@!num,@!denom,@!ff:fraction; {registers}
+begin alpha:=make_fraction(unity,a_tension);
+beta:=make_fraction(unity,b_tension);@/
+if alpha<=beta then
+ begin ff:=make_fraction(alpha,beta); ff:=take_fraction(ff,ff);
+ gamma:=take_fraction(gamma,ff);@/
+ beta:=beta div @'10000; {convert |fraction| to |scaled|}
+ denom:=take_fraction(gamma,alpha)+three-beta;
+ num:=take_fraction(gamma,fraction_three-alpha)+beta;
+ end
+else begin ff:=make_fraction(beta,alpha); ff:=take_fraction(ff,ff);
+ beta:=take_fraction(beta,ff) div @'10000; {convert |fraction| to |scaled|}
+ denom:=take_fraction(gamma,alpha)+(ff div 1365)-beta;
+ {$1365\approx 2^{12}/3$}
+ num:=take_fraction(gamma,fraction_three-alpha)+beta;
+ end;
+if num>=denom+denom+denom+denom then curl_ratio:=fraction_four
+else curl_ratio:=make_fraction(num,denom);
+end;
+
+@ We're in the home stretch now.
+
+@<Finish choosing angles and assigning control points@>=
+for k:=n-1 downto 0 do theta[k]:=vv[k]-take_fraction(theta[k+1],uu[k]);
+s:=p; k:=0;
+repeat t:=link(s);@/
+n_sin_cos(theta[k]); st:=n_sin; ct:=n_cos;@/
+n_sin_cos(-psi[k+1]-theta[k+1]); sf:=n_sin; cf:=n_cos;@/
+set_controls(s,t,k);@/
+incr(k); s:=t;
+until k=n
+
+@ The |set_controls| routine actually puts the control points into
+a pair of consecutive nodes |p| and~|q|. Global variables are used to
+record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
+$\cos\phi$ needed in this calculation.
+
+@<Glob...@>=
+@!st,@!ct,@!sf,@!cf:fraction; {sines and cosines}
+
+@ @<Declare subroutines needed by |solve_choices|@>=
+procedure set_controls(@!p,@!q:pointer;@!k:integer);
+var @!rr,@!ss:fraction; {velocities, divided by thrice the tension}
+@!lt,@!rt:scaled; {tensions}
+@!sine:fraction; {$\sin(\theta+\phi)$}
+begin lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
+rr:=velocity(st,ct,sf,cf,rt);
+ss:=velocity(sf,cf,st,ct,lt);
+if (right_tension(p)<0)or(left_tension(q)<0) then @<Decrease the velocities,
+ if necessary, to stay inside the bounding triangle@>;
+right_x(p):=x_coord(p)+take_fraction(
+ take_fraction(delta_x[k],ct)-take_fraction(delta_y[k],st),rr);
+right_y(p):=y_coord(p)+take_fraction(
+ take_fraction(delta_y[k],ct)+take_fraction(delta_x[k],st),rr);
+left_x(q):=x_coord(q)-take_fraction(
+ take_fraction(delta_x[k],cf)+take_fraction(delta_y[k],sf),ss);
+left_y(q):=y_coord(q)-take_fraction(
+ take_fraction(delta_y[k],cf)-take_fraction(delta_x[k],sf),ss);
+right_type(p):=explicit; left_type(q):=explicit;
+end;
+
+@ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
+$\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
+$\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
+there is no ``bounding triangle.''
+@!@:at_least_}{\&{atleast} primitive@>
+
+@<Decrease the velocities, if necessary...@>=
+if((st>=0)and(sf>=0))or((st<=0)and(sf<=0)) then
+ begin sine:=take_fraction(abs(st),cf)+take_fraction(abs(sf),ct);
+ if sine>0 then
+ begin sine:=take_fraction(sine,fraction_one+unity); {safety factor}
+ if right_tension(p)<0 then
+ if ab_vs_cd(abs(sf),fraction_one,rr,sine)<0 then
+ rr:=make_fraction(abs(sf),sine);
+ if left_tension(q)<0 then
+ if ab_vs_cd(abs(st),fraction_one,ss,sine)<0 then
+ ss:=make_fraction(abs(st),sine);
+ end;
+ end
+
+@ Only the simple cases remain to be handled.
+
+@<Reduce to simple case of two givens and |return|@>=
+begin aa:=n_arg(delta_x[0],delta_y[0]);@/
+n_sin_cos(right_given(p)-aa); ct:=n_cos; st:=n_sin;@/
+n_sin_cos(left_given(q)-aa); cf:=n_cos; sf:=-n_sin;@/
+set_controls(p,q,0); return;
+end
+
+@ @<Reduce to simple case of straight line and |return|@>=
+begin right_type(p):=explicit; left_type(q):=explicit;
+lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
+if rt=unity then
+ begin if delta_x[0]>=0 then right_x(p):=x_coord(p)+((delta_x[0]+1) div 3)
+ else right_x(p):=x_coord(p)+((delta_x[0]-1) div 3);
+ if delta_y[0]>=0 then right_y(p):=y_coord(p)+((delta_y[0]+1) div 3)
+ else right_y(p):=y_coord(p)+((delta_y[0]-1) div 3);
+ end
+else begin ff:=make_fraction(unity,3*rt); {$\alpha/3$}
+ right_x(p):=x_coord(p)+take_fraction(delta_x[0],ff);
+ right_y(p):=y_coord(p)+take_fraction(delta_y[0],ff);
+ end;
+if lt=unity then
+ begin if delta_x[0]>=0 then left_x(q):=x_coord(q)-((delta_x[0]+1) div 3)
+ else left_x(q):=x_coord(q)-((delta_x[0]-1) div 3);
+ if delta_y[0]>=0 then left_y(q):=y_coord(q)-((delta_y[0]+1) div 3)
+ else left_y(q):=y_coord(q)-((delta_y[0]-1) div 3);
+ end
+else begin ff:=make_fraction(unity,3*lt); {$\beta/3$}
+ left_x(q):=x_coord(q)-take_fraction(delta_x[0],ff);
+ left_y(q):=y_coord(q)-take_fraction(delta_y[0],ff);
+ end;
+return;
+end
+
+@* \[19] Measuring paths.
+\MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
+allow the user to measure the bounding box of anything that can go into a
+picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
+by just finding the bounding box of the knots and the control points. We
+need a more accurate version of the bounding box, but we can still use the
+easy estimate to save time by focusing on the interesting parts of the path.
+
+@ Computing an accurate bounding box involves a theme that will come up again
+and again. Given a Bernshte{\u\i}n polynomial
+@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
+$$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
+we can conveniently bisect its range as follows:
+
+\smallskip
+\textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
+
+\smallskip
+\textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
+|0<=k<n-j|, for |0<=j<n|.
+
+\smallskip\noindent
+Then
+$$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
+ =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
+This formula gives us the coefficients of polynomials to use over the ranges
+$0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
+
+@ Now here's a subroutine that's handy for all sorts of path computations:
+Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
+returns the unique |fraction| value |t| between 0 and~1 at which
+$B(a,b,c;t)$ changes from positive to negative, or returns
+|t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
+is already negative at |t=0|), |crossing_point| returns the value zero.
+
+@d no_crossing==begin crossing_point:=fraction_one+1; return;
+ end
+@d one_crossing==begin crossing_point:=fraction_one; return;
+ end
+@d zero_crossing==begin crossing_point:=0; return;
+ end
+
+@p function crossing_point(@!a,@!b,@!c:integer):fraction;
+label exit;
+var @!d:integer; {recursive counter}
+@!x,@!xx,@!x0,@!x1,@!x2:integer; {temporary registers for bisection}
+begin if a<0 then zero_crossing;
+if c>=0 then
+ begin if b>=0 then
+ if c>0 then no_crossing
+ else if (a=0)and(b=0) then no_crossing
+ else one_crossing;
+ if a=0 then zero_crossing;
+ end
+else if a=0 then if b<=0 then zero_crossing;
+@<Use bisection to find the crossing point, if one exists@>;
+exit:end;
+
+@ The general bisection method is quite simple when $n=2$, hence
+|crossing_point| does not take much time. At each stage in the
+recursion we have a subinterval defined by |l| and~|j| such that
+$B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
+the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
+
+It is convenient for purposes of calculation to combine the values
+of |l| and~|j| in a single variable $d=2^l+j$, because the operation
+of bisection then corresponds simply to doubling $d$ and possibly
+adding~1. Furthermore it proves to be convenient to modify
+our previous conventions for bisection slightly, maintaining the
+variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
+With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
+equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
+
+The following code maintains the invariant relations
+$0\L|x0|<\max(|x1|,|x1|+|x2|)$,
+$\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
+it has been constructed in such a way that no arithmetic overflow
+will occur if the inputs satisfy
+$a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
+
+@<Use bisection to find the crossing point...@>=
+d:=1; x0:=a; x1:=a-b; x2:=b-c;
+repeat x:=half(x1+x2);
+if x1-x0>x0 then
+ begin x2:=x; double(x0); double(d);
+ end
+else begin xx:=x1+x-x0;
+ if xx>x0 then
+ begin x2:=x; double(x0); double(d);
+ end
+ else begin x0:=x0-xx;
+ if x<=x0 then if x+x2<=x0 then no_crossing;
+ x1:=x; d:=d+d+1;
+ end;
+ end;
+until d>=fraction_one;
+crossing_point:=d-fraction_one
+
+@ Here is a routine that computes the $x$ or $y$ coordinate of the point on
+a cubic corresponding to the |fraction| value~|t|.
+
+It is convenient to define a \.{WEB} macro |t_of_the_way| such that
+|t_of_the_way(a)(b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
+
+@d t_of_the_way_end(#)==#,t@=)@>
+@d t_of_the_way(#)==#-take_fraction@=(@>#-t_of_the_way_end
+
+@p function eval_cubic(@!p,@!q:pointer;t:fraction):scaled;
+var @!x1,@!x2,@!x3:scaled; {intermediate values}
+begin x1:=t_of_the_way(knot_coord(p))(right_coord(p));
+x2:=t_of_the_way(right_coord(p))(left_coord(q));
+x3:=t_of_the_way(left_coord(q))(knot_coord(q));@/
+x1:=t_of_the_way(x1)(x2);
+x2:=t_of_the_way(x2)(x3);
+eval_cubic:=t_of_the_way(x1)(x2);
+end;
+
+@ The actual bounding box information is stored in global variables.
+Since it is convenient to address the $x$ and $y$ information
+separately, we define arrays indexed by |x_code..y_code| and use
+macros to give them more convenient names.
+
+@d x_code=0 {index for |minx| and |maxx|}
+@d y_code=1 {index for |miny| and |maxy|}
+@d minx==bbmin[x_code]
+@d maxx==bbmax[x_code]
+@d miny==bbmin[y_code]
+@d maxy==bbmax[y_code]
+
+@<Glob...@>=
+@!bbmin,@!bbmax:array[x_code..y_code] of scaled;
+ {the result of procedures that compute bounding box information}
+
+@ Now we're ready for the key part of the bounding box computation.
+The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
+$$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
+ \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
+$$
+for $0<t\le1$. In other words, the procedure adjusts the bounds to
+accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
+The |c| parameter is |x_code| or |y_code|.
+
+@p procedure bound_cubic(@!p,@!q:pointer;c:small_number);
+var @!wavy:boolean; {whether we need to look for extremes}
+@!del1,@!del2,@!del3,@!del,@!dmax:scaled; {proportional to the control
+ points of a quadratic derived from a cubic}
+@!t,@!tt:fraction; {where a quadratic crosses zero}
+@!x:scaled; {a value that |bbmin[c]| and |bbmax[c]| must accommodate}
+begin x:=knot_coord(q);
+@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
+@<Check the control points against the bounding box and set |wavy:=true|
+ if any of them lie outside@>;
+if wavy then
+ begin del1:=right_coord(p)-knot_coord(p);
+ del2:=left_coord(q)-right_coord(p);
+ del3:=knot_coord(q)-left_coord(q);
+ @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
+ also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
+ if del<0 then
+ begin negate(del1); negate(del2); negate(del3);
+ end;
+ t:=crossing_point(del1,del2,del3);
+ if t<fraction_one then
+ @<Test the extremes of the cubic against the bounding box@>;
+ end;
+end;
+
+@ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
+if x<bbmin[c] then bbmin[c]:=x;
+if x>bbmax[c] then bbmax[c]:=x
+
+@ @<Check the control points against the bounding box and set...@>=
+wavy:=true;
+if bbmin[c]<=right_coord(p) then
+ if right_coord(p)<=bbmax[c] then
+ if bbmin[c]<=left_coord(q) then
+ if left_coord(q)<=bbmax[c] then
+ wavy:=false
+
+@ If |del1=del2=del3=0|, it's impossible to obey the title of this
+section. We just set |del=0| in that case.
+
+@<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
+if del1<>0 then del:=del1
+else if del2<>0 then del:=del2
+else del:=del3;
+if del<>0 then
+ begin dmax:=abs(del1);
+ if abs(del2)>dmax then dmax:=abs(del2);
+ if abs(del3)>dmax then dmax:=abs(del3);
+ while dmax<fraction_half do
+ begin double(dmax); double(del1); double(del2); double(del3);
+ end;
+ end
+
+@ Since |crossing_point| has tried to choose |t| so that
+$B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
+slope, the value of |del2| computed below should not be positive.
+But rounding error could make it slightly positive in which case we
+must cut it to zero to avoid confusion.
+
+@<Test the extremes of the cubic against the bounding box@>=
+begin x:=eval_cubic(p,q,t);
+@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
+del2:=t_of_the_way(del2)(del3);
+ {now |0,del2,del3| represent the derivative on the remaining interval}
+if del2>0 then del2:=0;
+tt:=crossing_point(0,-del2,-del3);
+if tt<fraction_one then
+ @<Test the second extreme against the bounding box@>;
+end
+
+@ @<Test the second extreme against the bounding box@>=
+begin x:=eval_cubic(p,q,t_of_the_way(tt)(fraction_one));
+@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
+end
+
+@ Finding the bounding box of a path is basically a matter of applying
+|bound_cubic| twice for each pair of adjacent knots.
+
+@p procedure path_bbox(@!h:pointer);
+label exit;
+var @!p,@!q:pointer; {a pair of adjacent knots}
+begin minx:=x_coord(h); miny:=y_coord(h);
+maxx:=minx; maxy:=miny;@/
+p:=h;
+repeat if right_type(p)=endpoint then return;
+q:=link(p);@/
+bound_cubic(x_loc(p),x_loc(q),x_code);
+bound_cubic(y_loc(p),y_loc(q),y_code);
+p:=q;
+until p=h;
+exit:end;
+
+@ Another important way to measure a path is to find its arc length. This
+is best done by using the general bisection algorithm to subdivide the path
+until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
+by simple means.
+
+Since the arc length is the integral with respect to time of the magnitude of
+the velocity, it is natural to use Simpson's rule for the approximation.
+@^Simpson's rule@>
+If $\dot B(t)$ is the spline velocity, Simpson's rule gives
+$$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
+for the arc length of a path of length~1. For a cubic spline
+$B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
+$3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
+approximation is
+$$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
+where
+$$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
+is the result of the bisection algorithm.
+
+@ The remaining problem is how to decide when a subpath is ``well behaved.''
+This could be done via the theoretical error bound for Simpson's rule,
+@^Simpson's rule@>
+but this is impractical because it requires an estimate of the fourth
+derivative of the quantity being integrated. It is much easier to just perform
+a bisection step and see how much the arc length estimate changes. Since the
+error for Simpson's rule is proportional to the fourth power of the sample
+spacing, the remaining error is typically about $1\over16$ of the amount of
+the change. We say ``typically'' because the error has a pseudo-random behavior
+that could cause the two estimates to agree when each contain large errors.
+
+To protect against disasters such as undetected cusps, the bisection process
+should always continue until all the $dz_i$ vectors belong to a single
+$90^\circ$ sector. This ensures that no point on the spline can have velocity
+less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
+If such a spline happens to produce an erroneous arc length estimate that
+is little changed by bisection, the amount of the error is likely to be fairly
+small. We will try to arrange things so that freak accidents of this type do
+not destroy the inverse relationship between the \&{arclength} and
+\&{arctime} operations.
+@:arclength_}{\&{arclength} primitive@>
+@:arctime_}{\&{arctime} primitive@>
+
+@ The \&{arclength} and \&{arctime} operations are both based on a recursive
+@^recursion@>
+function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
+$dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
+returns the time when the arc length reaches |a_goal| if there is such a time.
+Thus the return value is either an arc length less than |a_goal| or, if the
+arc length would be at least |a_goal|, it returns a time value decreased by
+|two|. This allows the caller to use the sign of the result to distinguish
+between arc lengths and time values. On certain types of overflow, it is
+possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
+Otherwise, the result is always less than |a_goal|.
+
+Rather than halving the control point coordinates on each recursive call to
+|arc_test|, it is better to keep them proportional to velocity on the original
+curve and halve the results instead. This means that recursive calls can
+potentially use larger error tolerances in their arc length estimates. How
+much larger depends on to what extent the errors behave as though they are
+independent of each other. To save computing time, we use optimistic assumptions
+and increase the tolerance by a factor of about $\sqrt2$ for each recursive
+call.
+
+In addition to the tolerance parameter, |arc_test| should also have parameters
+for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
+${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
+and they are needed in different instances of |arc_test|.
+
+@p @t\4@>@<Declare subroutines needed by |arc_test|@>@;
+function arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
+ @!v0, @!v02, @!v2, @!a_goal, @!tol:scaled): scaled;
+label exit;
+var simple: boolean; {are the control points confined to a $90^\circ$ sector?}
+@!dx01, @!dy01, @!dx12, @!dy12, @!dx02, @!dy02: scaled; {bisection results}
+@!v002, @!v022: scaled;
+ {twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$}
+@!arc: scaled; {best arc length estimate before recursion}
+@<Other local variables in |arc_test|@>@;
+begin @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
+ |dx2|, |dy2|@>;
+@<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
+ set |arc_test| and |return|@>;
+@<Test if the control points are confined to one quadrant or rotating them
+ $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
+if simple and (abs(arc-v02-halfp(v0+v2)) <= tol) then
+ if arc < a_goal then @+arc_test := arc
+ else @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
+ that time minus |two|@>
+else @<Use one or two recursive calls to compute the |arc_test| function@>;
+exit:end;
+
+@ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
+calls, but $1.5$ is an adequate approximation. It is best to avoid using
+|make_fraction| in this inner loop.
+@^inner loop@>
+
+@<Use one or two recursive calls to compute the |arc_test| function@>=
+begin @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
+ large as possible@>;
+tol := tol + halfp(tol);
+a := arc_test(dx0,dy0, dx01,dy01, dx02,dy02, v0, v002, halfp(v02), a_new, tol);
+if a<0 then @+arc_test := -halfp(two-a)
+else begin @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
+ b := arc_test(dx02,dy02, dx12,dy12, dx2,dy2,
+ halfp(v02), v022, v2, a_new, tol);
+ if b<0 then @+arc_test := -halfp(-b) - half_unit
+ else arc_test := a + half(b-a);
+ end;
+end
+
+@ @<Other local variables in |arc_test|@>=
+@!a, @!b: scaled; {results of recursive calls}
+@!a_new, @!a_aux: scaled; {the sum of these gives the |a_goal|}
+
+@ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
+a_aux := el_gordo - a_goal;
+if a_goal > a_aux then
+ begin a_aux := a_goal - a_aux;
+ a_new := el_gordo;
+ end
+else begin a_new := a_goal + a_goal;
+ a_aux := 0;
+ end
+
+@ There is no need to maintain |a_aux| at this point so we use it as a temporary
+to force the additions and subtractions to be done in an order that avoids
+overflow.
+
+@<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
+if a > a_aux then
+ begin a_aux := a_aux - a;
+ a_new := a_new + a_aux;
+ end
+
+@ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
+|fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
+this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
+this bound. Note that recursive calls will maintain this invariant.
+
+@<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
+dx01 := half(dx0 + dx1);
+dx12 := half(dx1 + dx2);
+dx02 := half(dx01 + dx12);@/
+dy01 := half(dy0 + dy1);
+dy12 := half(dy1 + dy2);
+dy02 := half(dy01 + dy12)
+
+@ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
+|a_goal=el_gordo| is guaranteed to yield the arc length.
+
+@<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
+v002 := pyth_add(dx01+half(dx0+dx02), dy01+half(dy0+dy02));
+v022 := pyth_add(dx12+half(dx02+dx2), dy12+half(dy02+dy2));
+tmp := halfp(v02+2);
+arc1 := v002 + half(halfp(v0+tmp) - v002);
+arc := v022 + half(halfp(v2+tmp) - v022);
+if (arc < el_gordo-arc1) then @+arc := arc+arc1
+else begin arith_error := true;
+ if a_goal=el_gordo then @+arc_test := el_gordo
+ else arc_test := -two;
+ return;
+ end
+
+@ @<Other local variables in |arc_test|@>=
+tmp, tmp2: scaled; {all purpose temporary registers}
+arc1: scaled; {arc length estimate for the first half}
+
+@ @<Test if the control points are confined to one quadrant or rotating...@>=
+simple := (dx0>=0) and (dx1>=0) and (dx2>=0) or@|
+ (dx0<=0) and (dx1<=0) and (dx2<=0);
+if simple then
+ simple := (dy0>=0) and (dy1>=0) and (dy2>=0) or@|
+ (dy0<=0) and (dy1<=0) and (dy2<=0);
+if not simple then
+ begin simple := (dx0>=dy0) and (dx1>=dy1) and (dx2>=dy2) or@|
+ (dx0<=dy0) and (dx1<=dy1) and (dx2<=dy2);
+ if simple then
+ simple := (-dx0>=dy0) and (-dx1>=dy1) and (-dx2>=dy2) or@|
+ (-dx0<=dy0) and (-dx1<=dy1) and (-dx2<=dy2);
+ end
+
+@ Since Simpson's rule is based on approximating the integrand by a parabola,
+@^Simpson's rule@>
+it is appropriate to use the same approximation to decide when the integral
+reaches the intermediate value |a_goal|. At this point
+$$\eqalign{
+ {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
+ {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
+ {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
+ {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
+ {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
+}
+$$
+and
+$$ {\vb\dot B(t)\vb\over 3} \approx
+ \cases{B\left(\hbox{|v0|},
+ \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
+ {1\over 2}\hbox{|v02|}; 2t \right)&
+ if $t\le{1\over 2}$\cr
+ B\left({1\over 2}\hbox{|v02|},
+ \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
+ \hbox{|v2|}; 2t-1 \right)&
+ if $t\ge{1\over 2}$.\cr}
+ \eqno (*)
+$$
+We can integrate $\vb\dot B(t)\vb$ by using
+$$\int 3B(a,b,c;\tau)\,dt =
+ {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
+$$
+
+This construction allows us to find the time when the arc length reaches
+|a_goal| by solving a cubic equation of the form
+$$ B(0,a,a+b,a+b+c;\tau) = x, $$
+where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
+and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
+@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
+$d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
+$\tau$ given $a$, $b$, $c$, and $x$.
+
+@<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
+begin tmp := (v02 + 2) div 4;
+if a_goal<=arc1 then
+ begin tmp2 := halfp(v0);
+ arc_test := halfp(solve_rising_cubic(tmp2, arc1-tmp2-tmp, tmp, a_goal))
+ - two;
+ end
+else begin tmp2 := halfp(v2);
+ arc_test := (half_unit - two) +@|
+ halfp(solve_rising_cubic(tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1));
+ end;
+end
+
+@ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
+$$ B(0, a, a+b, a+b+c; t) = x. $$
+This routine is based on |crossing_point| but is simplified by the
+assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
+If rounding error causes this condition to be violated slightly, we just ignore
+it and proceed with binary search. This finds a time when the function value
+reaches |x| and the slope is positive.
+
+@<Declare subroutines needed by |arc_test|@>=
+function solve_rising_cubic(@!a, @!b, @!c, @!x: scaled): scaled;
+var @!ab, @!bc, @!ac: scaled; {bisection results}
+@!t: integer; {$2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$}
+@!xx: integer; {temporary for updating |x|}
+begin if (a<0) or (c<0) then confusion("rising?");
+@:this can't happen rising?}{\quad rising?@>
+if x<=0 then solve_rising_cubic := 0
+else if x >= a+b+c then solve_rising_cubic := unity
+else begin t := 1;
+ @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
+ |el_gordo div 3|@>;
+ repeat double(t);
+ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
+ xx := x - a - ab - ac;
+ if xx < -x then
+ begin double(x);
+ b:=ab; c:=ac;
+ end
+ else begin x := x + xx;
+ a:=ac; b:=bc;
+ t := t+1;
+ end;
+ until t >= unity;
+ solve_rising_cubic := t - unity;
+ end;
+end;
+
+@ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
+ab := half(a+b);
+bc := half(b+c);
+ac := half(ab + bc)
+
+@ @d one_third_el_gordo==@'5252525252 {upper bound on |a|, |b|, and |c|}
+
+@<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
+while (a>one_third_el_gordo) or@| (b>one_third_el_gordo)
+ or@| (c>one_third_el_gordo) do
+ begin a := halfp(a);
+ b := half(b);
+ c := halfp(c);
+ x := halfp(x);
+ end
+
+@ It is convenient to have a simpler interface to |arc_test| that requires no
+unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
+length less than |fraction_four|.
+
+@d arc_tol = 16 {quit when change in arc length estimate reaches this}
+
+@p function do_arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
+ @!a_goal: scaled): scaled;
+var @!v0, @!v1, @!v2: scaled; {length of each $({\it dx},{\it dy})$ pair}
+@!v02: scaled; {twice the norm of the quadratic at $t={1\over2}$}
+begin v0 := pyth_add(dx0,dy0);
+v1 := pyth_add(dx1,dy1);
+v2 := pyth_add(dx2,dy2);
+if (v0>=fraction_four) or (v1>=fraction_four) or (v2>=fraction_four) then
+ begin arith_error := true;
+ if a_goal=el_gordo then @+do_arc_test := el_gordo
+ else do_arc_test := -two;
+ end
+else begin v02 := pyth_add(dx1+half(dx0+dx2), dy1+half(dy0+dy2));@/
+ do_arc_test := arc_test(dx0,dy0, dx1,dy1, dx2,dy2,@|
+ v0, v02, v2, a_goal, arc_tol);
+ end;
+end;
+
+@ Now it is easy to find the arc length of an entire path.
+
+@p function get_arc_length(@!h: pointer): scaled;
+label done;
+var @!p, @!q: pointer; {for traversing the path}
+@!a, @!a_tot: scaled; {current and total arc lengths}
+begin a_tot := 0;
+p := h;
+while right_type(p)<>endpoint do
+ begin q := link(p);
+ a := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
+ left_x(q)-right_x(p), left_y(q)-right_y(p),@|
+ x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
+ a_tot := slow_add(a, a_tot);
+ if q=h then goto done @+else p:=q;
+ end;
+done:check_arith;
+get_arc_length := a_tot;
+end;
+
+@ The inverse operation of finding the time on a path~|h| when the arc length
+reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
+is required to handle very large times or negative times on cyclic paths. For
+non-cyclic paths, |arc0| values that are negative or too large cause
+|get_arc_time| to return 0 or the length of path~|h|.
+
+If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
+time value greater than the length of the path. Since it could be much greater,
+we must be prepared to compute the arc length of path~|h| and divide this into
+|arc0| to find how many multiples of the length of path~|h| to add.
+
+@p function get_arc_time(@!h: pointer; @!arc0:scaled): scaled;
+label done;
+var @!p, @!q: pointer; {for traversing the path}
+@!t_tot: scaled; {accumulator for the result}
+@!t: scaled; {the result of |do_arc_test|}
+@!arc:scaled; {portion of |arc0| not used up so far}
+@!n: integer; {number of extra times to go around the cycle}
+begin if arc0<0 then @<Deal with a negative |arc0| value and |goto done|@>;
+if arc0=el_gordo then decr(arc0);
+t_tot := 0;
+arc := arc0;
+p := h;
+while (right_type(p)<>endpoint) and (arc>0) do
+ begin q := link(p);
+ t := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
+ left_x(q)-right_x(p), left_y(q)-right_y(p),@|
+ x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
+ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
+ if q=h then @<Update |t_tot| and |arc| to avoid going around the cyclic
+ path too many times but set |arith_error:=true| and |goto done| on
+ overflow@>;
+ p := q;
+ end;
+done: check_arith;
+get_arc_time := t_tot;
+end;
+
+@ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
+if t<0 then
+ begin t_tot := t_tot + t + two;
+ arc := 0;
+ end
+else begin t_tot := t_tot + unity;
+ arc := arc - t;
+ end
+
+@ @<Deal with a negative |arc0| value and |goto done|@>=
+begin if left_type(h)=endpoint then t_tot:=0
+else begin p := htap_ypoc(h);
+ t_tot := -get_arc_time(p, -arc0);
+ toss_knot_list(p);
+ end;
+goto done;
+end
+
+@ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
+if arc>0 then
+ begin n := arc div (arc0 - arc);
+ arc := arc - n*(arc0 - arc);
+ if t_tot > el_gordo div (n+1) then
+ begin arith_error := true;
+ t_tot := el_gordo;
+ goto done;
+ end;
+ t_tot := (n + 1)*t_tot;
+ end
+
+@* \[20] Data structures for pens.
+A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
+in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
+@:stroke}{\&{stroke} command@>
+converted into an area fill as described in the next part of this program.
+The mathematics behind this process is based on simple aspects of the theory
+of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
+[``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
+Foundations of Computer Science {\bf 24} (1983), 100--111].
+
+Polygonal pens are created from paths via \MP's \&{makepen} primitive.
+@:makepen_}{\&{makepen} primitive@>
+This path representation is almost sufficient for our purposes except that
+a pen path should always be a convex polygon with the vertices in
+counter-clockwise order.
+Since we will need to scan pen polygons both forward and backward, a pen
+should be represented as a doubly linked ring of knot nodes. There is
+room for the extra back pointer because we do not need the
+|left_type| or |right_type| fields. In fact, we don't need the |left_x|,
+|left_y|, |right_x|, or |right_y| fields either but we leave these alone
+so that certain procedures can operate on both pens and paths. In particular,
+pens can be copied using |copy_path| and recycled using |toss_knot_list|.
+
+@d knil==info
+ {this replaces the |left_type| and |right_type| fields in a pen knot}
+
+@ The |make_pen| procedure turns a path into a pen by initializing
+the |knil| pointers and making sure the knots form a convex polygon.
+Thus each cubic in the given path becomes a straight line and the control
+points are ignored. If the path is not cyclic, the ends are connected by a
+straight line.
+
+@d copy_pen(#)==make_pen(copy_path(#),false)
+
+@p @<Declare a function called |convex_hull|@>@;
+function make_pen(h:pointer;@!need_hull:boolean):pointer;
+var @!p,@!q:pointer; {two consecutive knots}
+begin q:=h;
+repeat p:=q; q:=link(q);
+knil(q):=p;
+until q=h;
+if need_hull then
+ begin h:=convex_hull(h);
+ @<Make sure |h| isn't confused with an elliptical pen@>;
+ end;
+make_pen:=h;
+end;
+
+@ The only information required about an elliptical pen is the overall
+transformation that has been applied to the original \&{pencircle}.
+@:pencircle_}{\&{pencircle} primitive@>
+Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
+and $(0,1)$ are transformed, an elliptical pen can be stored in a single
+knot node and transformed as if it were a path.
+
+@d pen_is_elliptical(#)==(#=link(#))
+
+@p function get_pen_circle(@!diam:scaled):pointer;
+var @!h:pointer; {the knot node to return}
+begin h:=get_node(knot_node_size);
+link(h):=h; knil(h):=h;@/
+originator(h):=program_code;@/
+x_coord(h):=0; y_coord(h):=0;@/
+left_x(h):=diam; left_y(h):=0;@/
+right_x(h):=0; right_y(h):=diam;@/
+get_pen_circle:=h;
+end;
+
+@ If the polygon being returned by |make_pen| has only one vertex, it will
+be interpreted as an elliptical pen. This is no problem since a degenerate
+polygon can equally well be thought of as a degenerate ellipse. We need only
+initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
+
+@<Make sure |h| isn't confused with an elliptical pen@>=
+if pen_is_elliptical(h) then
+ begin left_x(h):=x_coord(h); left_y(h):=y_coord(h);@/
+ right_x(h):=x_coord(h); right_y(h):=y_coord(h);
+ end
+
+@ We have to cheat a little here but most operations on pens only use
+the first three words in each knot node.
+@^data structure assumptions@>
+
+@<Initialize a pen at |test_pen| so that it fits in nine words@>=
+x_coord(test_pen):=-half_unit;
+y_coord(test_pen):=0;@/
+x_coord(test_pen+3):=half_unit;
+y_coord(test_pen+3):=0;@/
+x_coord(test_pen+6):=0;
+y_coord(test_pen+6):=unity;@/
+link(test_pen):=test_pen+3;
+link(test_pen+3):=test_pen+6;
+link(test_pen+6):=test_pen;
+knil(test_pen):=test_pen+6;
+knil(test_pen+3):=test_pen;
+knil(test_pen+6):=test_pen+3
+
+@ Printing a polygonal pen is very much like printing a path
+
+@<Declare subroutines for printing expressions@>=
+procedure pr_pen(@!h:pointer);
+label done;
+var @!p,@!q:pointer; {for list traversal}
+begin if pen_is_elliptical(h) then
+ @<Print the elliptical pen |h|@>
+else begin p:=h;
+ repeat print_two(x_coord(p),y_coord(p));
+ print_nl(" .. ");
+ @<Advance |p| making sure the links are OK and |return| if there is
+ a problem@>;
+ until p=h;
+ print("cycle");
+ end;
+done:end;
+
+@ @<Advance |p| making sure the links are OK and |return| if there is...@>=
+q:=link(p);
+if (q=null) or (knil(q)<>p) then
+ begin print_nl("???"); goto done; {this won't happen}
+@.???@>
+ end;
+p:=q
+
+@ @<Print the elliptical pen |h|@>=
+begin print("pencircle transformed (");
+print_scaled(x_coord(h));
+print_char(",");
+print_scaled(y_coord(h));@/
+print_char(",");
+print_scaled(left_x(h)-x_coord(h));
+print_char(",");
+print_scaled(right_x(h)-x_coord(h));
+print_char(",");
+print_scaled(left_y(h)-y_coord(h));@/
+print_char(",");
+print_scaled(right_y(h)-y_coord(h));@/
+print_char(")");
+end
+
+@ Here us another version of |pr_pen| that prints the pen as a diagnostic
+message.
+
+@<Declare subroutines for printing expressions@>=
+procedure print_pen(@!h:pointer;@!s:str_number;@!nuline:boolean);
+begin print_diagnostic("Pen",s,nuline); print_ln;
+@.Pen at line...@>
+pr_pen(h);
+end_diagnostic(true);
+end;
+
+@ Making a polygonal pen into a path involves restoring the |left_type| and
+|right_type| fields and setting the control points so as to make a polygonal
+path.
+
+@p procedure make_path(@!h:pointer);
+var @!p:pointer; {for traversing the knot list}
+@!k:small_number; {a loop counter}
+@<Other local variables in |make_path|@>@;
+begin if pen_is_elliptical(h) then
+ @<Make the elliptical pen |h| into a path@>
+else begin p:=h;
+ repeat left_type(p):=explicit;
+ right_type(p):=explicit;@/
+ @<copy the coordinates of knot |p| into its control points@>;@/
+ p:=link(p);
+ until p=h;
+ end;
+end;
+
+@ @<copy the coordinates of knot |p| into its control points@>=
+left_x(p):=x_coord(p);
+left_y(p):=y_coord(p);@/
+right_x(p):=x_coord(p);
+right_y(p):=y_coord(p)
+
+@ We need an eight knot path to get a good approximation to an ellipse.
+
+@<Make the elliptical pen |h| into a path@>=
+begin @<Extract the transformation parameters from the elliptical pen~|h|@>;
+p:=h;
+for k:=0 to 7 do
+ begin @<Initialize |p| as the |k|th knot of a circle of unit diameter,
+ transforming it appropriately@>;
+ if k=7 then link(p):=h @+else link(p):=get_node(knot_node_size);
+ p:=link(p);
+ end;
+end
+
+@ @<Extract the transformation parameters from the elliptical pen~|h|@>=
+center_x:=x_coord(h);
+center_y:=y_coord(h);@/
+width_x:=left_x(h)-center_x;
+width_y:=left_y(h)-center_y;@/
+height_x:=right_x(h)-center_x;
+height_y:=right_y(h)-center_y
+
+@ @<Other local variables in |make_path|@>=
+@!center_x,@!center_y:scaled; {translation parameters for an elliptical pen}
+@!width_x,@!width_y:scaled; {the effect of a unit change in $x$}
+@!height_x,@!height_y:scaled; {the effect of a unit change in $y$}
+@!dx,@!dy:scaled; {the vector from knot |p| to its right control point}
+@!kk:integer;
+ {|k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$)}
+
+@ The only tricky thing here are the tables |half_cos| and |d_cos| used to
+find the point $k/8$ of the way around the circle and the direction vector
+to use there.
+
+@<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
+kk:=(k+6)mod 8;@/
+x_coord(p):=center_x+take_fraction(half_cos[k],width_x)
+ +take_fraction(half_cos[kk],height_x);
+y_coord(p):=center_y+take_fraction(half_cos[k],width_y)
+ +take_fraction(half_cos[kk],height_y);
+dx:=-take_fraction(d_cos[kk],width_x)+take_fraction(d_cos[k],height_x);
+dy:=-take_fraction(d_cos[kk],width_y)+take_fraction(d_cos[k],height_y);
+right_x(p):=x_coord(p)+dx;
+right_y(p):=y_coord(p)+dy;@/
+left_x(p):=x_coord(p)-dx;
+left_y(p):=y_coord(p)-dy;@/
+left_type(p):=explicit;
+right_type(p):=explicit;
+originator(p):=program_code
+
+@ @<Glob...@>=
+half_cos:array[0..7] of fraction; {${1\over2}\cos(45k)$}
+d_cos:array[0..7] of fraction; {a magic constant times $\cos(45k)$}
+
+@ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
+$({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
+function for $\theta=\phi=22.5^\circ$. This comes out to be
+$$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
+ \approx 0.132608244919772.
+$$
+
+@<Set init...@>=
+half_cos[0]:=fraction_half;
+half_cos[1]:=94906266; {$2^{26}\sqrt2\approx94906265.62$}
+half_cos[2]:=0;@/
+d_cos[0]:=35596755; {$2^{28}d\approx35596754.69$}
+d_cos[1]:=25170707; {$2^{27}\sqrt2\,d\approx25170706.63$}
+d_cos[2]:=0;
+for k:=3 to 4 do
+ begin half_cos[k]:=-half_cos[4-k];
+ d_cos[k]:=-d_cos[4-k];
+ end;
+for k:=5 to 7 do
+ begin half_cos[k]:=half_cos[8-k];
+ d_cos[k]:=d_cos[8-k];
+ end;
+
+@ The |convex_hull| function forces a pen polygon to be convex when it is
+returned by |make_pen| and after any subsequent transformation where rounding
+error might allow the convexity to be lost.
+The convex hull algorithm used here is described by F.~P. Preparata and
+M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
+
+@<Declare a function called |convex_hull|@>=
+@<Declare a procedure called |move_knot|@>@;
+function convex_hull(@!h:pointer):pointer; {Make a polygonal pen convex}
+label done1,done2,done3;
+var @!l,@!r:pointer; {the leftmost and rightmost knots}
+@!p,@!q:pointer; {knots being scanned}
+@!s:pointer; {the starting point for an upcoming scan}
+@!dx,@!dy:scaled; {a temporary pointer}
+begin if pen_is_elliptical(h) then convex_hull:=h
+else begin @<Set |l| to the leftmost knot in polygon~|h|@>;
+ @<Set |r| to the rightmost knot in polygon~|h|@>;
+ if l<>r then
+ begin s:=link(r);
+ @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
+ move them past~|r|@>;
+ @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
+ move them past~|l|@>;
+ @<Sort the path from |l| to |r| by increasing $x$@>;
+ @<Sort the path from |r| to |l| by decreasing $x$@>;
+ end;
+ if l<>link(l) then @<Do a Gramm scan and remove vertices where there
+ is no left turn@>;
+ convex_hull:=l;
+ end;
+end;
+
+@ All comparisons are done primarily on $x$ and secondarily on $y$.
+
+@<Set |l| to the leftmost knot in polygon~|h|@>=
+l:=h;
+p:=link(h);
+while p<>h do
+ begin if x_coord(p)<=x_coord(l) then
+ if (x_coord(p)<x_coord(l)) or (y_coord(p)<y_coord(l)) then
+ l:=p;
+ p:=link(p);
+ end
+
+@ @<Set |r| to the rightmost knot in polygon~|h|@>=
+r:=h;
+p:=link(h);
+while p<>h do
+ begin if x_coord(p)>=x_coord(r) then
+ if (x_coord(p)>x_coord(r)) or (y_coord(p)>y_coord(r)) then
+ r:=p;
+ p:=link(p);
+ end
+
+@ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
+dx:=x_coord(r)-x_coord(l);
+dy:=y_coord(r)-y_coord(l);
+p:=link(l);
+while p<>r do
+ begin q:=link(p);
+ if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 then
+ move_knot(p,r);
+ p:=q;
+ end
+
+@ The |move_knot| procedure removes |p| from a doubly linked list and inserts
+it after |q|.
+
+@ @<Declare a procedure called |move_knot|@>=
+procedure move_knot(@!p,@!q:pointer);
+begin link(knil(p)):=link(p);
+knil(link(p)):=knil(p);@/
+knil(p):=q;
+link(p):=link(q);
+link(q):=p;
+knil(link(p)):=p;
+end;
+
+@ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
+p:=s;
+while p<>l do
+ begin q:=link(p);
+ if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 then
+ move_knot(p,l);
+ p:=q;
+ end
+
+@ The list is likely to be in order already so we just do linear insertions.
+Secondary comparisons on $y$ ensure that the sort is consistent with the
+choice of |l| and |r|.
+
+@<Sort the path from |l| to |r| by increasing $x$@>=
+p:=link(l);
+while p<>r do
+ begin q:=knil(p);
+ while x_coord(q)>x_coord(p) do q:=knil(q);
+ while x_coord(q)=x_coord(p) do
+ if y_coord(q)>y_coord(p) then q:=knil(q) else goto done1;
+done1:
+ if q=knil(p) then p:=link(p)
+ else begin p:=link(p); move_knot(knil(p),q);
+ end;
+ end
+
+@ @<Sort the path from |r| to |l| by decreasing $x$@>=
+p:=link(r);
+while p<>l do
+ begin q:=knil(p);
+ while x_coord(q)<x_coord(p) do q:=knil(q);
+ while x_coord(q)=x_coord(p) do
+ if y_coord(q)<y_coord(p) then q:=knil(q) else goto done2;
+done2:
+ if q=knil(p) then p:=link(p)
+ else begin p:=link(p); move_knot(knil(p),q);
+ end;
+ end
+
+@ The condition involving |ab_vs_cd| tests if there is not a left turn
+at knot |q|. There usually will be a left turn so we streamline the case
+where the |then| clause is not executed.
+
+@<Do a Gramm scan and remove vertices where there...@>=
+begin p:=l; q:=link(l);
+loop @+begin dx:=x_coord(q)-x_coord(p);
+ dy:=y_coord(q)-y_coord(p);
+ p:=q; q:=link(q);
+ if p=l then goto done3;
+ if p<>r then
+ if ab_vs_cd(dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 then
+ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
+ end;
+done3: do_nothing;
+end
+
+@ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
+begin s:=knil(p);
+free_node(p,knot_node_size);
+link(s):=q; knil(q):=s;
+if s=l then p:=s
+else begin p:=knil(s); q:=s;
+ end;
+end
+
+@ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
+offset associated with the given direction |(x,y)|. If two different offsets
+apply, it chooses one of them.
+
+@p procedure find_offset(@!x,@!y:scaled;@!h:pointer);
+var @!p,@!q:pointer; {consecutive knots}
+@!wx,@!wy,@!hx,@!hy:scaled;
+ {the transformation matrix for an elliptical pen}
+@!xx,@!yy:fraction; {untransformed offset for an elliptical pen}
+@!d:fraction; {a temporary register}
+begin if pen_is_elliptical(h) then
+ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
+else begin q:=h;
+ repeat p:=q; q:=link(q);
+ until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0;
+ repeat p:=q; q:=link(q);
+ until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0;
+ cur_x:=x_coord(p);
+ cur_y:=y_coord(p);
+ end;
+end;
+
+@ @<Glob...@>=
+@!cur_x,@!cur_y:scaled; {all-purpose return value registers}
+
+@ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
+if (x=0) and (y=0) then
+ begin cur_x:=x_coord(h); cur_y:=y_coord(h); @+end
+else begin @<Find the non-constant part of the transformation for |h|@>;
+ while (abs(x)<fraction_half) and (abs(y)<fraction_half) do
+ begin double(x); double(y); @+end;
+ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
+ untransformed version of |(x,y)|@>;
+ cur_x:=x_coord(h)+take_fraction(xx,wx)+take_fraction(yy,hx);
+ cur_y:=y_coord(h)+take_fraction(xx,wy)+take_fraction(yy,hy);
+ end
+
+@ @<Find the non-constant part of the transformation for |h|@>=
+wx:=left_x(h)-x_coord(h);
+wy:=left_y(h)-y_coord(h);
+hx:=right_x(h)-x_coord(h);
+hy:=right_y(h)-y_coord(h)
+
+@ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
+yy:=-(take_fraction(x,hy)+take_fraction(y,-hx));@/
+xx:=take_fraction(x,-wy)+take_fraction(y,wx);@/
+d:=pyth_add(xx,yy);@/
+if d>0 then
+ begin xx:=half(make_fraction(xx,d));
+ yy:=half(make_fraction(yy,d));
+ end
+
+@ Finding the bounding box of a pen is easy except if the pen is elliptical.
+But we can handle that case by just calling |find_offset| twice. The answer
+is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
+
+@p procedure pen_bbox(@!h:pointer);
+var @!p:pointer; {for scanning the knot list}
+begin if pen_is_elliptical(h) then
+ @<Find the bounding box of an elliptical pen@>
+else begin minx:=x_coord(h); maxx:=minx;
+ miny:=y_coord(h); maxy:=miny;@/
+ p:=link(h);
+ while p<>h do
+ begin if x_coord(p)<minx then minx:=x_coord(p);
+ if y_coord(p)<miny then miny:=y_coord(p);
+ if x_coord(p)>maxx then maxx:=x_coord(p);
+ if y_coord(p)>maxy then maxy:=y_coord(p);
+ p:=link(p);
+ end;
+ end;
+end;
+
+@ @<Find the bounding box of an elliptical pen@>=
+begin find_offset(0,fraction_one,h);
+maxx:=cur_x;
+minx:=2*x_coord(h)-cur_x;@/
+find_offset(-fraction_one,0,h);
+maxy:=cur_y;
+miny:=2*y_coord(h)-cur_y;
+end
+
+@* \[21] Edge structures.
+Now we come to \MP's internal scheme for representing pictures.
+The representation is very different from \MF's edge structures
+because \MP\ pictures contain \ps\ graphics objects instead of pixel
+images. However, the basic idea is somewhat similar in that shapes
+are represented via their boundaries.
+
+The main purpose of edge structures is to keep track of graphical objects
+until it is time to translate them into \ps. Since \MP\ does not need to
+know anything about an edge structure other than how to translate it into
+\ps\ and how to find its bounding box, edge structures can be just linked
+lists of graphical objects. \MP\ has no easy way to determine whether
+two such objects overlap, but it suffices to draw the first one first and
+let the second one overwrite it if necessary.
+
+@ Let's consider the types of graphical objects one at a time.
+First of all, a filled contour is represented by a six-word node. The first
+word contains |type| and |link| fields, and the next four words contain a
+pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
+parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
+give the relevant information.
+
+@d path_p(#)==link(#+1)
+ {a pointer to the path that needs filling}
+@d pen_p(#)==info(#+1)
+ {a pointer to the pen to fill or stroke with}
+@d obj_red_loc(#)==#+2 {the first of three locations for the color}
+@d red_val(#)==mem[#+2].sc
+ {the red component of the color in the range $0\ldots1$}
+@d green_val(#)==mem[#+3].sc
+ {the green component of the color in the range $0\ldots1$}
+@d blue_val(#)==mem[#+4].sc
+ {the blue component of the color in the range $0\ldots1$}
+@d ljoin_val(#)==name_type(#) {the value of \&{linejoin}}
+@:linejoin_}{\&{linejoin} primitive@>
+@d miterlim_val(#)==mem[#+5].sc {the value of \&{miterlimit}}
+@:miterlimit_}{\&{miterlimit} primitive@>
+@d obj_color_part(#)==mem[#+2-red_part].sc
+ {interpret an object pointer that has been offset by |red_part..blue_part|}
+@d fill_node_size=6
+@d fill_code=1
+
+@p function new_fill_node(@!p: pointer): pointer;
+ {make a fill node for cyclic path |p| and color black}
+var @!t:pointer; {the new node}
+begin t:=get_node(fill_node_size);
+ type(t):=fill_code;
+ path_p(t):=p;
+ pen_p(t):=null; {|null| means don't use a pen}
+ red_val(t):=0;
+ green_val(t):=0;
+ blue_val(t):=0;
+ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
+ new_fill_node:=t;
+end;
+
+@ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
+if internal[linejoin]>unity then ljoin_val(t):=2
+else if internal[linejoin]>0 then ljoin_val(t):=1
+else ljoin_val(t):=0;
+if internal[miterlimit]<unity then
+ miterlim_val(t):=unity
+else miterlim_val(t):=internal[miterlimit]
+
+@ A stroked path is represented by an eight-word node that is like a filled
+contour node except that it contains the current \&{linecap} value, a scale
+factor for the dash pattern, and a pointer that is non-null if the stroke
+is to be dashed. The purpose of the scale factor is to allow a picture to
+be transformed without touching the picture that |dash_p| points to.
+
+@d dash_p(#)==link(#+6)
+ {a pointer to the edge structure that gives the dash pattern}
+@d lcap_val(#)==type(#+6)
+ {the value of \&{linecap}}
+@:linecap_}{\&{linecap} primitive@>
+@d dash_scale(#)==mem[#+7].sc {dash lengths are scaled by this factor}
+@d stroked_node_size=8
+@d stroked_code=2
+
+@p function new_stroked_node(@!p:pointer): pointer;
+ {make a stroked node for path |p| with |pen_p(p)| temporarily |null|}
+var @!t:pointer; {the new node}
+begin t:=get_node(stroked_node_size);
+ type(t):=stroked_code;
+ path_p(t):=p; pen_p(t):=null;
+ dash_p(t):=null;
+ dash_scale(t):=unity;
+ red_val(t):=0;
+ green_val(t):=0;
+ blue_val(t):=0;
+ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
+ if internal[linecap]>unity then lcap_val(t):=2
+ else if internal[linecap]>0 then lcap_val(t):=1
+ else lcap_val(t):=0;
+ new_stroked_node:=t;
+end;
+
+@ When a dashed line is computed in a transformed coordinate system, the dash
+lengths get scaled like the pen shape and we need to compensate for this. Since
+there is no unique scale factor for an arbitrary transformation, we use the
+the square root of the determinant. The properties of the determinant make it
+easier to maintain the |dash_scale|. The computation is fairly straight-forward
+except for the initialization of the scale factor |s|. The factor of 64 is
+needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
+to counteract the effect of |take_fraction|.
+
+@<Declare subroutines needed by |print_edges|@>=
+function sqrt_det(a,b,c,d:scaled):scaled;
+var @!maxabs:scaled; {$max(|a|,|b|,|c|,|d|)$}
+@!s:integer; {amount by which the result of |square_rt| needs to be scaled}
+begin @<Initialize |maxabs|@>;
+s:=64;
+while (maxabs<fraction_one) and (s>1) do
+ begin double(a); double(b); double(c); double(d);@/
+ double(maxabs); s:=halfp(s);
+ end;
+sqrt_det:=s*square_rt(abs(take_fraction(a,d)-take_fraction(b,c)));
+end;
+@#
+function get_pen_scale(p:pointer):scaled;
+begin get_pen_scale:=sqrt_det(
+ left_x(p)-x_coord(p), right_x(p)-x_coord(p),@/
+ left_y(p)-y_coord(p), right_y(p)-y_coord(p));
+end;
+
+@ @<Initialize |maxabs|@>=
+maxabs:=abs(a);
+if abs(b)>maxabs then maxabs:=abs(b);
+if abs(c)>maxabs then maxabs:=abs(c);
+if abs(d)>maxabs then maxabs:=abs(d)
+
+@ When a picture contains text, this is represented by a fourteen-word node
+where the color information and |type| and |link| fields are augmented by
+additional fields that describe the text and how it is transformed.
+The |path_p| and |pen_p| pointers are replaced by a number that identifies
+the font and a string number that gives the text to be displayed.
+The |width|, |height|, and |depth| fields
+give the dimensions of the text at its design size, and the remaining six
+words give a transformation to be applied to the text. The |new_text_node|
+function initializes everything to default values so that the text comes out
+black with its reference point at the origin.
+
+@d text_p(#)==link(#+1) {a string pointer for the text to display}
+@d font_n(#)==info(#+1) {the font number}
+@d width_val(#)==mem[#+5].sc {unscaled width of the text}
+@d height_val(#)==mem[#+6].sc {unscaled height of the text}
+@d depth_val(#)==mem[#+7].sc {unscaled depth of the text}
+@d text_tx_loc(#)==#+8
+ {the first of six locations for transformation parameters}
+@d tx_val(#)==mem[#+8].sc {$x$ shift amount}
+@d ty_val(#)==mem[#+9].sc {$y$ shift amount}
+@d txx_val(#)==mem[#+10].sc {|txx| transformation parameter}
+@d txy_val(#)==mem[#+11].sc {|txy| transformation parameter}
+@d tyx_val(#)==mem[#+12].sc {|tyx| transformation parameter}
+@d tyy_val(#)==mem[#+13].sc {|tyy| transformation parameter}
+@d text_trans_part(#)==mem[#+8-x_part].sc
+ {interpret a text node ponter that has been offset by |x_part..yy_part|}
+@d text_node_size=14
+@d text_code=3
+
+@p @<Declare text measuring subroutines@>@;
+function new_text_node(f,s:str_number):pointer;
+ {make a text node for font |f| and text string |s|}
+var @!t:pointer; {the new node}
+begin t:=get_node(text_node_size);
+ type(t):=text_code;
+ text_p(t):=s;
+ font_n(t):=find_font(f); {this identifies the font}
+ red_val(t):=0;
+ green_val(t):=0;
+ blue_val(t):=0;
+ tx_val(t):=0; ty_val(t):=0;
+ txx_val(t):=unity; txy_val(t):=0;
+ tyx_val(t):=0; tyy_val(t):=unity;
+ set_text_box(t); {this finds the bounding box}
+ new_text_node:=t;
+end;
+
+@ The last two types of graphical objects that can occur in an edge structure
+are clipping paths and \&{setbounds} paths. These are slightly more difficult
+@:set_bounds_}{\&{setbounds} primitive@>
+to implement because we must keep track of exactly what is being clipped or
+bounded when pictures get merged together. For this reason, each clipping or
+\&{setbounds} operation is represented by a pair of nodes: first comes a
+two-word node whose |path_p| gives the relevant path, then there is the list
+of objects to clip or bound followed by a two-word node whose second word is
+unused.
+
+Using at least two words for each graphical object node allows them all to be
+allocated and deallocated similarly with a global array |gr_object_size| to
+give the size in words for each object type.
+
+@d start_clip_size=2
+@d start_clip_code=4 {|type| of a node that starts clipping}
+@d start_bounds_size=2
+@d start_bounds_code=5 {|type| of a node that gives a \&{setbounds} path}
+@d stop_clip_size=2 {the second word is not used here}
+@d stop_clip_code=6 {|type| of a node that stops clipping}
+@d stop_bounds_size=2 {the second word is not used here}
+@d stop_bounds_code=7 {|type| of a node that stops \&{setbounds}}
+@#
+@d stop_type(#)==(#+2)
+ {matching |type| for |start_clip_code| or |start_bounds_code|}
+@d has_color(#)==(type(#)<start_clip_code)
+ {does a graphical object have color fields?}
+@d has_pen(#)==(type(#)<text_code)
+ {does a graphical object have a |pen_p| field?}
+@d is_start_or_stop(#)==(type(#)>=start_clip_code)
+@d is_stop(#)==(type(#)>=stop_clip_code)
+
+@p function new_bounds_node(@!p:pointer; c:small_number):pointer;
+ {make a node of type |c| where |p| is the clipping or \&{setbounds} path}
+var @!t:pointer; {the new node}
+begin t:=get_node(gr_object_size[c]);
+ type(t):=c;
+ path_p(t):=p;
+ new_bounds_node:=t;
+end;
+
+@ We need an array to keep track of the sizes of graphical objects.
+
+@<Glob...@>=
+gr_object_size: array[fill_code..stop_bounds_code] of small_number;
+
+@ @<Set init...@>=
+gr_object_size[fill_code]:=fill_node_size;
+gr_object_size[stroked_code]:=stroked_node_size;
+gr_object_size[text_code]:=text_node_size;
+gr_object_size[start_clip_code]:=start_clip_size;
+gr_object_size[stop_clip_code]:=stop_clip_size;
+gr_object_size[start_bounds_code]:=start_bounds_size;
+gr_object_size[stop_bounds_code]:=stop_bounds_size;
+
+@ All the essential information in an edge structure is encoded as a linked list
+of graphical objects as we have just seen, but it is helpful to add some
+redundant information. A single edge structure might be used as a dash pattern
+many times, and it would be nice to avoid scanning the same structure
+repeatedly. Thus, an edge structure known to be a suitable dash pattern
+has a header that gives a list of dashes in a sorted order designed for rapid
+translation into \ps.
+
+Each dash is represented by a three-word node containing the initial and final
+$x$~coordinates as well as the usual |link| field. The |link| fields points to
+the dash node with the next higher $x$-coordinates and the final link points
+to a special location called |null_dash|. (There should be no overlap between
+dashes). Since the $y$~coordinate of the dash pattern is needed to determine
+the period of repetition, this needs to be stored in the edge header along
+with a pointer to the list of dash nodes.
+
+@d start_x(#)==mem[#+1].sc {the starting $x$~coordinate in a dash node}
+@d stop_x(#)==mem[#+2].sc {the ending $x$~coordinate in a dash node}
+@d dash_node_size=3
+@d dash_list==link
+ {in an edge header this points to the first dash node}
+@d dash_y(#)==mem[#+1].sc {$y$ value for the dash list in an edge header}
+
+@ It is also convenient for an edge header to contain the bounding
+box information needed by the \&{llcorner} and \&{urcorner} operators
+so that this does not have to be recomputed unnecessarily. This is done by
+adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
+how far the bounding box computation has gotten. Thus if the user asks for
+the bounding box and then adds some more text to the picture before asking
+for more bounding box information, the second computation need only look at
+the additional text.
+
+When the bounding box has not been computed, the |bblast| pointer points
+to a dummy link at the head of the graphical object list while the |minx_val|
+and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
+fields contain |-el_gordo|.
+
+Since the bounding box of pictures containing objects of type
+|start_bounds_code| depends on the value of \&{truecorners}, the bounding box
+@:true_corners_}{\&{truecorners} primitive@>
+data might not be valid for all values of this parameter. Hence, the |bbtype|
+field is needed to keep track of this.
+
+@d minx_val(#)==mem[#+2].sc
+@d miny_val(#)==mem[#+3].sc
+@d maxx_val(#)==mem[#+4].sc
+@d maxy_val(#)==mem[#+5].sc
+@d bblast(#)==link(#+6) {last item considered in bounding box computation}
+@d bbtype(#)==info(#+6) {tells how bounding box data depends on \&{truecorners}}
+@d dummy_loc(#)==#+7 {where the object list begins in an edge header}
+@d no_bounds=0
+ {|bbtype| value when bounding box data is valid for all \&{truecorners} values}
+@d bounds_set=1
+ {|bbtype| value when bounding box data is for \&{truecorners}${}\le 0$}
+@d bounds_unset=2
+ {|bbtype| value when bounding box data is for \&{truecorners}${}>0$}
+
+@p procedure init_bbox(@!h:pointer);
+ {Initialize the bounding box information in edge structure |h|}
+begin bblast(h):=dummy_loc(h);
+bbtype(h):=no_bounds;
+minx_val(h):=el_gordo;
+miny_val(h):=el_gordo;
+maxx_val(h):=-el_gordo;
+maxy_val(h):=-el_gordo;
+end;
+
+@ The only other entries in an edge header are a reference count in the first
+word and a pointer to the tail of the object list in the last word.
+
+@d obj_tail(#)==info(#+7) {points to the last entry in the object list}
+@d edge_header_size=8
+
+@p procedure init_edges(@!h:pointer);
+ {initialize an edge header to null values}
+begin dash_list(h):=null_dash;
+obj_tail(h):=dummy_loc(h);
+link(dummy_loc(h)):=null;
+ref_count(h):=null;
+init_bbox(h);
+end;
+
+@ Here is how edge structures are deleted. The process can be recursive because
+of the need to dereference edge structures that are used as dash patterns.
+@^recursion@>
+
+@d add_edge_ref(#)==incr(ref_count(#))
+@d delete_edge_ref(#)==if ref_count(#)=null then toss_edges(#)
+ else decr(ref_count(#))
+
+@<Declare the recycling subroutines@>=
+@<Declare subroutines needed by |toss_edges|@>@;
+procedure toss_edges(@!h:pointer);
+var @!p,@!q:pointer; {pointers that scan the list being recycled}
+@!r:pointer; {an edge structure that object |p| refers to}
+begin flush_dash_list(h);
+q:=link(dummy_loc(h));
+while (q<>null) do
+ begin p:=q; q:=link(q);
+ r:=toss_gr_object(p);
+ if r<>null then delete_edge_ref(r);
+ end;
+free_node(h,edge_header_size);
+end;
+
+@ @<Declare subroutines needed by |toss_edges|@>=
+procedure flush_dash_list(h:pointer);
+var @!p,@!q:pointer; {pointers that scan the list being recycled}
+begin q:=dash_list(h);
+while q<>null_dash do
+ begin p:=q; q:=link(q);
+ free_node(p,dash_node_size);
+ end;
+dash_list(h):=null_dash;
+end;
+
+@ @<Declare subroutines needed by |toss_edges|@>=
+function toss_gr_object(@!p:pointer):pointer;
+ {returns an edge structure that needs to be dereferenced}
+var @!e:pointer; {the edge structure to return}
+begin e:=null;
+@<Prepare to recycle graphical object |p|@>;
+free_node(p,gr_object_size[type(p)]);@/
+toss_gr_object:=e;
+end;
+
+@ @<Prepare to recycle graphical object |p|@>=
+case type(p) of
+fill_code: begin toss_knot_list(path_p(p));
+ if pen_p(p)<>null then toss_knot_list(pen_p(p));
+ end;
+stroked_code: begin toss_knot_list(path_p(p));
+ if pen_p(p)<>null then toss_knot_list(pen_p(p));
+ e:=dash_p(p);
+ end;
+text_code: delete_str_ref(text_p(p));
+start_clip_code,start_bounds_code: toss_knot_list(path_p(p));
+stop_clip_code,stop_bounds_code: do_nothing;
+end; {there are no other cases}
+
+@ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
+to be done before making a significant change to an edge structure. Much of
+the work is done in a separate routine |copy_objects| that copies a list of
+graphical objects into a new edge header.
+
+@p @<Declare a function called |copy_objects|@>@;
+function private_edges(h:pointer):pointer;
+ {make a private copy of the edge structure headed by |h|}
+var @!hh:pointer; {the edge header for the new copy}
+ @!p,@!pp: pointer; {pointers for copying the dash list}
+begin if ref_count(h)=null then private_edges:=h
+else begin decr(ref_count(h));
+ hh:=copy_objects(link(dummy_loc(h)),null);
+ @<Copy the dash list from |h| to |hh|@>;
+ @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
+ point into the new object list@>;
+ private_edges:=hh;
+ end;
+end;
+
+@ Here we use the fact that |dash_list(hh)=link(hh)|.
+@^data structure assumptions@>
+
+@<Copy the dash list from |h| to |hh|@>=
+pp:=hh; p:=dash_list(h);
+while (p<>null_dash) do
+ begin link(pp):=get_node(dash_node_size);
+ pp:=link(pp);@/
+ start_x(pp):=start_x(p);
+ stop_x(pp):=stop_x(p);
+ p:=link(p);
+ end;
+link(pp):=null_dash;
+dash_y(hh):=dash_y(h)
+
+@ @<Copy the bounding box information from |h| to |hh|...@>=
+minx_val(hh):=minx_val(h);
+miny_val(hh):=miny_val(h);
+maxx_val(hh):=maxx_val(h);
+maxy_val(hh):=maxy_val(h);@/
+bbtype(hh):=bbtype(h);
+p:=dummy_loc(h); pp:=dummy_loc(hh);
+while(p<>bblast(h)) do
+ begin if p=null then confusion("bblast");
+@:this can't happen bblast}{\quad bblast@>
+ p:=link(p); pp:=link(pp);
+ end;
+bblast(hh):=pp
+
+@ Here is the promised routine for copying graphical objects into a new edge
+structure. It starts copying at object~|p| and stops just before object~|q|.
+If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
+structure requires further initialization by |init_bbox|.
+
+@<Declare a function called |copy_objects|@>=
+function copy_objects(p, q:pointer):pointer;
+var @!hh: pointer; {the new edge header}
+ @!pp:pointer; {the last newly copied object}
+ @!k:small_number; {temporary register}
+begin hh:=get_node(edge_header_size);
+dash_list(hh):=null_dash;
+ref_count(hh):=null;@/
+pp:=dummy_loc(hh);
+while (p<>q) do
+ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
+obj_tail(hh):=pp;
+link(pp):=null;
+copy_objects:=hh;
+end;
+
+@ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
+begin k:=gr_object_size[type(p)];@/
+link(pp):=get_node(k);
+pp:=link(pp);
+while (k>0) do
+ begin decr(k); mem[pp+k]:=mem[p+k]; @+end;
+@<Fix anything in graphical object |pp| that should differ from the
+ corresponding field in |p|@>;
+p:=link(p);
+end
+
+@ @<Fix anything in graphical object |pp| that should differ from the...@>=
+case type(p) of
+start_clip_code,start_bounds_code: path_p(pp):=copy_path(path_p(p));
+fill_code: begin path_p(pp):=copy_path(path_p(p));
+ if pen_p(p)<>null then pen_p(pp):=copy_pen(pen_p(p));
+ end;
+stroked_code: begin path_p(pp):=copy_path(path_p(p));
+ pen_p(pp):=copy_pen(pen_p(p));
+ if dash_p(p)<>null then add_edge_ref(dash_p(pp));
+ end;
+text_code: add_str_ref(text_p(pp));
+stop_clip_code,stop_bounds_code: do_nothing;
+end {there are no other cases}
+
+@ Here is one way to find an acceptable value for the second argument to
+|copy_objects|. Given a non-null graphical object list, |skip_1component|
+skips past one picture component, where a ``picture component'' is a single
+graphical object, or a start bounds or start clip object and everything up
+through the matching stop bounds or stop clip object. The macro version avoids
+procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
+unless |p| points to a stop bounds or stop clip node, in which case it executes
+|e| instead.
+
+@d skip_component(#)==if not is_start_or_stop(#) then #:=link(#)
+ else if not is_stop(#) then #:=skip_1component(#)
+ else skipc_end
+@d skipc_end(#)==#
+
+@p function skip_1component(p:pointer):pointer;
+var @!lev:integer; {current nesting level}
+begin lev:=0;
+repeat if is_start_or_stop(p) then
+ if is_stop(p) then decr(lev) @+else incr(lev);
+p:=link(p);
+until lev=0;
+skip_1component:=p;
+end;
+
+@ Here is a diagnostic routine for printing an edge structure in symbolic form.
+
+@<Declare subroutines for printing expressions@>=
+@<Declare subroutines needed by |print_edges|@>@;
+procedure print_edges(@!h:pointer;@!s:str_number;@!nuline:boolean);
+var @!p:pointer; {a graphical object to be printed}
+@!hh,@!pp:pointer; {temporary pointers}
+@!scf:scaled; {a scale factor for the dash pattern}
+@!ok_to_dash:boolean; {|false| for polygonal pen strokes}
+begin print_diagnostic("Edge structure",s,nuline);
+p:=dummy_loc(h);
+while link(p)<>null do
+ begin p:=link(p);
+ print_ln;
+ case type(p) of
+ @<Cases for printing graphical object node |p|@>@;
+ othercases begin print("[unknown object type!]");
+ end
+ endcases;@/
+ end;
+print_nl("End edges");
+if p<>obj_tail(h) then print("?");
+@.End edges?@>
+end_diagnostic(true);
+end;
+
+@ @<Cases for printing graphical object node |p|@>=
+fill_code: begin print("Filled contour ");
+ print_obj_color(p);
+ print_char(":"); print_ln;
+ pr_path(path_p(p)); print_ln;
+ if (pen_p(p)<>null) then
+ begin @<Print join type for graphical object |p|@>;
+ print(" with pen"); print_ln;
+ pr_pen(pen_p(p));
+ end;
+ end;
+
+@ @<Print join type for graphical object |p|@>=
+case ljoin_val(p) of
+0:begin print("mitered joins limited ");
+ print_scaled(miterlim_val(p));
+ end;
+1:print("round joins");
+2:print("beveled joins");
+othercases print("?? joins");
+@.??@>
+endcases
+
+@ For stroked nodes, we need to print |lcap_val(p)| as well.
+
+@<Print join and cap types for stroked node |p|@>=
+case lcap_val(p) of
+0:print("butt");
+1:print("round");
+2:print("square");
+othercases print("??")
+@.??@>
+endcases;
+print(" ends, ");
+@<Print join type for graphical object |p|@>
+
+@ Here is a routine that prints the color of a graphical object if it isn't
+black (the default color).
+
+@<Declare subroutines needed by |print_edges|@>=
+@<Declare a procedure called |print_compact_node|@>@;
+procedure print_obj_color(@!p:pointer);
+begin if (red_val(p)>0) or (green_val(p)>0) or (blue_val(p)>0) then
+ begin print("colored ");
+ print_compact_node(obj_red_loc(p),3);
+ end;
+end;
+
+@ We also need a procedure for printing consecutive scaled values as if they
+were a known big node.
+
+@<Declare a procedure called |print_compact_node|@>=
+procedure print_compact_node(@!p:pointer;k:small_number);
+var @!q:pointer; {last location to print}
+begin q:=p+k-1;
+print_char("(");
+while p<=q do
+ begin print_scaled(mem[p].sc);
+ if p<q then print_char(",");
+ incr(p);
+ end;
+print_char(")");
+end;
+
+@ @<Cases for printing graphical object node |p|@>=
+stroked_code: begin print("Filled pen stroke ");
+ print_obj_color(p);
+ print_char(":"); print_ln;
+ pr_path(path_p(p));
+ if dash_p(p)<>null then
+ begin print_nl("dashed (");
+ @<Finish printing the dash pattern that |p| refers to@>;
+ end;
+ print_ln;
+ @<Print join and cap types for stroked node |p|@>;
+ print(" with pen"); print_ln;
+ if pen_p(p)=null then print("???") {shouldn't happen}
+@.???@>
+ else pr_pen(pen_p(p));
+ end;
+
+@ Normally, the |dash_list| field in an edge header is set to |null_dash|
+when it is not known to define a suitable dash pattern. This is disallowed
+here because the |dash_p| field should never point to such an edge header.
+Note that memory is allocated for |start_x(null_dash)| and we are free to
+give it any convenient value.
+
+@<Finish printing the dash pattern that |p| refers to@>=
+ok_to_dash:=pen_is_elliptical(pen_p(p));
+if not ok_to_dash then scf:=unity
+else scf:=dash_scale(p);
+hh:=dash_p(p);
+pp:=dash_list(hh);
+if (pp=null_dash) or (dash_y(hh)<0) then print(" ??")
+else begin start_x(null_dash):=start_x(pp)+dash_y(hh);
+ while pp<>null_dash do
+ begin print("on ");
+ print_scaled(take_scaled(stop_x(pp)-start_x(pp),scf));
+ print(" off ");
+ print_scaled(take_scaled(start_x(link(pp))-stop_x(pp),scf));
+ pp := link(pp);
+ if pp<>null_dash then print_char(" ");
+ end;
+ print(") shifted ");
+ print_scaled(-take_scaled(dash_offset(hh),scf));
+ if not ok_to_dash or (dash_y(hh)=0) then print(" (this will be ignored)");
+ end
+
+@ @<Declare subroutines needed by |print_edges|@>=
+function dash_offset(h:pointer):scaled;
+var @!x:scaled; {the answer}
+begin if (dash_list(h)=null_dash) or (dash_y(h)<0) then confusion("dash0");
+@:this can't happen dash0}{\quad dash0@>
+if dash_y(h)=0 then x:=0
+else begin x:=-(start_x(dash_list(h)) mod dash_y(h));
+ if x<0 then x:=x+dash_y(h);
+ end;
+dash_offset:=x;
+end;
+
+@ @<Cases for printing graphical object node |p|@>=
+text_code: begin print_char(""""); print(text_p(p));
+ print(""" infont """); print(font_name[font_n(p)]);
+ print_char(""""); print_ln;
+ print_obj_color(p);
+ print("transformed ");
+ print_compact_node(text_tx_loc(p),6);
+end;
+
+@ @<Cases for printing graphical object node |p|@>=
+start_clip_code: begin print("clipping path:");
+ print_ln;
+ pr_path(path_p(p));
+ end;
+stop_clip_code: print("stop clipping");
+
+@ @<Cases for printing graphical object node |p|@>=
+start_bounds_code: begin print("setbounds path:");
+ print_ln;
+ pr_path(path_p(p));
+ end;
+stop_bounds_code: print("end of setbounds");
+
+@ To initialize the |dash_list| field in an edge header~|h|, we need a
+subroutine that scans an edge structure and tries to interpret it as a dash
+pattern. This can only be done when there are no filled regions or clipping
+paths and all the pen strokes have the same color. The first step is to let
+$y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
+project all the pen stroke paths onto the line $y=y_0$ and require that there
+be no retracing. If the resulting paths cover a range of $x$~coordinates of
+length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
+finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
+
+@p @<Declare a procedure called |x_retrace_error|@>@;
+function make_dashes(h:pointer):pointer; {returns |h| or |null|}
+label exit, found, not_found;
+var @!p:pointer; {this scans the stroked nodes in the object list}
+@!y0:scaled; {the initial $y$ coordinate}
+@!p0:pointer; {if not |null| this points to the first stroked node}
+@!pp,@!qq,@!rr:pointer; {pointers into |path_p(p)|}
+@!d,@!dd:pointer; {pointers used to create the dash list}
+@<Other local variables in |make_dashes|@>@;
+begin if dash_list(h)<>null_dash then goto found;
+p0:=null;
+p:=link(dummy_loc(h));
+while p<>null do
+ begin if type(p)<>stroked_code then
+ @<Compain that the edge structure contains a node of the wrong type
+ and |goto not_found|@>;
+ pp:=path_p(p);
+ if p0=null then
+ begin p0:=p; y0:=y_coord(pp); @+end;
+ @<Make |d| point to a new dash node created from stroke |p| and path |pp|
+ or |goto not_found| if there is an error@>;
+ @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
+ p:=link(p);
+ end;
+if dash_list(h)=null_dash then goto not_found; {No error message}
+@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
+@<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
+found:make_dashes:=h; return;
+not_found: @<Flush the dash list, recycle |h| and return |null|@>;
+exit:end;
+
+@ @<Compain that the edge structure contains a node of the wrong type...@>=
+begin print_err("Picture is too complicated to use as a dash pattern");
+help3("When you say `dashed p', picture p should not contain any")@/
+ ("text, filled regions, or clipping paths. This time it did")@/
+ ("so I'll just make it a solid line instead.");@/
+put_get_error;
+goto not_found;
+end
+
+@ A similar error occurs when monotonicity fails.
+
+@<Declare a procedure called |x_retrace_error|@>=
+procedure x_retrace_error;
+begin print_err("Picture is too complicated to use as a dash pattern");
+help3("When you say `dashed p', every path in p should be monotone")@/
+ ("in x and there must be no overlapping. This failed")@/
+ ("so I'll just make it a solid line instead.");
+put_get_error;
+end;
+
+@ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
+handle the case where the pen stroke |p| is itself dashed.
+
+@<Make |d| point to a new dash node created from stroke |p| and path...@>=
+@<Make sure |p| and |p0| are the same color and |goto not_found| if there is
+ an error@>;
+rr:=pp;
+if link(pp)<>pp then
+ repeat qq:=rr; rr:=link(rr);
+ @<Check for retracing between knots |qq| and |rr| and |goto not_found|
+ if there is a problem@>;
+ until right_type(rr)=endpoint;
+d:=get_node(dash_node_size);
+if dash_p(p)=0 then info(d):=0 @+else info(d):=p;
+if x_coord(pp)<x_coord(rr) then
+ begin start_x(d):=x_coord(pp);
+ stop_x(d):=x_coord(rr);
+ end
+else begin start_x(d):=x_coord(rr);
+ stop_x(d):=x_coord(pp);
+ end;
+
+@ We also need to check for the case where the segment from |qq| to |rr| is
+monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
+
+@<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
+x0:=x_coord(qq);
+x1:=right_x(qq);
+x2:=left_x(rr);
+x3:=x_coord(rr);
+if (x0>x1) or (x1>x2) or (x2>x3) then
+ if (x0<x1) or (x1<x2) or (x2<x3) then
+ if ab_vs_cd(x2-x1,x2-x1,x1-x0,x3-x2)>0 then
+ begin x_retrace_error; goto not_found;
+ end;
+if (x_coord(pp)>x0) or (x0>x3) then
+ if (x_coord(pp)<x0) or (x0<x3) then
+ begin x_retrace_error; goto not_found;
+ end
+
+@ @<Other local variables in |make_dashes|@>=
+@!x0,@!x1,@!x2,@!x3:scaled; {$x$ coordinates of the segment from |qq| to |rr|}
+
+@ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
+if (red_val(p)<>red_val(p0)) or@|
+ (green_val(p)<>green_val(p0)) or (blue_val(p)<>blue_val(p0)) then
+ begin print_err("Picture is too complicated to use as a dash pattern");
+ help3("When you say `dashed p', everything in picture p should")@/
+ ("be the same color. I can't handle your color changes")@/
+ ("so I'll just make it a solid line instead.");@/
+ put_get_error;
+ goto not_found;
+ end
+
+@ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
+start_x(null_dash):=stop_x(d);
+dd:=h; {this makes |link(dd)=dash_list(h)|}
+while start_x(link(dd))<stop_x(d) do
+ dd:=link(dd);
+if dd<>h then
+ if (stop_x(dd)>start_x(d)) then
+ begin x_retrace_error; goto not_found; @+end;
+link(d):=link(dd);
+link(dd):=d
+
+@ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
+d:=dash_list(h);
+while (link(d)<>null_dash) do
+ d:=link(d);
+dd:=dash_list(h);
+dash_y(h):=stop_x(d)-start_x(dd);
+if abs(y0)>dash_y(h) then
+ dash_y(h):=abs(y0)
+else if d<>dd then
+ begin dash_list(h):=link(dd);
+ stop_x(d):=stop_x(dd)+dash_y(h);
+ free_node(dd,dash_node_size);
+ end
+
+@ We get here when the argument is a null picture or when there is an error.
+Recovering from an error involves making |dash_list(h)| empty to indicate
+that |h| is not known to be a valid dash pattern. We also dereference |h|
+since it is not being used for the return value.
+
+@<Flush the dash list, recycle |h| and return |null|@>=
+flush_dash_list(h);
+delete_edge_ref(h);
+make_dashes:=null
+
+@ Having carefully saved the dashed stroked nodes in the
+corresponding dash nodes, we must be prepared to break up these dashes into
+smaller dashes.
+
+@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
+d:=h; {now |link(d)=dash_list(h)|}
+while link(d)<>null_dash do
+ begin ds:=info(link(d));
+ if ds=null then d:=link(d)
+ else begin
+ hh:=dash_p(ds);
+ hsf:=dash_scale(ds);
+ if (hh=null) then confusion("dash1");
+@:this can't happen dash0}{\quad dash1@>
+ if dash_y(hh)=0 then d:=link(d)
+ else begin if dash_list(hh)=null then confusion("dash1");
+@:this can't happen dash0}{\quad dash1@>
+ @<Replace |link(d)| by a dashed version as determined by edge header
+ |hh| and scale factor |ds|@>;
+ end;
+ end;
+ end
+
+@ @<Other local variables in |make_dashes|@>=
+@!dln:pointer; {|link(d)|}
+@!hh:pointer; {an edge header that tells how to break up |dln|}
+@!hsf:scaled; {the dash pattern from |hh| gets scaled by this}
+@!ds:pointer; {the stroked node from which |hh| and |hsf| are derived}
+@!xoff:scaled; {added to $x$ values in |dash_list(hh)| to match |dln|}
+
+@ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
+dln:=link(d);
+dd:=dash_list(hh);
+xoff:=start_x(dln)-take_scaled(hsf,start_x(dd))-
+ take_scaled(hsf,dash_offset(hh));
+start_x(null_dash):=take_scaled(hsf,start_x(dd))+take_scaled(hsf,dash_y(hh));
+stop_x(null_dash):=start_x(null_dash);
+@<Advance |dd| until finding the first dash that overlaps |dln| when
+ offset by |xoff|@>;
+while start_x(dln)<=stop_x(dln) do
+ begin @<If |dd| has `fallen off the end', back up to the beginning and fix
+ |xoff|@>;
+ @<Insert a dash between |d| and |dln| for the overlap with the offset version
+ of |dd|@>;
+ dd:=link(dd);
+ start_x(dln):=xoff+take_scaled(hsf,start_x(dd));
+ end;
+link(d):=link(dln);
+free_node(dln,dash_node_size)
+
+@ The name of this module is a bit of a lie because we actually just find the
+first |dd| where |take_scaled(hsf,stop_x(dd))| is large enough to make an
+overlap possible. It could be that the unoffset version of dash |dln| falls
+in the gap between |dd| and its predecessor.
+
+@<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
+while xoff+take_scaled(hsf,stop_x(dd))<start_x(dln) do
+ dd:=link(dd)
+
+@ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
+if dd=null_dash then
+ begin dd:=dash_list(hh);
+ xoff:=xoff+take_scaled(hsf,dash_y(hh));
+ end
+
+@ At this point we already know that
+|start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
+
+@<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
+if xoff+take_scaled(hsf,start_x(dd))<=stop_x(dln) then
+ begin link(d):=get_node(dash_node_size);
+ d:=link(d);
+ link(d):=dln;
+ if start_x(dln)>xoff+take_scaled(hsf,start_x(dd))
+ then start_x(d):=start_x(dln)
+ else start_x(d):=xoff+take_scaled(hsf,start_x(dd));
+ if stop_x(dln)<xoff+take_scaled(hsf,stop_x(dd)) then stop_x(d):=stop_x(dln)
+ else stop_x(d):=xoff+take_scaled(hsf,stop_x(dd));
+ end
+
+@ The next major task is to update the bounding box information in an edge
+header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
+header's bounding box to accommodate the box computed by |path_bbox| or
+|pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
+|maxy|.)
+
+@p procedure adjust_bbox(h:pointer);
+begin if minx<minx_val(h) then minx_val(h):=minx;
+if miny<miny_val(h) then miny_val(h):=miny;
+if maxx>maxx_val(h) then maxx_val(h):=maxx;
+if maxy>maxy_val(h) then maxy_val(h):=maxy;
+end;
+
+@ Here is a special routine for updating the bounding box information in
+edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
+that is to be stroked with the pen~|pp|.
+
+@p procedure box_ends(@!p, @!pp, @!h:pointer);
+label exit;
+var @!q:pointer; {a knot node adjacent to knot |p|}
+@!dx,@!dy:fraction; {a unit vector in the direction out of the path at~|p|}
+@!d:scaled; {a factor for adjusting the length of |(dx,dy)|}
+@!z:scaled; {a coordinate being tested against the bounding box}
+@!xx,@!yy:scaled; {the extreme pen vertex in the |(dx,dy)| direction}
+@!i:integer; {a loop counter}
+begin if right_type(p)<>endpoint then
+ begin q:=link(p);
+ loop @+begin @<Make |(dx,dy)| the final direction for the path segment from
+ |q| to~|p|; set~|d|@>;
+ d:=pyth_add(dx,dy);
+ if d>0 then
+ begin @<Normalize the direction |(dx,dy)| and find the pen offset
+ |(xx,yy)|@>;
+ for i:=1 to 2 do
+ begin @<Use |(dx,dy)| to generate a vertex of the square end cap and
+ update the bounding box to accommodate it@>;@/
+ dx:=-dx; dy:=-dy;
+ end;
+ end;
+ if right_type(p)=endpoint then return
+ else @<Advance |p| to the end of the path and make |q| the previous knot@>;
+ end;
+ end;
+exit: ;
+end;
+
+@ @<Make |(dx,dy)| the final direction for the path segment from...@>=
+if q=link(p) then
+ begin dx:=x_coord(p)-right_x(p);
+ dy:=y_coord(p)-right_y(p);
+ if (dx=0)and(dy=0) then
+ begin dx:=x_coord(p)-left_x(q);
+ dy:=y_coord(p)-left_y(q);
+ end;
+ end
+else begin dx:=x_coord(p)-left_x(p);
+ dy:=y_coord(p)-left_y(p);
+ if (dx=0)and(dy=0) then
+ begin dx:=x_coord(p)-right_x(q);
+ dy:=y_coord(p)-right_y(q);
+ end;
+ end;
+dx:=x_coord(p)-x_coord(q);
+dy:=y_coord(p)-y_coord(q)
+
+@ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
+dx:=make_fraction(dx,d);
+dy:=make_fraction(dy,d);@/
+find_offset(-dy,dx,pp);
+xx:=cur_x; yy:=cur_y
+
+@ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
+find_offset(dx,dy,pp);
+d:=take_fraction(xx-cur_x,dx)+take_fraction(yy-cur_y,dy);
+if (d<0)and(i=1) or (d>0)and(i=2) then confusion("box_ends");
+@:this can't happen box ends}{\quad\\{box_ends}@>
+z:=x_coord(p)+cur_x+take_fraction(d,dx);
+if z<minx_val(h) then minx_val(h):=z;
+if z>maxx_val(h) then maxx_val(h):=z;
+z:=y_coord(p)+cur_y+take_fraction(d,dy);
+if z<miny_val(h) then miny_val(h):=z;
+if z>maxy_val(h) then maxy_val(h):=z
+
+@ @<Advance |p| to the end of the path and make |q| the previous knot@>=
+repeat q:=p;
+p:=link(p);
+until right_type(p)=endpoint
+
+@ The major difficulty in finding the bounding box of an edge structure is the
+effect of clipping paths. We treat them conservatively by only clipping to the
+clipping path's bounding box, but this still
+requires recursive calls to |set_bbox| in order to find the bounding box of
+@^recursion@>
+the objects to be clipped. Such calls are distinguished by the fact that the
+boolean parameter |top_level| is false.
+
+@p procedure set_bbox(@!h:pointer;top_level:boolean);
+label exit;
+var @!p:pointer; {a graphical object being considered}
+@!sminx,@!sminy,@!smaxx,@!smaxy:scaled;
+ {for saving the bounding box during recursive calls}
+@!x0,@!x1,@!y0,@!y1:scaled; {temporary registers}
+@!lev:integer; {nesting level for |start_bounds_code| nodes}
+begin @<Wipe out any existing bounding box information if |bbtype(h)| is
+ incompatible with |internal[true_corners]|@>;
+while link(bblast(h))<>null do
+ begin p:=link(bblast(h));
+ bblast(h):=p;
+ case type(p) of
+ stop_clip_code: if top_level then confusion("bbox") @+else return;
+@:this can't happen bbox}{\quad bbox@>
+ @<Other cases for updating the bounding box based on the type of object |p|@>@;
+ end; {all cases are enumerated above}
+ end;
+if not top_level then confusion("bbox");
+exit:end;
+
+@ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
+case bbtype(h) of
+no_bounds: do_nothing;
+bounds_set: if internal[true_corners]>0 then init_bbox(h);
+bounds_unset: if internal[true_corners]<=0 then init_bbox(h);
+end {there are no other cases}
+
+@ @<Other cases for updating the bounding box...@>=
+fill_code: begin path_bbox(path_p(p));
+ if pen_p(p)<>null then
+ begin x0:=minx; y0:=miny;
+ x1:=maxx; y1:=maxy;
+ pen_bbox(pen_p(p));
+ minx:=minx+x0;
+ miny:=miny+y0;
+ maxx:=maxx+x1;
+ maxy:=maxy+y1;
+ end;
+ adjust_bbox(h);
+ end;
+
+@ @<Other cases for updating the bounding box...@>=
+start_bounds_code: if internal[true_corners]>0 then bbtype(h):=bounds_unset
+ else begin bbtype(h):=bounds_set;
+ path_bbox(path_p(p));
+ adjust_bbox(h);
+ @<Scan to the matching |stop_bounds_code| node and update |p| and
+ |bblast(h)|@>;
+ end;
+stop_bounds_code: if internal[true_corners]<=0 then confusion("bbox2");
+@:this can't happen bbox2}{\quad bbox2@>
+
+@ @<Scan to the matching |stop_bounds_code| node and update |p| and...@>=
+lev:=1;
+while lev<>0 do
+ begin if link(p)=null then confusion("bbox2");
+@:this can't happen bbox2}{\quad bbox2@>
+ p:=link(p);
+ if type(p)=start_bounds_code then incr(lev)
+ else if type(p)=stop_bounds_code then decr(lev);
+ end;
+bblast(h):=p
+
+@ It saves a lot of grief here to be slightly conservative and not account for
+omitted parts of dashed lines. We also don't worry about the material omitted
+when using butt end caps. The basic computation is for round end caps and
+|box_ends| augments it for square end caps.
+
+@<Other cases for updating the bounding box...@>=
+stroked_code: begin path_bbox(path_p(p));
+ x0:=minx; y0:=miny;
+ x1:=maxx; y1:=maxy;
+ pen_bbox(pen_p(p));
+ minx:=minx+x0;
+ miny:=miny+y0;
+ maxx:=maxx+x1;
+ maxy:=maxy+y1;
+ adjust_bbox(h);
+ if (left_type(path_p(p))=endpoint)and(lcap_val(p)=2) then
+ box_ends(path_p(p), pen_p(p), h);
+ end;
+
+@ The height width and depth information stored in a text node determines a
+rectangle that needs to be transformed according to the transformation
+parameters stored in the text node.
+
+@<Other cases for updating the bounding box...@>=
+text_code: begin x1:=take_scaled(txx_val(p),width_val(p));
+ y0:=take_scaled(txy_val(p),-depth_val(p));
+ y1:=take_scaled(txy_val(p),height_val(p));
+ minx:=tx_val(p);
+ maxx:=minx;
+ if y0<y1 then
+ begin minx:=minx+y0; maxx:=maxx+y1; @+end
+ else begin minx:=minx+y1; maxx:=maxx+y0; @+end;
+ if x1<0 then minx:=minx+x1 @+else maxx:=maxx+x1;
+ x1:=take_scaled(tyx_val(p),width_val(p));
+ y0:=take_scaled(tyy_val(p),-depth_val(p));
+ y1:=take_scaled(tyy_val(p),height_val(p));
+ miny:=ty_val(p);
+ maxy:=miny;
+ if y0<y1 then
+ begin miny:=miny+y0; maxy:=maxy+y1; @+end
+ else begin miny:=miny+y1; maxy:=maxy+y0; @+end;
+ if x1<0 then miny:=miny+x1 @+else maxy:=maxy+x1;
+ adjust_bbox(h);
+ end;
+
+@ This case involves a recursive call that advances |bblast(h)| to the node of
+type |stop_clip_code| that matches |p|.
+
+@<Other cases for updating the bounding box...@>=
+start_clip_code: begin path_bbox(path_p(p));@/
+ x0:=minx; y0:=miny;
+ x1:=maxx; y1:=maxy;@/
+ sminx:=minx_val(h); sminy:=miny_val(h);
+ smaxx:=maxx_val(h); smaxy:=maxy_val(h);@/
+ @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
+ starting at |link(p)|@>;
+ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
+ |y0|, |y1|@>;
+ minx:=sminx; miny:=sminy;
+ maxx:=smaxx; maxy:=smaxy;
+ adjust_bbox(h);
+ end;
+
+@ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
+minx_val(h):=el_gordo;
+miny_val(h):=el_gordo;
+maxx_val(h):=-el_gordo;
+maxy_val(h):=-el_gordo;@/
+set_bbox(h,false)
+
+@ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
+if minx_val(h)<x0 then minx_val(h):=x0;
+if miny_val(h)<y0 then miny_val(h):=y0;
+if maxx_val(h)>x1 then maxx_val(h):=x1;
+if maxy_val(h)>y1 then maxy_val(h):=y1
+
+@* \[22] Finding an envelope.
+When \MP\ has a path and a polygonal pen, it needs to express the desired
+shape in terms of things \ps\ can understand. The present task is to compute
+a new path that describes the region to be filled. It is convenient to
+define this as a two step process where the first step is determining what
+offset to use for each segment of the path.
+
+@ Given a pointer |c| to a cyclic path,
+and a pointer~|h| to the first knot of a pen polygon,
+the |offset_prep| routine changes the path into cubics that are
+associated with particular pen offsets. Thus if the cubic between |p|
+and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
+has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
+to because |l-k| could be negative.)
+
+After overwriting the type information with offset differences, we no longer
+have a true path so we refer to the knot list returned by |offset_prep| as an
+``envelope spec.''
+@!@^envelope spec@>
+Since an envelope spec only determines relative changes in pen offsets,
+|offset_prep| sets a global variable |spec_offset| to the relative change from
+|h| to the first offset.
+
+@d zero_off=16384 {added to offset changes to make them positive}
+
+@<Glob...@>=
+spec_offset:integer; {number of pen edges between |h| and the initial offset}
+
+@ @p @t\4@>@<Declare subroutines needed by |offset_prep|@>@;
+function offset_prep(@!c,@!h:pointer):pointer;
+label not_found;
+var @!n:halfword; {the number of vertices in the pen polygon}
+@!p,@!q,@!r,@!w,@!ww:pointer; {for list manipulation}
+@!k_needed:integer; {amount to be added to |info(p)| when it is computed}
+@!w0:pointer; {a pointer to pen offset to use just before |p|}
+@!dxin,@!dyin:scaled; {the direction into knot |p|}
+@!turn_amt:integer; {change in pen offsets for the current cubic}
+@<Other local variables for |offset_prep|@>@;
+begin @<Initialize the pen size~|n|@>;
+@<Initialize the incoming direction and pen offset at |c|@>;
+p:=c; k_needed:=0;
+repeat q:=link(p);
+@<Split the cubic between |p| and |q|, if necessary, into cubics
+ associated with single offsets, after which |q| should
+ point to the end of the final such cubic@>;
+@<Advance |p| to node |q|, removing any ``dead'' cubics that
+ might have been introduced by the splitting process@>;
+until q=c;
+@<Fix the offset change in |info(c)| and set the return value of
+ |offset_prep|@>;
+end;
+
+@ We shall want to keep track of where certain knots on the cyclic path
+wind up in the envelope spec. It doesn't suffice just to keep pointers to
+knot nodes because some nodes are deleted while removing dead cubics. Thus
+|offset_prep| updates the following pointers
+
+@<Glob...@>=
+@!spec_p1,@!spec_p2:pointer; {pointers to distinguished knots}
+
+@ @<Set init...@>=
+spec_p1:=null; spec_p2:=null;
+
+@ @<Initialize the pen size~|n|@>=
+n:=0; p:=h;
+repeat incr(n);
+p:=link(p);
+until p=h
+
+@ Since the true incoming direction isn't known yet, we just pick a direction
+consistent with the pen offset~|h|. If this is wrong, it can be corrected
+later.
+
+@<Initialize the incoming direction and pen offset at |c|@>=
+dxin:=x_coord(link(h))-x_coord(knil(h));
+dyin:=y_coord(link(h))-y_coord(knil(h));
+if (dxin=0)and(dyin=0) then
+ begin dxin:=y_coord(knil(h))-y_coord(h);
+ dyin:=x_coord(h)-x_coord(knil(h));
+ end;
+w0:=h
+
+@ We must be careful not to remove the only cubic in a cycle.
+
+But we must also be careful for another reason. If the user-supplied
+path starts with a set of degenerate cubics, these should not be removed
+because at this point we cannot do so cleanly. The relevant bug is
+tracker id 267, bugs 52c, reported by Boguslav.
+
+@<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
+repeat r:=link(p);
+if x_coord(p)=right_x(p) then if y_coord(p)=right_y(p) then
+ if x_coord(p)=left_x(r) then if y_coord(p)=left_y(r) then
+ if x_coord(p)=x_coord(r) then if y_coord(p)=y_coord(r) then
+ if r<>p then if ((r<>q) or (originator(r)<>metapost_user)) then
+ @<Remove the cubic following |p| and update the data structures
+ to merge |r| into |p|@>;
+p:=r;
+until p=q
+
+@ @<Remove the cubic following |p| and update the data structures...@>=
+begin k_needed:=info(p)-zero_off;
+if r=q then q:=p
+else begin info(p):=k_needed+info(r);
+ k_needed:=0;
+ end;
+if r=c then
+ begin info(p):=info(c); c:=p;
+ end;
+if r=spec_p1 then spec_p1:=p;
+if r=spec_p2 then spec_p2:=p;
+r:=p; remove_cubic(p);
+end
+
+@ Not setting the |info| field of the newly created knot allows the splitting
+routine to work for paths.
+
+@<Declare subroutines needed by |offset_prep|@>=
+procedure split_cubic(@!p:pointer;@!t:fraction); {splits the cubic after |p|}
+var @!v:scaled; {an intermediate value}
+@!q,@!r:pointer; {for list manipulation}
+begin q:=link(p); r:=get_node(knot_node_size); link(p):=r; link(r):=q;@/
+originator(r):=program_code;@/
+left_type(r):=explicit; right_type(r):=explicit;@#
+v:=t_of_the_way(right_x(p))(left_x(q));
+right_x(p):=t_of_the_way(x_coord(p))(right_x(p));
+left_x(q):=t_of_the_way(left_x(q))(x_coord(q));
+left_x(r):=t_of_the_way(right_x(p))(v);
+right_x(r):=t_of_the_way(v)(left_x(q));
+x_coord(r):=t_of_the_way(left_x(r))(right_x(r));@#
+v:=t_of_the_way(right_y(p))(left_y(q));
+right_y(p):=t_of_the_way(y_coord(p))(right_y(p));
+left_y(q):=t_of_the_way(left_y(q))(y_coord(q));
+left_y(r):=t_of_the_way(right_y(p))(v);
+right_y(r):=t_of_the_way(v)(left_y(q));
+y_coord(r):=t_of_the_way(left_y(r))(right_y(r));
+end;
+
+@ This does not set |info(p)| or |right_type(p)|.
+
+@<Declare subroutines needed by |offset_prep|@>=
+procedure remove_cubic(@!p:pointer); {removes the dead cubic following~|p|}
+var @!q:pointer; {the node that disappears}
+begin q:=link(p); link(p):=link(q);@/
+right_x(p):=right_x(q); right_y(p):=right_y(q);@/
+free_node(q,knot_node_size);
+end;
+
+@ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
+strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
+mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
+$k$th pen offset, the $k$th pen edge direction is defined by the formula
+$$d_k=(u\k-u_k,\,v\k-v_k).$$
+When listed by increasing $k$, these directions occur in counter-clockwise
+order so that $d_k\preceq d\k$ for all~$k$.
+The goal of |offset_prep| is to find an offset index~|k| to associate with
+each cubic, such that the direction $d(t)$ of the cubic satisfies
+$$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
+We may have to split a cubic into many pieces before each
+piece corresponds to a unique offset.
+
+@<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
+info(p):=zero_off+k_needed;
+k_needed:=0;@/
+@<Prepare for derivative computations;
+ |goto not_found| if the current cubic is dead@>;
+@<Find the initial direction |(dx,dy)|@>;
+@<Update |info(p)| and find the offset $w_k$ such that
+ $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
+ the direction change at |p|@>;
+@<Find the final direction |(dxin,dyin)|@>;
+@<Decide on the net change in pen offsets and set |turn_amt|@>;
+@<Complete the offset splitting process@>;@/
+w0:=pen_walk(w0,turn_amt);
+not_found: do_nothing
+
+@ @<Declare subroutines needed by |offset_prep|@>=
+function pen_walk(@!w:pointer;@!k:integer):pointer;
+ {walk |k| steps around a pen from |w|}
+begin while k>0 do begin w:=link(w); decr(k); @+end;
+while k<0 do begin w:=knil(w); incr(k); @+end;
+pen_walk:=w;
+end;
+
+@ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
+calculated from the quadratic polynomials
+${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
+${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
+Since we may be calculating directions from several cubics
+split from the current one, it is desirable to do these calculations
+without losing too much precision. ``Scaled up'' values of the
+derivatives, which will be less tainted by accumulated errors than
+derivatives found from the cubics themselves, are maintained in
+local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
+$X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
+represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
+
+@<Other local variables for |offset_prep|@>=
+@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer; {representatives of derivatives}
+@!t0,@!t1,@!t2:integer; {coefficients of polynomial for slope testing}
+@!du,@!dv,@!dx,@!dy:integer; {for directions of the pen and the curve}
+@!dx0,@!dy0:integer; {initial direction for the first cubic in the curve}
+@!max_coef:integer; {used while scaling}
+@!x0a,@!x1a,@!x2a,@!y0a,@!y1a,@!y2a:integer; {intermediate values}
+@!t:fraction; {where the derivative passes through zero}
+@!s:fraction; {a temporary value}
+
+@ @<Prepare for derivative computations...@>=
+x0:=right_x(p)-x_coord(p);
+x2:=x_coord(q)-left_x(q);
+x1:=left_x(q)-right_x(p);
+y0:=right_y(p)-y_coord(p); y2:=y_coord(q)-left_y(q);
+y1:=left_y(q)-right_y(p);
+max_coef:=abs(x0);
+if abs(x1)>max_coef then max_coef:=abs(x1);
+if abs(x2)>max_coef then max_coef:=abs(x2);
+if abs(y0)>max_coef then max_coef:=abs(y0);
+if abs(y1)>max_coef then max_coef:=abs(y1);
+if abs(y2)>max_coef then max_coef:=abs(y2);
+if max_coef=0 then goto not_found;
+while max_coef<fraction_half do
+ begin double(max_coef);
+ double(x0); double(x1); double(x2);
+ double(y0); double(y1); double(y2);
+ end
+
+@ Let us first solve a special case of the problem: Suppose we
+know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
+and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
+$d(0)\succ d_{k-1}$.
+Then, in a sense, we're halfway done, since one of the two relations
+in $(*)$ is satisfied, and the other couldn't be satisfied for
+any other value of~|k|.
+
+Actually, the conditions can be relaxed somewhat since a relation such as
+$d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
+matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
+the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
+and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
+Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
+counterclockwise direction.
+
+The |fin_offset_prep| subroutine solves the stated subproblem.
+It has a parameter called |rise| that is |1| in
+case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
+the derivative of the cubic following |p|.
+The |w| parameter should point to offset~$w_k$ and |info(p)| should already
+be set properly. The |turn_amt| parameter gives the absolute value of the
+overall net change in pen offsets.
+
+@<Declare subroutines needed by |offset_prep|@>=
+procedure fin_offset_prep(@!p:pointer;@!w:pointer;
+ @!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer;@!rise,@!turn_amt:integer);
+label exit;
+var @!ww:pointer; {for list manipulation}
+@!du,@!dv:scaled; {for slope calculation}
+@!t0,@!t1,@!t2:integer; {test coefficients}
+@!t:fraction; {place where the derivative passes a critical slope}
+@!s:fraction; {slope or reciprocal slope}
+@!v:integer; {intermediate value for updating |x0..y2|}
+@!q:pointer; {original |link(p)|}
+begin q:=link(p);
+loop @+begin if rise>0 then ww:=link(w) {a pointer to $w\k$}
+ else ww:=knil(w); {a pointer to $w_{k-1}$}
+ @<Compute test coefficients |(t0,t1,t2)|
+ for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
+ t:=crossing_point(t0,t1,t2);
+ if t>=fraction_one then
+ if turn_amt>0 then t:=fraction_one @+else return;
+ @<Split the cubic at $t$,
+ and split off another cubic if the derivative crosses back@>;
+ w:=ww;
+ end;
+exit:end;
+
+@ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
+$-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
+function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
+begins to fail.
+
+@<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
+du:=x_coord(ww)-x_coord(w); dv:=y_coord(ww)-y_coord(w);
+if abs(du)>=abs(dv) then
+ begin s:=make_fraction(dv,du);
+ t0:=take_fraction(x0,s)-y0;
+ t1:=take_fraction(x1,s)-y1;
+ t2:=take_fraction(x2,s)-y2;
+ if du<0 then begin negate(t0); negate(t1); negate(t2); @+end
+ end
+else begin s:=make_fraction(du,dv);
+ t0:=x0-take_fraction(y0,s);
+ t1:=x1-take_fraction(y1,s);
+ t2:=x2-take_fraction(y2,s);
+ if dv<0 then begin negate(t0); negate(t1); negate(t2); @+end
+ end;
+if t0<0 then t0:=0 {should be positive without rounding error}
+
+@ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
+$(*)$, and it might cross again, yielding another solution of $(*)$.
+
+@<Split the cubic at $t$, and split off another...@>=
+begin split_cubic(p,t); p:=link(p); info(p):=zero_off+rise;
+decr(turn_amt);@/
+v:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
+x0:=t_of_the_way(v)(x1);@/
+v:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
+y0:=t_of_the_way(v)(y1);@/
+if turn_amt<0 then
+ begin t1:=t_of_the_way(t1)(t2);
+ if t1>0 then t1:=0; {without rounding error, |t1| would be |<=0|}
+ t:=crossing_point(0,-t1,-t2);
+ if t>fraction_one then t:=fraction_one;
+ incr(turn_amt);
+ if (t=fraction_one)and(link(p)<>q) then
+ info(link(p)):=info(link(p))-rise
+ else begin split_cubic(p,t); info(link(p)):=zero_off-rise;@/
+ v:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
+ x2:=t_of_the_way(x1)(v);@/
+ v:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
+ y2:=t_of_the_way(y1)(v);@/
+ end;
+ end;
+end
+
+@ Now we must consider the general problem of |offset_prep|, when
+nothing is known about a given cubic. We start by finding its
+direction in the vicinity of |t=0|.
+
+If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
+has not yet introduced any more numerical errors. Thus we can compute
+the true initial direction for the given cubic, even if it is almost
+degenerate.
+
+@<Find the initial direction |(dx,dy)|@>=
+dx:=x0; dy:=y0;
+if dx=0 then if dy=0 then
+ begin dx:=x1; dy:=y1;
+ if dx=0 then if dy=0 then
+ begin dx:=x2; dy:=y2;
+ end;
+ end;
+if p=c then begin dx0:=dx; dy0:=dy; @+end
+
+@ @<Find the final direction |(dxin,dyin)|@>=
+dxin:=x2; dyin:=y2;
+if dxin=0 then if dyin=0 then
+ begin dxin:=x1; dyin:=y1;
+ if dxin=0 then if dyin=0 then
+ begin dxin:=x0; dyin:=y0;
+ end;
+ end
+
+@ The next step is to bracket the initial direction between consecutive
+edges of the pen polygon. We must be careful to turn clockwise only if
+this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
+counter-clockwise in order to make \&{doublepath} envelopes come out
+@:double_path_}{\&{doublepath} primitive@>
+right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
+
+@<Update |info(p)| and find the offset $w_k$ such that...@>=
+turn_amt:=get_turn_amt(w0, dx, dy, ab_vs_cd(dy,dxin,dx,dyin)>=0);
+w:=pen_walk(w0, turn_amt);
+w0:=w;
+info(p):=info(p)+turn_amt
+
+@ Decide how many pen offsets to go away from |w| in order to find the offset
+for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
+|w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
+in the sense determined by |ccw| is less than or equal to $180^\circ$.
+
+If the pen polygon has only two edges, they could both be parallel
+to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
+such edge in order to avoid an infinite loop.
+
+@<Declare subroutines needed by |offset_prep|@>=
+function get_turn_amt(@!w:pointer; @!dx,@!dy:scaled; ccw:boolean):integer;
+label done;
+var @!ww:pointer; {a neighbor of knot~|w|}
+@!s:integer; {turn amount so far}
+@!t:integer; {|ab_vs_cd| result}
+begin s:=0;
+if ccw then
+ begin ww:=link(w);
+ repeat t:=ab_vs_cd(dy,x_coord(ww)-x_coord(w),@| dx,y_coord(ww)-y_coord(w));
+ if t<0 then goto done;
+ incr(s);
+ w:=ww; ww:=link(ww);
+ until t<=0;
+ done: end
+else begin ww:=knil(w);
+ while ab_vs_cd(dy,x_coord(w)-x_coord(ww),@|
+ dx,y_coord(w)-y_coord(ww))<0 do
+ begin decr(s);
+ w:=ww; ww:=knil(ww);
+ end;
+ end;
+get_turn_amt:=s;
+end;
+
+@ When we're all done, the final offset is |w0| and the final curve direction
+is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
+can correct |info(c)| which was erroneously based on an incoming offset
+of~|h|.
+
+@d fix_by(#)==info(c):=info(c)+#
+
+@<Fix the offset change in |info(c)| and set the return value of...@>=
+spec_offset:=info(c)-zero_off;
+if link(c)=c then info(c):=zero_off+n
+else begin fix_by(k_needed);
+ while w0<>h do
+ begin fix_by(1); w0:=link(w0); @+end;
+ while info(c)<=zero_off-n do fix_by(n);
+ while info(c)>zero_off do fix_by(-n);
+ if (info(c)<>zero_off)and(ab_vs_cd(dy0,dxin,dx0,dyin)>=0) then fix_by(n);
+ end;
+offset_prep:=c
+
+@ Finally we want to reduce the general problem to situations that
+|fin_offset_prep| can handle. We split the cubic into at most three parts
+with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
+
+@<Complete the offset splitting process@>=
+ww:=knil(w);
+@<Compute test coeff...@>;
+@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
+ |t:=fraction_one+1|@>;
+if t>fraction_one then
+ fin_offset_prep(p,w,x0,x1,x2,y0,y1,y2,1,turn_amt)
+else begin split_cubic(p,t); r:=link(p);@/
+ x1a:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
+ x2a:=t_of_the_way(x1a)(x1);@/
+ y1a:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
+ y2a:=t_of_the_way(y1a)(y1);@/
+ fin_offset_prep(p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0:=x2a; y0:=y2a;
+ info(r):=zero_off-1;
+ if turn_amt>=0 then
+ begin t1:=t_of_the_way(t1)(t2);
+ if t1>0 then t1:=0;
+ t:=crossing_point(0,-t1,-t2);
+ if t>fraction_one then t:=fraction_one;
+ @<Split off another rising cubic for |fin_offset_prep|@>;
+ fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,0);
+ end
+ else fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
+ end
+
+@ @<Split off another rising cubic for |fin_offset_prep|@>=
+split_cubic(r,t); info(link(r)):=zero_off+1;@/
+x1a:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
+x0a:=t_of_the_way(x1)(x1a);@/
+y1a:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
+y0a:=t_of_the_way(y1)(y1a);@/
+fin_offset_prep(link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
+x2:=x0a; y2:=y0a
+
+@ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
+When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
+need to decide whether the directions are parallel or antiparallel. We
+can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
+should be avoided when the value of |turn_amt| already determines the
+answer. If |t2<0|, there is one crossing and it is antiparallel only if
+|turn_amt>=0|. If |turn_amt<0|, there should always be at least one
+crossing and the first crossing cannot be antiparallel.
+
+@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
+t:=crossing_point(t0,t1,t2);
+if turn_amt>=0 then
+ if t2<0 then t:=fraction_one+1
+ else begin u0:=t_of_the_way(x0)(x1);
+ u1:=t_of_the_way(x1)(x2);
+ ss:=take_fraction(-du,t_of_the_way(u0)(u1));@/
+ v0:=t_of_the_way(y0)(y1);
+ v1:=t_of_the_way(y1)(y2);
+ ss:=ss+take_fraction(-dv,t_of_the_way(v0)(v1));@/
+ if ss<0 then t:=fraction_one+1;
+ end
+else if t>fraction_one then t:=fraction_one;
+
+@ @<Other local variables for |offset_prep|@>=
+@!u0,@!u1,@!v0,@!v1:integer; {intermediate values for $d(t)$ calculation}
+@!ss:integer; {the part of the dot product computed so far}
+@!d_sign:-1..1; {sign of overall change in direction for this cubic}
+
+@ If the cubic almost has a cusp, it is a numerically ill-conditioned
+problem to decide which way it loops around but that's OK as long we're
+consistent. To make \&{doublepath} envelopes work properly, reversing
+the path should always change the sign of |turn_amt|.
+
+@<Decide on the net change in pen offsets and set |turn_amt|@>=
+d_sign:=ab_vs_cd(dx,dyin, dxin,dy);
+if d_sign=0 then
+ if dx=0 then
+ if dy>0 then d_sign:=1 @+else d_sign:=-1
+ else if dx>0 then d_sign:=1 @+else d_sign:=-1;
+@<Make |ss| negative if and only if the total change in direction is
+ more than $180^\circ$@>;
+turn_amt:=get_turn_amt(w, dxin, dyin, d_sign>0);
+if ss<0 then turn_amt:=turn_amt-d_sign*n
+
+@ In order to be invariant under path reversal, the result of this computation
+should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
+then swapped with |(x2,y2)|. We make use of the identities
+|take_fraction(-a,-b)=take_fraction(a,b)| and
+|t_of_the_way(-a)(-b)=-(t_of_the_way(a)(b))|.
+
+@<Make |ss| negative if and only if the total change in direction is...@>=
+t0:=half(take_fraction(x0,y2))-half(take_fraction(x2,y0));@/
+t1:=half(take_fraction(x1,y0+y2))-half(take_fraction(y1,x0+x2));@/
+if t0=0 then t0:=d_sign; {path reversal always negates |d_sign|}
+if t0>0 then
+ begin t:=crossing_point(t0,t1,-t0);
+ u0:=t_of_the_way(x0)(x1);
+ u1:=t_of_the_way(x1)(x2);@/
+ v0:=t_of_the_way(y0)(y1);
+ v1:=t_of_the_way(y1)(y2);
+ end
+else begin t:=crossing_point(-t0,t1,t0);
+ u0:=t_of_the_way(x2)(x1);
+ u1:=t_of_the_way(x1)(x0);@/
+ v0:=t_of_the_way(y2)(y1);
+ v1:=t_of_the_way(y1)(y0);
+ end;
+ss:=take_fraction(x0+x2,t_of_the_way(u0)(u1))+@|
+ take_fraction(y0+y2,t_of_the_way(v0)(v1))
+
+@ Here's a routine that prints an envelope spec in symbolic form. It assumes
+that the |cur_pen| has not been walked around to the first offset.
+
+@p procedure print_spec(@!cur_spec,@!cur_pen:pointer;@!s:str_number);
+var @!p,@!q:pointer; {list traversal}
+@!w:pointer; {the current pen offset}
+begin print_diagnostic("Envelope spec",s,true);
+p:=cur_spec; w:=pen_walk(cur_pen,spec_offset);
+print_ln;@/
+print_two(x_coord(cur_spec),y_coord(cur_spec));
+print(" % beginning with offset ");
+print_two(x_coord(w),y_coord(w));
+repeat
+ repeat q:=link(p);
+ @<Print the cubic between |p| and |q|@>;
+ p:=q;
+ until (p=cur_spec) or (info(p)<>zero_off);
+ if info(p)<>zero_off then
+ @<Update |w| as indicated by |info(p)| and print an explanation@>;
+until p=cur_spec;
+print_nl(" & cycle");
+end_diagnostic(true);
+end;
+
+@ @<Update |w| as indicated by |info(p)| and print an explanation@>=
+begin w:=pen_walk(w,info(p)-zero_off);
+print(" % ");
+if info(p)>zero_off then print("counter");
+print("clockwise to offset ");
+print_two(x_coord(w),y_coord(w));
+end
+
+@ @<Print the cubic between |p| and |q|@>=
+begin print_nl(" ..controls ");
+print_two(right_x(p),right_y(p));
+print(" and ");
+print_two(left_x(q),left_y(q));
+print_nl(" ..");
+print_two(x_coord(q),y_coord(q));
+end
+
+@ Once we have an envelope spec, the remaining task to construct the actual
+envelope by offsetting each cubic as determined by the |info| fields in
+the knots. First we use |offset_prep| to convert the |c| into an envelope
+spec. Then we add the offsets so that |c| becomes a cyclic path that represents
+the envelope.
+
+The |ljoin| and |miterlim| parameters control the treatment of points where the
+pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
+The endpoints are easily located because |c| is given in undoubled form
+and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
+track of the endpoints and treat them like very sharp corners.
+Butt end caps are treated like beveled joins; round end caps are treated like
+round joins; and square end caps are achieved by setting |join_type:=3|.
+
+None of these parameters apply to inside joins where the convolution tracing
+has retrograde lines. In such cases we use a simple connect-the-endpoints
+approach that is achieved by setting |join_type:=2|.
+
+@p @t\4@>@<Declare a function called |insert_knot|@>@;
+function make_envelope(@!c,@!h:pointer;@!ljoin,@!lcap:small_number;
+ @!miterlim:scaled):pointer;
+label done;
+var @!p,@!q,@!r,@!q0:pointer; {for manipulating the path}
+@!join_type:0..3; {codes |0..3| for mitered, round, beveled, or square}
+@!w,@!w0:pointer; {the pen knot for the current offset}
+@!qx,@!qy:scaled; {unshifted coordinates of |q|}
+@!k,@!k0:halfword; {controls pen edge insertion}
+@<Other local variables for |make_envelope|@>@;
+begin spec_p1:=null; spec_p2:=null;
+if left_type(c)=endpoint then
+ @<Double the path |c|, and set |spec_p1| and |spec_p2|@>;
+@<Use |offset_prep| to compute the envelope spec then walk |h| around to
+ the initial offset@>;
+w:=h;
+p:=c;
+repeat q:=link(p); q0:=q;
+qx:=x_coord(q); qy:=y_coord(q);
+k:=info(q);@/
+k0:=k; w0:=w;
+if k<>zero_off then
+ @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
+@<Add offset |w| to the cubic from |p| to |q|@>;
+while k<>zero_off do
+ begin @<Step |w| and move |k| one step closer to |zero_off|@>;
+ if (join_type=1)or(k=zero_off) then
+ q:=insert_knot(q,qx+x_coord(w),qy+y_coord(w));
+ end;
+if q<>link(p) then @<Set |p=link(p)| and add knots between |p| and |q| as
+ requred by |join_type|@>;
+p:=q;
+until q0=c;
+make_envelope:=c;
+end;
+
+@ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
+c:=offset_prep(c,h);
+if internal[tracing_specs]>0 then print_spec(c,h,"");
+h:=pen_walk(h,spec_offset)
+
+@ Mitered and squared-off joins depend on path directions that are difficult to
+compute for degenerate cubics. The envelope spec computed by |offset_prep| can
+have degenerate cubics only if the entire cycle collapses to a single
+degenerate cubic. Setting |join_type:=2| in this case makes the computed
+envelope degenerate as well.
+
+@<Set |join_type| to indicate how to handle offset changes at~|q|@>=
+if k<zero_off then join_type:=2
+else begin if (q<>spec_p1)and(q<>spec_p2) then join_type:=ljoin
+ else if lcap=2 then join_type:=3
+ else join_type:=2-lcap;
+ if (join_type=0)or(join_type=3) then
+ begin @<Set the incoming and outgoing directions at |q|; in case of
+ degeneracy set |join_type:=2|@>;
+ if join_type=0 then
+ @<If |miterlim| is less than the secant of half the angle at |q|
+ then set |join_type:=2|@>;
+ end;
+ end
+
+@ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
+begin tmp:=take_fraction(miterlim,fraction_half+@|
+ half(take_fraction(dxin,dxout)+take_fraction(dyin,dyout)));
+if tmp<unity then
+ if take_scaled(miterlim,tmp)<unity then join_type:=2;
+end
+
+@ @<Other local variables for |make_envelope|@>=
+@!dxin,@!dyin,@!dxout,@!dyout:fraction;
+ {directions at |q| when square or mitered}
+@!tmp:scaled; {a temporary value}
+
+@ The coordinates of |p| have already been shifted unless |p| is the first
+knot in which case they get shifted at the very end.
+
+@<Add offset |w| to the cubic from |p| to |q|@>=
+right_x(p):=right_x(p)+x_coord(w);
+right_y(p):=right_y(p)+y_coord(w);@/
+left_x(q):=left_x(q)+x_coord(w);
+left_y(q):=left_y(q)+y_coord(w);@/
+x_coord(q):=x_coord(q)+x_coord(w);
+y_coord(q):=y_coord(q)+y_coord(w);@/
+left_type(q):=explicit;
+right_type(q):=explicit
+
+@ @<Step |w| and move |k| one step closer to |zero_off|@>=
+if k>zero_off then
+ begin w:=link(w); decr(k); @+end
+else begin w:=knil(w); incr(k); @+end
+
+@ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
+the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
+case the cubic containing these control points is ``yet to be examined.''
+
+@<Declare a function called |insert_knot|@>=
+function insert_knot(@!q:pointer;@!x,@!y:scaled):pointer;
+ {returns the inserted knot}
+var @!r:pointer; {the new knot}
+begin r:=get_node(knot_node_size);
+link(r):=link(q); link(q):=r;@/
+right_x(r):=right_x(q);
+right_y(r):=right_y(q);@/
+x_coord(r):=x;
+y_coord(r):=y;@/
+right_x(q):=x_coord(q);
+right_y(q):=y_coord(q);@/
+left_x(r):=x_coord(r);
+left_y(r):=y_coord(r);@/
+left_type(r):=explicit;
+right_type(r):=explicit;
+originator(r):=program_code;@/
+insert_knot:=r;
+end;
+
+@ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
+
+@<Set |p=link(p)| and add knots between |p| and |q| as...@>=
+begin p:=link(p);
+if (join_type=0)or(join_type=3) then
+ begin if join_type=0 then
+ @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
+ else @<Make |r| the last of two knots inserted between |p| and |q| to form a
+ squared join@>;
+ if r<>null then
+ begin right_x(r):=x_coord(r);
+ right_y(r):=y_coord(r);
+ end;
+ end;
+end
+
+@ For very small angles, adding a knot is unnecessary and would cause numerical
+problems, so we just set |r:=null| in that case.
+
+@<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
+begin det:=take_fraction(dyout,dxin)-take_fraction(dxout,dyin);
+if abs(det)<26844 then r:=null {sine $<10^{-4}$}
+else begin tmp:=take_fraction(x_coord(q)-x_coord(p),dyout)-@|
+ take_fraction(y_coord(q)-y_coord(p),dxout);
+ tmp:=make_fraction(tmp,det);
+ r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
+ y_coord(p)+take_fraction(tmp,dyin));
+ end;
+end
+
+@ @<Other local variables for |make_envelope|@>=
+@!det:fraction; {a determinant used for mitered join calculations}
+
+@ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
+begin ht_x:=y_coord(w)-y_coord(w0);
+ht_y:=x_coord(w0)-x_coord(w);
+while (abs(ht_x)<fraction_half)and(abs(ht_y)<fraction_half) do
+ begin double(ht_x); double(ht_y);
+ end;
+@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
+ product with |(ht_x,ht_y)|@>;
+tmp:=make_fraction(max_ht,take_fraction(dxin,ht_x)+take_fraction(dyin,ht_y));
+r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
+ y_coord(p)+take_fraction(tmp,dyin));
+tmp:=make_fraction(max_ht,take_fraction(dxout,ht_x)+take_fraction(dyout,ht_y));
+r:=insert_knot(r,x_coord(q)+take_fraction(tmp,dxout),@|
+ y_coord(q)+take_fraction(tmp,dyout));
+end
+
+@ @<Other local variables for |make_envelope|@>=
+@!ht_x,@!ht_y:fraction; {perpendicular to the segment from |p| to |q|}
+@!max_ht:scaled; {maximum height of the pen polygon above the |w0|-|w| line}
+@!kk:halfword; {keeps track of the pen vertices being scanned}
+@!ww:pointer; {the pen vertex being tested}
+
+@ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
+from zero to |max_ht|.
+
+@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
+max_ht:=0;
+kk:=zero_off;
+ww:=w;
+loop @+begin @<Step |ww| and move |kk| one step closer to |k0|@>;
+ if kk=k0 then goto done;
+ tmp:=take_fraction(x_coord(ww)-x_coord(w0),ht_x)+@|
+ take_fraction(y_coord(ww)-y_coord(w0),ht_y);
+ if tmp>max_ht then max_ht:=tmp;
+ end;
+done:do_nothing
+
+@ @<Step |ww| and move |kk| one step closer to |k0|@>=
+if kk>k0 then
+ begin ww:=link(ww); decr(kk); @+end
+else begin ww:=knil(ww); incr(kk); @+end
+
+@ @<Double the path |c|, and set |spec_p1| and |spec_p2|@>=
+begin spec_p1:=htap_ypoc(c);
+spec_p2:=path_tail;
+originator(spec_p1):=program_code;
+link(spec_p2):=link(spec_p1);
+link(spec_p1):=c;@/
+remove_cubic(spec_p1);
+c:=spec_p1;
+if c<>link(c) then begin
+originator(spec_p2):=program_code;
+remove_cubic(spec_p2);
+end
+else @<Make |c| look like a cycle of length one@>;
+end
+
+@ @<Make |c| look like a cycle of length one@>=
+begin left_type(c):=explicit; right_type(c):=explicit;
+left_x(c):=x_coord(c); left_y(c):=y_coord(c);
+right_x(c):=x_coord(c); right_y(c):=y_coord(c);
+end;
+
+@ In degenerate situations we might have to look at the knot preceding~|q|.
+That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
+
+@<Set the incoming and outgoing directions at |q|; in case of...@>=
+dxin:=x_coord(q)-left_x(q);
+dyin:=y_coord(q)-left_y(q);
+if (dxin=0)and(dyin=0) then
+ begin dxin:=x_coord(q)-right_x(p);
+ dyin:=y_coord(q)-right_y(p);
+ if (dxin=0)and(dyin=0) then
+ begin dxin:=x_coord(q)-x_coord(p);
+ dyin:=y_coord(q)-y_coord(p);
+ if p<>c then {the coordinates of |p| have been offset by |w|}
+ begin dxin:=dxin+x_coord(w);
+ dyin:=dyin+y_coord(w);
+ end;
+ end;
+ end;
+tmp:=pyth_add(dxin,dyin);
+if tmp=0 then join_type:=2
+else begin dxin:=make_fraction(dxin,tmp);
+ dyin:=make_fraction(dyin,tmp);
+ @<Set the outgoing direction at |q|@>;
+ end
+
+@ If |q=c| then the coordinates of |r| and the control points between |q|
+and~|r| have already been offset by |h|.
+
+@<Set the outgoing direction at |q|@>=
+dxout:=right_x(q)-x_coord(q);
+dyout:=right_y(q)-y_coord(q);
+if (dxout=0)and(dyout=0) then
+ begin r:=link(q);
+ dxout:=left_x(r)-x_coord(q);
+ dyout:=left_y(r)-y_coord(q);
+ if (dxout=0)and(dyout=0) then
+ begin dxout:=x_coord(r)-x_coord(q);
+ dyout:=y_coord(r)-y_coord(q);
+ end;
+ end;
+if q=c then
+ begin dxout:=dxout-x_coord(h);
+ dyout:=dyout-y_coord(h);
+ end;
+tmp:=pyth_add(dxout,dyout);
+if tmp=0 then confusion("degenerate spec");
+@:this can't happen degerate spec}{\quad degenerate spec@>
+dxout:=make_fraction(dxout,tmp);
+dyout:=make_fraction(dyout,tmp)
+
+@* \[23] Direction and intersection times.
+A path of length $n$ is defined parametrically by functions $x(t)$ and
+$y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
+reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
+we shall consider operations that determine special times associated with
+given paths: the first time that a path travels in a given direction, and
+a pair of times at which two paths cross each other.
+
+@ Let's start with the easier task. The function |find_direction_time| is
+given a direction |(x,y)| and a path starting at~|h|. If the path never
+travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
+it will be nonnegative.
+
+Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
+direction is undefined, the direction time will be~0. If $\bigl(x'(t),
+y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
+assumed to match any given direction at time~|t|.
+
+The routine solves this problem in nondegenerate cases by rotating the path
+and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
+to find when a given path first travels ``due east.''
+
+@p function find_direction_time(@!x,@!y:scaled;@!h:pointer):scaled;
+label exit,found,not_found,done;
+var @!max:scaled; {$\max\bigl(\vert x\vert,\vert y\vert\bigr)$}
+@!p,@!q:pointer; {for list traversal}
+@!n:scaled; {the direction time at knot |p|}
+@!tt:scaled; {the direction time within a cubic}
+@<Other local variables for |find_direction_time|@>@;
+begin @<Normalize the given direction for better accuracy;
+ but |return| with zero result if it's zero@>;
+n:=0; p:=h;
+loop@+ begin if right_type(p)=endpoint then goto not_found;
+ q:=link(p);
+ @<Rotate the cubic between |p| and |q|; then
+ |goto found| if the rotated cubic travels due east at some time |tt|;
+ but |goto not_found| if an entire cyclic path has been traversed@>;
+ p:=q; n:=n+unity;
+ end;
+not_found: find_direction_time:=-unity; return;
+found: find_direction_time:=n+tt;
+exit:end;
+
+@ @<Normalize the given direction for better accuracy...@>=
+if abs(x)<abs(y) then
+ begin x:=make_fraction(x,abs(y));
+ if y>0 then y:=fraction_one@+else y:=-fraction_one;
+ end
+else if x=0 then
+ begin find_direction_time:=0; return;
+ end
+else begin y:=make_fraction(y,abs(x));
+ if x>0 then x:=fraction_one@+else x:=-fraction_one;
+ end
+
+@ Since we're interested in the tangent directions, we work with the
+derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
+B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
+$B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
+in order to achieve better accuracy.
+
+The given path may turn abruptly at a knot, and it might pass the critical
+tangent direction at such a time. Therefore we remember the direction |phi|
+in which the previous rotated cubic was traveling. (The value of |phi| will be
+undefined on the first cubic, i.e., when |n=0|.)
+
+@<Rotate the cubic between |p| and |q|; then...@>=
+tt:=0;
+@<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
+ points of the rotated derivatives@>;
+if y1=0 then if x1>=0 then goto found;
+if n>0 then
+ begin @<Exit to |found| if an eastward direction occurs at knot |p|@>;
+ if p=h then goto not_found;
+ end;
+if (x3<>0)or(y3<>0) then phi:=n_arg(x3,y3);
+@<Exit to |found| if the curve whose derivatives are specified by
+ |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
+
+@ @<Other local variables for |find_direction_time|@>=
+@!x1,@!x2,@!x3,@!y1,@!y2,@!y3:scaled; {multiples of rotated derivatives}
+@!theta,@!phi:angle; {angles of exit and entry at a knot}
+@!t:fraction; {temp storage}
+
+@ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
+x1:=right_x(p)-x_coord(p); x2:=left_x(q)-right_x(p);
+x3:=x_coord(q)-left_x(q);@/
+y1:=right_y(p)-y_coord(p); y2:=left_y(q)-right_y(p);
+y3:=y_coord(q)-left_y(q);@/
+max:=abs(x1);
+if abs(x2)>max then max:=abs(x2);
+if abs(x3)>max then max:=abs(x3);
+if abs(y1)>max then max:=abs(y1);
+if abs(y2)>max then max:=abs(y2);
+if abs(y3)>max then max:=abs(y3);
+if max=0 then goto found;
+while max<fraction_half do
+ begin double(max); double(x1); double(x2); double(x3);
+ double(y1); double(y2); double(y3);
+ end;
+t:=x1; x1:=take_fraction(x1,x)+take_fraction(y1,y);
+y1:=take_fraction(y1,x)-take_fraction(t,y);@/
+t:=x2; x2:=take_fraction(x2,x)+take_fraction(y2,y);
+y2:=take_fraction(y2,x)-take_fraction(t,y);@/
+t:=x3; x3:=take_fraction(x3,x)+take_fraction(y3,y);
+y3:=take_fraction(y3,x)-take_fraction(t,y)
+
+@ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
+theta:=n_arg(x1,y1);
+if theta>=0 then if phi<=0 then if phi>=theta-one_eighty_deg then goto found;
+if theta<=0 then if phi>=0 then if phi<=theta+one_eighty_deg then goto found
+
+@ In this step we want to use the |crossing_point| routine to find the
+roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
+Several complications arise: If the quadratic equation has a double root,
+the curve never crosses zero, and |crossing_point| will find nothing;
+this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
+equation has simple roots, or only one root, we may have to negate it
+so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
+And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
+identically zero.
+
+@ @<Exit to |found| if the curve whose derivatives are specified by...@>=
+if x1<0 then if x2<0 then if x3<0 then goto done;
+if ab_vs_cd(y1,y3,y2,y2)=0 then
+ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
+ either |goto found| or |goto done|@>;
+if y1<=0 then
+ if y1<0 then
+ begin y1:=-y1; y2:=-y2; y3:=-y3;
+ end
+ else if y2>0 then
+ begin y2:=-y2; y3:=-y3;
+ end;
+@<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
+ $B(x_1,x_2,x_3;t)\ge0$@>;
+done:
+
+@ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
+two roots, because we know that it isn't identically zero.
+
+It must be admitted that the |crossing_point| routine is not perfectly accurate;
+rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
+miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
+subject to rounding errors. Yet this code optimistically tries to
+do the right thing.
+
+@d we_found_it==begin tt:=(t+@'4000) div @'10000; goto found;
+ end
+
+@<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
+t:=crossing_point(y1,y2,y3);
+if t>fraction_one then goto done;
+y2:=t_of_the_way(y2)(y3);
+x1:=t_of_the_way(x1)(x2);
+x2:=t_of_the_way(x2)(x3);
+x1:=t_of_the_way(x1)(x2);
+if x1>=0 then we_found_it;
+if y2>0 then y2:=0;
+tt:=t; t:=crossing_point(0,-y2,-y3);
+if t>fraction_one then goto done;
+x1:=t_of_the_way(x1)(x2);
+x2:=t_of_the_way(x2)(x3);
+if t_of_the_way(x1)(x2)>=0 then
+ begin t:=t_of_the_way(tt)(fraction_one); we_found_it;
+ end
+
+@ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
+ either |goto found| or |goto done|@>=
+begin if ab_vs_cd(y1,y2,0,0)<0 then
+ begin t:=make_fraction(y1,y1-y2);
+ x1:=t_of_the_way(x1)(x2);
+ x2:=t_of_the_way(x2)(x3);
+ if t_of_the_way(x1)(x2)>=0 then we_found_it;
+ end
+else if y3=0 then
+ if y1=0 then
+ @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>
+ else if x3>=0 then
+ begin tt:=unity; goto found;
+ end;
+goto done;
+end
+
+@ At this point we know that the derivative of |y(t)| is identically zero,
+and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
+traveling east.
+
+@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
+begin t:=crossing_point(-x1,-x2,-x3);
+if t<=fraction_one then we_found_it;
+if ab_vs_cd(x1,x3,x2,x2)<=0 then
+ begin t:=make_fraction(x1,x1-x2); we_found_it;
+ end;
+end
+
+@ The intersection of two cubics can be found by an interesting variant
+of the general bisection scheme described in the introduction to
+|crossing_point|.\
+Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
+we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
+if an intersection exists. First we find the smallest rectangle that
+encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
+the smallest rectangle that encloses
+$\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
+But if the rectangles do overlap, we bisect the intervals, getting
+new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
+tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
+between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
+finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
+levels of bisection we will have determined the intersection times $t_1$
+and~$t_2$ to $l$~bits of accuracy.
+
+\def\submin{_{\rm min}} \def\submax{_{\rm max}}
+As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
+and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
+themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
+to determine when the enclosing rectangles overlap. Here's why:
+The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
+and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
+if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
+\min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
+overlap if and only if $u\submin\L x\submax$ and
+$x\submin\L u\submax$. Letting
+$$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
+ U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
+we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
+reduces to
+$$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
+Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
+the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
+coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
+because of the overlap condition; i.e., we know that $X\submin$,
+$X\submax$, and their relatives are bounded, hence $X\submax-
+U\submin$ and $X\submin-U\submax$ are bounded.
+
+@ Incidentally, if the given cubics intersect more than once, the process
+just sketched will not necessarily find the lexicographically smallest pair
+$(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
+order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
+$t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
+$a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
+$a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
+Shuffled order agrees with lexicographic order if all pairs of solutions
+$(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
+$t_2<t_2'$; but in general, lexicographic order can be quite different,
+and the bisection algorithm would be substantially less efficient if it were
+constrained by lexicographic order.
+
+For example, suppose that an overlap has been found for $l=3$ and
+$(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
+either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
+Then there is probably an intersection in one of the subintervals
+$(.1011,.011x)$; but lexicographic order would require us to explore
+$(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
+want to store all of the subdivision data for the second path, so the
+subdivisions would have to be regenerated many times. Such inefficiencies
+would be associated with every `1' in the binary representation of~$t_1$.
+
+@ The subdivision process introduces rounding errors, hence we need to
+make a more liberal test for overlap. It is not hard to show that the
+computed values of $U_i$ differ from the truth by at most~$l$, on
+level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
+If $\beta$ is an upper bound on the absolute error in the computed
+components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
+the test `$X\submin-U\submax\L|delx|$' by the more liberal test
+`$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
+
+More accuracy is obtained if we try the algorithm first with |tol=0|;
+the more liberal tolerance is used only if an exact approach fails.
+It is convenient to do this double-take by letting `3' in the preceding
+paragraph be a parameter, which is first 0, then 3.
+
+@<Glob...@>=
+@!tol_step:0..6; {either 0 or 3, usually}
+
+@ We shall use an explicit stack to implement the recursive bisection
+method described above. The |bisect_stack| array will contain numerous 5-word
+packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
+comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
+
+The following macros define the allocation of stack positions to
+the quantities needed for bisection-intersection.
+
+@d stack_1(#)==bisect_stack[#] {$U_1$, $V_1$, $X_1$, or $Y_1$}
+@d stack_2(#)==bisect_stack[#+1] {$U_2$, $V_2$, $X_2$, or $Y_2$}
+@d stack_3(#)==bisect_stack[#+2] {$U_3$, $V_3$, $X_3$, or $Y_3$}
+@d stack_min(#)==bisect_stack[#+3]
+ {$U\submin$, $V\submin$, $X\submin$, or $Y\submin$}
+@d stack_max(#)==bisect_stack[#+4]
+ {$U\submax$, $V\submax$, $X\submax$, or $Y\submax$}
+@d int_packets=20 {number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$}
+@#
+@d u_packet(#)==#-5
+@d v_packet(#)==#-10
+@d x_packet(#)==#-15
+@d y_packet(#)==#-20
+@d l_packets==bisect_ptr-int_packets
+@d r_packets==bisect_ptr
+@d ul_packet==u_packet(l_packets) {base of $U'_k$ variables}
+@d vl_packet==v_packet(l_packets) {base of $V'_k$ variables}
+@d xl_packet==x_packet(l_packets) {base of $X'_k$ variables}
+@d yl_packet==y_packet(l_packets) {base of $Y'_k$ variables}
+@d ur_packet==u_packet(r_packets) {base of $U''_k$ variables}
+@d vr_packet==v_packet(r_packets) {base of $V''_k$ variables}
+@d xr_packet==x_packet(r_packets) {base of $X''_k$ variables}
+@d yr_packet==y_packet(r_packets) {base of $Y''_k$ variables}
+@#
+@d u1l==stack_1(ul_packet) {$U'_1$}
+@d u2l==stack_2(ul_packet) {$U'_2$}
+@d u3l==stack_3(ul_packet) {$U'_3$}
+@d v1l==stack_1(vl_packet) {$V'_1$}
+@d v2l==stack_2(vl_packet) {$V'_2$}
+@d v3l==stack_3(vl_packet) {$V'_3$}
+@d x1l==stack_1(xl_packet) {$X'_1$}
+@d x2l==stack_2(xl_packet) {$X'_2$}
+@d x3l==stack_3(xl_packet) {$X'_3$}
+@d y1l==stack_1(yl_packet) {$Y'_1$}
+@d y2l==stack_2(yl_packet) {$Y'_2$}
+@d y3l==stack_3(yl_packet) {$Y'_3$}
+@d u1r==stack_1(ur_packet) {$U''_1$}
+@d u2r==stack_2(ur_packet) {$U''_2$}
+@d u3r==stack_3(ur_packet) {$U''_3$}
+@d v1r==stack_1(vr_packet) {$V''_1$}
+@d v2r==stack_2(vr_packet) {$V''_2$}
+@d v3r==stack_3(vr_packet) {$V''_3$}
+@d x1r==stack_1(xr_packet) {$X''_1$}
+@d x2r==stack_2(xr_packet) {$X''_2$}
+@d x3r==stack_3(xr_packet) {$X''_3$}
+@d y1r==stack_1(yr_packet) {$Y''_1$}
+@d y2r==stack_2(yr_packet) {$Y''_2$}
+@d y3r==stack_3(yr_packet) {$Y''_3$}
+@#
+@d stack_dx==bisect_stack[bisect_ptr] {stacked value of |delx|}
+@d stack_dy==bisect_stack[bisect_ptr+1] {stacked value of |dely|}
+@d stack_tol==bisect_stack[bisect_ptr+2] {stacked value of |tol|}
+@d stack_uv==bisect_stack[bisect_ptr+3] {stacked value of |uv|}
+@d stack_xy==bisect_stack[bisect_ptr+4] {stacked value of |xy|}
+@d int_increment=int_packets+int_packets+5 {number of stack words per level}
+
+@<Glob...@>=
+bisect_stack:array[0..bistack_size] of integer;
+bisect_ptr:0..bistack_size;
+
+@ @<Check the ``constant''...@>=
+if int_packets+17*int_increment>bistack_size then bad:=19;
+
+@ Computation of the min and max is a tedious but fairly fast sequence of
+instructions; exactly four comparisons are made in each branch.
+
+@d set_min_max(#)==
+ if stack_1(#)<0 then
+ if stack_3(#)>=0 then
+ begin if stack_2(#)<0 then stack_min(#):=stack_1(#)+stack_2(#)
+ else stack_min(#):=stack_1(#);
+ stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
+ if stack_max(#)<0 then stack_max(#):=0;
+ end
+ else begin stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
+ if stack_min(#)>stack_1(#) then stack_min(#):=stack_1(#);
+ stack_max(#):=stack_1(#)+stack_2(#);
+ if stack_max(#)<0 then stack_max(#):=0;
+ end
+ else if stack_3(#)<=0 then
+ begin if stack_2(#)>0 then stack_max(#):=stack_1(#)+stack_2(#)
+ else stack_max(#):=stack_1(#);
+ stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
+ if stack_min(#)>0 then stack_min(#):=0;
+ end
+ else begin stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
+ if stack_max(#)<stack_1(#) then stack_max(#):=stack_1(#);
+ stack_min(#):=stack_1(#)+stack_2(#);
+ if stack_min(#)>0 then stack_min(#):=0;
+ end
+
+@ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
+the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
+routine uses global variables |cur_t| and |cur_tt| for this purpose;
+after successful completion, |cur_t| and |cur_tt| will contain |unity|
+plus the |scaled| values of $t_1$ and~$t_2$.
+
+The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
+finds no intersection. The routine gives up and gives an approximate answer
+if it has backtracked
+more than 5000 times (otherwise there are cases where several minutes
+of fruitless computation would be possible).
+
+@d max_patience=5000
+
+@<Glob...@>=
+@!cur_t,@!cur_tt:integer; {controls and results of |cubic_intersection|}
+@!time_to_go:integer; {this many backtracks before giving up}
+@!max_t:integer; {maximum of $2^{l+1}$ so far achieved}
+
+@ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
+$B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
+and |(pp,link(pp))|, respectively.
+
+@p procedure cubic_intersection(@!p,@!pp:pointer);
+label continue, not_found, exit;
+var @!q,@!qq:pointer; {|link(p)|, |link(pp)|}
+begin time_to_go:=max_patience; max_t:=2;
+@<Initialize for intersections at level zero@>;
+loop@+ begin continue:
+ if delx-tol<=stack_max(x_packet(xy))-stack_min(u_packet(uv)) then
+ if delx+tol>=stack_min(x_packet(xy))-stack_max(u_packet(uv)) then
+ if dely-tol<=stack_max(y_packet(xy))-stack_min(v_packet(uv)) then
+ if dely+tol>=stack_min(y_packet(xy))-stack_max(v_packet(uv)) then
+ begin if cur_t>=max_t then
+ begin if max_t=two then {we've done 17 bisections}
+ begin cur_t:=halfp(cur_t+1); cur_tt:=halfp(cur_tt+1); return;
+ end;
+ double(max_t); appr_t:=cur_t; appr_tt:=cur_tt;
+ end;
+ @<Subdivide for a new level of intersection@>;
+ goto continue;
+ end;
+ if time_to_go>0 then decr(time_to_go)
+ else begin while appr_t<unity do
+ begin double(appr_t); double(appr_tt);
+ end;
+ cur_t:=appr_t; cur_tt:=appr_tt; return;
+ end;
+ @<Advance to the next pair |(cur_t,cur_tt)|@>;
+ end;
+exit:end;
+
+@ The following variables are global, although they are used only by
+|cubic_intersection|, because it is necessary on some machines to
+split |cubic_intersection| up into two procedures.
+
+@<Glob...@>=
+@!delx,@!dely:integer; {the components of $\Delta=2^l(w_0-z_0)$}
+@!tol:integer; {bound on the uncertainly in the overlap test}
+@!uv,@!xy:0..bistack_size; {pointers to the current packets of interest}
+@!three_l:integer; {|tol_step| times the bisection level}
+@!appr_t,@!appr_tt:integer; {best approximations known to the answers}
+
+@ We shall assume that the coordinates are sufficiently non-extreme that
+integer overflow will not occur.
+
+@<Initialize for intersections at level zero@>=
+q:=link(p); qq:=link(pp); bisect_ptr:=int_packets;@/
+u1r:=right_x(p)-x_coord(p); u2r:=left_x(q)-right_x(p);
+u3r:=x_coord(q)-left_x(q); set_min_max(ur_packet);@/
+v1r:=right_y(p)-y_coord(p); v2r:=left_y(q)-right_y(p);
+v3r:=y_coord(q)-left_y(q); set_min_max(vr_packet);@/
+x1r:=right_x(pp)-x_coord(pp); x2r:=left_x(qq)-right_x(pp);
+x3r:=x_coord(qq)-left_x(qq); set_min_max(xr_packet);@/
+y1r:=right_y(pp)-y_coord(pp); y2r:=left_y(qq)-right_y(pp);
+y3r:=y_coord(qq)-left_y(qq); set_min_max(yr_packet);@/
+delx:=x_coord(p)-x_coord(pp); dely:=y_coord(p)-y_coord(pp);@/
+tol:=0; uv:=r_packets; xy:=r_packets; three_l:=0; cur_t:=1; cur_tt:=1
+
+@ @<Subdivide for a new level of intersection@>=
+stack_dx:=delx; stack_dy:=dely; stack_tol:=tol; stack_uv:=uv; stack_xy:=xy;
+bisect_ptr:=bisect_ptr+int_increment;@/
+double(cur_t); double(cur_tt);@/
+u1l:=stack_1(u_packet(uv)); u3r:=stack_3(u_packet(uv));
+u2l:=half(u1l+stack_2(u_packet(uv)));
+u2r:=half(u3r+stack_2(u_packet(uv)));
+u3l:=half(u2l+u2r); u1r:=u3l;
+set_min_max(ul_packet); set_min_max(ur_packet);@/
+v1l:=stack_1(v_packet(uv)); v3r:=stack_3(v_packet(uv));
+v2l:=half(v1l+stack_2(v_packet(uv)));
+v2r:=half(v3r+stack_2(v_packet(uv)));
+v3l:=half(v2l+v2r); v1r:=v3l;
+set_min_max(vl_packet); set_min_max(vr_packet);@/
+x1l:=stack_1(x_packet(xy)); x3r:=stack_3(x_packet(xy));
+x2l:=half(x1l+stack_2(x_packet(xy)));
+x2r:=half(x3r+stack_2(x_packet(xy)));
+x3l:=half(x2l+x2r); x1r:=x3l;
+set_min_max(xl_packet); set_min_max(xr_packet);@/
+y1l:=stack_1(y_packet(xy)); y3r:=stack_3(y_packet(xy));
+y2l:=half(y1l+stack_2(y_packet(xy)));
+y2r:=half(y3r+stack_2(y_packet(xy)));
+y3l:=half(y2l+y2r); y1r:=y3l;
+set_min_max(yl_packet); set_min_max(yr_packet);@/
+uv:=l_packets; xy:=l_packets;
+double(delx); double(dely);@/
+tol:=tol-three_l+tol_step; double(tol); three_l:=three_l+tol_step
+
+@ @<Advance to the next pair |(cur_t,cur_tt)|@>=
+not_found: if odd(cur_tt) then
+ if odd(cur_t) then @<Descend to the previous level and |goto not_found|@>
+ else begin incr(cur_t);
+ delx:=delx+stack_1(u_packet(uv))+stack_2(u_packet(uv))
+ +stack_3(u_packet(uv));
+ dely:=dely+stack_1(v_packet(uv))+stack_2(v_packet(uv))
+ +stack_3(v_packet(uv));
+ uv:=uv+int_packets; {switch from |l_packet| to |r_packet|}
+ decr(cur_tt); xy:=xy-int_packets; {switch from |r_packet| to |l_packet|}
+ delx:=delx+stack_1(x_packet(xy))+stack_2(x_packet(xy))
+ +stack_3(x_packet(xy));
+ dely:=dely+stack_1(y_packet(xy))+stack_2(y_packet(xy))
+ +stack_3(y_packet(xy));
+ end
+else begin incr(cur_tt); tol:=tol+three_l;
+ delx:=delx-stack_1(x_packet(xy))-stack_2(x_packet(xy))
+ -stack_3(x_packet(xy));
+ dely:=dely-stack_1(y_packet(xy))-stack_2(y_packet(xy))
+ -stack_3(y_packet(xy));
+ xy:=xy+int_packets; {switch from |l_packet| to |r_packet|}
+ end
+
+@ @<Descend to the previous level...@>=
+begin cur_t:=halfp(cur_t); cur_tt:=halfp(cur_tt);
+if cur_t=0 then return;
+bisect_ptr:=bisect_ptr-int_increment; three_l:=three_l-tol_step;
+delx:=stack_dx; dely:=stack_dy; tol:=stack_tol; uv:=stack_uv; xy:=stack_xy;@/
+goto not_found;
+end
+
+@ The |path_intersection| procedure is much simpler.
+It invokes |cubic_intersection| in lexicographic order until finding a
+pair of cubics that intersect. The final intersection times are placed in
+|cur_t| and~|cur_tt|.
+
+@p procedure path_intersection(@!h,@!hh:pointer);
+label exit;
+var @!p,@!pp:pointer; {link registers that traverse the given paths}
+@!n,@!nn:integer; {integer parts of intersection times, minus |unity|}
+begin @<Change one-point paths into dead cycles@>;
+tol_step:=0;
+repeat n:=-unity; p:=h;
+ repeat if right_type(p)<>endpoint then
+ begin nn:=-unity; pp:=hh;
+ repeat if right_type(pp)<>endpoint then
+ begin cubic_intersection(p,pp);
+ if cur_t>0 then
+ begin cur_t:=cur_t+n; cur_tt:=cur_tt+nn; return;
+ end;
+ end;
+ nn:=nn+unity; pp:=link(pp);
+ until pp=hh;
+ end;
+ n:=n+unity; p:=link(p);
+ until p=h;
+tol_step:=tol_step+3;
+until tol_step>3;
+cur_t:=-unity; cur_tt:=-unity;
+exit:end;
+
+@ @<Change one-point paths...@>=
+if right_type(h)=endpoint then
+ begin right_x(h):=x_coord(h); left_x(h):=x_coord(h);
+ right_y(h):=y_coord(h); left_y(h):=y_coord(h); right_type(h):=explicit;
+ end;
+if right_type(hh)=endpoint then
+ begin right_x(hh):=x_coord(hh); left_x(hh):=x_coord(hh);
+ right_y(hh):=y_coord(hh); left_y(hh):=y_coord(hh); right_type(hh):=explicit;
+ end;
+
+@* \[24] Dynamic linear equations.
+\MP\ users define variables implicitly by stating equations that should be
+satisfied; the computer is supposed to be smart enough to solve those equations.
+And indeed, the computer tries valiantly to do so, by distinguishing five
+different types of numeric values:
+
+\smallskip\hang
+|type(p)=known| is the nice case, when |value(p)| is the |scaled| value
+of the variable whose address is~|p|.
+
+\smallskip\hang
+|type(p)=dependent| means that |value(p)| is not present, but |dep_list(p)|
+points to a {\sl dependency list\/} that expresses the value of variable~|p|
+as a |scaled| number plus a sum of independent variables with |fraction|
+coefficients.
+
+\smallskip\hang
+|type(p)=independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
+number'' reflecting the time this variable was first used in an equation;
+also |0<=m<64|, and each dependent variable
+that refers to this one is actually referring to the future value of
+this variable times~$2^m$. (Usually |m=0|, but higher degrees of
+scaling are sometimes needed to keep the coefficients in dependency lists
+from getting too large. The value of~|m| will always be even.)
+
+\smallskip\hang
+|type(p)=numeric_type| means that variable |p| hasn't appeared in an
+equation before, but it has been explicitly declared to be numeric.
+
+\smallskip\hang
+|type(p)=undefined| means that variable |p| hasn't appeared before.
+
+\smallskip\noindent
+We have actually discussed these five types in the reverse order of their
+history during a computation: Once |known|, a variable never again
+becomes |dependent|; once |dependent|, it almost never again becomes
+|independent|; once |independent|, it never again becomes |numeric_type|;
+and once |numeric_type|, it never again becomes |undefined| (except
+of course when the user specifically decides to scrap the old value
+and start again). A backward step may, however, take place: Sometimes
+a |dependent| variable becomes |independent| again, when one of the
+independent variables it depends on is reverting to |undefined|.
+
+
+The next patch detects overflow of independent-variable serial
+numbers. Diagnosed and patched by Thorsten Dahlheimer.
+
+@d s_scale=64 {the serial numbers are multiplied by this factor}
+@d max_indep_vars==@'177777777 {$2^{25}-1$}
+@d max_serial_no==@'17777777700 {|max_indep_vars*s_scale|}
+@d new_indep(#)== {create a new independent variable}
+ begin if serial_no=max_serial_no then
+ overflow("independent variables",max_indep_vars);
+ type(#):=independent; serial_no:=serial_no+s_scale;
+ value(#):=serial_no;
+ end
+
+@<Glob...@>=
+@!serial_no:integer; {the most recent serial number, times |s_scale|}
+
+@ @<Make variable |q+s| newly independent@>=new_indep(q+s)
+
+@ But how are dependency lists represented? It's simple: The linear combination
+$\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
+|q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
+@t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
+of $\alpha_1$; and |link(p)| points to the dependency list
+$\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
+then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
+The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
+they appear in decreasing order of their |value| fields (i.e., of
+their serial numbers). \ (It is convenient to use decreasing order,
+since |value(null)=0|. If the independent variables were not sorted by
+serial number but by some other criterion, such as their location in |mem|,
+the equation-solving mechanism would be too system-dependent, because
+the ordering can affect the computed results.)
+
+The |link| field in the node that contains the constant term $\beta$ is
+called the {\sl final link\/} of the dependency list. \MP\ maintains
+a doubly-linked master list of all dependency lists, in terms of a permanently
+allocated node
+in |mem| called |dep_head|. If there are no dependencies, we have
+|link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
+otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
+and |prev_dep(p)=dep_head|. We have |type(p)=dependent|, and |dep_list(p)|
+points to its dependency list. If the final link of that dependency list
+occurs in location~|q|, then |link(q)| points to the next dependent
+variable (say~|r|); and we have |prev_dep(r)=q|, etc.
+
+@d dep_list(#)==link(value_loc(#))
+ {half of the |value| field in a |dependent| variable}
+@d prev_dep(#)==info(value_loc(#))
+ {the other half; makes a doubly linked list}
+@d dep_node_size=2 {the number of words per dependency node}
+
+@<Initialize table entries...@>= serial_no:=0;
+link(dep_head):=dep_head; prev_dep(dep_head):=dep_head;
+info(dep_head):=null; dep_list(dep_head):=null;
+
+@ Actually the description above contains a little white lie. There's
+another kind of variable called |proto_dependent|, which is
+just like a |dependent| one except that the $\alpha$ coefficients
+in its dependency list are |scaled| instead of being fractions.
+Proto-dependency lists are mixed with dependency lists in the
+nodes reachable from |dep_head|.
+
+@ Here is a procedure that prints a dependency list in symbolic form.
+The second parameter should be either |dependent| or |proto_dependent|,
+to indicate the scaling of the coefficients.
+
+@<Declare subroutines for printing expressions@>=
+procedure print_dependency(@!p:pointer;@!t:small_number);
+label exit;
+var @!v:integer; {a coefficient}
+@!pp,@!q:pointer; {for list manipulation}
+begin pp:=p;
+loop@+ begin v:=abs(value(p)); q:=info(p);
+ if q=null then {the constant term}
+ begin if (v<>0)or(p=pp) then
+ begin if value(p)>0 then if p<>pp then print_char("+");
+ print_scaled(value(p));
+ end;
+ return;
+ end;
+ @<Print the coefficient, unless it's $\pm1.0$@>;
+ if type(q)<>independent then confusion("dep");
+@:this can't happen dep}{\quad dep@>
+ print_variable_name(q); v:=value(q) mod s_scale;
+ while v>0 do
+ begin print("*4"); v:=v-2;
+ end;
+ p:=link(p);
+ end;
+exit:end;
+
+@ @<Print the coefficient, unless it's $\pm1.0$@>=
+if value(p)<0 then print_char("-")
+else if p<>pp then print_char("+");
+if t=dependent then v:=round_fraction(v);
+if v<>unity then print_scaled(v)
+
+@ The maximum absolute value of a coefficient in a given dependency list
+is returned by the following simple function.
+
+@p function max_coef(@!p:pointer):fraction;
+var @!x:fraction; {the maximum so far}
+begin x:=0;
+while info(p)<>null do
+ begin if abs(value(p))>x then x:=abs(value(p));
+ p:=link(p);
+ end;
+max_coef:=x;
+end;
+
+@ One of the main operations needed on dependency lists is to add a multiple
+of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
+to dependency lists and |f| is a fraction.
+
+If the coefficient of any independent variable becomes |coef_bound| or
+more, in absolute value, this procedure changes the type of that variable
+to `|independent_needing_fix|', and sets the global variable |fix_needed|
+to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
+$\mu^2+\mu<8$; this means that the numbers we deal with won't
+get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
+2.3723$, the safer value 7/3 is taken as the threshold.)
+
+The changes mentioned in the preceding paragraph are actually done only if
+the global variable |watch_coefs| is |true|. But it usually is; in fact,
+it is |false| only when \MP\ is making a dependency list that will soon
+be equated to zero.
+
+Several procedures that act on dependency lists, including |p_plus_fq|,
+set the global variable |dep_final| to the final (constant term) node of
+the dependency list that they produce.
+
+@d coef_bound==@'4525252525 {|fraction| approximation to 7/3}
+@d independent_needing_fix=0
+
+@<Glob...@>=
+@!fix_needed:boolean; {does at least one |independent| variable need scaling?}
+@!watch_coefs:boolean; {should we scale coefficients that exceed |coef_bound|?}
+@!dep_final:pointer; {location of the constant term and final link}
+
+@ @<Set init...@>=
+fix_needed:=false; watch_coefs:=true;
+
+@ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
+set to |proto_dependent| if |p| is a proto-dependency list. In this
+case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
+should be |proto_dependent| if |q| is a proto-dependency list.
+
+List |q| is unchanged by the operation; but list |p| is totally destroyed.
+
+The final link of the dependency list or proto-dependency list returned
+by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
+constant term of the result will be located in the same |mem| location
+as the original constant term of~|p|.
+
+Coefficients of the result are assumed to be zero if they are less than
+a certain threshold. This compensates for inevitable rounding errors,
+and tends to make more variables `|known|'. The threshold is approximately
+$10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
+proto-dependencies.
+
+@d fraction_threshold=2685 {a |fraction| coefficient less than this is zeroed}
+@d half_fraction_threshold=1342 {half of |fraction_threshold|}
+@d scaled_threshold=8 {a |scaled| coefficient less than this is zeroed}
+@d half_scaled_threshold=4 {half of |scaled_threshold|}
+
+@<Declare basic dependency-list subroutines@>=
+function p_plus_fq(@!p:pointer;@!f:integer;@!q:pointer;
+ @!t,@!tt:small_number):pointer;
+label done;
+var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
+@!r,@!s:pointer; {for list manipulation}
+@!threshold:integer; {defines a neighborhood of zero}
+@!v:integer; {temporary register}
+begin if t=dependent then threshold:=fraction_threshold
+else threshold:=scaled_threshold;
+r:=temp_head; pp:=info(p); qq:=info(q);
+loop@+ if pp=qq then
+ if pp=null then goto done
+ else @<Contribute a term from |p|, plus |f| times the
+ corresponding term from |q|@>
+ else if value(pp)<value(qq) then
+ @<Contribute a term from |q|, multiplied by~|f|@>
+ else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
+ end;
+done: if t=dependent then
+ value(p):=slow_add(value(p),take_fraction(value(q),f))
+else value(p):=slow_add(value(p),take_scaled(value(q),f));
+link(r):=p; dep_final:=p; p_plus_fq:=link(temp_head);
+end;
+
+@ @<Contribute a term from |p|, plus |f|...@>=
+begin if tt=dependent then v:=value(p)+take_fraction(f,value(q))
+else v:=value(p)+take_scaled(f,value(q));
+value(p):=v; s:=p; p:=link(p);
+if abs(v)<threshold then free_node(s,dep_node_size)
+else begin if abs(v)>=coef_bound then if watch_coefs then
+ begin type(qq):=independent_needing_fix; fix_needed:=true;
+ end;
+ link(r):=s; r:=s;
+ end;
+pp:=info(p); q:=link(q); qq:=info(q);
+end
+
+@ @<Contribute a term from |q|, multiplied by~|f|@>=
+begin if tt=dependent then v:=take_fraction(f,value(q))
+else v:=take_scaled(f,value(q));
+if abs(v)>halfp(threshold) then
+ begin s:=get_node(dep_node_size); info(s):=qq; value(s):=v;
+ if abs(v)>=coef_bound then if watch_coefs then
+ begin type(qq):=independent_needing_fix; fix_needed:=true;
+ end;
+ link(r):=s; r:=s;
+ end;
+q:=link(q); qq:=info(q);
+end
+
+@ It is convenient to have another subroutine for the special case
+of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
+both of the same type~|t| (either |dependent| or |proto_dependent|).
+
+@p function p_plus_q(@!p:pointer;@!q:pointer;@!t:small_number):pointer;
+label done;
+var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
+@!r,@!s:pointer; {for list manipulation}
+@!threshold:integer; {defines a neighborhood of zero}
+@!v:integer; {temporary register}
+begin if t=dependent then threshold:=fraction_threshold
+else threshold:=scaled_threshold;
+r:=temp_head; pp:=info(p); qq:=info(q);
+loop@+ if pp=qq then
+ if pp=null then goto done
+ else @<Contribute a term from |p|, plus the
+ corresponding term from |q|@>
+ else if value(pp)<value(qq) then
+ begin s:=get_node(dep_node_size); info(s):=qq; value(s):=value(q);
+ q:=link(q); qq:=info(q); link(r):=s; r:=s;
+ end
+ else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
+ end;
+done: value(p):=slow_add(value(p),value(q));
+link(r):=p; dep_final:=p; p_plus_q:=link(temp_head);
+end;
+
+@ @<Contribute a term from |p|, plus the...@>=
+begin v:=value(p)+value(q);
+value(p):=v; s:=p; p:=link(p); pp:=info(p);
+if abs(v)<threshold then free_node(s,dep_node_size)
+else begin if abs(v)>=coef_bound then if watch_coefs then
+ begin type(qq):=independent_needing_fix; fix_needed:=true;
+ end;
+ link(r):=s; r:=s;
+ end;
+q:=link(q); qq:=info(q);
+end
+
+@ A somewhat simpler routine will multiply a dependency list
+by a given constant~|v|. The constant is either a |fraction| less than
+|fraction_one|, or it is |scaled|. In the latter case we might be forced to
+convert a dependency list to a proto-dependency list.
+Parameters |t0| and |t1| are the list types before and after;
+they should agree unless |t0=dependent| and |t1=proto_dependent|
+and |v_is_scaled=true|.
+
+@p function p_times_v(@!p:pointer;@!v:integer;
+ @!t0,@!t1:small_number;@!v_is_scaled:boolean):pointer;
+var @!r,@!s:pointer; {for list manipulation}
+@!w:integer; {tentative coefficient}
+@!threshold:integer;
+@!scaling_down:boolean;
+begin if t0<>t1 then scaling_down:=true@+else scaling_down:=not v_is_scaled;
+if t1=dependent then threshold:=half_fraction_threshold
+else threshold:=half_scaled_threshold;
+r:=temp_head;
+while info(p)<>null do
+ begin if scaling_down then w:=take_fraction(v,value(p))
+ else w:=take_scaled(v,value(p));
+ if abs(w)<=threshold then
+ begin s:=link(p); free_node(p,dep_node_size); p:=s;
+ end
+ else begin if abs(w)>=coef_bound then
+ begin fix_needed:=true; type(info(p)):=independent_needing_fix;
+ end;
+ link(r):=p; r:=p; value(p):=w; p:=link(p);
+ end;
+ end;
+link(r):=p;
+if v_is_scaled then value(p):=take_scaled(value(p),v)
+else value(p):=take_fraction(value(p),v);
+p_times_v:=link(temp_head);
+end;
+
+@ Similarly, we sometimes need to divide a dependency list
+by a given |scaled| constant.
+
+@<Declare basic dependency-list subroutines@>=
+function p_over_v(@!p:pointer;@!v:scaled;
+ @!t0,@!t1:small_number):pointer;
+var @!r,@!s:pointer; {for list manipulation}
+@!w:integer; {tentative coefficient}
+@!threshold:integer;
+@!scaling_down:boolean;
+begin if t0<>t1 then scaling_down:=true@+else scaling_down:=false;
+if t1=dependent then threshold:=half_fraction_threshold
+else threshold:=half_scaled_threshold;
+r:=temp_head;
+while info(p)<>null do
+ begin if scaling_down then
+ if abs(v)<@'2000000 then w:=make_scaled(value(p),v*@'10000)
+ else w:=make_scaled(round_fraction(value(p)),v)
+ else w:=make_scaled(value(p),v);
+ if abs(w)<=threshold then
+ begin s:=link(p); free_node(p,dep_node_size); p:=s;
+ end
+ else begin if abs(w)>=coef_bound then
+ begin fix_needed:=true; type(info(p)):=independent_needing_fix;
+ end;
+ link(r):=p; r:=p; value(p):=w; p:=link(p);
+ end;
+ end;
+link(r):=p; value(p):=make_scaled(value(p),v);
+p_over_v:=link(temp_head);
+end;
+
+@ Here's another utility routine for dependency lists. When an independent
+variable becomes dependent, we want to remove it from all existing
+dependencies. The |p_with_x_becoming_q| function computes the
+dependency list of~|p| after variable~|x| has been replaced by~|q|.
+
+This procedure has basically the same calling conventions as |p_plus_fq|:
+List~|q| is unchanged; list~|p| is destroyed; the constant node and the
+final link are inherited from~|p|; and the fourth parameter tells whether
+or not |p| is |proto_dependent|. However, the global variable |dep_final|
+is not altered if |x| does not occur in list~|p|.
+
+@p function p_with_x_becoming_q(@!p,@!x,@!q:pointer;@!t:small_number):pointer;
+var @!r,@!s:pointer; {for list manipulation}
+@!v:integer; {coefficient of |x|}
+@!sx:integer; {serial number of |x|}
+begin s:=p; r:=temp_head; sx:=value(x);
+while value(info(s))>sx do
+ begin r:=s; s:=link(s);
+ end;
+if info(s)<>x then p_with_x_becoming_q:=p
+else begin link(temp_head):=p; link(r):=link(s); v:=value(s);
+ free_node(s,dep_node_size);
+ p_with_x_becoming_q:=p_plus_fq(link(temp_head),v,q,t,dependent);
+ end;
+end;
+
+@ Here's a simple procedure that reports an error when a variable
+has just received a known value that's out of the required range.
+
+@<Declare basic dependency-list subroutines@>=
+procedure val_too_big(@!x:scaled);
+begin if internal[warning_check]>0 then
+ begin print_err("Value is too large ("); print_scaled(x); print_char(")");
+@.Value is too large@>
+ help4("The equation I just processed has given some variable")@/
+ ("a value of 4096 or more. Continue and I'll try to cope")@/
+ ("with that big value; but it might be dangerous.")@/
+ ("(Set warningcheck:=0 to suppress this message.)");
+ error;
+ end;
+end;
+
+@ When a dependent variable becomes known, the following routine
+removes its dependency list. Here |p| points to the variable, and
+|q| points to the dependency list (which is one node long).
+
+@<Declare basic dependency-list subroutines@>=
+procedure make_known(@!p,@!q:pointer);
+var @!t:dependent..proto_dependent; {the previous type}
+begin prev_dep(link(q)):=prev_dep(p);
+link(prev_dep(p)):=link(q); t:=type(p);
+type(p):=known; value(p):=value(q); free_node(q,dep_node_size);
+if abs(value(p))>=fraction_one then val_too_big(value(p));
+if internal[tracing_equations]>0 then if interesting(p) then
+ begin begin_diagnostic; print_nl("#### ");
+@:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
+ print_variable_name(p); print_char("="); print_scaled(value(p));
+ end_diagnostic(false);
+ end;
+if cur_exp=p then if cur_type=t then
+ begin cur_type:=known; cur_exp:=value(p);
+ free_node(p,value_node_size);
+ end;
+end;
+
+@ The |fix_dependencies| routine is called into action when |fix_needed|
+has been triggered. The program keeps a list~|s| of independent variables
+whose coefficients must be divided by~4.
+
+In unusual cases, this fixup process might reduce one or more coefficients
+to zero, so that a variable will become known more or less by default.
+
+@<Declare basic dependency-list subroutines@>=
+procedure fix_dependencies;
+label done;
+var @!p,@!q,@!r,@!s,@!t:pointer; {list manipulation registers}
+@!x:pointer; {an independent variable}
+begin r:=link(dep_head); s:=null;
+while r<>dep_head do
+ begin t:=r;
+ @<Run through the dependency list for variable |t|, fixing
+ all nodes, and ending with final link~|q|@>;
+ r:=link(q);
+ if q=dep_list(t) then make_known(t,q);
+ end;
+while s<>null do
+ begin p:=link(s); x:=info(s); free_avail(s); s:=p;
+ type(x):=independent; value(x):=value(x)+2;
+ end;
+fix_needed:=false;
+end;
+
+@ @d independent_being_fixed=1 {this variable already appears in |s|}
+
+@<Run through the dependency list for variable |t|...@>=
+r:=value_loc(t); {|link(r)=dep_list(t)|}
+loop@+ begin q:=link(r); x:=info(q);
+ if x=null then goto done;
+ if type(x)<=independent_being_fixed then
+ begin if type(x)<independent_being_fixed then
+ begin p:=get_avail; link(p):=s; s:=p;
+ info(s):=x; type(x):=independent_being_fixed;
+ end;
+ value(q):=value(q) div 4;
+ if value(q)=0 then
+ begin link(r):=link(q); free_node(q,dep_node_size); q:=r;
+ end;
+ end;
+ r:=q;
+ end;
+done:
+
+@ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
+linking it into the list of all known dependencies. We assume that
+|dep_final| points to the final node of list~|p|.
+
+@p procedure new_dep(@!q,@!p:pointer);
+var @!r:pointer; {what used to be the first dependency}
+begin dep_list(q):=p; prev_dep(q):=dep_head;
+r:=link(dep_head); link(dep_final):=r; prev_dep(r):=dep_final;
+link(dep_head):=q;
+end;
+
+@ Here is one of the ways a dependency list gets started.
+The |const_dependency| routine produces a list that has nothing but
+a constant term.
+
+@p function const_dependency(@!v:scaled):pointer;
+begin dep_final:=get_node(dep_node_size);
+value(dep_final):=v; info(dep_final):=null;
+const_dependency:=dep_final;
+end;
+
+@ And here's a more interesting way to start a dependency list from scratch:
+The parameter to |single_dependency| is the location of an
+independent variable~|x|, and the result is the simple dependency list
+`|x+0|'.
+
+In the unlikely event that the given independent variable has been doubled so
+often that we can't refer to it with a nonzero coefficient,
+|single_dependency| returns the simple list `0'. This case can be
+recognized by testing that the returned list pointer is equal to
+|dep_final|.
+
+@p function single_dependency(@!p:pointer):pointer;
+var @!q:pointer; {the new dependency list}
+@!m:integer; {the number of doublings}
+begin m:=value(p) mod s_scale;
+if m>28 then single_dependency:=const_dependency(0)
+else begin q:=get_node(dep_node_size);
+ value(q):=two_to_the[28-m]; info(q):=p;@/
+ link(q):=const_dependency(0); single_dependency:=q;
+ end;
+end;
+
+@ We sometimes need to make an exact copy of a dependency list.
+
+@p function copy_dep_list(@!p:pointer):pointer;
+label done;
+var @!q:pointer; {the new dependency list}
+begin q:=get_node(dep_node_size); dep_final:=q;
+loop@+ begin info(dep_final):=info(p); value(dep_final):=value(p);
+ if info(dep_final)=null then goto done;
+ link(dep_final):=get_node(dep_node_size);
+ dep_final:=link(dep_final); p:=link(p);
+ end;
+done:copy_dep_list:=q;
+end;
+
+@ But how do variables normally become known? Ah, now we get to the heart of the
+equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
+or |proto_dependent| list,~|p|, in which at least one independent variable
+appears. It equates this list to zero, by choosing an independent variable
+with the largest coefficient and making it dependent on the others. The
+newly dependent variable is eliminated from all current dependencies,
+thereby possibly making other dependent variables known.
+
+The given list |p| is, of course, totally destroyed by all this processing.
+
+@p procedure linear_eq(@!p:pointer;@!t:small_number);
+var @!q,@!r,@!s:pointer; {for link manipulation}
+@!x:pointer; {the variable that loses its independence}
+@!n:integer; {the number of times |x| had been halved}
+@!v:integer; {the coefficient of |x| in list |p|}
+@!prev_r:pointer; {lags one step behind |r|}
+@!final_node:pointer; {the constant term of the new dependency list}
+@!w:integer; {a tentative coefficient}
+begin @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
+x:=info(q); n:=value(x) mod s_scale;@/
+@<Divide list |p| by |-v|, removing node |q|@>;
+if internal[tracing_equations]>0 then @<Display the new dependency@>;
+@<Simplify all existing dependencies by substituting for |x|@>;
+@<Change variable |x| from |independent| to |dependent| or |known|@>;
+if fix_needed then fix_dependencies;
+end;
+
+@ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
+q:=p; r:=link(p); v:=value(q);
+while info(r)<>null do
+ begin if abs(value(r))>abs(v) then
+ begin q:=r; v:=value(r);
+ end;
+ r:=link(r);
+ end
+
+@ Here we want to change the coefficients from |scaled| to |fraction|,
+except in the constant term. In the common case of a trivial equation
+like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=dependent|.
+
+@<Divide list |p| by |-v|, removing node |q|@>=
+s:=temp_head; link(s):=p; r:=p;
+repeat if r=q then
+ begin link(s):=link(r); free_node(r,dep_node_size);
+ end
+else begin w:=make_fraction(value(r),v);
+ if abs(w)<=half_fraction_threshold then
+ begin link(s):=link(r); free_node(r,dep_node_size);
+ end
+ else begin value(r):=-w; s:=r;
+ end;
+ end;
+r:=link(s);
+until info(r)=null;
+if t=proto_dependent then value(r):=-make_scaled(value(r),v)
+else if v<>-fraction_one then value(r):=-make_fraction(value(r),v);
+final_node:=r; p:=link(temp_head)
+
+@ @<Display the new dependency@>=
+if interesting(x) then
+ begin begin_diagnostic; print_nl("## "); print_variable_name(x);
+@:]]]\#\#_}{\.{\#\#}@>
+ w:=n;
+ while w>0 do
+ begin print("*4"); w:=w-2;
+ end;
+ print_char("="); print_dependency(p,dependent); end_diagnostic(false);
+ end
+
+@ @<Simplify all existing dependencies by substituting for |x|@>=
+prev_r:=dep_head; r:=link(dep_head);
+while r<>dep_head do
+ begin s:=dep_list(r); q:=p_with_x_becoming_q(s,x,p,type(r));
+ if info(q)=null then make_known(r,q)
+ else begin dep_list(r):=q;
+ repeat q:=link(q);
+ until info(q)=null;
+ prev_r:=q;
+ end;
+ r:=link(prev_r);
+ end
+
+@ @<Change variable |x| from |independent| to |dependent| or |known|@>=
+if n>0 then @<Divide list |p| by $2^n$@>;
+if info(p)=null then
+ begin type(x):=known;
+ value(x):=value(p);
+ if abs(value(x))>=fraction_one then val_too_big(value(x));
+ free_node(p,dep_node_size);
+ if cur_exp=x then if cur_type=independent then
+ begin cur_exp:=value(x); cur_type:=known;
+ free_node(x,value_node_size);
+ end;
+ end
+else begin type(x):=dependent; dep_final:=final_node; new_dep(x,p);
+ if cur_exp=x then if cur_type=independent then cur_type:=dependent;
+ end
+
+@ @<Divide list |p| by $2^n$@>=
+begin s:=temp_head; link(temp_head):=p; r:=p;
+repeat if n>30 then w:=0
+else w:=value(r) div two_to_the[n];
+if (abs(w)<=half_fraction_threshold)and(info(r)<>null) then
+ begin link(s):=link(r);
+ free_node(r,dep_node_size);
+ end
+else begin value(r):=w; s:=r;
+ end;
+r:=link(s);
+until info(s)=null;
+p:=link(temp_head);
+end
+
+@ The |check_mem| procedure, which is used only when \MP\ is being
+debugged, makes sure that the current dependency lists are well formed.
+
+@<Check the list of linear dependencies@>=
+q:=dep_head; p:=link(q);
+while p<>dep_head do
+ begin if prev_dep(p)<>q then
+ begin print_nl("Bad PREVDEP at "); print_int(p);
+@.Bad PREVDEP...@>
+ end;
+ p:=dep_list(p);
+ loop @+begin r:=info(p); q:=p; p:=link(q);
+ if r=null then goto done3;
+ if value(info(p))>=value(r) then
+ begin print_nl("Out of order at "); print_int(p);
+@.Out of order...@>
+ end;
+ end;
+done3: do_nothing;
+ end
+
+@* \[25] Dynamic nonlinear equations.
+Variables of numeric type are maintained by the general scheme of
+independent, dependent, and known values that we have just studied;
+and the components of pair and transform variables are handled in the
+same way. But \MP\ also has five other types of values: \&{boolean},
+\&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
+
+Equations are allowed between nonlinear quantities, but only in a
+simple form. Two variables that haven't yet been assigned values are
+either equal to each other, or they're not.
+
+Before a boolean variable has received a value, its type is |unknown_boolean|;
+similarly, there are variables whose type is |unknown_string|, |unknown_pen|,
+|unknown_path|, and |unknown_picture|. In such cases the value is either
+|null| (which means that no other variables are equivalent to this one), or
+it points to another variable of the same undefined type. The pointers in the
+latter case form a cycle of nodes, which we shall call a ``ring.''
+Rings of undefined variables may include capsules, which arise as
+intermediate results within expressions or as \&{expr} parameters to macros.
+
+When one member of a ring receives a value, the same value is given to
+all the other members. In the case of paths and pictures, this implies
+making separate copies of a potentially large data structure; users should
+restrain their enthusiasm for such generality, unless they have lots and
+lots of memory space.
+
+@ The following procedure is called when a capsule node is being
+added to a ring (e.g., when an unknown variable is mentioned in an expression).
+
+@p function new_ring_entry(@!p:pointer):pointer;
+var q:pointer; {the new capsule node}
+begin q:=get_node(value_node_size); name_type(q):=capsule;
+type(q):=type(p);
+if value(p)=null then value(q):=p@+else value(q):=value(p);
+value(p):=q;
+new_ring_entry:=q;
+end;
+
+@ Conversely, we might delete a capsule or a variable before it becomes known.
+The following procedure simply detaches a quantity from its ring,
+without recycling the storage.
+
+@<Declare the recycling subroutines@>=
+procedure ring_delete(@!p:pointer);
+var @!q:pointer;
+begin q:=value(p);
+if q<>null then if q<>p then
+ begin while value(q)<>p do q:=value(q);
+ value(q):=value(p);
+ end;
+end;
+
+@ Eventually there might be an equation that assigns values to all of the
+variables in a ring. The |nonlinear_eq| subroutine does the necessary
+propagation of values.
+
+If the parameter |flush_p| is |true|, node |p| itself needn't receive a
+value, it will soon be recycled.
+
+@p procedure nonlinear_eq(@!v:integer;@!p:pointer;@!flush_p:boolean);
+var @!t:small_number; {the type of ring |p|}
+@!q,@!r:pointer; {link manipulation registers}
+begin t:=type(p)-unknown_tag; q:=value(p);
+if flush_p then type(p):=vacuous@+else p:=q;
+repeat r:=value(q); type(q):=t;
+case t of
+boolean_type: value(q):=v;
+string_type: begin value(q):=v; add_str_ref(v);
+ end;
+pen_type: value(q):=copy_pen(v);
+path_type: value(q):=copy_path(v);
+picture_type: begin value(q):=v; add_edge_ref(v);
+ end;
+end; {there ain't no more cases}
+q:=r;
+until q=p;
+end;
+
+@ If two members of rings are equated, and if they have the same type,
+the |ring_merge| procedure is called on to make them equivalent.
+
+@p procedure ring_merge(@!p,@!q:pointer);
+label exit;
+var @!r:pointer; {traverses one list}
+begin r:=value(p);
+while r<>p do
+ begin if r=q then
+ begin @<Exclaim about a redundant equation@>;
+ return;
+ end;
+ r:=value(r);
+ end;
+r:=value(p); value(p):=value(q); value(q):=r;
+exit:end;
+
+@ @<Exclaim about a redundant equation@>=
+begin print_err("Redundant equation");@/
+@.Redundant equation@>
+help2("I already knew that this equation was true.")@/
+ ("But perhaps no harm has been done; let's continue.");@/
+put_get_error;
+end
+
+@* \[26] Introduction to the syntactic routines.
+Let's pause a moment now and try to look at the Big Picture.
+The \MP\ program consists of three main parts: syntactic routines,
+semantic routines, and output routines. The chief purpose of the
+syntactic routines is to deliver the user's input to the semantic routines,
+while parsing expressions and locating operators and operands. The
+semantic routines act as an interpreter responding to these operators,
+which may be regarded as commands. And the output routines are
+periodically called on to produce compact font descriptions that can be
+used for typesetting or for making interim proof drawings. We have
+discussed the basic data structures and many of the details of semantic
+operations, so we are good and ready to plunge into the part of \MP\ that
+actually controls the activities.
+
+Our current goal is to come to grips with the |get_next| procedure,
+which is the keystone of \MP's input mechanism. Each call of |get_next|
+sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
+representing the next input token.
+$$\vbox{\halign{#\hfil\cr
+ \hbox{|cur_cmd| denotes a command code from the long list of codes
+ given earlier;}\cr
+ \hbox{|cur_mod| denotes a modifier of the command code;}\cr
+ \hbox{|cur_sym| is the hash address of the symbolic token that was
+ just scanned,}\cr
+ \hbox{\qquad or zero in the case of a numeric or string
+ or capsule token.}\cr}}$$
+Underlying this external behavior of |get_next| is all the machinery
+necessary to convert from character files to tokens. At a given time we
+may be only partially finished with the reading of several files (for
+which \&{input} was specified), and partially finished with the expansion
+of some user-defined macros and/or some macro parameters, and partially
+finished reading some text that the user has inserted online,
+and so on. When reading a character file, the characters must be
+converted to tokens; comments and blank spaces must
+be removed, numeric and string tokens must be evaluated.
+
+To handle these situations, which might all be present simultaneously,
+\MP\ uses various stacks that hold information about the incomplete
+activities, and there is a finite state control for each level of the
+input mechanism. These stacks record the current state of an implicitly
+recursive process, but the |get_next| procedure is not recursive.
+
+@<Glob...@>=
+@!cur_cmd: eight_bits; {current command set by |get_next|}
+@!cur_mod: integer; {operand of current command}
+@!cur_sym: halfword; {hash address of current symbol}
+
+@ The |print_cmd_mod| routine prints a symbolic interpretation of a
+command code and its modifier.
+It consists of a rather tedious sequence of print
+commands, and most of it is essentially an inverse to the |primitive|
+routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
+all of this procedure appears elsewhere in the program, together with the
+corresponding |primitive| calls.
+
+@<Declare the procedure called |print_cmd_mod|@>=
+procedure print_cmd_mod(@!c,@!m:integer);
+begin case c of
+@t\4@>@<Cases of |print_cmd_mod| for symbolic printing of primitives@>@/
+othercases print("[unknown command code!]")
+endcases;
+end;
+
+@ Here is a procedure that displays a given command in braces, in the
+user's transcript file.
+
+@d show_cur_cmd_mod==show_cmd_mod(cur_cmd,cur_mod)
+
+@p procedure show_cmd_mod(@!c,@!m:integer);
+begin begin_diagnostic; print_nl("{");
+print_cmd_mod(c,m); print_char("}");
+end_diagnostic(false);
+end;
+
+@* \[27] Input stacks and states.
+The state of \MP's input mechanism appears in the input stack, whose
+entries are records with five fields, called |index|, |start|, |loc|,
+|limit|, and |name|. The top element of this stack is maintained in a
+global variable for which no subscripting needs to be done; the other
+elements of the stack appear in an array. Hence the stack is declared thus:
+
+@<Types...@>=
+@!in_state_record = record
+ @!index_field: quarterword;
+ @!start_field,@!loc_field, @!limit_field, @!name_field: halfword;
+ end;
+
+@ @<Glob...@>=
+@!input_stack : array[0..stack_size] of in_state_record;
+@!input_ptr : 0..stack_size; {first unused location of |input_stack|}
+@!max_in_stack: 0..stack_size; {largest value of |input_ptr| when pushing}
+@!cur_input : in_state_record; {the ``top'' input state}
+
+@ We've already defined the special variable |@!loc==cur_input.loc_field|
+in our discussion of basic input-output routines. The other components of
+|cur_input| are defined in the same way:
+
+@d index==cur_input.index_field {reference for buffer information}
+@d start==cur_input.start_field {starting position in |buffer|}
+@d limit==cur_input.limit_field {end of current line in |buffer|}
+@d name==cur_input.name_field {name of the current file}
+
+@ Let's look more closely now at the five control variables
+(|index|,~|start|,~|loc|,~|limit|,~|name|),
+assuming that \MP\ is reading a line of characters that have been input
+from some file or from the user's terminal. There is an array called
+|buffer| that acts as a stack of all lines of characters that are
+currently being read from files, including all lines on subsidiary
+levels of the input stack that are not yet completed. \MP\ will return to
+the other lines when it is finished with the present input file.
+
+(Incidentally, on a machine with byte-oriented addressing, it would be
+appropriate to combine |buffer| with the |str_pool| array,
+letting the buffer entries grow downward from the top of the string pool
+and checking that these two tables don't bump into each other.)
+
+The line we are currently working on begins in position |start| of the
+buffer; the next character we are about to read is |buffer[loc]|; and
+|limit| is the location of the last character present. We always have
+|loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
+that the end of a line is easily sensed.
+
+The |name| variable is a string number that designates the name of
+the current file, if we are reading an ordinary text file. Special codes
+|is_term..max_spec_src| indicate other sources of input text.
+
+@d is_term=0 {|name| value when reading from the terminal for normal input}
+@d is_read=1 {|name| value when executing a \&{readstring} or \&{readfrom}}
+@d is_scantok=2 {|name| value when reading text generated by \&{scantokens}}
+@d max_spec_src=is_scantok
+
+@ Additional information about the current line is available via the
+|index| variable, which counts how many lines of characters are present
+in the buffer below the current level. We have |index=0| when reading
+from the terminal and prompting the user for each line; then if the user types,
+e.g., `\.{input figs}', we will have |index=1| while reading
+the file \.{figs.mp}. However, it does not follow that |index| is the
+same as the input stack pointer, since many of the levels on the input
+stack may come from token lists and some |index| values may correspond
+to \.{MPX} files that are not currently on the stack.
+
+The global variable |in_open| is equal to the highest |index| value counting
+\.{MPX} files but excluding token-list input levels. Thus, the number of
+partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
+when we are not reading a token list.
+
+If we are not currently reading from the terminal,
+we are reading from the file variable |input_file[index]|. We use
+the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
+and |cur_file| as an abbreviation for |input_file[index]|.
+
+When \MP\ is not reading from the terminal, the global variable |line| contains
+the line number in the current file, for use in error messages. More precisely,
+|line| is a macro for |line_stack[index]| and the |line_stack| array gives
+the line number for each file in the |input_file| array.
+
+When an \.{MPX} file is opened the file name is stored in the |mpx_name|
+array so that the name doesn't get lost when the file is temporarily removed
+from the input stack.
+Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
+and it contains translated \TeX\ pictures for |input_file[k-1]|.
+Since this is not an \.{MPX} file, we have
+$$ \hbox{|mpx_name[k-1]<=absent|}. $$
+This |name| field is set to |finished| when |input_file[k]| is completely
+read.
+
+If more information about the input state is needed, it can be
+included in small arrays like those shown here. For example,
+the current page or segment number in the input file might be put
+into a variable |@!page|, that is really a macro for the current entry
+in `\ignorespaces|@!page_stack:array[0..max_in_open] of integer|\unskip'
+by analogy with |line_stack|.
+@^system dependencies@>
+
+@d terminal_input==(name=is_term) {are we reading from the terminal?}
+@d cur_file==input_file[index] {the current |alpha_file| variable}
+@d line==line_stack[index] {current line number in the current source file}
+@d in_name==iname_stack[index] {a string used to construct \.{MPX} file names}
+@d in_area==iarea_stack[index] {another string for naming \.{MPX} files}
+@d absent=1 {|name_field| value for unused |mpx_in_stack| entries}
+@d mpx_reading==(mpx_name[index]>absent)
+ {when reading a file, is it an \.{MPX} file?}
+@d finished=0
+ {|name_field| value when the corresponding \.{MPX} file is finished}
+
+@<Glob...@>=
+@!in_open : 0..max_in_open; {the number of lines in the buffer, less one}
+@!open_parens : 0..max_in_open; {the number of open text files}
+@!input_file : array[1..max_in_open] of alpha_file;
+@!line_stack : array[0..max_in_open] of integer; {the line number for each file}
+@!iname_stack : array[0..max_in_open] of str_number;
+ {used for naming \.{MPX} files}
+@!iarea_stack : array[0..max_in_open] of str_number;
+ {used for naming \.{MPX} files}
+@!mpx_name : array[0..max_in_open] of halfword;
+
+@ However, all this discussion about input state really applies only to the
+case that we are inputting from a file. There is another important case,
+namely when we are currently getting input from a token list. In this case
+|index>max_in_open|, and the conventions about the other state variables
+are different:
+
+\yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
+the node that will be read next. If |loc=null|, the token list has been
+fully read.
+
+\yskip\hang|start| points to the first node of the token list; this node
+may or may not contain a reference count, depending on the type of token
+list involved.
+
+\yskip\hang|token_type|, which takes the place of |index| in the
+discussion above, is a code number that explains what kind of token list
+is being scanned.
+
+\yskip\hang|name| points to the |eqtb| address of the control sequence
+being expanded, if the current token list is a macro not defined by
+\&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
+can be deduced by looking at their first two parameters.
+
+\yskip\hang|param_start|, which takes the place of |limit|, tells where
+the parameters of the current macro or loop text begin in the |param_stack|.
+
+\yskip\noindent The |token_type| can take several values, depending on
+where the current token list came from:
+
+\yskip
+\indent|forever_text|, if the token list being scanned is the body of
+a \&{forever} loop;
+
+\indent|loop_text|, if the token list being scanned is the body of
+a \&{for} or \&{forsuffixes} loop;
+
+\indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
+
+\indent|backed_up|, if the token list being scanned has been inserted as
+`to be read again'.
+
+\indent|inserted|, if the token list being scanned has been inserted as
+part of error recovery;
+
+\indent|macro|, if the expansion of a user-defined symbolic token is being
+scanned.
+
+\yskip\noindent
+The token list begins with a reference count if and only if |token_type=
+macro|.
+@^reference counts@>
+
+@d token_type==index {type of current token list}
+@d token_state==(index>max_in_open) {are we scanning a token list?}
+@d file_state==(index<=max_in_open) {are we scanning a file line?}
+@d param_start==limit {base of macro parameters in |param_stack|}
+@d forever_text=max_in_open+1 {|token_type| code for loop texts}
+@d loop_text=max_in_open+2 {|token_type| code for loop texts}
+@d parameter=max_in_open+3 {|token_type| code for parameter texts}
+@d backed_up=max_in_open+4 {|token_type| code for texts to be reread}
+@d inserted=max_in_open+5 {|token_type| code for inserted texts}
+@d macro=max_in_open+6 {|token_type| code for macro replacement texts}
+
+@ The |param_stack| is an auxiliary array used to hold pointers to the token
+lists for parameters at the current level and subsidiary levels of input.
+This stack grows at a different rate from the others.
+
+@<Glob...@>=
+@!param_stack:array [0..param_size] of pointer;
+ {token list pointers for parameters}
+@!param_ptr:0..param_size; {first unused entry in |param_stack|}
+@!max_param_stack:integer;
+ {largest value of |param_ptr|}
+
+@ Notice that the |line| isn't valid when |token_state| is true because it
+depends on |index|. If we really need to know the line number for the
+topmost file in the index stack we use the following function. If a page
+number or other information is needed, this routine should be modified to
+compute it as well.
+@^system dependencies@>
+
+@<Declare a function called |true_line|@>=
+function true_line: integer;
+var @!k:0..stack_size; {an index into the input stack}
+begin if file_state and (name>max_spec_src) then true_line:=line
+else begin k:=input_ptr;
+ while (k>0)and(input_stack[k].index_field>max_in_open)or@|
+ (input_stack[k].name_field<=max_spec_src) do
+ decr(k);
+ true_line:=line_stack[k];
+ end;
+end;
+
+@ Thus, the ``current input state'' can be very complicated indeed; there
+can be many levels and each level can arise in a variety of ways. The
+|show_context| procedure, which is used by \MP's error-reporting routine to
+print out the current input state on all levels down to the most recent
+line of characters from an input file, illustrates most of these conventions.
+The global variable |file_ptr| contains the lowest level that was
+displayed by this procedure.
+
+@<Glob...@>=
+@!file_ptr:0..stack_size; {shallowest level shown by |show_context|}
+
+@ The status at each level is indicated by printing two lines, where the first
+line indicates what was read so far and the second line shows what remains
+to be read. The context is cropped, if necessary, so that the first line
+contains at most |half_error_line| characters, and the second contains
+at most |error_line|. Non-current input levels whose |token_type| is
+`|backed_up|' are shown only if they have not been fully read.
+
+@p procedure show_context; {prints where the scanner is}
+label done;
+var @!old_setting:0..max_selector; {saved |selector| setting}
+@<Local variables for formatting calculations@>@/
+begin file_ptr:=input_ptr; input_stack[file_ptr]:=cur_input;
+ {store current state}
+loop@+begin cur_input:=input_stack[file_ptr]; {enter into the context}
+ @<Display the current context@>;
+ if file_state then
+ if (name>max_spec_src) or (file_ptr=0) then goto done;
+ decr(file_ptr);
+ end;
+done: cur_input:=input_stack[input_ptr]; {restore original state}
+end;
+
+@ @<Display the current context@>=
+if (file_ptr=input_ptr) or file_state or
+ (token_type<>backed_up) or (loc<>null) then
+ {we omit backed-up token lists that have already been read}
+ begin tally:=0; {get ready to count characters}
+ old_setting:=selector;
+ if file_state then
+ begin @<Print location of current line@>;
+ @<Pseudoprint the line@>;
+ end
+ else begin @<Print type of token list@>;
+ @<Pseudoprint the token list@>;
+ end;
+ selector:=old_setting; {stop pseudoprinting}
+ @<Print two lines using the tricky pseudoprinted information@>;
+ end
+
+@ This routine should be changed, if necessary, to give the best possible
+indication of where the current line resides in the input file.
+For example, on some systems it is best to print both a page and line number.
+@^system dependencies@>
+
+@<Print location of current line@>=
+if name>max_spec_src then
+ begin print_nl("l."); print_int(true_line);
+ end
+else if terminal_input then
+ if file_ptr=0 then print_nl("<*>") @+else print_nl("<insert>")
+else if name=is_scantok then print_nl("<scantokens>")
+else print_nl("<read>");
+print_char(" ")
+
+@ @<Print type of token list@>=
+case token_type of
+forever_text: print_nl("<forever> ");
+loop_text: @<Print the current loop value@>;
+parameter: print_nl("<argument> ");
+backed_up: if loc=null then print_nl("<recently read> ")
+ else print_nl("<to be read again> ");
+inserted: print_nl("<inserted text> ");
+macro: begin print_ln;
+ if name<>null then print(text(name))
+ else @<Print the name of a \&{vardef}'d macro@>;
+ print("->");
+ end;
+othercases print_nl("?") {this should never happen}
+@.?\relax@>
+endcases
+
+@ The parameter that corresponds to a loop text is either a token list
+(in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
+We'll discuss capsules later; for now, all we need to know is that
+the |link| field in a capsule parameter is |void| and that
+|print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
+
+@d void==null+1 {a null pointer different from |null|}
+
+@<Print the current loop value@>=
+begin print_nl("<for("); p:=param_stack[param_start];
+if p<>null then
+ if link(p)=void then print_exp(p,0) {we're in a \&{for} loop}
+ else show_token_list(p,null,20,tally);
+print(")> ");
+end
+
+@ The first two parameters of a macro defined by \&{vardef} will be token
+lists representing the macro's prefix and ``at point.'' By putting these
+together, we get the macro's full name.
+
+@<Print the name of a \&{vardef}'d macro@>=
+begin p:=param_stack[param_start];
+if p=null then show_token_list(param_stack[param_start+1],null,20,tally)
+else begin q:=p;
+ while link(q)<>null do q:=link(q);
+ link(q):=param_stack[param_start+1];
+ show_token_list(p,null,20,tally);
+ link(q):=null;
+ end;
+end
+
+@ Now it is necessary to explain a little trick. We don't want to store a long
+string that corresponds to a token list, because that string might take up
+lots of memory; and we are printing during a time when an error message is
+being given, so we dare not do anything that might overflow one of \MP's
+tables. So `pseudoprinting' is the answer: We enter a mode of printing
+that stores characters into a buffer of length |error_line|, where character
+$k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
+|k<trick_count|, otherwise character |k| is dropped. Initially we set
+|tally:=0| and |trick_count:=1000000|; then when we reach the
+point where transition from line 1 to line 2 should occur, we
+set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
+tally+1+error_line-half_error_line)|. At the end of the
+pseudoprinting, the values of |first_count|, |tally|, and
+|trick_count| give us all the information we need to print the two lines,
+and all of the necessary text is in |trick_buf|.
+
+Namely, let |l| be the length of the descriptive information that appears
+on the first line. The length of the context information gathered for that
+line is |k=first_count|, and the length of the context information
+gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
+where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
+descriptive information on line~1, and set |n:=l+k|; here |n| is the
+length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
+and print `\.{...}' followed by
+$$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
+where subscripts of |trick_buf| are circular modulo |error_line|. The
+second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
+unless |n+m>error_line|; in the latter case, further cropping is done.
+This is easier to program than to explain.
+
+@<Local variables for formatting...@>=
+@!i:0..buf_size; {index into |buffer|}
+@!l:integer; {length of descriptive information on line 1}
+@!m:integer; {context information gathered for line 2}
+@!n:0..error_line; {length of line 1}
+@!p: integer; {starting or ending place in |trick_buf|}
+@!q: integer; {temporary index}
+
+@ The following code tells the print routines to gather
+the desired information.
+
+@d begin_pseudoprint==
+ begin l:=tally; tally:=0; selector:=pseudo;
+ trick_count:=1000000;
+ end
+@d set_trick_count==
+ begin first_count:=tally;
+ trick_count:=tally+1+error_line-half_error_line;
+ if trick_count<error_line then trick_count:=error_line;
+ end
+
+@ And the following code uses the information after it has been gathered.
+
+@<Print two lines using the tricky pseudoprinted information@>=
+if trick_count=1000000 then set_trick_count;
+ {|set_trick_count| must be performed}
+if tally<trick_count then m:=tally-first_count
+else m:=trick_count-first_count; {context on line 2}
+if l+first_count<=half_error_line then
+ begin p:=0; n:=l+first_count;
+ end
+else begin print("..."); p:=l+first_count-half_error_line+3;
+ n:=half_error_line;
+ end;
+for q:=p to first_count-1 do print_char(trick_buf[q mod error_line]);
+print_ln;
+for q:=1 to n do print_char(" "); {print |n| spaces to begin line~2}
+if m+n<=error_line then p:=first_count+m else p:=first_count+(error_line-n-3);
+for q:=first_count to p-1 do print_char(trick_buf[q mod error_line]);
+if m+n>error_line then print("...")
+
+@ But the trick is distracting us from our current goal, which is to
+understand the input state. So let's concentrate on the data structures that
+are being pseudoprinted as we finish up the |show_context| procedure.
+
+@<Pseudoprint the line@>=
+begin_pseudoprint;
+if limit>0 then for i:=start to limit-1 do
+ begin if i=loc then set_trick_count;
+ print(buffer[i]);
+ end
+
+@ @<Pseudoprint the token list@>=
+begin_pseudoprint;
+if token_type<>macro then show_token_list(start,loc,100000,0)
+else show_macro(start,loc,100000)
+
+@ Here is the missing piece of |show_token_list| that is activated when the
+token beginning line~2 is about to be shown:
+
+@<Do magic computation@>=set_trick_count
+
+@* \[28] Maintaining the input stacks.
+The following subroutines change the input status in commonly needed ways.
+
+First comes |push_input|, which stores the current state and creates a
+new level (having, initially, the same properties as the old).
+
+@d push_input==@t@> {enter a new input level, save the old}
+ begin if input_ptr>max_in_stack then
+ begin max_in_stack:=input_ptr;
+ if input_ptr=stack_size then overflow("input stack size",stack_size);
+@:MetaPost capacity exceeded input stack size}{\quad input stack size@>
+ end;
+ input_stack[input_ptr]:=cur_input; {stack the record}
+ incr(input_ptr);
+ end
+
+@ And of course what goes up must come down.
+
+@d pop_input==@t@> {leave an input level, re-enter the old}
+ begin decr(input_ptr); cur_input:=input_stack[input_ptr];
+ end
+
+@ Here is a procedure that starts a new level of token-list input, given
+a token list |p| and its type |t|. If |t=macro|, the calling routine should
+set |name|, reset~|loc|, and increase the macro's reference count.
+
+@d back_list(#)==begin_token_list(#,backed_up) {backs up a simple token list}
+
+@p procedure begin_token_list(@!p:pointer;@!t:quarterword);
+begin push_input; start:=p; token_type:=t;
+param_start:=param_ptr; loc:=p;
+end;
+
+@ When a token list has been fully scanned, the following computations
+should be done as we leave that level of input.
+@^inner loop@>
+
+@p procedure end_token_list; {leave a token-list input level}
+label done;
+var @!p:pointer; {temporary register}
+begin if token_type>=backed_up then {token list to be deleted}
+ if token_type<=inserted then
+ begin flush_token_list(start); goto done;
+ end
+ else delete_mac_ref(start); {update reference count}
+while param_ptr>param_start do {parameters must be flushed}
+ begin decr(param_ptr);
+ p:=param_stack[param_ptr];
+ if p<>null then
+ if link(p)=void then {it's an \&{expr} parameter}
+ begin recycle_value(p); free_node(p,value_node_size);
+ end
+ else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
+ end;
+done: pop_input; check_interrupt;
+end;
+
+@ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
+token by the |cur_tok| routine.
+@^inner loop@>
+
+@p @t\4@>@<Declare the procedure called |make_exp_copy|@>@;@/
+function cur_tok:pointer;
+var @!p:pointer; {a new token node}
+@!save_type:small_number; {|cur_type| to be restored}
+@!save_exp:integer; {|cur_exp| to be restored}
+begin if cur_sym=0 then
+ if cur_cmd=capsule_token then
+ begin save_type:=cur_type; save_exp:=cur_exp;
+ make_exp_copy(cur_mod); p:=stash_cur_exp; link(p):=null;
+ cur_type:=save_type; cur_exp:=save_exp;
+ end
+ else begin p:=get_node(token_node_size);
+ value(p):=cur_mod; name_type(p):=token;
+ if cur_cmd=numeric_token then type(p):=known
+ else type(p):=string_type;
+ end
+else begin fast_get_avail(p); info(p):=cur_sym;
+ end;
+cur_tok:=p;
+end;
+
+@ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
+seen. The |back_input| procedure takes care of this by putting the token
+just scanned back into the input stream, ready to be read again.
+If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
+
+@p procedure back_input; {undoes one token of input}
+var @!p:pointer; {a token list of length one}
+begin p:=cur_tok;
+while token_state and(loc=null) do end_token_list; {conserve stack space}
+back_list(p);
+end;
+
+@ The |back_error| routine is used when we want to restore or replace an
+offending token just before issuing an error message. We disable interrupts
+during the call of |back_input| so that the help message won't be lost.
+
+@p procedure back_error; {back up one token and call |error|}
+begin OK_to_interrupt:=false; back_input; OK_to_interrupt:=true; error;
+end;
+@#
+procedure ins_error; {back up one inserted token and call |error|}
+begin OK_to_interrupt:=false; back_input; token_type:=inserted;
+OK_to_interrupt:=true; error;
+end;
+
+@ The |begin_file_reading| procedure starts a new level of input for lines
+of characters to be read from a file, or as an insertion from the
+terminal. It does not take care of opening the file, nor does it set |loc|
+or |limit| or |line|.
+@^system dependencies@>
+
+@p procedure begin_file_reading;
+begin if in_open=max_in_open then overflow("text input levels",max_in_open);
+@:MetaPost capacity exceeded text input levels}{\quad text input levels@>
+if first=buf_size then overflow("buffer size",buf_size);
+@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
+incr(in_open); push_input; index:=in_open;
+mpx_name[index]:=absent;
+start:=first;
+name:=is_term; {|terminal_input| is now |true|}
+end;
+
+@ Conversely, the variables must be downdated when such a level of input
+is finished. Any associated \.{MPX} file must also be closed and popped
+off the file stack.
+
+@p procedure end_file_reading;
+begin if in_open>index then
+ if (mpx_name[in_open]=absent)or(name<=max_spec_src) then confusion("endinput")
+@:this can't happen endinput}{\quad endinput@>
+ else begin a_close(input_file[in_open]); {close an \.{MPX} file}
+ delete_str_ref(mpx_name[in_open]);
+ decr(in_open);
+ end;
+first:=start;
+if index<>in_open then confusion("endinput");
+if name>max_spec_src then
+ begin a_close(cur_file);
+ delete_str_ref(name);
+ delete_str_ref(in_name); delete_str_ref(in_area);
+ end;
+pop_input; decr(in_open);
+end;
+
+@ Here is a function that tries to resume input from an \.{MPX} file already
+associated with the current input file. It returns |false| if this doesn't
+work.
+
+@p function begin_mpx_reading:boolean;
+begin if in_open<>index+1 then begin_mpx_reading:=false
+else begin if mpx_name[in_open]<=absent then confusion("mpx");
+@:this can't happen mpx}{\quad mpx@>
+ if first=buf_size then overflow("buffer size",buf_size);
+@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
+ push_input; index:=in_open;
+ start:=first;
+ name:=mpx_name[in_open]; add_str_ref(name);
+ @<Put an empty line in the input buffer@>;
+ begin_mpx_reading:=true;
+ end;
+end;
+
+@ This procedure temporarily stops reading an \.{MPX} file.
+
+@p procedure end_mpx_reading;
+begin if in_open<>index then confusion("mpx");
+@:this can't happen mpx}{\quad mpx@>
+if loc<limit then
+ @<Complain that we are not at the end of a line in the \.{MPX} file@>;
+first:=start;
+pop_input;
+end;
+
+@ Here we enforce a restriction that simplifies the input stacks considerably.
+This should not inconvenience the user because \.{MPX} files are generated
+by an auxiliary program called \.{DVItoMP}.
+
+@ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
+begin print_err("`mpxbreak' must be at the end of a line");
+help4("This file contains picture expressions for btex...etex")@/
+ ("blocks. Such files are normally generated automatically")@/
+ ("but this one seems to be messed up. I'm going to ignore")@/
+ ("the rest of this line.");@/
+error;
+end
+
+@ In order to keep the stack from overflowing during a long sequence of
+inserted `\.{show}' commands, the following routine removes completed
+error-inserted lines from memory.
+
+@p procedure clear_for_error_prompt;
+begin while file_state and terminal_input and@|
+ (input_ptr>0)and(loc=limit) do end_file_reading;
+print_ln; clear_terminal;
+end;
+
+@ To get \MP's whole input mechanism going, we perform the following
+actions.
+
+@<Initialize the input routines@>=
+begin input_ptr:=0; max_in_stack:=0;
+in_open:=0; open_parens:=0; max_buf_stack:=0;
+param_ptr:=0; max_param_stack:=0;
+first:=1;
+start:=1; index:=0; line:=0; name:=is_term;
+mpx_name[0]:=absent;
+force_eof:=false;
+if not init_terminal then goto final_end;
+limit:=last; first:=last+1; {|init_terminal| has set |loc| and |last|}
+end;
+
+@* \[29] Getting the next token.
+The heart of \MP's input mechanism is the |get_next| procedure, which
+we shall develop in the next few sections of the program. Perhaps we
+shouldn't actually call it the ``heart,'' however; it really acts as \MP's
+eyes and mouth, reading the source files and gobbling them up. And it also
+helps \MP\ to regurgitate stored token lists that are to be processed again.
+
+The main duty of |get_next| is to input one token and to set |cur_cmd|
+and |cur_mod| to that token's command code and modifier. Furthermore, if
+the input token is a symbolic token, that token's |hash| address
+is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
+
+Underlying this simple description is a certain amount of complexity
+because of all the cases that need to be handled.
+However, the inner loop of |get_next| is reasonably short and fast.
+
+@ Before getting into |get_next|, we need to consider a mechanism by which
+\MP\ helps keep errors from propagating too far. Whenever the program goes
+into a mode where it keeps calling |get_next| repeatedly until a certain
+condition is met, it sets |scanner_status| to some value other than |normal|.
+Then if an input file ends, or if an `\&{outer}' symbol appears,
+an appropriate error recovery will be possible.
+
+The global variable |warning_info| helps in this error recovery by providing
+additional information. For example, |warning_info| might indicate the
+name of a macro whose replacement text is being scanned.
+
+@d normal=0 {|scanner_status| at ``quiet times''}
+@d skipping=1 {|scanner_status| when false conditional text is being skipped}
+@d flushing=2 {|scanner_status| when junk after a statement is being ignored}
+@d absorbing=3 {|scanner_status| when a \&{text} parameter is being scanned}
+@d var_defining=4 {|scanner_status| when a \&{vardef} is being scanned}
+@d op_defining=5 {|scanner_status| when a macro \&{def} is being scanned}
+@d loop_defining=6 {|scanner_status| when a \&{for} loop is being scanned}
+@d tex_flushing=7 {|scanner_status| when skipping \TeX\ material}
+
+@<Glob...@>=
+@!scanner_status:normal..tex_flushing; {are we scanning at high speed?}
+@!warning_info:integer; {if so, what else do we need to know,
+ in case an error occurs?}
+
+@ @<Initialize the input routines@>=
+scanner_status:=normal;
+
+@ The following subroutine
+is called when an `\&{outer}' symbolic token has been scanned or
+when the end of a file has been reached. These two cases are distinguished
+by |cur_sym|, which is zero at the end of a file.
+
+@p function check_outer_validity:boolean;
+var @!p:pointer; {points to inserted token list}
+begin if scanner_status=normal then check_outer_validity:=true
+else if scanner_status=tex_flushing then
+ @<Check if the file has ended while flushing \TeX\ material and set the
+ result value for |check_outer_validity|@>
+else begin deletions_allowed:=false;
+ @<Back up an outer symbolic token so that it can be reread@>;
+ if scanner_status>skipping then
+ @<Tell the user what has run away and try to recover@>
+ else begin print_err("Incomplete if; all text was ignored after line ");
+@.Incomplete if...@>
+ print_int(warning_info);@/
+ help3("A forbidden `outer' token occurred in skipped text.")@/
+ ("This kind of error happens when you say `if...' and forget")@/
+ ("the matching `fi'. I've inserted a `fi'; this might work.");
+ if cur_sym=0 then help_line[2]:=@|
+ "The file ended while I was skipping conditional text.";
+ cur_sym:=frozen_fi; ins_error;
+ end;
+ deletions_allowed:=true; check_outer_validity:=false;
+ end;
+end;
+
+@ @<Check if the file has ended while flushing \TeX\ material and set...@>=
+if cur_sym<>0 then check_outer_validity:=true
+else begin deletions_allowed:=false;
+ print_err("TeX mode didn't end; all text was ignored after line ");
+ print_int(warning_info);
+ help2("The file ended while I was looking for the `etex' to")@/
+ ("finish this TeX material. I've inserted `etex' now.");@/
+ cur_sym := frozen_etex;
+ ins_error;@/
+ deletions_allowed:=true; check_outer_validity:=false;
+ end
+
+@ @<Back up an outer symbolic token so that it can be reread@>=
+if cur_sym<>0 then
+ begin p:=get_avail; info(p):=cur_sym;
+ back_list(p); {prepare to read the symbolic token again}
+ end
+
+@ @<Tell the user what has run away...@>=
+begin runaway; {print the definition-so-far}
+if cur_sym=0 then print_err("File ended")
+@.File ended while scanning...@>
+else begin print_err("Forbidden token found");
+@.Forbidden token found...@>
+ end;
+print(" while scanning ");
+help4("I suspect you have forgotten an `enddef',")@/
+("causing me to read past where you wanted me to stop.")@/
+("I'll try to recover; but if the error is serious,")@/
+("you'd better type `E' or `X' now and fix your file.");@/
+case scanner_status of
+@t\4@>@<Complete the error message,
+ and set |cur_sym| to a token that might help recover from the error@>@;
+end; {there are no other cases}
+ins_error;
+end
+
+@ As we consider various kinds of errors, it is also appropriate to
+change the first line of the help message just given; |help_line[3]|
+points to the string that might be changed.
+
+@<Complete the error message,...@>=
+flushing: begin print("to the end of the statement");
+ help_line[3]:="A previous error seems to have propagated,";
+ cur_sym:=frozen_semicolon;
+ end;
+absorbing: begin print("a text argument");
+ help_line[3]:="It seems that a right delimiter was left out,";
+ if warning_info=0 then cur_sym:=frozen_end_group
+ else begin cur_sym:=frozen_right_delimiter;
+ equiv(frozen_right_delimiter):=warning_info;
+ end;
+ end;
+var_defining, op_defining: begin print("the definition of ");
+ if scanner_status=op_defining then print(text(warning_info))
+ else print_variable_name(warning_info);
+ cur_sym:=frozen_end_def;
+ end;
+loop_defining: begin print("the text of a "); print(text(warning_info));
+ print(" loop");
+ help_line[3]:="I suspect you have forgotten an `endfor',";
+ cur_sym:=frozen_end_for;
+ end;
+
+@ The |runaway| procedure displays the first part of the text that occurred
+when \MP\ began its special |scanner_status|, if that text has been saved.
+
+@<Declare the procedure called |runaway|@>=
+procedure runaway;
+begin if scanner_status>flushing then
+ begin print_nl("Runaway ");
+ case scanner_status of
+ absorbing: print("text?");
+ var_defining,op_defining: print("definition?");
+ loop_defining: print("loop?");
+ end; {there are no other cases}
+ print_ln; show_token_list(link(hold_head),null,error_line-10,0);
+ end;
+end;
+
+@ We need to mention a procedure that may be called by |get_next|.
+
+@p procedure@?firm_up_the_line; forward;
+
+@ And now we're ready to take the plunge into |get_next| itself.
+Note that the behavior depends on the |scanner_status| because percent signs
+and double quotes need to be passed over when skipping TeX material.
+
+@d switch=25 {a label in |get_next|}
+@d start_numeric_token=85 {another}
+@d start_decimal_token=86 {and another}
+@d fin_numeric_token=87
+ {and still another, although |goto| is considered harmful}
+
+@p procedure get_next; {sets |cur_cmd|, |cur_mod|, |cur_sym| to next token}
+@^inner loop@>
+label restart, {go here to get the next input token}
+ exit, {go here when the next input token has been got}
+ common_ending, {go here to finish getting a symbolic token}
+ found, {go here when the end of a symbolic token has been found}
+ switch, {go here to branch on the class of an input character}
+ start_numeric_token,start_decimal_token,fin_numeric_token,done;
+ {go here at crucial stages when scanning a number}
+var @!k:0..buf_size; {an index into |buffer|}
+@!c:ASCII_code; {the current character in the buffer}
+@!class:ASCII_code; {its class number}
+@!n,@!f:integer; {registers for decimal-to-binary conversion}
+begin restart: cur_sym:=0;
+if file_state then
+@<Input from external file; |goto restart| if no input found,
+ or |return| if a non-symbolic token is found@>
+else @<Input from token list; |goto restart| if end of list or
+ if a parameter needs to be expanded,
+ or |return| if a non-symbolic token is found@>;
+common_ending: @<Finish getting the symbolic token in |cur_sym|;
+ |goto restart| if it is illegal@>;
+exit:end;
+
+@ When a symbolic token is declared to be `\&{outer}', its command code
+is increased by |outer_tag|.
+@^inner loop@>
+
+@<Finish getting the symbolic token in |cur_sym|...@>=
+cur_cmd:=eq_type(cur_sym); cur_mod:=equiv(cur_sym);
+if cur_cmd>=outer_tag then
+ if check_outer_validity then cur_cmd:=cur_cmd-outer_tag
+ else goto restart
+
+@ A percent sign appears in |buffer[limit]|; this makes it unnecessary
+to have a special test for end-of-line.
+@^inner loop@>
+
+@<Input from external file;...@>=
+begin switch: c:=buffer[loc]; incr(loc); class:=char_class[c];
+case class of
+digit_class: goto start_numeric_token;
+period_class: begin class:=char_class[buffer[loc]];
+ if class>period_class then goto switch
+ else if class<period_class then {|class=digit_class|}
+ begin n:=0; goto start_decimal_token;
+ end;
+@:. }{\..\ token@>
+ end;
+space_class: goto switch;
+percent_class: begin if scanner_status=tex_flushing then
+ if loc<limit then goto switch;
+ @<Move to next line of file, or |goto restart| if there is no next line@>;
+ check_interrupt;
+ goto switch;
+ end;
+string_class: if scanner_status=tex_flushing then goto switch
+ else @<Get a string token and |return|@>;
+isolated_classes: begin k:=loc-1; goto found;
+ end;
+invalid_class: if scanner_status=tex_flushing then goto switch
+ else @<Decry the invalid character and |goto restart|@>;
+othercases do_nothing {letters, etc.}
+endcases;@/
+k:=loc-1;
+while char_class[buffer[loc]]=class do incr(loc);
+goto found;
+start_numeric_token:@<Get the integer part |n| of a numeric token;
+ set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
+start_decimal_token:@<Get the fraction part |f| of a numeric token@>;
+fin_numeric_token:@<Pack the numeric and fraction parts of a numeric token
+ and |return|@>;
+found: cur_sym:=id_lookup(k,loc-k);
+end
+
+@ We go to |restart| instead of to |switch|, because |state| might equal
+|token_list| after the error has been dealt with
+(cf.\ |clear_for_error_prompt|).
+
+@<Decry the invalid...@>=
+begin print_err("Text line contains an invalid character");
+@.Text line contains...@>
+help2("A funny symbol that I can't read has just been input.")@/
+("Continue, and I'll forget that it ever happened.");@/
+deletions_allowed:=false; error; deletions_allowed:=true;
+goto restart;
+end
+
+@ @<Get a string token and |return|@>=
+begin if buffer[loc]="""" then cur_mod:=""
+else begin k:=loc; buffer[limit+1]:="""";
+ repeat incr(loc);
+ until buffer[loc]="""";
+ if loc>limit then @<Decry the missing string delimiter and |goto restart|@>;
+ if loc=k+1 then cur_mod:=buffer[k]
+ else begin str_room(loc-k);
+ repeat append_char(buffer[k]); incr(k);
+ until k=loc;
+ cur_mod:=make_string;
+ end;
+ end;
+incr(loc); cur_cmd:=string_token; return;
+end
+
+@ We go to |restart| after this error message, not to |switch|,
+because the |clear_for_error_prompt| routine might have reinstated
+|token_state| after |error| has finished.
+
+@<Decry the missing string delimiter and |goto restart|@>=
+begin loc:=limit; {the next character to be read on this line will be |"%"|}
+print_err("Incomplete string token has been flushed");
+@.Incomplete string token...@>
+help3("Strings should finish on the same line as they began.")@/
+ ("I've deleted the partial string; you might want to")@/
+ ("insert another by typing, e.g., `I""new string""'.");@/
+deletions_allowed:=false; error; deletions_allowed:=true; goto restart;
+end
+
+@ @<Get the integer part |n| of a numeric token...@>=
+n:=c-"0";
+while char_class[buffer[loc]]=digit_class do
+ begin if n<32768 then n:=10*n+buffer[loc]-"0";
+ incr(loc);
+ end;
+if buffer[loc]="." then if char_class[buffer[loc+1]]=digit_class then goto done;
+f:=0; goto fin_numeric_token;
+done: incr(loc)
+
+@ @<Get the fraction part |f| of a numeric token@>=
+k:=0;
+repeat if k<17 then {digits for |k>=17| cannot affect the result}
+ begin dig[k]:=buffer[loc]-"0"; incr(k);
+ end;
+incr(loc);
+until char_class[buffer[loc]]<>digit_class;
+f:=round_decimals(k);
+if f=unity then
+ begin incr(n); f:=0;
+ end
+
+@ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
+if n<32768 then @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably
+ large@>
+else if scanner_status<>tex_flushing then
+ begin print_err("Enormous number has been reduced");
+@.Enormous number...@>
+ help2("I can't handle numbers bigger than 32767.99998;")@/
+ ("so I've changed your constant to that maximum amount.");@/
+ deletions_allowed:=false; error; deletions_allowed:=true;
+ cur_mod:=el_gordo;
+ end;
+cur_cmd:=numeric_token; return
+
+@ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
+begin cur_mod:=n*unity+f;
+if cur_mod>=fraction_one then
+ if (internal[warning_check]>0) and (scanner_status<>tex_flushing) then
+ begin print_err("Number is too large (");
+ print_scaled(cur_mod);
+ print_char(")");
+ help3("It is at least 4096. Continue and I'll try to cope")@/
+ ("with that big value; but it might be dangerous.")@/
+ ("(Set warningcheck:=0 to suppress this message.)");
+ error;
+ end;
+end
+
+@ Let's consider now what happens when |get_next| is looking at a token list.
+@^inner loop@>
+
+@<Input from token list;...@>=
+if loc>=hi_mem_min then {one-word token}
+ begin cur_sym:=info(loc); loc:=link(loc); {move to next}
+ if cur_sym>=expr_base then
+ if cur_sym>=suffix_base then
+ @<Insert a suffix or text parameter and |goto restart|@>
+ else begin cur_cmd:=capsule_token;
+ cur_mod:=param_stack[param_start+cur_sym-(expr_base)];
+ cur_sym:=0; return;
+ end;
+ end
+else if loc>null then
+ @<Get a stored numeric or string or capsule token and |return|@>
+else begin {we are done with this token list}
+ end_token_list; goto restart; {resume previous level}
+ end
+
+@ @<Insert a suffix or text parameter...@>=
+begin if cur_sym>=text_base then cur_sym:=cur_sym-param_size;
+ {|param_size=text_base-suffix_base|}
+begin_token_list(param_stack[param_start+cur_sym-(suffix_base)],parameter);
+goto restart;
+end
+
+@ @<Get a stored numeric or string or capsule token...@>=
+begin if name_type(loc)=token then
+ begin cur_mod:=value(loc);
+ if type(loc)=known then cur_cmd:=numeric_token
+ else begin cur_cmd:=string_token; add_str_ref(cur_mod);
+ end;
+ end
+else begin cur_mod:=loc; cur_cmd:=capsule_token;
+ end;
+loc:=link(loc); return;
+end
+
+@ All of the easy branches of |get_next| have now been taken care of.
+There is one more branch.
+
+@<Move to next line of file, or |goto restart|...@>=
+if name>max_spec_src then @<Read next line of file into |buffer|, or
+ |goto restart| if the file has ended@>
+else begin if input_ptr>0 then
+ {text was inserted during error recovery or by \&{scantokens}}
+ begin end_file_reading; goto restart; {resume previous level}
+ end;
+ if selector<log_only then open_log_file;
+ if interaction>nonstop_mode then
+ begin if limit=start then {previous line was empty}
+ print_nl("(Please type a command or say `end')");
+@.Please type...@>
+ print_ln; first:=start;
+ prompt_input("*"); {input on-line into |buffer|}
+@.*\relax@>
+ limit:=last; buffer[limit]:="%";
+ first:=limit+1; loc:=start;
+ end
+ else fatal_error("*** (job aborted, no legal end found)");
+@.job aborted@>
+ {nonstop mode, which is intended for overnight batch processing,
+ never waits for on-line input}
+ end
+
+@ The global variable |force_eof| is normally |false|; it is set |true|
+by an \&{endinput} command.
+
+@<Glob...@>=
+@!force_eof:boolean; {should the next \&{input} be aborted early?}
+
+@ We must decrement |loc| in order to leave the buffer in a valid state
+when an error condition causes us to |goto restart| without calling
+|end_file_reading|.
+
+@<Read next line of file into |buffer|, or
+ |goto restart| if the file has ended@>=
+begin incr(line); first:=start;
+if not force_eof then
+ begin if input_ln(cur_file,true) then {not end of file}
+ firm_up_the_line {this sets |limit|}
+ else force_eof:=true;
+ end;
+if force_eof then
+ begin force_eof:=false;
+ decr(loc);
+ if mpx_reading then
+ @<Complain that the \.{MPX} file ended unexpectly; then set
+ |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>
+ else begin print_char(")"); decr(open_parens);
+ update_terminal; {show user that file has been read}
+ end_file_reading; {resume previous level}
+ if check_outer_validity then goto restart @+else goto restart;
+ end
+ end;
+buffer[limit]:="%"; first:=limit+1; loc:=start; {ready to read}
+end
+
+@ We should never actually come to the end of an \.{MPX} file because such
+files should have an \&{mpxbreak} after the translation of the last
+\&{btex}$\,\ldots\,$\&{etex} block.
+
+@<Complain that the \.{MPX} file ended unexpectly; then set...@>=
+begin mpx_name[index]:=finished;
+print_err("mpx file ended unexpectedly");
+help4("The file had too few picture expressions for btex...etex")@/
+ ("blocks. Such files are normally generated automatically")@/
+ ("but this one got messed up. You might want to insert a")@/
+ ("picture expression now.");@/
+deletions_allowed:=false; error; deletions_allowed:=true;
+cur_sym:=frozen_mpx_break; goto common_ending;
+end
+
+@ Sometimes we want to make it look as though we have just read a blank line
+without really doing so.
+
+@<Put an empty line in the input buffer@>=
+last:=first; limit:=last; {simulate |input_ln| and |firm_up_the_line|}
+buffer[limit]:="%"; first:=limit+1; loc:=start
+
+@ If the user has set the |pausing| parameter to some positive value,
+and if nonstop mode has not been selected, each line of input is displayed
+on the terminal and the transcript file, followed by `\.{=>}'.
+\MP\ waits for a response. If the response is null (i.e., if nothing is
+typed except perhaps a few blank spaces), the original
+line is accepted as it stands; otherwise the line typed is
+used instead of the line in the file.
+
+@p procedure firm_up_the_line;
+var @!k:0..buf_size; {an index into |buffer|}
+begin limit:=last;
+if internal[pausing]>0 then if interaction>nonstop_mode then
+ begin wake_up_terminal; print_ln;
+ if start<limit then for k:=start to limit-1 do print(buffer[k]);
+ first:=limit; prompt_input("=>"); {wait for user response}
+@.=>@>
+ if last>first then
+ begin for k:=first to last-1 do {move line down in buffer}
+ buffer[k+start-first]:=buffer[k];
+ limit:=start+last-first;
+ end;
+ end;
+end;
+
+@* \[30] Dealing with \TeX\ material.
+The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
+features need to be implemented at a low level in the scanning process
+so that \MP\ can stay in synch with the a preprocessor that treats
+blocks of \TeX\ material as they occur in the input file without trying
+to expand \MP\ macros. Thus we need a special version of |get_next|
+that does not expand macros and such but does handle \&{btex},
+\&{verbatimtex}, etc.
+
+The special version of |get_next| is called |get_t_next|. It works by flushing
+\&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
+$\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
+\&{btex}, and switching back when it sees \&{mpxbreak}.
+
+@d btex_code=0
+@d verbatim_code=1
+
+@ @<Put each...@>=
+primitive("btex",start_tex,btex_code);@/
+@!@:btex_}{\&{btex} primitive@>
+primitive("verbatimtex",start_tex,verbatim_code);
+@!@:verbatimtex_}{\&{verbatimtex} primitive@>
+primitive("etex",etex_marker,0); eqtb[frozen_etex]:=eqtb[cur_sym];@/
+@!@:etex_}{\&{etex} primitive@>
+primitive("mpxbreak",mpx_break,0); eqtb[frozen_mpx_break]:=eqtb[cur_sym];@/
+@!@:mpx_break_}{\&{mpxbreak} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+start_tex: if m=btex_code then print("btex")
+ else print("verbatimtex");
+etex_marker: print("etex");
+mpx_break: print("mpxbreak");
+
+@ Actually, |get_t_next| is a macro that avoids procedure overhead except
+in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
+is encountered.
+
+@d get_t_next==begin get_next;
+ if cur_cmd<=max_pre_command then t_next;
+ end
+@d TeX_flush=65 {go here to flush to the next ``\&{etex}''}
+
+@p procedure@?start_mpx_input; forward;@t\2@>
+procedure t_next;
+label TeX_flush, common_ending;
+var @!old_status:normal..loop_defining; {saves the |scanner_status|}
+@!old_info:integer; {saves the |warning_info|}
+begin while cur_cmd<=max_pre_command do
+ begin if cur_cmd=mpx_break then
+ if not file_state or (mpx_name[index]=absent) then
+ @<Complain about a misplaced \&{mpxbreak}@>
+ else begin end_mpx_reading; goto TeX_flush;
+ end
+ else if cur_cmd=start_tex then
+ if token_state or (name<=max_spec_src) then
+ @<Complain that we are not reading a file@>
+ else if mpx_reading then
+ @<Complain that \.{MPX} files cannot contain \TeX\ material@>
+ else if (cur_mod<>verbatim_code)and(mpx_name[index]<>finished) then
+ begin if not begin_mpx_reading then start_mpx_input;
+ end
+ else goto TeX_flush
+ else @<Complain about a misplaced \&{etex}@>;
+ goto common_ending;
+TeX_flush: @<Flush the \TeX\ material@>;
+common_ending: get_next;
+ end;
+end;
+
+@ We could be in the middle of an operation such as skipping false conditional
+text when \TeX\ material is encountered, so we must be careful to save the
+|scanner_status|.
+
+@<Flush the \TeX\ material@>=
+old_status:=scanner_status;
+old_info:=warning_info;
+scanner_status:=tex_flushing;
+warning_info:=line;
+repeat get_next;
+until cur_cmd=etex_marker;
+scanner_status:=old_status;
+warning_info:=old_info
+
+@ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
+begin print_err("An mpx file cannot contain btex or verbatimtex blocks");
+help4("This file contains picture expressions for btex...etex")@/
+ ("blocks. Such files are normally generated automatically")@/
+ ("but this one seems to be messed up. I'll just keep going")@/
+ ("and hope for the best.");@/
+error;
+end
+
+@ @<Complain that we are not reading a file@>=
+begin print_err("You can only use `btex' or `verbatimtex' in a file");
+help3("I'll have to ignore this preprocessor command because it")@/
+ ("only works when there is a file to preprocess. You might")@/
+ ("want to delete everything up to the next `etex`.");@/
+error;
+end
+
+@ @<Complain about a misplaced \&{mpxbreak}@>=
+begin print_err("Misplaced mpxbreak");
+help2("I'll ignore this preprocessor command because it")@/
+ ("doesn't belong here");@/
+error;
+end
+
+@ @<Complain about a misplaced \&{etex}@>=
+begin print_err("Extra etex will be ignored");
+help1("There is no btex or verbatimtex for this to match");@/
+error;
+end
+
+@* \[31] Scanning macro definitions.
+\MP\ has a variety of ways to tuck tokens away into token lists for later
+use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
+repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
+All such operations are handled by the routines in this part of the program.
+
+The modifier part of each command code is zero for the ``ending delimiters''
+like \&{enddef} and \&{endfor}.
+
+@d start_def=1 {command modifier for \&{def}}
+@d var_def=2 {command modifier for \&{vardef}}
+@d end_def=0 {command modifier for \&{enddef}}
+@d start_forever=1 {command modifier for \&{forever}}
+@d end_for=0 {command modifier for \&{endfor}}
+
+@<Put each...@>=
+primitive("def",macro_def,start_def);@/
+@!@:def_}{\&{def} primitive@>
+primitive("vardef",macro_def,var_def);@/
+@!@:var_def_}{\&{vardef} primitive@>
+primitive("primarydef",macro_def,secondary_primary_macro);@/
+@!@:primary_def_}{\&{primarydef} primitive@>
+primitive("secondarydef",macro_def,tertiary_secondary_macro);@/
+@!@:secondary_def_}{\&{secondarydef} primitive@>
+primitive("tertiarydef",macro_def,expression_tertiary_macro);@/
+@!@:tertiary_def_}{\&{tertiarydef} primitive@>
+primitive("enddef",macro_def,end_def); eqtb[frozen_end_def]:=eqtb[cur_sym];@/
+@!@:end_def_}{\&{enddef} primitive@>
+@#
+primitive("for",iteration,expr_base);@/
+@!@:for_}{\&{for} primitive@>
+primitive("forsuffixes",iteration,suffix_base);@/
+@!@:for_suffixes_}{\&{forsuffixes} primitive@>
+primitive("forever",iteration,start_forever);@/
+@!@:forever_}{\&{forever} primitive@>
+primitive("endfor",iteration,end_for); eqtb[frozen_end_for]:=eqtb[cur_sym];@/
+@!@:end_for_}{\&{endfor} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+macro_def:if m<=var_def then
+ if m=start_def then print("def")
+ else if m<start_def then print("enddef")
+ else print("vardef")
+ else if m=secondary_primary_macro then print("primarydef")
+ else if m=tertiary_secondary_macro then print("secondarydef")
+ else print("tertiarydef");
+iteration: if m<=start_forever then
+ if m=start_forever then print("forever")@+else print("endfor")
+ else if m=expr_base then print("for")@+else print("forsuffixes");
+
+@ Different macro-absorbing operations have different syntaxes, but they
+also have a lot in common. There is a list of special symbols that are to
+be replaced by parameter tokens; there is a special command code that
+ends the definition; the quotation conventions are identical. Therefore
+it makes sense to have most of the work done by a single subroutine. That
+subroutine is called |scan_toks|.
+
+The first parameter to |scan_toks| is the command code that will
+terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
+
+The second parameter, |subst_list|, points to a (possibly empty) list
+of two-word nodes whose |info| and |value| fields specify symbol tokens
+before and after replacement. The list will be returned to free storage
+by |scan_toks|.
+
+The third parameter is simply appended to the token list that is built.
+And the final parameter tells how many of the special operations
+\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
+When such parameters are present, they are called \.{(SUFFIX0)},
+\.{(SUFFIX1)}, and \.{(SUFFIX2)}.
+
+@p function scan_toks(@!terminator:command_code;
+ @!subst_list,@!tail_end:pointer;@!suffix_count:small_number):pointer;
+label done,found;
+var @!p:pointer; {tail of the token list being built}
+@!q:pointer; {temporary for link management}
+@!balance:integer; {left delimiters minus right delimiters}
+begin p:=hold_head; balance:=1; link(hold_head):=null;
+loop@+ begin get_t_next;
+ if cur_sym>0 then
+ begin @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
+ if cur_cmd=terminator then
+ @<Adjust the balance; |goto done| if it's zero@>
+ else if cur_cmd=macro_special then
+ @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
+ end;
+ link(p):=cur_tok; p:=link(p);
+ end;
+done: link(p):=tail_end; flush_node_list(subst_list);
+scan_toks:=link(hold_head);
+end;
+
+@ @<Substitute for |cur_sym|...@>=
+begin q:=subst_list;
+while q<>null do
+ begin if info(q)=cur_sym then
+ begin cur_sym:=value(q); cur_cmd:=relax; goto found;
+ end;
+ q:=link(q);
+ end;
+found:end
+
+@ @<Adjust the balance; |goto done| if it's zero@>=
+if cur_mod>0 then incr(balance)
+else begin decr(balance);
+ if balance=0 then goto done;
+ end
+
+@ Four commands are intended to be used only within macro texts: \&{quote},
+\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
+code called |macro_special|.
+
+@d quote=0 {|macro_special| modifier for \&{quote}}
+@d macro_prefix=1 {|macro_special| modifier for \.{\#\AT!}}
+@d macro_at=2 {|macro_special| modifier for \.{\AT!}}
+@d macro_suffix=3 {|macro_special| modifier for \.{\AT!\#}}
+
+@<Put each...@>=
+primitive("quote",macro_special,quote);@/
+@!@:quote_}{\&{quote} primitive@>
+primitive("#@@",macro_special,macro_prefix);@/
+@!@:]]]\#\AT!_}{\.{\#\AT!} primitive@>
+primitive("@@",macro_special,macro_at);@/
+@!@:]]]\AT!_}{\.{\AT!} primitive@>
+primitive("@@#",macro_special,macro_suffix);@/
+@!@:]]]\AT!\#_}{\.{\AT!\#} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+macro_special: case m of
+ macro_prefix: print("#@@");
+ macro_at: print_char("@@");
+ macro_suffix: print("@@#");
+ othercases print("quote")
+ endcases;
+
+@ @<Handle quoted...@>=
+begin if cur_mod=quote then get_t_next
+else if cur_mod<=suffix_count then cur_sym:=suffix_base-1+cur_mod;
+end
+
+@ Here is a routine that's used whenever a token will be redefined. If
+the user's token is unredefinable, the `|frozen_inaccessible|' token is
+substituted; the latter is redefinable but essentially impossible to use,
+hence \MP's tables won't get fouled up.
+
+@p procedure get_symbol; {sets |cur_sym| to a safe symbol}
+label restart;
+begin restart: get_t_next;
+if (cur_sym=0)or(cur_sym>frozen_inaccessible) then
+ begin print_err("Missing symbolic token inserted");
+@.Missing symbolic token...@>
+ help3("Sorry: You can't redefine a number, string, or expr.")@/
+ ("I've inserted an inaccessible symbol so that your")@/
+ ("definition will be completed without mixing me up too badly.");
+ if cur_sym>0 then
+ help_line[2]:="Sorry: You can't redefine my error-recovery tokens."
+ else if cur_cmd=string_token then delete_str_ref(cur_mod);
+ cur_sym:=frozen_inaccessible; ins_error; goto restart;
+ end;
+end;
+
+@ Before we actually redefine a symbolic token, we need to clear away its
+former value, if it was a variable. The following stronger version of
+|get_symbol| does that.
+
+@p procedure get_clear_symbol;
+begin get_symbol; clear_symbol(cur_sym,false);
+end;
+
+@ Here's another little subroutine; it checks that an equals sign
+or assignment sign comes along at the proper place in a macro definition.
+
+@p procedure check_equals;
+begin if cur_cmd<>equals then if cur_cmd<>assignment then
+ begin missing_err("=");@/
+@.Missing `='@>
+ help5("The next thing in this `def' should have been `=',")@/
+ ("because I've already looked at the definition heading.")@/
+ ("But don't worry; I'll pretend that an equals sign")@/
+ ("was present. Everything from here to `enddef'")@/
+ ("will be the replacement text of this macro.");
+ back_error;
+ end;
+end;
+
+@ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
+handled now that we have |scan_toks|. In this case there are
+two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
+|expr_base| and |expr_base+1|).
+
+@p procedure make_op_def;
+var @!m:command_code; {the type of definition}
+@!p,@!q,@!r:pointer; {for list manipulation}
+begin m:=cur_mod;@/
+get_symbol; q:=get_node(token_node_size);
+info(q):=cur_sym; value(q):=expr_base;@/
+get_clear_symbol; warning_info:=cur_sym;@/
+get_symbol; p:=get_node(token_node_size);
+info(p):=cur_sym; value(p):=expr_base+1; link(p):=q;@/
+get_t_next; check_equals;@/
+scanner_status:=op_defining; q:=get_avail; ref_count(q):=null;
+r:=get_avail; link(q):=r; info(r):=general_macro;
+link(r):=scan_toks(macro_def,p,null,0);
+scanner_status:=normal; eq_type(warning_info):=m;
+equiv(warning_info):=q; get_x_next;
+end;
+
+@ Parameters to macros are introduced by the keywords \&{expr},
+\&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
+
+@<Put each...@>=
+primitive("expr",param_type,expr_base);@/
+@!@:expr_}{\&{expr} primitive@>
+primitive("suffix",param_type,suffix_base);@/
+@!@:suffix_}{\&{suffix} primitive@>
+primitive("text",param_type,text_base);@/
+@!@:text_}{\&{text} primitive@>
+primitive("primary",param_type,primary_macro);@/
+@!@:primary_}{\&{primary} primitive@>
+primitive("secondary",param_type,secondary_macro);@/
+@!@:secondary_}{\&{secondary} primitive@>
+primitive("tertiary",param_type,tertiary_macro);@/
+@!@:tertiary_}{\&{tertiary} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+param_type:if m>=expr_base then
+ if m=expr_base then print("expr")
+ else if m=suffix_base then print("suffix")
+ else print("text")
+ else if m<secondary_macro then print("primary")
+ else if m=secondary_macro then print("secondary")
+ else print("tertiary");
+
+@ Let's turn next to the more complex processing associated with \&{def}
+and \&{vardef}. When the following procedure is called, |cur_mod|
+should be either |start_def| or |var_def|.
+
+@p @t\4@>@<Declare the procedure called |check_delimiter|@>@;
+@t\4@>@<Declare the function called |scan_declared_variable|@>@;
+procedure scan_def;
+var @!m:start_def..var_def; {the type of definition}
+@!n:0..3; {the number of special suffix parameters}
+@!k:0..param_size; {the total number of parameters}
+@!c:general_macro..text_macro; {the kind of macro we're defining}
+@!r:pointer; {parameter-substitution list}
+@!q:pointer; {tail of the macro token list}
+@!p:pointer; {temporary storage}
+@!base:halfword; {|expr_base|, |suffix_base|, or |text_base|}
+@!l_delim,@!r_delim:pointer; {matching delimiters}
+begin m:=cur_mod; c:=general_macro; link(hold_head):=null;@/
+q:=get_avail; ref_count(q):=null; r:=null;@/
+@<Scan the token or variable to be defined;
+ set |n|, |scanner_status|, and |warning_info|@>;
+k:=n;
+if cur_cmd=left_delimiter then
+ @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
+if cur_cmd=param_type then
+ @<Absorb undelimited parameters, putting them into list |r|@>;
+check_equals;
+p:=get_avail; info(p):=c; link(q):=p;
+@<Attach the replacement text to the tail of node |p|@>;
+scanner_status:=normal; get_x_next;
+end;
+
+@ We don't put `|frozen_end_group|' into the replacement text of
+a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
+
+@<Attach the replacement text to the tail of node |p|@>=
+if m=start_def then link(p):=scan_toks(macro_def,r,null,n)
+else begin q:=get_avail; info(q):=bg_loc; link(p):=q;
+ p:=get_avail; info(p):=eg_loc;
+ link(q):=scan_toks(macro_def,r,p,n);
+ end;
+if warning_info=bad_vardef then flush_token_list(value(bad_vardef))
+
+@ @<Glob...@>=
+@!bg_loc,@!eg_loc:1..hash_end;
+ {hash addresses of `\.{begingroup}' and `\.{endgroup}'}
+
+@ @<Scan the token or variable to be defined;...@>=
+if m=start_def then
+ begin get_clear_symbol; warning_info:=cur_sym; get_t_next;
+ scanner_status:=op_defining; n:=0;
+ eq_type(warning_info):=defined_macro; equiv(warning_info):=q;
+ end
+else begin p:=scan_declared_variable;
+ flush_variable(equiv(info(p)),link(p),true);
+ warning_info:=find_variable(p); flush_list(p);
+ if warning_info=null then @<Change to `\.{a bad variable}'@>;
+ scanner_status:=var_defining; n:=2;
+ if cur_cmd=macro_special then if cur_mod=macro_suffix then {\.{\AT!\#}}
+ begin n:=3; get_t_next;
+ end;
+ type(warning_info):=unsuffixed_macro-2+n; value(warning_info):=q;
+ end {|suffixed_macro=unsuffixed_macro+1|}
+
+@ @<Change to `\.{a bad variable}'@>=
+begin print_err("This variable already starts with a macro");
+@.This variable already...@>
+help2("After `vardef a' you can't say `vardef a.b'.")@/
+ ("So I'll have to discard this definition.");@/
+error; warning_info:=bad_vardef;
+end
+
+@ @<Initialize table entries...@>=
+name_type(bad_vardef):=root; link(bad_vardef):=frozen_bad_vardef;
+equiv(frozen_bad_vardef):=bad_vardef; eq_type(frozen_bad_vardef):=tag_token;
+
+@ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
+repeat l_delim:=cur_sym; r_delim:=cur_mod; get_t_next;
+if (cur_cmd=param_type)and(cur_mod>=expr_base) then base:=cur_mod
+else begin print_err("Missing parameter type; `expr' will be assumed");
+@.Missing parameter type@>
+ help1("You should've had `expr' or `suffix' or `text' here.");
+ back_error; base:=expr_base;
+ end;
+@<Absorb parameter tokens for type |base|@>;
+check_delimiter(l_delim,r_delim);
+get_t_next;
+until cur_cmd<>left_delimiter
+
+@ @<Absorb parameter tokens for type |base|@>=
+repeat link(q):=get_avail; q:=link(q); info(q):=base+k;@/
+get_symbol; p:=get_node(token_node_size); value(p):=base+k; info(p):=cur_sym;
+if k=param_size then overflow("parameter stack size",param_size);
+@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
+incr(k); link(p):=r; r:=p; get_t_next;
+until cur_cmd<>comma
+
+@ @<Absorb undelimited parameters, putting them into list |r|@>=
+begin p:=get_node(token_node_size);
+if cur_mod<expr_base then
+ begin c:=cur_mod; value(p):=expr_base+k;
+ end
+else begin value(p):=cur_mod+k;
+ if cur_mod=expr_base then c:=expr_macro
+ else if cur_mod=suffix_base then c:=suffix_macro
+ else c:=text_macro;
+ end;
+if k=param_size then overflow("parameter stack size",param_size);
+incr(k); get_symbol; info(p):=cur_sym; link(p):=r; r:=p; get_t_next;
+if c=expr_macro then if cur_cmd=of_token then
+ begin c:=of_macro; p:=get_node(token_node_size);
+ if k=param_size then overflow("parameter stack size",param_size);
+ value(p):=expr_base+k; get_symbol; info(p):=cur_sym;
+ link(p):=r; r:=p; get_t_next;
+ end;
+end
+
+@* \[32] Expanding the next token.
+Only a few command codes |<min_command| can possibly be returned by
+|get_t_next|; in increasing order, they are
+|if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
+|exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
+
+\MP\ usually gets the next token of input by saying |get_x_next|. This is
+like |get_t_next| except that it keeps getting more tokens until
+finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
+macros and removes conditionals or iterations or input instructions that
+might be present.
+
+It follows that |get_x_next| might invoke itself recursively. In fact,
+there is massive recursion, since macro expansion can involve the
+scanning of arbitrarily complex expressions, which in turn involve
+macro expansion and conditionals, etc.
+@^recursion@>
+
+Therefore it's necessary to declare a whole bunch of |forward|
+procedures at this point, and to insert some other procedures
+that will be invoked by |get_x_next|.
+
+@p procedure@?scan_primary; forward;@t\2@>
+procedure@?scan_secondary; forward;@t\2@>
+procedure@?scan_tertiary; forward;@t\2@>
+procedure@?scan_expression; forward;@t\2@>
+procedure@?scan_suffix; forward;@t\2@>@/
+@t\4@>@<Declare the procedure called |macro_call|@>@;@/
+procedure@?get_boolean; forward;@t\2@>
+procedure@?pass_text; forward;@t\2@>
+procedure@?conditional; forward;@t\2@>
+procedure@?start_input; forward;@t\2@>
+procedure@?begin_iteration; forward;@t\2@>
+procedure@?resume_iteration; forward;@t\2@>
+procedure@?stop_iteration; forward;@t\2@>
+
+@ An auxiliary subroutine called |expand| is used by |get_x_next|
+when it has to do exotic expansion commands.
+
+@p procedure expand;
+var @!p:pointer; {for list manipulation}
+@!k:integer; {something that we hope is |<=buf_size|}
+@!j:pool_pointer; {index into |str_pool|}
+begin if internal[tracing_commands]>unity then if cur_cmd<>defined_macro then
+ show_cur_cmd_mod;
+case cur_cmd of
+if_test:conditional; {this procedure is discussed in Part 36 below}
+fi_or_else:@<Terminate the current conditional and skip to \&{fi}@>;
+input:@<Initiate or terminate input from a file@>;
+iteration:if cur_mod=end_for then
+ @<Scold the user for having an extra \&{endfor}@>
+ else begin_iteration; {this procedure is discussed in Part 37 below}
+repeat_loop: @<Repeat a loop@>;
+exit_test: @<Exit a loop if the proper time has come@>;
+relax: do_nothing;
+expand_after: @<Expand the token after the next token@>;
+scan_tokens: @<Put a string into the input buffer@>;
+defined_macro:macro_call(cur_mod,null,cur_sym);
+end; {there are no other cases}
+end;
+
+@ @<Scold the user...@>=
+begin print_err("Extra `endfor'");
+@.Extra `endfor'@>
+help2("I'm not currently working on a for loop,")@/
+ ("so I had better not try to end anything.");@/
+error;
+end
+
+@ The processing of \&{input} involves the |start_input| subroutine,
+which will be declared later; the processing of \&{endinput} is trivial.
+
+@<Put each...@>=
+primitive("input",input,0);@/
+@!@:input_}{\&{input} primitive@>
+primitive("endinput",input,1);@/
+@!@:end_input_}{\&{endinput} primitive@>
+
+@ @<Cases of |print_cmd_mod|...@>=
+input: if m=0 then print("input")@+else print("endinput");
+
+@ @<Initiate or terminate input...@>=
+if cur_mod>0 then force_eof:=true
+else start_input
+
+@ We'll discuss the complicated parts of loop operations later. For now
+it suffices to know that there's a global variable called |loop_ptr|
+that will be |null| if no loop is in progress.
+
+@<Repeat a loop@>=
+begin while token_state and(loc=null) do end_token_list; {conserve stack space}
+if loop_ptr=null then
+ begin print_err("Lost loop");
+@.Lost loop@>
+ help2("I'm confused; after exiting from a loop, I still seem")@/
+ ("to want to repeat it. I'll try to forget the problem.");@/
+ error;
+ end
+else resume_iteration; {this procedure is in Part 37 below}
+end
+
+@ @<Exit a loop if the proper time has come@>=
+begin get_boolean;
+if internal[tracing_commands]>unity then show_cmd_mod(nullary,cur_exp);
+if cur_exp=true_code then
+ if loop_ptr=null then
+ begin print_err("No loop is in progress");
+@.No loop is in progress@>
+ help1("Why say `exitif' when there's nothing to exit from?");
+ if cur_cmd=semicolon then error@+else back_error;
+ end
+ else @<Exit prematurely from an iteration@>
+else if cur_cmd<>semicolon then
+ begin missing_err(";");@/
+@.Missing `;'@>
+ help2("After `exitif <boolean exp>' I expect to see a semicolon.")@/
+ ("I shall pretend that one was there."); back_error;
+ end;
+end
+
+@ Here we use the fact that |forever_text| is the only |token_type| that
+is less than |loop_text|.
+
+@<Exit prematurely...@>=
+begin p:=null;
+repeat if file_state then end_file_reading
+else begin if token_type<=loop_text then p:=start;
+ end_token_list;
+ end;
+until p<>null;
+if p<>info(loop_ptr) then fatal_error("*** (loop confusion)");
+@.loop confusion@>
+stop_iteration; {this procedure is in Part 34 below}
+end
+
+@ @<Expand the token after the next token@>=
+begin get_t_next;
+p:=cur_tok; get_t_next;
+if cur_cmd<min_command then expand else back_input;
+back_list(p);
+end
+
+@ @<Put a string into the input buffer@>=
+begin get_x_next; scan_primary;
+if cur_type<>string_type then
+ begin disp_err(null,"Not a string");
+@.Not a string@>
+ help2("I'm going to flush this expression, since")@/
+ ("scantokens should be followed by a known string.");
+ put_get_flush_error(0);
+ end
+else begin back_input;
+ if length(cur_exp)>0 then @<Pretend we're reading a new one-line file@>;
+ end;
+end
+
+@ @<Pretend we're reading a new one-line file@>=
+begin begin_file_reading; name:=is_scantok;
+k:=first+length(cur_exp);
+if k>=max_buf_stack then
+ begin if k>=buf_size then
+ begin max_buf_stack:=buf_size;
+ overflow("buffer size",buf_size);
+@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
+ end;
+ max_buf_stack:=k+1;
+ end;
+j:=str_start[cur_exp]; limit:=k;
+while first<limit do
+ begin buffer[first]:=so(str_pool[j]); incr(j); incr(first);
+ end;
+buffer[limit]:="%"; first:=limit+1; loc:=start; flush_cur_exp(0);
+end
+
+@ Here finally is |get_x_next|.
+
+The expression scanning routines to be considered later
+communicate via the global quantities |cur_type| and |cur_exp|;
+we must be very careful to save and restore these quantities while
+macros are being expanded.
+@^inner loop@>
+
+@p procedure get_x_next;
+var @!save_exp:pointer; {a capsule to save |cur_type| and |cur_exp|}
+begin get_t_next;
+if cur_cmd<min_command then
+ begin save_exp:=stash_cur_exp;
+ repeat if cur_cmd=defined_macro then macro_call(cur_mod,null,cur_sym)
+ else expand;
+ get_t_next;
+ until cur_cmd>=min_command;
+ unstash_cur_exp(save_exp); {that restores |cur_type| and |cur_exp|}
+ end;
+end;
+
+@ Now let's consider the |macro_call| procedure, which is used to start up
+all user-defined macros. Since the arguments to a macro might be expressions,
+|macro_call| is recursive.
+@^recursion@>
+
+The first parameter to |macro_call| points to the reference count of the
+token list that defines the macro. The second parameter contains any
+arguments that have already been parsed (see below). The third parameter
+points to the symbolic token that names the macro. If the third parameter
+is |null|, the macro was defined by \&{vardef}, so its name can be
+reconstructed from the prefix and ``at'' arguments found within the
+second parameter.
+
+What is this second parameter? It's simply a linked list of one-word items,
+whose |info| fields point to the arguments. In other words, if |arg_list=null|,
+no arguments have been scanned yet; otherwise |info(arg_list)| points to
+the first scanned argument, and |link(arg_list)| points to the list of
+further arguments (if any).
+
+Arguments of type \&{expr} are so-called capsules, which we will
+discuss later when we concentrate on expressions; they can be
+recognized easily because their |link| field is |void|. Arguments of type
+\&{suffix} and \&{text} are token lists without reference counts.
+
+@ After argument scanning is complete, the arguments are moved to the
+|param_stack|. (They can't be put on that stack any sooner, because
+the stack is growing and shrinking in unpredictable ways as more arguments
+are being acquired.) Then the macro body is fed to the scanner; i.e.,
+the replacement text of the macro is placed at the top of the \MP's
+input stack, so that |get_t_next| will proceed to read it next.
+
+@<Declare the procedure called |macro_call|@>=
+@t\4@>@<Declare the procedure called |print_macro_name|@>@;
+@t\4@>@<Declare the procedure called |print_arg|@>@;
+@t\4@>@<Declare the procedure called |scan_text_arg|@>@;
+procedure macro_call(@!def_ref,@!arg_list,@!macro_name:pointer);
+ {invokes a user-defined control sequence}
+label found;
+var @!r:pointer; {current node in the macro's token list}
+@!p,@!q:pointer; {for list manipulation}
+@!n:integer; {the number of arguments}
+@!l_delim,@!r_delim:pointer; {a delimiter pair}
+@!tail:pointer; {tail of the argument list}
+begin r:=link(def_ref); add_mac_ref(def_ref);
+if arg_list=null then n:=0
+else @<Determine the number |n| of arguments already supplied,
+ and set |tail| to the tail of |arg_list|@>;
+if internal[tracing_macros]>0 then
+ @<Show the text of the macro being expanded, and the existing arguments@>;
+@<Scan the remaining arguments, if any; set |r| to the first token
+ of the replacement text@>;
+@<Feed the arguments and replacement text to the scanner@>;
+end;
+
+@ @<Show the text of the macro...@>=
+begin begin_diagnostic; print_ln; print_macro_name(arg_list,macro_name);
+if n=3 then print("@@#"); {indicate a suffixed macro}
+show_macro(def_ref,null,100000);
+if arg_list<>null then
+ begin n:=0; p:=arg_list;
+ repeat q:=info(p);
+ print_arg(q,n,0);
+ incr(n); p:=link(p);
+ until p=null;
+ end;
+end_diagnostic(false);
+end
+
+@ @<Declare the procedure called |print_macro_name|@>=
+procedure print_macro_name(@!a,@!n:pointer);
+var @!p,@!q:pointer; {they traverse the first part of |a|}
+begin if n<>null then print(text(n))
+else begin p:=info(a);
+ if p=null then print(text(info(info(link(a)))))
+ else begin q:=p;
+ while link(q)<>null do q:=link(q);
+ link(q):=info(link(a));
+ show_token_list(p,null,1000,0);
+ link(q):=null;
+ end;
+ end;
+end;
+
+@ @<Declare the procedure called |print_arg|@>=
+procedure print_arg(@!q:pointer;@!n:integer;@!b:pointer);
+begin if link(q)=void then print_nl("(EXPR")
+else if (b<text_base)and(b<>text_macro) then print_nl("(SUFFIX")
+else print_nl("(TEXT");
+print_int(n); print(")<-");
+if link(q)=void then print_exp(q,1)
+else show_token_list(q,null,1000,0);
+end;
+
+@ @<Determine the number |n| of arguments already supplied...@>=
+begin n:=1; tail:=arg_list;
+while link(tail)<>null do
+ begin incr(n); tail:=link(tail);
+ end;
+end
+
+@ @<Scan the remaining arguments, if any; set |r|...@>=
+cur_cmd:=comma+1; {anything |<>comma| will do}
+while info(r)>=expr_base do
+ begin @<Scan the delimited argument represented by |info(r)|@>;
+ r:=link(r);
+ end;
+if cur_cmd=comma then
+ begin print_err("Too many arguments to ");
+@.Too many arguments...@>
+ print_macro_name(arg_list,macro_name); print_char(";");
+ print_nl(" Missing `"); print(text(r_delim));
+@.Missing `)'...@>
+ print("' has been inserted");
+ help3("I'm going to assume that the comma I just read was a")@/
+ ("right delimiter, and then I'll begin expanding the macro.")@/
+ ("You might want to delete some tokens before continuing.");
+ error;
+ end;
+if info(r)<>general_macro then @<Scan undelimited argument(s)@>;
+r:=link(r)
+
+@ At this point, the reader will find it advisable to review the explanation
+of token list format that was presented earlier, paying special attention to
+the conventions that apply only at the beginning of a macro's token list.
+
+On the other hand, the reader will have to take the expression-parsing
+aspects of the following program on faith; we will explain |cur_type|
+and |cur_exp| later. (Several things in this program depend on each other,
+and it's necessary to jump into the circle somewhere.)
+
+@<Scan the delimited argument represented by |info(r)|@>=
+if cur_cmd<>comma then
+ begin get_x_next;
+ if cur_cmd<>left_delimiter then
+ begin print_err("Missing argument to ");
+@.Missing argument...@>
+ print_macro_name(arg_list,macro_name);
+ help3("That macro has more parameters than you thought.")@/
+ ("I'll continue by pretending that each missing argument")@/
+ ("is either zero or null.");
+ if info(r)>=suffix_base then
+ begin cur_exp:=null; cur_type:=token_list;
+ end
+ else begin cur_exp:=0; cur_type:=known;
+ end;
+ back_error; cur_cmd:=right_delimiter; goto found;
+ end;
+ l_delim:=cur_sym; r_delim:=cur_mod;
+ end;
+@<Scan the argument represented by |info(r)|@>;
+if cur_cmd<>comma then @<Check that the proper right delimiter was present@>;
+found: @<Append the current expression to |arg_list|@>
+
+@ @<Check that the proper right delim...@>=
+if (cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
+ if info(link(r))>=expr_base then
+ begin missing_err(",");
+@.Missing `,'@>
+ help3("I've finished reading a macro argument and am about to")@/
+ ("read another; the arguments weren't delimited correctly.")@/
+ ("You might want to delete some tokens before continuing.");
+ back_error; cur_cmd:=comma;
+ end
+ else begin missing_err(text(r_delim));
+@.Missing `)'@>
+ help2("I've gotten to the end of the macro parameter list.")@/
+ ("You might want to delete some tokens before continuing.");
+ back_error;
+ end
+
+@ A \&{suffix} or \&{text} parameter will be have been scanned as
+a token list pointed to by |cur_exp|, in which case we will have
+|cur_type=token_list|.
+
+@<Append the current expression to |arg_list|@>=
+begin p:=get_avail;
+if cur_type=token_list then info(p):=cur_exp
+else info(p):=stash_cur_exp;
+if internal[tracing_macros]>0 then
+ begin begin_diagnostic; print_arg(info(p),n,info(r)); end_diagnostic(false);
+ end;
+if arg_list=null then arg_list:=p
+else link(tail):=p;
+tail:=p; incr(n);
+end
+
+@ @<Scan the argument represented by |info(r)|@>=
+if info(r)>=text_base then scan_text_arg(l_delim,r_delim)
+else begin get_x_next;
+ if info(r)>=suffix_base then scan_suffix
+ else scan_expression;
+ end
+
+@ The parameters to |scan_text_arg| are either a pair of delimiters
+or zero; the latter case is for undelimited text arguments, which
+end with the first semicolon or \&{endgroup} or \&{end} that is not
+contained in a group.
+
+@<Declare the procedure called |scan_text_arg|@>=
+procedure scan_text_arg(@!l_delim,@!r_delim:pointer);
+label done;
+var @!balance:integer; {excess of |l_delim| over |r_delim|}
+@!p:pointer; {list tail}
+begin warning_info:=l_delim; scanner_status:=absorbing;
+p:=hold_head; balance:=1; link(hold_head):=null;
+loop@+ begin get_t_next;
+ if l_delim=0 then @<Adjust the balance for an undelimited argument;
+ |goto done| if done@>
+ else @<Adjust the balance for a delimited argument;
+ |goto done| if done@>;
+ link(p):=cur_tok; p:=link(p);
+ end;
+done: cur_exp:=link(hold_head); cur_type:=token_list;
+scanner_status:=normal;
+end;
+
+@ @<Adjust the balance for a delimited argument...@>=
+begin if cur_cmd=right_delimiter then
+ begin if cur_mod=l_delim then
+ begin decr(balance);
+ if balance=0 then goto done;
+ end;
+ end
+else if cur_cmd=left_delimiter then if cur_mod=r_delim then incr(balance);
+end
+
+@ @<Adjust the balance for an undelimited...@>=
+begin if end_of_statement then {|cur_cmd=semicolon|, |end_group|, or |stop|}
+ begin if balance=1 then goto done
+ else if cur_cmd=end_group then decr(balance);
+ end
+else if cur_cmd=begin_group then incr(balance);
+end
+
+@ @<Scan undelimited argument(s)@>=
+begin if info(r)<text_macro then
+ begin get_x_next;
+ if info(r)<>suffix_macro then
+ if (cur_cmd=equals)or(cur_cmd=assignment) then get_x_next;
+ end;
+case info(r) of
+primary_macro:scan_primary;
+secondary_macro:scan_secondary;
+tertiary_macro:scan_tertiary;
+expr_macro:scan_expression;
+of_macro:@<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
+suffix_macro:@<Scan a suffix with optional delimiters@>;
+text_macro:scan_text_arg(0,0);
+end; {there are no other cases}
+back_input; @<Append the current expression to |arg_list|@>;
+end
+
+@ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
+begin scan_expression; p:=get_avail; info(p):=stash_cur_exp;
+if internal[tracing_macros]>0 then
+ begin begin_diagnostic; print_arg(info(p),n,0); end_diagnostic(false);
+ end;
+if arg_list=null then arg_list:=p@+else link(tail):=p;
+tail:=p;incr(n);
+if cur_cmd<>of_token then
+ begin missing_err("of"); print(" for ");
+@.Missing `of'@>
+ print_macro_name(arg_list,macro_name);
+ help1("I've got the first argument; will look now for the other.");
+ back_error;
+ end;
+get_x_next; scan_primary;
+end
+
+@ @<Scan a suffix with optional delimiters@>=
+begin if cur_cmd<>left_delimiter then l_delim:=null
+else begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next;
+ end;
+scan_suffix;
+if l_delim<>null then
+ begin if(cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
+ begin missing_err(text(r_delim));
+@.Missing `)'@>
+ help2("I've gotten to the end of the macro parameter list.")@/
+ ("You might want to delete some tokens before continuing.");
+ back_error;
+ end;
+ get_x_next;
+ end;
+end
+
+@ Before we put a new token list on the input stack, it is wise to clean off
+all token lists that have recently been depleted. Then a user macro that ends
+with a call to itself will not require unbounded stack space.
+
+@<Feed the arguments and replacement text to the scanner@>=
+while token_state and(loc=null) do end_token_list; {conserve stack space}
+if param_ptr+n>max_param_stack then
+ begin max_param_stack:=param_ptr+n;
+ if max_param_stack>param_size then
+ overflow("parameter stack size",param_size);
+@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
+ end;
+begin_token_list(def_ref,macro); name:=macro_name; loc:=r;
+if n>0 then
+ begin p:=arg_list;
+ repeat param_stack[param_ptr]:=info(p); incr(param_ptr); p:=link(p);
+ until p=null;
+ flush_list(arg_list);
+ end
+
+@ It's sometimes necessary to put a single argument onto |param_stack|.
+The |stack_argument| subroutine does this.
+
+@p procedure stack_argument(@!p:pointer);
+begin if param_ptr=max_param_stack then
+ begin incr(max_param_stack);
+ if max_param_stack>param_size then
+ overflow("parameter stack size",param_size);
+@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
+ end;
+param_stack[param_ptr]:=p; incr(param_ptr);
+end;
+
+@* \[33] Conditional processing.
+Let's consider now the way \&{if} commands are handled.
+
+Conditions can be inside conditions, and this nesting has a stack
+that is independent of other stacks.
+Four global variables represent the top of the condition stack:
+|cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
+we are processing \&{if} or \&{elseif}; |if_limit| specifies
+the largest code of a |fi_or_else| command that is syntactically legal;
+and |if_line| is the line number at which the current conditional began.
+
+If no conditions are currently in progress, the condition stack has the
+special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
+Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
+|link| fields of the first word contain |if_limit|, |cur_if|, and
+|cond_ptr| at the next level, and the second word contains the
+corresponding |if_line|.
+
+@d if_node_size=2 {number of words in stack entry for conditionals}
+@d if_line_field(#)==mem[#+1].int
+@d if_code=1 {code for \&{if} being evaluated}
+@d fi_code=2 {code for \&{fi}}
+@d else_code=3 {code for \&{else}}
+@d else_if_code=4 {code for \&{elseif}}
+
+@<Glob...@>=
+@!cond_ptr:pointer; {top of the condition stack}
+@!if_limit:normal..else_if_code; {upper bound on |fi_or_else| codes}
+@!cur_if:small_number; {type of conditional being worked on}
+@!if_line:integer; {line where that conditional began}
+
+@ @<Set init...@>=
+cond_ptr:=null; if_limit:=normal; cur_if:=0; if_line:=0;
+
+@ @<Put each...@>=
+primitive("if",if_test,if_code);@/
+@!@:if_}{\&{if} primitive@>
+primitive("fi",fi_or_else,fi_code); eqtb[frozen_fi]:=eqtb[cur_sym];@/
+@!@:fi_}{\&{fi} primitive@>
+primitive("else",fi_or_else,else_code);@/
+@!@:else_}{\&{else} primitive@>
+primitive("elseif",fi_or_else,else_if_code);@/
+@!@:else_if_}{\&{elseif} primitive@>
+
+@ @<Cases of |print_cmd_mod|...@>=
+if_test,fi_or_else: case m of
+ if_code:print("if");
+ fi_code:print("fi");
+ else_code:print("else");
+ othercases print("elseif")
+ endcases;
+
+@ Here is a procedure that ignores text until coming to an \&{elseif},
+\&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
+nesting. After it has acted, |cur_mod| will indicate the token that
+was found.
+
+\MP's smallest two command codes are |if_test| and |fi_or_else|; this
+makes the skipping process a bit simpler.
+
+@p procedure pass_text;
+label done;
+var l:integer;
+begin scanner_status:=skipping; l:=0; warning_info:=true_line;
+loop@+ begin get_t_next;
+ if cur_cmd<=fi_or_else then
+ if cur_cmd<fi_or_else then incr(l)
+ else begin if l=0 then goto done;
+ if cur_mod=fi_code then decr(l);
+ end
+ else @<Decrease the string reference count,
+ if the current token is a string@>;
+ end;
+done: scanner_status:=normal;
+end;
+
+@ @<Decrease the string reference count...@>=
+if cur_cmd=string_token then delete_str_ref(cur_mod)
+
+@ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
+if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
+condition has been evaluated, a colon will be inserted.
+A construction like `\.{if fi}' would otherwise get \MP\ confused.
+
+@<Push the condition stack@>=
+begin p:=get_node(if_node_size); link(p):=cond_ptr; type(p):=if_limit;
+name_type(p):=cur_if; if_line_field(p):=if_line;
+cond_ptr:=p; if_limit:=if_code; if_line:=true_line; cur_if:=if_code;
+end
+
+@ @<Pop the condition stack@>=
+begin p:=cond_ptr; if_line:=if_line_field(p);
+cur_if:=name_type(p); if_limit:=type(p); cond_ptr:=link(p);
+free_node(p,if_node_size);
+end
+
+@ Here's a procedure that changes the |if_limit| code corresponding to
+a given value of |cond_ptr|.
+
+@p procedure change_if_limit(@!l:small_number;@!p:pointer);
+label exit;
+var q:pointer;
+begin if p=cond_ptr then if_limit:=l {that's the easy case}
+else begin q:=cond_ptr;
+ loop@+ begin if q=null then confusion("if");
+@:this can't happen if}{\quad if@>
+ if link(q)=p then
+ begin type(q):=l; return;
+ end;
+ q:=link(q);
+ end;
+ end;
+exit:end;
+
+@ The user is supposed to put colons into the proper parts of conditional
+statements. Therefore, \MP\ has to check for their presence.
+
+@p procedure check_colon;
+begin if cur_cmd<>colon then
+ begin missing_err(":");@/
+@.Missing `:'@>
+ help2("There should've been a colon after the condition.")@/
+ ("I shall pretend that one was there.");@;
+ back_error;
+ end;
+end;
+
+@ A condition is started when the |get_x_next| procedure encounters
+an |if_test| command; in that case |get_x_next| calls |conditional|,
+which is a recursive procedure.
+@^recursion@>
+
+@p procedure conditional;
+label exit,done,reswitch,found;
+var @!save_cond_ptr:pointer; {|cond_ptr| corresponding to this conditional}
+@!new_if_limit:fi_code..else_if_code; {future value of |if_limit|}
+@!p:pointer; {temporary register}
+begin @<Push the condition stack@>;@+save_cond_ptr:=cond_ptr;
+reswitch: get_boolean; new_if_limit:=else_if_code;
+if internal[tracing_commands]>unity then
+ @<Display the boolean value of |cur_exp|@>;
+found: check_colon;
+if cur_exp=true_code then
+ begin change_if_limit(new_if_limit,save_cond_ptr);
+ return; {wait for \&{elseif}, \&{else}, or \&{fi}}
+ end;
+@<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
+done: cur_if:=cur_mod; if_line:=true_line;
+if cur_mod=fi_code then @<Pop the condition stack@>
+else if cur_mod=else_if_code then goto reswitch
+else begin cur_exp:=true_code; new_if_limit:=fi_code; get_x_next; goto found;
+ end;
+exit:end;
+
+@ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
+\&{else}: \\{bar} \&{fi}', the first \&{else}
+that we come to after learning that the \&{if} is false is not the
+\&{else} we're looking for. Hence the following curious logic is needed.
+
+@<Skip to \&{elseif}...@>=
+loop@+ begin pass_text;
+ if cond_ptr=save_cond_ptr then goto done
+ else if cur_mod=fi_code then @<Pop the condition stack@>;
+ end
+
+
+@ @<Display the boolean value...@>=
+begin begin_diagnostic;
+if cur_exp=true_code then print("{true}")@+else print("{false}");
+end_diagnostic(false);
+end
+
+@ The processing of conditionals is complete except for the following
+code, which is actually part of |get_x_next|. It comes into play when
+\&{elseif}, \&{else}, or \&{fi} is scanned.
+
+@<Terminate the current conditional and skip to \&{fi}@>=
+if cur_mod>if_limit then
+ if if_limit=if_code then {condition not yet evaluated}
+ begin missing_err(":");
+@.Missing `:'@>
+ back_input; cur_sym:=frozen_colon; ins_error;
+ end
+ else begin print_err("Extra "); print_cmd_mod(fi_or_else,cur_mod);
+@.Extra else@>
+@.Extra elseif@>
+@.Extra fi@>
+ help1("I'm ignoring this; it doesn't match any if.");
+ error;
+ end
+else begin while cur_mod<>fi_code do pass_text; {skip to \&{fi}}
+ @<Pop the condition stack@>;
+ end
+
+@* \[34] Iterations.
+To bring our treatment of |get_x_next| to a close, we need to consider what
+\MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
+
+There's a global variable |loop_ptr| that keeps track of the \&{for} loops
+that are currently active. If |loop_ptr=null|, no loops are in progress;
+otherwise |info(loop_ptr)| points to the iterative text of the current
+(innermost) loop, and |link(loop_ptr)| points to the data for any other
+loops that enclose the current one.
+
+A loop-control node also has two other fields, called |loop_type| and
+|loop_list|, whose contents depend on the type of loop:
+
+\yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
+points to a list of one-word nodes whose |info| fields point to the
+remaining argument values of a suffix list and expression list.
+
+\yskip\indent|loop_type(loop_ptr)=void| means that the current loop is
+`\&{forever}'.
+
+\yskip\indent|loop_type(loop_ptr)=progression_flag| means that
+|p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
+|step_size(p)|, and |final_value(p)| contain the data for an arithmetic
+progression.
+
+\yskip\indent|loop_type(loop_ptr)=p>void| means that |p| points to an edge
+header and |loop_list(loop_ptr)| points into the graphical object list for
+that edge header.
+
+\yskip\noindent In the case of a progression node, the first word is not used
+because the link field of words in the dynamic memory area cannot be arbitrary.
+
+@d loop_list_loc(#)==#+1 {where the |loop_list| field resides}
+@d loop_type(#)==info(loop_list_loc(#)) {the type of \&{for} loop}
+@d loop_list(#)==link(loop_list_loc(#)) {the remaining list elements}
+@d loop_node_size=2 {the number of words in a loop control node}
+@d progression_node_size=4 {the number of words in a progression node}
+@d step_size(#)==mem[#+2].sc {the step size in an arithmetic progression}
+@d final_value(#)==mem[#+3].sc {the final value in an arithmetic progression}
+@d progression_flag==null+2
+ {|loop_type| value when |loop_list| points to a progression node}
+
+@<Glob...@>=
+@!loop_ptr:pointer; {top of the loop-control-node stack}
+
+@ @<Set init...@>=
+loop_ptr:=null;
+
+@ If the expressions that define an arithmetic progression in
+a \&{for} loop don't have known numeric values, the |bad_for|
+subroutine screams at the user.
+
+@p procedure bad_for(@!s:str_number);
+begin disp_err(null,"Improper "); {show the bad expression above the message}
+@.Improper...replaced by 0@>
+print(s); print(" has been replaced by 0");
+help4("When you say `for x=a step b until c',")@/
+ ("the initial value `a' and the step size `b'")@/
+ ("and the final value `c' must have known numeric values.")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+put_get_flush_error(0);
+end;
+
+@ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
+has just been scanned. (This code requires slight familiarity with
+expression-parsing routines that we have not yet discussed; but it seems
+to belong in the present part of the program, even though the original author
+didn't write it until later. The reader may wish to come back to it.)
+
+@p procedure begin_iteration;
+label continue,done;
+var @!m:halfword; {|expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes})}
+@!n:halfword; {hash address of the current symbol}
+@!s:pointer; {the new loop-control node}
+@!p:pointer; {substitution list for |scan_toks|}
+@!q:pointer; {link manipulation register}
+@!pp:pointer; {a new progression node}
+begin m:=cur_mod; n:=cur_sym; s:=get_node(loop_node_size);
+if m=start_forever then
+ begin loop_type(s):=void; p:=null; get_x_next;
+ end
+else begin get_symbol; p:=get_node(token_node_size);
+ info(p):=cur_sym; value(p):=m;@/
+ get_x_next;
+ if cur_cmd=within_token then @<Set up a picture iteration@>
+ else begin @<Check for the |"="| or |":="| in a loop header@>;
+ @<Scan the values to be used in the loop@>;
+ end;
+ end;
+@<Check for the presence of a colon@>;
+@<Scan the loop text and put it on the loop control stack@>;
+resume_iteration;
+end;
+
+@ @<Check for the |"="| or |":="| in a loop header@>=
+if (cur_cmd<>equals)and(cur_cmd<>assignment) then
+ begin missing_err("=");@/
+@.Missing `='@>
+ help3("The next thing in this loop should have been `=' or `:='.")@/
+ ("But don't worry; I'll pretend that an equals sign")@/
+ ("was present, and I'll look for the values next.");@/
+ back_error;
+ end
+
+@ @<Check for the presence of a colon@>=
+if cur_cmd<>colon then
+ begin missing_err(":");@/
+@.Missing `:'@>
+ help3("The next thing in this loop should have been a `:'.")@/
+ ("So I'll pretend that a colon was present;")@/
+ ("everything from here to `endfor' will be iterated.");
+ back_error;
+ end
+
+@ We append a special |frozen_repeat_loop| token in place of the
+`\&{endfor}' at the end of the loop. This will come through \MP's scanner
+at the proper time to cause the loop to be repeated.
+
+(If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
+he will be foiled by the |get_symbol| routine, which keeps frozen
+tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
+token, so it won't be lost accidentally.)
+
+@ @<Scan the loop text...@>=
+q:=get_avail; info(q):=frozen_repeat_loop;
+scanner_status:=loop_defining; warning_info:=n;
+info(s):=scan_toks(iteration,p,q,0); scanner_status:=normal;@/
+link(s):=loop_ptr; loop_ptr:=s
+
+@ @<Initialize table...@>=
+eq_type(frozen_repeat_loop):=repeat_loop+outer_tag;
+text(frozen_repeat_loop):=" ENDFOR";
+
+@ The loop text is inserted into \MP's scanning apparatus by the
+|resume_iteration| routine.
+
+@p procedure resume_iteration;
+label not_found,exit;
+var @!p,@!q:pointer; {link registers}
+begin p:=loop_type(loop_ptr);
+if p=progression_flag then
+ begin p:=loop_list(loop_ptr); {now |p| points to a progression node}
+ cur_exp:=value(p);
+ if @<The arithmetic progression has ended@> then goto not_found;
+ cur_type:=known; q:=stash_cur_exp; {make |q| an \&{expr} argument}
+ value(p):=cur_exp+step_size(p); {set |value(p)| for the next iteration}
+ end
+else if p=null then
+ begin p:=loop_list(loop_ptr);
+ if p=null then goto not_found;
+ loop_list(loop_ptr):=link(p); q:=info(p); free_avail(p);
+ end
+else if p=void then
+ begin begin_token_list(info(loop_ptr),forever_text); return;
+ end
+else @<Make |q| a capsule containing the next picture component from
+ |loop_list(loop_ptr)| or |goto not_found|@>;
+begin_token_list(info(loop_ptr),loop_text);
+stack_argument(q);
+if internal[tracing_commands]>unity then @<Trace the start of a loop@>;
+return;
+not_found:stop_iteration;
+exit:end;
+
+@ @<The arithmetic progression has ended@>=
+((step_size(p)>0)and(cur_exp>final_value(p)))or@|
+ ((step_size(p)<0)and(cur_exp<final_value(p)))
+
+@ @<Trace the start of a loop@>=
+begin begin_diagnostic; print_nl("{loop value=");
+@.loop value=n@>
+if (q<>null)and(link(q)=void) then print_exp(q,1)
+else show_token_list(q,null,50,0);
+print_char("}"); end_diagnostic(false);
+end
+
+@ @<Make |q| a capsule containing the next picture component from...@>=
+begin q:=loop_list(loop_ptr);
+if q=null then goto not_found;
+skip_component(q)(goto not_found);
+cur_exp:=copy_objects(loop_list(loop_ptr),q);
+init_bbox(cur_exp);
+cur_type:=picture_type;@/
+loop_list(loop_ptr):=q;
+q:=stash_cur_exp;
+end
+
+@ A level of loop control disappears when |resume_iteration| has decided
+not to resume, or when an \&{exitif} construction has removed the loop text
+from the input stack.
+
+@p procedure stop_iteration;
+var @!p,@!q:pointer; {the usual}
+begin p:=loop_type(loop_ptr);
+if p=progression_flag then free_node(loop_list(loop_ptr),progression_node_size)
+else if p=null then
+ begin q:=loop_list(loop_ptr);
+ while q<>null do
+ begin p:=info(q);
+ if p<>null then
+ if link(p)=void then {it's an \&{expr} parameter}
+ begin recycle_value(p); free_node(p,value_node_size);
+ end
+ else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
+ p:=q; q:=link(q); free_avail(p);
+ end;
+ end
+else if p>progression_flag then delete_edge_ref(p);
+p:=loop_ptr; loop_ptr:=link(p); flush_token_list(info(p));
+free_node(p,loop_node_size);
+end;
+
+@ Now that we know all about loop control, we can finish up
+the missing portion of |begin_iteration| and we'll be done.
+
+The following code is performed after the `\.=' has been scanned in
+a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
+(if |m=suffix_base|).
+
+@<Scan the values to be used in the loop@>=
+loop_type(s):=null; q:=loop_list_loc(s); link(q):=null; {|link(q)=loop_list(s)|}
+repeat get_x_next;
+if m<>expr_base then scan_suffix
+else begin if cur_cmd>=colon then if cur_cmd<=comma then goto continue;
+ scan_expression;
+ if cur_cmd=step_token then if q=loop_list_loc(s) then
+ @<Prepare for step-until construction and |goto done|@>;
+ cur_exp:=stash_cur_exp;
+ end;
+link(q):=get_avail; q:=link(q); info(q):=cur_exp; cur_type:=vacuous;
+continue: until cur_cmd<>comma;
+done:
+
+@ @<Prepare for step-until construction and |goto done|@>=
+begin if cur_type<>known then bad_for("initial value");
+pp:=get_node(progression_node_size); value(pp):=cur_exp;@/
+get_x_next; scan_expression;
+if cur_type<>known then bad_for("step size");
+step_size(pp):=cur_exp;
+if cur_cmd<>until_token then
+ begin missing_err("until");@/
+@.Missing `until'@>
+ help2("I assume you meant to say `until' after `step'.")@/
+ ("So I'll look for the final value and colon next.");
+ back_error;
+ end;
+get_x_next; scan_expression;
+if cur_type<>known then bad_for("final value");
+final_value(pp):=cur_exp; loop_list(s):=pp;
+loop_type(s):=progression_flag; goto done;
+end
+
+@ The last case is when we have just seen ``\&{within}'', and we need to
+parse a picture expression and prepare to iterate over it.
+
+@<Set up a picture iteration@>=
+begin get_x_next;
+scan_expression;
+@<Make sure the current expression is a known picture@>;
+loop_type(s):=cur_exp; cur_type:=vacuous;@/
+q:=link(dummy_loc(cur_exp));
+if q<> null then
+ if is_start_or_stop(q) then
+ if skip_1component(q)=null then q:=link(q);
+loop_list(s):=q;
+end
+
+@ @<Make sure the current expression is a known picture@>=
+if cur_type<>picture_type then
+ begin
+ disp_err(null,"Improper iteration spec has been replaced by nullpicture");
+ help1("When you say `for x in p', p must be a known picture.");
+ put_get_flush_error(get_node(edge_header_size));
+ init_edges(cur_exp); cur_type:=picture_type;
+ end
+
+@* \[35] File names.
+It's time now to fret about file names. Besides the fact that different
+operating systems treat files in different ways, we must cope with the
+fact that completely different naming conventions are used by different
+groups of people. The following programs show what is required for one
+particular operating system; similar routines for other systems are not
+difficult to devise.
+@^system dependencies@>
+
+\MP\ assumes that a file name has three parts: the name proper; its
+``extension''; and a ``file area'' where it is found in an external file
+system. The extension of an input file is assumed to be
+`\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
+transcript file that records each run of \MP; it is `\.{.tfm}' on the font
+metric files that describe characters in any fonts created by \MP; it is
+`\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
+and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
+The file area can be arbitrary on input files, but files are usually
+output to the user's current area. If an input file cannot be
+found on the specified area, \MP\ will look for it on a special system
+area; this special area is intended for commonly used input files.
+
+Simple uses of \MP\ refer only to file names that have no explicit
+extension or area. For example, a person usually says `\.{input} \.{cmr10}'
+instead of `\.{input} \.{cmr10.new}'. Simple file
+names are best, because they make the \MP\ source files portable;
+whenever a file name consists entirely of letters and digits, it should be
+treated in the same way by all implementations of \MP. However, users
+need the ability to refer to other files in their environment, especially
+when responding to error messages concerning unopenable files; therefore
+we want to let them use the syntax that appears in their favorite
+operating system.
+
+@ \MP\ uses the same conventions that have proved to be satisfactory for
+\TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
+@^system dependencies@>
+the system-independent parts of \MP\ are expressed in terms
+of three system-dependent
+procedures called |begin_name|, |more_name|, and |end_name|. In
+essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
+the system-independent driver program does the operations
+$$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
+\,|end_name|.$$
+These three procedures communicate with each other via global variables.
+Afterwards the file name will appear in the string pool as three strings
+called |cur_name|\penalty10000\hskip-.05em,
+|cur_area|, and |cur_ext|; the latter two are null (i.e.,
+|""|), unless they were explicitly specified by the user.
+
+Actually the situation is slightly more complicated, because \MP\ needs
+to know when the file name ends. The |more_name| routine is a function
+(with side effects) that returns |true| on the calls |more_name|$(c_1)$,
+\dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
+returns |false|; or, it returns |true| and $c_n$ is the last character
+on the current input line. In other words,
+|more_name| is supposed to return |true| unless it is sure that the
+file name has been completely scanned; and |end_name| is supposed to be able
+to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
+whether $|more_name|(c_n)$ returned |true| or |false|.
+
+@<Glob...@>=
+@!cur_name:str_number; {name of file just scanned}
+@!cur_area:str_number; {file area just scanned, or \.{""}}
+@!cur_ext:str_number; {file extension just scanned, or \.{""}}
+
+@ It is easier to maintain reference counts if we assign initial values.
+
+@<Set init...@>=
+cur_name:=""; cur_area:=""; cur_ext:="";
+
+@ The file names we shall deal with for illustrative purposes have the
+following structure: If the name contains `\.>' or `\.:', the file area
+consists of all characters up to and including the final such character;
+otherwise the file area is null. If the remaining file name contains
+`\..', the file extension consists of all such characters from the first
+remaining `\..' to the end, otherwise the file extension is null.
+@^system dependencies@>
+
+We can scan such file names easily by using two global variables that keep track
+of the occurrences of area and extension delimiters. Note that these variables
+cannot be of type |pool_pointer| because a string pool compaction could occur
+while scanning a file name.
+
+@<Glob...@>=
+@!area_delimiter:integer;
+ {most recent `\.>' or `\.:' relative to |str_start[str_ptr]|}
+@!ext_delimiter:integer; {the relevant `\..', if any}
+
+@ Input files that can't be found in the user's area may appear in standard
+system areas called |MP_area| and |MF_area|. (The latter is used when the file
+extension is |".mf"|.) The standard system area for font metric files
+to be read is |MP_font_area|.
+This system area name will, of course, vary from place to place.
+@^system dependencies@>
+
+@d MP_area=="MPinputs:"
+@.MPinputs@>
+@d MF_area=="MFinputs:"
+@.MFinputs@>
+@d MP_font_area=="TeXfonts:"
+@.TeXfonts@>
+
+@ Here now is the first of the system-dependent routines for file name scanning.
+@^system dependencies@>
+
+@<Declare subroutines for parsing file names@>=
+procedure begin_name;
+begin delete_str_ref(cur_name); delete_str_ref(cur_area);
+delete_str_ref(cur_ext);@/
+area_delimiter:=-1; ext_delimiter:=-1;
+end;
+
+@ And here's the second.
+@^system dependencies@>
+
+@<Declare subroutines for parsing file names@>=
+function more_name(@!c:ASCII_code):boolean;
+begin if c=" " then more_name:=false
+else begin if (c=">")or(c=":") then
+ begin area_delimiter:=pool_ptr-str_start[str_ptr]; ext_delimiter:=-1;
+ end
+ else if (c=".")and(ext_delimiter<0) then
+ ext_delimiter:=pool_ptr-str_start[str_ptr];
+ str_room(1); append_char(c); {contribute |c| to the current string}
+ more_name:=true;
+ end;
+end;
+
+@ The third.
+@^system dependencies@>
+
+@<Declare subroutines for parsing file names@>=
+procedure end_name;
+var a,@!n,@!e:pool_pointer; {length of area, name, and extension}
+begin e:=pool_ptr-str_start[str_ptr]; {total length}
+if ext_delimiter<0 then ext_delimiter:=e;
+a:=area_delimiter+1; n:=ext_delimiter-a; e:=e-ext_delimiter;
+if a=0 then cur_area:=""
+else begin cur_area:=make_string;
+ chop_last_string(str_start[cur_area]+a);
+ end;
+if n=0 then cur_name:=""
+else begin cur_name:=make_string;
+ chop_last_string(str_start[cur_name]+n);
+ end;
+if e=0 then cur_ext:="" @+ else cur_ext:=make_string;
+end;
+
+@ Conversely, here is a routine that takes three strings and prints a file
+name that might have produced them. (The routine is system dependent, because
+some operating systems put the file area last instead of first.)
+@^system dependencies@>
+
+@<Basic printing...@>=
+procedure print_file_name(@!n,@!a,@!e:integer);
+begin print(a); print(n); print(e);
+end;
+
+@ Another system-dependent routine is needed to convert three internal
+\MP\ strings
+to the |name_of_file| value that is used to open files. The present code
+allows both lowercase and uppercase letters in the file name.
+@^system dependencies@>
+
+@d append_to_name(#)==begin c:=#; incr(k);
+ if k<=file_name_size then name_of_file[k]:=xchr[c];
+ end
+
+@<Declare subroutines for parsing file names@>=
+procedure pack_file_name(@!n,@!a,@!e:str_number);
+var @!k:integer; {number of positions filled in |name_of_file|}
+@!c: ASCII_code; {character being packed}
+@!j:pool_pointer; {index into |str_pool|}
+begin k:=0;
+for j:=str_start[a] to str_stop(a)-1 do append_to_name(so(str_pool[j]));
+for j:=str_start[n] to str_stop(n)-1 do append_to_name(so(str_pool[j]));
+for j:=str_start[e] to str_stop(e)-1 do append_to_name(so(str_pool[j]));
+if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
+for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
+end;
+
+@ A messier routine is also needed, since mem file names must be scanned
+before \MP's string mechanism has been initialized. We shall use the
+global variable |MP_mem_default| to supply the text for default system areas
+and extensions related to mem files.
+@^system dependencies@>
+
+@d mem_default_length=15 {length of the |MP_mem_default| string}
+@d mem_area_length=6 {length of its area part}
+@d mem_ext_length=4 {length of its `\.{.mem}' part}
+@d mem_extension=".mem" {the extension, as a \.{WEB} constant}
+
+@<Glob...@>=
+@!MP_mem_default:packed array[1..mem_default_length] of char;
+
+@ @<Set init...@>=
+MP_mem_default:='MPlib:plain.mem';
+@.MPlib@>
+@.plain@>
+@^system dependencies@>
+
+@ @<Check the ``constant'' values for consistency@>=
+if mem_default_length>file_name_size then bad:=20;
+
+@ Here is the messy routine that was just mentioned. It sets |name_of_file|
+from the first |n| characters of |MP_mem_default|, followed by
+|buffer[a..b]|, followed by the last |mem_ext_length| characters of
+|MP_mem_default|.
+
+We dare not give error messages here, since \MP\ calls this routine before
+the |error| routine is ready to roll. Instead, we simply drop excess characters,
+since the error will be detected in another way when a strange file name
+isn't found.
+@^system dependencies@>
+
+@p procedure pack_buffered_name(@!n:small_number;@!a,@!b:integer);
+var @!k:integer; {number of positions filled in |name_of_file|}
+@!c: ASCII_code; {character being packed}
+@!j:integer; {index into |buffer| or |MP_mem_default|}
+begin if n+b-a+1+mem_ext_length>file_name_size then
+ b:=a+file_name_size-n-1-mem_ext_length;
+k:=0;
+for j:=1 to n do append_to_name(xord[MP_mem_default[j]]);
+for j:=a to b do append_to_name(buffer[j]);
+for j:=mem_default_length-mem_ext_length+1 to mem_default_length do
+ append_to_name(xord[MP_mem_default[j]]);
+if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
+for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
+end;
+
+@ Here is the only place we use |pack_buffered_name|. This part of the program
+becomes active when a ``virgin'' \MP\ is trying to get going, just after
+the preliminary initialization, or when the user is substituting another
+mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
+contains the first line of input in |buffer[loc..(last-1)]|, where
+|loc<last| and |buffer[loc]<>" "|.
+
+@<Declare the function called |open_mem_file|@>=
+function open_mem_file:boolean;
+label found,exit;
+var @!j:0..buf_size; {the first space after the file name}
+begin j:=loc;
+if buffer[loc]="&" then
+ begin incr(loc); j:=loc; buffer[last]:=" ";
+ while buffer[j]<>" " do incr(j);
+ pack_buffered_name(0,loc,j-1); {try first without the system file area}
+ if w_open_in(mem_file) then goto found;
+ pack_buffered_name(mem_area_length,loc,j-1);
+ {now try the system mem file area}
+ if w_open_in(mem_file) then goto found;
+ wake_up_terminal;
+ wterm_ln('Sorry, I can''t find that mem file;',' will try PLAIN.');
+@.Sorry, I can't find...@>
+ update_terminal;
+ end;
+ {now pull out all the stops: try for the system \.{plain} file}
+pack_buffered_name(mem_default_length-mem_ext_length,1,0);
+if not w_open_in(mem_file) then
+ begin wake_up_terminal;
+ wterm_ln('I can''t find the PLAIN mem file!');
+@.I can't find PLAIN...@>
+@.plain@>
+ open_mem_file:=false; return;
+ end;
+found:loc:=j; open_mem_file:=true;
+exit:end;
+
+@ Operating systems often make it possible to determine the exact name (and
+possible version number) of a file that has been opened. The following routine,
+which simply makes a \MP\ string from the value of |name_of_file|, should
+ideally be changed to deduce the full name of file~|f|, which is the file
+most recently opened, if it is possible to do this in a \PASCAL\ program.
+@^system dependencies@>
+
+This routine might be called after string memory has overflowed, hence
+we check for this before calling `|str_room|'.
+
+@p function make_name_string:str_number;
+var @!k:1..file_name_size; {index into |name_of_file|}
+begin if str_overflowed then
+ make_name_string:="?"
+else begin str_room(name_length);
+ for k:=1 to name_length do append_char(xord[name_of_file[k]]);
+ make_name_string:=make_string;
+ end;
+end;
+function a_make_name_string(var @!f:alpha_file):str_number;
+begin a_make_name_string:=make_name_string;
+end;
+function b_make_name_string(var @!f:byte_file):str_number;
+begin b_make_name_string:=make_name_string;
+end;
+function w_make_name_string(var @!f:word_file):str_number;
+begin w_make_name_string:=make_name_string;
+end;
+
+@ Now let's consider the ``driver''
+routines by which \MP\ deals with file names
+in a system-independent manner. First comes a procedure that looks for a
+file name in the input by taking the information from the input buffer.
+(We can't use |get_next|, because the conversion to tokens would
+destroy necessary information.)
+
+This procedure doesn't allow semicolons or percent signs to be part of
+file names, because of other conventions of \MP.
+{\sl The {\logos METAFONT\/}book} doesn't
+use semicolons or percents immediately after file names, but some users
+no doubt will find it natural to do so; therefore system-dependent
+changes to allow such characters in file names should probably
+be made with reluctance, and only when an entire file name that
+includes special characters is ``quoted'' somehow.
+@^system dependencies@>
+
+@p procedure scan_file_name;
+label done;
+begin begin_name;
+while buffer[loc]=" " do incr(loc);
+loop@+begin if (buffer[loc]=";")or(buffer[loc]="%") then goto done;
+ if not more_name(buffer[loc]) then goto done;
+ incr(loc);
+ end;
+done: end_name;
+end;
+
+@ Here is another version that takes its input from a string.
+
+@<Declare subroutines for parsing file names@>=
+procedure str_scan_file(@!s:str_number);
+label done;
+var @!p,@!q:pool_pointer; {current position and stopping point}
+begin begin_name;
+p:=str_start[s]; q:=str_stop(s);
+while p<q do
+ begin if not more_name(so(str_pool[p])) then goto done;
+ incr(p);
+ end;
+done: end_name;
+end;
+
+@ The global variable |job_name| contains the file name that was first
+\&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
+`\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
+
+@<Glob...@>=
+@!job_name:str_number; {principal file name}
+@!log_opened:boolean; {has the transcript file been opened?}
+@!log_name:str_number; {full name of the log file}
+
+@ Initially |job_name=0|; it becomes nonzero as soon as the true name is known.
+We have |job_name=0| if and only if the `\.{log}' file has not been opened,
+except of course for a short time just after |job_name| has become nonzero.
+
+@<Initialize the output...@>=job_name:=0; log_opened:=false;
+
+@ Here is a routine that manufactures the output file names, assuming that
+|job_name<>0|. It ignores and changes the current settings of |cur_area|
+and |cur_ext|.
+
+@d pack_cur_name==pack_file_name(cur_name,cur_area,cur_ext)
+
+@p procedure pack_job_name(@!s:str_number);
+ {|s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn}}
+begin add_str_ref(s);
+delete_str_ref(cur_name); delete_str_ref(cur_area);
+delete_str_ref(cur_ext);@/
+cur_area:=""; cur_ext:=s;
+cur_name:=job_name; pack_cur_name;
+end;
+
+@ If some trouble arises when \MP\ tries to open a file, the following
+routine calls upon the user to supply another file name. Parameter~|s|
+is used in the error message to identify the type of file; parameter~|e|
+is the default extension if none is given. Upon exit from the routine,
+variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
+ready for another attempt at file opening.
+
+@p procedure prompt_file_name(@!s,@!e:str_number);
+label done;
+var @!k:0..buf_size; {index into |buffer|}
+begin if interaction=scroll_mode then wake_up_terminal;
+if s="input file name" then print_err("I can't find file `")
+@.I can't find file x@>
+else print_err("I can't write on file `");
+@.I can't write on file x@>
+print_file_name(cur_name,cur_area,cur_ext); print("'.");
+if e="" then show_context;
+print_nl("Please type another "); print(s);
+@.Please type...@>
+if interaction<scroll_mode then
+ fatal_error("*** (job aborted, file error in nonstop mode)");
+@.job aborted, file error...@>
+clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
+if cur_ext="" then cur_ext:=e;
+pack_cur_name;
+end;
+
+@ @<Scan file name in the buffer@>=
+begin begin_name; k:=first;
+while (buffer[k]=" ")and(k<last) do incr(k);
+loop@+ begin if k=last then goto done;
+ if not more_name(buffer[k]) then goto done;
+ incr(k);
+ end;
+done:end_name;
+end
+
+@ The |open_log_file| routine is used to open the transcript file and to help
+it catch up to what has previously been printed on the terminal.
+
+@p procedure open_log_file;
+var @!old_setting:0..max_selector; {previous |selector| setting}
+@!k:0..buf_size; {index into |months| and |buffer|}
+@!l:0..buf_size; {end of first input line}
+@!m:integer; {the current month}
+@!months:packed array [1..36] of char; {abbreviations of month names}
+begin old_setting:=selector;
+if job_name=0 then job_name:="mpout";
+pack_job_name(".log");
+while not a_open_out(log_file) do @<Try to get a different log file name@>;
+log_name:=a_make_name_string(log_file);
+selector:=log_only; log_opened:=true;
+@<Print the banner line, including the date and time@>;
+input_stack[input_ptr]:=cur_input; {make sure bottom level is in memory}
+print_nl("**");
+@.**@>
+l:=input_stack[0].limit_field-1; {last position of first line}
+for k:=1 to l do print(buffer[k]);
+print_ln; {now the transcript file contains the first line of input}
+selector:=old_setting+2; {|log_only| or |term_and_log|}
+end;
+
+@ Sometimes |open_log_file| is called at awkward moments when \MP\ is
+unable to print error messages or even to |show_context|.
+The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
+routine will not be invoked because |log_opened| will be false.
+
+The normal idea of |batch_mode| is that nothing at all should be written
+on the terminal. However, in the unusual case that
+no log file could be opened, we make an exception and allow
+an explanatory message to be seen.
+
+Incidentally, the program always refers to the log file as a `\.{transcript
+file}', because some systems cannot use the extension `\.{.log}' for
+this file.
+
+@<Try to get a different log file name@>=
+begin selector:=term_only;
+prompt_file_name("transcript file name",".log");
+end
+
+@ @<Print the banner...@>=
+begin wlog(banner);
+print(mem_ident); print(" ");
+print_int(round_unscaled(internal[day])); print_char(" ");
+months:='JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC';
+m:=round_unscaled(internal[month]);
+for k:=3*m-2 to 3*m do wlog(months[k]);
+print_char(" "); print_int(round_unscaled(internal[year])); print_char(" ");
+m:=round_unscaled(internal[time]);
+print_dd(m div 60); print_char(":"); print_dd(m mod 60);
+end
+
+@ The |try_extension| function tries to open an input file determined by
+|cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
+can't find the file in |cur_area| or the appropriate system area.
+
+@p function try_extension(@!ext:str_number):boolean;
+begin pack_file_name(cur_name,cur_area,ext);
+in_name:=cur_name; in_area:=cur_area;
+if a_open_in(cur_file) then try_extension:=true
+else begin if str_vs_str(ext,".mf")=0 then in_area:=MF_area
+ else in_area:=MP_area;
+ pack_file_name(cur_name,in_area,ext);
+ try_extension:=a_open_in(cur_file);
+ end;
+end;
+
+@ After all calls to |try_extension|, we must make sure that we count references
+for |in_name| and |in_area| if they match |cur_name| and/or |cur_area|.
+
+@<Update the string reference counts for |in_name| and |in_area|@>=
+if in_name=cur_name then add_str_ref(cur_name);
+if in_area=cur_area then add_str_ref(cur_area)
+
+@ Let's turn now to the procedure that is used to initiate file reading
+when an `\.{input}' command is being processed.
+
+@p procedure start_input; {\MP\ will \.{input} something}
+label done;
+begin @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
+loop@+ begin begin_file_reading; {set up |cur_file| and new level of input}
+ if cur_ext="" then
+ if try_extension(".mp") then goto done
+ else if try_extension("") then goto done
+ else if try_extension(".mf") then goto done
+ else do_nothing
+ else if try_extension(cur_ext) then goto done;
+ end_file_reading; {remove the level that didn't work}
+ prompt_file_name("input file name","");
+ end;
+done: name:=a_make_name_string(cur_file);
+@<Update the string reference counts for |in_name| and |in_area|@>;
+if job_name=0 then
+ begin job_name:=cur_name; str_ref[job_name]:=max_str_ref;
+ open_log_file;
+ end; {|open_log_file| doesn't |show_context|, so |limit|
+ and |loc| needn't be set to meaningful values yet}
+if term_offset+length(name)>max_print_line-2 then print_ln
+else if (term_offset>0)or(file_offset>0) then print_char(" ");
+print_char("("); incr(open_parens); print(name); update_terminal;
+@<Flush |name| and replace it with |cur_name| if it won't be needed@>;
+@<Read the first line of the new file@>;
+end;
+
+@ This code should be omitted if |a_make_name_string| returns something other
+than just a copy of its argument and the full file name is needed for opening
+\.{MPX} files or implementing the switch-to-editor option.
+@^system dependencies@>
+
+@<Flush |name| and replace it with |cur_name| if it won't be needed@>=
+flush_string(name); name:=cur_name; cur_name:=0
+
+@ Here we have to remember to tell the |input_ln| routine not to
+start with a |get|. If the file is empty, it is considered to
+contain a single blank line.
+@^system dependencies@>
+
+@<Read the first line...@>=
+begin line:=1;
+if input_ln(cur_file,false) then do_nothing;
+firm_up_the_line;
+buffer[limit]:="%"; first:=limit+1; loc:=start;
+end
+
+@ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
+while token_state and(loc=null) do end_token_list;
+if token_state then
+ begin print_err("File names can't appear within macros");
+@.File names can't...@>
+ help3("Sorry...I've converted what follows to tokens,")@/
+ ("possibly garbaging the name you gave.")@/
+ ("Please delete the tokens and insert the name again.");@/
+ error;
+ end;
+if file_state then scan_file_name
+else begin cur_name:=""; cur_ext:=""; cur_area:="";
+ end
+
+@ Sometimes we need to deal with two file names at once. This procedure
+copies the given string into a special array for an old file name.
+
+@p procedure copy_old_name(s:str_number);
+var @!k:integer; {number of positions filled in |old_file_name|}
+@!j:pool_pointer; {index into |str_pool|}
+begin k:=0;
+for j:=str_start[s] to str_stop(s)-1 do
+ begin incr(k);
+ if k<=file_name_size then old_file_name[k]:=xchr[so(str_pool[j])];
+ end;
+if k<=file_name_size then old_name_length:=k
+else old_name_length:=file_name_size;
+for k:=old_name_length+1 to file_name_size do @+old_file_name[k]:=' ';
+end;
+
+@ @<Glob...@>=
+@!old_file_name : packed array[1..file_name_size] of char;
+ {analogous to |name_of_file|}
+@!old_name_length : 0..file_name_size;
+ {this many relevant characters followed by blanks}
+
+@ The following simple routine starts reading the \.{MPX} file associated
+with the current input file.
+
+@p procedure start_mpx_input;
+label exit,not_found;
+var k:1..file_name_size;
+begin pack_file_name(in_name,in_area,".mpx");
+@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
+ |goto not_found| if there is a problem@>;
+begin_file_reading;
+if not a_open_in(cur_file) then
+ begin end_file_reading;
+ goto not_found;
+ end;
+name:=a_make_name_string(cur_file);
+mpx_name[index]:=name; add_str_ref(name);
+@<Read the first line of the new file@>;
+return;
+not_found: @<Explain that the \.{MPX} file can't be read and |succumb|@>;
+exit:end;
+
+@ This should ideally be changed to do whatever is necessary to create the
+\.{MPX} file given by |name_of_file| if it does not exist or if it is out
+of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
+the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
+completely different typesetting program if suitable postprocessor is
+available to perform the function of \.{DVItoMP}.)
+@^system dependencies@>
+
+@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
+ |goto not_found| if there is a problem@>=
+copy_old_name(name)
+{System-dependent code should be added here}
+
+@ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
+if interaction=error_stop_mode then wake_up_terminal;
+print_nl(">> ");
+for k:=1 to old_name_length do print(xord[old_file_name[k]]);
+print_nl(">> ");
+for k:=1 to name_length do print(xord[name_of_file[k]]);
+print_nl("! Unable to make mpx file");
+help4("The two files given above are one of your source files")@/
+ ("and an auxiliary file I need to read to find out what your")@/
+ ("btex..etex blocks mean. If you don't know why I had trouble,")@/
+ ("try running it manually through MPtoTeX, TeX, and DVItoMP");
+succumb;
+
+@ The last file-opening commands are for files accessed via the \&{readfrom}
+@:read_from_}{\&{readfrom} primitive@>
+operator and the \&{write} command. Such files are stored in separate arrays.
+@:write_}{\&{write} primitive@>
+
+@<Types in the outer block@>=
+readf_index = 0..max_read_files;
+write_index = 0..max_write_files;
+
+@ @<Glob...@>=
+rd_file:array [readf_index] of alpha_file; {\&{readfrom} files}
+rd_fname:array [readf_index] of str_number;
+ {corresponding file name or 0 if file not open}
+read_files:readf_index; {number of valid entries in the above arrays}
+wr_file:array [write_index] of alpha_file; {\&{write} files}
+wr_fname:array [write_index] of str_number;
+ {corresponding file name or 0 if file not open}
+write_files:write_index; {number of valid entries in the above arrays}
+
+@ @<Set init...@>=
+read_files:=0;
+write_files:=0;
+
+@ This routine starts reading the file named by string~|s| without setting
+|loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
+be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
+
+@p function start_read_input(s:str_number; n:readf_index):boolean;
+label exit,not_found;
+begin str_scan_file(s);
+pack_cur_name;
+begin_file_reading;
+if not a_open_in(rd_file[n]) then goto not_found;
+if not input_ln(rd_file[n],false) then
+ begin a_close(rd_file[n]); goto not_found; end;
+rd_fname[n]:=s;
+add_str_ref(s);
+start_read_input:=true;
+return;
+not_found: end_file_reading;
+start_read_input:=false;
+exit:end;
+
+@ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
+
+@p procedure open_write_file(s:str_number; n:readf_index);
+begin str_scan_file(s);
+pack_cur_name;
+while not a_open_out(wr_file[n]) do
+ prompt_file_name("file name for write output","");
+wr_fname[n]:=s;
+add_str_ref(s);
+end;
+
+
+@* \[36] Introduction to the parsing routines.
+We come now to the central nervous system that sparks many of \MP's activities.
+By evaluating expressions, from their primary constituents to ever larger
+subexpressions, \MP\ builds the structures that ultimately define complete
+pictures or fonts of type.
+
+Four mutually recursive subroutines are involved in this process: We call them
+$$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
+and |scan_expression|.}$$
+@^recursion@>
+Each of them is parameterless and begins with the first token to be scanned
+already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
+the value of the primary or secondary or tertiary or expression that was
+found will appear in the global variables |cur_type| and |cur_exp|. The
+token following the expression will be represented in |cur_cmd|, |cur_mod|,
+and |cur_sym|.
+
+Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
+backup mechanisms have been added in order to provide reasonable error
+recovery.
+
+@<Glob...@>=
+@!cur_type:small_number; {the type of the expression just found}
+@!cur_exp:integer; {the value of the expression just found}
+
+@ @<Set init...@>=
+cur_exp:=0;
+
+@ Many different kinds of expressions are possible, so it is wise to have
+precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
+
+\smallskip\hang
+|cur_type=vacuous| means that this expression didn't turn out to have a
+value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
+construction in which there was no expression before the \&{endgroup}.
+In this case |cur_exp| has some irrelevant value.
+
+\smallskip\hang
+|cur_type=boolean_type| means that |cur_exp| is either |true_code|
+or |false_code|.
+
+\smallskip\hang
+|cur_type=unknown_boolean| means that |cur_exp| points to a capsule
+node that is in the ring of variables equivalent
+to at least one undefined boolean variable.
+
+\smallskip\hang
+|cur_type=string_type| means that |cur_exp| is a string number (i.e., an
+integer in the range |0<=cur_exp<str_ptr|). That string's reference count
+includes this particular reference.
+
+\smallskip\hang
+|cur_type=unknown_string| means that |cur_exp| points to a capsule
+node that is in the ring of variables equivalent
+to at least one undefined string variable.
+
+\smallskip\hang
+|cur_type=pen_type| means that |cur_exp| points to a node in a pen. Nobody
+else points to any of the nodes in this pen. The pen may be polygonal or
+elliptical.
+
+\smallskip\hang
+|cur_type=unknown_pen| means that |cur_exp| points to a capsule
+node that is in the ring of variables equivalent
+to at least one undefined pen variable.
+
+\smallskip\hang
+|cur_type=path_type| means that |cur_exp| points to a the first node of
+a path; nobody else points to this particular path. The control points of
+the path will have been chosen.
+
+\smallskip\hang
+|cur_type=unknown_path| means that |cur_exp| points to a capsule
+node that is in the ring of variables equivalent
+to at least one undefined path variable.
+
+\smallskip\hang
+|cur_type=picture_type| means that |cur_exp| points to an edge header node.
+There may be other pointers to this particular set of edges. The header node
+contains a reference count that includes this particular reference.
+
+\smallskip\hang
+|cur_type=unknown_picture| means that |cur_exp| points to a capsule
+node that is in the ring of variables equivalent
+to at least one undefined picture variable.
+
+\smallskip\hang
+|cur_type=transform_type| means that |cur_exp| points to a |transform_type|
+capsule node. The |value| part of this capsule
+points to a transform node that contains six numeric values,
+each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
+
+\smallskip\hang
+|cur_type=color_type| means that |cur_exp| points to a |color_type|
+capsule node. The |value| part of this capsule
+points to a color node that contains three numeric values,
+each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
+
+\smallskip\hang
+|cur_type=pair_type| means that |cur_exp| points to a capsule
+node whose type is |pair_type|. The |value| part of this capsule
+points to a pair node that contains two numeric values,
+each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
+
+\smallskip\hang
+|cur_type=known| means that |cur_exp| is a |scaled| value.
+
+\smallskip\hang
+|cur_type=dependent| means that |cur_exp| points to a capsule node whose type
+is |dependent|. The |dep_list| field in this capsule points to the associated
+dependency list.
+
+\smallskip\hang
+|cur_type=proto_dependent| means that |cur_exp| points to a |proto_dependent|
+capsule node. The |dep_list| field in this capsule
+points to the associated dependency list.
+
+\smallskip\hang
+|cur_type=independent| means that |cur_exp| points to a capsule node
+whose type is |independent|. This somewhat unusual case can arise, for
+example, in the expression
+`$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
+
+\smallskip\hang
+|cur_type=token_list| means that |cur_exp| points to a linked list of
+tokens. This case arises only on the left-hand side of an assignment
+(`\.{:=}') operation, under very special circumstances.
+
+\smallskip\noindent
+The possible settings of |cur_type| have been listed here in increasing
+numerical order. Notice that |cur_type| will never be |numeric_type| or
+|suffixed_macro| or |unsuffixed_macro|, although variables of those types
+are allowed. Conversely, \MP\ has no variables of type |vacuous| or
+|token_list|.
+
+@ Capsules are two-word nodes that have a similar meaning
+to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
+and |link<=void|; and their |type| field is one of the possibilities for
+|cur_type| listed above.
+
+The |value| field of a capsule is, in most cases, the value that
+corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
+However, when |cur_exp| would point to a capsule,
+no extra layer of indirection is present; the |value|
+field is what would have been called |value(cur_exp)| if it had not been
+encapsulated. Furthermore, if the type is |dependent| or
+|proto_dependent|, the |value| field of a capsule is replaced by
+|dep_list| and |prev_dep| fields, since dependency lists in capsules are
+always part of the general |dep_list| structure.
+
+The |get_x_next| routine is careful not to change the values of |cur_type|
+and |cur_exp| when it gets an expanded token. However, |get_x_next| might
+call a macro, which might parse an expression, which might execute lots of
+commands in a group; hence it's possible that |cur_type| might change
+from, say, |unknown_boolean| to |boolean_type|, or from |dependent| to
+|known| or |independent|, during the time |get_x_next| is called. The
+programs below are careful to stash sensitive intermediate results in
+capsules, so that \MP's generality doesn't cause trouble.
+
+Here's a procedure that illustrates these conventions. It takes
+the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
+and stashes them away in a
+capsule. It is not used when |cur_type=token_list|.
+After the operation, |cur_type=vacuous|; hence there is no need to
+copy path lists or to update reference counts, etc.
+
+The special link |void| is put on the capsule returned by
+|stash_cur_exp|, because this procedure is used to store macro parameters
+that must be easily distinguishable from token lists.
+
+@<Declare the stashing/unstashing routines@>=
+function stash_cur_exp:pointer;
+var @!p:pointer; {the capsule that will be returned}
+begin case cur_type of
+unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
+ independent:p:=cur_exp;
+othercases begin p:=get_node(value_node_size); name_type(p):=capsule;
+ type(p):=cur_type; value(p):=cur_exp;
+ end
+endcases;@/
+cur_type:=vacuous; link(p):=void; stash_cur_exp:=p;
+end;
+
+@ The inverse of |stash_cur_exp| is the following procedure, which
+deletes an unnecessary capsule and puts its contents into |cur_type|
+and |cur_exp|.
+
+The program steps of \MP\ can be divided into two categories: those in
+which |cur_type| and |cur_exp| are ``alive'' and those in which they are
+``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
+information or not. It's important not to ignore them when they're alive,
+and it's important not to pay attention to them when they're dead.
+
+There's also an intermediate category: If |cur_type=vacuous|, then
+|cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
+and |cur_exp| are alive or dead. In such cases we say that |cur_type|
+and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
+only when they are alive or dormant.
+
+The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
+are alive or dormant. The \\{unstash} procedure assumes that they are
+dead or dormant; it resuscitates them.
+
+@<Declare the stashing/unstashing...@>=
+procedure unstash_cur_exp(@!p:pointer);
+begin cur_type:=type(p);
+case cur_type of
+unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
+ independent: cur_exp:=p;
+othercases begin cur_exp:=value(p);
+ free_node(p,value_node_size);
+ end
+endcases;@/
+end;
+
+@ The following procedure prints the values of expressions in an
+abbreviated format. If its first parameter |p| is null, the value of
+|(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
+containing the desired value. The second parameter controls the amount of
+output. If it is~0, dependency lists will be abbreviated to
+`\.{linearform}' unless they consist of a single term. If it is greater
+than~1, complicated structures (pens, pictures, and paths) will be displayed
+in full.
+
+@<Declare subroutines for printing expressions@>=
+@t\4@>@<Declare the procedure called |print_dp|@>@;
+@t\4@>@<Declare the stashing/unstashing routines@>@;
+procedure print_exp(@!p:pointer;@!verbosity:small_number);
+var @!restore_cur_exp:boolean; {should |cur_exp| be restored?}
+@!t:small_number; {the type of the expression}
+@!v:integer; {the value of the expression}
+@!q:pointer; {a big node being displayed}
+begin if p<>null then restore_cur_exp:=false
+else begin p:=stash_cur_exp; restore_cur_exp:=true;
+ end;
+t:=type(p);
+if t<dependent then v:=value(p)@+else if t<independent then v:=dep_list(p);
+@<Print an abbreviated value of |v| with format depending on |t|@>;
+if restore_cur_exp then unstash_cur_exp(p);
+end;
+
+@ @<Print an abbreviated value of |v| with format depending on |t|@>=
+case t of
+vacuous:print("vacuous");
+boolean_type:if v=true_code then print("true")@+else print("false");
+unknown_types,numeric_type:@<Display a variable
+ that's been declared but not defined@>;
+string_type:begin print_char(""""); print(v); print_char("""");
+ end;
+pen_type,path_type,picture_type:@<Display a complex type@>;
+transform_type,color_type,pair_type:if v=null then print_type(t)
+ else @<Display a big node@>;
+known:print_scaled(v);
+dependent,proto_dependent:print_dp(t,v,verbosity);
+independent:print_variable_name(p);
+othercases confusion("exp")
+@:this can't happen exp}{\quad exp@>
+endcases
+
+@ @<Display a big node@>=
+begin print_char("("); q:=v+big_node_size[t];
+repeat if type(v)=known then print_scaled(value(v))
+else if type(v)=independent then print_variable_name(v)
+else print_dp(type(v),dep_list(v),verbosity);
+v:=v+2;
+if v<>q then print_char(",");
+until v=q;
+print_char(")");
+end
+
+@ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
+in the log file only, unless the user has given a positive value to
+\\{tracingonline}.
+
+@<Display a complex type@>=
+if verbosity<=1 then print_type(t)
+else begin if selector=term_and_log then
+ if internal[tracing_online]<=0 then
+ begin selector:=term_only;
+ print_type(t); print(" (see the transcript file)");
+ selector:=term_and_log;
+ end;
+ case t of
+ pen_type:print_pen(v,"",false);
+ path_type:print_path(v,"",false);
+ picture_type:print_edges(v,"",false);
+ end; {there are no other cases}
+ end
+
+@ @<Declare the procedure called |print_dp|@>=
+procedure print_dp(@!t:small_number;@!p:pointer;@!verbosity:small_number);
+var @!q:pointer; {the node following |p|}
+begin q:=link(p);
+if (info(q)=null) or (verbosity>0) then print_dependency(p,t)
+else print("linearform");
+end;
+
+@ The displayed name of a variable in a ring will not be a capsule unless
+the ring consists entirely of capsules.
+
+@<Display a variable that's been declared but not defined@>=
+begin print_type(t);
+if v<>null then
+ begin print_char(" ");
+ while (name_type(v)=capsule) and (v<>p) do v:=value(v);
+ print_variable_name(v);
+ end;
+end
+
+@ When errors are detected during parsing, it is often helpful to
+display an expression just above the error message, using |exp_err|
+or |disp_err| instead of |print_err|.
+
+@d exp_err(#)==disp_err(null,#) {displays the current expression}
+
+@<Declare subroutines for printing expressions@>=
+procedure disp_err(@!p:pointer;@!s:str_number);
+begin if interaction=error_stop_mode then wake_up_terminal;
+print_nl(">> ");
+@.>>@>
+print_exp(p,1); {``medium verbose'' printing of the expression}
+if s<>"" then
+ begin print_nl("! "); print(s);
+@.!\relax@>
+ end;
+end;
+
+@ If |cur_type| and |cur_exp| contain relevant information that should
+be recycled, we will use the following procedure, which changes |cur_type|
+to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
+and |cur_exp| as either alive or dormant after this has been done,
+because |cur_exp| will not contain a pointer value.
+
+@<Declare the procedure called |flush_cur_exp|@>=
+procedure flush_cur_exp(@!v:scaled);
+begin case cur_type of
+unknown_types,transform_type,color_type,pair_type,@|
+ dependent,proto_dependent,independent:
+ begin recycle_value(cur_exp); free_node(cur_exp,value_node_size);
+ end;
+string_type:delete_str_ref(cur_exp);
+pen_type,path_type: toss_knot_list(cur_exp);
+picture_type:delete_edge_ref(cur_exp);
+othercases do_nothing
+endcases;@/
+cur_type:=known; cur_exp:=v;
+end;
+
+@ There's a much more general procedure that is capable of releasing
+the storage associated with any two-word value packet.
+
+@<Declare the recycling subroutines@>=
+procedure recycle_value(@!p:pointer);
+label done;
+var @!t:small_number; {a type code}
+@!v:integer; {a value}
+@!vv:integer; {another value}
+@!q,@!r,@!s,@!pp:pointer; {link manipulation registers}
+begin t:=type(p);
+if t<dependent then v:=value(p);
+case t of
+undefined,vacuous,boolean_type,known,numeric_type:do_nothing;
+unknown_types:ring_delete(p);
+string_type:delete_str_ref(v);
+path_type,pen_type:toss_knot_list(v);
+picture_type:delete_edge_ref(v);
+pair_type,color_type,transform_type:@<Recycle a big node@>;
+dependent,proto_dependent:@<Recycle a dependency list@>;
+independent:@<Recycle an independent variable@>;
+token_list,structured:confusion("recycle");
+@:this can't happen recycle}{\quad recycle@>
+unsuffixed_macro,suffixed_macro:delete_mac_ref(value(p));
+end; {there are no other cases}
+type(p):=undefined;
+end;
+
+@ @<Recycle a big node@>=
+if v<>null then
+ begin q:=v+big_node_size[t];
+ repeat q:=q-2; recycle_value(q);
+ until q=v;
+ free_node(v,big_node_size[t]);
+ end
+
+@ @<Recycle a dependency list@>=
+begin q:=dep_list(p);
+while info(q)<>null do q:=link(q);
+link(prev_dep(p)):=link(q);
+prev_dep(link(q)):=prev_dep(p);
+link(q):=null; flush_node_list(dep_list(p));
+end
+
+@ When an independent variable disappears, it simply fades away, unless
+something depends on it. In the latter case, a dependent variable whose
+coefficient of dependence is maximal will take its place.
+The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
+as part of his Ph.D. thesis (Stanford University, December 1982).
+@^Zabala Salelles, Ignacio Andres@>
+
+For example, suppose that variable $x$ is being recycled, and that the
+only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
+we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
+will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
+we will print `\.{\#\#\# -2x=-y+a}'.
+
+There's a slight complication, however: An independent variable $x$
+can occur both in dependency lists and in proto-dependency lists.
+This makes it necessary to be careful when deciding which coefficient
+is maximal.
+
+Furthermore, this complication is not so slight when
+a proto-dependent variable is chosen to become independent. For example,
+suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
+then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
+large coefficient `50'.
+
+In order to deal with these complications without wasting too much time,
+we shall link together the occurrences of~$x$ among all the linear
+dependencies, maintaining separate lists for the dependent and
+proto-dependent cases.
+
+@<Recycle an independent variable@>=
+begin max_c[dependent]:=0; max_c[proto_dependent]:=0;@/
+max_link[dependent]:=null; max_link[proto_dependent]:=null;@/
+q:=link(dep_head);
+while q<>dep_head do
+ begin s:=value_loc(q); {now |link(s)=dep_list(q)|}
+ loop@+ begin r:=link(s);
+ if info(r)=null then goto done;
+ if info(r)<>p then s:=r
+ else begin t:=type(q); link(s):=link(r); info(r):=q;
+ if abs(value(r))>max_c[t] then
+ @<Record a new maximum coefficient of type |t|@>
+ else begin link(r):=max_link[t]; max_link[t]:=r;
+ end;
+ end;
+ end;
+done: q:=link(r);
+ end;
+if (max_c[dependent]>0)or(max_c[proto_dependent]>0) then
+ @<Choose a dependent variable to take the place of the disappearing
+ independent variable, and change all remaining dependencies
+ accordingly@>;
+end
+
+@ The code for independency removal makes use of three two-word arrays.
+
+@<Glob...@>=
+@!max_c:array[dependent..proto_dependent] of integer;
+ {max coefficient magnitude}
+@!max_ptr:array[dependent..proto_dependent] of pointer;
+ {where |p| occurs with |max_c|}
+@!max_link:array[dependent..proto_dependent] of pointer;
+ {other occurrences of |p|}
+
+@ @<Record a new maximum coefficient...@>=
+begin if max_c[t]>0 then
+ begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
+ end;
+max_c[t]:=abs(value(r)); max_ptr[t]:=r;
+end
+
+@ @<Choose a dependent...@>=
+begin if (max_c[dependent] div @'10000 >=
+ max_c[proto_dependent]) then
+ t:=dependent
+else t:=proto_dependent;
+@<Determine the dependency list |s| to substitute for the independent
+ variable~|p|@>;
+t:=dependent+proto_dependent-t; {complement |t|}
+if max_c[t]>0 then {we need to pick up an unchosen dependency}
+ begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
+ end;
+if t<>dependent then @<Substitute new dependencies in place of |p|@>
+else @<Substitute new proto-dependencies in place of |p|@>;
+flush_node_list(s);
+if fix_needed then fix_dependencies;
+check_arith;
+end
+
+@ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
+and |info(s)| points to the dependent variable~|pp| of type~|t| from
+whose dependency list we have removed node~|s|. We must reinsert
+node~|s| into the dependency list, with coefficient $-1.0$, and with
+|pp| as the new independent variable. Since |pp| will have a larger serial
+number than any other variable, we can put node |s| at the head of the
+list.
+
+@<Determine the dep...@>=
+s:=max_ptr[t]; pp:=info(s); v:=value(s);
+if t=dependent then value(s):=-fraction_one@+else value(s):=-unity;
+r:=dep_list(pp); link(s):=r;
+while info(r)<>null do r:=link(r);
+q:=link(r); link(r):=null;
+prev_dep(q):=prev_dep(pp); link(prev_dep(pp)):=q;
+new_indep(pp);
+if cur_exp=pp then if cur_type=t then cur_type:=independent;
+if internal[tracing_equations]>0 then @<Show the transformed dependency@>
+
+@ Now $(-v)$ times the formerly independent variable~|p| is being replaced
+by the dependency list~|s|.
+
+@<Show the transformed...@>=
+if interesting(p) then
+ begin begin_diagnostic; print_nl("### ");
+@:]]]\#\#\#_}{\.{\#\#\#}@>
+ if v>0 then print_char("-");
+ if t=dependent then vv:=round_fraction(max_c[dependent])
+ else vv:=max_c[proto_dependent];
+ if vv<>unity then print_scaled(vv);
+ print_variable_name(p);
+ while value(p) mod s_scale>0 do
+ begin print("*4"); value(p):=value(p)-2;
+ end;
+ if t=dependent then print_char("=")@+else print(" = ");
+ print_dependency(s,t);
+ end_diagnostic(false);
+ end
+
+@ Finally, there are dependent and proto-dependent variables whose
+dependency lists must be brought up to date.
+
+@<Substitute new dependencies...@>=
+for t:=dependent to proto_dependent do
+ begin r:=max_link[t];
+ while r<>null do
+ begin q:=info(r);
+ dep_list(q):=p_plus_fq(dep_list(q),@|
+ make_fraction(value(r),-v),s,t,dependent);
+ if dep_list(q)=dep_final then make_known(q,dep_final);
+ q:=r; r:=link(r); free_node(q,dep_node_size);
+ end;
+ end
+
+@ @<Substitute new proto...@>=
+for t:=dependent to proto_dependent do
+ begin r:=max_link[t];
+ while r<>null do
+ begin q:=info(r);
+ if t=dependent then {for safety's sake, we change |q| to |proto_dependent|}
+ begin if cur_exp=q then if cur_type=dependent then
+ cur_type:=proto_dependent;
+ dep_list(q):=p_over_v(dep_list(q),unity,dependent,proto_dependent);
+ type(q):=proto_dependent; value(r):=round_fraction(value(r));
+ end;
+ dep_list(q):=p_plus_fq(dep_list(q),@|
+ make_scaled(value(r),-v),s,proto_dependent,proto_dependent);
+ if dep_list(q)=dep_final then make_known(q,dep_final);
+ q:=r; r:=link(r); free_node(q,dep_node_size);
+ end;
+ end
+
+@ Here are some routines that provide handy combinations of actions
+that are often needed during error recovery. For example,
+`|flush_error|' flushes the current expression, replaces it by
+a given value, and calls |error|.
+
+Errors often are detected after an extra token has already been scanned.
+The `\\{put\_get}' routines put that token back before calling |error|;
+then they get it back again. (Or perhaps they get another token, if
+the user has changed things.)
+
+@<Declare the procedure called |flush_cur_exp|@>=
+procedure flush_error(@!v:scaled);@+begin error; flush_cur_exp(v);@+end;
+@#
+procedure@?back_error; forward;@t\2@>@/
+procedure@?get_x_next; forward;@t\2@>@/
+@#
+procedure put_get_error;@+begin back_error; get_x_next;@+end;
+@#
+procedure put_get_flush_error(@!v:scaled);@+begin put_get_error;
+ flush_cur_exp(v);@+end;
+
+@ A global variable |var_flag| is set to a special command code
+just before \MP\ calls |scan_expression|, if the expression should be
+treated as a variable when this command code immediately follows. For
+example, |var_flag| is set to |assignment| at the beginning of a
+statement, because we want to know the {\sl location\/} of a variable at
+the left of `\.{:=}', not the {\sl value\/} of that variable.
+
+The |scan_expression| subroutine calls |scan_tertiary|,
+which calls |scan_secondary|, which calls |scan_primary|, which sets
+|var_flag:=0|. In this way each of the scanning routines ``knows''
+when it has been called with a special |var_flag|, but |var_flag| is
+usually zero.
+
+A variable preceding a command that equals |var_flag| is converted to a
+token list rather than a value. Furthermore, an `\.{=}' sign following an
+expression with |var_flag=assignment| is not considered to be a relation
+that produces boolean expressions.
+
+
+@<Glob...@>=
+@!var_flag:0..max_command_code; {command that wants a variable}
+
+@ @<Set init...@>=
+var_flag:=0;
+
+@* \[37] Parsing primary expressions.
+The first parsing routine, |scan_primary|, is also the most complicated one,
+since it involves so many different cases. But each case---with one
+exception---is fairly simple by itself.
+
+When |scan_primary| begins, the first token of the primary to be scanned
+should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
+of |cur_type| and |cur_exp| should be either dead or dormant, as explained
+earlier. If |cur_cmd| is not between |min_primary_command| and
+|max_primary_command|, inclusive, a syntax error will be signaled.
+
+@<Declare the basic parsing subroutines@>=
+procedure scan_primary;
+label restart, done, done1, done2;
+var @!p,@!q,@!r:pointer; {for list manipulation}
+@!c:quarterword; {a primitive operation code}
+@!my_var_flag:0..max_command_code; {initial value of |my_var_flag|}
+@!l_delim,@!r_delim:pointer; {hash addresses of a delimiter pair}
+@<Other local variables for |scan_primary|@>@;
+begin my_var_flag:=var_flag; var_flag:=0;
+restart:check_arith;
+@<Supply diagnostic information, if requested@>;
+case cur_cmd of
+left_delimiter:@<Scan a delimited primary@>;
+begin_group:@<Scan a grouped primary@>;
+string_token:@<Scan a string constant@>;
+numeric_token:@<Scan a primary that starts with a numeric token@>;
+nullary:@<Scan a nullary operation@>;
+unary,type_name,cycle,plus_or_minus:@<Scan a unary operation@>;
+primary_binary:@<Scan a binary operation with `\&{of}' between its operands@>;
+str_op:@<Convert a suffix to a string@>;
+internal_quantity:@<Scan an internal numeric quantity@>;
+capsule_token:make_exp_copy(cur_mod);
+tag_token:@<Scan a variable primary;
+ |goto restart| if it turns out to be a macro@>;
+othercases begin bad_exp("A primary"); goto restart;
+@.A primary expression...@>
+ end
+endcases;@/
+get_x_next; {the routines |goto done| if they don't want this}
+done: if cur_cmd=left_bracket then
+ if cur_type>=known then @<Scan a mediation construction@>;
+end;
+
+@ Errors at the beginning of expressions are flagged by |bad_exp|.
+
+@p procedure bad_exp(@!s:str_number);
+var save_flag:0..max_command_code;
+begin print_err(s); print(" expression can't begin with `");
+print_cmd_mod(cur_cmd,cur_mod); print_char("'");
+help4("I'm afraid I need some sort of value in order to continue,")@/
+ ("so I've tentatively inserted `0'. You may want to")@/
+ ("delete this zero and insert something else;")@/
+ ("see Chapter 27 of The METAFONTbook for an example.");
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+back_input; cur_sym:=0; cur_cmd:=numeric_token; cur_mod:=0; ins_error;@/
+save_flag:=var_flag; var_flag:=0; get_x_next;
+var_flag:=save_flag;
+end;
+
+@ @<Supply diagnostic information, if requested@>=
+debug if panicking then check_mem(false);@+gubed@;@/
+if interrupt<>0 then if OK_to_interrupt then
+ begin back_input; check_interrupt; get_x_next;
+ end
+
+@ @<Scan a delimited primary@>=
+begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next; scan_expression;
+if (cur_cmd=comma) and (cur_type>=known) then
+ @<Scan the rest of a pair or triplet of numerics@>
+else check_delimiter(l_delim,r_delim);
+end
+
+@ The |stash_in| subroutine puts the current (numeric) expression into a field
+within a ``big node.''
+
+@p procedure stash_in(@!p:pointer);
+var @!q:pointer; {temporary register}
+begin type(p):=cur_type;
+if cur_type=known then value(p):=cur_exp
+else begin if cur_type=independent then
+ @<Stash an independent |cur_exp| into a big node@>
+ else begin mem[value_loc(p)]:=mem[value_loc(cur_exp)];
+ {|dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)|}
+ link(prev_dep(p)):=p;
+ end;
+ free_node(cur_exp,value_node_size);
+ end;
+cur_type:=vacuous;
+end;
+
+@ In rare cases the current expression can become |independent|. There
+may be many dependency lists pointing to such an independent capsule,
+so we can't simply move it into place within a big node. Instead,
+we copy it, then recycle it.
+
+@ @<Stash an independent |cur_exp|...@>=
+begin q:=single_dependency(cur_exp);
+if q=dep_final then
+ begin type(p):=known; value(p):=0; free_node(q,dep_node_size);
+ end
+else begin type(p):=dependent; new_dep(p,q);
+ end;
+recycle_value(cur_exp);
+end
+
+@ This code uses the fact that |red_part_loc| and |green_part_loc|
+are synonymous with |x_part_loc| and |y_part_loc|.
+
+@<Scan the rest of a pair or triplet of numerics@>=
+begin p:=stash_cur_exp;
+get_x_next; scan_expression;
+@<Make sure the second part of a pair or color has a numeric type@>;
+q:=get_node(value_node_size); name_type(q):=capsule;
+if cur_cmd=comma then type(q):=color_type
+else type(q):=pair_type;
+init_big_node(q); r:=value(q);
+stash_in(y_part_loc(r));
+unstash_cur_exp(p);
+stash_in(x_part_loc(r));
+if cur_cmd=comma then @<Scan the last of a triplet of numerics@>;
+check_delimiter(l_delim,r_delim);
+cur_type:=type(q);
+cur_exp:=q;
+end
+
+@ @<Make sure the second part of a pair or color has a numeric type@>=
+if cur_type<known then
+ begin exp_err("Nonnumeric ypart has been replaced by 0");
+@.Nonnumeric...replaced by 0@>
+ help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")@/
+ ("but after finding a nice `a' I found a `b' that isn't")@/
+ ("of numeric type. So I've changed that part to zero.")@/
+ ("(The b that I didn't like appears above the error message.)");
+ put_get_flush_error(0);
+ end
+
+@ @<Scan the last of a triplet of numerics@>=
+begin get_x_next; scan_expression;
+if cur_type<known then
+ begin exp_err("Nonnumeric bluepart has been replaced by 0");
+@.Nonnumeric...replaced by 0@>
+ help3("I've just scanned a color `(r,g,b)'; but the `b' isn't")@/
+ ("of numeric type. So I've changed that part to zero.")@/
+ ("(The b that I didn't like appears above the error message.)");@/
+ put_get_flush_error(0);
+ end;
+stash_in(blue_part_loc(r));
+end
+
+@ The local variable |group_line| keeps track of the line
+where a \&{begingroup} command occurred; this will be useful
+in an error message if the group doesn't actually end.
+
+@<Other local variables for |scan_primary|@>=
+@!group_line:integer; {where a group began}
+
+@ @<Scan a grouped primary@>=
+begin group_line:=true_line;
+if internal[tracing_commands]>0 then show_cur_cmd_mod;
+save_boundary_item(p);
+repeat do_statement; {ends with |cur_cmd>=semicolon|}
+until cur_cmd<>semicolon;
+if cur_cmd<>end_group then
+ begin print_err("A group begun on line ");
+@.A group...never ended@>
+ print_int(group_line);
+ print(" never ended");
+ help2("I saw a `begingroup' back there that hasn't been matched")@/
+ ("by `endgroup'. So I've inserted `endgroup' now.");
+ back_error; cur_cmd:=end_group;
+ end;
+unsave; {this might change |cur_type|, if independent variables are recycled}
+if internal[tracing_commands]>0 then show_cur_cmd_mod;
+end
+
+@ @<Scan a string constant@>=
+begin cur_type:=string_type; cur_exp:=cur_mod;
+end
+
+@ Later we'll come to procedures that perform actual operations like
+addition, square root, and so on; our purpose now is to do the parsing.
+But we might as well mention those future procedures now, so that the
+suspense won't be too bad:
+
+\smallskip
+|do_nullary(c)| does primitive operations that have no operands (e.g.,
+`\&{true}' or `\&{pencircle}');
+
+\smallskip
+|do_unary(c)| applies a primitive operation to the current expression;
+
+\smallskip
+|do_binary(p,c)| applies a primitive operation to the capsule~|p|
+and the current expression.
+
+@<Scan a nullary operation@>=do_nullary(cur_mod)
+
+@ @<Scan a unary operation@>=
+begin c:=cur_mod; get_x_next; scan_primary; do_unary(c); goto done;
+end
+
+@ A numeric token might be a primary by itself, or it might be the
+numerator of a fraction composed solely of numeric tokens, or it might
+multiply the primary that follows (provided that the primary doesn't begin
+with a plus sign or a minus sign). The code here uses the facts that
+|max_primary_command=plus_or_minus| and
+|max_primary_command-1=numeric_token|. If a fraction is found that is less
+than unity, we try to retain higher precision when we use it in scalar
+multiplication.
+
+@<Other local variables for |scan_primary|@>=
+@!num,@!denom:scaled; {for primaries that are fractions, like `1/2'}
+
+@ @<Scan a primary that starts with a numeric token@>=
+begin cur_exp:=cur_mod; cur_type:=known; get_x_next;
+if cur_cmd<>slash then
+ begin num:=0; denom:=0;
+ end
+else begin get_x_next;
+ if cur_cmd<>numeric_token then
+ begin back_input;
+ cur_cmd:=slash; cur_mod:=over; cur_sym:=frozen_slash;
+ goto done;
+ end;
+ num:=cur_exp; denom:=cur_mod;
+ if denom=0 then @<Protest division by zero@>
+ else cur_exp:=make_scaled(num,denom);
+ check_arith; get_x_next;
+ end;
+if cur_cmd>=min_primary_command then
+ if cur_cmd<numeric_token then {in particular, |cur_cmd<>plus_or_minus|}
+ begin p:=stash_cur_exp; scan_primary;
+ if (abs(num)>=abs(denom))or(cur_type<color_type) then do_binary(p,times)
+ else begin frac_mult(num,denom);
+ free_node(p,value_node_size);
+ end;
+ end;
+goto done;
+end
+
+@ @<Protest division...@>=
+begin print_err("Division by zero");
+@.Division by zero@>
+help1("I'll pretend that you meant to divide by 1."); error;
+end
+
+@ @<Scan a binary operation with `\&{of}' between its operands@>=
+begin c:=cur_mod; get_x_next; scan_expression;
+if cur_cmd<>of_token then
+ begin missing_err("of"); print(" for "); print_cmd_mod(primary_binary,c);
+@.Missing `of'@>
+ help1("I've got the first argument; will look now for the other.");
+ back_error;
+ end;
+p:=stash_cur_exp; get_x_next; scan_primary; do_binary(p,c); goto done;
+end
+
+@ @<Convert a suffix to a string@>=
+begin get_x_next; scan_suffix; old_setting:=selector; selector:=new_string;
+show_token_list(cur_exp,null,100000,0); flush_token_list(cur_exp);
+cur_exp:=make_string; selector:=old_setting; cur_type:=string_type;
+goto done;
+end
+
+@ If an internal quantity appears all by itself on the left of an
+assignment, we return a token list of length one, containing the address
+of the internal quantity plus |hash_end|. (This accords with the conventions
+of the save stack, as described earlier.)
+
+@<Scan an internal...@>=
+begin q:=cur_mod;
+if my_var_flag=assignment then
+ begin get_x_next;
+ if cur_cmd=assignment then
+ begin cur_exp:=get_avail;
+ info(cur_exp):=q+hash_end; cur_type:=token_list; goto done;
+ end;
+ back_input;
+ end;
+cur_type:=known; cur_exp:=internal[q];
+end
+
+@ The most difficult part of |scan_primary| has been saved for last, since
+it was necessary to build up some confidence first. We can now face the task
+of scanning a variable.
+
+As we scan a variable, we build a token list containing the relevant
+names and subscript values, simultaneously following along in the
+``collective'' structure to see if we are actually dealing with a macro
+instead of a value.
+
+The local variables |pre_head| and |post_head| will point to the beginning
+of the prefix and suffix lists; |tail| will point to the end of the list
+that is currently growing.
+
+Another local variable, |tt|, contains partial information about the
+declared type of the variable-so-far. If |tt>=unsuffixed_macro|, the
+relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
+doesn't bother to update its information about type. And if
+|undefined<tt<unsuffixed_macro|, the precise value of |tt| isn't critical.
+
+@ @<Other local variables for |scan_primary|@>=
+@!pre_head,@!post_head,@!tail:pointer;
+ {prefix and suffix list variables}
+@!tt:small_number; {approximation to the type of the variable-so-far}
+@!t:pointer; {a token}
+@!macro_ref:pointer; {reference count for a suffixed macro}
+
+@ @<Scan a variable primary...@>=
+begin fast_get_avail(pre_head); tail:=pre_head; post_head:=null; tt:=vacuous;
+loop@+ begin t:=cur_tok; link(tail):=t;
+ if tt<>undefined then
+ begin @<Find the approximate type |tt| and corresponding~|q|@>;
+ if tt>=unsuffixed_macro then
+ @<Either begin an unsuffixed macro call or
+ prepare for a suffixed one@>;
+ end;
+ get_x_next; tail:=t;
+ if cur_cmd=left_bracket then
+ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
+ if cur_cmd>max_suffix_token then goto done1;
+ if cur_cmd<min_suffix_token then goto done1;
+ end; {now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token|}
+done1:@<Handle unusual cases that masquerade as variables, and |goto restart|
+ or |goto done| if appropriate;
+ otherwise make a copy of the variable and |goto done|@>;
+end
+
+@ @<Either begin an unsuffixed macro call or...@>=
+begin link(tail):=null;
+if tt>unsuffixed_macro then {|tt=suffixed_macro|}
+ begin post_head:=get_avail; tail:=post_head; link(tail):=t;@/
+ tt:=undefined; macro_ref:=value(q); add_mac_ref(macro_ref);
+ end
+else @<Set up unsuffixed macro call and |goto restart|@>;
+end
+
+@ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
+begin get_x_next; scan_expression;
+if cur_cmd<>right_bracket then
+ @<Put the left bracket and the expression back to be rescanned@>
+else begin if cur_type<>known then bad_subscript;
+ cur_cmd:=numeric_token; cur_mod:=cur_exp; cur_sym:=0;
+ end;
+end
+
+@ The left bracket that we thought was introducing a subscript might have
+actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
+So we don't issue an error message at this point; but we do want to back up
+so as to avoid any embarrassment about our incorrect assumption.
+
+@<Put the left bracket and the expression back to be rescanned@>=
+begin back_input; {that was the token following the current expression}
+back_expr; cur_cmd:=left_bracket; cur_mod:=0; cur_sym:=frozen_left_bracket;
+end
+
+@ Here's a routine that puts the current expression back to be read again.
+
+@p procedure back_expr;
+var @!p:pointer; {capsule token}
+begin p:=stash_cur_exp; link(p):=null; back_list(p);
+end;
+
+@ Unknown subscripts lead to the following error message.
+
+@p procedure bad_subscript;
+begin exp_err("Improper subscript has been replaced by zero");
+@.Improper subscript...@>
+help3("A bracketed subscript must have a known numeric value;")@/
+ ("unfortunately, what I found was the value that appears just")@/
+ ("above this error message. So I'll try a zero subscript.");
+flush_error(0);
+end;
+
+@ Every time we call |get_x_next|, there's a chance that the variable we've
+been looking at will disappear. Thus, we cannot safely keep |q| pointing
+into the variable structure; we need to start searching from the root each time.
+
+@<Find the approximate type |tt| and corresponding~|q|@>=
+@^inner loop@>
+begin p:=link(pre_head); q:=info(p); tt:=undefined;
+if eq_type(q) mod outer_tag=tag_token then
+ begin q:=equiv(q);
+ if q=null then goto done2;
+ loop@+ begin p:=link(p);
+ if p=null then
+ begin tt:=type(q); goto done2;
+ end;
+ if type(q)<>structured then goto done2;
+ q:=link(attr_head(q)); {the |collective_subscript| attribute}
+ if p>=hi_mem_min then {it's not a subscript}
+ begin repeat q:=link(q);
+ until attr_loc(q)>=info(p);
+ if attr_loc(q)>info(p) then goto done2;
+ end;
+ end;
+ end;
+done2:end
+
+@ How do things stand now? Well, we have scanned an entire variable name,
+including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
+|cur_sym| represent the token that follows. If |post_head=null|, a
+token list for this variable name starts at |link(pre_head)|, with all
+subscripts evaluated. But if |post_head<>null|, the variable turned out
+to be a suffixed macro; |pre_head| is the head of the prefix list, while
+|post_head| is the head of a token list containing both `\.{\AT!}' and
+the suffix.
+
+Our immediate problem is to see if this variable still exists. (Variable
+structures can change drastically whenever we call |get_x_next|; users
+aren't supposed to do this, but the fact that it is possible means that
+we must be cautious.)
+
+The following procedure prints an error message when a variable
+unexpectedly disappears. Its help message isn't quite right for
+our present purposes, but we'll be able to fix that up.
+
+@p procedure obliterated(@!q:pointer);
+begin print_err("Variable "); show_token_list(q,null,1000,0);
+print(" has been obliterated");
+@.Variable...obliterated@>
+help5("It seems you did a nasty thing---probably by accident,")@/
+ ("but nevertheless you nearly hornswoggled me...")@/
+ ("While I was evaluating the right-hand side of this")@/
+ ("command, something happened, and the left-hand side")@/
+ ("is no longer a variable! So I won't change anything.");
+end;
+
+@ If the variable does exist, we also need to check
+for a few other special cases before deciding that a plain old ordinary
+variable has, indeed, been scanned.
+
+@<Handle unusual cases that masquerade as variables...@>=
+if post_head<>null then @<Set up suffixed macro call and |goto restart|@>;
+q:=link(pre_head); free_avail(pre_head);
+if cur_cmd=my_var_flag then
+ begin cur_type:=token_list; cur_exp:=q; goto done;
+ end;
+p:=find_variable(q);
+if p<>null then make_exp_copy(p)
+else begin obliterated(q);@/
+ help_line[2]:="While I was evaluating the suffix of this variable,";
+ help_line[1]:="something was redefined, and it's no longer a variable!";
+ help_line[0]:="In order to get back on my feet, I've inserted `0' instead.";
+ put_get_flush_error(0);
+ end;
+flush_node_list(q); goto done
+
+@ The only complication associated with macro calling is that the prefix
+and ``at'' parameters must be packaged in an appropriate list of lists.
+
+@<Set up unsuffixed macro call and |goto restart|@>=
+begin p:=get_avail; info(pre_head):=link(pre_head); link(pre_head):=p;
+info(p):=t; macro_call(value(q),pre_head,null); get_x_next; goto restart;
+end
+
+@ If the ``variable'' that turned out to be a suffixed macro no longer exists,
+we don't care, because we have reserved a pointer (|macro_ref|) to its
+token list.
+
+@<Set up suffixed macro call and |goto restart|@>=
+begin back_input; p:=get_avail; q:=link(post_head);
+info(pre_head):=link(pre_head); link(pre_head):=post_head;
+info(post_head):=q; link(post_head):=p; info(p):=link(q); link(q):=null;
+macro_call(macro_ref,pre_head,null); decr(ref_count(macro_ref));
+get_x_next; goto restart;
+end
+
+@ Our remaining job is simply to make a copy of the value that has been
+found. Some cases are harder than others, but complexity arises solely
+because of the multiplicity of possible cases.
+
+@<Declare the procedure called |make_exp_copy|@>=
+@t\4@>@<Declare subroutines needed by |make_exp_copy|@>@;
+procedure make_exp_copy(@!p:pointer);
+label restart;
+var @!q,@!r,@!t:pointer; {registers for list manipulation}
+begin restart: cur_type:=type(p);
+case cur_type of
+vacuous,boolean_type,known:cur_exp:=value(p);
+unknown_types:cur_exp:=new_ring_entry(p);
+string_type:begin cur_exp:=value(p); add_str_ref(cur_exp);
+ end;
+picture_type:begin cur_exp:=value(p);add_edge_ref(cur_exp);
+ end;
+pen_type:cur_exp:=copy_pen(value(p));
+path_type:cur_exp:=copy_path(value(p));
+transform_type,color_type,pair_type:@<Copy the big node |p|@>;
+dependent,proto_dependent:encapsulate(copy_dep_list(dep_list(p)));
+numeric_type:begin new_indep(p); goto restart;
+ end;
+independent: begin q:=single_dependency(p);
+ if q=dep_final then
+ begin cur_type:=known; cur_exp:=0; free_node(q,value_node_size);
+ end
+ else begin cur_type:=dependent; encapsulate(q);
+ end;
+ end;
+othercases confusion("copy")
+@:this can't happen copy}{\quad copy@>
+endcases;
+end;
+
+@ The |encapsulate| subroutine assumes that |dep_final| is the
+tail of dependency list~|p|.
+
+@<Declare subroutines needed by |make_exp_copy|@>=
+procedure encapsulate(@!p:pointer);
+begin cur_exp:=get_node(value_node_size); type(cur_exp):=cur_type;
+name_type(cur_exp):=capsule; new_dep(cur_exp,p);
+end;
+
+@ The most tedious case arises when the user refers to a
+\&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
+each of which can be |independent|, |dependent|, |proto_dependent|,
+or |known|.
+
+@<Copy the big node |p|@>=
+begin if value(p)=null then init_big_node(p);
+t:=get_node(value_node_size); name_type(t):=capsule; type(t):=cur_type;
+init_big_node(t);@/
+q:=value(p)+big_node_size[cur_type]; r:=value(t)+big_node_size[cur_type];
+repeat q:=q-2; r:=r-2; install(r,q);
+until q=value(p);
+cur_exp:=t;
+end
+
+@ The |install| procedure copies a numeric field~|q| into field~|r| of
+a big node that will be part of a capsule.
+
+@<Declare subroutines needed by |make_exp_copy|@>=
+procedure install(@!r,@!q:pointer);
+var p:pointer; {temporary register}
+begin if type(q)=known then
+ begin value(r):=value(q); type(r):=known;
+ end
+else if type(q)=independent then
+ begin p:=single_dependency(q);
+ if p=dep_final then
+ begin type(r):=known; value(r):=0; free_node(p,value_node_size);
+ end
+ else begin type(r):=dependent; new_dep(r,p);
+ end;
+ end
+ else begin type(r):=type(q); new_dep(r,copy_dep_list(dep_list(q)));
+ end;
+end;
+
+@ Expressions of the form `\.{a[b,c]}' are converted into
+`\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
+provided that \.a is numeric.
+
+@<Scan a mediation...@>=
+begin p:=stash_cur_exp; get_x_next; scan_expression;
+if cur_cmd<>comma then
+ begin @<Put the left bracket and the expression back...@>;
+ unstash_cur_exp(p);
+ end
+else begin q:=stash_cur_exp; get_x_next; scan_expression;
+ if cur_cmd<>right_bracket then
+ begin missing_err("]");@/
+@.Missing `]'@>
+ help3("I've scanned an expression of the form `a[b,c',")@/
+ ("so a right bracket should have come next.")@/
+ ("I shall pretend that one was there.");@/
+ back_error;
+ end;
+ r:=stash_cur_exp; make_exp_copy(q);@/
+ do_binary(r,minus); do_binary(p,times); do_binary(q,plus); get_x_next;
+ end;
+end
+
+@ Here is a comparatively simple routine that is used to scan the
+\&{suffix} parameters of a macro.
+
+@<Declare the basic parsing subroutines@>=
+procedure scan_suffix;
+label done;
+var @!h,@!t:pointer; {head and tail of the list being built}
+@!p:pointer; {temporary register}
+begin h:=get_avail; t:=h;
+loop@+ begin if cur_cmd=left_bracket then
+ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
+ if cur_cmd=numeric_token then p:=new_num_tok(cur_mod)
+ else if (cur_cmd=tag_token)or(cur_cmd=internal_quantity) then
+ begin p:=get_avail; info(p):=cur_sym;
+ end
+ else goto done;
+ link(t):=p; t:=p; get_x_next;
+ end;
+done: cur_exp:=link(h); free_avail(h); cur_type:=token_list;
+end;
+
+@ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
+begin get_x_next; scan_expression;
+if cur_type<>known then bad_subscript;
+if cur_cmd<>right_bracket then
+ begin missing_err("]");@/
+@.Missing `]'@>
+ help3("I've seen a `[' and a subscript value, in a suffix,")@/
+ ("so a right bracket should have come next.")@/
+ ("I shall pretend that one was there.");@/
+ back_error;
+ end;
+cur_cmd:=numeric_token; cur_mod:=cur_exp;
+end
+
+@* \[38] Parsing secondary and higher expressions.
+After the intricacies of |scan_primary|\kern-1pt,
+the |scan_secondary| routine is
+refreshingly simple. It's not trivial, but the operations are relatively
+straightforward; the main difficulty is, again, that expressions and data
+structures might change drastically every time we call |get_x_next|, so a
+cautious approach is mandatory. For example, a macro defined by
+\&{primarydef} might have disappeared by the time its second argument has
+been scanned; we solve this by increasing the reference count of its token
+list, so that the macro can be called even after it has been clobbered.
+
+@<Declare the basic parsing subroutines@>=
+procedure scan_secondary;
+label restart,continue;
+var @!p:pointer; {for list manipulation}
+@!c,@!d:halfword; {operation codes or modifiers}
+@!mac_name:pointer; {token defined with \&{primarydef}}
+begin restart:if(cur_cmd<min_primary_command)or@|
+ (cur_cmd>max_primary_command) then
+ bad_exp("A secondary");
+@.A secondary expression...@>
+scan_primary;
+continue: if cur_cmd<=max_secondary_command then
+ if cur_cmd>=min_secondary_command then
+ begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
+ if d=secondary_primary_macro then
+ begin mac_name:=cur_sym; add_mac_ref(c);
+ end;
+ get_x_next; scan_primary;
+ if d<>secondary_primary_macro then do_binary(p,c)
+ else begin back_input; binary_mac(p,c,mac_name);
+ decr(ref_count(c)); get_x_next; goto restart;
+ end;
+ goto continue;
+ end;
+end;
+
+@ The following procedure calls a macro that has two parameters,
+|p| and |cur_exp|.
+
+@p procedure binary_mac(@!p,@!c,@!n:pointer);
+var @!q,@!r:pointer; {nodes in the parameter list}
+begin q:=get_avail; r:=get_avail; link(q):=r;@/
+info(q):=p; info(r):=stash_cur_exp;@/
+macro_call(c,q,n);
+end;
+
+@ The next procedure, |scan_tertiary|, is pretty much the same deal.
+
+@<Declare the basic parsing subroutines@>=
+procedure scan_tertiary;
+label restart,continue;
+var @!p:pointer; {for list manipulation}
+@!c,@!d:halfword; {operation codes or modifiers}
+@!mac_name:pointer; {token defined with \&{secondarydef}}
+begin restart:if(cur_cmd<min_primary_command)or@|
+ (cur_cmd>max_primary_command) then
+ bad_exp("A tertiary");
+@.A tertiary expression...@>
+scan_secondary;
+continue: if cur_cmd<=max_tertiary_command then
+ if cur_cmd>=min_tertiary_command then
+ begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
+ if d=tertiary_secondary_macro then
+ begin mac_name:=cur_sym; add_mac_ref(c);
+ end;
+ get_x_next; scan_secondary;
+ if d<>tertiary_secondary_macro then do_binary(p,c)
+ else begin back_input; binary_mac(p,c,mac_name);
+ decr(ref_count(c)); get_x_next; goto restart;
+ end;
+ goto continue;
+ end;
+end;
+
+@ Finally we reach the deepest level in our quartet of parsing routines.
+This one is much like the others; but it has an extra complication from
+paths, which materialize here.
+
+@d continue_path=25 {a label inside of |scan_expression|}
+@d finish_path=26 {another}
+
+@<Declare the basic parsing subroutines@>=
+procedure scan_expression;
+label restart,done,continue,continue_path,finish_path,exit;
+var @!p,@!q,@!r,@!pp,@!qq:pointer; {for list manipulation}
+@!c,@!d:halfword; {operation codes or modifiers}
+@!my_var_flag:0..max_command_code; {initial value of |var_flag|}
+@!mac_name:pointer; {token defined with \&{tertiarydef}}
+@!cycle_hit:boolean; {did a path expression just end with `\&{cycle}'?}
+@!x,@!y:scaled; {explicit coordinates or tension at a path join}
+@!t:endpoint..open; {knot type following a path join}
+begin my_var_flag:=var_flag;
+restart:if(cur_cmd<min_primary_command)or@|
+ (cur_cmd>max_primary_command) then
+ bad_exp("An");
+@.An expression...@>
+scan_tertiary;
+continue: if cur_cmd<=max_expression_command then
+ if cur_cmd>=min_expression_command then
+ if (cur_cmd<>equals)or(my_var_flag<>assignment) then
+ begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
+ if d=expression_tertiary_macro then
+ begin mac_name:=cur_sym; add_mac_ref(c);
+ end;
+ if (d<ampersand)or((d=ampersand)and@|
+ ((type(p)=pair_type)or(type(p)=path_type))) then
+ @<Scan a path construction operation;
+ but |return| if |p| has the wrong type@>
+ else begin get_x_next; scan_tertiary;
+ if d<>expression_tertiary_macro then do_binary(p,c)
+ else begin back_input; binary_mac(p,c,mac_name);
+ decr(ref_count(c)); get_x_next; goto restart;
+ end;
+ end;
+ goto continue;
+ end;
+exit:end;
+
+@ The reader should review the data structure conventions for paths before
+hoping to understand the next part of this code.
+
+@<Scan a path construction operation...@>=
+begin cycle_hit:=false;
+@<Convert the left operand, |p|, into a partial path ending at~|q|;
+ but |return| if |p| doesn't have a suitable type@>;
+continue_path: @<Determine the path join parameters;
+ but |goto finish_path| if there's only a direction specifier@>;
+if cur_cmd=cycle then @<Get ready to close a cycle@>
+else begin scan_tertiary;
+ @<Convert the right operand, |cur_exp|,
+ into a partial path from |pp| to~|qq|@>;
+ end;
+@<Join the partial paths and reset |p| and |q| to the head and tail
+ of the result@>;
+if cur_cmd>=min_expression_command then
+ if cur_cmd<=ampersand then if not cycle_hit then goto continue_path;
+finish_path:
+@<Choose control points for the path and put the result into |cur_exp|@>;
+end
+
+@ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
+begin unstash_cur_exp(p);
+if cur_type=pair_type then p:=new_knot
+else if cur_type=path_type then p:=cur_exp
+else return;
+q:=p;
+while link(q)<>p do q:=link(q);
+if left_type(p)<>endpoint then {open up a cycle}
+ begin r:=copy_knot(p); link(q):=r; q:=r;
+ end;
+left_type(p):=open; right_type(q):=open;
+end
+
+@ A pair of numeric values is changed into a knot node for a one-point path
+when \MP\ discovers that the pair is part of a path.
+
+@p@t\4@>@<Declare the procedure called |known_pair|@>@;
+function new_knot:pointer; {convert a pair to a knot with two endpoints}
+var @!q:pointer; {the new node}
+begin q:=get_node(knot_node_size); left_type(q):=endpoint;
+right_type(q):=endpoint; originator(q):=metapost_user; link(q):=q;@/
+known_pair; x_coord(q):=cur_x; y_coord(q):=cur_y;
+new_knot:=q;
+end;
+
+@ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
+of the current expression, assuming that the current expression is a
+pair of known numerics. Unknown components are zeroed, and the
+current expression is flushed.
+
+@<Declare the procedure called |known_pair|@>=
+procedure known_pair;
+var @!p:pointer; {the pair node}
+begin if cur_type<>pair_type then
+ begin exp_err("Undefined coordinates have been replaced by (0,0)");
+@.Undefined coordinates...@>
+ help5("I need x and y numbers for this part of the path.")@/
+ ("The value I found (see above) was no good;")@/
+ ("so I'll try to keep going by using zero instead.")@/
+ ("(Chapter 27 of The METAFONTbook explains that")@/
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+ ("you might want to type `I ???' now.)");
+ put_get_flush_error(0); cur_x:=0; cur_y:=0;
+ end
+else begin p:=value(cur_exp);
+ @<Make sure that both |x| and |y| parts of |p| are known;
+ copy them into |cur_x| and |cur_y|@>;
+ flush_cur_exp(0);
+ end;
+end;
+
+@ @<Make sure that both |x| and |y| parts of |p| are known...@>=
+if type(x_part_loc(p))=known then cur_x:=value(x_part_loc(p))
+else begin disp_err(x_part_loc(p),
+ "Undefined x coordinate has been replaced by 0");
+@.Undefined coordinates...@>
+ help5("I need a `known' x value for this part of the path.")@/
+ ("The value I found (see above) was no good;")@/
+ ("so I'll try to keep going by using zero instead.")@/
+ ("(Chapter 27 of The METAFONTbook explains that")@/
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+ ("you might want to type `I ???' now.)");
+ put_get_error; recycle_value(x_part_loc(p)); cur_x:=0;
+ end;
+if type(y_part_loc(p))=known then cur_y:=value(y_part_loc(p))
+else begin disp_err(y_part_loc(p),
+ "Undefined y coordinate has been replaced by 0");
+ help5("I need a `known' y value for this part of the path.")@/
+ ("The value I found (see above) was no good;")@/
+ ("so I'll try to keep going by using zero instead.")@/
+ ("(Chapter 27 of The METAFONTbook explains that")@/
+ ("you might want to type `I ???' now.)");
+ put_get_error; recycle_value(y_part_loc(p)); cur_y:=0;
+ end
+
+@ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
+
+@<Determine the path join parameters...@>=
+if cur_cmd=left_brace then
+ @<Put the pre-join direction information into node |q|@>;
+d:=cur_cmd;
+if d=path_join then @<Determine the tension and/or control points@>
+else if d<>ampersand then goto finish_path;
+get_x_next;
+if cur_cmd=left_brace then
+ @<Put the post-join direction information into |x| and |t|@>
+else if right_type(q)<>explicit then
+ begin t:=open; x:=0;
+ end
+
+@ The |scan_direction| subroutine looks at the directional information
+that is enclosed in braces, and also scans ahead to the following character.
+A type code is returned, either |open| (if the direction was $(0,0)$),
+or |curl| (if the direction was a curl of known value |cur_exp|), or
+|given| (if the direction is given by the |angle| value that now
+appears in |cur_exp|).
+
+There's nothing difficult about this subroutine, but the program is rather
+lengthy because a variety of potential errors need to be nipped in the bud.
+
+@p function scan_direction:small_number;
+var @!t:given..open; {the type of information found}
+@!x:scaled; {an |x| coordinate}
+begin get_x_next;
+if cur_cmd=curl_command then @<Scan a curl specification@>
+else @<Scan a given direction@>;
+if cur_cmd<>right_brace then
+ begin missing_err("}");@/
+@.Missing `\char`\}'@>
+ help3("I've scanned a direction spec for part of a path,")@/
+ ("so a right brace should have come next.")@/
+ ("I shall pretend that one was there.");@/
+ back_error;
+ end;
+get_x_next; scan_direction:=t;
+end;
+
+@ @<Scan a curl specification@>=
+begin get_x_next; scan_expression;
+if (cur_type<>known)or(cur_exp<0) then
+ begin exp_err("Improper curl has been replaced by 1");
+@.Improper curl@>
+ help1("A curl must be a known, nonnegative number.");
+ put_get_flush_error(unity);
+ end;
+t:=curl;
+end
+
+@ @<Scan a given direction@>=
+begin scan_expression;
+if cur_type>pair_type then @<Get given directions separated by commas@>
+else known_pair;
+if (cur_x=0)and(cur_y=0) then t:=open
+else begin t:=given; cur_exp:=n_arg(cur_x,cur_y);
+ end;
+end
+
+@ @<Get given directions separated by commas@>=
+begin if cur_type<>known then
+ begin exp_err("Undefined x coordinate has been replaced by 0");
+@.Undefined coordinates...@>
+ help5("I need a `known' x value for this part of the path.")@/
+ ("The value I found (see above) was no good;")@/
+ ("so I'll try to keep going by using zero instead.")@/
+ ("(Chapter 27 of The METAFONTbook explains that")@/
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+ ("you might want to type `I ???' now.)");
+ put_get_flush_error(0);
+ end;
+x:=cur_exp;
+if cur_cmd<>comma then
+ begin missing_err(",");@/
+@.Missing `,'@>
+ help2("I've got the x coordinate of a path direction;")@/
+ ("will look for the y coordinate next.");
+ back_error;
+ end;
+get_x_next; scan_expression;
+if cur_type<>known then
+ begin exp_err("Undefined y coordinate has been replaced by 0");
+ help5("I need a `known' y value for this part of the path.")@/
+ ("The value I found (see above) was no good;")@/
+ ("so I'll try to keep going by using zero instead.")@/
+ ("(Chapter 27 of The METAFONTbook explains that")@/
+ ("you might want to type `I ???' now.)");
+ put_get_flush_error(0);
+ end;
+cur_y:=cur_exp; cur_x:=x;
+end
+
+@ At this point |right_type(q)| is usually |open|, but it may have been
+set to some other value by a previous splicing operation. We must maintain
+the value of |right_type(q)| in unusual cases such as
+`\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
+
+@<Put the pre-join...@>=
+begin t:=scan_direction;
+if t<>open then
+ begin right_type(q):=t; right_given(q):=cur_exp;
+ if left_type(q)=open then
+ begin left_type(q):=t; left_given(q):=cur_exp;
+ end; {note that |left_given(q)=left_curl(q)|}
+ end;
+end
+
+@ Since |left_tension| and |left_y| share the same position in knot nodes,
+and since |left_given| is similarly equivalent to |left_x|, we use
+|x| and |y| to hold the given direction and tension information when
+there are no explicit control points.
+
+@<Put the post-join...@>=
+begin t:=scan_direction;
+if right_type(q)<>explicit then x:=cur_exp
+else t:=explicit; {the direction information is superfluous}
+end
+
+@ @<Determine the tension and/or...@>=
+begin get_x_next;
+if cur_cmd=tension then @<Set explicit tensions@>
+else if cur_cmd=controls then @<Set explicit control points@>
+else begin right_tension(q):=unity; y:=unity; back_input; {default tension}
+ goto done;
+ end;
+if cur_cmd<>path_join then
+ begin missing_err("..");@/
+@.Missing `..'@>
+ help1("A path join command should end with two dots.");
+ back_error;
+ end;
+done:end
+
+@ @<Set explicit tensions@>=
+begin get_x_next; y:=cur_cmd;
+if cur_cmd=at_least then get_x_next;
+scan_primary;
+@<Make sure that the current expression is a valid tension setting@>;
+if y=at_least then negate(cur_exp);
+right_tension(q):=cur_exp;
+if cur_cmd=and_command then
+ begin get_x_next; y:=cur_cmd;
+ if cur_cmd=at_least then get_x_next;
+ scan_primary;
+ @<Make sure that the current expression is a valid tension setting@>;
+ if y=at_least then negate(cur_exp);
+ end;
+y:=cur_exp;
+end
+
+@ @d min_tension==three_quarter_unit
+
+@<Make sure that the current expression is a valid tension setting@>=
+if (cur_type<>known)or(cur_exp<min_tension) then
+ begin exp_err("Improper tension has been set to 1");
+@.Improper tension@>
+ help1("The expression above should have been a number >=3/4.");
+ put_get_flush_error(unity);
+ end
+
+@ @<Set explicit control points@>=
+begin right_type(q):=explicit; t:=explicit; get_x_next; scan_primary;@/
+known_pair; right_x(q):=cur_x; right_y(q):=cur_y;
+if cur_cmd<>and_command then
+ begin x:=right_x(q); y:=right_y(q);
+ end
+else begin get_x_next; scan_primary;@/
+ known_pair; x:=cur_x; y:=cur_y;
+ end;
+end
+
+@ @<Convert the right operand, |cur_exp|, into a partial path...@>=
+begin if cur_type<>path_type then pp:=new_knot
+else pp:=cur_exp;
+qq:=pp;
+while link(qq)<>pp do qq:=link(qq);
+if left_type(pp)<>endpoint then {open up a cycle}
+ begin r:=copy_knot(pp); link(qq):=r; qq:=r;
+ end;
+left_type(pp):=open; right_type(qq):=open;
+end
+
+@ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
+we silently change the specification to `\.{(x,y)..cycle}', since a cycle
+shouldn't have length zero.
+
+@<Get ready to close a cycle@>=
+begin cycle_hit:=true; get_x_next; pp:=p; qq:=p;
+if d=ampersand then if p=q then
+ begin d:=path_join; right_tension(q):=unity; y:=unity;
+ end;
+end
+
+@ @<Join the partial paths and reset |p| and |q|...@>=
+begin if d=ampersand then
+ if (x_coord(q)<>x_coord(pp))or(y_coord(q)<>y_coord(pp)) then
+ begin print_err("Paths don't touch; `&' will be changed to `..'");
+@.Paths don't touch@>
+ help3("When you join paths `p&q', the ending point of p")@/
+ ("must be exactly equal to the starting point of q.")@/
+ ("So I'm going to pretend that you said `p..q' instead.");
+ put_get_error; d:=path_join; right_tension(q):=unity; y:=unity;
+ end;
+@<Plug an opening in |right_type(pp)|, if possible@>;
+if d=ampersand then @<Splice independent paths together@>
+else begin @<Plug an opening in |right_type(q)|, if possible@>;
+ link(q):=pp; left_y(pp):=y;
+ if t<>open then
+ begin left_x(pp):=x; left_type(pp):=t;
+ end;
+ end;
+q:=qq;
+end
+
+@ @<Plug an opening in |right_type(q)|...@>=
+if right_type(q)=open then
+ if (left_type(q)=curl)or(left_type(q)=given) then
+ begin right_type(q):=left_type(q); right_given(q):=left_given(q);
+ end
+
+@ @<Plug an opening in |right_type(pp)|...@>=
+if right_type(pp)=open then
+ if (t=curl)or(t=given) then
+ begin right_type(pp):=t; right_given(pp):=x;
+ end
+
+@ @<Splice independent paths together@>=
+begin if left_type(q)=open then if right_type(q)=open then
+ begin left_type(q):=curl; left_curl(q):=unity;
+ end;
+if right_type(pp)=open then if t=open then
+ begin right_type(pp):=curl; right_curl(pp):=unity;
+ end;
+right_type(q):=right_type(pp); link(q):=link(pp);@/
+right_x(q):=right_x(pp); right_y(q):=right_y(pp);
+free_node(pp,knot_node_size);
+if qq=pp then qq:=q;
+end
+
+@ @<Choose control points for the path...@>=
+if cycle_hit then
+ begin if d=ampersand then p:=q;
+ end
+else begin left_type(p):=endpoint;
+ if right_type(p)=open then
+ begin right_type(p):=curl; right_curl(p):=unity;
+ end;
+ right_type(q):=endpoint;
+ if left_type(q)=open then
+ begin left_type(q):=curl; left_curl(q):=unity;
+ end;
+ link(q):=p;
+ end;
+make_choices(p);
+cur_type:=path_type; cur_exp:=p
+
+@ Finally, we sometimes need to scan an expression whose value is
+supposed to be either |true_code| or |false_code|.
+
+@<Declare the basic parsing subroutines@>=
+procedure get_boolean;
+begin get_x_next; scan_expression;
+if cur_type<>boolean_type then
+ begin exp_err("Undefined condition will be treated as `false'");
+@.Undefined condition...@>
+ help2("The expression shown above should have had a definite")@/
+ ("true-or-false value. I'm changing it to `false'.");@/
+ put_get_flush_error(false_code); cur_type:=boolean_type;
+ end;
+end;
+
+@* \[39] Doing the operations.
+The purpose of parsing is primarily to permit people to avoid piles of
+parentheses. But the real work is done after the structure of an expression
+has been recognized; that's when new expressions are generated. We
+turn now to the guts of \MP, which handles individual operators that
+have come through the parsing mechanism.
+
+We'll start with the easy ones that take no operands, then work our way
+up to operators with one and ultimately two arguments. In other words,
+we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
+that are invoked periodically by the expression scanners.
+
+First let's make sure that all of the primitive operators are in the
+hash table. Although |scan_primary| and its relatives made use of the
+\\{cmd} code for these operators, the \\{do} routines base everything
+on the \\{mod} code. For example, |do_binary| doesn't care whether the
+operation it performs is a |primary_binary| or |secondary_binary|, etc.
+
+@<Put each...@>=
+primitive("true",nullary,true_code);@/
+@!@:true_}{\&{true} primitive@>
+primitive("false",nullary,false_code);@/
+@!@:false_}{\&{false} primitive@>
+primitive("nullpicture",nullary,null_picture_code);@/
+@!@:null_picture_}{\&{nullpicture} primitive@>
+primitive("nullpen",nullary,null_pen_code);@/
+@!@:null_pen_}{\&{nullpen} primitive@>
+primitive("jobname",nullary,job_name_op);@/
+@!@:job_name_}{\&{jobname} primitive@>
+primitive("readstring",nullary,read_string_op);@/
+@!@:read_string_}{\&{readstring} primitive@>
+primitive("pencircle",nullary,pen_circle);@/
+@!@:pen_circle_}{\&{pencircle} primitive@>
+primitive("normaldeviate",nullary,normal_deviate);@/
+@!@:normal_deviate_}{\&{normaldeviate} primitive@>
+primitive("readfrom",unary,read_from_op);@/
+@!@:read_from_}{\&{readfrom} primitive@>
+primitive("closefrom",unary,close_from_op);@/
+@!@:close_from_}{\&{closefrom} primitive@>
+primitive("odd",unary,odd_op);@/
+@!@:odd_}{\&{odd} primitive@>
+primitive("known",unary,known_op);@/
+@!@:known_}{\&{known} primitive@>
+primitive("unknown",unary,unknown_op);@/
+@!@:unknown_}{\&{unknown} primitive@>
+primitive("not",unary,not_op);@/
+@!@:not_}{\&{not} primitive@>
+primitive("decimal",unary,decimal);@/
+@!@:decimal_}{\&{decimal} primitive@>
+primitive("reverse",unary,reverse);@/
+@!@:reverse_}{\&{reverse} primitive@>
+primitive("makepath",unary,make_path_op);@/
+@!@:make_path_}{\&{makepath} primitive@>
+primitive("makepen",unary,make_pen_op);@/
+@!@:make_pen_}{\&{makepen} primitive@>
+primitive("oct",unary,oct_op);@/
+@!@:oct_}{\&{oct} primitive@>
+primitive("hex",unary,hex_op);@/
+@!@:hex_}{\&{hex} primitive@>
+primitive("ASCII",unary,ASCII_op);@/
+@!@:ASCII_}{\&{ASCII} primitive@>
+primitive("char",unary,char_op);@/
+@!@:char_}{\&{char} primitive@>
+primitive("length",unary,length_op);@/
+@!@:length_}{\&{length} primitive@>
+primitive("turningnumber",unary,turning_op);@/
+@!@:turning_number_}{\&{turningnumber} primitive@>
+primitive("xpart",unary,x_part);@/
+@!@:x_part_}{\&{xpart} primitive@>
+primitive("ypart",unary,y_part);@/
+@!@:y_part_}{\&{ypart} primitive@>
+primitive("xxpart",unary,xx_part);@/
+@!@:xx_part_}{\&{xxpart} primitive@>
+primitive("xypart",unary,xy_part);@/
+@!@:xy_part_}{\&{xypart} primitive@>
+primitive("yxpart",unary,yx_part);@/
+@!@:yx_part_}{\&{yxpart} primitive@>
+primitive("yypart",unary,yy_part);@/
+@!@:yy_part_}{\&{yypart} primitive@>
+primitive("redpart",unary,red_part);@/
+@!@:red_part_}{\&{redpart} primitive@>
+primitive("greenpart",unary,green_part);@/
+@!@:green_part_}{\&{greenpart} primitive@>
+primitive("bluepart",unary,blue_part);@/
+@!@:blue_part_}{\&{bluepart} primitive@>
+primitive("fontpart",unary,font_part);@/
+@!@:font_part_}{\&{fontpart} primitive@>
+primitive("textpart",unary,text_part);@/
+@!@:text_part_}{\&{textpart} primitive@>
+primitive("pathpart",unary,path_part);@/
+@!@:path_part_}{\&{pathpart} primitive@>
+primitive("penpart",unary,pen_part);@/
+@!@:pen_part_}{\&{penpart} primitive@>
+primitive("dashpart",unary,dash_part);@/
+@!@:dash_part_}{\&{dashpart} primitive@>
+primitive("sqrt",unary,sqrt_op);@/
+@!@:sqrt_}{\&{sqrt} primitive@>
+primitive("mexp",unary,m_exp_op);@/
+@!@:m_exp_}{\&{mexp} primitive@>
+primitive("mlog",unary,m_log_op);@/
+@!@:m_log_}{\&{mlog} primitive@>
+primitive("sind",unary,sin_d_op);@/
+@!@:sin_d_}{\&{sind} primitive@>
+primitive("cosd",unary,cos_d_op);@/
+@!@:cos_d_}{\&{cosd} primitive@>
+primitive("floor",unary,floor_op);@/
+@!@:floor_}{\&{floor} primitive@>
+primitive("uniformdeviate",unary,uniform_deviate);@/
+@!@:uniform_deviate_}{\&{uniformdeviate} primitive@>
+primitive("charexists",unary,char_exists_op);@/
+@!@:char_exists_}{\&{charexists} primitive@>
+primitive("fontsize",unary,font_size);@/
+@!@:font_size_}{\&{fontsize} primitive@>
+primitive("llcorner",unary,ll_corner_op);@/
+@!@:ll_corner_}{\&{llcorner} primitive@>
+primitive("lrcorner",unary,lr_corner_op);@/
+@!@:lr_corner_}{\&{lrcorner} primitive@>
+primitive("ulcorner",unary,ul_corner_op);@/
+@!@:ul_corner_}{\&{ulcorner} primitive@>
+primitive("urcorner",unary,ur_corner_op);@/
+@!@:ur_corner_}{\&{urcorner} primitive@>
+primitive("arclength",unary,arc_length);@/
+@!@:arc_length_}{\&{arclength} primitive@>
+primitive("angle",unary,angle_op);@/
+@!@:angle_}{\&{angle} primitive@>
+primitive("cycle",cycle,cycle_op);@/
+@!@:cycle_}{\&{cycle} primitive@>
+primitive("stroked",unary,stroked_op);@/
+@!@:stroked_}{\&{stroked} primitive@>
+primitive("filled",unary,filled_op);@/
+@!@:filled_}{\&{filled} primitive@>
+primitive("textual",unary,textual_op);@/
+@!@:textual_}{\&{textual} primitive@>
+primitive("clipped",unary,clipped_op);@/
+@!@:clipped_}{\&{clipped} primitive@>
+primitive("bounded",unary,bounded_op);@/
+@!@:bounded_}{\&{bounded} primitive@>
+primitive("+",plus_or_minus,plus);@/
+@!@:+ }{\.{+} primitive@>
+primitive("-",plus_or_minus,minus);@/
+@!@:- }{\.{-} primitive@>
+primitive("*",secondary_binary,times);@/
+@!@:* }{\.{*} primitive@>
+primitive("/",slash,over); eqtb[frozen_slash]:=eqtb[cur_sym];@/
+@!@:/ }{\.{/} primitive@>
+primitive("++",tertiary_binary,pythag_add);@/
+@!@:++_}{\.{++} primitive@>
+primitive("+-+",tertiary_binary,pythag_sub);@/
+@!@:+-+_}{\.{+-+} primitive@>
+primitive("or",tertiary_binary,or_op);@/
+@!@:or_}{\&{or} primitive@>
+primitive("and",and_command,and_op);@/
+@!@:and_}{\&{and} primitive@>
+primitive("<",expression_binary,less_than);@/
+@!@:< }{\.{<} primitive@>
+primitive("<=",expression_binary,less_or_equal);@/
+@!@:<=_}{\.{<=} primitive@>
+primitive(">",expression_binary,greater_than);@/
+@!@:> }{\.{>} primitive@>
+primitive(">=",expression_binary,greater_or_equal);@/
+@!@:>=_}{\.{>=} primitive@>
+primitive("=",equals,equal_to);@/
+@!@:= }{\.{=} primitive@>
+primitive("<>",expression_binary,unequal_to);@/
+@!@:<>_}{\.{<>} primitive@>
+primitive("substring",primary_binary,substring_of);@/
+@!@:substring_}{\&{substring} primitive@>
+primitive("subpath",primary_binary,subpath_of);@/
+@!@:subpath_}{\&{subpath} primitive@>
+primitive("directiontime",primary_binary,direction_time_of);@/
+@!@:direction_time_}{\&{directiontime} primitive@>
+primitive("point",primary_binary,point_of);@/
+@!@:point_}{\&{point} primitive@>
+primitive("precontrol",primary_binary,precontrol_of);@/
+@!@:precontrol_}{\&{precontrol} primitive@>
+primitive("postcontrol",primary_binary,postcontrol_of);@/
+@!@:postcontrol_}{\&{postcontrol} primitive@>
+primitive("penoffset",primary_binary,pen_offset_of);@/
+@!@:pen_offset_}{\&{penoffset} primitive@>
+primitive("arctime",primary_binary,arc_time_of);@/
+@!@:arc_time_of_}{\&{arctime} primitive@>
+primitive("mpversion",nullary,mp_version);@/
+@!@:mp_verison_}{\&{mpversion} primitive@>
+primitive("&",ampersand,concatenate);@/
+@!@:!!!}{\.{\&} primitive@>
+primitive("rotated",secondary_binary,rotated_by);@/
+@!@:rotated_}{\&{rotated} primitive@>
+primitive("slanted",secondary_binary,slanted_by);@/
+@!@:slanted_}{\&{slanted} primitive@>
+primitive("scaled",secondary_binary,scaled_by);@/
+@!@:scaled_}{\&{scaled} primitive@>
+primitive("shifted",secondary_binary,shifted_by);@/
+@!@:shifted_}{\&{shifted} primitive@>
+primitive("transformed",secondary_binary,transformed_by);@/
+@!@:transformed_}{\&{transformed} primitive@>
+primitive("xscaled",secondary_binary,x_scaled);@/
+@!@:x_scaled_}{\&{xscaled} primitive@>
+primitive("yscaled",secondary_binary,y_scaled);@/
+@!@:y_scaled_}{\&{yscaled} primitive@>
+primitive("zscaled",secondary_binary,z_scaled);@/
+@!@:z_scaled_}{\&{zscaled} primitive@>
+primitive("infont",secondary_binary,in_font);@/
+@!@:in_font_}{\&{infont} primitive@>
+primitive("intersectiontimes",tertiary_binary,intersect);@/
+@!@:intersection_times_}{\&{intersectiontimes} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+nullary,unary,primary_binary,secondary_binary,tertiary_binary,
+ expression_binary,cycle,plus_or_minus,slash,ampersand,equals,and_command:
+ print_op(m);
+
+@ OK, let's look at the simplest \\{do} procedure first.
+
+@p @t\4@>@<Declare nullary action procedure@>@;
+procedure do_nullary(@!c:quarterword);
+begin check_arith;
+if internal[tracing_commands]>two then
+ show_cmd_mod(nullary,c);
+case c of
+true_code,false_code:begin cur_type:=boolean_type; cur_exp:=c;
+ end;
+null_picture_code:begin cur_type:=picture_type;
+ cur_exp:=get_node(edge_header_size); init_edges(cur_exp);
+ end;
+null_pen_code:begin cur_type:=pen_type; cur_exp:=get_pen_circle(0);
+ end;
+normal_deviate:begin cur_type:=known; cur_exp:=norm_rand;
+ end;
+pen_circle:begin cur_type:=pen_type; cur_exp:=get_pen_circle(unity);
+ end;
+job_name_op: begin if job_name=0 then open_log_file;
+ cur_type:=string_type; cur_exp:=job_name;
+ end;
+mp_version: begin cur_type:=string_type; cur_exp:=metapost_version; end;
+read_string_op:@<Read a string from the terminal@>;
+end; {there are no other cases}
+check_arith;
+end;
+
+@ @<Read a string...@>=
+begin if interaction<=nonstop_mode then
+ fatal_error("*** (cannot readstring in nonstop modes)");
+begin_file_reading; name:=is_read;
+limit:=start; prompt_input("");
+finish_read;
+end
+
+@ @<Declare nullary action procedure@>=
+procedure finish_read; {copy |buffer| line to |cur_exp|}
+var @!k:pool_pointer;
+begin str_room(last-start);
+for k:=start to last-1 do append_char(buffer[k]);
+end_file_reading; cur_type:=string_type; cur_exp:=make_string;
+end;
+
+@ Things get a bit more interesting when there's an operand. The
+operand to |do_unary| appears in |cur_type| and |cur_exp|.
+
+@p @t\4@>@<Declare unary action procedures@>@;
+procedure do_unary(@!c:quarterword);
+var @!p,@!q,@!r:pointer; {for list manipulation}
+@!x:integer; {a temporary register}
+begin check_arith;
+if internal[tracing_commands]>two then
+ @<Trace the current unary operation@>;
+case c of
+plus:if cur_type<color_type then bad_unary(plus);
+minus:@<Negate the current expression@>;
+@t\4@>@<Additional cases of unary operators@>@;
+end; {there are no other cases}
+check_arith;
+end;
+
+@ The |nice_pair| function returns |true| if both components of a pair
+are known.
+
+@<Declare unary action procedures@>=
+function nice_pair(@!p:integer;@!t:quarterword):boolean;
+label exit;
+begin if t=pair_type then
+ begin p:=value(p);
+ if type(x_part_loc(p))=known then
+ if type(y_part_loc(p))=known then
+ begin nice_pair:=true; return;
+ end;
+ end;
+nice_pair:=false;
+exit:end;
+
+@ The |nice_color_or_pair| function is analogous except that it also accepts
+fully known colors.
+
+@<Declare unary action procedures@>=
+function nice_color_or_pair(@!p:integer;@!t:quarterword):boolean;
+label exit;
+var @!q,@!r:pointer; {for scanning the big node}
+begin if (t<>pair_type)and(t<>color_type) then
+ nice_color_or_pair:=false
+else begin q:=value(p);
+ r:=q+big_node_size[type(p)];
+ repeat r:=r-2;
+ if type(r)<>known then
+ begin nice_color_or_pair:=false; return;
+ end;
+ until r=q;
+ nice_color_or_pair:=true;
+ end;
+exit:end;
+
+@ @<Declare unary action...@>=
+procedure print_known_or_unknown_type(@!t:small_number;@!v:integer);
+begin print_char("(");
+if t>known then print("unknown numeric")
+else begin if (t=pair_type)or(t=color_type) then
+ if not nice_color_or_pair(v,t) then print("unknown ");
+ print_type(t);
+ end;
+print_char(")");
+end;
+
+@ @<Declare unary action...@>=
+procedure bad_unary(@!c:quarterword);
+begin exp_err("Not implemented: "); print_op(c);
+@.Not implemented...@>
+print_known_or_unknown_type(cur_type,cur_exp);
+help3("I'm afraid I don't know how to apply that operation to that")@/
+ ("particular type. Continue, and I'll simply return the")@/
+ ("argument (shown above) as the result of the operation.");
+put_get_error;
+end;
+
+@ @<Trace the current unary operation@>=
+begin begin_diagnostic; print_nl("{"); print_op(c); print_char("(");@/
+print_exp(null,0); {show the operand, but not verbosely}
+print(")}"); end_diagnostic(false);
+end
+
+@ Negation is easy except when the current expression
+is of type |independent|, or when it is a pair with one or more
+|independent| components.
+
+It is tempting to argue that the negative of an independent variable
+is an independent variable, hence we don't have to do anything when
+negating it. The fallacy is that other dependent variables pointing
+to the current expression must change the sign of their
+coefficients if we make no change to the current expression.
+
+Instead, we work around the problem by copying the current expression
+and recycling it afterwards (cf.~the |stash_in| routine).
+
+@<Negate the current expression@>=
+case cur_type of
+color_type,pair_type,independent: begin q:=cur_exp; make_exp_copy(q);
+ if cur_type=dependent then negate_dep_list(dep_list(cur_exp))
+ else if cur_type<=pair_type then {|color_type| or |pair_type|}
+ begin p:=value(cur_exp);
+ r:=p+big_node_size[cur_type];
+ repeat r:=r-2;
+ if type(r)=known then negate(value(r))
+ else negate_dep_list(dep_list(r));
+ until r=p;
+ end; {if |cur_type=known| then |cur_exp=0|}
+ recycle_value(q); free_node(q,value_node_size);
+ end;
+dependent,proto_dependent:negate_dep_list(dep_list(cur_exp));
+known:negate(cur_exp);
+othercases bad_unary(minus)
+endcases
+
+@ @<Declare unary action...@>=
+procedure negate_dep_list(@!p:pointer);
+label exit;
+begin loop@+begin negate(value(p));
+ if info(p)=null then return;
+ p:=link(p);
+ end;
+exit:end;
+
+@ @<Additional cases of unary operators@>=
+not_op: if cur_type<>boolean_type then bad_unary(not_op)
+ else cur_exp:=true_code+false_code-cur_exp;
+
+@ @d three_sixty_units==23592960 {that's |360*unity|}
+@d boolean_reset(#)==if # then cur_exp:=true_code@+else cur_exp:=false_code
+
+@<Additional cases of unary operators@>=
+sqrt_op,m_exp_op,m_log_op,sin_d_op,cos_d_op,floor_op,
+ uniform_deviate,odd_op,char_exists_op:@t@>@;@/
+ if cur_type<>known then bad_unary(c)
+ else case c of
+ sqrt_op:cur_exp:=square_rt(cur_exp);
+ m_exp_op:cur_exp:=m_exp(cur_exp);
+ m_log_op:cur_exp:=m_log(cur_exp);
+ sin_d_op,cos_d_op:begin n_sin_cos((cur_exp mod three_sixty_units)*16);
+ if c=sin_d_op then cur_exp:=round_fraction(n_sin)
+ else cur_exp:=round_fraction(n_cos);
+ end;
+ floor_op:cur_exp:=floor_scaled(cur_exp);
+ uniform_deviate:cur_exp:=unif_rand(cur_exp);
+ odd_op: begin boolean_reset(odd(round_unscaled(cur_exp)));
+ cur_type:=boolean_type;
+ end;
+ char_exists_op:@<Determine if a character has been shipped out@>;
+ end; {there are no other cases}
+
+@ @<Additional cases of unary operators@>=
+angle_op:if nice_pair(cur_exp,cur_type) then
+ begin p:=value(cur_exp);
+ x:=n_arg(value(x_part_loc(p)),value(y_part_loc(p)));
+ if x>=0 then flush_cur_exp((x+8)div 16)
+ else flush_cur_exp(-((-x+8)div 16));
+ end
+ else bad_unary(angle_op);
+
+@ If the current expression is a pair, but the context wants it to
+be a path, we call |pair_to_path|.
+
+@<Declare unary action...@>=
+procedure pair_to_path;
+begin cur_exp:=new_knot; cur_type:=path_type;
+end;
+
+@ @<Additional cases of unary operators@>=
+x_part,y_part:if (cur_type=pair_type)or(cur_type=transform_type) then
+ take_part(c)
+ else if cur_type=picture_type then take_pict_part(c)
+ else bad_unary(c);
+xx_part,xy_part,yx_part,yy_part: if cur_type=transform_type then take_part(c)
+ else if cur_type=picture_type then take_pict_part(c)
+ else bad_unary(c);
+red_part,green_part,blue_part: if cur_type=color_type then take_part(c)
+ else if cur_type=picture_type then take_pict_part(c)
+ else bad_unary(c);
+
+@ In the following procedure, |cur_exp| points to a capsule, which points to
+a big node. We want to delete all but one part of the big node.
+
+@<Declare unary action...@>=
+procedure take_part(@!c:quarterword);
+var @!p:pointer; {the big node}
+begin p:=value(cur_exp); value(temp_val):=p; type(temp_val):=cur_type;
+link(p):=temp_val; free_node(cur_exp,value_node_size);
+make_exp_copy(p+sector_offset[c+x_part_sector-x_part]);
+recycle_value(temp_val);
+end;
+
+@ @<Initialize table entries...@>=
+name_type(temp_val):=capsule;
+
+@ @<Additional cases of unary operators@>=
+font_part,text_part,path_part,pen_part,dash_part:
+ if cur_type=picture_type then take_pict_part(c)
+ else bad_unary(c);
+
+@ @<Declare unary action...@>=
+procedure@?scale_edges; forward;@t\2@>@;@/
+procedure take_pict_part(@!c:quarterword);
+label exit, not_found;
+var @!p:pointer; {first graphical object in |cur_exp|}
+begin p:=link(dummy_loc(cur_exp));
+if p<>null then
+ begin case c of
+ x_part,y_part,xx_part,xy_part,yx_part,yy_part:
+ if type(p)=text_code then flush_cur_exp(text_trans_part(p+c))
+ else goto not_found;
+ red_part,green_part,blue_part:
+ if has_color(p) then flush_cur_exp(obj_color_part(p+c))
+ else goto not_found;
+ @<Handle other cases in |take_pict_part| or |goto not_found|@>@;
+ end; {all cases have been enumerated}
+ return;
+ end;
+not_found:@<Convert the current expression to a null value appropriate
+ for |c|@>;
+exit:end;
+
+@ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
+text_part: if type(p)<>text_code then goto not_found
+ else begin flush_cur_exp(text_p(p));
+ add_str_ref(cur_exp);
+ cur_type:=string_type;
+ end;
+font_part: if type(p)<>text_code then goto not_found
+ else begin flush_cur_exp(font_name[font_n(p)]);
+ add_str_ref(cur_exp);
+ cur_type:=string_type;
+ end;
+path_part:if type(p)=text_code then goto not_found
+ else if is_stop(p) then confusion("pict")
+@:this can't happen pict}{\quad pict@>
+ else begin flush_cur_exp(copy_path(path_p(p)));
+ cur_type:=path_type;
+ end;
+pen_part: if not has_pen(p) then goto not_found
+ else if pen_p(p)=null then goto not_found
+ else begin flush_cur_exp(copy_pen(pen_p(p)));
+ cur_type:=pen_type;
+ end;
+dash_part: if type(p)<>stroked_code then goto not_found
+ else if dash_p(p)=null then goto not_found
+ else begin add_edge_ref(dash_p(p));@/
+ se_sf:=dash_scale(p);
+ se_pic:=dash_p(p);
+ scale_edges;
+ flush_cur_exp(se_pic);
+ cur_type:=picture_type;
+ end;
+
+@ Since |scale_edges| had to be declared |forward|, it had to be declared as a
+parameterless procedure even though it really takes two arguments and updates
+one of them. Hence the following globals are needed.
+
+@<Global...@>=
+@!se_pic:pointer; {edge header used and updated by |scale_edges|}
+@!se_sf:scaled; {the scale factor argument to |scale_edges|}
+
+@ @<Convert the current expression to a null value appropriate...@>=
+case c of
+text_part,font_part: begin flush_cur_exp("");
+ cur_type:=string_type;
+ end;
+path_part: begin flush_cur_exp(get_node(knot_node_size));
+ left_type(cur_exp):=endpoint;
+ right_type(cur_exp):=endpoint;
+ link(cur_exp):=cur_exp;
+ x_coord(cur_exp):=0;
+ y_coord(cur_exp):=0;
+ originator(cur_exp):=metapost_user;
+ cur_type:=path_type;
+ end;
+pen_part: begin flush_cur_exp(get_pen_circle(0));
+ cur_type:=pen_type;
+ end;
+dash_part: begin flush_cur_exp(get_node(edge_header_size));
+ init_edges(cur_exp);
+ cur_type:=picture_type;
+ end;
+othercases flush_cur_exp(0)
+endcases
+
+@ @<Additional cases of unary...@>=
+char_op: if cur_type<>known then bad_unary(char_op)
+ else begin cur_exp:=round_unscaled(cur_exp) mod 256; cur_type:=string_type;
+ if cur_exp<0 then cur_exp:=cur_exp+256;
+ end;
+decimal: if cur_type<>known then bad_unary(decimal)
+ else begin old_setting:=selector; selector:=new_string;
+ print_scaled(cur_exp); cur_exp:=make_string;
+ selector:=old_setting; cur_type:=string_type;
+ end;
+oct_op,hex_op,ASCII_op: if cur_type<>string_type then bad_unary(c)
+ else str_to_num(c);
+font_size: if cur_type<>string_type then bad_unary(font_size)
+ else @<Find the design size of the font whose name is |cur_exp|@>;
+
+@ @<Declare unary action...@>=
+procedure str_to_num(@!c:quarterword); {converts a string to a number}
+var @!n:integer; {accumulator}
+@!m:ASCII_code; {current character}
+@!k:pool_pointer; {index into |str_pool|}
+@!b:8..16; {radix of conversion}
+@!bad_char:boolean; {did the string contain an invalid digit?}
+begin if c=ASCII_op then
+ if length(cur_exp)=0 then n:=-1
+ else n:=so(str_pool[str_start[cur_exp]])
+else begin if c=oct_op then b:=8@+else b:=16;
+ n:=0; bad_char:=false;
+ for k:=str_start[cur_exp] to str_stop(cur_exp)-1 do
+ begin m:=so(str_pool[k]);
+ if (m>="0")and(m<="9") then m:=m-"0"
+ else if (m>="A")and(m<="F") then m:=m-"A"+10
+ else if (m>="a")and(m<="f") then m:=m-"a"+10
+ else begin bad_char:=true; m:=0;
+ end;
+ if m>=b then
+ begin bad_char:=true; m:=0;
+ end;
+ if n<32768 div b then n:=n*b+m@+else n:=32767;
+ end;
+ @<Give error messages if |bad_char| or |n>=4096|@>;
+ end;
+flush_cur_exp(n*unity);
+end;
+
+@ @<Give error messages if |bad_char|...@>=
+if bad_char then
+ begin exp_err("String contains illegal digits");
+@.String contains illegal digits@>
+ if c=oct_op then
+ help1("I zeroed out characters that weren't in the range 0..7.")
+ else help1("I zeroed out characters that weren't hex digits.");
+ put_get_error;
+ end;
+if (n>4095) then
+ if internal[warning_check]>0 then
+ begin print_err("Number too large ("); print_int(n); print_char(")");
+@.Number too large@>
+ help2("I have trouble with numbers greater than 4095; watch out.")@/
+ ("(Set warningcheck:=0 to suppress this message.)");
+ put_get_error;
+ end
+
+@ The length operation is somewhat unusual in that it applies to a variety
+of different types of operands.
+
+@<Additional cases of unary...@>=
+length_op: case cur_type of
+ string_type: flush_cur_exp(length(cur_exp)*unity);
+ path_type: flush_cur_exp(path_length);
+ known: cur_exp:=abs(cur_exp);
+ picture_type: flush_cur_exp(pict_length);
+ othercases if nice_pair(cur_exp,cur_type) then
+ flush_cur_exp(pyth_add(value(x_part_loc(value(cur_exp))),@|
+ value(y_part_loc(value(cur_exp)))))
+ else bad_unary(c)
+ endcases;
+
+@ @<Declare unary action...@>=
+function path_length:scaled; {computes the length of the current path}
+var @!n:scaled; {the path length so far}
+@!p:pointer; {traverser}
+begin p:=cur_exp;
+if left_type(p)=endpoint then n:=-unity@+else n:=0;
+repeat p:=link(p); n:=n+unity;
+until p=cur_exp;
+path_length:=n;
+end;
+
+@ @<Declare unary action...@>=
+function pict_length:scaled; {counts interior components in picture |cur_exp|}
+label found;
+var @!n:scaled; {the count so far}
+@!p:pointer; {traverser}
+begin n:=0;
+p:=link(dummy_loc(cur_exp));
+if p<>null then
+ begin if is_start_or_stop(p) then
+ if skip_1component(p)=null then p:=link(p);
+ while p<>null do
+ begin skip_component(p)(goto found);
+ n:=n+unity;
+ end;
+ end;
+found:pict_length:=n;
+end;
+
+@ The turning number is computed only with respect to a triangular pen whose
+@:turning_number_}{\&{turningnumber} primitive@>
+vertices are $(0,1)$ and $(\pm{1\over2},0)$. The choice of pen isn't supposed
+to matter but rounding error could make a difference if the path has a cusp.
+
+@<Additional cases of unary...@>=
+turning_op:if cur_type=pair_type then flush_cur_exp(0)
+ else if cur_type<>path_type then bad_unary(turning_op)
+ else if left_type(cur_exp)=endpoint then
+ flush_cur_exp(0) {not a cyclic path}
+ else begin
+ flush_cur_exp(turn_cycles(cur_exp));
+ end;
+
+
+@ This code is based on Bogus\l{}av Jackowski's
+|emergency_turningnumber| macro, with some minor changes by Taco
+Hoekwater. The macro code looked more like this:
+{\obeylines
+vardef turning\_number primary p =
+~~save res, ang, turns;
+~~res := 0;
+~~if length p <= 2:
+~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
+~~else:
+~~~~for t = 0 upto length p-1 :
+~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
+~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
+~~~~~~if angc > 180: angc := angc - 360; fi;
+~~~~~~if angc < -180: angc := angc + 360; fi;
+~~~~~~res := res + angc;
+~~~~endfor;
+~~res/360
+~~fi
+enddef;}
+The general idea is to calculate only the sum of the angles of straight lines between
+the points, of a path, not worrying about cusps or self-intersections in the segments
+at all. If the segment is not well-behaved, the result is not necesarily correct. But
+the old code was not always correct either, and worse, it sometimes failed for well-behaved
+paths as well. All known bugs that were triggered by the original code no longer occur
+with this code, and it runs roughly 3 times as fast because the algorithm is much simpler.
+
+@ The macro |Angle()| returns the value of the |angle| primitive, or $0$ if the argument is
+|origin|. Converting that calling convention to web code gives the |an_angle| function.
+
+@<Declare unary action...@>=
+function an_angle (@!xpar,@!ypar:scaled):angle;
+begin
+ if (not ((xpar=0) and (ypar=0))) then
+ an_angle := n_arg(xpar,ypar)
+ else
+ an_angle := 0;
+end;
+
+
+@ It is possible to overflow the return value of the |turn_cycles|
+function when the path is sufficiently long and winding, but I am not
+going to bother testing for that. In any case, it would only return
+the looped result value, which is not a big problem.
+
+The macro code for the repeat loop was a bit nicer to look
+at than the pascal code, because it could use |point -1 of p|. In
+pascal, the fastest way to loop around the path is not to look
+backward once, but forward twice. These defines help hide the trick.
+
+@d p_to==link(link(p))
+@d p_here==link(p)
+@d p_from==p
+
+@<Declare unary action...@>=
+function turn_cycles (@!c:pointer):scaled;
+var @!res,ang:angle; { the angles of intermediate results }
+@!turns:scaled; { the turn counter }
+@!p:pointer; { for running around the path }
+begin res:=0; turns:= 0; p:=c;
+if ((link(p) = p) or (link(link(p)) = p)) then
+ if an_angle (x_coord(p) - right_x(p), y_coord(p) - right_y(p)) >= 0 then
+ turn_cycles := unity
+ else
+ turn_cycles := -unity
+else begin
+ repeat
+ ang := an_angle (x_coord(p_to) - x_coord(p_here), y_coord(p_to) - y_coord(p_here))
+ - an_angle (x_coord(p_here) - x_coord(p_from), y_coord(p_here) - y_coord(p_from));
+ reduce_angle(ang);
+ res := res + ang;
+ if res >= three_sixty_deg then begin
+ res := res - three_sixty_deg;
+ turns := turns + unity;
+ end;
+ if res <= -three_sixty_deg then begin
+ res := res + three_sixty_deg;
+ turns := turns - unity;
+ end;
+ p := link(p);
+ until p=c;
+ turn_cycles := turns;
+end;
+end;
+
+@ @<Declare unary action...@>=
+function count_turns(@!c:pointer):scaled;
+var @!p:pointer; {a knot in envelope spec |c|}
+@!t:integer; {total pen offset changes counted}
+begin t:=0; p:=c;
+repeat t:=t+info(p)-zero_off;
+p:=link(p);
+until p=c;
+count_turns:=(t div 3)*unity;
+end;
+
+@ @d type_test_end== flush_cur_exp(true_code)
+ else flush_cur_exp(false_code);
+ cur_type:=boolean_type;
+ end
+@d type_range_end(#)==(cur_type<=#) then type_test_end
+@d type_range(#)==begin if (cur_type>=#) and type_range_end
+@d type_test(#)==begin if cur_type=# then type_test_end
+
+@<Additional cases of unary operators@>=
+boolean_type: type_range(boolean_type)(unknown_boolean);
+string_type: type_range(string_type)(unknown_string);
+pen_type: type_range(pen_type)(unknown_pen);
+path_type: type_range(path_type)(unknown_path);
+picture_type: type_range(picture_type)(unknown_picture);
+transform_type,color_type,pair_type: type_test(c);
+numeric_type: type_range(known)(independent);
+known_op,unknown_op: test_known(c);
+
+@ @<Declare unary action procedures@>=
+procedure test_known(@!c:quarterword);
+label done;
+var @!b:true_code..false_code; {is the current expression known?}
+@!p,@!q:pointer; {locations in a big node}
+begin b:=false_code;
+case cur_type of
+vacuous,boolean_type,string_type,pen_type,path_type,picture_type,
+ known: b:=true_code;
+transform_type,color_type,pair_type:begin p:=value(cur_exp);
+ q:=p+big_node_size[cur_type];
+ repeat q:=q-2;
+ if type(q)<>known then goto done;
+ until q=p;
+ b:=true_code;
+done: end;
+othercases do_nothing
+endcases;
+if c=known_op then flush_cur_exp(b)
+else flush_cur_exp(true_code+false_code-b);
+cur_type:=boolean_type;
+end;
+
+@ @<Additional cases of unary operators@>=
+cycle_op: begin if cur_type<>path_type then flush_cur_exp(false_code)
+ else if left_type(cur_exp)<>endpoint then flush_cur_exp(true_code)
+ else flush_cur_exp(false_code);
+ cur_type:=boolean_type;
+ end;
+
+@ @<Additional cases of unary operators@>=
+arc_length: begin if cur_type=pair_type then pair_to_path;
+ if cur_type<>path_type then bad_unary(arc_length)
+ else flush_cur_exp(get_arc_length(cur_exp));
+ end;
+
+@ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
+object |type|.
+@^data structure assumptions@>
+
+@<Additional cases of unary operators@>=
+filled_op,stroked_op,textual_op,clipped_op,bounded_op:
+ begin if cur_type<>picture_type then flush_cur_exp(false_code)
+ else if link(dummy_loc(cur_exp))=null then flush_cur_exp(false_code)
+ else if type(link(dummy_loc(cur_exp)))=c+fill_code-filled_op then
+ flush_cur_exp(true_code)
+ else flush_cur_exp(false_code);
+ cur_type:=boolean_type;
+ end;
+
+@ @<Additional cases of unary operators@>=
+make_pen_op: begin if cur_type=pair_type then pair_to_path;
+ if cur_type<>path_type then bad_unary(make_pen_op)
+ else begin cur_type:=pen_type;
+ cur_exp:=make_pen(cur_exp,true);
+ end;
+ end;
+make_path_op: if cur_type<>pen_type then bad_unary(make_path_op)
+ else begin cur_type:=path_type;
+ make_path(cur_exp);
+ end;
+reverse: if cur_type=path_type then
+ begin p:=htap_ypoc(cur_exp);
+ if right_type(p)=endpoint then p:=link(p);
+ toss_knot_list(cur_exp); cur_exp:=p;
+ end
+ else if cur_type=pair_type then pair_to_path
+ else bad_unary(reverse);
+
+@ The |pair_value| routine changes the current expression to a
+given ordered pair of values.
+
+@<Declare unary action procedures@>=
+procedure pair_value(@!x,@!y:scaled);
+var @!p:pointer; {a pair node}
+begin p:=get_node(value_node_size); flush_cur_exp(p); cur_type:=pair_type;
+type(p):=pair_type; name_type(p):=capsule; init_big_node(p);
+p:=value(p);@/
+type(x_part_loc(p)):=known; value(x_part_loc(p)):=x;@/
+type(y_part_loc(p)):=known; value(y_part_loc(p)):=y;@/
+end;
+
+@ @<Additional cases of unary operators@>=
+ll_corner_op: if not get_cur_bbox then bad_unary(ll_corner_op)
+ else pair_value(minx,miny);
+lr_corner_op: if not get_cur_bbox then bad_unary(lr_corner_op)
+ else pair_value(maxx,miny);
+ul_corner_op: if not get_cur_bbox then bad_unary(ul_corner_op)
+ else pair_value(minx,maxy);
+ur_corner_op: if not get_cur_bbox then bad_unary(ur_corner_op)
+ else pair_value(maxx,maxy);
+
+@ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
+box of the current expression. The boolean result is |false| if the expression
+has the wrong type.
+
+@<Declare unary action procedures@>=
+function get_cur_bbox: boolean;
+label exit;
+begin case cur_type of
+picture_type: begin set_bbox(cur_exp,true);
+ if minx_val(cur_exp)>maxx_val(cur_exp) then
+ begin minx:=0; maxx:=0; miny:=0; maxy:=0;
+ end
+ else begin minx:=minx_val(cur_exp);
+ maxx:=maxx_val(cur_exp);
+ miny:=miny_val(cur_exp);
+ maxy:=maxy_val(cur_exp);
+ end;
+ end;
+path_type: path_bbox(cur_exp);
+pen_type: pen_bbox(cur_exp);
+othercases begin get_cur_bbox:=false;
+ return;
+ end
+endcases;@/
+get_cur_bbox:=true;
+exit:end;
+
+@ @<Additional cases of unary operators@>=
+read_from_op,close_from_op: if cur_type<>string_type then bad_unary(c)
+else do_read_or_close(c);
+
+@ Here is a routine that interprets |cur_exp| as a file name and tries to read
+a line from the file or to close the file.
+
+@d close_file=46 {go here when closing the file}
+
+@<Declare unary action procedures@>=
+procedure do_read_or_close(@!c:quarterword);
+label exit, continue, found, not_found, close_file;
+var @!n,@!n0:readf_index; {indices for searching |rd_fname|}
+begin @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
+ call |start_read_input| and |goto found| or |not_found|@>;
+begin_file_reading;
+name:=is_read;
+if input_ln(rd_file[n],true) then goto found;
+end_file_reading;
+not_found:@<Record the end of file and set |cur_exp| to a dummy value@>;
+return;
+close_file:flush_cur_exp(0); cur_type:=vacuous; return;
+found:flush_cur_exp(0);
+finish_read;
+exit:end;
+
+@ Free slots in the |rd_file| and |rd_fname| arrays are marked with 0's in
+|rd_fname|.
+
+@<Find the |n| where |rd_fname[n]=cur_exp|...@>=
+n:=read_files;
+n0:=read_files;
+repeat
+continue:if n>0 then decr(n)
+else if c=close_from_op then goto close_file
+else @<Insert |cur_exp| at index |n0|, then call |start_read_input| and
+ |goto found| or |not_found|@>;
+if rd_fname[n]=0 then
+ begin n0:=n; goto continue;
+ end;
+until str_vs_str(cur_exp,rd_fname[n])=0;
+if c=close_from_op then
+ begin a_close(rd_file[n]); goto not_found; end
+
+@ @<Insert |cur_exp| at index |n0|, then call |start_read_input| and...@>=
+begin if n0=read_files then
+ if read_files<max_read_files then incr(read_files)
+ else overflow("readfrom files",max_read_files);
+n:=n0;
+if start_read_input(cur_exp,n) then goto found @+else goto not_found;
+end
+
+@ @<Record the end of file and set |cur_exp| to a dummy value@>=
+delete_str_ref(rd_fname[n]);
+rd_fname[n]:=0;
+if n=read_files-1 then read_files:=n;
+if c=close_from_op then goto close_file;
+@<Make sure |eof_line| is initialized@>;
+flush_cur_exp(eof_line);
+cur_type:=string_type
+
+@ Since the |eof_line| string contains a non-printable character, it must be
+initialized at run time and stored in a global variable.
+
+@<Glob...@>=
+eof_line:str_number; {string denoting end-of-file or 0 if uninitialized}
+
+@ @<Set init...@>=
+eof_line:=0;
+
+@ @<Make sure |eof_line| is initialized@>=
+if eof_line=0 then
+ begin append_char(0);
+ eof_line:=make_string;
+ str_ref[eof_line]:=max_str_ref;
+ end
+
+@ Finally, we have the operations that combine a capsule~|p|
+with the current expression.
+
+@p @t\4@>@<Declare binary action procedures@>@;
+procedure do_binary(@!p:pointer;@!c:quarterword);
+label done,done1,exit;
+var @!q,@!r,@!rr:pointer; {for list manipulation}
+@!old_p,@!old_exp:pointer; {capsules to recycle}
+@!v:integer; {for numeric manipulation}
+begin check_arith;
+if internal[tracing_commands]>two then
+ @<Trace the current binary operation@>;
+@<Sidestep |independent| cases in capsule |p|@>;
+@<Sidestep |independent| cases in the current expression@>;
+case c of
+plus,minus:@<Add or subtract the current expression from |p|@>;
+@t\4@>@<Additional cases of binary operators@>@;
+end; {there are no other cases}
+recycle_value(p); free_node(p,value_node_size); {|return| to avoid this}
+exit:check_arith; @<Recycle any sidestepped |independent| capsules@>;
+end;
+
+@ @<Declare binary action...@>=
+procedure bad_binary(@!p:pointer;@!c:quarterword);
+begin disp_err(p,"");
+exp_err("Not implemented: ");
+@.Not implemented...@>
+if c>=min_of then print_op(c);
+print_known_or_unknown_type(type(p),p);
+if c>=min_of then print("of")@+else print_op(c);
+print_known_or_unknown_type(cur_type,cur_exp);@/
+help3("I'm afraid I don't know how to apply that operation to that")@/
+ ("combination of types. Continue, and I'll return the second")@/
+ ("argument (see above) as the result of the operation.");
+put_get_error;
+end;
+
+@ @<Trace the current binary operation@>=
+begin begin_diagnostic; print_nl("{(");
+print_exp(p,0); {show the operand, but not verbosely}
+print_char(")"); print_op(c); print_char("(");@/
+print_exp(null,0); print(")}"); end_diagnostic(false);
+end
+
+@ Several of the binary operations are potentially complicated by the
+fact that |independent| values can sneak into capsules. For example,
+we've seen an instance of this difficulty in the unary operation
+of negation. In order to reduce the number of cases that need to be
+handled, we first change the two operands (if necessary)
+to rid them of |independent| components. The original operands are
+put into capsules called |old_p| and |old_exp|, which will be
+recycled after the binary operation has been safely carried out.
+
+@<Recycle any sidestepped |independent| capsules@>=
+if old_p<>null then
+ begin recycle_value(old_p); free_node(old_p,value_node_size);
+ end;
+if old_exp<>null then
+ begin recycle_value(old_exp); free_node(old_exp,value_node_size);
+ end
+
+@ A big node is considered to be ``tarnished'' if it contains at least one
+independent component. We will define a simple function called `|tarnished|'
+that returns |null| if and only if its argument is not tarnished.
+
+@<Sidestep |independent| cases in capsule |p|@>=
+case type(p) of
+transform_type,color_type,pair_type: old_p:=tarnished(p);
+independent: old_p:=void;
+othercases old_p:=null
+endcases;
+if old_p<>null then
+ begin q:=stash_cur_exp; old_p:=p; make_exp_copy(old_p);
+ p:=stash_cur_exp; unstash_cur_exp(q);
+ end;
+
+@ @<Sidestep |independent| cases in the current expression@>=
+case cur_type of
+transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
+independent:old_exp:=void;
+othercases old_exp:=null
+endcases;
+if old_exp<>null then
+ begin old_exp:=cur_exp; make_exp_copy(old_exp);
+ end
+
+@ @<Declare binary action...@>=
+function tarnished(@!p:pointer):pointer;
+label exit;
+var @!q:pointer; {beginning of the big node}
+@!r:pointer; {current position in the big node}
+begin q:=value(p); r:=q+big_node_size[type(p)];
+repeat r:=r-2;
+if type(r)=independent then
+ begin tarnished:=void; return;
+ end;
+until r=q;
+tarnished:=null;
+exit:end;
+
+@ @<Add or subtract the current expression from |p|@>=
+if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,c)
+else if (cur_type>pair_type)and(type(p)>pair_type) then
+ add_or_subtract(p,null,c)
+ else if cur_type<>type(p) then bad_binary(p,c)
+ else begin q:=value(p); r:=value(cur_exp);
+ rr:=r+big_node_size[cur_type];
+ while r<rr do
+ begin add_or_subtract(q,r,c);
+ q:=q+2; r:=r+2;
+ end;
+ end
+
+@ The first argument to |add_or_subtract| is the location of a value node
+in a capsule or pair node that will soon be recycled. The second argument
+is either a location within a pair or transform node of |cur_exp|,
+or it is null (which means that |cur_exp| itself should be the second
+argument). The third argument is either |plus| or |minus|.
+
+The sum or difference of the numeric quantities will replace the second
+operand. Arithmetic overflow may go undetected; users aren't supposed to
+be monkeying around with really big values.
+
+@<Declare binary action...@>=
+@t\4@>@<Declare the procedure called |dep_finish|@>@;
+procedure add_or_subtract(@!p,@!q:pointer;@!c:quarterword);
+label done,exit;
+var @!s,@!t:small_number; {operand types}
+@!r:pointer; {list traverser}
+@!v:integer; {second operand value}
+begin if q=null then
+ begin t:=cur_type;
+ if t<dependent then v:=cur_exp@+else v:=dep_list(cur_exp);
+ end
+else begin t:=type(q);
+ if t<dependent then v:=value(q)@+else v:=dep_list(q);
+ end;
+if t=known then
+ begin if c=minus then negate(v);
+ if type(p)=known then
+ begin v:=slow_add(value(p),v);
+ if q=null then cur_exp:=v@+else value(q):=v;
+ return;
+ end;
+ @<Add a known value to the constant term of |dep_list(p)|@>;
+ end
+else begin if c=minus then negate_dep_list(v);
+ @<Add operand |p| to the dependency list |v|@>;
+ end;
+exit:end;
+
+@ @<Add a known value to the constant term of |dep_list(p)|@>=
+r:=dep_list(p);
+while info(r)<>null do r:=link(r);
+value(r):=slow_add(value(r),v);
+if q=null then
+ begin q:=get_node(value_node_size); cur_exp:=q; cur_type:=type(p);
+ name_type(q):=capsule;
+ end;
+dep_list(q):=dep_list(p); type(q):=type(p);
+prev_dep(q):=prev_dep(p); link(prev_dep(p)):=q;
+type(p):=known; {this will keep the recycler from collecting non-garbage}
+
+@ We prefer |dependent| lists to |proto_dependent| ones, because it is
+nice to retain the extra accuracy of |fraction| coefficients.
+But we have to handle both kinds, and mixtures too.
+
+@<Add operand |p| to the dependency list |v|@>=
+if type(p)=known then
+ @<Add the known |value(p)| to the constant term of |v|@>
+else begin s:=type(p); r:=dep_list(p);
+ if t=dependent then
+ begin if s=dependent then
+ if max_coef(r)+max_coef(v)<coef_bound then
+ begin v:=p_plus_q(v,r,dependent); goto done;
+ end; {|fix_needed| will necessarily be false}
+ t:=proto_dependent; v:=p_over_v(v,unity,dependent,proto_dependent);
+ end;
+ if s=proto_dependent then v:=p_plus_q(v,r,proto_dependent)
+ else v:=p_plus_fq(v,unity,r,proto_dependent,dependent);
+ done: @<Output the answer, |v| (which might have become |known|)@>;
+ end
+
+@ @<Add the known |value(p)| to the constant term of |v|@>=
+begin while info(v)<>null do v:=link(v);
+value(v):=slow_add(value(p),value(v));
+end
+
+@ @<Output the answer, |v| (which might have become |known|)@>=
+if q<>null then dep_finish(v,q,t)
+else begin cur_type:=t; dep_finish(v,null,t);
+ end
+
+@ Here's the current situation: The dependency list |v| of type |t|
+should either be put into the current expression (if |q=null|) or
+into location |q| within a pair node (otherwise). The destination (|cur_exp|
+or |q|) formerly held a dependency list with the same
+final pointer as the list |v|.
+
+@<Declare the procedure called |dep_finish|@>=
+procedure dep_finish(@!v,@!q:pointer;@!t:small_number);
+var @!p:pointer; {the destination}
+@!vv:scaled; {the value, if it is |known|}
+begin if q=null then p:=cur_exp@+else p:=q;
+dep_list(p):=v; type(p):=t;
+if info(v)=null then
+ begin vv:=value(v);
+ if q=null then flush_cur_exp(vv)
+ else begin recycle_value(p); type(q):=known; value(q):=vv;
+ end;
+ end
+else if q=null then cur_type:=t;
+if fix_needed then fix_dependencies;
+end;
+
+@ Let's turn now to the six basic relations of comparison.
+
+@<Additional cases of binary operators@>=
+less_than,less_or_equal,greater_than,greater_or_equal,equal_to,unequal_to:
+ begin check_arith; {at this point |arith_error| should be |false|?}
+ if (cur_type>pair_type)and(type(p)>pair_type) then
+ add_or_subtract(p,null,minus) {|cur_exp:=(p)-cur_exp|}
+ else if cur_type<>type(p) then
+ begin bad_binary(p,c); goto done;
+ end
+ else if cur_type=string_type then
+ flush_cur_exp(str_vs_str(value(p),cur_exp))
+ else if (cur_type=unknown_string)or(cur_type=unknown_boolean) then
+ @<Check if unknowns have been equated@>
+ else if (cur_type<=pair_type)and(cur_type>=transform_type) then
+ @<Reduce comparison of big nodes to comparison of scalars@>
+ else if cur_type=boolean_type then flush_cur_exp(cur_exp-value(p))
+ else begin bad_binary(p,c); goto done;
+ end;
+ @<Compare the current expression with zero@>;
+done: arith_error:=false; {ignore overflow in comparisons}
+ end;
+
+@ @<Compare the current expression with zero@>=
+if cur_type<>known then
+ begin if cur_type<known then
+ begin disp_err(p,"");
+ help1("The quantities shown above have not been equated.")@/
+ end
+ else help2("Oh dear. I can't decide if the expression above is positive,")@/
+ ("negative, or zero. So this comparison test won't be `true'.");
+ exp_err("Unknown relation will be considered false");
+@.Unknown relation...@>
+ put_get_flush_error(false_code);
+ end
+else case c of
+ less_than: boolean_reset(cur_exp<0);
+ less_or_equal: boolean_reset(cur_exp<=0);
+ greater_than: boolean_reset(cur_exp>0);
+ greater_or_equal: boolean_reset(cur_exp>=0);
+ equal_to: boolean_reset(cur_exp=0);
+ unequal_to: boolean_reset(cur_exp<>0);
+ end; {there are no other cases}
+ cur_type:=boolean_type
+
+@ When two unknown strings are in the same ring, we know that they are
+equal. Otherwise, we don't know whether they are equal or not, so we
+make no change.
+
+@<Check if unknowns have been equated@>=
+begin q:=value(cur_exp);
+while (q<>cur_exp)and(q<>p) do q:=value(q);
+if q=p then flush_cur_exp(0);
+end
+
+@ @<Reduce comparison of big nodes to comparison of scalars@>=
+begin q:=value(p); r:=value(cur_exp);
+rr:=r+big_node_size[cur_type]-2;
+loop@+ begin add_or_subtract(q,r,minus);
+ if type(r)<>known then goto done1;
+ if value(r)<>0 then goto done1;
+ if r=rr then goto done1;
+ q:=q+2; r:=r+2;
+ end;
+done1:take_part(name_type(r)+x_part-x_part_sector);
+end
+
+@ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
+
+@<Additional cases of binary operators@>=
+and_op,or_op: if (type(p)<>boolean_type)or(cur_type<>boolean_type) then
+ bad_binary(p,c)
+ else if value(p)=c+false_code-and_op then cur_exp:=value(p);
+
+@ @<Additional cases of binary operators@>=
+times: if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,times)
+ else if (cur_type=known)or(type(p)=known) then
+ @<Multiply when at least one operand is known@>
+ else if (nice_color_or_pair(p,type(p))and(cur_type>pair_type))
+ or(nice_color_or_pair(cur_exp,cur_type)and(type(p)>pair_type)) then
+ begin hard_times(p); return;
+ end
+ else bad_binary(p,times);
+
+@ @<Multiply when at least one operand is known@>=
+begin if type(p)=known then
+ begin v:=value(p); free_node(p,value_node_size);
+ end
+else begin v:=cur_exp; unstash_cur_exp(p);
+ end;
+if cur_type=known then cur_exp:=take_scaled(cur_exp,v)
+else if (cur_type=pair_type)or(cur_type=color_type) then
+ begin p:=value(cur_exp)+big_node_size[cur_type];
+ repeat p:=p-2;
+ dep_mult(p,v,true);
+ until p=value(cur_exp);
+ end
+else dep_mult(null,v,true);
+return;
+end
+
+@ @<Declare binary action...@>=
+procedure dep_mult(@!p:pointer;@!v:integer;@!v_is_scaled:boolean);
+label exit;
+var @!q:pointer; {the dependency list being multiplied by |v|}
+@!s,@!t:small_number; {its type, before and after}
+begin if p=null then q:=cur_exp
+else if type(p)<>known then q:=p
+else begin if v_is_scaled then value(p):=take_scaled(value(p),v)
+ else value(p):=take_fraction(value(p),v);
+ return;
+ end;
+t:=type(q); q:=dep_list(q); s:=t;
+if t=dependent then if v_is_scaled then
+ if ab_vs_cd(max_coef(q),abs(v),coef_bound-1,unity)>=0 then t:=proto_dependent;
+q:=p_times_v(q,v,s,t,v_is_scaled); dep_finish(q,p,t);
+exit:end;
+
+@ Here is a routine that is similar to |times|; but it is invoked only
+internally, when |v| is a |fraction| whose magnitude is at most~1,
+and when |cur_type>=color_type|.
+
+@p procedure frac_mult(@!n,@!d:scaled); {multiplies |cur_exp| by |n/d|}
+var @!p:pointer; {a pair node}
+@!old_exp:pointer; {a capsule to recycle}
+@!v:fraction; {|n/d|}
+begin if internal[tracing_commands]>two then
+ @<Trace the fraction multiplication@>;
+case cur_type of
+transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
+independent:old_exp:=void;
+othercases old_exp:=null
+endcases;
+if old_exp<>null then
+ begin old_exp:=cur_exp; make_exp_copy(old_exp);
+ end;
+v:=make_fraction(n,d);
+if cur_type=known then cur_exp:=take_fraction(cur_exp,v)
+else if cur_type<=pair_type then
+ begin p:=value(cur_exp)+big_node_size[cur_type];
+ repeat p:=p-2;
+ dep_mult(p,v,false);
+ until p=value(cur_exp);
+ end
+else dep_mult(null,v,false);
+if old_exp<>null then
+ begin recycle_value(old_exp); free_node(old_exp,value_node_size);
+ end
+end;
+
+@ @<Trace the fraction multiplication@>=
+begin begin_diagnostic; print_nl("{("); print_scaled(n); print_char("/");
+print_scaled(d); print(")*("); print_exp(null,0); print(")}");
+end_diagnostic(false);
+end
+
+@ The |hard_times| routine multiplies a nice color or pair by a dependency list.
+
+@<Declare binary action procedures@>=
+procedure hard_times(@!p:pointer);
+label done;
+var @!q:pointer; {a copy of the dependent variable |p|}
+@!r:pointer; {a component of the big node for the nice color or pair}
+@!v:scaled; {the known value for |r|}
+begin if type(p)<=pair_type then
+ begin q:=stash_cur_exp; unstash_cur_exp(p); p:=q;
+ end; {now |cur_type=pair_type| or |cur_type=color_type|}
+r:=value(cur_exp)+big_node_size[cur_type];
+loop @+begin r:=r-2;
+ v:=value(r);
+ type(r):=type(p);
+ if r=value(cur_exp) then goto done;
+ new_dep(r,copy_dep_list(dep_list(p)));
+ dep_mult(r,v,true);
+ end;
+done:mem[value_loc(r)]:=mem[value_loc(p)];
+link(prev_dep(p)):=r;
+free_node(p,value_node_size);
+dep_mult(r,v,true);
+end;
+
+@ @<Additional cases of binary operators@>=
+over: if (cur_type<>known)or(type(p)<color_type) then bad_binary(p,over)
+ else begin v:=cur_exp; unstash_cur_exp(p);
+ if v=0 then @<Squeal about division by zero@>
+ else begin if cur_type=known then cur_exp:=make_scaled(cur_exp,v)
+ else if cur_type<=pair_type then
+ begin p:=value(cur_exp)+big_node_size[cur_type];
+ repeat p:=p-2;
+ dep_div(p,v);
+ until p=value(cur_exp);
+ end
+ else dep_div(null,v);
+ end;
+ return;
+ end;
+
+@ @<Declare binary action...@>=
+procedure dep_div(@!p:pointer;@!v:scaled);
+label exit;
+var @!q:pointer; {the dependency list being divided by |v|}
+@!s,@!t:small_number; {its type, before and after}
+begin if p=null then q:=cur_exp
+else if type(p)<>known then q:=p
+else begin value(p):=make_scaled(value(p),v); return;
+ end;
+t:=type(q); q:=dep_list(q); s:=t;
+if t=dependent then
+ if ab_vs_cd(max_coef(q),unity,coef_bound-1,abs(v))>=0 then t:=proto_dependent;
+q:=p_over_v(q,v,s,t); dep_finish(q,p,t);
+exit:end;
+
+@ @<Squeal about division by zero@>=
+begin exp_err("Division by zero");
+@.Division by zero@>
+help2("You're trying to divide the quantity shown above the error")@/
+ ("message by zero. I'm going to divide it by one instead.");
+put_get_error;
+end
+
+@ @<Additional cases of binary operators@>=
+pythag_add,pythag_sub: if (cur_type=known)and(type(p)=known) then
+ if c=pythag_add then cur_exp:=pyth_add(value(p),cur_exp)
+ else cur_exp:=pyth_sub(value(p),cur_exp)
+ else bad_binary(p,c);
+
+@ The next few sections of the program deal with affine transformations
+of coordinate data.
+
+@<Additional cases of binary operators@>=
+rotated_by,slanted_by,scaled_by,shifted_by,transformed_by,
+ x_scaled,y_scaled,z_scaled: @t@>@;@/
+ if type(p)=path_type then
+ begin path_trans(c)(p); return;
+ end
+ else if type(p)=pen_type then
+ begin pen_trans(c)(p);
+ cur_exp:=convex_hull(cur_exp); {rounding error could destroy convexity}
+ return;
+ end
+ else if (type(p)=pair_type)or(type(p)=transform_type) then big_trans(p,c)
+ else if type(p)=picture_type then
+ begin do_edges_trans(p,c); return;
+ end
+ else bad_binary(p,c);
+
+@ Let |c| be one of the eight transform operators. The procedure call
+|set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
+|c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
+change at all if |c=transformed_by|.)
+
+Then, if all components of the resulting transform are |known|, they are
+moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
+and |cur_exp| is changed to the known value zero.
+
+@<Declare binary action...@>=
+procedure set_up_trans(@!c:quarterword);
+label done,exit;
+var @!p,@!q,@!r:pointer; {list manipulation registers}
+begin if (c<>transformed_by)or(cur_type<>transform_type) then
+ @<Put the current transform into |cur_exp|@>;
+@<If the current transform is entirely known, stash it in global variables;
+ otherwise |return|@>;
+exit:end;
+
+@ @<Glob...@>=
+@!txx,@!txy,@!tyx,@!tyy,@!tx,@!ty:scaled; {current transform coefficients}
+
+@ @<Put the current transform...@>=
+begin p:=stash_cur_exp; cur_exp:=id_transform; cur_type:=transform_type;
+q:=value(cur_exp);
+case c of
+@<For each of the eight cases, change the relevant fields of |cur_exp|
+ and |goto done|;
+ but do nothing if capsule |p| doesn't have the appropriate type@>@;
+end; {there are no other cases}
+disp_err(p,"Improper transformation argument");
+@.Improper transformation argument@>
+help3("The expression shown above has the wrong type,")@/
+ ("so I can't transform anything using it.")@/
+ ("Proceed, and I'll omit the transformation.");
+put_get_error;
+done: recycle_value(p); free_node(p,value_node_size);
+end
+
+@ @<If the current transform is entirely known, ...@>=
+q:=value(cur_exp); r:=q+transform_node_size;
+repeat r:=r-2;
+if type(r)<>known then return;
+until r=q;
+txx:=value(xx_part_loc(q));
+txy:=value(xy_part_loc(q));
+tyx:=value(yx_part_loc(q));
+tyy:=value(yy_part_loc(q));
+tx:=value(x_part_loc(q));
+ty:=value(y_part_loc(q));
+flush_cur_exp(0)
+
+@ @<For each of the eight cases...@>=
+rotated_by:if type(p)=known then
+ @<Install sines and cosines, then |goto done|@>;
+slanted_by:if type(p)>pair_type then
+ begin install(xy_part_loc(q),p); goto done;
+ end;
+scaled_by:if type(p)>pair_type then
+ begin install(xx_part_loc(q),p); install(yy_part_loc(q),p); goto done;
+ end;
+shifted_by:if type(p)=pair_type then
+ begin r:=value(p); install(x_part_loc(q),x_part_loc(r));
+ install(y_part_loc(q),y_part_loc(r)); goto done;
+ end;
+x_scaled:if type(p)>pair_type then
+ begin install(xx_part_loc(q),p); goto done;
+ end;
+y_scaled:if type(p)>pair_type then
+ begin install(yy_part_loc(q),p); goto done;
+ end;
+z_scaled:if type(p)=pair_type then
+ @<Install a complex multiplier, then |goto done|@>;
+transformed_by:do_nothing;
+
+@ @<Install sines and cosines, then |goto done|@>=
+begin n_sin_cos((value(p) mod three_sixty_units)*16);
+value(xx_part_loc(q)):=round_fraction(n_cos);
+value(yx_part_loc(q)):=round_fraction(n_sin);
+value(xy_part_loc(q)):=-value(yx_part_loc(q));
+value(yy_part_loc(q)):=value(xx_part_loc(q));
+goto done;
+end
+
+@ @<Install a complex multiplier, then |goto done|@>=
+begin r:=value(p);
+install(xx_part_loc(q),x_part_loc(r));
+install(yy_part_loc(q),x_part_loc(r));
+install(yx_part_loc(q),y_part_loc(r));
+if type(y_part_loc(r))=known then negate(value(y_part_loc(r)))
+else negate_dep_list(dep_list(y_part_loc(r)));
+install(xy_part_loc(q),y_part_loc(r));
+goto done;
+end
+
+@ Procedure |set_up_known_trans| is like |set_up_trans|, but it
+insists that the transformation be entirely known.
+
+@<Declare binary action...@>=
+procedure set_up_known_trans(@!c:quarterword);
+begin set_up_trans(c);
+if cur_type<>known then
+ begin exp_err("Transform components aren't all known");
+@.Transform components...@>
+ help3("I'm unable to apply a partially specified transformation")@/
+ ("except to a fully known pair or transform.")@/
+ ("Proceed, and I'll omit the transformation.");
+ put_get_flush_error(0);
+ txx:=unity; txy:=0; tyx:=0; tyy:=unity; tx:=0; ty:=0;
+ end;
+end;
+
+@ Here's a procedure that applies the transform |txx..ty| to a pair of
+coordinates in locations |p| and~|q|.
+
+@<Declare binary action...@>=
+procedure trans(@!p,@!q:pointer);
+var @!v:scaled; {the new |x| value}
+begin v:=take_scaled(mem[p].sc,txx)+take_scaled(mem[q].sc,txy)+tx;
+mem[q].sc:=take_scaled(mem[p].sc,tyx)+take_scaled(mem[q].sc,tyy)+ty;
+mem[p].sc:=v;
+end;
+
+@ The simplest transformation procedure applies a transform to all
+coordinates of a path. The |path_trans(c)(p)| macro applies
+a transformation defined by |cur_exp| and the transform operator |c|
+to the path~|p|.
+
+@d path_trans(#)==begin set_up_known_trans(#); path_trans_end
+@d path_trans_end(#)==unstash_cur_exp(#); do_path_trans(cur_exp); end
+
+@<Declare binary action...@>=
+procedure do_path_trans(@!p:pointer);
+label exit;
+var @!q:pointer; {list traverser}
+begin q:=p;
+repeat
+if left_type(q)<>endpoint then trans(q+3,q+4); {that's |left_x| and |left_y|}
+trans(q+1,q+2); {that's |x_coord| and |y_coord|}
+if right_type(q)<>endpoint then trans(q+5,q+6); {that's |right_x| and |right_y|}
+@^data structure assumptions@>
+q:=link(q);
+until q=p;
+exit:end;
+
+@ Transforming a pen is very similar, except that there are no |left_type|
+and |right_type| fields.
+
+@d pen_trans(#)==begin set_up_known_trans(#); pen_trans_end
+@d pen_trans_end(#)==unstash_cur_exp(#); do_pen_trans(cur_exp); end
+
+@<Declare binary action...@>=
+procedure do_pen_trans(@!p:pointer);
+label exit;
+var @!q:pointer; {list traverser}
+begin if pen_is_elliptical(p) then
+ begin trans(p+3,p+4); {that's |left_x| and |left_y|}
+ trans(p+5,p+6); {that's |right_x| and |right_y|}
+ end;
+q:=p;
+repeat
+trans(q+1,q+2); {that's |x_coord| and |y_coord|}
+@^data structure assumptions@>
+q:=link(q);
+until q=p;
+exit:end;
+
+@ The next transformation procedure applies to edge structures. It will do
+any transformation, but the results may be substandard if the picture contains
+text that uses downloaded bitmap fonts. The binary action procedure is
+|do_edges_trans|, but we also need a function that just scales a picture.
+That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
+should be thought of as procedures that update an edge structure |h|, except
+that they have to return a (possibly new) structure because of the need to call
+|private_edges|.
+
+@<Declare binary action...@>=
+function edges_trans(@!h:pointer):pointer;
+label done1;
+var @!q:pointer; {the object being transformed}
+@!r,@!s:pointer; {for list manipulation}
+@!sx,@!sy:scaled; {saved transformation parameters}
+@!sqdet:scaled; {square root of determinant for |dash_scale|}
+@!sgndet:integer; {sign of the determinant}
+@!v:scaled; {a temporary value}
+begin h:=private_edges(h);@/
+sqdet:=sqrt_det(txx,txy,tyx,tyy);
+sgndet:=ab_vs_cd(txx,tyy,txy,tyx);
+if dash_list(h)<>null_dash then
+ @<Try to transform the dash list of |h|@>;
+@<Make the bounding box of |h| unknown if it can't be updated properly
+ without scanning the whole structure@>;
+q:=link(dummy_loc(h));
+while q<>null do
+ begin @<Transform graphical object |q|@>;@/
+ q:=link(q);
+ end;
+edges_trans:=h;
+end;
+@#
+procedure do_edges_trans(@!p:pointer;@!c:quarterword);
+begin set_up_known_trans(c);
+value(p):=edges_trans(value(p));
+unstash_cur_exp(p);
+end;
+@#
+procedure scale_edges;
+begin txx:=se_sf; tyy:=se_sf;
+txy:=0; tyx:=0; tx:=0; ty:=0;
+se_pic:=edges_trans(se_pic);
+end;
+
+@ @<Try to transform the dash list of |h|@>=
+if (txy<>0)or(tyx<>0)or(ty<>0)or(abs(txx)<>abs(tyy)) then
+ flush_dash_list(h)
+else begin if txx<0 then @<Reverse the dash list of |h|@>;
+ @<Scale the dash list by |txx| and shift it by |tx|@>;
+ dash_y(h):=take_scaled(dash_y(h),abs(tyy));
+ end
+
+@ @<Reverse the dash list of |h|@>=
+begin r:=dash_list(h);
+dash_list(h):=null_dash;
+while r<>null_dash do
+ begin s:=r; r:=link(r);@/
+ v:=start_x(s); start_x(s):=stop_x(s); stop_x(s):=v;@/
+ link(s):=dash_list(h);
+ dash_list(h):=s;
+ end;
+end
+
+@ @<Scale the dash list by |txx| and shift it by |tx|@>=
+r:=dash_list(h);
+while r<>null_dash do
+ begin start_x(r):=take_scaled(start_x(r),txx)+tx;
+ stop_x(r):=take_scaled(stop_x(r),txx)+tx;@/
+ r:=link(r);
+ end
+
+@ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
+if (txx=0)and(tyy=0) then
+ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>
+else if (txy<>0)or(tyx<>0) then
+ begin init_bbox(h);
+ goto done1;
+ end;
+if minx_val(h)<=maxx_val(h) then
+ @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
+ |(tx,ty)|@>;
+done1:
+
+@ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
+begin v:=minx_val(h); minx_val(h):=miny_val(h); miny_val(h):=v;@/
+v:=maxx_val(h); maxx_val(h):=maxy_val(h); maxy_val(h):=v;
+end
+
+@ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
+sum is similar.
+
+@<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
+begin minx_val(h):=take_scaled(minx_val(h),txx+txy)+tx;@/
+maxx_val(h):=take_scaled(maxx_val(h),txx+txy)+tx;@/
+miny_val(h):=take_scaled(miny_val(h),tyx+tyy)+ty;@/
+maxy_val(h):=take_scaled(maxy_val(h),tyx+tyy)+ty;@/
+if txx+txy<0 then
+ begin v:=minx_val(h); minx_val(h):=maxx_val(h); maxx_val(h):=v;
+ end;
+if tyx+tyy<0 then
+ begin v:=miny_val(h); miny_val(h):=maxy_val(h); maxy_val(h):=v;
+ end;
+end
+
+@ Now we ready for the main task of transforming the graphical objects in edge
+structure~|h|.
+
+@<Transform graphical object |q|@>=
+case type(q) of
+fill_code,stroked_code: begin
+ do_path_trans(path_p(q));
+ @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
+ end;
+start_clip_code,start_bounds_code: do_path_trans(path_p(q));
+text_code:begin r:=text_tx_loc(q);
+ @<Transform the compact transformation starting at |r|@>;
+ end;
+stop_clip_code,stop_bounds_code: do_nothing;
+end {there are no other cases}
+
+@ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
+The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
+since the \ps\ output procedures will try to compensate for the transformation
+we are applying to |pen_p(q)|. Since this compensation is based on the square
+root of the determinant, |sqdet| is the appropriate factor.
+
+@<Transform |pen_p(q)|, making sure...@>=
+if pen_p(q)<>null then
+ begin sx:=tx; sy:=ty;
+ tx:=0; ty:=0;@/
+ do_pen_trans(pen_p(q));
+ if ((type(q)=stroked_code)and(dash_p(q)<>null)) then
+ dash_scale(q):=take_scaled(dash_scale(q),sqdet);
+ if not pen_is_elliptical(pen_p(q)) then
+ if sgndet<0 then
+ pen_p(q):=make_pen(copy_path(pen_p(q)),true); {this unreverses the pen}
+ tx:=sx; ty:=sy;
+ end
+
+@ This uses the fact that transformations are stored in the order
+|(tx,ty,txx,txy,tyx,tyy)|.
+@^data structure assumptions@>
+
+@<Transform the compact transformation starting at |r|@>=
+trans(r,r+1);
+sx:=tx; sy:=ty;
+tx:=0; ty:=0;
+trans(r+2,r+4);
+trans(r+3,r+5);
+tx:=sx; ty:=sy
+
+@ The hard cases of transformation occur when big nodes are involved,
+and when some of their components are unknown.
+
+@<Declare binary action...@>=
+@t\4@>@<Declare subroutines needed by |big_trans|@>@;
+procedure big_trans(@!p:pointer;@!c:quarterword);
+label exit;
+var @!q,@!r,@!pp,@!qq:pointer; {list manipulation registers}
+@!s:small_number; {size of a big node}
+begin s:=big_node_size[type(p)]; q:=value(p); r:=q+s;
+repeat r:=r-2;
+if type(r)<>known then @<Transform an unknown big node and |return|@>;
+until r=q;
+@<Transform a known big node@>;
+exit:end; {node |p| will now be recycled by |do_binary|}
+
+@ @<Transform an unknown big node and |return|@>=
+begin set_up_known_trans(c); make_exp_copy(p); r:=value(cur_exp);
+if cur_type=transform_type then
+ begin bilin1(yy_part_loc(r),tyy,xy_part_loc(q),tyx,0);
+ bilin1(yx_part_loc(r),tyy,xx_part_loc(q),tyx,0);
+ bilin1(xy_part_loc(r),txx,yy_part_loc(q),txy,0);
+ bilin1(xx_part_loc(r),txx,yx_part_loc(q),txy,0);
+ end;
+bilin1(y_part_loc(r),tyy,x_part_loc(q),tyx,ty);
+bilin1(x_part_loc(r),txx,y_part_loc(q),txy,tx);
+return;
+end
+
+@ Let |p| point to a two-word value field inside a big node of |cur_exp|,
+and let |q| point to a another value field. The |bilin1| procedure
+replaces |p| by $p\cdot t+q\cdot u+\delta$.
+
+@<Declare subroutines needed by |big_trans|@>=
+procedure bilin1(@!p:pointer;@!t:scaled;@!q:pointer;@!u,@!delta:scaled);
+var @!r:pointer; {list traverser}
+begin if t<>unity then dep_mult(p,t,true);
+if u<>0 then
+ if type(q)=known then delta:=delta+take_scaled(value(q),u)
+ else begin @<Ensure that |type(p)=proto_dependent|@>;
+ dep_list(p):=p_plus_fq(dep_list(p),u,dep_list(q),proto_dependent,type(q));
+ end;
+if type(p)=known then value(p):=value(p)+delta
+else begin r:=dep_list(p);
+ while info(r)<>null do r:=link(r);
+ delta:=value(r)+delta;
+ if r<>dep_list(p) then value(r):=delta
+ else begin recycle_value(p); type(p):=known; value(p):=delta;
+ end;
+ end;
+if fix_needed then fix_dependencies;
+end;
+
+@ @<Ensure that |type(p)=proto_dependent|@>=
+if type(p)<>proto_dependent then
+ begin if type(p)=known then new_dep(p,const_dependency(value(p)))
+ else dep_list(p):=p_times_v(dep_list(p),unity,dependent,proto_dependent,true);
+ type(p):=proto_dependent;
+ end
+
+@ @<Transform a known big node@>=
+set_up_trans(c);
+if cur_type=known then @<Transform known by known@>
+else begin pp:=stash_cur_exp; qq:=value(pp);
+ make_exp_copy(p); r:=value(cur_exp);
+ if cur_type=transform_type then
+ begin bilin2(yy_part_loc(r),yy_part_loc(qq),
+ value(xy_part_loc(q)),yx_part_loc(qq),null);
+ bilin2(yx_part_loc(r),yy_part_loc(qq),
+ value(xx_part_loc(q)),yx_part_loc(qq),null);
+ bilin2(xy_part_loc(r),xx_part_loc(qq),
+ value(yy_part_loc(q)),xy_part_loc(qq),null);
+ bilin2(xx_part_loc(r),xx_part_loc(qq),
+ value(yx_part_loc(q)),xy_part_loc(qq),null);
+ end;
+ bilin2(y_part_loc(r),yy_part_loc(qq),
+ value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
+ bilin2(x_part_loc(r),xx_part_loc(qq),
+ value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
+ recycle_value(pp); free_node(pp,value_node_size);
+ end;
+
+@ Let |p| be a |proto_dependent| value whose dependency list ends
+at |dep_final|. The following procedure adds |v| times another
+numeric quantity to~|p|.
+
+@<Declare subroutines needed by |big_trans|@>=
+procedure add_mult_dep(@!p:pointer;@!v:scaled;@!r:pointer);
+begin if type(r)=known then
+ value(dep_final):=value(dep_final)+take_scaled(value(r),v)
+else begin dep_list(p):=
+ p_plus_fq(dep_list(p),v,dep_list(r),proto_dependent,type(r));
+ if fix_needed then fix_dependencies;
+ end;
+end;
+
+@ The |bilin2| procedure is something like |bilin1|, but with known
+and unknown quantities reversed. Parameter |p| points to a value field
+within the big node for |cur_exp|; and |type(p)=known|. Parameters
+|t| and~|u| point to value fields elsewhere; so does parameter~|q|,
+unless it is |null| (which stands for zero). Location~|p| will be
+replaced by $p\cdot t+v\cdot u+q$.
+
+@<Declare subroutines needed by |big_trans|@>=
+procedure bilin2(@!p,@!t:pointer;@!v:scaled;@!u,@!q:pointer);
+var @!vv:scaled; {temporary storage for |value(p)|}
+begin vv:=value(p); type(p):=proto_dependent;
+new_dep(p,const_dependency(0)); {this sets |dep_final|}
+if vv<>0 then add_mult_dep(p,vv,t); {|dep_final| doesn't change}
+if v<>0 then add_mult_dep(p,v,u);
+if q<>null then add_mult_dep(p,unity,q);
+if dep_list(p)=dep_final then
+ begin vv:=value(dep_final); recycle_value(p);
+ type(p):=known; value(p):=vv;
+ end;
+end;
+
+@ @<Transform known by known@>=
+begin make_exp_copy(p); r:=value(cur_exp);
+if cur_type=transform_type then
+ begin bilin3(yy_part_loc(r),tyy,value(xy_part_loc(q)),tyx,0);
+ bilin3(yx_part_loc(r),tyy,value(xx_part_loc(q)),tyx,0);
+ bilin3(xy_part_loc(r),txx,value(yy_part_loc(q)),txy,0);
+ bilin3(xx_part_loc(r),txx,value(yx_part_loc(q)),txy,0);
+ end;
+bilin3(y_part_loc(r),tyy,value(x_part_loc(q)),tyx,ty);
+bilin3(x_part_loc(r),txx,value(y_part_loc(q)),txy,tx);
+end
+
+@ Finally, in |bilin3| everything is |known|.
+
+@<Declare subroutines needed by |big_trans|@>=
+procedure bilin3(@!p:pointer;@!t,@!v,@!u,@!delta:scaled);
+begin if t<>unity then delta:=delta+take_scaled(value(p),t)
+else delta:=delta+value(p);
+if u<>0 then value(p):=delta+take_scaled(v,u)
+else value(p):=delta;
+end;
+
+@ @<Additional cases of binary operators@>=
+concatenate: if (cur_type=string_type)and(type(p)=string_type) then cat(p)
+ else bad_binary(p,concatenate);
+substring_of: if nice_pair(p,type(p))and(cur_type=string_type) then
+ chop_string(value(p))
+ else bad_binary(p,substring_of);
+subpath_of: begin if cur_type=pair_type then pair_to_path;
+ if nice_pair(p,type(p))and(cur_type=path_type) then
+ chop_path(value(p))
+ else bad_binary(p,subpath_of);
+ end;
+
+@ @<Declare binary action...@>=
+procedure cat(@!p:pointer);
+var @!a,@!b:str_number; {the strings being concatenated}
+@!k:pool_pointer; {index into |str_pool|}
+begin a:=value(p); b:=cur_exp; str_room(length(a)+length(b));
+for k:=str_start[a] to str_stop(a)-1 do append_char(so(str_pool[k]));
+for k:=str_start[b] to str_stop(b)-1 do append_char(so(str_pool[k]));
+cur_exp:=make_string; delete_str_ref(b);
+end;
+
+@ @<Declare binary action...@>=
+procedure chop_string(@!p:pointer);
+var @!a,@!b:integer; {start and stop points}
+@!l:integer; {length of the original string}
+@!k:integer; {runs from |a| to |b|}
+@!s:str_number; {the original string}
+@!reversed:boolean; {was |a>b|?}
+begin a:=round_unscaled(value(x_part_loc(p)));
+b:=round_unscaled(value(y_part_loc(p)));
+if a<=b then reversed:=false
+else begin reversed:=true; k:=a; a:=b; b:=k;
+ end;
+s:=cur_exp; l:=length(s);
+if a<0 then
+ begin a:=0;
+ if b<0 then b:=0;
+ end;
+if b>l then
+ begin b:=l;
+ if a>l then a:=l;
+ end;
+str_room(b-a);
+if reversed then
+ for k:=str_start[s]+b-1 downto str_start[s]+a do append_char(so(str_pool[k]))
+else for k:=str_start[s]+a to str_start[s]+b-1 do append_char(so(str_pool[k]));
+cur_exp:=make_string; delete_str_ref(s);
+end;
+
+@ @<Declare binary action...@>=
+procedure chop_path(@!p:pointer);
+var @!q:pointer; {a knot in the original path}
+@!pp,@!qq,@!rr,@!ss:pointer; {link variables for copies of path nodes}
+@!a,@!b,@!k,@!l:scaled; {indices for chopping}
+@!reversed:boolean; {was |a>b|?}
+begin l:=path_length; a:=value(x_part_loc(p)); b:=value(y_part_loc(p));
+if a<=b then reversed:=false
+else begin reversed:=true; k:=a; a:=b; b:=k;
+ end;
+@<Dispense with the cases |a<0| and/or |b>l|@>;
+q:=cur_exp;
+while a>=unity do
+ begin q:=link(q); a:=a-unity; b:=b-unity;
+ end;
+if b=a then @<Construct a path from |pp| to |qq| of length zero@>
+else @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
+left_type(pp):=endpoint; right_type(qq):=endpoint; link(qq):=pp;
+toss_knot_list(cur_exp);
+if reversed then
+ begin cur_exp:=link(htap_ypoc(pp)); toss_knot_list(pp);
+ end
+else cur_exp:=pp;
+end;
+
+@ @<Dispense with the cases |a<0| and/or |b>l|@>=
+if a<0 then
+ if left_type(cur_exp)=endpoint then
+ begin a:=0; if b<0 then b:=0;
+ end
+ else repeat a:=a+l; b:=b+l;
+ until a>=0; {a cycle always has length |l>0|}
+if b>l then if left_type(cur_exp)=endpoint then
+ begin b:=l; if a>l then a:=l;
+ end
+ else while a>=l do
+ begin a:=a-l; b:=b-l;
+ end
+
+@ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
+begin pp:=copy_knot(q); qq:=pp;
+repeat q:=link(q); rr:=qq; qq:=copy_knot(q); link(rr):=qq; b:=b-unity;
+until b<=0;
+if a>0 then
+ begin ss:=pp; pp:=link(pp);
+ split_cubic(ss,a*@'10000); pp:=link(ss);
+ free_node(ss,knot_node_size);
+ if rr=ss then
+ begin b:=make_scaled(b,unity-a); rr:=pp;
+ end;
+ end;
+if b<0 then
+ begin split_cubic(rr,(b+unity)*@'10000);
+ free_node(qq,knot_node_size);
+ qq:=link(rr);
+ end;
+end
+
+@ @<Construct a path from |pp| to |qq| of length zero@>=
+begin if a>0 then
+ begin split_cubic(q,a*@'10000); q:=link(q);
+ end;
+pp:=copy_knot(q); qq:=pp;
+end
+
+@ @<Additional cases of binary operators@>=
+point_of,precontrol_of,postcontrol_of: begin if cur_type=pair_type then
+ pair_to_path;
+ if (cur_type=path_type)and(type(p)=known) then
+ find_point(value(p),c)
+ else bad_binary(p,c);
+ end;
+pen_offset_of: if (cur_type=pen_type)and nice_pair(p,type(p)) then
+ set_up_offset(value(p))
+ else bad_binary(p,pen_offset_of);
+direction_time_of: begin if cur_type=pair_type then pair_to_path;
+ if (cur_type=path_type)and nice_pair(p,type(p)) then
+ set_up_direction_time(value(p))
+ else bad_binary(p,direction_time_of);
+ end;
+
+@ @<Declare binary action...@>=
+procedure set_up_offset(@!p:pointer);
+begin find_offset(value(x_part_loc(p)),value(y_part_loc(p)),cur_exp);
+pair_value(cur_x,cur_y);
+end;
+@#
+procedure set_up_direction_time(@!p:pointer);
+begin flush_cur_exp(find_direction_time(value(x_part_loc(p)),
+ value(y_part_loc(p)),cur_exp));
+end;
+
+@ @<Declare binary action...@>=
+procedure find_point(@!v:scaled;@!c:quarterword);
+var @!p:pointer; {the path}
+@!n:scaled; {its length}
+begin p:=cur_exp;@/
+if left_type(p)=endpoint then n:=-unity@+else n:=0;
+repeat p:=link(p); n:=n+unity;
+until p=cur_exp;
+if n=0 then v:=0
+else if v<0 then
+ if left_type(p)=endpoint then v:=0
+ else v:=n-1-((-v-1) mod n)
+else if v>n then
+ if left_type(p)=endpoint then v:=n
+ else v:=v mod n;
+p:=cur_exp;
+while v>=unity do
+ begin p:=link(p); v:=v-unity;
+ end;
+if v<>0 then @<Insert a fractional node by splitting the cubic@>;
+@<Set the current expression to the desired path coordinates@>;
+end;
+
+@ @<Insert a fractional node...@>=
+begin split_cubic(p,v*@'10000); p:=link(p);
+end
+
+@ @<Set the current expression to the desired path coordinates...@>=
+case c of
+point_of: pair_value(x_coord(p),y_coord(p));
+precontrol_of: if left_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
+ else pair_value(left_x(p),left_y(p));
+postcontrol_of: if right_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
+ else pair_value(right_x(p),right_y(p));
+end {there are no other cases}
+
+@ @<Additional cases of binary operators@>=
+arc_time_of: begin if cur_type=pair_type then
+ pair_to_path;
+ if (cur_type=path_type)and(type(p)=known) then
+ flush_cur_exp(get_arc_time(cur_exp,value(p)))
+ else bad_binary(p,c);
+ end;
+
+@ @<Additional cases of bin...@>=
+intersect: begin if type(p)=pair_type then
+ begin q:=stash_cur_exp; unstash_cur_exp(p);
+ pair_to_path; p:=stash_cur_exp; unstash_cur_exp(q);
+ end;
+ if cur_type=pair_type then pair_to_path;
+ if (cur_type=path_type)and(type(p)=path_type) then
+ begin path_intersection(value(p),cur_exp);
+ pair_value(cur_t,cur_tt);
+ end
+ else bad_binary(p,intersect);
+ end;
+
+@ @<Additional cases of bin...@>=
+in_font:if (cur_type<>string_type)or(type(p)<>string_type)
+ then bad_binary(p,in_font)
+ else begin do_infont(p); return;
+ end;
+
+@ Function |new_text_node| owns the reference count for its second argument
+(the text string) but not its first (the font name).
+
+@<Declare binary action...@>=
+procedure do_infont(@!p:pointer);
+var @!q:pointer;
+begin q:=get_node(edge_header_size);
+init_edges(q);
+link(obj_tail(q)):=new_text_node(cur_exp,value(p));
+obj_tail(q):=link(obj_tail(q));
+free_node(p,value_node_size);@/
+flush_cur_exp(q);
+cur_type:=picture_type;
+end;
+
+@* \[40] Statements and commands.
+The chief executive of \MP\ is the |do_statement| routine, which
+contains the master switch that causes all the various pieces of \MP\
+to do their things, in the right order.
+
+In a sense, this is the grand climax of the program: It applies all the
+tools that we have worked so hard to construct. In another sense, this is
+the messiest part of the program: It necessarily refers to other pieces
+of code all over the place, so that a person can't fully understand what is
+going on without paging back and forth to be reminded of conventions that
+are defined elsewhere. We are now at the hub of the web.
+
+The structure of |do_statement| itself is quite simple. The first token
+of the statement is fetched using |get_x_next|. If it can be the first
+token of an expression, we look for an equation, an assignment, or a
+title. Otherwise we use a \&{case} construction to branch at high speed to
+the appropriate routine for various and sundry other types of commands,
+each of which has an ``action procedure'' that does the necessary work.
+
+The program uses the fact that
+$$\hbox{|min_primary_command=max_statement_command=type_name|}$$
+to interpret a statement that starts with, e.g., `\&{string}',
+as a type declaration rather than a boolean expression.
+
+@p @<Declare action procedures for use by |do_statement|@>@;
+procedure do_statement; {governs \MP's activities}
+begin cur_type:=vacuous; get_x_next;
+if cur_cmd>max_primary_command then @<Worry about bad statement@>
+else if cur_cmd>max_statement_command then
+ @<Do an equation, assignment, title, or
+ `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>
+else @<Do a statement that doesn't begin with an expression@>;
+if cur_cmd<semicolon then
+ @<Flush unparsable junk that was found after the statement@>;
+error_count:=0;
+end;
+
+@ The only command codes |>max_primary_command| that can be present
+at the beginning of a statement are |semicolon| and higher; these
+occur when the statement is null.
+
+@<Worry about bad statement@>=
+begin if cur_cmd<semicolon then
+ begin print_err("A statement can't begin with `");
+@.A statement can't begin with x@>
+ print_cmd_mod(cur_cmd,cur_mod); print_char("'");
+ help5("I was looking for the beginning of a new statement.")@/
+ ("If you just proceed without changing anything, I'll ignore")@/
+ ("everything up to the next `;'. Please insert a semicolon")@/
+ ("now in front of anything that you don't want me to delete.")@/
+ ("(See Chapter 27 of The METAFONTbook for an example.)");@/
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+ back_error; get_x_next;
+ end;
+end
+
+@ The help message printed here says that everything is flushed up to
+a semicolon, but actually the commands |end_group| and |stop| will
+also terminate a statement.
+
+@<Flush unparsable junk that was found after the statement@>=
+begin print_err("Extra tokens will be flushed");
+@.Extra tokens will be flushed@>
+help6("I've just read as much of that statement as I could fathom,")@/
+("so a semicolon should have been next. It's very puzzling...")@/
+("but I'll try to get myself back together, by ignoring")@/
+("everything up to the next `;'. Please insert a semicolon")@/
+("now in front of anything that you don't want me to delete.")@/
+("(See Chapter 27 of The METAFONTbook for an example.)");@/
+@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
+back_error; scanner_status:=flushing;
+repeat get_t_next;
+@<Decrease the string reference count...@>;
+until end_of_statement; {|cur_cmd=semicolon|, |end_group|, or |stop|}
+scanner_status:=normal;
+end
+
+@ If |do_statement| ends with |cur_cmd=end_group|, we should have
+|cur_type=vacuous| unless the statement was simply an expression;
+in the latter case, |cur_type| and |cur_exp| should represent that
+expression.
+
+@<Do a statement that doesn't...@>=
+begin if internal[tracing_commands]>0 then show_cur_cmd_mod;
+case cur_cmd of
+type_name:do_type_declaration;
+macro_def:if cur_mod>var_def then make_op_def
+ else if cur_mod>end_def then scan_def;
+@t\4@>@<Cases of |do_statement| that invoke particular commands@>@;
+end; {there are no other cases}
+cur_type:=vacuous;
+end
+
+@ The most important statements begin with expressions.
+
+@<Do an equation, assignment, title, or...@>=
+begin var_flag:=assignment; scan_expression;
+if cur_cmd<end_group then
+ begin if cur_cmd=equals then do_equation
+ else if cur_cmd=assignment then do_assignment
+ else if cur_type=string_type then @<Do a title@>
+ else if cur_type<>vacuous then
+ begin exp_err("Isolated expression");
+@.Isolated expression@>
+ help3("I couldn't find an `=' or `:=' after the")@/
+ ("expression that is shown above this error message,")@/
+ ("so I guess I'll just ignore it and carry on.");
+ put_get_error;
+ end;
+ flush_cur_exp(0); cur_type:=vacuous;
+ end;
+end
+
+@ @<Do a title@>=
+begin if internal[tracing_titles]>0 then
+ begin print_nl(""); print(cur_exp); update_terminal;
+ end;
+end
+
+@ Equations and assignments are performed by the pair of mutually recursive
+@^recursion@>
+routines |do_equation| and |do_assignment|. These routines are called when
+|cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
+side is in |cur_type| and |cur_exp|, while the right-hand side is yet
+to be scanned. After the routines are finished, |cur_type| and |cur_exp|
+will be equal to the right-hand side (which will normally be equal
+to the left-hand side).
+
+@<Declare action procedures for use by |do_statement|@>=
+@t\4@>@<Declare the procedure called |try_eq|@>@;
+@t\4@>@<Declare the procedure called |make_eq|@>@;
+procedure@?do_assignment; forward;@t\2@>@/
+procedure do_equation;
+var @!lhs:pointer; {capsule for the left-hand side}
+@!p:pointer; {temporary register}
+begin lhs:=stash_cur_exp; get_x_next; var_flag:=assignment; scan_expression;
+if cur_cmd=equals then do_equation
+else if cur_cmd=assignment then do_assignment;
+if internal[tracing_commands]>two then @<Trace the current equation@>;
+if cur_type=unknown_path then if type(lhs)=pair_type then
+ begin p:=stash_cur_exp; unstash_cur_exp(lhs); lhs:=p;
+ end; {in this case |make_eq| will change the pair to a path}
+make_eq(lhs); {equate |lhs| to |(cur_type,cur_exp)|}
+end;
+
+@ And |do_assignment| is similar to |do_expression|:
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_assignment;
+var @!lhs:pointer; {token list for the left-hand side}
+@!p:pointer; {where the left-hand value is stored}
+@!q:pointer; {temporary capsule for the right-hand value}
+begin if cur_type<>token_list then
+ begin exp_err("Improper `:=' will be changed to `='");
+@.Improper `:='@>
+ help2("I didn't find a variable name at the left of the `:=',")@/
+ ("so I'm going to pretend that you said `=' instead.");@/
+ error; do_equation;
+ end
+else begin lhs:=cur_exp; cur_type:=vacuous;@/
+ get_x_next; var_flag:=assignment; scan_expression;
+ if cur_cmd=equals then do_equation
+ else if cur_cmd=assignment then do_assignment;
+ if internal[tracing_commands]>two then @<Trace the current assignment@>;
+ if info(lhs)>hash_end then
+ @<Assign the current expression to an internal variable@>
+ else @<Assign the current expression to the variable |lhs|@>;
+ flush_node_list(lhs);
+ end;
+end;
+
+@ @<Trace the current equation@>=
+begin begin_diagnostic; print_nl("{("); print_exp(lhs,0);
+print(")=("); print_exp(null,0); print(")}"); end_diagnostic(false);
+end
+
+@ @<Trace the current assignment@>=
+begin begin_diagnostic; print_nl("{");
+if info(lhs)>hash_end then print(int_name[info(lhs)-(hash_end)])
+else show_token_list(lhs,null,1000,0);
+print(":="); print_exp(null,0); print_char("}"); end_diagnostic(false);
+end
+
+@ @<Assign the current expression to an internal variable@>=
+if cur_type=known then internal[info(lhs)-(hash_end)]:=cur_exp
+else begin exp_err("Internal quantity `");
+@.Internal quantity...@>
+ print(int_name[info(lhs)-(hash_end)]);
+ print("' must receive a known value");
+ help2("I can't set an internal quantity to anything but a known")@/
+ ("numeric value, so I'll have to ignore this assignment.");
+ put_get_error;
+ end
+
+@ @<Assign the current expression to the variable |lhs|@>=
+begin p:=find_variable(lhs);
+if p<>null then
+ begin q:=stash_cur_exp; cur_type:=und_type(p); recycle_value(p);
+ type(p):=cur_type; value(p):=null; make_exp_copy(p);
+ p:=stash_cur_exp; unstash_cur_exp(q); make_eq(p);
+ end
+else begin obliterated(lhs); put_get_error;
+ end;
+end
+
+
+@ And now we get to the nitty-gritty. The |make_eq| procedure is given
+a pointer to a capsule that is to be equated to the current expression.
+
+@<Declare the procedure called |make_eq|@>=
+procedure make_eq(@!lhs:pointer);
+label restart,done, not_found;
+var @!t:small_number; {type of the left-hand side}
+@!v:integer; {value of the left-hand side}
+@!p,@!q:pointer; {pointers inside of big nodes}
+begin restart: t:=type(lhs);
+if t<=pair_type then v:=value(lhs);
+case t of
+@t\4@>@<For each type |t|, make an equation and |goto done| unless |cur_type|
+ is incompatible with~|t|@>@;
+end; {all cases have been listed}
+@<Announce that the equation cannot be performed@>;
+done:check_arith; recycle_value(lhs); free_node(lhs,value_node_size);
+end;
+
+@ @<Announce that the equation cannot be performed@>=
+disp_err(lhs,""); exp_err("Equation cannot be performed (");
+@.Equation cannot be performed@>
+if type(lhs)<=pair_type then print_type(type(lhs))@+else print("numeric");
+print_char("=");
+if cur_type<=pair_type then print_type(cur_type)@+else print("numeric");
+print_char(")");@/
+help2("I'm sorry, but I don't know how to make such things equal.")@/
+ ("(See the two expressions just above the error message.)");
+put_get_error
+
+@ @<For each type |t|, make an equation and |goto done| unless...@>=
+boolean_type,string_type,pen_type,path_type,picture_type:
+ if cur_type=t+unknown_tag then
+ begin nonlinear_eq(v,cur_exp,false); goto done;
+ end
+ else if cur_type=t then
+ @<Report redundant or inconsistent equation and |goto done|@>;
+unknown_types:if cur_type=t-unknown_tag then
+ begin nonlinear_eq(cur_exp,lhs,true); goto done;
+ end
+ else if cur_type=t then
+ begin ring_merge(lhs,cur_exp); goto done;
+ end
+ else if cur_type=pair_type then if t=unknown_path then
+ begin pair_to_path; goto restart;
+ end;
+transform_type,color_type,pair_type:if cur_type=t then
+ @<Do multiple equations and |goto done|@>;
+known,dependent,proto_dependent,independent:if cur_type>=known then
+ begin try_eq(lhs,null); goto done;
+ end;
+vacuous:do_nothing;
+
+@ @<Report redundant or inconsistent equation and |goto done|@>=
+begin if cur_type<=string_type then
+ begin if cur_type=string_type then
+ begin if str_vs_str(v,cur_exp)<>0 then goto not_found;
+ end
+ else if v<>cur_exp then goto not_found;
+ @<Exclaim about a redundant equation@>; goto done;
+ end;
+print_err("Redundant or inconsistent equation");
+@.Redundant or inconsistent equation@>
+help2("An equation between already-known quantities can't help.")@/
+ ("But don't worry; continue and I'll just ignore it.");
+put_get_error; goto done;
+not_found: print_err("Inconsistent equation");
+@.Inconsistent equation@>
+help2("The equation I just read contradicts what was said before.")@/
+ ("But don't worry; continue and I'll just ignore it.");
+put_get_error; goto done;
+end
+
+@ @<Do multiple equations and |goto done|@>=
+begin p:=v+big_node_size[t]; q:=value(cur_exp)+big_node_size[t];
+repeat p:=p-2; q:=q-2; try_eq(p,q);
+until p=v;
+goto done;
+end
+
+@ The first argument to |try_eq| is the location of a value node
+in a capsule that will soon be recycled. The second argument is
+either a location within a pair or transform node pointed to by
+|cur_exp|, or it is |null| (which means that |cur_exp| itself
+serves as the second argument). The idea is to leave |cur_exp| unchanged,
+but to equate the two operands.
+
+@<Declare the procedure called |try_eq|@>=
+procedure try_eq(@!l,@!r:pointer);
+label done,done1;
+var @!p:pointer; {dependency list for right operand minus left operand}
+@!t:known..independent; {the type of list |p|}
+@!q:pointer; {the constant term of |p| is here}
+@!pp:pointer; {dependency list for right operand}
+@!tt:dependent..independent; {the type of list |pp|}
+@!copied:boolean; {have we copied a list that ought to be recycled?}
+begin @<Remove the left operand from its container, negate it, and
+ put it into dependency list~|p| with constant term~|q|@>;
+@<Add the right operand to list |p|@>;
+if info(p)=null then @<Deal with redundant or inconsistent equation@>
+else begin linear_eq(p,t);
+ if r=null then if cur_type<>known then if type(cur_exp)=known then
+ begin pp:=cur_exp; cur_exp:=value(cur_exp); cur_type:=known;
+ free_node(pp,value_node_size);
+ end;
+ end;
+end;
+
+@ @<Remove the left operand from its container, negate it, and...@>=
+t:=type(l);
+if t=known then
+ begin t:=dependent; p:=const_dependency(-value(l)); q:=p;
+ end
+else if t=independent then
+ begin t:=dependent; p:=single_dependency(l); negate(value(p));
+ q:=dep_final;
+ end
+else begin p:=dep_list(l); q:=p;
+ loop@+ begin negate(value(q));
+ if info(q)=null then goto done;
+ q:=link(q);
+ end;
+ done: link(prev_dep(l)):=link(q); prev_dep(link(q)):=prev_dep(l);
+ type(l):=known;
+ end
+
+@ @<Deal with redundant or inconsistent equation@>=
+begin if abs(value(p))>64 then {off by .001 or more}
+ begin print_err("Inconsistent equation");@/
+@.Inconsistent equation@>
+ print(" (off by "); print_scaled(value(p)); print_char(")");
+ help2("The equation I just read contradicts what was said before.")@/
+ ("But don't worry; continue and I'll just ignore it.");
+ put_get_error;
+ end
+else if r=null then @<Exclaim about a redundant equation@>;
+free_node(p,dep_node_size);
+end
+
+@ @<Add the right operand to list |p|@>=
+if r=null then
+ if cur_type=known then
+ begin value(q):=value(q)+cur_exp; goto done1;
+ end
+ else begin tt:=cur_type;
+ if tt=independent then pp:=single_dependency(cur_exp)
+ else pp:=dep_list(cur_exp);
+ end
+else if type(r)=known then
+ begin value(q):=value(q)+value(r); goto done1;
+ end
+ else begin tt:=type(r);
+ if tt=independent then pp:=single_dependency(r)
+ else pp:=dep_list(r);
+ end;
+if tt<>independent then copied:=false
+else begin copied:=true; tt:=dependent;
+ end;
+@<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
+if copied then flush_node_list(pp);
+done1:
+
+@ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
+watch_coefs:=false;
+if t=tt then p:=p_plus_q(p,pp,t)
+else if t=proto_dependent then
+ p:=p_plus_fq(p,unity,pp,proto_dependent,dependent)
+else begin q:=p;
+ while info(q)<>null do
+ begin value(q):=round_fraction(value(q)); q:=link(q);
+ end;
+ t:=proto_dependent; p:=p_plus_q(p,pp,t);
+ end;
+watch_coefs:=true;
+
+@ Our next goal is to process type declarations. For this purpose it's
+convenient to have a procedure that scans a $\langle\,$declared
+variable$\,\rangle$ and returns the corresponding token list. After the
+following procedure has acted, the token after the declared variable
+will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
+and~|cur_sym|.
+
+@<Declare the function called |scan_declared_variable|@>=
+function scan_declared_variable:pointer;
+label done;
+var @!x:pointer; {hash address of the variable's root}
+@!h,@!t:pointer; {head and tail of the token list to be returned}
+@!l:pointer; {hash address of left bracket}
+begin get_symbol; x:=cur_sym;
+if cur_cmd<>tag_token then clear_symbol(x,false);
+h:=get_avail; info(h):=x; t:=h;@/
+loop@+ begin get_x_next;
+ if cur_sym=0 then goto done;
+ if cur_cmd<>tag_token then if cur_cmd<>internal_quantity then
+ if cur_cmd=left_bracket then @<Descend past a collective subscript@>
+ else goto done;
+ link(t):=get_avail; t:=link(t); info(t):=cur_sym;
+ end;
+done: if eq_type(x)<>tag_token then clear_symbol(x,false);
+if equiv(x)=null then new_root(x);
+scan_declared_variable:=h;
+end;
+
+@ If the subscript isn't collective, we don't accept it as part of the
+declared variable.
+
+@<Descend past a collective subscript@>=
+begin l:=cur_sym; get_x_next;
+if cur_cmd<>right_bracket then
+ begin back_input; cur_sym:=l; cur_cmd:=left_bracket; goto done;
+ end
+else cur_sym:=collective_subscript;
+end
+
+@ Type declarations are introduced by the following primitive operations.
+
+@<Put each...@>=
+primitive("numeric",type_name,numeric_type);@/
+@!@:numeric_}{\&{numeric} primitive@>
+primitive("string",type_name,string_type);@/
+@!@:string_}{\&{string} primitive@>
+primitive("boolean",type_name,boolean_type);@/
+@!@:boolean_}{\&{boolean} primitive@>
+primitive("path",type_name,path_type);@/
+@!@:path_}{\&{path} primitive@>
+primitive("pen",type_name,pen_type);@/
+@!@:pen_}{\&{pen} primitive@>
+primitive("picture",type_name,picture_type);@/
+@!@:picture_}{\&{picture} primitive@>
+primitive("transform",type_name,transform_type);@/
+@!@:transform_}{\&{transform} primitive@>
+primitive("color",type_name,color_type);@/
+@!@:color_}{\&{color} primitive@>
+primitive("pair",type_name,pair_type);@/
+@!@:pair_}{\&{pair} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+type_name: print_type(m);
+
+@ Now we are ready to handle type declarations, assuming that a
+|type_name| has just been scanned.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_type_declaration;
+var @!t:small_number; {the type being declared}
+@!p:pointer; {token list for a declared variable}
+@!q:pointer; {value node for the variable}
+begin if cur_mod>=transform_type then t:=cur_mod@+else t:=cur_mod+unknown_tag;
+repeat p:=scan_declared_variable;
+flush_variable(equiv(info(p)),link(p),false);@/
+q:=find_variable(p);
+if q<>null then
+ begin type(q):=t; value(q):=null;
+ end
+else begin print_err("Declared variable conflicts with previous vardef");
+@.Declared variable conflicts...@>
+ help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")@/
+ ("Proceed, and I'll ignore the illegal redeclaration.");
+ put_get_error;
+ end;
+flush_list(p);
+if cur_cmd<comma then @<Flush spurious symbols after the declared variable@>;
+until end_of_statement;
+end;
+
+@ @<Flush spurious symbols after the declared variable@>=
+begin print_err("Illegal suffix of declared variable will be flushed");
+@.Illegal suffix...flushed@>
+help5("Variables in declarations must consist entirely of")@/
+ ("names and collective subscripts, e.g., `x[]a'.")@/
+ ("Are you trying to use a reserved word in a variable name?")@/
+ ("I'm going to discard the junk I found here,")@/
+ ("up to the next comma or the end of the declaration.");
+if cur_cmd=numeric_token then
+ help_line[2]:="Explicit subscripts like `x15a' aren't permitted.";
+put_get_error; scanner_status:=flushing;
+repeat get_t_next;
+@<Decrease the string reference count...@>;
+until cur_cmd>=comma; {either |end_of_statement| or |cur_cmd=comma|}
+scanner_status:=normal;
+end
+
+@ \MP's |main_control| procedure just calls |do_statement| repeatedly
+until coming to the end of the user's program.
+Each execution of |do_statement| concludes with
+|cur_cmd=semicolon|, |end_group|, or |stop|.
+
+@p procedure main_control;
+begin repeat do_statement;
+if cur_cmd=end_group then
+ begin print_err("Extra `endgroup'");
+@.Extra `endgroup'@>
+ help2("I'm not currently working on a `begingroup',")@/
+ ("so I had better not try to end anything.");
+ flush_error(0);
+ end;
+until cur_cmd=stop;
+end;
+
+@ @<Put each...@>=
+primitive("end",stop,0);@/
+@!@:end_}{\&{end} primitive@>
+primitive("dump",stop,1);@/
+@!@:dump_}{\&{dump} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+stop:if m=0 then print("end")@+else print("dump");
+
+@* \[41] Commands.
+Let's turn now to statements that are classified as ``commands'' because
+of their imperative nature. We'll begin with simple ones, so that it
+will be clear how to hook command processing into the |do_statement| routine;
+then we'll tackle the tougher commands.
+
+Here's one of the simplest:
+
+@<Cases of |do_statement|...@>=
+random_seed: do_random_seed;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_random_seed;
+begin get_x_next;
+if cur_cmd<>assignment then
+ begin missing_err(":=");
+@.Missing `:='@>
+ help1("Always say `randomseed:=<numeric expression>'.");
+ back_error;
+ end;
+get_x_next; scan_expression;
+if cur_type<>known then
+ begin exp_err("Unknown value will be ignored");
+@.Unknown value...ignored@>
+ help2("Your expression was too random for me to handle,")@/
+ ("so I won't change the random seed just now.");@/
+ put_get_flush_error(0);
+ end
+else @<Initialize the random seed to |cur_exp|@>;
+end;
+
+@ @<Initialize the random seed to |cur_exp|@>=
+begin init_randoms(cur_exp);
+if selector>=log_only then
+ begin old_setting:=selector; selector:=log_only;
+ print_nl("{randomseed:="); print_scaled(cur_exp); print_char("}");
+ print_nl(""); selector:=old_setting;
+ end;
+end
+
+@ And here's another simple one (somewhat different in flavor):
+
+@<Cases of |do_statement|...@>=
+mode_command: begin print_ln; interaction:=cur_mod;
+ @<Initialize the print |selector| based on |interaction|@>;
+ if log_opened then selector:=selector+2;
+ get_x_next;
+ end;
+
+@ @<Put each...@>=
+primitive("batchmode",mode_command,batch_mode);
+@!@:batch_mode_}{\&{batchmode} primitive@>
+primitive("nonstopmode",mode_command,nonstop_mode);
+@!@:nonstop_mode_}{\&{nonstopmode} primitive@>
+primitive("scrollmode",mode_command,scroll_mode);
+@!@:scroll_mode_}{\&{scrollmode} primitive@>
+primitive("errorstopmode",mode_command,error_stop_mode);
+@!@:error_stop_mode_}{\&{errorstopmode} primitive@>
+
+@ @<Cases of |print_cmd_mod|...@>=
+mode_command: case m of
+ batch_mode: print("batchmode");
+ nonstop_mode: print("nonstopmode");
+ scroll_mode: print("scrollmode");
+ othercases print("errorstopmode")
+ endcases;
+
+@ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
+
+@<Cases of |do_statement|...@>=
+protection_command: do_protection;
+
+@ @<Put each...@>=
+primitive("inner",protection_command,0);@/
+@!@:inner_}{\&{inner} primitive@>
+primitive("outer",protection_command,1);@/
+@!@:outer_}{\&{outer} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+protection_command: if m=0 then print("inner")@+else print("outer");
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_protection;
+var @!m:0..1; {0 to unprotect, 1 to protect}
+@!t:halfword; {the |eq_type| before we change it}
+begin m:=cur_mod;
+repeat get_symbol; t:=eq_type(cur_sym);
+ if m=0 then
+ begin if t>=outer_tag then eq_type(cur_sym):=t-outer_tag;
+ end
+ else if t<outer_tag then eq_type(cur_sym):=t+outer_tag;
+ get_x_next;
+until cur_cmd<>comma;
+end;
+
+@ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
+plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
+declaration assigns the command code |left_delimiter| to `\.{(}' and
+|right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
+hash address of its mate.
+
+@<Cases of |do_statement|...@>=
+delimiters: def_delims;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure def_delims;
+var l_delim,r_delim:pointer; {the new delimiter pair}
+begin get_clear_symbol; l_delim:=cur_sym;@/
+get_clear_symbol; r_delim:=cur_sym;@/
+eq_type(l_delim):=left_delimiter; equiv(l_delim):=r_delim;@/
+eq_type(r_delim):=right_delimiter; equiv(r_delim):=l_delim;@/
+get_x_next;
+end;
+
+@ Here is a procedure that is called when \MP\ has reached a point
+where some right delimiter is mandatory.
+
+@<Declare the procedure called |check_delimiter|@>=
+procedure check_delimiter(@!l_delim,@!r_delim:pointer);
+label exit;
+begin if cur_cmd=right_delimiter then if cur_mod=l_delim then return;
+if cur_sym<>r_delim then
+ begin missing_err(text(r_delim));@/
+@.Missing `)'@>
+ help2("I found no right delimiter to match a left one. So I've")@/
+ ("put one in, behind the scenes; this may fix the problem.");
+ back_error;
+ end
+else begin print_err("The token `"); print(text(r_delim));
+@.The token...delimiter@>
+ print("' is no longer a right delimiter");
+ help3("Strange: This token has lost its former meaning!")@/
+ ("I'll read it as a right delimiter this time;")@/
+ ("but watch out, I'll probably miss it later.");
+ error;
+ end;
+exit:end;
+
+@ The next four commands save or change the values associated with tokens.
+
+@<Cases of |do_statement|...@>=
+save_command: repeat get_symbol; save_variable(cur_sym); get_x_next;
+ until cur_cmd<>comma;
+interim_command: do_interim;
+let_command: do_let;
+new_internal: do_new_internal;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure@?do_statement; forward;@t\2@>@/
+procedure do_interim;
+begin get_x_next;
+if cur_cmd<>internal_quantity then
+ begin print_err("The token `");
+@.The token...quantity@>
+ if cur_sym=0 then print("(%CAPSULE)")
+ else print(text(cur_sym));
+ print("' isn't an internal quantity");
+ help1("Something like `tracingonline' should follow `interim'.");
+ back_error;
+ end
+else begin save_internal(cur_mod); back_input;
+ end;
+do_statement;
+end;
+
+@ The following procedure is careful not to undefine the left-hand symbol
+too soon, lest commands like `{\tt let x=x}' have a surprising effect.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_let;
+var @!l:pointer; {hash location of the left-hand symbol}
+begin get_symbol; l:=cur_sym; get_x_next;
+if cur_cmd<>equals then if cur_cmd<>assignment then
+ begin missing_err("=");
+@.Missing `='@>
+ help3("You should have said `let symbol = something'.")@/
+ ("But don't worry; I'll pretend that an equals sign")@/
+ ("was present. The next token I read will be `something'.");
+ back_error;
+ end;
+get_symbol;
+case cur_cmd of
+defined_macro,secondary_primary_macro,tertiary_secondary_macro,
+ expression_tertiary_macro: add_mac_ref(cur_mod);
+othercases do_nothing
+endcases;@/
+clear_symbol(l,false); eq_type(l):=cur_cmd;
+if cur_cmd=tag_token then equiv(l):=null
+else equiv(l):=cur_mod;
+get_x_next;
+end;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_new_internal;
+begin repeat if int_ptr=max_internal then
+ overflow("number of internals",max_internal);
+@:MetaPost capacity exceeded number of int}{\quad number of internals@>
+get_clear_symbol; incr(int_ptr);
+eq_type(cur_sym):=internal_quantity; equiv(cur_sym):=int_ptr;
+int_name[int_ptr]:=text(cur_sym); internal[int_ptr]:=0;
+get_x_next;
+until cur_cmd<>comma;
+end;
+
+@ The various `\&{show}' commands are distinguished by modifier fields
+in the usual way.
+
+@d show_token_code=0 {show the meaning of a single token}
+@d show_stats_code=1 {show current memory and string usage}
+@d show_code=2 {show a list of expressions}
+@d show_var_code=3 {show a variable and its descendents}
+@d show_dependencies_code=4 {show dependent variables in terms of independents}
+
+@<Put each...@>=
+primitive("showtoken",show_command,show_token_code);@/
+@!@:show_token_}{\&{showtoken} primitive@>
+primitive("showstats",show_command,show_stats_code);@/
+@!@:show_stats_}{\&{showstats} primitive@>
+primitive("show",show_command,show_code);@/
+@!@:show_}{\&{show} primitive@>
+primitive("showvariable",show_command,show_var_code);@/
+@!@:show_var_}{\&{showvariable} primitive@>
+primitive("showdependencies",show_command,show_dependencies_code);@/
+@!@:show_dependencies_}{\&{showdependencies} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+show_command: case m of
+ show_token_code:print("showtoken");
+ show_stats_code:print("showstats");
+ show_code:print("show");
+ show_var_code:print("showvariable");
+ othercases print("showdependencies")
+ endcases;
+
+@ @<Cases of |do_statement|...@>=
+show_command:do_show_whatever;
+
+@ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
+if it's |show_code|, complicated structures are abbreviated, otherwise
+they aren't.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_show;
+begin repeat get_x_next; scan_expression;
+print_nl(">> ");
+@.>>@>
+print_exp(null,2); flush_cur_exp(0);
+until cur_cmd<>comma;
+end;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure disp_token;
+begin print_nl("> ");
+@.>\relax@>
+if cur_sym=0 then @<Show a numeric or string or capsule token@>
+else begin print(text(cur_sym)); print_char("=");
+ if eq_type(cur_sym)>=outer_tag then print("(outer) ");
+ print_cmd_mod(cur_cmd,cur_mod);
+ if cur_cmd=defined_macro then
+ begin print_ln; show_macro(cur_mod,null,100000);
+ end; {this avoids recursion between |show_macro| and |print_cmd_mod|}
+@^recursion@>
+ end;
+end;
+
+@ @<Show a numeric or string or capsule token@>=
+begin if cur_cmd=numeric_token then print_scaled(cur_mod)
+else if cur_cmd=capsule_token then
+ begin g_pointer:=cur_mod; print_capsule;
+ end
+else begin print_char(""""); print(cur_mod); print_char("""");
+ delete_str_ref(cur_mod);
+ end;
+end
+
+@ The following cases of |print_cmd_mod| might arise in connection
+with |disp_token|, although they don't correspond to any
+primitive tokens.
+
+@<Cases of |print_cmd_...@>=
+left_delimiter,right_delimiter: begin if c=left_delimiter then print("lef")
+ else print("righ");
+ print("t delimiter that matches "); print(text(m));
+ end;
+tag_token:if m=null then print("tag")@+else print("variable");
+defined_macro: print("macro:");
+secondary_primary_macro,tertiary_secondary_macro,expression_tertiary_macro:
+ begin print_cmd_mod(macro_def,c); print("'d macro:");
+ print_ln; show_token_list(link(link(m)),null,1000,0);
+ end;
+repeat_loop:print("[repeat the loop]");
+internal_quantity:print(int_name[m]);
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_show_token;
+begin repeat get_t_next; disp_token;
+get_x_next;
+until cur_cmd<>comma;
+end;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_show_stats;
+begin print_nl("Memory usage ");
+@.Memory usage...@>
+@!stat print_int(var_used); print_char("&"); print_int(dyn_used);
+if false then@+tats@t@>@;@/
+print("unknown");
+print(" ("); print_int(hi_mem_min-lo_mem_max-1);
+print(" still untouched)"); print_ln;
+print_nl("String usage ");
+stat print_int(strs_in_use-init_str_use);
+print_char("&"); print_int(pool_in_use-init_pool_ptr);
+if false then@+tats@t@>@;@/
+print("unknown");
+print(" (");
+print_int(max_strings-1-strs_used_up); print_char("&");
+print_int(pool_size-pool_ptr); print(" now untouched)"); print_ln;
+get_x_next;
+end;
+
+@ Here's a recursive procedure that gives an abbreviated account
+of a variable, for use by |do_show_var|.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure disp_var(@!p:pointer);
+var @!q:pointer; {traverses attributes and subscripts}
+@!n:0..max_print_line; {amount of macro text to show}
+begin if type(p)=structured then @<Descend the structure@>
+else if type(p)>=unsuffixed_macro then @<Display a variable macro@>
+else if type(p)<>undefined then
+ begin print_nl(""); print_variable_name(p); print_char("=");
+ print_exp(p,0);
+ end;
+end;
+
+@ @<Descend the structure@>=
+begin q:=attr_head(p);
+repeat disp_var(q); q:=link(q);
+until q=end_attr;
+q:=subscr_head(p);
+while name_type(q)=subscr do
+ begin disp_var(q); q:=link(q);
+ end;
+end
+
+@ @<Display a variable macro@>=
+begin print_nl(""); print_variable_name(p);
+if type(p)>unsuffixed_macro then print("@@#"); {|suffixed_macro|}
+print("=macro:");
+if file_offset>=max_print_line-20 then n:=5
+else n:=max_print_line-file_offset-15;
+show_macro(value(p),null,n);
+end
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_show_var;
+label done;
+begin repeat get_t_next;
+if cur_sym>0 then if cur_sym<=hash_end then
+ if cur_cmd=tag_token then if cur_mod<>null then
+ begin disp_var(cur_mod); goto done;
+ end;
+disp_token;
+done:get_x_next;
+until cur_cmd<>comma;
+end;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_show_dependencies;
+var @!p:pointer; {link that runs through all dependencies}
+begin p:=link(dep_head);
+while p<>dep_head do
+ begin if interesting(p) then
+ begin print_nl(""); print_variable_name(p);
+ if type(p)=dependent then print_char("=")
+ else print(" = "); {extra spaces imply proto-dependency}
+ print_dependency(dep_list(p),type(p));
+ end;
+ p:=dep_list(p);
+ while info(p)<>null do p:=link(p);
+ p:=link(p);
+ end;
+get_x_next;
+end;
+
+@ Finally we are ready for the procedure that governs all of the
+show commands.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_show_whatever;
+begin if interaction=error_stop_mode then wake_up_terminal;
+case cur_mod of
+show_token_code:do_show_token;
+show_stats_code:do_show_stats;
+show_code:do_show;
+show_var_code:do_show_var;
+show_dependencies_code:do_show_dependencies;
+end; {there are no other cases}
+if internal[showstopping]>0 then
+ begin print_err("OK");
+@.OK@>
+ if interaction<error_stop_mode then
+ begin help0; decr(error_count);
+ end
+ else help1("This isn't an error message; I'm just showing something.");
+ if cur_cmd=semicolon then error@+else put_get_error;
+ end;
+end;
+
+@ The `\&{addto}' command needs the following additional primitives:
+
+@d double_path_code=0 {command modifier for `\&{doublepath}'}
+@d contour_code=1 {command modifier for `\&{contour}'}
+@d also_code=2 {command modifier for `\&{also}'}
+
+@<Put each...@>=
+primitive("doublepath",thing_to_add,double_path_code);@/
+@!@:double_path_}{\&{doublepath} primitive@>
+primitive("contour",thing_to_add,contour_code);@/
+@!@:contour_}{\&{contour} primitive@>
+primitive("also",thing_to_add,also_code);@/
+@!@:also_}{\&{also} primitive@>
+primitive("withpen",with_option,pen_type);@/
+@!@:with_pen_}{\&{withpen} primitive@>
+primitive("dashed",with_option,picture_type);@/
+@!@:dashed_}{\&{dashed} primitive@>
+primitive("withcolor",with_option,color_type);@/
+@!@:with_color_}{\&{withcolor} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+thing_to_add:if m=contour_code then print("contour")
+ else if m=double_path_code then print("doublepath")
+ else print("also");
+with_option:if m=pen_type then print("withpen")
+ else if m=color_type then print("withcolor")
+ else print("dashed");
+
+@ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
+updates the list of graphical objects starting at |p|. Each $\langle$with
+clause$\rangle$ updates all graphical objects whose |type| is compatible.
+Other objects are ignored.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure scan_with_list(@!p:pointer);
+label done, done1, done2;
+var @!t:small_number; {|cur_mod| of the |with_option| (should match |cur_type|)}
+@!q:pointer; {for list manipulation}
+@!cp,@!pp,@!dp:pointer;
+ {objects being updated; |void| initially; |null| to suppress update}
+begin cp:=void; pp:=void; dp:=void;
+while cur_cmd=with_option do
+ begin t:=cur_mod; get_x_next; scan_expression;
+ if cur_type<>t then @<Complain about improper type@>
+ else if t=color_type then
+ begin if cp=void then @<Make |cp| a colored object in object list~|p|@>;
+ if cp<>null then
+ @<Transfer a color from the current expression to object~|cp|@>;
+ flush_cur_exp(0);
+ end
+ else if t=pen_type then
+ begin if pp=void then @<Make |pp| an object in list~|p| that needs
+ a pen@>;
+ if pp<>null then
+ begin if pen_p(pp)<>null then toss_knot_list(pen_p(pp));
+ pen_p(pp):=cur_exp; cur_type:=vacuous;
+ end;
+ end
+ else begin if dp=void then @<Make |dp| a stroked node in list~|p|@>;
+ if dp<>null then
+ begin if dash_p(dp)<>null then delete_edge_ref(dash_p(dp));
+ dash_p(dp):=make_dashes(cur_exp);
+ dash_scale(dp):=unity;
+ cur_type:=vacuous;
+ end;
+ end;
+ end;
+ @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
+ of the list@>;
+end;
+
+@ @<Complain about improper type@>=
+begin exp_err("Improper type");
+@.Improper type@>
+help2("Next time say `withpen <known pen expression>';")@/
+ ("I'll ignore the bad `with' clause and look for another.");
+if t=picture_type then
+ help_line[1]:="Next time say `dashed <known picture expression>';"
+else if t=color_type then
+ help_line[1]:="Next time say `withcolor <known color expression>';";
+put_get_flush_error(0);
+end
+
+@ Forcing the color to be between |0| and |unity| here guarantees that no
+picture will ever contain a color outside the legal range for \ps\ graphics.
+
+@<Transfer a color from the current expression to object~|cp|@>=
+begin q:=value(cur_exp);
+red_val(cp):=value(red_part_loc(q));
+green_val(cp):=value(green_part_loc(q));
+blue_val(cp):=value(blue_part_loc(q));@/
+if red_val(cp)<0 then red_val(cp):=0;
+if green_val(cp)<0 then green_val(cp):=0;
+if blue_val(cp)<0 then blue_val(cp):=0;
+if red_val(cp)>unity then red_val(cp):=unity;
+if green_val(cp)>unity then green_val(cp):=unity;
+if blue_val(cp)>unity then blue_val(cp):=unity;
+end
+
+@ @<Make |cp| a colored object in object list~|p|@>=
+begin cp:=p;
+while cp<>null do
+ begin if has_color(cp) then goto done;
+ cp:=link(cp);
+ end;
+done:do_nothing;
+end
+
+@ @<Make |pp| an object in list~|p| that needs a pen@>=
+begin pp:=p;
+while pp<>null do
+ begin if has_pen(pp) then goto done1;
+ pp:=link(pp);
+ end;
+done1:do_nothing;
+end
+
+@ @<Make |dp| a stroked node in list~|p|@>=
+begin dp:=p;
+while dp<>null do
+ begin if type(dp)=stroked_code then goto done2;
+ dp:=link(dp);
+ end;
+done2:do_nothing;
+end
+
+@ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
+if cp>void then @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
+if pp>void then
+ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
+if dp>void then @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
+
+@ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
+begin q:=link(cp);
+while q<>null do
+ begin if has_color(q) then
+ begin red_val(q):=red_val(cp);
+ green_val(q):=green_val(cp);
+ blue_val(q):=blue_val(cp);@/
+ end;
+ q:=link(q);
+ end;
+end
+
+@ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
+begin q:=link(pp);
+while q<>null do
+ begin if has_pen(q) then
+ begin if pen_p(q)<>null then toss_knot_list(pen_p(q));
+ pen_p(q):=copy_pen(pen_p(pp));
+ end;
+ q:=link(q);
+ end;
+end
+
+@ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
+begin q:=link(dp);
+while q<>null do
+ begin if type(q)=stroked_code then
+ begin if dash_p(q)<>null then delete_edge_ref(dash_p(q));
+ dash_p(q):=dash_p(dp);
+ dash_scale(q):=unity;
+ if dash_p(q)<>null then add_edge_ref(dash_p(q));
+ end;
+ q:=link(q);
+ end;
+end
+
+@ One of the things we need to do when we've parsed an \&{addto} or
+similar command is find the header of a supposed \&{picture} variable, given
+a token list for that variable. Since the edge structure is about to be
+updated, we use |private_edges| to make sure that this is possible.
+
+@<Declare action procedures for use by |do_statement|@>=
+function find_edges_var(@!t:pointer):pointer;
+var @!p:pointer;
+@!cur_edges:pointer; {the return value}
+begin p:=find_variable(t); cur_edges:=null;
+if p=null then
+ begin obliterated(t); put_get_error;
+ end
+else if type(p)<>picture_type then
+ begin print_err("Variable "); show_token_list(t,null,1000,0);
+@.Variable x is the wrong type@>
+ print(" is the wrong type ("); print_type(type(p)); print_char(")");
+ help2("I was looking for a ""known"" picture variable.")@/
+ ("So I'll not change anything just now."); put_get_error;
+ end
+else begin value(p):=private_edges(value(p));
+ cur_edges:=value(p);
+ end;
+flush_node_list(t);
+find_edges_var:=cur_edges;
+end;
+
+@ @<Cases of |do_statement|...@>=
+add_to_command: do_add_to;
+bounds_command:do_bounds;
+
+@ @<Put each...@>=
+primitive("clip",bounds_command,start_clip_code);@/
+@!@:clip_}{\&{clip} primitive@>
+primitive("setbounds",bounds_command,start_bounds_code);@/
+@!@:set_bounds_}{\&{setbounds} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+bounds_command: if m=start_clip_code then print("clip")
+ else print("setbounds");
+
+@ The following function parses the beginning of an \&{addto} or \&{clip}
+command: it expects a variable name followed by a token with |cur_cmd=sep|
+and then an expression. The function returns the token list for the variable
+and stores the command modifier for the separator token in the global variable
+|last_add_type|. We must be careful because this variable might get overwritten
+any time we call |get_x_next|.
+
+@<Glob...@>=
+@!last_add_type:quarterword;
+ {command modifier that identifies the last \&{addto} command}
+
+@ @<Declare action procedures for use by |do_statement|@>=
+function start_draw_cmd(@!sep:quarterword):pointer;
+var @!lhv:pointer; {variable to add to left}
+@!add_type:quarterword; {value to be returned in |last_add_type|}
+begin lhv:=null;@/
+get_x_next; var_flag:=sep; scan_primary;
+if cur_type<>token_list then
+ @<Abandon edges command because there's no variable@>
+else begin lhv:=cur_exp; add_type:=cur_mod;@/
+ cur_type:=vacuous; get_x_next; scan_expression;
+ end;
+last_add_type:=add_type;
+start_draw_cmd:=lhv;
+end;
+
+@ @<Abandon edges command because there's no variable@>=
+begin exp_err("Not a suitable variable");
+@.Not a suitable variable@>
+help4("At this point I needed to see the name of a picture variable.")@/
+ ("(Or perhaps you have indeed presented me with one; I might")@/
+ ("have missed it, if it wasn't followed by the proper token.)")@/
+ ("So I'll not change anything just now.");
+put_get_flush_error(0);
+end
+
+@ Here is an example of how to use |start_draw_cmd|.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_bounds;
+var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
+@!p:pointer; {for list manipulation}
+@!m:integer; {initial value of |cur_mod|}
+begin m:=cur_mod;
+lhv:=start_draw_cmd(to_token);@/
+if lhv<>null then
+ begin lhe:=find_edges_var(lhv);
+ if lhe=null then flush_cur_exp(0)
+ else if cur_type<>path_type then
+ begin exp_err("Improper `clip'");
+@.Improper `addto'@>
+ help2("This expression should have specified a known path.")@/
+ ("So I'll not change anything just now."); put_get_flush_error(0);
+ end
+ else if left_type(cur_exp)=endpoint then @<Complain about a non-cycle@>
+ else @<Make |cur_exp| into a \&{setbounds} or clipping path and add
+ it to |lhe|@>;
+ end;
+end;
+
+@ @<Complain about a non-cycle@>=
+begin print_err("Not a cycle");
+@.Not a cycle@>
+help2("That contour should have ended with `..cycle' or `&cycle'.")@/
+ ("So I'll not change anything just now."); put_get_error;
+end
+
+@ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
+begin p:=new_bounds_node(cur_exp,m);
+link(p):=link(dummy_loc(lhe));
+link(dummy_loc(lhe)):=p;@/
+if obj_tail(lhe)=dummy_loc(lhe) then obj_tail(lhe):=p;
+p:=get_node(gr_object_size[stop_type(m)]);
+type(p):=stop_type(m);
+link(obj_tail(lhe)):=p;
+obj_tail(lhe):=p;@/
+init_bbox(lhe);
+end
+
+@ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
+cases to deal with.
+
+@<Declare action procedures for use by |do_statement|@>=
+procedure do_add_to;
+var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
+@!p:pointer; {the graphical object or list for |scan_with_list| to update}
+@!e:pointer; {an edge structure to be merged}
+@!add_type:quarterword; {|also_code|, |contour_code|, or |double_path_code|}
+begin lhv:=start_draw_cmd(thing_to_add); add_type:=last_add_type;@/
+if lhv<>null then
+ begin if add_type=also_code then
+ @<Make sure the current expression is a suitable picture and set |e| and |p|
+ appropriately@>
+ else @<Create a graphical object |p| based on |add_type| and the current
+ expression@>;
+ scan_with_list(p);
+ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
+ end;
+end;
+
+@ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
+setting |e:=null| prevents anything from being added to |lhe|.
+
+@ @<Make sure the current expression is a suitable picture and set |e|...@>=
+begin p:=null; e:=null;
+if cur_type<>picture_type then
+ begin exp_err("Improper `addto'");
+@.Improper `addto'@>
+ help2("This expression should have specified a known picture.")@/
+ ("So I'll not change anything just now."); put_get_flush_error(0);
+ end
+else begin e:=private_edges(cur_exp); cur_type:=vacuous;
+ p:=link(dummy_loc(e));
+ end;
+end
+
+@ In this case |add_type<>also_code| so setting |p:=null| suppresses future
+attempts to add to the edge structure.
+
+@<Create a graphical object |p| based on |add_type| and the current...@>=
+begin e:=null; p:=null;
+if cur_type=pair_type then pair_to_path;
+if cur_type<>path_type then
+ begin exp_err("Improper `addto'");
+@.Improper `addto'@>
+ help2("This expression should have specified a known path.")@/
+ ("So I'll not change anything just now."); put_get_flush_error(0);
+ end
+else if add_type=contour_code then
+ if left_type(cur_exp)=endpoint then
+ @<Complain about a non-cycle@>
+ else begin p:=new_fill_node(cur_exp);
+ cur_type:=vacuous;
+ end
+ else begin p:=new_stroked_node(cur_exp);
+ cur_type:=vacuous;
+ end;
+end
+
+@ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
+lhe:=find_edges_var(lhv);
+if lhe=null then
+ begin if (e=null)and(p<>null) then e:=toss_gr_object(p);
+ if e<>null then delete_edge_ref(e);
+ end
+else if add_type=also_code then
+ if e<>null then @<Merge |e| into |lhe| and delete |e|@>
+ else do_nothing
+else if p<>null then
+ begin link(obj_tail(lhe)):=p;
+ obj_tail(lhe):=p;
+ if add_type=double_path_code then
+ if pen_p(p)=null then pen_p(p):=get_pen_circle(0);
+ end
+
+@ @<Merge |e| into |lhe| and delete |e|@>=
+begin if link(dummy_loc(e))<>null then
+ begin link(obj_tail(lhe)):=link(dummy_loc(e));
+ obj_tail(lhe):=obj_tail(e);@/
+ obj_tail(e):=dummy_loc(e);
+ link(dummy_loc(e)):=null;
+ flush_dash_list(lhe);
+ end;
+toss_edges(e);
+end
+
+@ @<Cases of |do_statement|...@>=
+ship_out_command: do_ship_out;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+@t\4@>@<Declare the function called |tfm_check|@>@;
+@t\4@>@<Declare the \ps\ output procedures@>@;
+procedure do_ship_out;
+var @!c:integer; {the character code}
+begin get_x_next; scan_expression;
+if cur_type<>picture_type then
+ @<Complain that it's not a known picture@>
+else begin c:=round_unscaled(internal[char_code]) mod 256;
+ if c<0 then c:=c+256;
+ @<Store the width information for character code~|c|@>;@/
+ ship_out(cur_exp);
+ flush_cur_exp(0);
+ end;
+end;
+
+@ @<Complain that it's not a known picture@>=
+begin exp_err("Not a known picture");
+help1("I can only output known pictures.");
+put_get_flush_error(0);
+end
+
+@ The \&{everyjob} command simply assigns a nonzero value to the global variable
+|start_sym|.
+
+@<Cases of |do_statement|...@>=
+every_job_command: begin get_symbol; start_sym:=cur_sym; get_x_next;
+ end;
+
+@ @<Glob...@>=
+@!start_sym:halfword; {a symbolic token to insert at beginning of job}
+
+@ @<Set init...@>=
+start_sym:=0;
+
+@ Finally, we have only the ``message'' commands remaining.
+
+@d message_code=0
+@d err_message_code=1
+@d err_help_code=2
+
+@<Put each...@>=
+primitive("message",message_command,message_code);@/
+@!@:message_}{\&{message} primitive@>
+primitive("errmessage",message_command,err_message_code);@/
+@!@:err_message_}{\&{errmessage} primitive@>
+primitive("errhelp",message_command,err_help_code);@/
+@!@:err_help_}{\&{errhelp} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+message_command: if m<err_message_code then print("message")
+ else if m=err_message_code then print("errmessage")
+ else print("errhelp");
+
+@ @<Cases of |do_statement|...@>=
+message_command: do_message;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+@<Declare a procedure called |no_string_err|@>@;
+procedure do_message;
+var @!m:message_code..err_help_code; {the type of message}
+begin m:=cur_mod; get_x_next; scan_expression;
+if cur_type<>string_type then
+ no_string_err("A message should be a known string expression.")
+else case m of
+ message_code:begin print_nl(""); print(cur_exp);
+ end;
+ err_message_code:@<Print string |cur_exp| as an error message@>;
+ err_help_code:@<Save string |cur_exp| as the |err_help|@>;
+ end; {there are no other cases}
+flush_cur_exp(0);
+end;
+
+@ @<Declare a procedure called |no_string_err|@>=
+procedure no_string_err(s:str_number);
+begin exp_err("Not a string");
+@.Not a string@>
+help1(s);
+put_get_error;
+end;
+
+@ The global variable |err_help| is zero when the user has most recently
+given an empty help string, or if none has ever been given.
+
+@<Save string |cur_exp| as the |err_help|@>=
+begin if err_help<>0 then delete_str_ref(err_help);
+if length(cur_exp)=0 then err_help:=0
+else begin err_help:=cur_exp; add_str_ref(err_help);
+ end;
+end
+
+@ If \&{errmessage} occurs often in |scroll_mode|, without user-defined
+\&{errhelp}, we don't want to give a long help message each time. So we
+give a verbose explanation only once.
+
+@<Glob...@>=
+@!long_help_seen:boolean; {has the long \.{\\errmessage} help been used?}
+
+@ @<Set init...@>=long_help_seen:=false;
+
+@ @<Print string |cur_exp| as an error message@>=
+begin print_err(""); print(cur_exp);
+if err_help<>0 then use_err_help:=true
+else if long_help_seen then help1("(That was another `errmessage'.)")
+else begin if interaction<error_stop_mode then long_help_seen:=true;
+ help4("This error message was generated by an `errmessage'")@/
+ ("command, so I can't give any explicit help.")@/
+ ("Pretend that you're Miss Marple: Examine all clues,")@/
+@^Marple, Jane@>
+ ("and deduce the truth by inspired guesses.");
+ end;
+put_get_error; use_err_help:=false;
+end
+
+@ @<Cases of |do_statement|...@>=
+write_command: do_write;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_write;
+label continue;
+var @!t:str_number; {the line of text to be written}
+ @!n,@!n0:write_index; {for searching |wr_fname| and |wr_file| arrays}
+ @!old_setting:0..max_selector; {for saving |selector| during output}
+begin get_x_next;
+scan_expression;
+if cur_type<>string_type then
+ no_string_err("The text to be written should be a known string expression")
+else if cur_cmd<>to_token then
+ begin print_err("Missing `to' clause");
+ help1("A write command should end with `to <filename>'");
+ put_get_error;
+ end
+else begin t:=cur_exp; cur_type:=vacuous;
+ get_x_next;
+ scan_expression;
+ if cur_type<>string_type then
+ no_string_err("I can't write to that file name. It isn't a known string")
+ else @<Write |t| to the file named by |cur_exp|@>;
+ delete_str_ref(t);
+ end;
+flush_cur_exp(0);
+end;
+
+@ @<Write |t| to the file named by |cur_exp|@>=
+begin @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
+ |cur_exp| must be inserted@>;
+@<Make sure |eof_line| is initialized@>;
+if str_vs_str(t,eof_line)=0 then
+ @<Record the end of file on |wr_file[n]|@>
+else begin old_setting:=selector;
+ selector:=n;
+ print(t); print_ln;
+ selector := old_setting;
+ end;
+end
+
+@ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
+n:=write_files;
+n0:=write_files;
+repeat
+continue:if n=0 then
+ @<Insert |cur_exp| at index |n0| and call |open_write_file|@>
+else begin decr(n);
+ if wr_fname[n]=0 then
+ begin n0:=n; goto continue;
+ end;
+ end;
+until str_vs_str(cur_exp,wr_fname[n])=0
+
+@ @<Insert |cur_exp| at index |n0| and call |open_write_file|@>=
+begin if n0=write_files then
+ if write_files<max_write_files then incr(write_files)
+ else overflow("write files",max_write_files);
+n:=n0;
+open_write_file(cur_exp,n);
+end
+
+@ @<Record the end of file on |wr_file[n]|@>=
+begin a_close(wr_file[n]);
+delete_str_ref(wr_fname[n]);
+wr_fname[n]:=0;
+if n=write_files-1 then write_files:=n;
+end
+
+
+@* \[42] Writing font metric data.
+\TeX\ gets its knowledge about fonts from font metric files, also called
+\.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
+but other programs know about them too. One of \MP's duties is to
+write \.{TFM} files so that the user's fonts can readily be
+applied to typesetting.
+@:TFM files}{\.{TFM} files@>
+@^font metric files@>
+
+The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
+Since the number of bytes is always a multiple of~4, we could
+also regard the file as a sequence of 32-bit words, but \MP\ uses the
+byte interpretation. The format of \.{TFM} files was designed by
+Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
+@^Ramshaw, Lyle Harold@>
+of information in a compact but useful form.
+
+@<Glob...@>=
+@!tfm_file:byte_file; {the font metric output goes here}
+@!metric_file_name: str_number; {full name of the font metric file}
+
+@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
+integers that give the lengths of the various subsequent portions
+of the file. These twelve integers are, in order:
+$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
+|lf|&length of the entire file, in words;\cr
+|lh|&length of the header data, in words;\cr
+|bc|&smallest character code in the font;\cr
+|ec|&largest character code in the font;\cr
+|nw|&number of words in the width table;\cr
+|nh|&number of words in the height table;\cr
+|nd|&number of words in the depth table;\cr
+|ni|&number of words in the italic correction table;\cr
+|nl|&number of words in the lig/kern table;\cr
+|nk|&number of words in the kern table;\cr
+|ne|&number of words in the extensible character table;\cr
+|np|&number of font parameter words.\cr}}$$
+They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
+|ne<=256|, and
+$$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
+Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
+and as few as 0 characters (if |bc=ec+1|).
+
+Incidentally, when two or more 8-bit bytes are combined to form an integer of
+16 or more bits, the most significant bytes appear first in the file.
+This is called BigEndian order.
+@!@^BigEndian order@>
+
+@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
+arrays having the informal specification
+$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
+\tabskip\centering
+\halign to\displaywidth{\hfil\\{#}\tabskip=0pt&$\,:\,$\arr#\hfil
+ \tabskip\centering\cr
+header&|[0..lh-1]@t\\{stuff}@>|\cr
+char\_info&|[bc..ec]char_info_word|\cr
+width&|[0..nw-1]fix_word|\cr
+height&|[0..nh-1]fix_word|\cr
+depth&|[0..nd-1]fix_word|\cr
+italic&|[0..ni-1]fix_word|\cr
+lig\_kern&|[0..nl-1]lig_kern_command|\cr
+kern&|[0..nk-1]fix_word|\cr
+exten&|[0..ne-1]extensible_recipe|\cr
+param&|[1..np]fix_word|\cr}$$
+The most important data type used here is a |@!fix_word|, which is
+a 32-bit representation of a binary fraction. A |fix_word| is a signed
+quantity, with the two's complement of the entire word used to represent
+negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
+binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
+the smallest is $-2048$. We will see below, however, that all but two of
+the |fix_word| values must lie between $-16$ and $+16$.
+
+@ The first data array is a block of header information, which contains
+general facts about the font. The header must contain at least two words,
+|header[0]| and |header[1]|, whose meaning is explained below. Additional
+header information of use to other software routines might also be
+included, and \MP\ will generate it if the \.{headerbyte} command occurs.
+For example, 16 more words of header information are in use at the Xerox
+Palo Alto Research Center; the first ten specify the character coding
+scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
+give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
+last gives the ``face byte.''
+
+\yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
+the \.{GF} output file. This helps ensure consistency between files,
+since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
+should match the check sums on actual fonts that are used. The actual
+relation between this check sum and the rest of the \.{TFM} file is not
+important; the check sum is simply an identification number with the
+property that incompatible fonts almost always have distinct check sums.
+@^check sum@>
+
+\yskip\hang|header[1]| is a |fix_word| containing the design size of the
+font, in units of \TeX\ points. This number must be at least 1.0; it is
+fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
+font, i.e., a font that was designed to look best at a 10-point size,
+whatever that really means. When a \TeX\ user asks for a font `\.{at}
+$\delta$ \.{pt}', the effect is to override the design size and replace it
+by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
+the font image by a factor of $\delta$ divided by the design size. {\sl
+All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
+numbers in design-size units.} Thus, for example, the value of |param[6]|,
+which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
+since many fonts have a design size equal to one em. The other dimensions
+must be less than 16 design-size units in absolute value; thus,
+|header[1]| and |param[1]| are the only |fix_word| entries in the whole
+\.{TFM} file whose first byte might be something besides 0 or 255.
+
+@ Next comes the |char_info| array, which contains one |@!char_info_word|
+per character. Each word in this part of the file contains six fields
+packed into four bytes as follows.
+
+\yskip\hang first byte: |@!width_index| (8 bits)\par
+\hang second byte: |@!height_index| (4 bits) times 16, plus |@!depth_index|
+ (4~bits)\par
+\hang third byte: |@!italic_index| (6 bits) times 4, plus |@!tag|
+ (2~bits)\par
+\hang fourth byte: |@!remainder| (8 bits)\par
+\yskip\noindent
+The actual width of a character is \\{width}|[width_index]|, in design-size
+units; this is a device for compressing information, since many characters
+have the same width. Since it is quite common for many characters
+to have the same height, depth, or italic correction, the \.{TFM} format
+imposes a limit of 16 different heights, 16 different depths, and
+64 different italic corrections.
+
+Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
+\\{italic}[0]=0$ should always hold, so that an index of zero implies a
+value of zero. The |width_index| should never be zero unless the
+character does not exist in the font, since a character is valid if and
+only if it lies between |bc| and |ec| and has a nonzero |width_index|.
+
+@ The |tag| field in a |char_info_word| has four values that explain how to
+interpret the |remainder| field.
+
+\yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
+\hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
+program starting at location |remainder| in the |lig_kern| array.\par
+\hang|tag=2| (|list_tag|) means that this character is part of a chain of
+characters of ascending sizes, and not the largest in the chain. The
+|remainder| field gives the character code of the next larger character.\par
+\hang|tag=3| (|ext_tag|) means that this character code represents an
+extensible character, i.e., a character that is built up of smaller pieces
+so that it can be made arbitrarily large. The pieces are specified in
+|@!exten[remainder]|.\par
+\yskip\noindent
+Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
+unless they are used in special circumstances in math formulas. For example,
+\TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
+operation looks for both |list_tag| and |ext_tag|.
+
+@d no_tag=0 {vanilla character}
+@d lig_tag=1 {character has a ligature/kerning program}
+@d list_tag=2 {character has a successor in a charlist}
+@d ext_tag=3 {character is extensible}
+
+@ The |lig_kern| array contains instructions in a simple programming language
+that explains what to do for special letter pairs. Each word in this array is a
+|@!lig_kern_command| of four bytes.
+
+\yskip\hang first byte: |skip_byte|, indicates that this is the final program
+ step if the byte is 128 or more, otherwise the next step is obtained by
+ skipping this number of intervening steps.\par
+\hang second byte: |next_char|, ``if |next_char| follows the current character,
+ then perform the operation and stop, otherwise continue.''\par
+\hang third byte: |op_byte|, indicates a ligature step if less than~128,
+ a kern step otherwise.\par
+\hang fourth byte: |remainder|.\par
+\yskip\noindent
+In a kern step, an
+additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
+between the current character and |next_char|. This amount is
+often negative, so that the characters are brought closer together
+by kerning; but it might be positive.
+
+There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
+$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
+|remainder| is inserted between the current character and |next_char|;
+then the current character is deleted if $b=0$, and |next_char| is
+deleted if $c=0$; then we pass over $a$~characters to reach the next
+current character (which may have a ligature/kerning program of its own).
+
+If the very first instruction of the |lig_kern| array has |skip_byte=255|,
+the |next_char| byte is the so-called right boundary character of this font;
+the value of |next_char| need not lie between |bc| and~|ec|.
+If the very last instruction of the |lig_kern| array has |skip_byte=255|,
+there is a special ligature/kerning program for a left boundary character,
+beginning at location |256*op_byte+remainder|.
+The interpretation is that \TeX\ puts implicit boundary characters
+before and after each consecutive string of characters from the same font.
+These implicit characters do not appear in the output, but they can affect
+ligatures and kerning.
+
+If the very first instruction of a character's |lig_kern| program has
+|skip_byte>128|, the program actually begins in location
+|256*op_byte+remainder|. This feature allows access to large |lig_kern|
+arrays, because the first instruction must otherwise
+appear in a location |<=255|.
+
+Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
+the condition
+$$\hbox{|256*op_byte+remainder<nl|.}$$
+If such an instruction is encountered during
+normal program execution, it denotes an unconditional halt; no ligature
+command is performed.
+
+@d stop_flag=128+min_quarterword
+ {value indicating `\.{STOP}' in a lig/kern program}
+@d kern_flag=128+min_quarterword {op code for a kern step}
+@d skip_byte(#)==lig_kern[#].b0
+@d next_char(#)==lig_kern[#].b1
+@d op_byte(#)==lig_kern[#].b2
+@d rem_byte(#)==lig_kern[#].b3
+
+@ Extensible characters are specified by an |@!extensible_recipe|, which
+consists of four bytes called |@!top|, |@!mid|, |@!bot|, and |@!rep| (in this
+order). These bytes are the character codes of individual pieces used to
+build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
+present in the built-up result. For example, an extensible vertical line is
+like an extensible bracket, except that the top and bottom pieces are missing.
+
+Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
+if the piece isn't present. Then the extensible characters have the form
+$TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
+in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
+The width of the extensible character is the width of $R$; and the
+height-plus-depth is the sum of the individual height-plus-depths of the
+components used, since the pieces are butted together in a vertical list.
+
+@d ext_top(#)==exten[#].b0 {|top| piece in a recipe}
+@d ext_mid(#)==exten[#].b1 {|mid| piece in a recipe}
+@d ext_bot(#)==exten[#].b2 {|bot| piece in a recipe}
+@d ext_rep(#)==exten[#].b3 {|rep| piece in a recipe}
+
+@ The final portion of a \.{TFM} file is the |param| array, which is another
+sequence of |fix_word| values.
+
+\yskip\hang|param[1]=slant| is the amount of italic slant, which is used
+to help position accents. For example, |slant=.25| means that when you go
+up one unit, you also go .25 units to the right. The |slant| is a pure
+number; it is the only |fix_word| other than the design size itself that is
+not scaled by the design size.
+
+\hang|param[2]=space| is the normal spacing between words in text.
+Note that character @'40 in the font need not have anything to do with
+blank spaces.
+
+\hang|param[3]=space_stretch| is the amount of glue stretching between words.
+
+\hang|param[4]=space_shrink| is the amount of glue shrinking between words.
+
+\hang|param[5]=x_height| is the size of one ex in the font; it is also
+the height of letters for which accents don't have to be raised or lowered.
+
+\hang|param[6]=quad| is the size of one em in the font.
+
+\hang|param[7]=extra_space| is the amount added to |param[2]| at the
+ends of sentences.
+
+\yskip\noindent
+If fewer than seven parameters are present, \TeX\ sets the missing parameters
+to zero.
+
+@d slant_code=1
+@d space_code=2
+@d space_stretch_code=3
+@d space_shrink_code=4
+@d x_height_code=5
+@d quad_code=6
+@d extra_space_code=7
+
+@ So that is what \.{TFM} files hold. One of \MP's duties is to output such
+information, and it does this all at once at the end of a job.
+In order to prepare for such frenetic activity, it squirrels away the
+necessary facts in various arrays as information becomes available.
+
+Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
+are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
+|tfm_ital_corr|. Other information about a character (e.g., about
+its ligatures or successors) is accessible via the |char_tag| and
+|char_remainder| arrays. Other information about the font as a whole
+is kept in additional arrays called |header_byte|, |lig_kern|,
+|kern|, |exten|, and |param|.
+
+@d undefined_label==lig_table_size {an undefined local label}
+
+@<Glob...@>=
+@!bc,@!ec:eight_bits; {smallest and largest character codes shipped out}
+@!tfm_width:array[eight_bits] of scaled; {\&{charwd} values}
+@!tfm_height:array[eight_bits] of scaled; {\&{charht} values}
+@!tfm_depth:array[eight_bits] of scaled; {\&{chardp} values}
+@!tfm_ital_corr:array[eight_bits] of scaled; {\&{charic} values}
+@!char_exists:array[eight_bits] of boolean; {has this code been shipped out?}
+@!char_tag:array[eight_bits] of no_tag..ext_tag; {|remainder| category}
+@!char_remainder:array[eight_bits] of 0..lig_table_size; {the |remainder| byte}
+@!header_byte:array[1..header_size] of -1..255;
+ {bytes of the \.{TFM} header, or $-1$ if unset}
+@!lig_kern:array[0..lig_table_size] of four_quarters; {the ligature/kern table}
+@!nl:0..32767-256; {the number of ligature/kern steps so far}
+@!kern:array[0..max_kerns] of scaled; {distinct kerning amounts}
+@!nk:0..max_kerns; {the number of distinct kerns so far}
+@!exten:array[eight_bits] of four_quarters; {extensible character recipes}
+@!ne:0..256; {the number of extensible characters so far}
+@!param:array[1..max_font_dimen] of scaled; {\&{fontinfo} parameters}
+@!np:0..max_font_dimen; {the largest \&{fontinfo} parameter specified so far}
+@!nw,@!nh,@!nd,@!ni:0..256; {sizes of \.{TFM} subtables}
+@!skip_table:array[eight_bits] of 0..lig_table_size; {local label status}
+@!lk_started:boolean; {has there been a lig/kern step in this command yet?}
+@!bchar:integer; {right boundary character}
+@!bch_label:0..lig_table_size; {left boundary starting location}
+@!ll,@!lll:0..lig_table_size; {registers used for lig/kern processing}
+@!label_loc:array[0..256] of -1..lig_table_size; {lig/kern starting addresses}
+@!label_char:array[1..256] of eight_bits; {characters for |label_loc|}
+@!label_ptr:0..256; {highest position occupied in |label_loc|}
+
+@ @<Set init...@>=
+for k:=0 to 255 do
+ begin tfm_width[k]:=0; tfm_height[k]:=0; tfm_depth[k]:=0; tfm_ital_corr[k]:=0;
+ char_exists[k]:=false; char_tag[k]:=no_tag; char_remainder[k]:=0;
+ skip_table[k]:=undefined_label;
+ end;
+for k:=1 to header_size do header_byte[k]:=-1;
+bc:=255; ec:=0; nl:=0; nk:=0; ne:=0; np:=0;@/
+internal[boundary_char]:=-unity;
+bch_label:=undefined_label;@/
+label_loc[0]:=-1; label_ptr:=0;
+
+@ @<Declare the function called |tfm_check|@>=
+function tfm_check(@!m:small_number):scaled;
+begin if abs(internal[m])>=fraction_half then
+ begin print_err("Enormous "); print(int_name[m]);
+@.Enormous charwd...@>
+@.Enormous chardp...@>
+@.Enormous charht...@>
+@.Enormous charic...@>
+@.Enormous designsize...@>
+ print(" has been reduced");
+ help1("Font metric dimensions must be less than 2048pt.");
+ put_get_error;
+ if internal[m]>0 then tfm_check:=fraction_half-1
+ else tfm_check:=1-fraction_half;
+ end
+else tfm_check:=internal[m];
+end;
+
+@ @<Store the width information for character code~|c|@>=
+if c<bc then bc:=c;
+if c>ec then ec:=c;
+char_exists[c]:=true;
+tfm_width[c]:=tfm_check(char_wd);
+tfm_height[c]:=tfm_check(char_ht);
+tfm_depth[c]:=tfm_check(char_dp);
+tfm_ital_corr[c]:=tfm_check(char_ic)
+
+@ Now let's consider \MP's special \.{TFM}-oriented commands.
+
+@<Cases of |do_statement|...@>=
+tfm_command: do_tfm_command;
+
+@ @d char_list_code=0
+@d lig_table_code=1
+@d extensible_code=2
+@d header_byte_code=3
+@d font_dimen_code=4
+
+@<Put each...@>=
+primitive("charlist",tfm_command,char_list_code);@/
+@!@:char_list_}{\&{charlist} primitive@>
+primitive("ligtable",tfm_command,lig_table_code);@/
+@!@:lig_table_}{\&{ligtable} primitive@>
+primitive("extensible",tfm_command,extensible_code);@/
+@!@:extensible_}{\&{extensible} primitive@>
+primitive("headerbyte",tfm_command,header_byte_code);@/
+@!@:header_byte_}{\&{headerbyte} primitive@>
+primitive("fontdimen",tfm_command,font_dimen_code);@/
+@!@:font_dimen_}{\&{fontdimen} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+tfm_command: case m of
+ char_list_code:print("charlist");
+ lig_table_code:print("ligtable");
+ extensible_code:print("extensible");
+ header_byte_code:print("headerbyte");
+ othercases print("fontdimen")
+ endcases;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+function get_code:eight_bits; {scans a character code value}
+label found;
+var @!c:integer; {the code value found}
+begin get_x_next; scan_expression;
+if cur_type=known then
+ begin c:=round_unscaled(cur_exp);
+ if c>=0 then if c<256 then goto found;
+ end
+else if cur_type=string_type then if length(cur_exp)=1 then
+ begin c:=so(str_pool[str_start[cur_exp]]); goto found;
+ end;
+exp_err("Invalid code has been replaced by 0");
+@.Invalid code...@>
+help2("I was looking for a number between 0 and 255, or for a")@/
+ ("string of length 1. Didn't find it; will use 0 instead.");
+put_get_flush_error(0); c:=0;
+found: get_code:=c;
+end;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure set_tag(@!c:halfword;@!t:small_number;@!r:halfword);
+begin if char_tag[c]=no_tag then
+ begin char_tag[c]:=t; char_remainder[c]:=r;
+ if t=lig_tag then
+ begin incr(label_ptr); label_loc[label_ptr]:=r; label_char[label_ptr]:=c;
+ end;
+ end
+else @<Complain about a character tag conflict@>;
+end;
+
+@ @<Complain about a character tag conflict@>=
+begin print_err("Character ");
+if (c>" ")and(c<127) then print(c)
+else if c=256 then print("||")
+else begin print("code "); print_int(c);
+ end;
+print(" is already ");
+@.Character c is already...@>
+case char_tag[c] of
+lig_tag: print("in a ligtable");
+list_tag: print("in a charlist");
+ext_tag: print("extensible");
+end; {there are no other cases}
+help2("It's not legal to label a character more than once.")@/
+ ("So I'll not change anything just now.");
+put_get_error; end
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_tfm_command;
+label continue,done;
+var @!c,@!cc:0..256; {character codes}
+@!k:0..max_kerns; {index into the |kern| array}
+@!j:integer; {index into |header_byte| or |param|}
+begin case cur_mod of
+char_list_code: begin c:=get_code;
+ {we will store a list of character successors}
+ while cur_cmd=colon do
+ begin cc:=get_code; set_tag(c,list_tag,cc); c:=cc;
+ end;
+ end;
+lig_table_code: @<Store a list of ligature/kern steps@>;
+extensible_code: @<Define an extensible recipe@>;
+header_byte_code, font_dimen_code: begin c:=cur_mod; get_x_next;
+ scan_expression;
+ if (cur_type<>known)or(cur_exp<half_unit) then
+ begin exp_err("Improper location");
+@.Improper location@>
+ help2("I was looking for a known, positive number.")@/
+ ("For safety's sake I'll ignore the present command.");
+ put_get_error;
+ end
+ else begin j:=round_unscaled(cur_exp);
+ if cur_cmd<>colon then
+ begin missing_err(":");
+@.Missing `:'@>
+ help1("A colon should follow a headerbyte or fontinfo location.");
+ back_error;
+ end;
+ if c=header_byte_code then @<Store a list of header bytes@>
+ else @<Store a list of font dimensions@>;
+ end;
+ end;
+end; {there are no other cases}
+end;
+
+@ @<Store a list of ligature/kern steps@>=
+begin lk_started:=false;
+continue: get_x_next;
+if(cur_cmd=skip_to)and lk_started then
+ @<Process a |skip_to| command and |goto done|@>;
+if cur_cmd=bchar_label then
+ begin c:=256; cur_cmd:=colon;@+end
+else begin back_input; c:=get_code;@+end;
+if(cur_cmd=colon)or(cur_cmd=double_colon)then
+ @<Record a label in a lig/kern subprogram and |goto continue|@>;
+if cur_cmd=lig_kern_token then @<Compile a ligature/kern command@>
+else begin print_err("Illegal ligtable step");
+@.Illegal ligtable step@>
+ help1("I was looking for `=:' or `kern' here.");
+ back_error; next_char(nl):=qi(0); op_byte(nl):=qi(0); rem_byte(nl):=qi(0);@/
+ skip_byte(nl):=stop_flag+1; {this specifies an unconditional stop}
+ end;
+if nl=lig_table_size then overflow("ligtable size",lig_table_size);
+@:MetaPost capacity exceeded ligtable size}{\quad ligtable size@>
+incr(nl);
+if cur_cmd=comma then goto continue;
+if skip_byte(nl-1)<stop_flag then skip_byte(nl-1):=stop_flag;
+done:end
+
+@ @<Put each...@>=
+primitive("=:",lig_kern_token,0);
+@!@:=:_}{\.{=:} primitive@>
+primitive("=:|",lig_kern_token,1);
+@!@:=:/_}{\.{=:\char'174} primitive@>
+primitive("=:|>",lig_kern_token,5);
+@!@:=:/>_}{\.{=:\char'174>} primitive@>
+primitive("|=:",lig_kern_token,2);
+@!@:=:/_}{\.{\char'174=:} primitive@>
+primitive("|=:>",lig_kern_token,6);
+@!@:=:/>_}{\.{\char'174=:>} primitive@>
+primitive("|=:|",lig_kern_token,3);
+@!@:=:/_}{\.{\char'174=:\char'174} primitive@>
+primitive("|=:|>",lig_kern_token,7);
+@!@:=:/>_}{\.{\char'174=:\char'174>} primitive@>
+primitive("|=:|>>",lig_kern_token,11);
+@!@:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
+primitive("kern",lig_kern_token,128);
+@!@:kern_}{\&{kern} primitive@>
+
+@ @<Cases of |print_cmd...@>=
+lig_kern_token: case m of
+0:print("=:");
+1:print("=:|");
+2:print("|=:");
+3:print("|=:|");
+5:print("=:|>");
+6:print("|=:>");
+7:print("|=:|>");
+11:print("|=:|>>");
+othercases print("kern")
+endcases;
+
+@ Local labels are implemented by maintaining the |skip_table| array,
+where |skip_table[c]| is either |undefined_label| or the address of the
+most recent lig/kern instruction that skips to local label~|c|. In the
+latter case, the |skip_byte| in that instruction will (temporarily)
+be zero if there were no prior skips to this label, or it will be the
+distance to the prior skip.
+
+We may need to cancel skips that span more than 127 lig/kern steps.
+
+@d cancel_skips(#)==ll:=#;
+ repeat lll:=qo(skip_byte(ll)); skip_byte(ll):=stop_flag; ll:=ll-lll;
+ until lll=0
+@d skip_error(#)==begin print_err("Too far to skip");
+@.Too far to skip@>
+ help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
+ error; cancel_skips(#);
+ end
+
+@<Process a |skip_to| command and |goto done|@>=
+begin c:=get_code;
+if nl-skip_table[c]>128 then {|skip_table[c]<<nl<=undefined_label|}
+ begin skip_error(skip_table[c]); skip_table[c]:=undefined_label;
+ end;
+if skip_table[c]=undefined_label then skip_byte(nl-1):=qi(0)
+else skip_byte(nl-1):=qi(nl-skip_table[c]-1);
+skip_table[c]:=nl-1; goto done;
+end
+
+@ @<Record a label in a lig/kern subprogram and |goto continue|@>=
+begin if cur_cmd=colon then
+ if c=256 then bch_label:=nl
+ else set_tag(c,lig_tag,nl)
+else if skip_table[c]<undefined_label then
+ begin ll:=skip_table[c]; skip_table[c]:=undefined_label;
+ repeat lll:=qo(skip_byte(ll));
+ if nl-ll>128 then
+ begin skip_error(ll); goto continue;
+ end;
+ skip_byte(ll):=qi(nl-ll-1); ll:=ll-lll;
+ until lll=0;
+ end;
+goto continue;
+end
+
+@ @<Compile a ligature/kern...@>=
+begin next_char(nl):=qi(c); skip_byte(nl):=qi(0);
+if cur_mod<128 then {ligature op}
+ begin op_byte(nl):=qi(cur_mod); rem_byte(nl):=qi(get_code);
+ end
+else begin get_x_next; scan_expression;
+ if cur_type<>known then
+ begin exp_err("Improper kern");
+@.Improper kern@>
+ help2("The amount of kern should be a known numeric value.")@/
+ ("I'm zeroing this one. Proceed, with fingers crossed.");
+ put_get_flush_error(0);
+ end;
+ kern[nk]:=cur_exp;
+ k:=0;@+while kern[k]<>cur_exp do incr(k);
+ if k=nk then
+ begin if nk=max_kerns then overflow("kern",max_kerns);
+@:MetaPost capacity exceeded kern}{\quad kern@>
+ incr(nk);
+ end;
+ op_byte(nl):=kern_flag+(k div 256);
+ rem_byte(nl):=qi((k mod 256));
+ end;
+lk_started:=true;
+end
+
+@ @d missing_extensible_punctuation(#)==
+ begin missing_err(#);
+@.Missing `\char`\#'@>
+ help1("I'm processing `extensible c: t,m,b,r'."); back_error;
+ end
+
+@<Define an extensible recipe@>=
+begin if ne=256 then overflow("extensible",256);
+@:MetaPost capacity exceeded extensible}{\quad extensible@>
+c:=get_code; set_tag(c,ext_tag,ne);
+if cur_cmd<>colon then missing_extensible_punctuation(":");
+ext_top(ne):=qi(get_code);
+if cur_cmd<>comma then missing_extensible_punctuation(",");
+ext_mid(ne):=qi(get_code);
+if cur_cmd<>comma then missing_extensible_punctuation(",");
+ext_bot(ne):=qi(get_code);
+if cur_cmd<>comma then missing_extensible_punctuation(",");
+ext_rep(ne):=qi(get_code);
+incr(ne);
+end
+
+@ @<Store a list of header bytes@>=
+repeat if j>header_size then overflow("headerbyte",header_size);
+@:MetaPost capacity exceeded headerbyte}{\quad headerbyte@>
+header_byte[j]:=get_code; incr(j);
+until cur_cmd<>comma
+
+@ @<Store a list of font dimensions@>=
+repeat if j>max_font_dimen then overflow("fontdimen",max_font_dimen);
+@:MetaPost capacity exceeded fontdimen}{\quad fontdimen@>
+while j>np do
+ begin incr(np); param[np]:=0;
+ end;
+get_x_next; scan_expression;
+if cur_type<>known then
+ begin exp_err("Improper font parameter");
+@.Improper font parameter@>
+ help1("I'm zeroing this one. Proceed, with fingers crossed.");
+ put_get_flush_error(0);
+ end;
+param[j]:=cur_exp; incr(j);
+until cur_cmd<>comma
+
+@ OK: We've stored all the data that is needed for the \.{TFM} file.
+All that remains is to output it in the correct format.
+
+An interesting problem needs to be solved in this connection, because
+the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
+and 64~italic corrections. If the data has more distinct values than
+this, we want to meet the necessary restrictions by perturbing the
+given values as little as possible.
+
+\MP\ solves this problem in two steps. First the values of a given
+kind (widths, heights, depths, or italic corrections) are sorted;
+then the list of sorted values is perturbed, if necessary.
+
+The sorting operation is facilitated by having a special node of
+essentially infinite |value| at the end of the current list.
+
+@<Initialize table entries...@>=
+value(inf_val):=fraction_four;
+
+@ Straight linear insertion is good enough for sorting, since the lists
+are usually not terribly long. As we work on the data, the current list
+will start at |link(temp_head)| and end at |inf_val|; the nodes in this
+list will be in increasing order of their |value| fields.
+
+Given such a list, the |sort_in| function takes a value and returns a pointer
+to where that value can be found in the list. The value is inserted in
+the proper place, if necessary.
+
+At the time we need to do these operations, most of \MP's work has been
+completed, so we will have plenty of memory to play with. The value nodes
+that are allocated for sorting will never be returned to free storage.
+
+@d clear_the_list==link(temp_head):=inf_val
+
+@p function sort_in(@!v:scaled):pointer;
+label found;
+var @!p,@!q,@!r:pointer; {list manipulation registers}
+begin p:=temp_head;
+loop@+ begin q:=link(p);
+ if v<=value(q) then goto found;
+ p:=q;
+ end;
+found: if v<value(q) then
+ begin r:=get_node(value_node_size); value(r):=v; link(r):=q; link(p):=r;
+ end;
+sort_in:=link(p);
+end;
+
+@ Now we come to the interesting part, where we reduce the list if necessary
+until it has the required size. The |min_cover| routine is basic to this
+process; it computes the minimum number~|m| such that the values of the
+current sorted list can be covered by |m|~intervals of width~|d|. It
+also sets the global value |perturbation| to the smallest value $d'>d$
+such that the covering found by this algorithm would be different.
+
+In particular, |min_cover(0)| returns the number of distinct values in the
+current list and sets |perturbation| to the minimum distance between
+adjacent values.
+
+@p function min_cover(@!d:scaled):integer;
+var @!p:pointer; {runs through the current list}
+@!l:scaled; {the least element covered by the current interval}
+@!m:integer; {lower bound on the size of the minimum cover}
+begin m:=0; p:=link(temp_head); perturbation:=el_gordo;
+while p<>inf_val do
+ begin incr(m); l:=value(p);
+ repeat p:=link(p);
+ until value(p)>l+d;
+ if value(p)-l<perturbation then perturbation:=value(p)-l;
+ end;
+min_cover:=m;
+end;
+
+@ @<Glob...@>=
+@!perturbation:scaled; {quantity related to \.{TFM} rounding}
+@!excess:integer; {the list is this much too long}
+
+@ The smallest |d| such that a given list can be covered with |m| intervals
+is determined by the |threshold| routine, which is sort of an inverse
+to |min_cover|. The idea is to increase the interval size rapidly until
+finding the range, then to go sequentially until the exact borderline has
+been discovered.
+
+@p function threshold(@!m:integer):scaled;
+var @!d:scaled; {lower bound on the smallest interval size}
+begin excess:=min_cover(0)-m;
+if excess<=0 then threshold:=0
+else begin repeat d:=perturbation;
+ until min_cover(d+d)<=m;
+ while min_cover(d)>m do d:=perturbation;
+ threshold:=d;
+ end;
+end;
+
+@ The |skimp| procedure reduces the current list to at most |m| entries,
+by changing values if necessary. It also sets |info(p):=k| if |value(p)|
+is the |k|th distinct value on the resulting list, and it sets
+|perturbation| to the maximum amount by which a |value| field has
+been changed. The size of the resulting list is returned as the
+value of |skimp|.
+
+@p function skimp(@!m:integer):integer;
+var @!d:scaled; {the size of intervals being coalesced}
+@!p,@!q,@!r:pointer; {list manipulation registers}
+@!l:scaled; {the least value in the current interval}
+@!v:scaled; {a compromise value}
+begin d:=threshold(m); perturbation:=0;
+q:=temp_head; m:=0; p:=link(temp_head);
+while p<>inf_val do
+ begin incr(m); l:=value(p); info(p):=m;
+ if value(link(p))<=l+d then
+ @<Replace an interval of values by its midpoint@>;
+ q:=p; p:=link(p);
+ end;
+skimp:=m;
+end;
+
+@ @<Replace an interval...@>=
+begin repeat p:=link(p); info(p):=m;
+decr(excess);@+if excess=0 then d:=0;
+until value(link(p))>l+d;
+v:=l+halfp(value(p)-l);
+if value(p)-v>perturbation then perturbation:=value(p)-v;
+r:=q;
+repeat r:=link(r); value(r):=v;
+until r=p;
+link(q):=p; {remove duplicate values from the current list}
+end
+
+@ A warning message is issued whenever something is perturbed by
+more than 1/16\thinspace pt.
+
+@p procedure tfm_warning(@!m:small_number);
+begin print_nl("(some "); print(int_name[m]);
+@.some charwds...@>
+@.some chardps...@>
+@.some charhts...@>
+@.some charics...@>
+print(" values had to be adjusted by as much as ");
+print_scaled(perturbation); print("pt)");
+end;
+
+@ Here's an example of how we use these routines.
+The width data needs to be perturbed only if there are 256 distinct
+widths, but \MP\ must check for this case even though it is
+highly unusual.
+
+An integer variable |k| will be defined when we use this code.
+The |dimen_head| array will contain pointers to the sorted
+lists of dimensions.
+
+@<Massage the \.{TFM} widths@>=
+clear_the_list;
+for k:=bc to ec do if char_exists[k] then
+ tfm_width[k]:=sort_in(tfm_width[k]);
+nw:=skimp(255)+1; dimen_head[1]:=link(temp_head);
+if perturbation>=@'10000 then tfm_warning(char_wd)
+
+@ @<Glob...@>=
+@!dimen_head:array[1..4] of pointer; {lists of \.{TFM} dimensions}
+
+@ Heights, depths, and italic corrections are different from widths
+not only because their list length is more severely restricted, but
+also because zero values do not need to be put into the lists.
+
+@<Massage the \.{TFM} heights, depths, and italic corrections@>=
+clear_the_list;
+for k:=bc to ec do if char_exists[k] then
+ if tfm_height[k]=0 then tfm_height[k]:=zero_val
+ else tfm_height[k]:=sort_in(tfm_height[k]);
+nh:=skimp(15)+1; dimen_head[2]:=link(temp_head);
+if perturbation>=@'10000 then tfm_warning(char_ht);
+clear_the_list;
+for k:=bc to ec do if char_exists[k] then
+ if tfm_depth[k]=0 then tfm_depth[k]:=zero_val
+ else tfm_depth[k]:=sort_in(tfm_depth[k]);
+nd:=skimp(15)+1; dimen_head[3]:=link(temp_head);
+if perturbation>=@'10000 then tfm_warning(char_dp);
+clear_the_list;
+for k:=bc to ec do if char_exists[k] then
+ if tfm_ital_corr[k]=0 then tfm_ital_corr[k]:=zero_val
+ else tfm_ital_corr[k]:=sort_in(tfm_ital_corr[k]);
+ni:=skimp(63)+1; dimen_head[4]:=link(temp_head);
+if perturbation>=@'10000 then tfm_warning(char_ic)
+
+@ @<Initialize table entries...@>=
+value(zero_val):=0; info(zero_val):=0;
+
+@ Bytes 5--8 of the header are set to the design size, unless the user has
+some crazy reason for specifying them differently.
+
+Error messages are not allowed at the time this procedure is called,
+so a warning is printed instead.
+
+The value of |max_tfm_dimen| is calculated so that
+$$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
+ < \\{three\_bytes}.$$
+
+@d three_bytes==@'100000000 {$2^{24}$}
+
+@p procedure fix_design_size;
+var @!d:scaled; {the design size}
+begin d:=internal[design_size];
+if (d<unity)or(d>=fraction_half) then
+ begin if d<>0 then
+ print_nl("(illegal design size has been changed to 128pt)");
+@.illegal design size...@>
+ d:=@'40000000; internal[design_size]:=d;
+ end;
+if header_byte[5]<0 then if header_byte[6]<0 then
+ if header_byte[7]<0 then if header_byte[8]<0 then
+ begin header_byte[5]:=d div @'4000000;
+ header_byte[6]:=(d div 4096) mod 256;
+ header_byte[7]:=(d div 16) mod 256;
+ header_byte[8]:=(d mod 16)*16;
+ end;
+max_tfm_dimen:=16*internal[design_size]-internal[design_size] div @'10000000;
+if max_tfm_dimen>=fraction_half then max_tfm_dimen:=fraction_half-1;
+end;
+
+@ The |dimen_out| procedure computes a |fix_word| relative to the
+design size. If the data was out of range, it is corrected and the
+global variable |tfm_changed| is increased by~one.
+
+@p function dimen_out(@!x:scaled):integer;
+begin if abs(x)>max_tfm_dimen then
+ begin incr(tfm_changed);
+ if x>0 then x:=three_bytes-1@+else x:=1-three_bytes;
+ end
+else x:=make_scaled(x*16,internal[design_size]);
+dimen_out:=x;
+end;
+
+@ @<Glob...@>=
+@!max_tfm_dimen:scaled; {bound on widths, heights, kerns, etc.}
+@!tfm_changed:integer; {the number of data entries that were out of bounds}
+
+@ If the user has not specified any of the first four header bytes,
+the |fix_check_sum| procedure replaces them by a ``check sum'' computed
+from the |tfm_width| data relative to the design size.
+@^check sum@>
+
+@p procedure fix_check_sum;
+label exit;
+var @!k:eight_bits; {runs through character codes}
+@!b1,@!b2,@!b3,@!b4:eight_bits; {bytes of the check sum}
+@!x:integer; {hash value used in check sum computation}
+begin if header_byte[1]<0 then if header_byte[2]<0 then
+ if header_byte[3]<0 then if header_byte[4]<0 then
+ begin @<Compute a check sum in |(b1,b2,b3,b4)|@>;
+ header_byte[1]:=b1; header_byte[2]:=b2;
+ header_byte[3]:=b3; header_byte[4]:=b4; return;
+ end;
+for k:=1 to 4 do if header_byte[k]<0 then header_byte[k]:=0;
+exit:end;
+
+@ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
+b1:=bc; b2:=ec; b3:=bc; b4:=ec; tfm_changed:=0;
+for k:=bc to ec do if char_exists[k] then
+ begin x:=dimen_out(value(tfm_width[k]))+(k+4)*@'20000000; {this is positive}
+ b1:=(b1+b1+x) mod 255;
+ b2:=(b2+b2+x) mod 253;
+ b3:=(b3+b3+x) mod 251;
+ b4:=(b4+b4+x) mod 247;
+ end
+
+@ Finally we're ready to actually write the \.{TFM} information.
+Here are some utility routines for this purpose.
+
+@d tfm_out(#)==write(tfm_file,#) {output one byte to |tfm_file|}
+
+@p procedure tfm_two(@!x:integer); {output two bytes to |tfm_file|}
+begin tfm_out(x div 256); tfm_out(x mod 256);
+end;
+@#
+procedure tfm_four(@!x:integer); {output four bytes to |tfm_file|}
+begin if x>=0 then tfm_out(x div three_bytes)
+else begin x:=x+@'10000000000; {use two's complement for negative values}
+ x:=x+@'10000000000;
+ tfm_out((x div three_bytes) + 128);
+ end;
+x:=x mod three_bytes; tfm_out(x div unity);
+x:=x mod unity; tfm_out(x div @'400);
+tfm_out(x mod @'400);
+end;
+@#
+procedure tfm_qqqq(@!x:four_quarters); {output four quarterwords to |tfm_file|}
+begin tfm_out(qo(x.b0)); tfm_out(qo(x.b1)); tfm_out(qo(x.b2));
+tfm_out(qo(x.b3));
+end;
+
+@ @<Finish the \.{TFM} file@>=
+if job_name=0 then open_log_file;
+pack_job_name(".tfm");
+while not b_open_out(tfm_file) do
+ prompt_file_name("file name for font metrics",".tfm");
+metric_file_name:=b_make_name_string(tfm_file);
+@<Output the subfile sizes and header bytes@>;
+@<Output the character information bytes, then
+ output the dimensions themselves@>;
+@<Output the ligature/kern program@>;
+@<Output the extensible character recipes and the font metric parameters@>;
+@!stat if internal[tracing_stats]>0 then
+ @<Log the subfile sizes of the \.{TFM} file@>;@;@+tats@/
+print_nl("Font metrics written on "); print(metric_file_name); print_char(".");
+@.Font metrics written...@>
+b_close(tfm_file)
+
+@ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
+this code.
+
+@<Output the subfile sizes and header bytes@>=
+k:=header_size;
+while header_byte[k]<0 do decr(k);
+lh:=(k+3) div 4; {this is the number of header words}
+if bc>ec then bc:=1; {if there are no characters, |ec=0| and |bc=1|}
+@<Compute the ligature/kern program offset and implant the
+ left boundary label@>;
+tfm_two(6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+lk_offset+nk+ne+np);
+ {this is the total number of file words that will be output}
+tfm_two(lh); tfm_two(bc); tfm_two(ec); tfm_two(nw); tfm_two(nh);
+tfm_two(nd); tfm_two(ni); tfm_two(nl+lk_offset); tfm_two(nk); tfm_two(ne);
+tfm_two(np);
+for k:=1 to 4*lh do
+ begin if header_byte[k]<0 then header_byte[k]:=0;
+ tfm_out(header_byte[k]);
+ end
+
+@ @<Output the character information bytes...@>=
+for k:=bc to ec do
+ if not char_exists[k] then tfm_four(0)
+ else begin tfm_out(info(tfm_width[k])); {the width index}
+ tfm_out((info(tfm_height[k]))*16+info(tfm_depth[k]));
+ tfm_out((info(tfm_ital_corr[k]))*4+char_tag[k]);
+ tfm_out(char_remainder[k]);
+ end;
+tfm_changed:=0;
+for k:=1 to 4 do
+ begin tfm_four(0); p:=dimen_head[k];
+ while p<>inf_val do
+ begin tfm_four(dimen_out(value(p))); p:=link(p);
+ end;
+ end
+
+@ We need to output special instructions at the beginning of the
+|lig_kern| array in order to specify the right boundary character
+and/or to handle starting addresses that exceed 255. The |label_loc|
+and |label_char| arrays have been set up to record all the
+starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
+\le|label_loc|[|label_ptr]|$.
+
+@<Compute the ligature/kern program offset...@>=
+bchar:=round_unscaled(internal[boundary_char]);
+if(bchar<0)or(bchar>255)then
+ begin bchar:=-1; lk_started:=false; lk_offset:=0;@+end
+else begin lk_started:=true; lk_offset:=1;@+end;
+@<Find the minimum |lk_offset| and adjust all remainders@>;
+if bch_label<undefined_label then
+ begin skip_byte(nl):=qi(255); next_char(nl):=qi(0);
+ op_byte(nl):=qi(((bch_label+lk_offset)div 256));
+ rem_byte(nl):=qi(((bch_label+lk_offset)mod 256));
+ incr(nl); {possibly |nl=lig_table_size+1|}
+ end
+
+@ @<Find the minimum |lk_offset|...@>=
+k:=label_ptr; {pointer to the largest unallocated label}
+if label_loc[k]+lk_offset>255 then
+ begin lk_offset:=0; lk_started:=false; {location 0 can do double duty}
+ repeat char_remainder[label_char[k]]:=lk_offset;
+ while label_loc[k-1]=label_loc[k] do
+ begin decr(k); char_remainder[label_char[k]]:=lk_offset;
+ end;
+ incr(lk_offset); decr(k);
+ until lk_offset+label_loc[k]<256;
+ {N.B.: |lk_offset=256| satisfies this when |k=0|}
+ end;
+if lk_offset>0 then
+ while k>0 do
+ begin char_remainder[label_char[k]]
+ :=char_remainder[label_char[k]]+lk_offset;
+ decr(k);
+ end
+
+@ @<Output the ligature/kern program@>=
+for k:=0 to 255 do if skip_table[k]<undefined_label then
+ begin print_nl("(local label "); print_int(k); print(":: was missing)");
+@.local label l:: was missing@>
+ cancel_skips(skip_table[k]);
+ end;
+if lk_started then {|lk_offset=1| for the special |bchar|}
+ begin tfm_out(255); tfm_out(bchar); tfm_two(0);
+ end
+else for k:=1 to lk_offset do {output the redirection specs}
+ begin ll:=label_loc[label_ptr];
+ if bchar<0 then
+ begin tfm_out(254); tfm_out(0);
+ end
+ else begin tfm_out(255); tfm_out(bchar);
+ end;
+ tfm_two(ll+lk_offset);
+ repeat decr(label_ptr);
+ until label_loc[label_ptr]<ll;
+ end;
+for k:=0 to nl-1 do tfm_qqqq(lig_kern[k]);
+for k:=0 to nk-1 do tfm_four(dimen_out(kern[k]))
+
+@ @<Output the extensible character recipes...@>=
+for k:=0 to ne-1 do tfm_qqqq(exten[k]);
+for k:=1 to np do
+ if k=1 then
+ if abs(param[1])<fraction_half then tfm_four(param[1]*16)
+ else begin incr(tfm_changed);
+ if param[1]>0 then tfm_four(el_gordo)
+ else tfm_four(-el_gordo);
+ end
+ else tfm_four(dimen_out(param[k]));
+if tfm_changed>0 then
+ begin if tfm_changed=1 then print_nl("(a font metric dimension")
+@.a font metric dimension...@>
+ else begin print_nl("("); print_int(tfm_changed);
+@.font metric dimensions...@>
+ print(" font metric dimensions");
+ end;
+ print(" had to be decreased)");
+ end
+
+@ @<Log the subfile sizes of the \.{TFM} file@>=
+begin wlog_ln(' ');
+if bch_label<undefined_label then decr(nl);
+wlog_ln('(You used ',nw:1,'w,',@| nh:1,'h,',@| nd:1,'d,',@| ni:1,'i,',@|
+ nl:1,'l,',@| nk:1,'k,',@| ne:1,'e,',@|
+ np:1,'p metric file positions');
+wlog_ln(' out of ',@| '256w,16h,16d,64i,',@|
+ lig_table_size:1,'l,',max_kerns:1,'k,256e,',@|
+ max_font_dimen:1,'p)');
+end
+
+@* \[43] Reading font metric data.
+
+\MP\ isn't a typesetting program but it does need to find the bounding box
+of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
+well as write them.
+
+@<Glob...@>=
+tfm_infile:byte_file;
+
+@ All the width, height, and depth information is stored in an array called
+|font_info|. This array is allocated sequentially and each font is stored
+as a series of |char_info| words followed by the width, height, and depth
+tables. Since |font_name| entries are permanent, their |str_ref| values are
+set to |max_str_ref|.
+
+@<Types...@>=
+font_number=0..font_max;
+
+@ @<Glob...@>=
+font_info:array[0..font_mem_size] of memory_word;
+ {height, width, and depth data}
+next_fmem:0..font_mem_size; {next unused entry in |font_info|}
+last_fnum:font_number; {last font number used so far}
+font_dsize:array[font_number] of scaled;
+ {16 times the ``design'' size in \ps\ points}
+font_name:array[font_number] of str_number;
+ {name as specified in the \&{infont} command}
+font_ps_name:array[font_number] of str_number;
+ {PostScript name for use when |internal[prologues]>0|}
+last_ps_fnum:font_number; {last valid |font_ps_name| index}
+font_bc,font_ec:array[font_number] of eight_bits;
+ {first and last character code}
+
+@ The |font_info| array is indexed via a group directory arrays.
+For example, the |char_info| data for character~|c| in font~|f| will be
+in |font_info[char_base[f]+c].qqqq|.
+
+@<Glob...@>=
+char_base:array[font_number] of 0..font_mem_size;
+ {base address for |char_info|}
+width_base:array[font_number] of 0..font_mem_size;
+ {index for zeroth character width}
+height_base:array[font_number] of 0..font_mem_size;
+ {index for zeroth character height}
+depth_base:array[font_number] of 0..font_mem_size;
+ {index for zeroth character depth}
+
+@ A |null_font| containing no characters is useful for error recovery. Its
+|font_name| entry starts out empty but is reset each time an erroneous font is
+found. This helps to cut down on the number of duplicate error messages without
+wasting a lot of space.
+
+@d null_font=0 {the |font_number| for an empty font}
+
+@<Initialize table...@>=
+font_dsize[null_font]:=0;
+font_name[null_font]:="";
+font_ps_name[null_font]:="";
+font_bc[null_font]:=1;
+font_ec[null_font]:=0;@/
+char_base[null_font]:=0;
+width_base[null_font]:=0;
+height_base[null_font]:=0;
+depth_base[null_font]:=0;@/
+next_fmem:=0;
+last_fnum:=null_font;
+last_ps_fnum:=null_font;
+
+@ Each |char_info| word is of type |four_quarters|. The |b0| field contains
+|min_quarter_word| plus the |width index|; the |b1| field contains the height
+index; the |b2| fields contains the depth index, and the |b3| field used only
+for temporary storage. (It is used to keep track of which characters occur in
+an edge structure that is being shipped out.)
+The corresponding words in the width, height, and depth tables are stored as
+|scaled| values in units of \ps\ points.
+
+With the macros below, the |char_info| word for character~|c| in font~|f| is
+|char_info(f)(c)| and the width is
+$$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
+
+@d char_info_end(#)==#].qqqq
+@d char_info(#)==font_info[char_base[#]+char_info_end
+@d char_width_end(#)==#.b0].sc
+@d char_width(#)==font_info[width_base[#]+char_width_end
+@d char_height_end(#)==#.b1].sc
+@d char_height(#)==font_info[height_base[#]+char_height_end
+@d char_depth_end(#)==#.b2].sc
+@d char_depth(#)==font_info[depth_base[#]+char_depth_end
+@d ichar_exists(#)==(#.b0>min_quarterword)
+
+@ The |font_ps_name| for a built-in font should be what PostScript expects.
+A preliminary name is obtained here from the \.{TFM} name as given in the
+|fname| argument. This gets updated later from an external table if necessary.
+
+@d bad_tfm=11 {go here if the \.{TFM} file is bad}
+
+@<Declare text measuring subroutines@>=
+@<Declare subroutines for parsing file names@>@;
+function read_font_info(fname:str_number):font_number;
+label bad_tfm,done;
+var @!file_opened:boolean; {has |tfm_infile| been opened?}
+@!n:font_number; {the number to return}
+@!lf,@!lh,@!bc,@!ec,@!nw,@!nh,@!nd:halfword; {subfile size parameters}
+@!whd_size:integer; {words needed for heights, widths, and depths}
+@!i,@!ii:0..font_mem_size; {|font_info| indices}
+@!jj:0..font_mem_size; {counts bytes to be ignored}
+@!z:scaled; {used to compute the design size}
+@!d:fraction;
+ {height, width, or depth as a fraction of design size times $2^{-8}$}
+@!h_and_d:eight_bits; {height and depth indices being unpacked}
+begin n:=null_font;
+@<Open |tfm_infile| for input@>;
+@<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
+ otherwise |goto bad_tfm| or |goto done| as appropriate@>;
+bad_tfm:@<Complain that the \.{TFM} file is bad@>;
+done:if file_opened then b_close(tfm_infile);
+if n<>null_font then
+ begin font_ps_name[n]:=fname;
+ font_name[n]:=fname;
+ str_ref[fname]:=max_str_ref;
+ end;
+read_font_info:=n;
+end;
+
+@ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
+precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
+@.TFtoPL@> @.PLtoTF@>
+and \.{PLtoTF} can be used to debug \.{TFM} files.
+
+@<Complain that the \.{TFM} file is bad@>=
+print_err("Font ");
+print(fname);
+if file_opened then print(" not usable: TFM file is bad")
+else print(" not usable: TFM file not found");
+help3("I wasn't able to read the size data for this font so this")@/
+ ("`infont' operation won't produce anything. If the font name")@/
+ ("is right, you might ask an expert to make a TFM file");
+if file_opened then
+ help_line[0]:="is right, try asking an expert to fix the TFM file";
+error
+
+@ @<Read data from |tfm_infile|; if there is no room, say so...@>=
+@<Read the \.{TFM} size fields@>;
+@<Use the size fields to allocate space in |font_info|@>;
+@<Read the \.{TFM} header@>;
+@<Read the character data and the width, height, and depth tables and
+ |goto done|@>
+
+@ A bad \.{TFM} file can be shorter than it claims to be. The code given here
+might try to read past the end of the file if this happens. Changes will be
+needed if it causes a system error to refer to |tfm_infile^| or call
+|get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
+@^system dependencies@>
+of |tfget| could be changed to
+``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
+
+@d tfget==get(tfm_infile)
+@d tfbyte==tfm_infile^
+@d read_two(#)==begin #:=tfbyte;
+ if #>127 then goto bad_tfm;
+ tfget; #:=#*@'400+tfbyte;
+ end
+@d tf_ignore(#)==for jj:=# downto 1 do tfget
+
+@<Read the \.{TFM} size fields@>=
+read_two(lf);
+tfget; read_two(lh);
+tfget; read_two(bc);
+tfget; read_two(ec);
+if (bc>1+ec)or(ec>255) then goto bad_tfm;
+tfget; read_two(nw);
+tfget; read_two(nh);
+tfget; read_two(nd);
+whd_size:=(ec+1-bc)+nw+nh+nd;
+if lf<6+lh+whd_size then goto bad_tfm;
+tf_ignore(10)
+
+@ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
+necessary to apply the |so| and |qo| macros when looking up the width of a
+character in the string pool. In order to ensure nonnegative |char_base|
+values when |bc>0|, it may be necessary to reserve a few unused |font_info|
+elements.
+
+@<Use the size fields to allocate space in |font_info|@>=
+if next_fmem<bc+min_pool_ASCII then next_fmem:=bc+min_pool_ASCII;
+ {ensure nonnegative |char_base|}
+if (last_fnum=font_max)or(next_fmem+whd_size>=font_mem_size) then
+ @<Explain that there isn't enough space and |goto done|@>;
+incr(last_fnum);
+n:=last_fnum;
+font_bc[n]:=bc;
+font_ec[n]:=ec;
+char_base[n]:=next_fmem-bc-min_pool_ASCII;
+width_base[n]:=next_fmem+ec-bc+1-min_quarterword;
+height_base[n]:=width_base[n]+min_quarterword+nw;
+depth_base[n]:=height_base[n]+nh;
+next_fmem:=next_fmem+whd_size;
+
+@ @<Explain that there isn't enough space and |goto done|@>=
+begin print_err("Font ");
+print(fname);
+print(" not usable: Not enough space");
+help3("This `infont' operation won't produce anything because I")@/
+ ("don't have enough room to store the character-size data for")@/
+ ("the font. You may have to ask a wizard to enlarge me.");
+error;
+goto done;
+end
+
+@ @<Read the \.{TFM} header@>=
+if lh<2 then goto bad_tfm;
+tf_ignore(4);
+tfget; read_two(z);
+tfget; z:=z*@'400+tfbyte;
+tfget; z:=z*@'400+tfbyte; {now |z| is 16 times the design size}
+font_dsize[n]:=take_fraction(z,267432584);
+ {times ${72\over72.27}2^{28}$ to convert from \TeX\ points}
+tf_ignore(4*(lh-2))
+
+@ @<Read the character data and the width, height, and depth tables...@>=
+ii:=width_base[n]+min_quarterword;
+i:=char_base[n]+min_pool_ASCII+bc;
+while i<ii do
+ begin tfget; font_info[i].qqqq.b0:=qi(tfbyte);@/
+ tfget; h_and_d:=tfbyte;
+ font_info[i].qqqq.b1:=h_and_d div 16;
+ font_info[i].qqqq.b2:=h_and_d mod 16;@/
+ tfget; tfget;
+ incr(i);
+ end;
+while i<next_fmem do
+ @<Read a four byte dimension, scale it by the design size, store it in
+ |font_info[i]|, and increment |i|@>;
+if eof(tfm_infile) then goto bad_tfm;
+goto done
+
+@ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
+interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
+we can multiply it by sixteen and think of it as a |fraction| that has been
+divided by sixteen. This cancels the extra scale factor contained in
+|font_dsize[n|.
+
+@<Read a four byte dimension, scale it by the design size, store it in...@>=
+begin tfget; d:=tfbyte;
+if d>=@'200 then d:=d-@'400;
+tfget; d:=d*@'400+tfbyte;@/
+tfget; d:=d*@'400+tfbyte;@/
+tfget; d:=d*@'400+tfbyte;@/
+font_info[i].sc:=take_fraction(d*16,font_dsize[n]);
+incr(i);
+end
+
+@ @<Open |tfm_infile| for input@>=
+file_opened:=false;
+str_scan_file(fname);
+if cur_area="" then cur_area:=MP_font_area;
+if cur_ext="" then cur_ext:=".tfm";
+pack_cur_name;
+if not b_open_in(tfm_infile) then goto bad_tfm;
+file_opened:=true
+
+@ When we have a font name and we don't know whether it has been loaded yet,
+we scan the |font_name| array before calling |read_font_info|.
+
+@<Declare text measuring subroutines@>=
+function find_font(@!f:str_number):font_number;
+label exit,found;
+var @!n:font_number;
+begin for n:=0 to last_fnum do
+ if str_vs_str(f,font_name[n])=0 then goto found;
+find_font:=read_font_info(f);
+return;
+found:find_font:=n;
+exit:end;
+
+@ One simple application of |find_font| is the implementation of the |font_size|
+operator that gets the design size for a given font name.
+
+@<Find the design size of the font whose name is |cur_exp|@>=
+flush_cur_exp((font_dsize[find_font(cur_exp)]+8) div 16)
+
+@ If we discover that the font doesn't have a requested character, we omit it
+from the bounding box computation and expect the \ps\ interpreter to drop it.
+This routine issues a warning message if the user has asked for it.
+
+@<Declare text measuring subroutines@>=
+procedure lost_warning(@!f:font_number;@!k:pool_pointer);
+begin if internal[tracing_lost_chars]>0 then
+ begin begin_diagnostic;
+ print_nl("Missing character: There is no ");
+@.Missing character@>
+ print(so(str_pool[k])); print(" in font ");
+ print(font_name[f]); print_char("!"); end_diagnostic(false);
+ end;
+end;
+
+@ The whole purpose of saving the height, width, and depth information is to be
+able to find the bounding box of an item of text in an edge structure. The
+|set_text_box| procedure takes a text node and adds this information.
+
+@<Declare text measuring subroutines@>=
+procedure set_text_box(@!p:pointer);
+var @!f:font_number; {|font_n(p)|}
+@!bc,@!ec:pool_ASCII_code; {range of valid characters for font |f|}
+@!k,kk:pool_pointer; {current character and character to stop at}
+@!cc:four_quarters; {the |char_info| for the current character}
+@!h,@!d:scaled; {dimensions of the current character}
+begin width_val(p):=0;
+height_val(p):=-el_gordo;
+depth_val(p):=-el_gordo;@/
+f:=font_n(p);
+bc:=si(font_bc[f]);
+ec:=si(font_ec[f]);@/
+kk:=str_stop(text_p(p));
+k:=str_start[text_p(p)];
+while k<kk do
+ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
+@<Set the height and depth to zero if the bounding box is empty@>;
+end;
+
+@ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
+begin if (str_pool[k]<bc)or(str_pool[k]>ec) then lost_warning(f,k)
+else begin cc:=char_info(f)(str_pool[k]);
+ if not ichar_exists(cc) then lost_warning(f,k)
+ else begin width_val(p):=width_val(p)+char_width(f)(cc);
+ h:=char_height(f)(cc);
+ d:=char_depth(f)(cc);
+ if h>height_val(p) then height_val(p):=h;
+ if d>depth_val(p) then depth_val(p):=d;
+ end;
+ end;
+incr(k);
+end
+
+@ Let's hope modern compilers do comparisons correctly when the difference would
+overflow.
+
+@<Set the height and depth to zero if the bounding box is empty@>=
+if height_val(p)<-depth_val(p) then
+ begin height_val(p):=0;
+ depth_val(p):=0;
+ end
+
+@ The file |ps_tab_file| gives a table of \TeX\ font names and corresponding
+PostScript names for fonts that do not have to be downloaded, i.e., fonts that
+can be used when |internal[prologues]>0|. Each line consists of a \TeX\ name,
+one or more spaces, a PostScript name, and possibly a space and some other junk.
+This routine reads the table, updates |font_ps_name| entries starting after
+|last_ps_fnum|, and sets |last_ps_fnum:=last_fnum|. If the file |ps_tab_file|
+is missing, we assume that the existing font names are OK and nothing needs to
+be done.
+
+@<Declare the \ps\ output procedures@>=
+procedure read_psname_table;
+label common_ending, done;
+var @!k:font_number; {font for possible name match}
+@!lmax:integer; {upper limit on length of name to match}
+@!j:integer; {characters left to read before string gets too long}
+@!c:text_char; {character being read from |ps_tab_file|}
+@!s:str_number; {possible font name to match}
+begin name_of_file:=ps_tab_name;
+if a_open_in(ps_tab_file) then
+ begin @<Set |lmax| to the maximum |font_name| length for fonts
+ |last_ps_fnum+1| through |last_fnum|@>;
+ while not eof(ps_tab_file) do
+ begin @<Read at most |lmax| characters from |ps_tab_file| into string |s|
+ but |goto common_ending| if there is trouble@>;
+ for k:=last_ps_fnum+1 to last_fnum do
+ if str_vs_str(s,font_name[k])=0 then
+ @<|flush_string(s)|, read in |font_ps_name[k]|, and
+ |goto common_ending|@>;
+ flush_string(s);
+common_ending:read_ln(ps_tab_file);
+ end;
+ last_ps_fnum:=last_fnum;
+ a_close(ps_tab_file);
+ end;
+end;
+
+@ @<Glob...@>=
+@!ps_tab_file:alpha_file; {file for font name translation table}
+
+@ @<Set |lmax| to the maximum |font_name| length for fonts...@>=
+lmax:=0;
+for k:=last_ps_fnum+1 to last_fnum do
+ if length(font_name[k])>lmax then lmax:=length(font_name[k])
+
+@ @<Read at most |lmax| characters from |ps_tab_file| into string |s|...@>=
+str_room(lmax);
+j:=lmax;
+loop @+begin if eoln(ps_tab_file) then
+ fatal_error("The psfont map file is bad!");
+ read(ps_tab_file,c);
+ if c=' ' then goto done;
+ decr(j);
+ if j>=0 then append_char(xord[c])
+ else begin flush_cur_string;
+ goto common_ending;
+ end;
+ end;
+done:s:=make_string
+
+@ PostScript font names should be at most 28 characters long but we allow 32
+just to be safe.
+
+@<|flush_string(s)|, read in |font_ps_name[k]|, and...@>=
+begin flush_string(s);
+j:=32;
+str_room(j);
+repeat if eoln(ps_tab_file) then fatal_error("The psfont map file is bad!");
+ read(ps_tab_file,c);
+until c<>' ';
+repeat decr(j);
+ if j<0 then fatal_error("The psfont map file is bad!");
+ append_char(xord[c]);
+ if eoln(ps_tab_file) then c:=' ' @+else read(ps_tab_file,c);
+until c=' ';
+delete_str_ref(font_ps_name[k]);
+font_ps_name[k]:=make_string;
+goto common_ending;
+end
+
+@* \[44] Shipping pictures out.
+The |ship_out| procedure, to be described below, is given a pointer to
+an edge structure. Its mission is to output a file containing the \ps\
+description of an edge structure.
+
+@ Each time an edge structure is shipped out we write a new \ps\ output
+file named according to the current \&{charcode}.
+@:char_code_}{\&{charcode} primitive@>
+
+@<Declare the \ps\ output procedures@>=
+procedure open_output_file;
+var @!c:integer; {\&{charcode} rounded to the nearest integer}
+@!old_setting:0..max_selector; {previous |selector| setting}
+@!s:str_number; {a file extension derived from |c|}
+begin if job_name=0 then open_log_file;
+c:=round_unscaled(internal[char_code]);
+if c<0 then s:=".ps"
+else @<Use |c| to compute the file extension |s|@>;
+pack_job_name(s);
+while not a_open_out(ps_file) do
+ prompt_file_name("file name for output",s);
+delete_str_ref(s);
+@<Store the true output file name if appropriate@>;
+@<Begin the progress report for the ouput of picture~|c|@>;
+end;
+
+@ The file extension created here could be up to five characters long in
+extreme cases so it may have to be shortened on some systems.
+@^system dependencies@>
+
+@<Use |c| to compute the file extension |s|@>=
+begin old_setting:=selector; selector:=new_string;
+print_char("."); print_int(c);
+s:=make_string;
+selector:=old_setting;
+end
+
+@ The user won't want to see all the output file names so we only save the
+first and last ones and a count of how many there were. For this purpose
+files are ordered primarily by \&{charcode} and secondarily by order of
+creation.
+@:char_code_}{\&{charcode} primitive@>
+
+@<Store the true output file name if appropriate@>=
+if (c<first_output_code)and(first_output_code>=0) then
+ begin first_output_code:=c;
+ delete_str_ref(first_file_name);
+ first_file_name:=a_make_name_string(ps_file);
+ end;
+if c>=last_output_code then
+ begin last_output_code:=c;
+ delete_str_ref(last_file_name);
+ last_file_name:=a_make_name_string(ps_file);
+ end
+
+@ @<Glob...@>=
+@!first_file_name,@!last_file_name:str_number; {full file names}
+@!first_output_code,@!last_output_code:integer; {rounded \&{charcode} values}
+@:char_code_}{\&{charcode} primitive@>
+@!total_shipped:integer; {total number of |ship_out| operations completed}
+
+@ @<Set init...@>=
+first_file_name:="";
+last_file_name:="";@/
+first_output_code:=32768;
+last_output_code:=-32768;@/
+total_shipped:=0;
+
+@ @<Begin the progress report for the ouput of picture~|c|@>=
+if term_offset>max_print_line-6 then print_ln
+else if (term_offset>0)or(file_offset>0) then print_char(" ");
+print_char("[");
+if c>=0 then print_int(c)
+
+@ @<End progress report@>=
+print_char("]");
+update_terminal;
+incr(total_shipped)
+
+@ @<Explain what output files were written@>=
+if total_shipped>0 then
+ begin print_nl("");
+ print_int(total_shipped);
+ print(" output file");
+ if total_shipped>1 then print_char("s");
+ print(" written: ");
+ print(first_file_name);
+ if total_shipped>1 then
+ begin if 31+length(first_file_name)+length(last_file_name)>@|
+ max_print_line
+ then print_ln;
+ print(" .. ");
+ print(last_file_name);
+ end;
+ end
+
+@ We often need to print a pair of coordinates.
+
+@d ps_room(#)==if ps_offset+#>max_print_line then print_ln {optional line break}
+
+@<Declare the \ps\ output procedures@>=
+procedure ps_pair_out(@!x,@!y:scaled);
+begin ps_room(26);
+print_scaled(x); print_char(" ");
+print_scaled(y); print_char(" ")
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure ps_print(@!s:str_number);
+begin ps_room(length(s));
+print(s);
+end;
+
+@ The most important output procedure is the one that gives the \ps\ version of
+a \MP\ path.
+
+@<Declare the \ps\ output procedures@>=
+procedure ps_path_out(@!h:pointer);
+label exit;
+var @!p,@!q:pointer; {for scanning the path}
+@!d:scaled; {a temporary value}
+@!curved:boolean; {|true| unless the cubic is almost straight}
+begin ps_room(40);
+if need_newpath then print("newpath ");
+need_newpath:=true;
+ps_pair_out(x_coord(h),y_coord(h));
+print("moveto");@/
+p:=h;
+repeat if right_type(p)=endpoint then
+ begin if p=h then ps_print(" 0 0 rlineto");
+ return;
+ end;
+q:=link(p);
+@<Start a new line and print the \ps\ commands for the curve from
+ |p| to~|q|@>;
+p:=q;
+until p=h;
+ps_print(" closepath");
+exit:end;
+
+@ @<Glob...@>=
+need_newpath:boolean;
+ {will |ps_path_out| need to issue a \&{newpath} command next time}
+@:newpath_}{\&{newpath} command@>
+
+@ @<Start a new line and print the \ps\ commands for the curve from...@>=
+curved:=true;
+@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
+print_ln;
+if curved then
+ begin ps_pair_out(right_x(p),right_y(p));
+ ps_pair_out(left_x(q),left_y(q));
+ ps_pair_out(x_coord(q),y_coord(q));
+ ps_print("curveto");
+ end
+else if q<>h then
+ begin ps_pair_out(x_coord(q),y_coord(q));
+ ps_print("lineto");
+ end
+
+@ Two types of straight lines come up often in \MP\ paths:
+cubics with zero initial and final velocity as created by |make_path| or
+|make_envelope|, and cubics with control points uniformly spaced on a line
+as created by |make_choices|.
+
+@d bend_tolerance=131 {allow rounding error of $2\cdot10^{-3}$}
+
+@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
+if right_x(p)=x_coord(p) then
+ if right_y(p)=y_coord(p) then
+ if left_x(q)=x_coord(q) then
+ if left_y(q)=y_coord(q) then curved:=false;
+d:=left_x(q)-right_x(p);
+if abs(right_x(p)-x_coord(p)-d)<=bend_tolerance then
+ if abs(x_coord(q)-left_x(q)-d)<=bend_tolerance then
+ begin d:=left_y(q)-right_y(p);
+ if abs(right_y(p)-y_coord(p)-d)<=bend_tolerance then
+ if abs(y_coord(q)-left_y(q)-d)<=bend_tolerance then curved:=false;
+ end
+
+@ We need to keep track of several parameters from the \ps\ graphics state.
+@^graphics state@>
+This allows us to be sure that \ps\ has the correct values when they are
+needed without wasting time and space setting them unnecessarily.
+
+@<Glob...@>=
+@!gs_red,@!gs_green,@!gs_blue:scaled;
+ {color from the last \&{setrgbcolor} or \&{setgray} command}
+@:setrgbcolor}{\&{setrgbcolor} command@>
+@:setgray}{\&{setgray} command@>
+@!gs_ljoin,@!gs_lcap:quarterword;
+ {values from the last \&{setlinejoin} and \&{setlinecap} commands}
+@:setlinejoin}{\&{setlinejoin} command@>
+@:setlinecap}{\&{setlinecap} command@>
+@!gs_miterlim:scaled; {the value from the last \&{setmiterlimit} command}
+@:setmiterlimit}{\&{setmiterlimit} command@>
+@!gs_dash_p:pointer; {edge structure for last \&{setdash} command}
+@:setdash}{\&{setdash} command@>
+@!gs_dash_sc:scaled; {scale factor used with |gs_dash_p|}
+@!gs_width:scaled; {width setting or $-1$ if no \&{setlinewidth} command so far}
+@!gs_adj_wx:boolean; {what resolution-dependent adjustment applies to the width}
+@:setlinewidth}{\&{setlinewidth} command@>
+
+@ To avoid making undue assumptions about the initial graphics state, these
+parameters are given special values that are guaranteed not to match anything
+in the edge structure being shipped out. On the other hand, the initial color
+should be black so that the translation of an all-black picture will have no
+\&{setcolor} commands. (These would be undesirable in a font application.)
+Hence we use |c=0| when initializing the graphics state and we use |c<0|
+to recover from a situation where we have lost track of the graphics state.
+
+@<Declare the \ps\ output procedures@>=
+procedure unknown_graphics_state(c:scaled);
+begin gs_red:=c; gs_green:=c; gs_blue:=c;@/
+gs_ljoin:=3;
+gs_lcap:=3;
+gs_miterlim:=0;@/
+gs_dash_p:=void;
+gs_dash_sc:=0;
+gs_width:=-1;
+end;
+
+@ When it is time to output a graphical object, |fix_graphics_state| ensures
+that \ps's idea of the graphics state agrees with what is stored in the object.
+
+@<Declare the \ps\ output procedures@>=
+@<Declare subroutines needed by |fix_graphics_state|@>@;
+procedure fix_graphics_state(p:pointer);
+ {get ready to output graphical object |p|}
+var @!hh,@!pp:pointer; {for list manipulation}
+@!wx,@!wy,@!ww:scaled; {dimensions of pen bounding box}
+@!adj_wx:boolean; {whether pixel rounding should be based on |wx| or |wy|}
+@!tx,@!ty:integer; {temporaries for computing |adj_wx|}
+@!scf:scaled; {a scale factor for the dash pattern}
+begin if has_color(p) then
+ @<Make sure \ps\ will use the right color for object~|p|@>;
+if (type(p)=fill_code)or(type(p)=stroked_code) then
+ if pen_p(p)<>null then
+ if pen_is_elliptical(pen_p(p)) then
+ begin @<Generate \ps\ code that sets the stroke width to the
+ appropriate rounded value@>;
+ @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
+ @<Decide whether the line cap parameter matters and set it if necessary@>;
+ @<Set the other numeric parameters as needed for object~|p|@>;
+ end;
+if ps_offset>0 then print_ln;
+end;
+
+@ @<Decide whether the line cap parameter matters and set it if necessary@>=
+if type(p)=stroked_code then
+ if (left_type(path_p(p))=endpoint)or(dash_p(p)<>null) then
+ if gs_lcap<>lcap_val(p) then
+ begin ps_room(13);
+ print_char(" ");
+ print_char("0"+lcap_val(p)); print(" setlinecap");
+ gs_lcap:=lcap_val(p);
+ end
+
+@ @<Set the other numeric parameters as needed for object~|p|@>=
+if gs_ljoin<>ljoin_val(p) then
+ begin ps_room(14);
+ print_char(" ");
+ print_char("0"+ljoin_val(p)); print(" setlinejoin");
+ gs_ljoin:=ljoin_val(p);
+ end;
+if gs_miterlim<>miterlim_val(p) then
+ begin ps_room(27);
+ print_char(" ");
+ print_scaled(miterlim_val(p)); print(" setmiterlimit");
+ gs_miterlim:=miterlim_val(p);
+ end
+
+@ @<Make sure \ps\ will use the right color for object~|p|@>=
+if (gs_red<>red_val(p))or(gs_green<>green_val(p))or@|
+ (gs_blue<>blue_val(p)) then
+ begin gs_red:=red_val(p);
+ gs_green:=green_val(p);
+ gs_blue:=blue_val(p);@/
+ if (gs_red=gs_green)and(gs_green=gs_blue) then
+ begin ps_room(16);
+ print_char(" ");
+ print_scaled(gs_red);
+ print(" setgray");
+ end
+ else begin ps_room(36);
+ print_char(" ");
+ print_scaled(gs_red); print_char(" ");
+ print_scaled(gs_green); print_char(" ");
+ print_scaled(gs_blue);
+ print(" setrgbcolor");
+ end;
+ end;
+
+@ In order to get consistent widths for horizontal and vertical pen strokes, we
+want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
+@:setwidth}{\&{setwidth}command@>
+We set |gs_width| to the ideal horizontal or vertical stroke width and then
+generate \ps\ code that computes the rounded value. For non-circular pens, the
+pen shape will be rescaled so that horizontal or vertical parts of the stroke
+have the computed width.
+
+Rounding the width to whole pixels is not likely to improve the appearance of
+diagonal or curved strokes, but we do it anyway for consistency. The
+\&{truncate} command generated here tends to make all the strokes a little
+@:truncate}{\&{truncate} command@>
+thinner, but this is appropriate for \ps's scan-conversion rules. Even with
+truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
+It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
+to compute in \ps.
+
+@<Generate \ps\ code that sets the stroke width...@>=
+@<Set |wx| and |wy| to the width and height of the bounding box for
+ |pen_p(p)|@>;
+@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
+ important and set |adj_wx| and |ww| accordingly@>;
+if (ww<>gs_width) or (adj_wx<>gs_adj_wx) then
+ begin if adj_wx then
+ begin ps_room(13);
+ print_char(" "); print_scaled(ww);
+ ps_print(" 0 dtransform exch truncate exch idtransform pop setlinewidth");
+ end
+ else begin ps_room(15);
+ print(" 0 "); print_scaled(ww);
+ ps_print(" dtransform truncate idtransform setlinewidth pop");
+ end;
+ gs_width := ww;
+ gs_adj_wx := adj_wx;
+ end
+
+@ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
+pp:=pen_p(p);
+if (right_x(pp)=x_coord(pp)) and (left_y(pp)=y_coord(pp)) then
+ begin wx := abs(left_x(pp) - x_coord(pp));
+ wy := abs(right_y(pp) - y_coord(pp));
+ end
+else begin
+ wx := pyth_add(left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
+ wy := pyth_add(left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
+ end
+
+@ The path is considered ``essentially horizontal'' if its range of
+$y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
+vertical'' paths are detected similarly. This code ensures that no component
+of the pen transformation is more that |aspect_bound*(ww+1)|.
+
+@d aspect_bound=10 {``less important'' of |wx|, |wy| cannot exceed the other by
+ more than this factor}
+
+@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
+tx:=1; ty:=1;
+if coord_rangeOK(path_p(p), y_loc(0), wy) then tx:=aspect_bound
+else if coord_rangeOK(path_p(p), x_loc(0), wx) then ty:=aspect_bound;
+if wy div ty>=wx div tx then
+ begin ww:=wy; adj_wx:=false;
+ end
+else begin ww:=wx; adj_wx:=true;
+ end
+
+@ This routine quickly tests if path |h| is ``essentially horizontal'' or
+``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
+allowable range for $x$ or~$y$. We do not need and cannot afford a full
+bounding-box computation.
+
+@<Declare subroutines needed by |fix_graphics_state|@>=
+function coord_rangeOK(@!h:pointer; @!zoff:small_number; dz:scaled):boolean;
+label found, not_found, exit;
+var @!p:pointer; {for scanning the path form |h|}
+ @!zlo,@!zhi:scaled; {coordinate range so far}
+ @!z:scaled; {coordinate currently being tested}
+begin zlo:=knot_coord(h+zoff);
+zhi:=zlo;
+p:=h;
+while right_type(p)<>endpoint do
+ begin z:=right_coord(p+zoff);@/
+ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
+ p:=link(p);
+ z:=left_coord(p+zoff);@/
+ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
+ z:=knot_coord(p+zoff);@/
+ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
+ if p=h then goto not_found;
+ end;
+not_found:coord_rangeOK:=true;
+return;
+found:coord_rangeOK:=false;
+exit:end;
+
+@ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>=
+if z<zlo then zlo:=z
+else if z>zhi then zhi:=z;
+if zhi-zlo>dz then goto found
+
+@ Filling with an elliptical pen is implemented via a combination of \&{stroke}
+and \&{fill} commands and a nontrivial dash pattern would interfere with this.
+@:stroke}{\&{stroke} command@>
+@:fill}{\&{fill} command@>
+Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
+a reference.
+
+@<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
+if type(p)=fill_code then hh:=null
+else begin hh:=dash_p(p);
+ scf:=get_pen_scale(pen_p(p));
+ if scf=0 then
+ if gs_width=0 then scf:=dash_scale(p) @+else hh:=null
+ else begin scf:=make_scaled(gs_width,scf);
+ scf:=take_scaled(scf,dash_scale(p));
+ end;
+ end;
+if hh=null then
+ begin if gs_dash_p<>null then
+ begin ps_print(" [] 0 setdash");
+ gs_dash_p:=null;
+ end;
+ end
+else if (gs_dash_sc<>scf) or not same_dashes(gs_dash_p,hh) then
+ @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>
+
+@ Translating a dash list into \ps\ is very similar to printing it symbolically
+in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
+ignored. The same fate applies in the bizarre case of a dash pattern that
+cannot be printed without overflow.
+
+@<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
+begin gs_dash_p:=hh;
+gs_dash_sc:=scf;
+if (dash_y(hh)=0) or (abs(dash_y(hh)) div unity >= el_gordo div scf) then
+ ps_print(" [] 0 setdash")
+else begin pp:=dash_list(hh);
+ start_x(null_dash):=start_x(pp)+dash_y(hh);@/
+ ps_room(28);
+ print(" [");
+ while pp<>null_dash do
+ begin ps_pair_out(take_scaled(stop_x(pp)-start_x(pp),scf),@|
+ take_scaled(start_x(link(pp))-stop_x(pp),scf));
+ pp:=link(pp);
+ end;
+ ps_room(22);
+ print("] ");
+ print_scaled(take_scaled(dash_offset(hh),scf));
+ print(" setdash");
+ end;
+end
+
+@ @<Declare subroutines needed by |fix_graphics_state|@>=
+function same_dashes(@!h,@!hh:pointer):boolean;
+ {do |h| and |hh| represent the same dash pattern?}
+label done;
+var @!p,@!pp:pointer; {dash nodes being compared}
+begin if h=hh then same_dashes:=true
+else if (h<=void)or(hh<=void) then same_dashes:=false
+else if dash_y(h)<>dash_y(hh) then same_dashes:=false
+else @<Compare |dash_list(h)| and |dash_list(hh)|@>;
+end;
+
+@ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
+begin p:=dash_list(h);
+pp:=dash_list(hh);
+while (p<>null_dash)and(pp<>null_dash) do
+ if (start_x(p)<>start_x(pp))or(stop_x(p)<>stop_x(pp)) then goto done
+ else begin p:=link(p);
+ pp:=link(pp);
+ end;
+done:same_dashes:=p=pp;
+end
+
+@ When stroking a path with an elliptical pen, it is necessary to transform
+the coordinate system so that a unit circular pen will have the desired shape.
+To keep this transformation local, we enclose it in a
+$$\&{gsave}\ldots\&{grestore}$$
+block. Any translation component must be applied to the path being stroked
+while the rest of the transformation must apply only to the pen.
+If |fill_also=true|, the path is to be filled as well as stroked so we must
+insert commands to do this after giving the path.
+
+@<Declare the \ps\ output procedures@>=
+procedure stroke_ellipse(@!h:pointer;@!fill_also:boolean);
+ {generate an elliptical pen stroke from object |h|}
+var @!txx,@!txy,@!tyx,@!tyy:scaled; {transformation parameters}
+@!p:pointer; {the pen to stroke with}
+@!d1,@!det:scaled; {for tweaking transformation parameters}
+@!s:integer; {also for tweaking transformation paramters}
+@!transformed:boolean; {keeps track of whether gsave/grestore are needed}
+begin transformed:=false;@/
+@<Use |pen_p(h)| to set the transformation parameters and give the initial
+ translation@>;
+@<Tweak the transformation parameters so the transformation is nonsingular@>;
+ps_path_out(path_p(h));@/
+if fill_also then print_nl("gsave fill grestore");
+@<Issue \ps\ commands to transform the coordinate system@>;
+ps_print(" stroke");
+if transformed then ps_print(" grestore");
+print_ln;
+end;
+
+@ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
+p:=pen_p(h);
+txx:=left_x(p);
+tyx:=left_y(p);@/
+txy:=right_x(p);
+tyy:=right_y(p);
+if (x_coord(p)<>0)or(y_coord(p)<>0) then
+ begin print_nl("gsave ");
+ ps_pair_out(x_coord(p),y_coord(p));
+ ps_print("translate ");@/
+ txx:=txx-x_coord(p);
+ tyx:=tyx-y_coord(p);@/
+ txy:=txy-x_coord(p);
+ tyy:=tyy-y_coord(p);
+ transformed:=true;
+ end
+else print_nl("");
+@<Adjust the transformation to account for |gs_width| and output the
+ initial \&{gsave} if |transformed| should be |true|@>
+
+@ @<Adjust the transformation to account for |gs_width| and output the...@>=
+if gs_width<>unity then
+ if gs_width=0 then
+ begin txx:=unity; tyy:=unity;
+ end
+ else begin txx:=make_scaled(txx,gs_width);
+ txy:=make_scaled(txy,gs_width);
+ tyx:=make_scaled(tyx,gs_width);
+ tyy:=make_scaled(tyy,gs_width);
+ end;
+if (txy<>0)or(tyx<>0)or(txx<>unity)or(tyy<>unity) then
+ if (not transformed) then
+ begin ps_print("gsave ");
+ transformed:=true;
+ end
+
+@ @<Issue \ps\ commands to transform the coordinate system@>=
+if (txy<>0)or(tyx<>0) then
+ begin print_ln;
+ print_char("[");
+ ps_pair_out(txx,tyx);
+ ps_pair_out(txy,tyy);@/
+ ps_print("0 0] concat");
+ end
+else if (txx<>unity)or(tyy<>unity) then
+ begin print_ln;
+ ps_pair_out(txx,tyy);
+ print("scale");
+ end
+
+@ The \ps\ interpreter will probably abort if it encounters a singular
+transformation matrix. The determinant must be large enough to ensure that
+the printed representation will be nonsingular. Since the printed
+representation is always within $2^{-17}$ of the internal |scaled| value, the
+total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
+the magnitudes of |txx/65536|, |txy/65536|, etc.
+
+The |aspect_bound*(gs_width+1)| bound on the components of the pen
+transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
+
+@<Tweak the transformation parameters so the transformation is nonsingular@>=
+det:=take_scaled(txx,tyy) - take_scaled(txy,tyx);
+d1:=4*aspect_bound+1;
+if abs(det)<d1 then
+ begin if det>=0 then
+ begin d1:=d1-det; s:=1; @+end
+ else begin d1:=-d1-det; s:=-1; @+end;
+ d1:=d1*unity;
+ if abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) then
+ if abs(txx)>abs(tyy) then tyy:=tyy+(d1+s*abs(txx)) div txx
+ else txx:=txx+(d1+s*abs(tyy)) div tyy
+ else if abs(txy)>abs(tyx) then tyx:=tyx+(d1+s*abs(txy)) div txy
+ else txy:=txy+(d1+s*abs(tyx)) div tyx;
+ end
+
+@ Here is a simple routine that just fills a cycle.
+
+@<Declare the \ps\ output procedures@>=
+procedure ps_fill_out(@!p:pointer); {fill cyclic path~|p|}
+begin ps_path_out(p);
+ps_print(" fill");
+print_ln;
+end;
+
+@ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
+procedure fills the cycle generated by |make_envelope|. It need not do
+anything unless some region has positive winding number with respect to~|p|,
+but it does not seem worthwhile to for test this.
+
+@<Declare the \ps\ output procedures@>=
+procedure do_outer_envelope(@!p,@!h:pointer);
+begin p:=make_envelope(p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
+ps_fill_out(p);
+toss_knot_list(p);
+end;
+
+@ A text node may specify an arbitrary transformation but the usual case
+involves only shifting, scaling, and occasionally rotation. The purpose
+of |choose_scale| is to select a scale factor so that the remaining
+transformation is as ``nice'' as possible. The definition of ``nice''
+is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
+nice because they work out well for bitmap fonts. The code here selects
+a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
+non-shifting part of the transformation matrix. It is careful to avoid
+additions that might cause undetected overflow.
+
+@<Declare the \ps\ output procedures@>=
+function choose_scale(@!p:pointer):scaled; {|p| should point to a text node}
+var @!a,@!b,@!c,@!d,@!ad,@!bc:scaled; {temporary values}
+begin a:=txx_val(p);
+b:=txy_val(p);
+c:=tyx_val(p);
+d:=tyy_val(p);@/
+if (a<0) then negate(a);
+if (b<0) then negate(b);
+if (c<0) then negate(c);
+if (d<0) then negate(d);
+ad:=half(a-d);
+bc:=half(b-c);@/
+choose_scale:=pyth_add(pyth_add(d+ad,ad), pyth_add(c+bc,bc));
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure ps_string_out(s:str_number);
+var @!i:pool_pointer; {current character code position}
+@!k:ASCII_code; {bits to be converted to octal}
+begin print("(");
+i:=str_start[s];
+while i<str_stop(s) do
+ begin if ps_offset+5>max_print_line then
+ begin print_char("\");
+ print_ln;
+ end;
+ k:=so(str_pool[i]);
+ if (@<Character |k| is not allowed in PostScript output@>) then
+ begin print_char("\");
+ print_char("0"+(k div 64));
+ print_char("0"+((k div 8) mod 8));
+ print_char("0"+(k mod 8));
+ end
+ else begin if (k="(")or(k=")")or(k="\") then print_char("\");
+ print_char(k);
+ end;
+ incr(i);
+ end;
+print(")");
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+function is_ps_name(@!s:str_number):boolean;
+label not_found,exit;
+var @!i:pool_pointer; {current character code position}
+@!k:ASCII_code; {the character being checked}
+begin i:=str_start[s];
+while i<str_stop(s) do
+ begin k:=so(str_pool[i]);
+ if (k<=" ")or(k>"~") then goto not_found;
+ if (k="(")or(k=")")or(k="<")or(k=">")or@|
+ (k="{")or(k="}")or(k="/")or(k="%") then goto not_found;
+ incr(i);
+ end;
+is_ps_name:=true;
+return;
+not_found:is_ps_name:=false;
+exit:end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure ps_name_out(@!s:str_number;@!lit:boolean);
+begin ps_room(length(s)+2);
+print_char(" ");
+if is_ps_name(s) then
+ begin if lit then print_char("/");
+ print(s);
+ end
+ else begin ps_string_out(s);
+ if not lit then ps_print("cvx ");
+ ps_print("cvn");
+ end;
+end;
+
+@ We also need to keep track of which characters are used in text nodes
+in the edge structure that is being shipped out. This is done by procedures
+that use the left-over |b3| field in the |char_info| words; i.e.,
+|char_info(f)(c).b3| gives the status of character |c| in font |f|.
+
+@d unused=0
+@d used=1
+
+@ @<Declare the \ps\ output procedures@>=
+procedure unmark_font(@!f:font_number);
+var @!k:0..font_mem_size; {an index into |font_info|}
+begin for k:= char_base[f]+si(font_bc[f]) to char_base[f]+si(font_ec[f]) do
+ font_info[k].qqqq.b3:=unused;
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure mark_string_chars(@!f:font_number;@!s:str_number);
+var @!b:integer; {|char_base[f]|}
+@!bc,@!ec:pool_ASCII_code; {only characters between these bounds are marked}
+@!k:pool_pointer; {an index into string |s|}
+begin b:=char_base[f];
+bc:=si(font_bc[f]);
+ec:=si(font_ec[f]);@/
+k:=str_stop(s);
+while k>str_start[s] do
+ begin decr(k);
+ if (str_pool[k]>=bc)and(str_pool[k]<=ec) then
+ font_info[b+str_pool[k]].qqqq.b3:=used;
+ end
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure hex_digit_out(@!d:small_number);
+begin if d<10 then print_char(d+"0")
+else print_char(d+"a"-10);
+end;
+
+@ We output the marks as a hexadecimal bit string starting at |c| or
+|font_bc[f]|, whichever is greater. If the output has to be truncated
+to avoid exceeding |emergency_line_length| the return value says where to
+start scanning next time.
+
+@<Declare the \ps\ output procedures@>=
+function ps_marks_out(@!f:font_number;@!c:eight_bits):halfword;
+var @!bc,@!ec:eight_bits; {only encode characters between these bounds}
+@!lim:integer; {the maximum number of marks to encode before truncating}
+@!p:0..font_mem_size; {|font_info| index for the current character}
+@!d,@!b:0..15; {used to construct a hexadecimal digit}
+begin lim:=4*(emergency_line_length-ps_offset-4);
+bc:=font_bc[f];
+ec:=font_ec[f];
+if c>bc then bc:=c;
+@<Restrict the range |bc..ec| so that it contains no unused characters
+ at either end and has length at most |lim|@>;
+@<Print the initial label indicating that the bitmap starts at |bc|@>;
+@<Print a hexadecimal encoding of the marks for characters |bc..ec|@>;
+while (ec<font_ec[f])and(font_info[p].qqqq.b3=unused) do
+ begin incr(p); incr(ec);
+ end;
+ps_marks_out:=ec+1;
+end;
+
+@ We could save time by setting the return value before the loop that
+decrements |ec|, but there is no point in being so tricky.
+
+@<Restrict the range |bc..ec| so that it contains no unused characters...@>=
+p:=char_base[f]+si(bc);
+while (font_info[p].qqqq.b3=unused)and(bc<ec) do
+ begin incr(p); incr(bc);
+ end;
+if ec>=bc+lim then ec:=bc+lim-1;
+p:=char_base[f]+si(ec);
+while (font_info[p].qqqq.b3=unused)and(bc<ec) do
+ begin decr(p); decr(ec);
+ end;
+
+@ @<Print the initial label indicating that the bitmap starts at |bc|@>=
+print_char(" ");
+hex_digit_out(bc div 16);
+hex_digit_out(bc mod 16);
+print_char(":")
+
+@ @<Print a hexadecimal encoding of the marks for characters |bc..ec|@>=
+b:=8; d:=0;
+for p:=char_base[f]+si(bc) to char_base[f]+si(ec) do
+ begin if b=0 then
+ begin hex_digit_out(d);
+ d:=0; b:=8;
+ end;
+ if font_info[p].qqqq.b3<>unused then d:=d+b;
+ b:=halfp(b);
+ end;
+hex_digit_out(d)
+
+@ Here is a simple function that determines whether there are any marked
+characters in font~|f| with character code at least~|c|.
+
+@<Declare the \ps\ output procedures@>=
+function check_ps_marks(@!f:font_number; @!c:integer):boolean;
+label exit;
+var @!p:0..font_mem_size; {|font_info| index for the current character}
+begin for p:=char_base[f]+si(c) to char_base[f]+si(font_ec[f]) do
+ if font_info[p].qqqq.b3=used then
+ begin check_ps_marks:=true; return;
+ end;
+check_ps_marks:=false;
+exit: end;
+
+@ There may be many sizes of one font and we need to keep track of the
+characters used for each size. This is done by keeping a linked list of
+sizes for each font with a counter in each text node giving the appropriate
+position in the size list for its font.
+
+@d sc_factor(#)==mem[#+1].sc {the scale factor stored in a font size node}
+@d font_size_size=2 {size of a font size node}
+
+@<Glob...@>=
+font_sizes:array[font_number] of pointer;
+
+@ @d fscale_tolerance==65 {that's $.001\times2^{16}$}
+
+@<Declare the \ps\ output procedures@>=
+function size_index(@!f:font_number;@!s:scaled):quarterword;
+label found;
+var @!p,@!q:pointer; {the previous and current font size nodes}
+@!i:quarterword; {the size index for |q|}
+begin q:=font_sizes[f];
+i:=0;
+while q<>null do
+ begin if abs(s-sc_factor(q))<=fscale_tolerance then goto found
+ else begin p:=q; q:=link(q);
+ incr(i);
+ end;
+ if i=max_quarterword then
+ overflow("sizes per font",max_quarterword);
+@:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
+ end;
+q:=get_node(font_size_size);
+sc_factor(q):=s;
+if i=0 then font_sizes[f]:=q @+else link(p):=q;
+found:size_index:=i;
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+function indexed_size(@!f:font_number;@!j:quarterword):scaled;
+var @!p:pointer; {a font size node}
+@!i:quarterword; {the size index for |p|}
+begin p:=font_sizes[f];
+i:=0;
+if p=null then confusion("size");
+while (i<>j) do
+ begin incr(i); p:=link(p);
+ if p=null then confusion("size");
+ end;
+indexed_size:=sc_factor(p);
+end;
+
+@ @<Declare the \ps\ output procedures@>=
+procedure clear_sizes;
+var @!f:font_number; {the font whose size list is being cleared}
+@!p:pointer; {current font size nodes}
+begin for f:=null_font+1 to last_fnum do
+ while font_sizes[f]<>null do
+ begin p:=font_sizes[f];
+ font_sizes[f]:=link(p);
+ free_node(p,font_size_size);
+ end;
+end;
+
+@ The \&{special} command saves up lines of text to be printed during the next
+|ship_out| operation. The saved items are stored as a list of capsule tokens.
+
+@<Glob...@>=
+@!last_pending:pointer; {the last token in a list of pending specials}
+
+@ @<Set init...@>=
+last_pending:=spec_head;
+
+@ @<Cases of |do_statement|...@>=
+special_command:do_special;
+
+@ @<Declare action procedures for use by |do_statement|@>=
+procedure do_special;
+begin get_x_next; scan_expression;
+if cur_type<>string_type then @<Complain about improper special operation@>
+else begin link(last_pending):=stash_cur_exp;
+ last_pending:=link(last_pending);
+ link(last_pending):=null;
+ end;
+end;
+
+@ @<Complain about improper special operation@>=
+begin exp_err("Unsuitable expression");
+help1("Only known strings are allowed for output as specials.");
+put_get_error;
+end
+
+@ @<Print any pending specials@>=
+t:=link(spec_head);
+while t<>null do
+ begin if length(value(t))<=emergency_line_length then print(value(t))
+ else overflow("output line length",emergency_line_length);
+@:MetaPost capacity exceeded output line length}{\quad output line length@>
+ print_ln;
+ t:=link(t);
+ end;
+flush_token_list(link(spec_head));
+link(spec_head):=null;
+last_pending:=spec_head
+
+@ We are now ready for the main output procedure. Note that the |selector|
+setting is saved in a global variable so that |begin_diagnostic| can access it.
+
+@<Declare the \ps\ output procedures@>=
+procedure ship_out(@!h:pointer); {output edge structure |h|}
+label done,found;
+var @!p:pointer; {the current graphical object}
+@!q:pointer; {something that |p| points to}
+@!t:integer; {a temporary value}
+@!f,ff:font_number; {fonts used in a text node or as loop counters}
+@!ldf:font_number; {the last \.{DocumentFont} listed (otherwise |null_font|)}
+@!done_fonts:boolean; {have we finished listing the fonts in the header?}
+@!next_size:quarterword; {the size index for fonts being listed}
+@!cur_fsize:array[font_number] of pointer; {current positions in |font_sizes|}
+@!ds,@!scf:scaled; {design size and scale factor for a text node}
+@!transformed:boolean; {is the coordinate system being transformed?}
+begin open_output_file;
+if (internal[prologues]>0) and (last_ps_fnum<last_fnum) then
+ read_psname_table;
+non_ps_setting:=selector; selector:=ps_file_only;@/
+@<Print the initial comment and give the bounding box for edge structure~|h|@>;
+print("%%BeginProlog"); print_ln;
+if internal[prologues]>0 then @<Print the prologue@>;
+print("%%EndProlog");
+print_nl("%%Page: 1 1"); print_ln;
+@<Print any pending specials@>;
+unknown_graphics_state(0);
+need_newpath:=true;
+p:=link(dummy_loc(h));
+while p<>null do
+ begin fix_graphics_state(p);
+ case type(p) of
+ @<Cases for translating graphical object~|p| into \ps@>@;
+ start_bounds_code,stop_bounds_code: do_nothing;
+ end; {all cases are enumerated}
+ p:=link(p);
+ end;
+print("showpage"); print_ln;
+print("%%EOF"); print_ln;
+a_close(ps_file);
+selector:=non_ps_setting;
+if internal[prologues]<=0 then clear_sizes;
+@<End progress report@>;
+if internal[tracing_output]>0 then print_edges(h," (just shipped out)",true);
+end;
+
+@ These special comments described in the {\sl PostScript Language Reference
+Manual}, 2nd.~edition are understood by some \ps-reading programs.
+We can't normally output ``conforming'' \ps\ because
+the structuring conventions don't allow us to say ``Please make sure the
+following characters are downloaded and define the \.{fshow} macro to access
+them.''
+
+The exact bounding box is written out if |prologues<0|, although this
+is not standard \ps, since it allows \TeX\ to calculate the box dimensions
+accurately. (Overfull boxes are avoided if an illustration is made to
+match a given \.{\char`\\hsize}.)
+
+@<Print the initial comment and give the bounding box for edge...@>=
+print("%!PS");
+if internal[prologues]>0 then print("-Adobe-3.0 EPSF-3.0");
+print_nl("%%BoundingBox: ");
+set_bbox(h,true);
+if minx_val(h)>maxx_val(h) then print("0 0 0 0")
+else if internal[prologues]<0 then
+ begin ps_pair_out(minx_val(h),miny_val(h));
+ ps_pair_out(maxx_val(h),maxy_val(h));
+ end
+else begin ps_pair_out(floor_scaled(minx_val(h)),floor_scaled(miny_val(h)));
+ ps_pair_out(-floor_scaled(-maxx_val(h)),-floor_scaled(-maxy_val(h)));
+ end;
+print_nl("%%HiResBoundingBox: ");
+if minx_val(h)>maxx_val(h) then print("0 0 0 0")
+else begin
+ ps_pair_out(minx_val(h),miny_val(h));
+ ps_pair_out(maxx_val(h),maxy_val(h));
+ end;
+print_nl("%%Creator: MetaPost ");
+print(metapost_version);
+print_nl("%%CreationDate: ");
+print_int(round_unscaled(internal[year])); print_char(".");
+print_dd(round_unscaled(internal[month])); print_char(".");
+print_dd(round_unscaled(internal[day])); print_char(":");@/
+t:=round_unscaled(internal[time]);
+print_dd(t div 60); print_dd(t mod 60);@/
+print_nl("%%Pages: 1");@/
+@<List all the fonts and magnifications for edge structure~|h|@>;
+print_ln
+
+@ @<List all the fonts and magnifications for edge structure~|h|@>=
+@<Scan all the text nodes and set the |font_sizes| lists;
+ if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
+ apply |unmark_font| to each font encountered, and call |mark_string|
+ whenever the size index is zero@>;
+if internal[prologues]>0 then
+ @<Give a \.{DocumentFonts} comment listing all fonts with non-null
+ |font_sizes| and eliminate duplicates@>
+else begin next_size:=0;
+ @<Make |cur_fsize| a copy of the |font_sizes| array@>;
+ repeat done_fonts:=true;
+ for f:=null_font+1 to last_fnum do
+ begin if cur_fsize[f]<>null then
+ @<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>;
+ if cur_fsize[f]<>null then
+ begin unmark_font(f); done_fonts:=false; @+end;
+ end;
+ if not done_fonts then
+ @<Increment |next_size| and apply |mark_string_chars| to all text nodes with
+ that size index@>;
+ until done_fonts;
+ end
+
+@ @<Make |cur_fsize| a copy of the |font_sizes| array@>=
+for f:=null_font+1 to last_fnum do
+ cur_fsize[f]:=font_sizes[f]
+
+@ It's not a good idea to make any assumptions about the |font_ps_name| entries,
+so we carefully remove duplicates. There is no harm in using a slow, brute-force
+search.
+
+@<Give a \.{DocumentFonts} comment listing all fonts with non-null...@>=
+begin ldf:=null_font;
+for f:=null_font+1 to last_fnum do
+ if font_sizes[f]<>null then
+ begin if ldf=null_font then print_nl("%%DocumentFonts:");
+ for ff:=ldf downto null_font do
+ if font_sizes[ff]<>null then
+ if str_vs_str(font_ps_name[f],font_ps_name[ff])=0 then
+ goto found;
+ if ps_offset+1+length(font_ps_name[f])>max_print_line then
+ print_nl("%%+");
+ print_char(" ");
+ print(font_ps_name[f]);
+ ldf:=f;
+ found:
+ end;
+end
+
+@ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
+for f:=null_font+1 to last_fnum do font_sizes[f]:=null;
+p:=link(dummy_loc(h));
+while p<>null do
+ begin if type(p)=text_code then
+ if font_n(p)<>null_font then
+ begin f:=font_n(p);
+ if internal[prologues]>0 then font_sizes[f]:=void
+ else begin if font_sizes[f]=null then unmark_font(f);
+ name_type(p):=size_index(f,choose_scale(p));
+ if name_type(p)=0 then
+ mark_string_chars(f,text_p(p));
+ end;
+ end;
+ p:=link(p);
+ end
+
+@ If the file name is so long that it can't be printed without exceeding
+|emergency_line_length| then there will be missing items in the \.{\%*Font:}
+line. We might have to repeat line in order to get the character usage
+information to fit within |emergency_line_length|.
+
+@<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>=
+begin t:=0;
+while check_ps_marks(f,t) do
+ begin print_nl("%*Font: ");
+ if ps_offset+length(font_name[f])+12>emergency_line_length then
+ goto done;
+ print(font_name[f]);
+ print_char(" ");
+ ds:=(font_dsize[f] + 8) div 16;
+ print_scaled(take_scaled(ds,sc_factor(cur_fsize[f])));
+ if ps_offset+12>emergency_line_length then goto done;
+ print_char(" ");
+ print_scaled(ds);
+ if ps_offset+5>emergency_line_length then goto done;
+ t:=ps_marks_out(f,t);
+ end;
+done:
+cur_fsize[f]:=link(cur_fsize[f]);
+end
+
+@ @<Increment |next_size| and apply |mark_string_chars| to all text nodes...@>=
+begin incr(next_size);
+p:=link(dummy_loc(h));
+while p<>null do
+ begin if type(p)=text_code then
+ if font_n(p)<>null_font then
+ if name_type(p)=next_size then
+ mark_string_chars(font_n(p),text_p(p));
+ p:=link(p);
+ end;
+end
+
+@ The prologue defines \.{fshow} and corrects for the fact that \.{fshow}
+arguments use |font_name| instead of |font_ps_name|. Downloaded bitmap fonts
+might not have reasonable |font_ps_name| entries, but we just charge ahead
+anyway. The user should not make \&{prologues} positive if this will cause
+trouble.
+@:prologues_}{\&{prologues} primitive@>
+
+@<Print the prologue@>=
+begin if ldf<>null_font then
+ begin for f:=null_font+1 to last_fnum do
+ if font_sizes[f]<>null then
+ begin ps_name_out(font_name[f],true);
+ ps_name_out(font_ps_name[f],true);
+ ps_print(" def");
+ print_ln;
+ end;
+ print("/fshow {exch findfont exch scalefont setfont show}bind def");
+ print_ln;
+ end;
+end
+
+@ Since we do not have a stack for the graphics state, it is considered
+completely unknown after the \.{grestore} from a stop clip object. Procedure
+|unknown_graphics_state| needs a negative argument in this case.
+
+@<Cases for translating graphical object~|p| into \ps@>=
+start_clip_code:begin print_nl("gsave ");
+ ps_path_out(path_p(p));
+ ps_print(" clip");
+ print_ln;
+ end;
+stop_clip_code:begin print_nl("grestore");
+ print_ln;
+ unknown_graphics_state(-1);
+ end;
+
+@ @<Cases for translating graphical object~|p| into \ps@>=
+fill_code: if pen_p(p)=null then ps_fill_out(path_p(p))
+ else if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,true)
+ else begin do_outer_envelope(copy_path(path_p(p)), p);
+ do_outer_envelope(htap_ypoc(path_p(p)), p);
+ end;
+stroked_code: if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,false)
+ else begin q:=copy_path(path_p(p));
+ t:=lcap_val(p);
+ @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
+ q:=make_envelope(q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
+ ps_fill_out(q);
+ toss_knot_list(q);
+ end;
+
+@ The envelope of a cyclic path~|q| could be computed by calling
+|make_envelope| once for |q| and once for its reversal. We don't do this
+because it would fail color regions that are covered by the pen regardless
+of where it is placed on~|q|.
+
+@<Break the cycle and set |t:=1| if path |q| is cyclic@>=
+if left_type(q)<>endpoint then
+ begin left_type(insert_knot(q,x_coord(q),y_coord(q))):=endpoint;
+ right_type(q):=endpoint;
+ q:=link(q);
+ t:=1;
+ end
+
+@ @<Cases for translating graphical object~|p| into \ps@>=
+text_code: if (font_n(p)<>null_font) and (length(text_p(p))>0) then
+ begin if internal[prologues]>0 then
+ scf:=choose_scale(p)
+ else scf:=indexed_size(font_n(p), name_type(p));
+ @<Shift or transform as necessary before outputting text node~|p| at scale
+ factor~|scf|; set |transformed:=true| if the original transformation must
+ be restored@>;
+ ps_string_out(text_p(p));
+ ps_name_out(font_name[font_n(p)],false);
+ @<Print the size information and \ps\ commands for text node~|p|@>;
+ print_ln;
+ end;
+
+@ @<Print the size information and \ps\ commands for text node~|p|@>=
+ps_room(18);
+print_char(" ");
+ds:=(font_dsize[font_n(p)]+8) div 16;
+print_scaled(take_scaled(ds,scf));
+print(" fshow");
+if transformed then ps_print(" grestore")
+
+@ @<Shift or transform as necessary before outputting text node~|p| at...@>=
+transformed:=(txx_val(p)<>scf)or(tyy_val(p)<>scf)or@|
+ (txy_val(p)<>0)or(tyx_val(p)<>0);
+if transformed then
+ begin print("gsave [");
+ ps_pair_out(make_scaled(txx_val(p),scf),@|make_scaled(tyx_val(p),scf));
+ ps_pair_out(make_scaled(txy_val(p),scf),@|make_scaled(tyy_val(p),scf));
+ ps_pair_out(tx_val(p),ty_val(p));@/
+ ps_print("] concat 0 0 moveto");
+ end
+else begin ps_pair_out(tx_val(p),ty_val(p));
+ ps_print("moveto");
+ end;
+print_ln
+
+@ Now that we've finished |ship_out|, let's look at the other commands
+by which a user can send things to the \.{GF} file.
+
+@ @<Determine if a character has been shipped out@>=
+begin cur_exp:=round_unscaled(cur_exp) mod 256;
+if cur_exp<0 then cur_exp:=cur_exp+256;
+boolean_reset(char_exists[cur_exp]); cur_type:=boolean_type;
+end
+
+@* \[45] Dumping and undumping the tables.
+After \.{INIMP} has seen a collection of macros, it
+can write all the necessary information on an auxiliary file so
+that production versions of \MP\ are able to initialize their
+memory at high speed. The present section of the program takes
+care of such output and input. We shall consider simultaneously
+the processes of storing and restoring,
+so that the inverse relation between them is clear.
+@.INIMP@>
+
+The global variable |mem_ident| is a string that is printed right
+after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
+string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
+for example, `\.{(preloaded mem=plain 90.4.14)}', showing the year,
+month, and day that the mem file was created. We have |mem_ident=0|
+before \MP's tables are loaded.
+
+@<Glob...@>=
+@!mem_ident:str_number;
+
+@ @<Set init...@>=
+mem_ident:=0;
+
+@ @<Initialize table entries...@>=
+mem_ident:=" (INIMP)";
+
+@ @<Declare act...@>=
+@!init procedure store_mem_file;
+label done;
+var @!k:integer; {all-purpose index}
+@!p,@!q: pointer; {all-purpose pointers}
+@!x: integer; {something to dump}
+@!w: four_quarters; {four ASCII codes}
+@!s: str_number; {all-purpose string}
+begin @<Create the |mem_ident|, open the mem file,
+ and inform the user that dumping has begun@>;
+@<Dump constants for consistency check@>;
+@<Dump the string pool@>;
+@<Dump the dynamic memory@>;
+@<Dump the table of equivalents and the hash table@>;
+@<Dump a few more things and the closing check word@>;
+@<Close the mem file@>;
+end;
+tini
+
+@ Corresponding to the procedure that dumps a mem file, we also have a function
+that reads~one~in. The function returns |false| if the dumped mem is
+incompatible with the present \MP\ table sizes, etc.
+
+@d off_base=6666 {go here if the mem file is unacceptable}
+@d too_small(#)==begin wake_up_terminal;
+ wterm_ln('---! Must increase the ',#);
+@.Must increase the x@>
+ goto off_base;
+ end
+
+@p @t\4@>@<Declare the function called |open_mem_file|@>@;
+function load_mem_file:boolean;
+label done,off_base,exit;
+var @!k:integer; {all-purpose index}
+@!p,@!q: pointer; {all-purpose pointers}
+@!x: integer; {something undumped}
+@!s: str_number; {some temporary string}
+@!w: four_quarters; {four ASCII codes}
+begin @<Undump constants for consistency check@>;
+@<Undump the string pool@>;
+@<Undump the dynamic memory@>;
+@<Undump the table of equivalents and the hash table@>;
+@<Undump a few more things and the closing check word@>;
+load_mem_file:=true; return; {it worked!}
+off_base: wake_up_terminal;
+ wterm_ln('(Fatal mem file error; I''m stymied)');
+@.Fatal mem file error@>
+load_mem_file:=false;
+exit:end;
+
+@ Mem files consist of |memory_word| items, and we use the following
+macros to dump words of different types:
+
+@d dump_wd(#)==begin mem_file^:=#; put(mem_file);@+end
+@d dump_int(#)==begin mem_file^.int:=#; put(mem_file);@+end
+@d dump_hh(#)==begin mem_file^.hh:=#; put(mem_file);@+end
+@d dump_qqqq(#)==begin mem_file^.qqqq:=#; put(mem_file);@+end
+
+@<Glob...@>=
+@!mem_file:word_file; {for input or output of mem information}
+
+@ The inverse macros are slightly more complicated, since we need to check
+the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
+read an integer value |x| that is supposed to be in the range |a<=x<=b|.
+
+@d undump_wd(#)==begin get(mem_file); #:=mem_file^;@+end
+@d undump_int(#)==begin get(mem_file); #:=mem_file^.int;@+end
+@d undump_hh(#)==begin get(mem_file); #:=mem_file^.hh;@+end
+@d undump_qqqq(#)==begin get(mem_file); #:=mem_file^.qqqq;@+end
+@d undump_end_end(#)==#:=x;@+end
+@d undump_end(#)==(x>#) then goto off_base@+else undump_end_end
+@d undump(#)==begin undump_int(x); if (x<#) or undump_end
+@d undump_size_end_end(#)==too_small(#)@+else undump_end_end
+@d undump_size_end(#)==if x># then undump_size_end_end
+@d undump_size(#)==begin undump_int(x);
+ if x<# then goto off_base; undump_size_end
+
+@ The next few sections of the program should make it clear how we use the
+dump/undump macros.
+
+@<Dump constants for consistency check@>=
+dump_int(@$);@/
+dump_int(mem_min);@/
+dump_int(mem_top);@/
+dump_int(hash_size);@/
+dump_int(hash_prime);@/
+dump_int(max_in_open)
+
+@ Sections of a \.{WEB} program that are ``commented out'' still contribute
+strings to the string pool; therefore \.{INIMP} and \MP\ will have
+the same strings. (And it is, of course, a good thing that they do.)
+@.WEB@>
+@^string pool@>
+
+@<Undump constants for consistency check@>=
+x:=mem_file^.int;
+if x<>@$ then goto off_base; {check that strings are the same}
+undump_int(x);
+if x<>mem_min then goto off_base;
+undump_int(x);
+if x<>mem_top then goto off_base;
+undump_int(x);
+if x<>hash_size then goto off_base;
+undump_int(x);
+if x<>hash_prime then goto off_base;
+undump_int(x);
+if x<>max_in_open then goto off_base
+
+@ We do string pool compaction to avoid dumping unused strings.
+
+@d dump_four_ASCII==
+ w.b0:=qi(so(str_pool[k])); w.b1:=qi(so(str_pool[k+1]));
+ w.b2:=qi(so(str_pool[k+2])); w.b3:=qi(so(str_pool[k+3]));
+ dump_qqqq(w)
+
+@<Dump the string pool@>=
+do_compaction(pool_size);
+dump_int(pool_ptr);
+dump_int(max_str_ptr);
+dump_int(str_ptr);
+k:=0;
+while (next_str[k]=k+1) and (k<=max_str_ptr) do incr(k);
+dump_int(k);
+while k<=max_str_ptr do
+ begin dump_int(next_str[k]); incr(k);
+ end;
+k:=0;
+loop @+begin dump_int(str_start[k]);
+ if k=str_ptr then goto done else k:=next_str[k];
+ end;
+done:k:=0;
+while k+4<pool_ptr do
+ begin dump_four_ASCII; k:=k+4;
+ end;
+k:=pool_ptr-4; dump_four_ASCII;
+print_ln; print("at most "); print_int(max_str_ptr);
+print(" strings of total length ");
+print_int(pool_ptr)
+
+@ @d undump_four_ASCII==
+ undump_qqqq(w);
+ str_pool[k]:=si(qo(w.b0)); str_pool[k+1]:=si(qo(w.b1));
+ str_pool[k+2]:=si(qo(w.b2)); str_pool[k+3]:=si(qo(w.b3))
+
+@<Undump the string pool@>=
+undump_size(0)(pool_size)('string pool size')(pool_ptr);
+undump_size(0)(max_strings-1)('max strings')(max_str_ptr);
+undump(0)(max_str_ptr)(str_ptr);
+undump(0)(max_str_ptr+1)(s);
+for k:=0 to s-1 do next_str[k]:=k+1;
+for k:=s to max_str_ptr do undump(s+1)(max_str_ptr+1)(next_str[k]);
+fixed_str_use:=0;
+k:=0;
+loop @+begin undump(0)(pool_ptr)(str_start[k]);
+ if k=str_ptr then goto done;
+ str_ref[k]:=max_str_ref;
+ incr(fixed_str_use);
+ last_fixed_str:=k; k:=next_str[k];
+ end;
+done:k:=0;
+while k+4<pool_ptr do
+ begin undump_four_ASCII; k:=k+4;
+ end;
+k:=pool_ptr-4; undump_four_ASCII;
+init_str_use:=fixed_str_use; init_pool_ptr:=pool_ptr;
+max_pool_ptr:=pool_ptr;
+strs_used_up:=fixed_str_use;
+stat pool_in_use:=str_start[str_ptr]; strs_in_use:=fixed_str_use;
+ max_pl_used:=pool_in_use; max_strs_used:=strs_in_use;@/
+ pact_count:=0; pact_chars:=0; pact_strs:=0;
+tats
+
+@ By sorting the list of available spaces in the variable-size portion of
+|mem|, we are usually able to get by without having to dump very much
+of the dynamic memory.
+
+We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
+information even when it has not been gathering statistics.
+
+@<Dump the dynamic memory@>=
+sort_avail; var_used:=0;
+dump_int(lo_mem_max); dump_int(rover);
+p:=mem_min; q:=rover; x:=0;
+repeat for k:=p to q+1 do dump_wd(mem[k]);
+x:=x+q+2-p; var_used:=var_used+q-p;
+p:=q+node_size(q); q:=rlink(q);
+until q=rover;
+var_used:=var_used+lo_mem_max-p; dyn_used:=mem_end+1-hi_mem_min;@/
+for k:=p to lo_mem_max do dump_wd(mem[k]);
+x:=x+lo_mem_max+1-p;
+dump_int(hi_mem_min); dump_int(avail);
+for k:=hi_mem_min to mem_end do dump_wd(mem[k]);
+x:=x+mem_end+1-hi_mem_min;
+p:=avail;
+while p<>null do
+ begin decr(dyn_used); p:=link(p);
+ end;
+dump_int(var_used); dump_int(dyn_used);
+print_ln; print_int(x);
+print(" memory locations dumped; current usage is ");
+print_int(var_used); print_char("&"); print_int(dyn_used)
+
+@ @<Undump the dynamic memory@>=
+undump(lo_mem_stat_max+1000)(hi_mem_stat_min-1)(lo_mem_max);
+undump(lo_mem_stat_max+1)(lo_mem_max)(rover);
+p:=mem_min; q:=rover;
+repeat for k:=p to q+1 do undump_wd(mem[k]);
+p:=q+node_size(q);
+if (p>lo_mem_max)or((q>=rlink(q))and(rlink(q)<>rover)) then goto off_base;
+q:=rlink(q);
+until q=rover;
+for k:=p to lo_mem_max do undump_wd(mem[k]);
+undump(lo_mem_max+1)(hi_mem_stat_min)(hi_mem_min);
+undump(null)(mem_top)(avail); mem_end:=mem_top;
+for k:=hi_mem_min to mem_end do undump_wd(mem[k]);
+undump_int(var_used); undump_int(dyn_used)
+
+@ A different scheme is used to compress the hash table, since its lower region
+is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
+words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
+packed for |p>=hash_used|, so the remaining entries are output in~a~block.
+
+@<Dump the table of equivalents and the hash table@>=
+dump_int(hash_used); st_count:=frozen_inaccessible-1-hash_used;
+for p:=1 to hash_used do if text(p)<>0 then
+ begin dump_int(p); dump_hh(hash[p]); dump_hh(eqtb[p]); incr(st_count);
+ end;
+for p:=hash_used+1 to hash_end do
+ begin dump_hh(hash[p]); dump_hh(eqtb[p]);
+ end;
+dump_int(st_count);@/
+print_ln; print_int(st_count); print(" symbolic tokens")
+
+@ @<Undump the table of equivalents and the hash table@>=
+undump(1)(frozen_inaccessible)(hash_used); p:=0;
+repeat undump(p+1)(hash_used)(p); undump_hh(hash[p]); undump_hh(eqtb[p]);
+until p=hash_used;
+for p:=hash_used+1 to hash_end do
+ begin undump_hh(hash[p]); undump_hh(eqtb[p]);
+ end;
+undump_int(st_count)
+
+@ We have already printed a lot of statistics, so we set |tracing_stats:=0|
+to prevent them appearing again.
+
+@<Dump a few more things and the closing check word@>=
+dump_int(int_ptr);
+for k:=1 to int_ptr do
+ begin dump_int(internal[k]); dump_int(int_name[k]);
+ end;
+dump_int(start_sym); dump_int(interaction); dump_int(mem_ident);
+dump_int(bg_loc); dump_int(eg_loc); dump_int(serial_no); dump_int(69073);
+internal[tracing_stats]:=0
+
+@ @<Undump a few more things and the closing check word@>=
+undump(max_given_internal)(max_internal)(int_ptr);
+for k:=1 to int_ptr do
+ begin undump_int(internal[k]);
+ undump(0)(str_ptr)(int_name[k]);
+ end;
+undump(0)(frozen_inaccessible)(start_sym);
+undump(batch_mode)(error_stop_mode)(interaction);
+undump(0)(str_ptr)(mem_ident);
+undump(1)(hash_end)(bg_loc);
+undump(1)(hash_end)(eg_loc);
+undump_int(serial_no);@/
+undump_int(x);@+if (x<>69073)or eof(mem_file) then goto off_base
+
+@ @<Create the |mem_ident|...@>=
+selector:=new_string;
+print(" (preloaded mem="); print(job_name); print_char(" ");
+print_int(round_unscaled(internal[year]) mod 100); print_char(".");
+print_int(round_unscaled(internal[month])); print_char(".");
+print_int(round_unscaled(internal[day])); print_char(")");
+if interaction=batch_mode then selector:=log_only
+else selector:=term_and_log;
+str_room(1); mem_ident:=make_string; str_ref[mem_ident]:=max_str_ref;@/
+pack_job_name(mem_extension);
+while not w_open_out(mem_file) do
+ prompt_file_name("mem file name",mem_extension);
+print_nl("Beginning to dump on file ");
+@.Beginning to dump...@>
+s:=w_make_name_string(mem_file);
+print(s); flush_string(s);
+print_nl(mem_ident)
+
+@ @<Close the mem file@>=
+w_close(mem_file)
+
+@* \[46] The main program.
+This is it: the part of \MP\ that executes all those procedures we have
+written.
+
+Well---almost. We haven't put the parsing subroutines into the
+program yet; and we'd better leave space for a few more routines that may
+have been forgotten.
+
+@p @<Declare the basic parsing subroutines@>@;
+@<Declare miscellaneous procedures that were declared |forward|@>@;
+@<Last-minute procedures@>
+
+@ We've noted that there are two versions of \MP. One, called \.{INIMP},
+@.INIMP@>
+has to be run first; it initializes everything from scratch, without
+reading a mem file, and it has the capability of dumping a mem file.
+The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
+@.VIRMP@>
+to input a mem file in order to get started. \.{VIRMP} typically has
+a bit more memory capacity than \.{INIMP}, because it does not need the
+space consumed by the dumping/undumping routines and the numerous calls on
+|primitive|, etc.
+
+The \.{VIRMP} program cannot read a mem file instantaneously, of course;
+the best implementations therefore allow for production versions of \MP\ that
+not only avoid the loading routine for \PASCAL\ object code, they also have
+a mem file pre-loaded. This is impossible to do if we stick to standard
+\PASCAL; but there is a simple way to fool many systems into avoiding the
+initialization, as follows:\quad(1)~We declare a global integer variable
+called |ready_already|. The probability is negligible that this
+variable holds any particular value like 314159 when \.{VIRMP} is first
+loaded.\quad(2)~After we have read in a mem file and initialized
+everything, we set |ready_already:=314159|.\quad(3)~Soon \.{VIRMP}
+will print `\.*', waiting for more input; and at this point we
+interrupt the program and save its core image in some form that the
+operating system can reload speedily.\quad(4)~When that core image is
+activated, the program starts again at the beginning; but now
+|ready_already=314159| and all the other global variables have
+their initial values too. The former chastity has vanished!
+
+In other words, if we allow ourselves to test the condition
+|ready_already=314159|, before |ready_already| has been
+assigned a value, we can avoid the lengthy initialization. Dirty tricks
+rarely pay off so handsomely.
+@^dirty \PASCAL@>
+@^system dependencies@>
+
+@<Glob...@>=
+@!ready_already:integer; {a sacrifice of purity for economy}
+
+@ Now this is really it: \MP\ starts and ends here.
+
+The initial test involving |ready_already| should be deleted if the
+\PASCAL\ runtime system is smart enough to detect such a ``mistake.''
+@^system dependencies@>
+
+@p begin @!{|start_here|}
+history:=fatal_error_stop; {in case we quit during initialization}
+t_open_out; {open the terminal for output}
+if ready_already=314159 then goto start_of_MP;
+@<Check the ``constant'' values...@>@;
+if bad>0 then
+ begin wterm_ln('Ouch---my internal constants have been clobbered!',
+ '---case ',bad:1);
+@.Ouch...clobbered@>
+ goto final_end;
+ end;
+initialize; {set global variables to their starting values}
+@!init if not get_strings_started then goto final_end;
+init_tab; {initialize the tables}
+init_prim; {call |primitive| for each primitive}
+init_str_use:=str_ptr; init_pool_ptr:=pool_ptr;@/
+max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr;
+fix_date_and_time;
+tini@/
+ready_already:=314159;
+start_of_MP: @<Initialize the output routines@>;
+@<Get the first line of input and prepare to start@>;
+history:=spotless; {ready to go!}
+if start_sym>0 then {insert the `\&{everyjob}' symbol}
+ begin cur_sym:=start_sym; back_input;
+ end;
+main_control; {come to life}
+final_cleanup; {prepare for death}
+end_of_MP: close_files_and_terminate;
+final_end: ready_already:=0;
+end.
+
+@ Here we do whatever is needed to complete \MP's job gracefully on the
+local operating system. The code here might come into play after a fatal
+error; it must therefore consist entirely of ``safe'' operations that
+cannot produce error messages. For example, it would be a mistake to call
+|str_room| or |make_string| at this time, because a call on |overflow|
+might lead to an infinite loop.
+@^system dependencies@>
+
+This program doesn't bother to close the input files that may still be open.
+
+@<Last-minute...@>=
+procedure close_files_and_terminate;
+var @!k:integer; {all-purpose index}
+@!lh:integer; {the length of the \.{TFM} header, in words}
+@!lk_offset:0..256; {extra words inserted at beginning of |lig_kern| array}
+@!p:pointer; {runs through a list of \.{TFM} dimensions}
+begin @<Close all open files in the |rd_file| and |wr_file| arrays@>;
+@!stat if internal[tracing_stats]>0 then
+ @<Output statistics about this job@>;@;@+tats@/
+wake_up_terminal; @<Do all the finishing work on the \.{TFM} file@>;
+@<Explain what output files were written@>;
+if log_opened then
+ begin wlog_cr;
+ a_close(log_file); selector:=selector-2;
+ if selector=term_only then
+ begin print_nl("Transcript written on ");
+@.Transcript written...@>
+ print(log_name); print_char(".");
+ end;
+ end;
+end;
+
+@ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
+for k:=0 to read_files-1 do
+ if rd_fname[k]<>0 then a_close(rd_file[k]);
+for k:=0 to write_files-1 do
+ if wr_fname[k]<>0 then a_close(wr_file[k])
+
+@ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
+
+We reclaim all of the variable-size memory at this point, so that
+there is no chance of another memory overflow after the memory capacity
+has already been exceeded.
+
+@<Do all the finishing work on the \.{TFM} file@>=
+if internal[fontmaking]>0 then
+ begin @<Make the dynamic memory into one big available node@>;
+ @<Massage the \.{TFM} widths@>;
+ fix_design_size; fix_check_sum;
+ @<Massage the \.{TFM} heights, depths, and italic corrections@>;
+ internal[fontmaking]:=0; {avoid loop in case of fatal error}
+ @<Finish the \.{TFM} file@>;
+ end
+
+@ @<Make the dynamic memory into one big available node@>=
+rover:=lo_mem_stat_max+1; link(rover):=empty_flag; lo_mem_max:=hi_mem_min-1;
+if lo_mem_max-rover>max_halfword then lo_mem_max:=max_halfword+rover;
+node_size(rover):=lo_mem_max-rover; llink(rover):=rover; rlink(rover):=rover;
+link(lo_mem_max):=null; info(lo_mem_max):=null
+
+@ The present section goes directly to the log file instead of using
+|print| commands, because there's no need for these strings to take
+up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
+
+@<Output statistics...@>=
+if log_opened then
+ begin wlog_ln(' ');
+ wlog_ln('Here is how much of MetaPost''s memory',' you used:');
+@.Here is how much...@>
+ wlog(' ',max_strs_used-init_str_use:1,' string');
+ if max_strs_used<>init_str_use+1 then wlog('s');
+ wlog_ln(' out of ', max_strings-1-init_str_use:1);@/
+ wlog_ln(' ',max_pl_used-init_pool_ptr:1,' string characters out of ',
+ pool_size-init_pool_ptr:1);@/
+ wlog_ln(' ',lo_mem_max-mem_min+mem_end-hi_mem_min+2:1,@|
+ ' words of memory out of ',mem_end+1-mem_min:1);@/
+ wlog_ln(' ',st_count:1,' symbolic tokens out of ',
+ hash_size:1);@/
+ wlog_ln(' ',max_in_stack:1,'i,',@|
+ int_ptr:1,'n,',@|
+ max_param_stack:1,'p,',@|
+ max_buf_stack+1:1,'b stack positions out of ',@|
+ stack_size:1,'i,',
+ max_internal:1,'n,',
+ param_size:1,'p,',
+ buf_size:1,'b');
+ wlog_ln(' ',pact_count:1,' string compactions (moved ',
+ pact_chars:1,' characters, ',
+ pact_strs:1,' strings)');
+ end
+
+@ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
+been scanned.
+
+@<Last-minute...@>=
+procedure final_cleanup;
+label exit;
+var c:small_number; {0 for \&{end}, 1 for \&{dump}}
+begin c:=cur_mod;
+if job_name=0 then open_log_file;
+while input_ptr>0 do
+ if token_state then end_token_list@+else end_file_reading;
+while loop_ptr<>null do stop_iteration;
+while open_parens>0 do
+ begin print(" )"); decr(open_parens);
+ end;
+while cond_ptr<>null do
+ begin print_nl("(end occurred when ");@/
+@.end occurred...@>
+ print_cmd_mod(fi_or_else,cur_if);
+ {`\.{if}' or `\.{elseif}' or `\.{else}'}
+ if if_line<>0 then
+ begin print(" on line "); print_int(if_line);
+ end;
+ print(" was incomplete)");
+ if_line:=if_line_field(cond_ptr);
+ cur_if:=name_type(cond_ptr); cond_ptr:=link(cond_ptr);
+ end;
+if history<>spotless then
+ if ((history=warning_issued)or(interaction<error_stop_mode)) then
+ if selector=term_and_log then
+ begin selector:=term_only;
+ print_nl("(see the transcript file for additional information)");
+@.see the transcript file...@>
+ selector:=term_and_log;
+ end;
+if c=1 then
+ begin @!init store_mem_file; return;@+tini@/
+ print_nl("(dump is performed only by INIMP)"); return;
+@.dump...only by INIMP@>
+ end;
+exit:end;
+
+@ @<Last-minute...@>=
+@!init procedure init_prim; {initialize all the primitives}
+begin
+@<Put each...@>;
+end;
+@#
+procedure init_tab; {initialize other tables}
+var @!k:integer; {all-purpose index}
+begin @<Initialize table entries (done by \.{INIMP} only)@>@;
+end;
+tini
+
+@ When we begin the following code, \MP's tables may still contain garbage;
+the strings might not even be present. Thus we must proceed cautiously to get
+bootstrapped in.
+
+But when we finish this part of the program, \MP\ is ready to call on the
+|main_control| routine to do its work.
+
+@<Get the first line...@>=
+begin @<Initialize the input routines@>;
+if (mem_ident=0)or(buffer[loc]="&") then
+ begin if mem_ident<>0 then initialize; {erase preloaded mem}
+ if not open_mem_file then goto final_end;
+ if not load_mem_file then
+ begin w_close(mem_file); goto final_end;
+ end;
+ w_close(mem_file);
+ while (loc<limit)and(buffer[loc]=" ") do incr(loc);
+ end;
+buffer[limit]:="%";@/
+fix_date_and_time;@/
+sys_random_seed := (internal[time] div unity)+internal[day];@/
+init_randoms(sys_random_seed);@/
+@<Initialize the print |selector|...@>;
+if loc<limit then if buffer[loc]<>"\" then start_input; {\&{input} assumed}
+end
+
+@* \[47] Debugging.
+Once \MP\ is working, you should be able to diagnose most errors with
+the \.{show} commands and other diagnostic features. But for the initial
+stages of debugging, and for the revelation of really deep mysteries, you
+can compile \MP\ with a few more aids, including the \PASCAL\ runtime
+checks and its debugger. An additional routine called |debug_help|
+will also come into play when you type `\.D' after an error message;
+|debug_help| also occurs just before a fatal error causes \MP\ to succumb.
+@^debugging@>
+@^system dependencies@>
+
+The interface to |debug_help| is primitive, but it is good enough when used
+with a \PASCAL\ debugger that allows you to set breakpoints and to read
+variables and change their values. After getting the prompt `\.{debug \#}', you
+type either a negative number (this exits |debug_help|), or zero (this
+goes to a location where you can set a breakpoint, thereby entering into
+dialog with the \PASCAL\ debugger), or a positive number |m| followed by
+an argument |n|. The meaning of |m| and |n| will be clear from the
+program below. (If |m=13|, there is an additional argument, |l|.)
+@.debug \#@>
+
+@d breakpoint=888 {place where a breakpoint is desirable}
+
+@<Last-minute...@>=
+@!debug procedure debug_help; {routine to display various things}
+label breakpoint,exit;
+var @!k,@!l,@!m,@!n:integer;
+begin loop begin wake_up_terminal;
+ print_nl("debug # (-1 to exit):"); update_terminal;
+@.debug \#@>
+ read(term_in,m);
+ if m<0 then return
+ else if m=0 then
+ begin goto breakpoint;@\ {go to every label at least once}
+ breakpoint: m:=0; @{'BREAKPOINT'@}@\
+ end
+ else begin read(term_in,n);
+ case m of
+ @t\4@>@<Numbered cases for |debug_help|@>@;
+ othercases print("?")
+ endcases;
+ end;
+ end;
+exit:end;
+gubed
+
+@ @<Numbered cases...@>=
+1: print_word(mem[n]); {display |mem[n]| in all forms}
+2: print_int(info(n));
+3: print_int(link(n));
+4: begin print_int(eq_type(n)); print_char(":"); print_int(equiv(n));
+ end;
+5: print_variable_name(n);
+6: print_int(internal[n]);
+7: do_show_dependencies;
+9: show_token_list(n,null,100000,0);
+10: print(n);
+11: check_mem(n>0); {check wellformedness; print new busy locations if |n>0|}
+12: search_mem(n); {look for pointers to |n|}
+13: begin read(term_in,l); print_cmd_mod(n,l);
+ end;
+14: for k:=0 to n do print(buffer[k]);
+15: panicking:=not panicking;
+
+
+@ \MP\ used to have one single routine to print to both `write' files
+and the PostScript output. Web2c redefines ``Character |k| cannot be
+printed'', and that resulted in some bugs where 8-bit characters were
+written to the PostScript file (reported by Wlodek Bzyl).
+
+Also, Hans Hagen requested spaces to be output as "\\040" instead of
+a plain space, since that makes it easier to parse the result file
+for postprocessing.
+
+@<Character |k| is not allowed in PostScript output@>=
+ (k<=" ")or(k>"~")
+
+@* \[48] System-dependent changes.
+This section should be replaced, if necessary, by any special
+modification of the program
+that are necessary to make \MP\ work at a particular installation.
+It is usually best to design your change file so that all changes to
+previous sections preserve the section numbering; then everybody's version
+will be consistent with the published program. More extensive changes,
+which introduce new sections, can be inserted here; then only the index
+itself will get a new section number.
+@^system dependencies@>
+
+@* \[49] Index.
+Here is where you can find all uses of each identifier in the program,
+with underlined entries pointing to where the identifier was defined.
+If the identifier is only one letter long, however, you get to see only
+the underlined entries. {\sl All references are to section numbers instead of
+page numbers.}
+
+This index also lists error messages and other aspects of the program
+that you might want to look up some day. For example, the entry
+for ``system dependencies'' lists all sections that should receive
+special attention from people who are installing \MP\ in a new
+operating environment. A list of various things that can't happen appears
+under ``this can't happen''.
+Approximately 25 sections are listed under ``inner loop''; these account
+for more than 60\pct! of \MP's running time, exclusive of input and output.